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ABSTRACT

In this thesis we provide some extensions of the concept of domination in
graph theory, namely, exact p-domination, weak p-domination and strong
p-domination. We illustrate these new concepts on some random families
of geometric graphs called class cover catch digraphs (CCCDs) and prox-
imity catch digraphs (PCDs). PCDs and CCCDs are closely related to
each other and have applications in pattern classification and spatial point
pattern analysis. Furthermore, PCDs are parameterized by an expansion
parameter and a centrality parameter. Previously, usual domination has
been investigated thoroughly for these digraph families. We investigate the
distribution of various extensions of domination number for these digraph
families. In particular, we demonstrate that the asymptotic distribution
of strong p-domination number is degenerate for CCCDs. We also derive
the asymptotic distribution of the various domination number concepts for
PCDs based on one dimensional uniform data. We also perform Monte
Carlo simulation experiments, which support our theoretical findings. This
study lays the foundation for the study of the various forms of domination
on PCDs based on higher dimensional data.
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ÖZET

Bu tezde çizge kuramsal baskınlık kavramının yeni versiyonlarını geliştiriyo-
ruz. Bunlar, tam p-baskınlık, zayıf p-baskınlık ve güçlü p-baskınlık kavram-
larıdır. Bu yeni kavramları, Küme Kapsayıcı Yakalama Yönlü Çizgeleri
(KKYYÇler) ve Yakınlık Bölgesi Yakalama Yönlü Çizgeleri (YBYYÇler)
olarak isimlendirdiğimiz bazı rassal geometrik çizge ailelerinde göstereceğiz.
KKYYÇler ve YBYYÇlerin birbirleri ile yakın bir ilişkisi vardır ve bu rassal
çizgelerin desen sınıflandırmaları ve uzaysal nokta desen analizinde uygu-
lamaları vardır. Dahası, YBYYÇler genişleme ve merkez katsayıları ile
parametrize edilmiştir. Literatürdeki baskınlık kavramı bu yönlü çizge ailele-
ri üzerinde çalışılmıştır. Bu yönlü çizge aileleri üzerinde çeşitli baskınlık
sayısı versiyonlarının dağılımlarını araştırdık. Özellikle, KKYYÇler için,
güçlü p-baskınlık sayısının asimptotik dağılımının dejenere olduğu gösterilmiş
ve tek boyutlu, düzgün dağılıma sahip verili YBYYÇler için çeşitli baskınlık
sayılarının asimptotik dağılımını hesapladık. Teorik bulgular, Monte Carlo
simülasyonları ile desteklenmiştir. Bu çalışma, çok boyutlu YBYYÇlerde
çeşitli baskınlık formlarının analizine de temel oluşturacaktır.
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Mathematics Department of Koç University, through their knowledge and
guidance, I started to figure out who I want to be, how can I become that
person, but most importantly, I felt at home.
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ÖZET iv

ACKNOWLEDGEMENTS vi

LIST OF SYMBOLS & ABBREVIATIONS viii

LIST OF FIGURES ix

1 PRELIMINARIES 1

2 DOMINATION AND ITS EXTENSIONS 7
2.1 Dominating Sets and Domination Number . . . . . . . . . . . 7
2.2 Various Extensions of Domination . . . . . . . . . . . . . . . 11

3 CLASS COVER CATCH DIGRAPHS, DOMINATION AND
STRONG p-DOMINATION 16
3.1 CCCDs and Previous Results on Domination . . . . . . . . . 16
3.2 Strong p-domination on CCCDs . . . . . . . . . . . . . . . . . 19
3.3 Asymptotic Distribution of γ≥p

on CCCDs . . . . . . . . . . . 26
3.3.1 Method I . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Method II . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . 31

4 PROPORTIONAL EDGE PROXIMITY CATCH DIGRAPHS,
DOMINATION AND STRONG p-DOMINATION 33
4.1 PCDs and Previous Results on Domination . . . . . . . . . . 33
4.2 Exact and Weak p-Domination on PCDs . . . . . . . . . . . . 35
4.3 Strong p-domination on PCDs . . . . . . . . . . . . . . . . . . 38
4.4 Asymptotic Distribution of γ≥p

for PCDs . . . . . . . . . . . 40
4.4.1 Proof of Theorem 4.12 . . . . . . . . . . . . . . . . . . 44
4.4.2 Proof of Theorem 4.14 . . . . . . . . . . . . . . . . . . 51

4.5 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . 54

5 CONCLUSIONS 60

REFERENCES 61

vii



LIST OF SYMBOLS & ABBREVIATIONS

G Graph
D Digraph
Kn Complete graph with n vertices
Kn,m Complete bipartite graph of size n and m
Cn Cycle of length n
V (G) Vertex set of the graph G
E(G) Edge set of the graph G
d(v) Degree of a vertex v ∈ V (G), where G is a graph
d+(v), d−(v) Outdegree and indegree of a vertex v ∈ V (D); where D is a digraph
∆(G) Maximum degree of the graph G
δ(G) Minimum degree of the graph G
γ(G) The domination number of a graph G
γ≥p

(G) The strong p-domination number of a graph G, for p ∈ [0, 1]

γe
p
(G) The exact p-domination number of a graph G, for p ∈ [0, 1]

γw
p

(G) The weak p-domination number of a graph G, for p ∈ [0, 1]

pdf Probability Distribution Function
cdf Cumulative Distribution Function
iid independent and identically distributed
Xi:n ith order statistic of a random sample of size n
CCCD Class Cover Catch Digraph
PCD Proximity Catch Digraph
PE − PCD Proportional-Edge Proximity Catch Digraph
f(x) = O(g(x)) |f(x)| ≤ Cg(x) for all x < x0, where C, x0 ∈ R

viii



List of Figures

1 An illustration of the pdf of Xi:n given in Equation (2). . . . 3
2 An illustration of the joint pdf of Xi:n, Xj:n given in Equa-

tion (3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 An illustration for the case of γ(G) = n/2. . . . . . . . . . . . 8
4 An illustration of Remark 2.11. . . . . . . . . . . . . . . . . . 11
5 A graph satisfying the conditions of Theorem 2.16. . . . . . . 13
6 An example regarding Theorem 2.18. . . . . . . . . . . . . . . 14
7 An example illustrating the construction of catch sets associ-

ated with the elements of a random sample. . . . . . . . . . . 16
8 The CCCD constructed from the points and sets in Figure 7. 17
9 An example of the interval, Ip, in Theorem 3.10. . . . . . . . 22
10 Another example of the interval, Ip. . . . . . . . . . . . . . . 22
11 An example of proximity sets in R. . . . . . . . . . . . . . . . 34
12 The PCD constructed from the sets in Figure 11. . . . . . . . 34

ix



1 PRELIMINARIES

Here we briefly provide the basic probabilistic and graph theoretical concepts
that we use throughout this study. All the definitions and statements on
probability theory can be found in [1], [3], [4] and [5], on graph theory can
be found in [8] and [2], with perhaps minor modifications undertaken for the
sake of consistency.

Definition 1. A probability space is a measure space, (Ψ,Σ, P ), where Ψ
is a set, Σ is a specified σ-field, (i.e., the power set of Ψ) and P will be a
nonnegative measure with the condition that P (Ψ) = 1.

Definition 2. A (real valued) random variable X is a measurable function
with real values on a given probability space, i.e., X : Ψ→ R.

Definition 3. Given a real valued random variable, a (cumulative) distribu-
tion function F is the function F (x) = P (X ≤ x). We use the abbreviation
‘cdf’ for cumulative distribution function.

Two instant properties of a distribution function are that limx→∞ F (x) =
1 and limx→−∞ F (x) = 0. Also notice that as P is nonnegative, F is mono-
tone increasing.

Definition 4. Assuming that there exists a function f satisfying

F (x) =

∫ x

−∞
f(t) dt,

we say that f is the (probability) density function of the random variable
X. We use the abbreviation ‘pdf’ for probability density function.

Definition 5. Let g : R→ R be any real valued function, then

E(g(X)) =

∫
Ψ
g(X)dP =

∫ ∞
−∞

g(x)dF (x)

is called the expectation of g(X), we use the notation µ = E(X). Also

Var(X) = σ2(X) = E[(X − µ)2] = E(X2)− µ2

is called the variance of X.

Below we provide a slightly modified version of Theorem 2.4.6 from [1].

Theorem 1.1 (Markov’s Inequality). For any continuous random variable
X with pdf f , nonnegative real-valued function u and any constant c > 0,
we have

P (u(X) ≥ c) ≤ E [u(X)]

c

1



Proof. Consider the set S = {x ∈ R|u(x) ≥ c}, then we have for X,

E [u(X)] =

∫
R
u(x).f(x) dx =

∫
S
u(x).f(x) dx+

∫
Sc

u(x).f(x) dx

≥
∫
S
u(x).f(x) dx ≥

∫
S
c.f(x) dx = cP (X ∈ S) = c.P (u(X) ≥ c) .

As a corollary to Theorem 1.1, we obtain Chebyshev’s Inequality (The-
orem 2.4.7 in [1]).

Corollary 1.2 (Chebyshev’s Inequality). Let X be a given continuous ran-
dom variable with E [X] = µ and Var [X] = σ2, then for any k > 0 we have
P (|X − µ| ≥ kσ) ≤ 1/k2.

Proof. Consider the previous result with the function u(X) = (X − µ)2,
c = k2σ2. Then

P (|X − µ| ≥ kσ) = P
(
|X − µ| ≥ k2σ2

)
≤

E
[
(X − µ)2

]
k2σ2

=
1

k2
.

Remark 1.3. See that letting ε = kσ we have the equivalent form

P (|X − µ| ≥ ε) ≤ σ2

ε2
, whenever σ2 > 0. (1)

If we have more than one random variable to consider at the same time,
we need to analyze their densities together as follows.

Definition 6. For the n-dimensional random variable, X = (X1, X2, . . . , Xn),
the joint probability density function is

f(x1, x2, . . . , xn) = P (X1 = x1, X2 = x2, . . . , Xn = xn) ,

for any possible value x = (x1, x2, . . . , xn) ∈ Rn of X.

Definition 7. The set of random variables {X1, X2, . . . , Xn} is called a
random sample of size n from a random variable with the pdf f , if their
joint pdf is of the form

f(x1, x2, . . . , xn) = f(x1)f(x2) . . . f(xn),

that is, {X1, X2, . . . , Xn} is a random sample of size n, if Xi are independent
and identically distributed (iid), with pdf f .
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Most of the basic concepts we need in our treatment of our main problem
are provided, we will mostly work with random samples in the real line and
use their natural ordering.

Definition 8. Given a random sample of size n from a real valued random
variable, Xn, if we order the observations from the smallest to largest, we
call the random variables the order statistics of Xn and the ith greatest
observation in Xn the ith order statistics. We denote ith order statistics by
Xi:n.

We need the pdf of the ith order statistics, for any i ∈ {1, 2, . . . , n}, as
well as the joint pdf of two distinct order statistics, say the ith and jth,
where i, j ∈ {1, 2, . . . , n} and i 6= j. Thus we give the following propositions
(Theorem 6.5.2 in [1]).

Proposition 1.4. Given a, b ∈ R+ a random sample Xn = {X1, X2, . . . , Xn}
from a real valued random variable with the continuous pdf, f , where f(x) >
0 for a < x < b, and the cdf F , the pdf of the ith order statistic Xi:n is given
by

gi(xi) =
n!

(i− 1)!(n− i)!
[F (xi)]

i−1 [1− F (xi)]
n−i f(xi) (2)

if a < xi < b, and zero otherwise.

Figure 1 illustrates the rationale behind Proposition 1.4. Observe that
xi is fixed, we need i− 1 points before xi and n− i points after xi.

n1x i-1 i i+1

i-1 1 n-i

2x x x x x

Figure 1: An illustration of the pdf of Xi:n given in Equation (2).

Proposition 1.5. Let Xn = {X1, X2, . . . , Xn} be as in Proposition 1.4, then
the joint pdf of the ith and the jth order statistics, Xi:n and Xj:n, is given
by

gi,j(xi, xj) =
n!

(i− 1)!(j − i− 1)!(n− j)!
[F (xi)]

i−1 f(xi) [F (xj)− F (xi)]
j−i−1

f(xj) [1− F (xj)]
n−j (3)

if a < xi < xj < b, and zero otherwise.
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The rationale behind Proposition 1.5 is illustrated in Figure 2. Observe
that xi and xj are fixed, we need i− 1 points before xi, j − i− 1 points in
between xi and xj as well as n− j points after xj .

1 n

i-1 1 n-j

x i-1x xix i+1x j-1x jx j+1x

1j-i-1

Figure 2: An illustration of the joint pdf of Xi:n, Xj:n given in Equation (3).

More detail on order statistics and their analysis can be found in [5]. We
also provide the concept of convergence of random variable sequences.

Definition 9. Let Rn be a sequence of real valued random variables, with
distribution functions Fn. Rn is said to converge in distribution to R, with
distribution function F , if for any real number x ∈ R,

lim
n→∞

Fn(x) = F (x),

denoted Rn
D→ R.

Definition 10. Let Rn be a sequence of real valued random variables. Rn
is said to converge in probability to R, if for any ε > 0

lim
n→∞

P (|Rn −R| < ε) = 1,

denoted Rn
P→ R.

Finally, we state the following theorem, it is stated as in [6].

Theorem 1.6 (Lebesgue’s Dominated Convergence Theorem). Let {fn} be
a sequence of integrable functions such that, (a) fn → f a.e., and (b) there
exists a nonnegative integrable function g such that |fn| < g a.e. for all
n ∈ N. Then f is integrable, and∫

f = lim
n→∞

∫
fn.

In order to be able to study domination on graphs, we also need to in-
troduce some graph theoretical tools. A graph G is a triple consisting of a
vertex set V (G), an edge set E(G) and a relation that associates each edge
with an unordered pair of vertices. The two vertices in the pair that is as-
sociated with an edge are called its endpoints. If two vertices are endpoints
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of an edge, then we call them adjacent to each other, and the edge is called
incident to those vertices. A digraph (or a directed graph) is a triple con-
sisting of a vertex set V (G), an edge set E(G) and a relation that associates
each edge with an ordered pair of vertices. In digraphs, order is important,
i.e., it is possible that a vertex is adjacent to another, but not vice versa.
These directed edges of digraphs are usually called arcs.

A loop is an edge that has the same vertex as endpoints. If there are two
vertices associated with more than one edge, we call those edges multiple
edges. A graph is called simple if it has no loops or multiple edges. The
number of vertices of G, |V (G)| is called the order of G.

Note that we use the convention in which an edge of a graph, say e, is
also denoted as u v, if u and v are its endpoints. Also in digraphs we denote
an arc a as (u, v), if it starts from u and ends in v. We also denote a graph
as G = (V ,E ) and a digraph as D = (V ,A ), for brevity of notation.

Definition 11. Given a graph G and a vertex v ∈ V (G), the number of
incident edges to v is called the degree of v and is denoted d(v) (or dG(v)).
For a digraph D and a vertex v ∈ V (D), the number of arcs going out from
v is called its outdegree, denoted d+(v) and the number of arcs going into v
is called its indegree, denoted d−(v).

Given a graph G, with vertices V (G) = {v1, v2, . . . , vn}, we call the
set {d(v1), d(v2), . . . , d(vn)} the degree sequence of G, and conventionally
degree sequences are assumed to be ordered from the largest to the smallest
degree. The maximum degree of vertices of G is denoted as ∆(G), whereas
the minimum degree of its vertices is denoted as δ(G). In this sense, the
degree sequence of G has the following form {∆(G), . . . , δ(G)}, where for
some i, j ∈ {1, 2, . . . , n}, ∆(G) = d(vi) and δ(G) = d(vj).

Definition 12. A subgraph of a graph G = (V (G), E(G)) is a graph G′ with
the vertex set V ′(G) ⊂ V (G) and with the edge set E′(G) ⊂ E(G) under the
condition that if an edge e = u v of G is an edge of G′, then u, v ∈ V ′(G).
If G′ is a subgraph of G, then we say G′ ⊂ G. A spanning subgraph of G is
a subgraph with the vertex set V (G).

Definition 13. A path is a graph whose vertices can be ordered in a list
so that two of its vertices are adjacent if and only if they are consecutive in
the list. A cycle is a path which does not include any vertex twice, except
for the first and the last one in the list. The number of edges in a path is
called the length of the path.

Definition 14. The distance between two vertices u and v is the smallest
length of any path between u and v. It is denoted as d(u, v). If there exists
no path between u and v, we say that d(u, v) = ∞. Given any vertex v,
d(v, v) is assumed to be 0. If, for all u, v ∈ V (G), d(u, v) <∞, then we say
that G is connected. All graphs consist of connected parts that are called
components.
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Definition 15. A tree is a connected graph with no cycles. A spanning tree
of G is a spanning subgraph of G, which is also a tree.
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2 DOMINATION AND ITS EXTENSIONS

In this section we analyze the graph theoretical concept of domination and
give previous results on domination. Then we introduce new extensions to
this concept and provide several new results on them.

2.1 Dominating Sets and Domination Number

We define the concept of domination on graphs and digraphs, then we
present results mostly on lower and upper bounds of the domination num-
ber. All of the results in this section can be found in [7], which includes a
nice compilation of the results on domination. First we define the concept
of domination in the usual sense.

Let G = (V ,E ) be a simple graph with vertex set V and (undirected)
edge set E . A vertex u of G is said to dominate itself and vertex v if there
exists an edge u v ∈ E . A subset SD ⊆ V is said to be a dominating set
of the graph G, if for any vertex v ∈ V , either v ∈ SD, or there exists a
vertex u ∈ SD that dominates v. Clearly, V is a dominating set of G. A
minimum dominating set S∗D of G is a dominating set with the minimum
cardinality. Also, a minimal dominating set S∗D of G is a dominating set
that does not have another dominating set as a proper subset. Notice any
minimum dominating set is minimal, but not vice versa.

Theorem 2.1. Every connected graph G, with the vertex set V , of order n ≥
2 has a dominating set SD, whose complement V −SD is also a dominating
set.

Proof. Since G is connected, it has at least one spanning tree. Let T be
any of these spanning trees of G, and let u be any vertex in V . Then the
vertices in T fall into two disjoint sets, SD and S′D consisting, respectively,
of the vertices with an even and odd distance from u in T . This is due to
the fact that there are no cycles in T, thus between any vertices u and v,
there is a unique path. Clearly, both SD and S′D = V − SD are dominating
sets for G.

Theorem 2.2. If a graph G is without any isolated vertices, then the com-
plement of V − SD of every minimal dominating set SD is a dominating
set.

Proof. Let SD be any minimal dominating set ofG. Assume that there exists
a vertex u ∈ SD that is not dominated by any vertex in V −SD. Since G has
no isolated vertices, u must be dominated by at least one vertex in SD−{u},
that is, SD − {u} is a dominating set, contradicting the minimality of SD.
Thus every vertex in SD is dominated by at least one vertex in V − SD,
and also all elements of V − SD dominate themselves, therefore V − SD is
a dominating set.

7



For the digraphs, another term for domination was used in [7], namely
directed domination. But as there is little difference in this term, we use
the same term of domination both for graphs and digraphs. The definition
for the directed graphs is very similar. Let D = (V ,A ) be a digraph with
vertex set V and arc set A . A vertex u of D is said to dominate vertex v if
an arc (u, v) ∈ A exists. The definition of a dominating set and a minimum
dominating set is the same as in the graphs.

Now given a graph G, consider the class of minimum dominating sets.
Each set in this class has the same cardinality and this number is called the
domination number of G and it is denoted γ(G). Equivalently, γ(G) is the
minimum number of vertices required to dominate all vertices of G. As each
vertex dominates itself, we directly have the upper bound, γ(G) ≤ n. The
following theorem gives a simple upper bound for the domination number
of a wide class of graphs.

Theorem 2.3 (Ore). If a graph G has no isolated vertices, then γ(G) ≤ n/2.

Proof. By the fact that no vertex of G is isolated, we see that any vertex
dominates at least one other vertex, i.e., counting itself, it dominates at least
two vertices. Therefore the result follows.

Let Kn be the simple graph on n vertices with each vertex being of degree
n−1 (called the complete graph on n vertices). Note that the upper bound on
the previous theorem is sharp, e.g., if the graph only consists of components
that are K2s, then the bound is obtained. See that in Figure 3 for each K2

component we choose one vertex and obtain domination. As there are n/2
components, we have γ(G) = n/2. (Note the implicit assumption that n is
even, and odd case is similar.)

v1

v2

vn-1

vn

v5

v6

v3

v4

Figure 3: An illustration for the case of γ(G) = n/2.

Moreover, a more general result on the sharpness of the upper bound is
given. We denote cycles of length k by Ck. By the corona G ◦G′ we mean
that n copies of the graph G′ are taken and each copy is made adjacent to
a vertex of G. In particular G ◦ K1 is the graph where at each vertex of

8



G there is another edge and a vertex added. Note that K2 is the corona,
K1 ◦K1.

Theorem 2.4. For a graph G with even order n and no isolated vertices,
γ(G) = n/2 if and only if components of G are the cycle C4 or the corona
H ◦K1 for any connected graph H.

Increasing the minimum degree requirement, we further obtain tighter
bounds.

Theorem 2.5 (Reed). If G is a connected graph with δ(G) ≥ 3, then γ(G) ≤
3n/8.

For graphs with higher degree vertices, the following result is obtained.

Theorem 2.6. For any graph G with δ(G) ≥ 7, we have

γ(G) ≤ n

[
1− δ

(
1

δ + 1

)1+1/δ
]
.

We denote the complete bipartite graph defined on n + m vertices with
Kn,m and it is the graph such that its vertices can be partitioned into two
sets of sizes n and m, and that no two vertices that are in the same set are
adjacent, whereas a vertex in a set is adjacent to all vertices in the other
set. The graph K1,3 is called a claw. Also the graph K3 ◦K1 is called a net.
For a real number x, let dxe be the smallest integer larger than or equal to
x and bxc be the largest integer smaller than or equal to x.

Theorem 2.7. If a connected graph G is without any claws or nets, then
γ(G) ≤ dn/3e.

The following is a quite interesting result.

Theorem 2.8 (Weber). Let k = b(log(n) − 2 log(log(n)) + log(log(e)))c.
Then for almost every graph G,

k + 1 ≤ γ(G) ≤ k + 2.

The following is an intuitive result on bounds regarding the maximum
degree of a graph.

Theorem 2.9. For any graph G,⌈
n

1 + ∆(G)

⌉
≤ γ(G) ≤ n−∆(G).

Proof. Let SD be a minimum dominating set of G. See that each vertex
can dominate at most itself and ∆(G) other vertices. So it follows that

9



γ(G) ≥ d n
1+∆(G)e. Also see that there is a vertex with degree ∆(G), which

also dominates itself. All the n−∆(G)−1 vertices that cannot be dominated
by the initial vertex can dominate themselves and adding the first vertex we
obtain domination in n−∆(G) vertices, which is not necessarily a minimum
domination. Hence γ(G) ≤ n−∆(G).

The lower bound in this result can also be attained, i.e., γ(G) = n/(1 +
∆(G)) if and only if there is a minimum dominating set SD of G such that for
any u, v ∈ SD, u and v do not have any common vertex that is adjacent to
both of them as well as if all vertices of SD are of degree ∆(G). A complete
bipartite graph, K1,n−1, is called a star of size n. k copies of cycles of
length 3, C3’s, and stars of size ∆(G), K1,∆(G)−1 attain this bound, i.e.,
γ = k = n/(1 + ∆(G)). Also note that the upper bound is attained for
the graph Kk ◦K1. The following result is for a graph with a given degree
sequence.

Theorem 2.10. If a graph G has the degree sequence {d1, d2, . . . , dn}, with
di ≥ di+1 for i = 1, 2, . . . , n−1, then γ(G) ≥ min(k : k+(d1+d2+. . .+dk) ≥
n).

Proof. We will construct a dominating set SD in the following way. We
add vd1 to SD, the vertex corresponding to the highest degree, d1. We are
done if d1 = n − 1, otherwise we add vd2 to SD, the vertex corresponding
to the degree d2, and if vd2 dominates all the n − d1 − 1 > 0 vertices that
vd1 does not dominate, then we are done. Otherwise we continue adding
vertices. This procedure is certain to stop as at the worst case all the points
are isolated, i.e., d1 = d2 = . . . = dn = 0, therefore at k = n we have the
domination.

Remark 2.11. Note that the method in the proof of this theorem does not
usually yield a minimum dominating set, it just gives a lower bound for the
domination number. This is since for i < j, vdi may dominate vertices that
were already dominated by vdj and instead of vdi , choice of another vertex
could be more optimal.

An example for this remark is given in Figure 4, notice that the graph
has the degree sequence {6, 4, 2, 2, 2, 2, 1, 1, 1, 1}, and n = 10, thus by Theo-
rem 2.10 we have γ(G) ≥ 2. But the vertex set {vd1 , vd2} is not a dominating
set, whereas if we choose vd6 , we get the desired result, i.e., {vd1 , vd6} is a
minimum dominating set.
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Figure 4: An illustration of Remark 2.11.

We state the following theorem, and its proof follows easily.

Theorem 2.12. If a graph G has stars of size d1, d2, . . . , dk as components,
then the lower bound for γ(G) in Theorem 2.10 is obtained.

Theorem 2.13. For any graph G,

γ(G) ≤
(
n+ 1− (δ(G)− 1)

∆(G)

δ(G)

)/
2.

And lastly, the following result is a quick corollary of the previous theo-
rem.

Corollary 2.14. If a graph has no isolated vertices, then we have

γ(G) ≤ n+ 2− δ(G)

2
.

2.2 Various Extensions of Domination

Here we define some extensions of the concept of domination, state and
prove some related results. Note that there are quite a number of previous
extensions of domination, namely, multiple domination, total domination,
upper/lower domination, independent domination and distance domination.
As they are not in the scope of this study, we do not define them. For more
information see [7].

A new and really intuitive extension to the concept of domination is the
exact p-domination.

Definition 16. Let G be any graph and p ∈ [0, 1], we say that SpD ⊂ V (G) is
an exact p-dominating set, if SpD exists so that its vertices dominate exactly
dnpe of all vertices of G. The cardinality of a minimum exact p-dominating
set is called the exact p-domination number, and it is denoted γe

p
(G).
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Notice that the case p = 1 gives the usual domination as we need the
domination of all n vertices, whereas the case p = 0 is the null case, i.e., we
need to dominate no vertices, so we assume γe

0
to be 0. As intuitive as it

may be, for a lot of different graphs, exact p-dominating sets, and therefore
exact p-domination number may not exist. Consider the complete graph,
Kn. For any value p that makes dnpe/n other than 0 or 1, there are no
exact p-dominating sets and therefore γe

p
(Kn) is not defined. This is due to

the fact that if you even choose one vertex, then you obtain the domination
of all vertices. The graphs that give exact p-domination for any value of
p ∈ [0, 1] are not common.

We use the following elementary result.

Theorem 2.15 (Binary Expansion Theorem). For each natural number
n ∈ N, there is a unique expansion of the form

n =

k∑
i=0

ai2
i,

where k ∈ N and ai is either 0 or 1 for all i ∈ {0, 1, . . . , k − 1}, and ak = 1.

Note that the condition ak = 1 is not the case when n = 0. We have the
following result.

Theorem 2.16. For all n ∈ N, of the form n = 1 + 2 + 22 + . . . + 2k,
where k ∈ N, there exists a graph of order n such that exact p-domination
is well-defined, independent from the choice of p. Moreover, an example of
such graphs is the graph with the components K1,K2, . . . ,K2k .

Proof. Given a natural number z ∈ {0, 1, . . . , n}, by Theorem 2.15, there
is the binary expansion z =

∑j
i=0 ai2

i, where j ∈ Z+ and ai are as in the
theorem. Also j ≤ k. We construct the exact p-dominating set as follows.
For i ∈ {0, 1, . . . , j} such that ai = 1, we choose any vertex in the component
K2i and add it to the set. Then we have a total of z vertices dominated,
and as this is true for any z ∈ {0, 1, . . . , n}, the result follows.

We give an example in Figure 5. This is the graph with the components
K1, K2, K4 and K8. For each value of p, dnpe changes from 0 to 15, taking
any integer value between these two. By the construction of this graph, we
can obtain, for all p, the exact p-domination number, and it is at most 4.
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Figure 5: A graph satisfying the conditions of Theorem 2.16.

There is a more general result, which follows easily.

Theorem 2.17. For any graph G of order n, exact p-domination is defined
if and only if there is a set of k vertices of G, which together dominate
dnpe − k vertices outside of this set.

Now we define our main extension of domination, in which we loosen the
‘exactness’ condition in exact p-domination.

Definition 17. Let G be any graph and p ∈ [0, 1], we say that SpD ⊂ V (G)
is a strong p-dominating set, if vertices in SpD dominate at least dnpe of
all vertices of G. The cardinality of a minimum strong p-dominating set is
called the strong p-domination number, and it is denoted γ≥p

(G).

Notice, again, that the case p = 1 gives the usual domination as we need
the domination of at least all n vertices, i.e., all vertices. Also notice that
whenever exact p-domination makes sense, any exact p-dominating set is a
strong p-dominating set, but not vice versa. Hence follows the result.

Theorem 2.18. For any graph G and p ∈ [0, 1], whenever γe
p
(G) is well-

defined, we have
γ≥p

(G) ≤ γe
p
(G).

We give an example of this fact in Figure 6. See that in this graph
n = 10 and for p = 0.6, γe

0.6
= 3 (with the minimum exact p-dominating set

{v2, v8, v9}). On the other hand we can dominate 7 vertices with just 2, i.e.,
γ≥0.6

= 2 (with the minimum strong p-dominating set {v2, v5}).
Furthermore, observe that the strong p-domination number of a given

graph G is increasing with respect to the parameter p, that is, the function
ςG : [0, 1]→ R, ςG(p) = γ≥p

(G) is monotone increasing.
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Figure 6: An example regarding Theorem 2.18.

Theorem 2.19. For p1, p2 ∈ [0, 1] with p1 ≤ p2, we have

γ≥p1
(G) ≤ γ≥p2

(G),

for any graph G.

Proof. See that any strong p2-dominating set Sp2D , which dominates at least
dn·p2e vertices, certainly dominates at least dn·p1e vertices, or, equivalently,
any strong p2-dominating set is a strong p1-dominating set. This implies
that γ≥p1

(G) ≤ γ≥p2
(G).

Now we provide two results on the upper and lower bounds for γ≥p
.

Theorem 2.20. Let G be a graph with no isolated vertices and p ∈ [0, 1].
Then

γ≥p
(G) ≤ np

/
2.

Proof. Assuming G has no isolated vertices, each vertex is adjacent to at
least one other vertex. We take p pairs of different such vertices, from each
pair choose one vertex and obtain strong p-domination. Note the vertices
we chose may not constitute a minimum strong p-dominating set. Hence
follows the upper bound.

Theorem 2.21. Let G be a graph of size n, p ∈ [0, 1], with the degree
sequence {d1, d2, . . . , dn}. Then we have the lower bound,

γ≥p
≥ min (k : k + (d1 + d2 + . . .+ dk) ≥ np) .

Proof. Proof is similar to the proof of Theorem 2.10, replacing n in the
equation with np.
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Note that a result similar to Theorem 2.12 can also be given for strong p-
domination. Finally, we have the following result, analogous to Theorem 2.9
and its proof is similar.

Theorem 2.22. For any graph G of order n and p ∈ [0, 1], we have the
following upper and lower bounds,⌈

dnpe
1 + ∆(G)

⌉
≤ γ≥p

(G) ≤ dnpe −∆(G).

Now we define an extension to exact p-domination that is well-defined
in some cases, where exact p-domination is not well-defined.

Definition 18. Let G = (Gn)n∈N be a sequence of graphs with the corre-
sponding orders, n ∈ N. Also let p ∈ [0, 1] and (pn)n∈N a sequence of real
numbers converging to p, with the property that for each n ∈ N, there is a
set (SpnD )n∈N ⊂ V (Gn) that is a minimum exact pn-dominating set of Gn.
We call this sequence of vertex sets, (SpnD )n∈N an asymptotically accurate
weak p-dominating class. The limit of the sequence (|SpnD |)n∈N as n goes
to infinity is called (asymptotically accurate) weak p-domination number,
whenever it exists, and it is denoted γw

p
(G ).

As complex as it may seem, (asymptotically accurate) weak p-domination
number is of great use in the analysis of asymptotic behavior of random
graphs that we investigate.
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3 CLASS COVER CATCH DIGRAPHS, DOMI-
NATION AND STRONG p-DOMINATION

In this section we introduce Class Cover Catch Digraphs (CCCDs), investi-
gate the concept of domination, give previous results on the distribution of
the domination number and present new results about the distribution of
the strong p-domination number of CCCDs. CCCDs were first introduced
in Priebe et al. [14] to construct a new method in statistical classification.
They provided the distribution of the domination number of CCCDs con-
structed with two classes and with the uniform distribution over a bounded
interval in R. In [10], the distribution of the domination number was pre-
sented without the uniformness restriction on the two classes of points in
R.

3.1 CCCDs and Previous Results on Domination

Consider Ym = {y1, y2, . . . , ym} ⊂ Rq, m, q ∈ N. Given Ym and n ∈ N as-
sume Xn = {X1, X2, . . . , Xn} is a random sample of size n from a continuous
distribution F in Rq. For any i ∈ {1, 2, . . . , n} we associate the Xi with the
ball (called catch set) centered around it, namely Bi(Xi, r(Xi)) = {z ∈ Rq :
d(z,Xi) < r(Xi)}, where r(x) = d(x,Ym) = miny∈Ym d(x, y), i.e., the mini-
mum distance of the a point x to any point in Ym. Here, d : Rq×Rq → [0,∞)
is any distance function, such as Euclidian distance.

In Figure 7 we give an example in R2. There are two classes of points,
namely Y4 = {y1, y2, y3, y4} and X3 = {x1, x2, x3}, and each ball, Bi asso-
ciated with the element xi of X3 is centered at xi and has the minimum
distance from that point to any point in Y4, r(xi), as its radius.

 1x

 2x

  3x

1y

2y

3y

4y

B1

B2

B3

Figure 7: An example illustrating the construction of catch sets associated
with the elements of a random sample.

Now we define the CCCDs.
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Definition 19. The class cover catch digraph (CCCD) corresponding to
the ‘target set’, Xn and the set Ym is a simple digraph with n vertices,
say x1, x2, . . . , xn, and such that there is an arc from xi to xj , as shown in
Figure 8, if xj ∈ Bi(xi, r(xi)), for any 1 ≤ i, j ≤ n, where the ball Bi is
defined as above.

x1

x2

x3

Figure 8: The CCCD constructed from the points and sets in Figure 7.

In [9], random graphs are classified with respect to the source of their
randomness. There are edge random graphs, which are the first random
graphs introduced by Erdös and Renýı [3], vertex random graphs and vertex-
edge random graphs. In this sense, CCCDs are vertex random graphs, as
their randomness lies in the vertices and their respective positions, i.e., once
the vertices are given, edges are given by deterministic treatment of the
vertices.

In this study we work on the case q = 1, i.e., the sets Xn and Ym lie
on the real line. In this case Bis are intervals centered at xis, with the
radii d(xi,Ym). For the case, q = 1, we have the order statistics of Xn,
{X1:n, X2:n, . . . , Xn:n}. We follow the convention that random variables are
denoted with upper case letters, while their realizations are with lower case
letters.

Remark 3.1. Note that whenever a graph or a digraph is random, the
various domination numbers as γ, γ≥p

, γe
p

and γw
p

become random variables
instead of just real numbers.

First, we present the previous results on CCCDs and their domination
number. Priebe et al. proved the following results in [14].

Theorem 3.2. Let D be a CCCD constructed with the sets Y2 = {y1, y2},
(y1, y2 ∈ R, y1 < y2) and Xn, a random sample of size n from the uniform
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distribution, U(y1, y2). Then the random variable γ(D) has the distribution
1 +Bernoulli(1− ϑ(n)), where

ϑ(n) = 5/9 + 4(1−n)4/9. (4)

Here we let 1{.} be the indcator function, Zm = {0, 1, . . . ,m − 1} and
define

∆S
z,b =

{
(z1, z2, . . . , zb) :

b∑
i=1

zi = z; zi ∈ S, ∀i

}
.

Theorem 3.3. Let D be the CCCD constructed with the sets Ym, an m-
element subset of R and Xn, a random sample of size n from the distribution
U(y1, ym), where y1 is the smallest and ym is the largest element of Ym. Then
the pdf of γ(D) is given by

f(d) =
n!m!

(n+m)!

∑
→
n∈∆

Zn+1
n,m+1

∑
→
d∈∆

Z3
d,m+1

α(d1, n1)α(dm+1, nm+1)
m∏
j=2

β(dj , nj),

where
α(d, n) = max(1{n = d = 0}, 1{n ≥ d = 1})

and

β(d, n) = max(1{n = d = 0}, 1{n ≥ d ≥ 1})ϑ(n)1{d=1} (1− ϑ(n))1{d=2}.

Although this expression seems a bit complicated, it is intuitive and
the theorem gives a comprehensive result. The following theorem gives the
expectation of γ(D).

Theorem 3.4. Let D be a CCCD as above, then

E [γ(D)] =
2n

n+m
+
n!m(m− 1)

(n+m)!

n∑
i=1

(n+m− i− 1)!

(n− i)!
(2− ϑ(i)),

where ϑ(i) is defined as in Equation (4).

The next theorem gives the asymptotic distribution of γ(D), depending
on either n or m is held fixed.

Theorem 3.5. Considering the CCCD, D, constructed with a set of cardi-
nality m, Ym ⊂ R and the set Xn of random sample of size n from U(y1, ym)
distribution, for fixed n ∈ Z+ we have

lim
m→∞

γ(D) = n,
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as well as for fixed m ∈ Z+, limn→∞ γ(D) has the distribution m + 1 + B,
where B ∼ Binomial(m− 1, 4/9).

So far, the domination number was independent from the support of the
distribution of the random sample, because Xn was a random sample from
a uniform distribution. In [10] (Theorem(5.1)), the next result was proven
and it does not require the distribution to be uniform, in fact, for y1, y2 ∈ R,
with y1 < y2, and for given ε ∈ (0, (y1 + y2)/2), let

F(y1, y2, ε) = {F : (y1, y1+ε)∪(y2−ε, y2)∪((y1+y2)/2−ε, (y1+y2)/2+ε) ⊂ (y1, y2)}.

For any distribution function with support as above, F ∈ F(y1, y2, ε),
next result gives the distribution of the domination number, as n→∞.

Theorem 3.6. Let Y2 = {y1, y2} ⊂ R with −∞ < y1 < y2 < ∞. Xn =

{X1, X2, . . . , Xn} with Xi
iid∼ F ∈ F(y1, y2, ε). Let D be the CCCD con-

structed with Y2 and Xn. Suppose k ≥ 0 is the smallest integer for which
F (·) has continuous right derivatives up to order (k+1) at y1, (y1 + y2)/2,

f (k)(y+
1 )+2−(k+1)f (k)

((y1+y2
2

)+) 6= 0 and f (j)(y+
1 ) = 0 for all j = 0, 1, . . . , k−

1; and ` ≥ 0 is the smallest integer for which F (·) has continuous left deriva-

tives up to order (`+1) at y2, (y1+y2)/2, f (`)(y−2 )+2−(`+1)f (`)
((y1+y2

2

)−) 6=
0 and f (j)(y−2 ) = 0 for all j = 0, 1, . . . , `−1. Then γ(D) ∼ 1+Bernoulli(pn(F )),
where pn(F ) = P (γ(D) = 2), and for bounded f (k)(.) and f (`)(.) we have
limn→∞ pn(F ) =

f (k)(y+
1 ) f (`)(y−2 )[

f (k)(y+
1 ) + 2−(k+1)f (k)

((y1+y2
2

)+)] [
f (`)(y−2 ) + 2−(`+1)f (`)

((y1+y2
2

)−)] .
If we choose F to be the uniform, i.e., F = U(y1, y2), then k = ` = 0

and f(y+
1 ) = f(y−2 ) = f

((y1+y2
2

)+)
= f

((y1+y2
2

)−)
= 1/(y1 − y2). Then

limn→∞ pn(F ) = 4/9, which agrees with Theorem 3.5.

3.2 Strong p-domination on CCCDs

In this section, we consider strong p-domination on CCCDs constructed
with the set Y2 = {y1, y2}, and Xn, a random sample from the uniform
distribution between y1 and y2. We present the asymptotic distribution of
γ≥p

(D), for such a CCCD, D, in the next section. Note that we choose
p ∈ [0, 1]. For p ∈ (0, 1/2], results are straightforward and we give them
briefly. Unless stated otherwise, all p terms in the rest of the thesis are
assumed to be from the interval p ∈ (1/2, 1).

Uniformness enables γ≥p
to be independent from the support, i.e., y1

and y2.
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Lemma 3.7 (Scale Invariance Property). Let −∞ < y1 < y2 < ∞ and
−∞ < z1 < z2 < ∞ be two pairs of real numbers, and U(a, b) be the con-
tinuous uniform distribution on (a, b). Then considering the linear bijection
ω : R→ R, ω(x) = z1.(y2−x)/(y2−y1)+z2.(x−y1)/(y2−y1), we have for the
random variable X ∼ U(y1, y2), the transformation Y = ω(X) ∼ U(z1, z2).
Furthermore ω(·) conserves the probability content on the nontrivial inter-
vals.

Proof. Clearly, ω takes the values from the interval [y1, y2] to the interval
[z1, z2] and is a strictly increasing continuous bijection. Continuity and strict
monotonity of ω implies its injectiveness. Hence we can apply Theorem
(6.3.2) in [1] to determine the transformed random variable Y = ω(X). Let
θ be the inverse transformation of ω and fX be the pdf of X, then the pdf of
Y , fY is, by the theorem, equal to fX(θ).

∣∣ d
dxθ
∣∣. θ(x) = y1.

z2−x
z2−z1 + y2.

x−z1
z2−z1 ,

so we have its derivative d
dxθ(x) = y2−y1

z2−z1 and as fX(x) = 1
y1−y2 is constant

we obtain:

fY (x) = fX(θ(x)).

∣∣∣∣ d

dx
θ(x)

∣∣∣∣ =
1

y1 − y2
.
y2 − y1

z2 − z1
=

1

z1 − z2

therefore we get Y ∼ U(z1, z2).
Now, for any c, d ∈ [y1, y2] and X ∼ U(y1, y2) we have P [X ∈ (c, d)] =

d−c
y2−y1 as well as P (Y ∈ [ω(c), ω(d)]) = ω(d)−ω(c)

z2−z1 , for Y ∼ U(z1, z2). Further-
more

P (Y ∈ [ω(c), ω(d)]) =
ω(d)− ω(c)

z2 − z1

=
z1.

y2−d
y2−y1 + z2.

d−y1
y2−y1 − z1.

y2−c
y2−y1 − z2.

c−y1
y2−y1

z2 − z1

=
z1.y2 − z1.d+ z2.d− z2.y1 − z1.y2 + z1.c− z2.c+ z2.y1

(z2 − z1)(y2 − y1)

=
d(z2 − z1)− c(z2 − z1)

(z2 − z1)(y2 − y1)
=

d− c
y2 − y1

= P (X ∈ [c, d])

Corollary 3.8. For −∞ < y1 < y2 < ∞, let Xn be a random sample from
the distribution U(y1, y2). Consider the CCCD, D, constructed with the sets
Xn and Y2 = {y1, y2}, then the pdf of γ≥p

(D) is independent of Y2, i.e., it is
equal to the pdf of γ≥p

(D∗), where D∗ is the CCCD constructed with the sets
Y∗2 = {y∗1, y∗2}, y∗1, y∗2 ∈ R, y∗1 < y∗2, and X ∗n a random sample from U(y∗1, y

∗
2).

Proof. The result follows as the pdf of γ≥p
(D) is determined by the proba-

bility of uniform random variables being in the specified intervals.
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So we can choose, without loss of generality, Y2 = {0, 1}, and then
generalize the results for any Ym = {y1, y2}, y1, y2 ∈ R, y1 < y2. Hence
Xn = {X1, X2, . . . , Xn} can be assumed to be a random sample from U(0, 1).

The domination number, γ(D), of any nontrivial CCCD, D, with sets Xn
and Y2 in R, is either 1 or 2, and depends on the predicate whether the set
Xn and the interval I1 = (Xn:n

2 , 1+X1:n
2 ) are mutually exclusive or not [14].

Since the strong p-domination number γ≥p
(D) is the minimum cardinality

of the vertex sets that cover at least (p · 100)% of all n vertices, i.e., at least
dn · pe of the vertices, we demonstrate that the distribution of γ≥p

(D) can
be found in a similar fashion. We start with a simple observation.

Lemma 3.9. Let D be the CCCD formed with sets Xn and Y2. Then we
have γ≥p

(D) ≤ 2.

Proof. Assuming that D is nontrivial, consider the cases when all elements
of Xn are less than (resp. greater than) 1/2. Taking the greatest (resp. least)
element, say x∗ of Xn we directly obtain the coverage of all vertices with the
ball B (x∗, r(x∗)), i.e., γ

[p]
= 1. Otherwise, take the greatest element of Xn,

less than 1/2, say x∗, and the least element greater than 1/2, say x∗. Then
we have the coverage of all vertices with the unions of the balls B (x∗, r(x∗))
and B (x∗, r(x∗)), i.e., γ≥p

(D) ≤ 2. (Note that this is an upper bound, i.e.,
desired domination may be achieved with just one of these vertices.)

The following theorem is the main approach for finding the distribution
of γ≥p

(D).

Theorem 3.10. Let k = n − bn · pc and ` = dn · pe, consider the random
variables Xk:n and X`:n and define Ip = (X`:n/2, (1+Xk:n)/2). If Xn∩Ip 6=
∅, then γ≥p

(D) = 1, otherwise γ≥p
(D) = 2.

Proof. Observe that X`:n < 1, so that X`:n/2 < 1/2 as well as 1 +Xk:n > 1,
so that X`:n/2 < 1/2 < (1 + Xk:n)/2. Thus 1/2 ∈ Ip. Letting Ip1 =
(X`:n/2, 1/2] and Ip2 = (1/2, (1 + Xk:n)/2), we have if Xn ∩ Ip1 6= ∅, then
at least X1:n, X2:n, . . . , X`:n is covered by the covering ball centered at any
point in the nonempty set Xn ∩ Ip1 . Similarly, if Xn ∩ Ip2 6= ∅, then at least
Xk:n, Xk+1:n, . . . , Xn:n is covered by the covering ball centered at any point
in the nonempty set Xn∩Ip2 . As Xn∩Ip 6= ∅ iff Xn∩Ip1 6= ∅ or Xn∩Ip2 6= ∅
and as at least either n− k+ 1 = n− (n−bn · pc) + 1 = bn · pc+ 1 = dn · pe
or ` = dn · pe vertices are dominated, we are done.

Now assume that Xn ∩ Ip = ∅ and D is nontrivial. Then either S1 =
[0, X`/2] ∩ Xn 6= ∅ or S2 = [1+Xk

2 , 1] ∩ Xn 6= ∅. Even if our aim is to
dominate all the vertices, then we can do it with the set consisting of the
greatest element of S1 and the least element of S2, as the former dominates
all X ∈ Xn less than 1/2 and the latter dominates all X ∈ Xn greater than
or equal to 1/2, so γ≥p

(D) = 2 holds.
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We give two examples to this result. Observe that in Figure 9, B′ is
the interval associated with a possible element of random sample Xn that is
exactly on X`:n/2, and it covers all points up to X`:n. Therefore any element
of Xn that is in the highlighted interval will cover from X1:n up to at least
X`:n, thus give strong p-domination. Also in Figure 10, B′′ is the interval
associated with a possible element of random sample Xn that is exactly on
(1 +Xk:n)/2, and it covers all points down to Xk:n. Therefore any element
of Xn that is in the highlighted interval will cover from Xn:n at least down
to Xk:n, thus give strong p-domination.

1
y  = 0

2
y  = 11/2  lx  lx 

2

B’

Figure 9: An example of the interval, Ip, in Theorem 3.10.

1
y  = 0

2
y  = 11/2  k1+x  kx 

2

B’’

Figure 10: Another example of the interval, Ip.

Theorem 3.10 directly implies the following corollary.

Corollary 3.11. Let D be a CCCD constructed as above, then we have
γ≥p

(D) ∼ 1 +Bernoulli(ςn), where ςn = P (Xn ∩ Ip = ∅).

Remark 3.12. The closer there is a point v ∈ Xn∩Ip1 or Xn∩Ip2 to 1/2, the
more likely it is that the ball centered at v will cover all data points (hence
at least dn · pe vertices), i.e., the more likely it is that γ≥p

(G) = γ(G) = 1.

Now, instead of the probability of Xn ∩ Ip 6= ∅, we determine the prob-
ability of Xn ∩ Ip = ∅, for simplicity of calculations. First, we need the
joint pdf of Xk:n and X`:n for uniform data, U(0, 1). For any pair (k, `) with
1 ≤ k < ` ≤ n,

fk,`(xk, x`) =
n!

(k − 1)!(`− k − 1)!(n− `)!
xk−1
k · (x` − xk)`−k−1 · (1− x`)n−`
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for 0 < xk < x` < 1. Conditioning on Xk:n = x and X`:n = y we define

g(x, y) = P (Xn ∩ Ip = ∅|Xk:n = x,X`:n = y) .

Observe that for Xn ∩ Ip to be empty, we must have

Xk:n <
X`:n

2
and

1 +Xk:n

2
< X`:n,

for otherwise, Xk:n or X`:n would be contained in Ip. Moreover, we need
none of the ` − k − 1 data points, between Xk:n and X`:n, to be in Ip and
each such element has the probability

1+Xk:n
2 − X`:n

2

X`:n −Xk:n
=

1 +Xk:n −X`:n

2(X`:n −Xk:n)

to be contained in Ip. Thus we have

g(x, y) =

(
1− x− y + 1

2(y − x)

)`−k−1

.

Considering the previous conditioning, we obtain the inequalities Xk:n <
X`:n

2 ⇒ X`:n > 2Xk:n and 1+Xk:n
2 < X`:n ⇒ X`:n >

1+Xk:n
2 and finally we

obtain

P (Xn ∩ Ip = ∅) =

∫ 1/2

0

∫ 1

max
(

xk+1

2
,2xk

) fk,`(xk, x`)g(xk, x`) dxk dx`,

where the bounds for x` are determined by the previous inequalities and
the fact that 0 < x` < 1, and the bounds for xk are determined by the fact
that 0 < xk < 1 and if xk > 1/2, then 1/2 < xk <

x`
2 < 1/2 would lead to

a contradiction. Following the simple facts, x ∈ (0, 1/3) ⇒ 1+x
2 > 2x and

x ∈ (1/3, 1/2) ⇒ 2x > 1+x
2 , we can divide this integral into two pieces and

obtain

P (Xn ∩ Ip = ∅) =

(∫ 1/3

0

∫ 1

xk+1

2

+

∫ 1/2

1/3

∫ 1

2xk

)
fk,`(xk, x`)g(xk, x`) dx` dxk

or, equivalently,
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P (Xn ∩ Ip = ∅) = κ ·

(∫ 1/3

0

∫ 1

xk+1

2

+

∫ 1/2

1/3

∫ 1

2xk

)
xk−1
k (x` − xk)`−k−1

(1− x`)n−`
(

1− xk − x` + 1

2(x` − xk)

)`−k−1

dx` dxk (5)

where

κ =
n!

(k − 1)!(`− k − 1)!(n− `)!
.

For the CCCD with the target class Xn = {X1, X2, . . . , Xn} and Ym =
{0, 1} , we can determine the distribution of γ≥p

(D), if we can calculate this
probability. This is, again, due to the fact that (assuming n 6= 0)

γ≥p
(D) =

{
1, if Xn ∩ Ip 6= ∅,
2, if Xn ∩ Ip = ∅.

Remark 3.13 (Coefficient κ of the Integral). Consider the joint pdf, fxk,x`(xk, x`)
of xk and x`. There we have the constant

κ =
n!

(k − 1)!(`− k − 1)!(n− `)!
and recall that k = n − bn · pc, ` = dn · pe and p ∈ (1/2, 1). We would

like to see if the factorial terms above are all well-defined.
First, k−1 = n−bn ·pc−1 may have a problematic case when we choose

p too close to 1, but even then, as we take the floor integer, bn · pc, we will
have at the worst case n − bn · pc = 1, and no less, so we will never have
k − 1 < 0.

By the same reasoning, for n− ` = n−dn · pe we may choose p too close
to 1 so that 0 < n− n · p < 1, but even so dn · pe will be at most n, and the
case n− ` < 0 will not occur.

Now, considering (` − k − 1) = dn · pe + bn · pc − n − 1, if we choose p
close enough to 1, we get n+ (n− 1)− n− 1 = n− 2, which is greater than
0 as long as n ≥ 2. This case is not problematic. On the other hand, if we
take p too close to 1/2 (but still p > 1/2)

� for even n ∈ N, `− k − 1 = (n2 + 1) + n
2 − n− 1 = 0, which is clearly

non-negative.

� for odd n ∈ N, `− k − 1 = n+1
2 − (n− n−1

2 )− 1 = −1.

Therefore the only case that is problematic is when p is close enough to
1/2, i.e., when dn · pe = n+1

2 and n is odd. Letting I∗ = {p ∈ (1/2, 1) :
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dn · pe = n+1
2 }, we have p ∈ I∗ iff n

2 < dn · pe = n+1
2 iff n

2 < n · p ≤ n+1
2

iff 1/2 < p ≤ n+1
2n . We see that as n increases, measure of the interval I∗

converges to 0. In other words, in the limit as n→∞ the problematic case
occurs with probability 0.

Note that the integral in Equation (5) is not analytically tractable. So
it is not possible to calculate ςn = P (Xn ∩ Ip = ∅) and determine the distri-
bution of γ≥p

(D) for finite n. Thus Corollary 3.11 is not very useful. From
now on we tackle with the asymptotic distribution γ≥p

(D), i.e., distribution
of the random variable γ≥p

(D), as n→∞.
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3.3 Asymptotic Distribution of γ≥p
on CCCDs

Recall that we consider the CCCDs based on Y2 = {0, 1} and the random
sample, Xn, from uniform distribution on (0, 1). In this section we show that

as n→∞, γ≥p
(D)

P→ 1, i.e., asymptotic distribution of γ≥p
(D) is degenerate

at 1, for any p ∈ (1/2, 1). Thus in the limit it is possible to dominate at
least dn · pe points of Xn with just one point, almost surely. We do this by
two different methods.

(i) In the first method, we use the asymptotic behavior of the interval

Ip =
(
X`:n

2 , 1+Xk:n
2

)
, as n → ∞. In particular, we show that length (i.e.,

Lebesgue measure) of Ip converges to a positive quantity as n → ∞. The
interval Ip is determined by the random variables X`:n

2 and 1+Xk:n
2 , and these

converge to some degenerate distributions, with one is strictly greater than
the other almost surely, so that it will be almost sure that there will be a
point in Xn that is guaranteed to dominate at least dn · pe elements of Xn.
Hence P

(
γ≥p

= 1
)
→ 1 as n→∞ will hold.

(ii) Consider the integral

P (Xn ∩ Ip = ∅) =

∫ 1/2

0

∫ 1

max
(

xk+1

2
,2xk

) xk−1
k (1− x`)n−`(

3x` − xk − 1

2

)`−k−1

dx` dxk. (6)

Here we show that all the integrands have absolute value strictly smaller
than 1 and have divergent powers dependent to n, and this will imply that
the integral will converge to 0 as n→∞.

3.3.1 Method I

We start with a lemma that says in the limit, for any interval in (0, 1) there
must exist a point of Xn in that interval.

Lemma 3.14. For any a, b ∈ R with 0 < a < b < 1 and Xn a random
sample from U(0, 1), as n→∞,

P (Xn ∩ (a, b) 6= ∅)→ 1.

Proof. P (Xn ∩ (a, b) = ∅) =
(

1−
(
b−a
1−0

))n
= (a + 1 − b)n. Because 0 <

1 + a− b < 1, as n→∞
P (Xn ∩ (a, b) = ∅)→ 0, i.e., P ((Xn ∩ (a, b) 6= ∅)→ 1.

We state a new proposition on the limiting behavior of sequences of random
variables with specified properties.
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Theorem 3.15. Let {Xn}n∈N be a sequence of continuous random variables
with E [Xn] = µn → µ, for some µ ∈ R, and Var [Xn] = σ2

n → 0 (with
σ2
n > 0 for any n ∈ N), as n → ∞. Then we have the limiting random

variable X = limn→∞Xn which has the degenerate distribution at µ.

Proof. For each n ∈ N, the event {Xn 6= µn} is equivalent to the union
of events, ∪∞i=1

{
|Xn − µn| ≥ 1

i

}
. Also as σ2

n > 0 for any n ∈ N we have
the inequality (1) and by the countable subadditivity of the probabilities of
events we obtain

P (Xn 6= µn) ≤
∞∑
i=1

P

(
|Xn − µn| ≥

1

i

)
≤
∞∑
i=1

i2σ2
n. (7)

For a fixed n, this implies the following. For any k ∈ N there exists a nk ∈ N
such that

k∑
i=1

P

(
|Xn − µn| ≥

1

i

)
≤

nk∑
i=1

i2σ2
n. (8)

Otherwise, there would be a natural number k s.t. for any natural number
nk ∈ N

k∑
i=1

P

(
|Xn − µn| ≥

1

i

)
>

nk∑
i=1

i2σ2
n

and this would contradict with the inequality (7). Furthermore, we can
always choose {nk}k∈N to be an increasing sequence, so that as k →∞, we
have nk → ∞. Now let X = limn→∞Xn. As (8) holds for any n ∈ N, we
can take the limit as n→∞ to obtain

k∑
i=1

P

(
|X − µ| ≥ 1

i

)
≤

nk∑
i=1

i2 lim
n→∞

σ2
n = 0.

Therefore, for any k ∈ N, we have
∑k

i=1 P
(
|X − µ| ≥ 1

i

)
= 0, hence (as

k →∞ implies nk →∞)

P (X 6= µ) ≤
∞∑
i=1

P

(
|X − µ| ≥ 1

i

)
= 0

Thence X = limn→∞Xn has the degenerate distribution at µ.

Lemma 3.16. Let U(0, 1) be the uniform distribution on (0, 1), Xk:n and
X`:n the kth and the `th order statistics of the random sample (with n ele-

ments) taken from U(0, 1). Then E
[
X`:n

2

]
= `

2(n+1) (Thus E
[
X`:n

2

]
→ p/2
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as n→∞). Similarly E
[

1+Xk:n
2

]
= n+k+1

2(n+1) (Thus E
[

1+Xk:n
2

]
→ 1− p/2 as

n→∞).

Proof. The pdf of X`:n is

f`(x`) =
n!

(n− `)!(`− 1)!
.x`−1
` .(1− x`)n−`

so that the expectation

E

[
X`:n

2

]
=

n!

(n− `)!(`− 1)!

∫ 1

0

x`
2
.x`−1
` .(1− x`)n−` dx`

=
n!

2(n− `)!(`− 1)!
.
(n− `)!`!
(n+ 1)!

=
`

2(n+ 1)
=
dn.pe

2(n+ 1)

Now see that
n.p

2(n+ 1)
< E

[
X`:n

2

]
<

(n+ 1).p

2(n+ 1)

and both the upper and the lower bounds go to p
2 as n→∞. Therefore

lim
n→∞

E

[
X`:n

2

]
=
p

2
.

The result for E
[

1+Xk:n
2

]
follows similarly.

Lemma 3.17. Var
[
X`:n

2

]
= `.(n−`+1)

4(n+1)2(n+2)
(Thus Var

[
X`:n

2

]
→ 0 as n →

∞). Moreover Var
[

1+Xk:n
2

]
= k.(n−k+1)

4(n+12)(n+2)
(Thus Var

[
1+Xk:n

2

]
→ 0 as

n→∞).

Proof.

Var

[
X`:n

2

]
= E

[
X2
`:n

4

]
−E

[
X`:n

2

]2

=
n!

4(n− `)!(`− 1)!
.
(n− `)!(`+ 1)!

(n+ 2)!
− `2

4(n+ 1)2

=
`

4(n+ 1)
.

(
`+ 1

n+ 2
− `

n+ 1

)
=

`.(n− `+ 1)

4(n+ 1)2(n+ 2)

Observe that

0 <
`.(n− `+ 1)

4(n+ 1)2(n+ 2)
<

(n+ 1)(n− `+ 1)

4(n+ 1)2(n+ 2)
<

1

4(n+ 2)

and the upper bound goes to 0 as n→∞. Hence

Var

[
X`:n

2

]
→ 0, as n→∞.
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The result for Var
[

1+Xk:n
2

]
follows similarly.

Now consider the two sequences of random variables, {An}n∈N and {Bn}n∈N,
where An = X`:n

2 and Bn = 1+Xk:n
2 . By the properties of {An}n∈N and

{Bn}n∈N stated in Lemma 3.16, Lemma 3.17, and applying Theorem 3.15,
we obtain the following corollary.

Corollary 3.18. The sequences of random variables {An}n∈N and {Bn}n∈N
have degenerate limiting distributions, namely, A = limn→∞An has the de-
generate distribution at p/2 and B = limn→∞Bn has the degenerate distri-
bution at 1− p/2.

As p/2 is strictly less than 1−p/2 we have the interval Ip = (p/2, 1−p/2)
with positive length. Furthermore, by Lemma 3.14 we have the probability,
P (Xn ∩ Ip = ∅)→ 0, as n→∞. Thence by Corollary 3.18 the main result
follows immediately.

Theorem 3.19 (Main Result I). Let p ∈ (1/2, 1) and D be a CCCD based
on Y2 = {0, 1} and the random sample of size n ∈ Z+ Xn, from the uniform

distribution on (0, 1). Then as n → ∞ we have γ≥p
(D)

P→ 1, i.e., in the
limit γ≥p

(D) has the degenerate distribution at 1.

As a corollary, we state the distribution of the strong p-domination num-
ber for CCCDs with Ym with more than two points.

Corollary 3.20. Let a, b ∈ R with a < b, n,m ∈ Z+, D be a CCCD
based on Ym = {y1, y2, . . . , ym} ⊂ (a, b) and Xn = {X1, X2, . . . , Xn}, where

Xi
iid∼ U(a, b). Then we have γ≥p

(D)
P→ m+ 1, i.e., in the limit, γ≥p

(D) has
the degenerate distribution at m+ 1.

Proof. For i ∈ {1, 2, . . . ,m−1}, let Ji = (yi, yi+1)∩Xn, J0 = (−∞, y1)∩Xn
and Jm = (ym,∞) ∩ Xn. See that there are m + 1 disjoint sets, Ji, i ∈
{0, 1, . . . ,m}. Observe that for a given random sample Xn, the correspond-
ing CCCD has at most m+ 1 components, and as n→∞, by Lemma 3.14,
there is certainly some element of Xn in each Ji, i.e., the CCCD will consist
of exactly m+ 1 components.

Now consider the case i = 0, we can cover all vertices in J0 with the
interval associated with the least element of Xn, and similarly, we can cover
all vertices in Jm with the interval associated with the largest element of Xn.
For i ∈ {1, 2, . . . ,m− 1} note that |Ji| will have infinitely many elements as
well in the limit. This is implied by the fact that we can partition Ji into
infinitely many disjoint intervals, and by Lemma 3.14, in each interval there
will be at least one element of the random sample. Therefore each m − 1
component is formed with {yi, yi+1} and an associated random sample with
number of elements going to infinity. So in the limit, they have the same
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distribution of strong p-domination number as the CCCD in Theorem 3.19,
i.e., degenerate distribution at 1. Thus we can dominate each of these m−1
components with one vertex each, giving out the result that as n→∞, the
CCCD, D, has strong p-domination number m− 1 + 1 + 1 = m+ 1, i.e.,

γ≥p
(D)

P→ m+ 1.

Finally, see that instead of p ∈ (1/2, 1), taking p ∈ (0, 1/2], we have the
following corollary of the Main Result I.

Corollary 3.21. Let D be a CCCD as in Theorem 3.19. For p ∈ (0, 1/2],

we have as n→∞, γ≥p
(D)

P→ 1.

Proof. Proof follows easily. Fix any p ∈ (1/2, 1), by Theorem 3.19 γ≥p
(D)

has the degenerate distribution at 1 in the limit. For any p∗ ∈ (0, 1/2], by

Theorem 2.19, γ≥p∗ (D)
P→ 1 too.

3.3.2 Method II

We consider all the term in the integrands of the integral

I =

∫ 1/2

0

∫ 1

max
(

xk+1

2
,2xk

) xk−1
k (1− x`)n−`

(
3x` − xk − 1

2

)`−k−1

dx` dxk,

(9)
namely, xk, 1− x` and

(
3x`−xk−1

2

)
, with their corresponding powers.

Remark 3.22. Observe that it naturally follows from Lemma 3.16 and
Lemma 3.17 that in the limit the order statistics Xk:n has the degenerate
distribution at 1 − p and X`:n has the degenerate distribution at p, i.e.,

Xk:n
P→ 1− p and X`:n

P→ p This immediately leads to the following result.

Lemma 3.23. Let ε ∈ (0, 1 − p), then P (Xk:n > ε) → 1 and P (X`:n <
1− ε)→ 1 as n→∞.

Observe that as the term xk takes values in between (0, 1/2), it is strictly
less than 1 and it cannot get arbitrarily close to 1 to make the integral
critical, i.e., not convergent to 0 as n→∞ (possibly divergent, or convergent
to a positive value). Similarly, as x` ∈

(
max{1+xk

2 , 2xk}, 1
)

it is at least 1/2,
and thus the term (1−x`) cannot get arbitrarily close to 1. So we need only
to consider the last term,

(
3x`−xk−1

2

)
. For a specific n ∈ N this term can be

arbitrarily close to 1 and make the integral in Equation (9) critical. But by
Lemma 3.23 we know that for n ∈ N large enough and ε ∈ (0, 1−p) we have
the approximation
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I ≈
∫ 1/2

ε

∫ 1−ε

max
(

xk+1

2
,2xk

) xk−1
k (1− x`)n−`

(
3x` − xk − 1

2

)`−k−1

dx` dxk.

In the limit X`:n can only get arbitrarily close to a real number 1 − ε,
strictly less than one, and Xk:n can only get arbitrarily close to the real
number ε, strictly positive. Hence the third integrand

(
3x`−xk−1

2

)
can get

arbitrarily close to at most 3(1−ε)−ε−1
2 = 1− 2ε < 1.

Remark 3.24. Recall that k = n− bn.pc and ` = dn.pe. Hence

� k − 1→∞ as n→∞

� n− `→∞ as n→∞

� `− k − 1→∞ as n→∞

Now let ε ∈ (0, 1 − p), then we have the integral (9) dominated by the
integral ∫ 1/2

0

∫ 1

max
(

xk+1

2
,2xk

)(1− ε)p(n) dxk dx` (10)

where p(n) is a function of n as n → ∞, which can chosen to be min(k −
1, n − `, ` − k − 1). The integral in Equation (10) converges to zero as
n → ∞, thus by Theorem 1.6 the integral in Equation (9) (the probability
that Xn ∩ Ip = ∅) converges to zero too. This implies

P (Xn ∩ Ip 6= ∅) = P
(
γ≥p

(D) = 1
)
→ 1, as n→∞,

yielding the Main Result I, Theorem 3.19.

3.4 Monte Carlo Simulations

In this section we present Monte Carlo simulation results to verify our find-
ings. We consider two different set of values, p ∈ (1/2, 1), domination pa-
rameter, and n ∈ N, number of vertices. We pick a random sample of size
n, subject to uniform distribution between 0 and 1, and then observe the
behavior of γ≥p

, estimating the probability of the event γ≥p
(D) = 1 for

various combinations of n and p, out of 100000 trials. We use R, version
2.13.0 for simulations (http://cran.r-project.org/ ). The following is the R
code snippet we used.
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#This is the simulation for the rate that at least one element will be

#in Ip for p \in(1/2,1), considering a CCCD with ~U(0,1)

n= 100

p= 0.9

k= n - floor(n*p)

ell= ceiling(n*p)

count= 0

for (i in 1:100000){

data0 = runif(n)

data = sort(data0)

xk= data[k]

xl= data[ell]

z <- data[data > xl/2 & data < (1+xk)/2]

if (length(z) > 0) count = (count + 1)}

rate = count/i

rate

We present the simulation results.

n\p 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.9999

100 1 1 1 1 1 1 1 0.99973 0.98878 0.55547

200 1 1 1 1 1 1 1 1 0.99974 0.55613

500 1 1 1 1 1 1 1 1 1 0.55455

1000 1 1 1 1 1 1 1 1 1 0.55443

2000 1 1 1 1 1 1 1 1 1 0.55569

5000 1 1 1 1 1 1 1 1 1 0.55499

10000 1 1 1 1 1 1 1 1 1 0.70435

20000 1 1 1 1 1 1 1 1 1 0.86881

50000 1 1 1 1 1 1 1 1 1 1

100000 1 1 1 1 1 1 1 1 1 1

Notice that even for small n convergence of γ≥p
to 1 is easily seen except

for the case p = 0.9999. In this case the value of p is quite close to 1,
and therefore for small n, γ≥p

(D) behaves like γ(D). Thus we see that
P (γ≥p

(D) = 1) is approximately equal to P (γ(D) = 1) = 5/9. Naturally
after some point as we increase n, P (γ≥p

(D) = 1) converges to 1. The closer
p is to 1, slower the convergence is observed.
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4 PROPORTIONAL EDGE PROXIMITY CATCH
DIGRAPHS, DOMINATION AND STRONG
p-DOMINATION

In this section we introduce Proportional Edge-Proximity Catch Digraphs
(PE-PCDs or PCDs) and study domination on them. We give several re-
sults previous from [11] on the distribution of domination number on PCDs.
Then we present new results about strong p-domination and the strong p-
domination number on the specified PCDs. PCDs were first introduced
by Ceyhan and Priebe as an alternative to and a generalization of CC-
CDs, because in higher dimensions finite and asymptotic distributions of
the domination number on CCCDs are not analytically tractable. In [12]
the asymptotic distribution of the domination number on PCDs in one di-
mension was presented, whereas in [11] finite and asymptotic distributions of
the domination number on PCDs with both uniform and non-uniform data
in one dimension are presented under various conditions and restrictions.

4.1 PCDs and Previous Results on Domination

Let Ym = {y1, y2, . . . , ym} ⊂ R (a subset of R of whose elements are ordered
from smallest to largest), where m ∈ N+. For convenience of construction,
let y0 = −∞ and ym+1 =∞. Observe that Ym divides the real line into m+1
pieces. Based on this observation, we define the intervals, Ii = (yi, yi+1) for
i = 0, 1, . . . ,m. Now, given Ym and n ∈ N assume Xn = {X1, X2, . . . , Xn}
is a random sample from a continuous distribution F in R. For given r ≥ 1
and i ∈ {1, 2, . . . , n}, we define the set (called proximity set) that we will
associate with any x ∈ Ii, N(x, r) as follows. For i ∈ {1, 2, . . . ,m− 1}

N(x, r) =

{
(yi, yi + r (x− yi)) ∩ Ii if x ∈ (yi,

yi+yi+1

2 ),

(yi+1 − r (yi+1 − x) , yi+1) ∩ Ii if x ∈ (yi+yi+1

2 , yi+1),

and also for i ∈ {0,m+ 1}

N(x, r) =

{
(y1 − r (y1 − x) , y1) ∩ Ii if x < y1,

(ym, ym + r(x− ym)) ∩ Ii if x > ym.

Now that we have the proximity sets to associate with each of the data
points of Xn, we give the definition.

Definition 20. The proportional-edge proximity catch digraph (PCD) cor-
responding to the ‘target’ set Xn, the set Ym and the extension parameter
r ≥ 1 is the digraph with n vertices and for each i, j ∈ {1, 2, . . . , n} there is
an arc from the ith vertex to the jth vertex if and only if Xj ∈ N(Xi, r).
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An example of proximity sets associated with the sets X3 = {x1, x2, x3}
and Y2 = {0, 1} and the resulting PCD for the parameter r = 3/2 is given
in Figure ?? and Figure 12.

1
y  = 0

2
y  = 11/2  2x  1x

N

 3x 

1

N2

N3

Figure 11: An example of proximity sets in R.

x1

x2

x3

Figure 12: The PCD constructed from the sets in Figure 11.

Note that we consider the simpler case of Y2 = {y1, y2}, with −∞ < y1 <
y2 <∞. Moreover we will choose F to be the uniform distribution between
y1 and y2, i.e., Xn is a random sample from U(y1, y2). By Lemma 3.7, we
work on the case (y1, y2) = (0, 1) and then generalize our results accordingly.
From here on, the sets associated with the points in the random sample Xn
are

N(x, r) =

{
(0, rx) ∩ (0, 1) if x ∈ (0, 1/2),

(1− r(1− x), 1) ∩ (0, 1) if x ∈ [1/2, 1).
(11)

Observe that the inclusion the number 1/2 to the interval of the second
case is discretionary, since for any i ∈ {1, 2, . . . , n}, we have P (Xi = 1/2) =
0. Also note that in [11] there is another parameter, called ‘the centrality
parameter’ (and denoted by c), and it generalizes the choice of 1/2 for the
construction of N(x, r). Here, we are only concerned with the case c = 1/2.
Also see that the case r = 2 yields a CCCD, so any CCCD is a PCD with
the condition that r = 2.

Now let D be a PCD constructed with the set Y2 = {0, 1} and the
random sample Xn, from U(0, 1), for r ≥ 1. The exact and asymptotic

34



distribution of domination number of D is given in [11].

Theorem 4.1. For D constructed as above, γ(D) ∼ 1 + Bernoulli(pn),
where

pn =

1− 1+r2n−1

(2r)n−1(r+1)
+ (r−1)n

(r+1)n

(
1−

(
r−1
2r

)n−1
)
, for 1 ≤ r < 2,

2r
(r+1)2

((
2
r

)n−1 −
(
r−1
r2

)n−1
)
, for r ≥ 2.

Observe that for r = 2, pn = 4/9− (16/9)4−n, i.e., identical to CCCDs.

Corollary 4.2. In the limit, as n→∞, we have

γ(D) ∼


1, for r > 2,

1 +Bernoulli(4/9), for r = 2,

2, for 1 ≤ r < 2.

4.2 Exact and Weak p-Domination on PCDs

In this section we study exact and weak p-domination on PCDs, and give the
asymptotic distribution of weak p-domination number for PCDs constructed
with the set Y2 = {0, 1} and the random sample Xn, from U(0, 1), for r ≥ 1.
As our concern is on asymptotic probability, we define and use the following
concept.

Definition 21. For a sequence of random variables, (Xn)n∈N, a function f
is called asymptotically accurate probability density function, if

lim
n→∞

∫ 1

−∞
f(t) dt = 1.

Note that an asymptotically accurate probability density function may
have n as argument, and this makes sense, since it is used to deal asymptotic
situations.

Recalling the restrictions on the existence of exact p-dominating sets
and exact p-domination number, we make the following conjecture and then
focus on weak p-domination.

Conjecture 4.3. Let r ≥ 1, and D be a PCD constructed with the set
Y2 = {0, 1} and the random sample of size n, Xn, from U(0, 1). Then γe

p
(D)

has non-degenerate asymptotic distribution.

We consider four random variables while dealing with weak p-domination.
Uc is the largest element of Xn smaller than 1/2, whereas Ud is the smallest
element of Xn larger than 1/2. Also we define Yp and Y1−p, closest points to
p and 1− p. We provide the asymptotically accurate joint pdf of Uc and Yp,
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fc,p(uc, yp) = n(n− 1) (1− ((1/2− uc) + |p− yp|))n−2

=

{
n(n− 1) (1/2 + uc + yp − p)n−2 , if 1/2 < yp < p and 0 < x < 1/2,

n(n− 1) (1/2 + uc − yp + p)n−2 , if p < yp < 1 and 0 < x < 1/2.

We define the following events,

E1 : {rUc ≥ Yp} , (12)

and

E2 : {1− r(1− Ud) ≤ Y1−p} . (13)

Observe that {γw
p

= 1} is asymptotically equivalent to {E1orE2}, i.e.,

P (γe
p
(D) = 1) = P (E1) + P (E2)− P (E1 ∩ E2).

First, we show that there is symmetry between the events E1 and E2 in
the following sense.

Lemma 4.4. Considering the events, E1 in Equation 12 and E2 in Equa-
tion 13, we have P (E1) = P (E2), as n→∞.

Proof. The proof goes pretty much alike the proof of Proposition 4.21. We
use the fact that as n → ∞, Uc and Ud converge to 1/2, and this implies

that for sufficiently large n ∈ N, Uc
d
= 1 − Ud, where

d
= stands for equal in

distribution. Similarly, for sufficiently large n ∈ N, Yp
d
= 1 − Y1−p. Then it

follows that

{rUc ≥ Yp} ⇔ {r(1− Ud) ≥ 1− Y1−p} ⇔ {Y1−p ≥ 1− r(1− Ud)},

and the probabilities of these events are the same, i.e., P (E1) = P (E2)
in the limit.

We first calculate limn→∞ P (E1). See that rUc ≥ Yp implies Uc ≥ Yp/r,
and that implies Yp < p and hence we obtain the integral

P (E1) =

∫ p

1/2

∫ 1/2

yp/r
n(n− 1) (1/2 + uc + yp − p)n−2 duc dyp,

and we calculate it to be

P (E1) = 1− (3/2− p)n −
(

r

r + 1

)
((p/r + 1/2)n − (1 + 1/2r − p)n) .
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Writing the Taylor expansion of P (E1) up to first degree, and substitut-
ing r = 2p, we get

P (E1) =
1

1 + 2p
+O(n−1),

and as we are concerned only with asymptotic case, sending n→∞ we
get

lim
n→∞

P (E1) =
1

1 + 2p
.

By Lemma 4.4, we have limn→∞ P (E2) = 1
1+2p too. Now we calculate

P (E1∩E2). First, we provide the asymptotically accurate joint pdf Uc, Ud, Yp
and Y1−p, it is

f4(uc, ud, yp, y1−p) = n(n− 1)(n− 2)(n− 3)

(1− (|y1−p − 1 + p|+ (ud − uc) + |p− yp|))n−4 .

Observe that ruc > yp implies yp < p and 1 − r(1 − ud) < y1−p implies
y1−p > 1 − p. Using Lemma 4.18, given ε > 0, close enough to zero, we
obtain the integral

P (E1 ∩ E2) ≈
∫ 1−p+ε

1−p

∫ p

p−ε

∫ 1−(1−y1−p)/r

1/2

∫ 1/2

yp/r
n(n− 1)(n− 2)(n− 3)

(2(1− p) + uc + yp − (ud + y1−p))
n−4 duc dud dyp dy1−p.

Letting the change of variables, u1 = uc, 1 − u2 = ud, v1 = yp and
1− v2 = y1−p we get the form, where we substitute r = 2p,

P (E1 ∩ E2) ≈
∫ p−ε

p

∫ p

p−ε

∫ v2/2p

1/2

∫ 1/2

v1/2p
n(n− 1)(n− 2)(n− 3)

(u1 + v1 + u2 + v2 − 2p)n−4 du1 du2 dv1 dv2.

Integrating and then calculating the Taylor expansion, we get in the
limit, as n→∞, that

lim
n→∞

P (E1 ∩ E2) =
1

(1 + 2p)2
+O(ε),

and sending ε→ 0 we get
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lim
n→∞

P (E1 ∩ E2) =
1

(1 + 2p)2
.

Now we have the probability, P (γw
p

= 1).

Theorem 4.5 (Main Result II). For a PCD, D, constructed with the set
Y2 = {0, 1} and the random sample of size n ∈ Z+, Xn, from U(0, 1), with
r = 2p ≥ 1, we have as n→∞,

P (γw
p

= 1) =
2

1 + 2p
− 1

(1 + 2p)2
=

4p+ 1

(2p+ 1)2
.

Remark 4.6. Observe that letting p = 1, we have r = 2 and P (γw
p

(D) =
1) = 5/9, which agrees with the result in [14].

Remark 4.7. For p = r/2 ∈ (1/2, 1), this probability also serves as a lower
bound for the probability P (γ≥p

(D) = 1) in the limit, as n→∞.

4.3 Strong p-domination on PCDs

In this section we consider the concept of strong p-domination on PCDs
constructed with Y2 = {0, 1} and Xn, a random sample from U(0, 1), for
r ≥ 1. The asymptotic distribution of γ≥p

is given in the next section.
Again, we start with an easy lemma.

Lemma 4.8. Let F be any probability distribution on (0, 1), D be the PCD
formed with Y2 = {0, 1}, Xn, a random sample of size n subject to F and
r ≥ 1. Then we have γ≥p

(D) ≤ 2, for any p ∈ [0, 1].

Proof. Identical with the proof of Lemma 3.9.

Now let k = n − bn.pc and ` = dn.pe and define Ip =
(
X`:n
r , 1/2

)
∪[

1/2, 1 + Xk:n−1
r

)
, with the understanding that the interval (a, b) is empty

whenever a > b. Note that Ip depends on the order statistics, Xk:n and
X`:n. It has the following forms (written as cases(i)-(iv)),

� case(i):
(
X`:n
r , 1 + Xk:n−1

r

)
,

� case(ii):
(
X`:n
r , 1

2

)
,

� case(iii):
[

1
2 , 1 + Xk:n−1

r

)
,

� case(iv): ∅.

Observe that these four cases can be based on four conditions (which are
2-by-2 exhaustive) in the fashion that they determine the set Ip, namely
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(C1): X`:n ≤ r/2,

(C2): X`:n > r/2,

(C3): Xk:n ≤ 1− r/2,

(C4): Xk:n > 1− r/2.

The case(i) is implied by (C1) and (C4), case(ii) is implied by (C1) and
(C3), case(iii) is implied by (C2) and (C4) and lastly, case(iv) is implied by
(C2) and (C3). Thus we have the following result.

Lemma 4.9. The set Ip is determined by the conditions (C1), (C2), (C3)
and (C4). In particular,

Ip =



(
X`:n
r , 1 + Xk:n−1

r

)
, if case(i) holds,(

X`:n
r , 1

2

)
, if case(ii) holds,[

1
2 , 1 + Xk:n−1

r

)
, if case(iii) holds,

∅, if case(iv) holds.

The following result forms the basis of the determination of the distribution
of γ≥p

(D).

Theorem 4.10. For the PCD, D, formed with Y2 = {0, 1}, F any proba-
bility distribution on (0, 1) and Xn subject to F and r ≥ 1, if Xn ∩ Ip 6= ∅,
then γ≥p

(D) = 1, otherwise γ≥p
(D) = γ(D) = 2.

Proof. Consider any point x∗ ∈ Xn with x∗ < 1/2. The set N(x∗, r) covers
all elements of Xn that are smaller than x∗ and if x∗ > x`:n/r it will cover
at least dn.pe elements of Xn, namely X1:n, X2:n, . . . , X`:n. This means that
if there is an element x∗ ∈ Xn with x∗ < 1/2 and x∗ > X`:n/r, then x∗
dominates at least dn.pe points. Similarly for x∗ > 1/2, N(x∗, r) covers all
elements of Xn that are greater than x∗ and if x∗ < 1 + Xk:n−1

r , it will cover
at least dn.pe elements of Xn, namely Xk:n, Xk+1:n, . . . , Xn:n. Again, that
means if there is an element x∗ ∈ Xn such that x∗ > 1/2 and x∗ < 1+Xk:n−1

r ,
then x∗ dominates at least dn.pe points. Therefore γ≥p

(D) = 1 if and only

if there is an element of Xn either in
(
X`:n
r , 1

2

)
or in

[
1
2 , 1 + Xk:n−1

r

)
, i.e.,

Xn ∩ Ip 6= ∅. Otherwise γ≥p
(D) = 2 by Lemma 4.8.

So the problem of finding the distribution of γ≥p
(D) boils down to the

calculation of the probability P (Xn ∩ Ip 6= ∅) and thus we need to make
calculations with respect to the conditions of the set Ip being empty, a
single interval or in the limit, becoming a set consisting of one point.
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4.4 Asymptotic Distribution of γ≥p
for PCDs

Recall that we proved Xk:n
P→ 1 − p and X`:n

P→ p as n → ∞ in Corol-
lary 3.18. From this result we see that as n → ∞ the set Ip converges to
the set (p/r, 1/2) ∪ [1/2, 1− p/r). Next result follows easily from this fact.

Lemma 4.11. For a PCD constructed with Xn, a random sample of size n
from U(0, 1), and Y2 = {0, 1}, with the expansion parameter r ∈ (1, 2), we
have γ≥p

(D) with degenerate distribution in the limit, as n→∞, whenever
r 6= 2p. In particular, as n→∞,

γ≥p
(D) =

{
1, if r > 2p,

2, if r < 2p.

Proof. Notice that for r > 2p, p/r < 1/2 holds, i.e., in the limit the set
Ip is a set with positive Lebesgue measure (i.e., positive length). Then
by Lemma 3.14, there exists an element of the random sample Xn, that is
also in Ip with probability 1, i.e., P (γ≥p

(D) = 1) attains the value 1 as
n → ∞. Similarly, for r > 2p, p/r > 1/2 holds, i.e., in the limit the set
Ip = ∅, so fractional domination with just one point is not possible. Hence
limn→∞ P (γ≥p

(D) = 2) = 1.

Next, we consider the case r = 2p. Proof of the following theorem is provided
later.

Theorem 4.12. (I) P1,n := P (Xn ∩ Ip = ∅, case(i))→ 0 as n→∞,

(II) P2,n := P (Xn ∩ Ip = ∅, case(ii))→ 0 as n→∞,

(III) P3,n := P (Xn ∩ Ip = ∅, case(iii))→ 0 as n→∞.

By this theorem, we arrive to the fact that in the limit, the only case that
(Xn ∩ Ip = ∅) occurs is whenever case(iv) holds. Following corollary is trivial
after Theorem 4.12.

Corollary 4.13. As n→∞, P
(
γ≥p

(D) = 2
)

= P (Xn ∩ Ip = ∅) = P (case(iv)).

Proof. As the cases (i)-(ii)-(iii)-(iv) are disjoint and exhaustive, we have

P (Xn ∩ Ip = ∅) = P ((Xn ∩ Ip = ∅) , case(i))+P ((Xn ∩ Ip = ∅) , case(ii)) +

P ((Xn ∩ Ip = ∅) , case(iii)) + P ((Xn ∩ Ip = ∅) , case(iv)) .

Therefore, by Theorem 4.12 we have

lim
n→∞

P
(
γ≥p

(D) = 2
)

= lim
n→∞

P (Xn ∩ Ip = ∅) = lim
n→∞

P (case(iv)) .
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Note that the following theorem, whose proof is presented later and is crucial
in determining the distribution of γ≥p

(D).

Theorem 4.14. Let θn,p = P (case(iv)), then we have

lim
n→∞

θn,p =
1

4
− 1

2π
arctan

(
1− p√
2p− 1

)
.

Let πp = limn→∞ θn,p = 1
4 −

1
2π arctan

(
1−p√
2p−1

)
. Assuming that Theo-

rem 4.12 and Theorem 4.14 are proven, we have the following main result.

Theorem 4.15 (Main Result III). For a PCD, D, constructed with Xn, a
random sample of size n from U(0, 1), and Y2 = {0, 1}, with the expansion
parameter r ∈ (1, 2) and p ∈ (1/2, 1) we have γ≥p

(D) with the following
distribution in the limit, as n→∞,

γ≥p
(D) ∼


1, if r > 2p,

2, if r < 2p,

1 +Bernoulli(πp), if r = 2p,

where πp = 1
4 −

1
2π arctan

(
1−p√
2p−1

)
.

Proof. By Lemma 4.11, when r 6= 2p, we have degeneracy cases in the limit.
Otherwise as n→∞, from Corollary 4.13, it follows that γ≥p

(D) = 2 if and
only if case(iv) holds. Thus follows the main result.

Letting a, b be real numbers with a < b, n,m ∈ Z+ we now consider
the PCD, D, constructed with the set Ym = {y1, y2, . . . , ym} ⊂ (a, b) and a
random sample of size n, Xn from the U(a, b) distribution. Notice that Ym
divide the interval (a, b) into m + 1 disjoint intervals, we denote them as
follows. For i ∈ {2, 3, . . . ,m}, we let Ii = (yi−1, yi), then define I1 = (a, y1)
and Im+1 = (ym, b). Also define for any i ∈ {1, 2, . . . ,m+ 1}, Ji = Xn ∩ Ii.
Observe that Ji are disjoint and they yield disjoint components of D. So we
need to consider domination in each component separately. We aim to find
the distribution of γ≥p

(D) for such a PCD, D.

Now let pi ∈ R, where
∑m+1

i=1 pi ≥ p, with γ≥p
(D) =

∑m+1
i=1 γ≥pi

(Di),
where Di is the sub digraph constructed with Ii and Ji. By Theorem 4.15 we
know the distribution of each γ≥pi

(Di). Note that γ≥p1
(D1) and γ≥pm

(Dm)
are equal to one in the limit, as n → ∞, as we can cover all vertices in J0

with the smallest element of it as well as all vertices in Jm with the largest
element of it. This implies

γ≥p
(D) = 2 +

m∑
i=2

γ≥pi
(Di),
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and the result follows.

Theorem 4.16. For any a, b ∈ R with a < b, n,m ∈ Z+, Ym = {y1, y2, . . . , ym} ⊂
(a, b) and a random sample of size n, Xn from the U(a, b) distribution, con-
sider the resulting PCD, D. For given {p1, p2, . . . , pm+1} with

∑m+1
i=1 pi ≥ p,

D has the strong p-domination number in the following form

γ≥p
(D) = 2 +

m∑
i=2

(I(r > 2pi) + 2I(r < 2pi) + (1 + Γi)I(r = 2pi)) ,

where Γi ∼ Bernoulli(πpi), with πpi as in Theorem 4.15.

Additionally, note that whenever there is the case
∑m+1

i=1 pi = p, for any
i ∈ {2, 3, . . . ,m} we have r > 2pi and that implies

γ≥p
(D) = 2 +

m∑
i=2

1 = m+ 1.

Also, for the sake of completeness we present the following result.

Corollary 4.17. Given p ∈ (0, 1/2], the PCD, D, as in Theorem 4.15, has
the strong p-domination number with the degenerate distribution at 1, as
n→∞.

Proof. Proof easily follows from the fact that for p ∈ (0, 1/2) the interval Ip
has positive length. Therefore as n→∞ strong p-domination with just one
vertex becomes almost sure.

In the following two subsections we present the proofs of the two the-
orems, 4.12 and 4.14, which yield our main result. We need the following
tools for these proofs. Next proposition follows directly from the fact that
Xk:n converges in probability to 1 − p and X`:n converges in probability to
p, as n→∞.

Proposition 4.18. For any ε > 0, as n→∞, we have

P (Xk:n ∈ (1− p− ε, 1− p+ ε) , X`:n ∈ (p− ε, p+ ε))→ 1.

Proposition 4.19. For p ∈ (1/2, 1), let (an)n∈N, (bn)n∈N and (cn)n∈N be
three sequences of real numbers defined as an = n/(n − `), bn = n/(k − 1)
and cn = n/(`− k − 1). Then we have

an, bn →
1

1− p
, and

cn →
1

2p− 1
.
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Proof. Recall that k = n− bn.pc and ` = dn.pe. The following inequality is
immediate.

n− np− 1 < n− ` < n− np

Hence follows

1

1− p︸ ︷︷ ︸
αn

=
n

n− np
< an =

n

n− `
<

n

n− np− 1
=

1

1− p− 1/n︸ ︷︷ ︸
βn

.

As n→∞, both αn and βn goes to 1/(1− p) and so does an. Similarly,

n− np− 1 < k − 1 < n− np

and

1

1− p︸ ︷︷ ︸
αn

=
n

n− np
< bn =

n

k − 1
<

n

n− np− 1
=

1

1− p− 1/n︸ ︷︷ ︸
βn

.

Again, as n → ∞, both αn and βn goes to 1/(1 − p) and so does bn. Now
see that

2np− n− 2 < `− k − 1 < 2np− n

and this implies that

1

2p− 1︸ ︷︷ ︸
α′n

=
n

2np− n
< cn =

n

`− k − 1
<

n

2np− n− 2
=

1

2p− 1− 2/n︸ ︷︷ ︸
β′n

.

As n→∞, both α
′
n and β

′
n goes to 1/(2p− 1) and so does cn.

Remark 4.20 (Stirling’s Approximation). For sufficiently large n ∈ N we
have

n! ≈
√

2πn
(n
e

)n
,

in the sense that

lim
n→∞

n!√
2πn

(
n
e

)n = 1.

There is a short proof of this statement in [15]. Moreover, this is just a
special case of the actual Stirling’s approximation, which is possible since we
deal with natural numbers. For the generalization concerning the gamma
function and more information see [13].
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4.4.1 Proof of Theorem 4.12

First, we will prove

(I) : P1,n = P (Xn ∩ Ip = ∅, case(i))→ 0 as n→∞.

Here, we act under the assumptions X`:n ≤ r/2 and Xk:n > 1− r/2. As our
calculations will depend on the order statistics Xk:n and X`:n, we need their
joint probability distribution function (pdf), and it is

fk,`(xk, x`) =
n!

(k − 1)!(`− k − 1)!(n− `)!
xk−1
k · (x` − xk)`−k−1 · (1− x`)n−`,

for 0 < xk < x` < 1 and the random sample Xn from the distribution
U(0, 1). Now we need to find the probability that Xn ∩ Ip = ∅ given
that Xk:n = x and X`:n = y. Recall that whenever case(i) holds, Ip =
(X`:n/r, 1 + (Xk:n − 1)/r). Let

g1(xk, x`) = P (Xn ∩ Ip = ∅|Xk:n = xk, X`:n = x`)

Observe that for Xn ∩ Ip to be empty, we must have

Xk:n < X`:n/r and 1 +
Xk:n − 1

r
< X`:n,

for otherwise, Xk:n or X`:n would be contained in Ip. Moreover, we need
none of the `−k−1 sample points between Xk:n and X`:n to be in Ip. Hence

g1(xk, x`) =

(
1−

1 + xk−x`−1
r

x` − xk

)`−k−1

=

(
r + 1

r
− r − 1

r
(x` − xk)−1

)`−k−1

.

Now that we have the probability g1, conditioned on Xk:n = xk and
X`:n = x`, we should multiply it with the joint pdf of Xk:n and X`:n and
integrate within their respective values. See that we want Xk:n < X`:n/r
and X`:n > 1 + (Xk:n − 1)/r, and hence both X`:n > rXk:n and X`:n >
(Xk:n + r − 1)/r must hold. The integral follows.

P1,n =

∫ 1/2

0

∫ 1

max(rxk,(xk+r−1)/r)

fk,`(xk, x`)g1(xk, x`) dx` dxk (14)

Seeing that rxk > (xk + r − 1)/r if and only if xk > 1/(r + 1), we get the
clearer form:
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P1,n =

(∫ 1/(r+1)

0

∫ 1

(xk+r−1)/r
+

∫ 1/2

1/(r+1)

∫ 1

rxk

)
fk,`(xk, x`)g1(xk, x`) dx` dxk.

(15)
Equivalently we have

P1,n = κ

(∫ 1/(r+1)

0

∫ 1

(xk+r−1)/r
+

∫ 1/2

1/(r+1)

∫ 1

rxk

)
xk−1
k (1− x`)n−`(

r + 1

r
(x` − xk)−

r − 1

r

)`−k−1

dx` dxk

where

κ =
n!

(k − 1)!(`− k − 1)!(n− `)!
.

By Lemma 4.11, for non-degeneracy in the limit, given r > 2, p =
r/2 > 1 should hold, which is impossible. So the only case we investigate is
r ∈ (1, 2), i.e., p ∈ (1/2, 1). Let mp = min{1− p, 1/2− (1− p)} = min{1−
p, p−1/2}, and ε ∈ (0,mp/8) = (0,min{(1−p)/8, (p−1/2)/8}) ⊆ (0, 1/16).
By Proposition 4.18 and under the conditions (C1) and (C4) (i.e., X`:n ≤ p
as well as Xk:n > 1− p) we see that for sufficiently large n

P1,n ≈ κ
∫ 1−p+ε

1−p

∫ p

p−ε
xk−1
k (1−x`)n−`

(
r + 1

r
(x` − xk)−

r − 1

r

)`−k−1

dx` dxk.

Now we will translate the variables to the origin, considering the change of
variables zk := xk−(1−p) and z` := p−x`, where zk, z` ≥ 0, or, equivalently,

xk = zk + (1− p),
x` = p− z`,

and see that we have the following integral:

P1,n ≈ κ
∫ ε

0

∫ ε

0
(zk + 1− p)k−1(1− p+ z`)

n−`

(
r + 1

r
(2p− 1− z` − zk)−

r − 1

r

)`−k−1

dz` dzk.

Using Stirling’s Approximation we write κ in the following form.
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κ ≈
√
n.nn

2πe2(n− `)n−`(`− k − 1)`−k−1(k − 1)k−1
√

(n− `)(`− k − 1)(k − 1)

or, equivalently,

κ ≈
√
n.nn

2πe2(n− `)(n−`+1/2)(`− k − 1)(`−k−1/2)(k − 1)(k−1/2)
.

Then we reorder the terms in the following way so that calculations will be
more convenient

κ ≈ n

2πe2

(
n

n− `

)n−`+1/2( n

`− k − 1

)`−k−1/2( n

k − 1

)k−1/2

,

and for large enough n ∈ N we have

κ ≈ n

2πe2

(
1

1− p

)n(1−p)+1/2( 1

2p− 1

)n(2p−1)−1/2( 1

1− p

)n(1−p)−1/2

.

(16)
Proposition 4.19 helps us to organize κ into terms such that they can easily
be incorporated into the integrands at hand. For sufficiently large n ∈ N we
have

P1,n ≈
∫ ε

0

∫ ε

0

n
√

2p− 1

2πe2(1− p)

(
1 +

zk
1− p

)n(1−p)(
1 +

z`
1− p

)n(1−p)

(
1− 2p+ 1

2p(2p− 1)
(z` + zk)

)n(2p−1)

dz` dzk. (17)

Observe that this integral is critical at zk = z` = 0, since we have all
the integrands (1)n(1−p), (1)n(1−p) and (1)n(2p−1). So we need further to
investigate its limit. As we want to make use of the fact that the integrands
converge to exponential terms in the limit, we consider the following change
of variables uk := nzk and u` := nz`, or, equivalently,

zk = uk/n,

z` = u`/n,

then the integral (17) becomes
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P1,n ≈
∫ nε

0

∫ nε

0

√
2p− 1

2nπe2(1− p)

(
1 +

uk
n(1− p)

)n(1−p)(
1 +

u`
n(1− p)

)n(1−p)

(
1− 2p+ 1

n2p(2p− 1)
(u` + uk)

)n(2p−1)

du` duk.

As n→∞, in the limit,

P1,n ≈ O
(
n−1

) ∫ ∞
0

∫ ∞
0

e(uk+u`)−(u`+uk)(1+1/2p) du` duk.

since as n→∞, for any f, g : R→ R,(
1 +

f(x)

n

)ng(x)

→ eg(x)f(x).

See that

P1,n ≈ O
(
n−1

) ∫ ∞
0

∫ ∞
0

e
(uk+u`)

−1
2p du` duk,

as α := −1/2p < 0 we have

P1,n ≈ O
(
n−1

) ∫ ∞
0

eαuk
(∫ ∞

0
eαu` du`

)
duk,

Therefore

P1,n ≈ O
(
n−1

) 1

α2
.

Thus

lim
n→∞

P1,n = lim
n→∞

P (Xn ∩ Ip = ∅, case(i)) = 0.

Hence we proved (I). Now we will prove

(II) : P2,n = P (Xn ∩ Ip = ∅, case(ii))→ 0 as n→∞.

Now we have the assumptions that X`:n ≤ r/2 and Xk:n ≤ 1 − r/2.
Conditioning Xk:n = xk and X`:n = x`, we want the probability Xn∩Ip being
empty. Recall that whenever it is the case(ii), Ip = (X`:n, 1/2). Assuming
the conditioning in question we define

g2(xk, x`) = P (Xn ∩ Ip = ∅|Xk:n = xk &X`:n = x`) .

Notice that
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Xk:n <
X`:n

r
and X`:n > 1/2

for Xn ∩ Ip to be empty as otherwise Xk:n or X`:n would be in it. Also we
want the `− k − 1 points of the random sample between Xk:n and X`:n not
to be in Ip. Identical to what we did in case (I), we get

g2(xk, x`) =

(
1− 1/2− x`/r

x` − xk

)`−k−1

=

(
1− r − 2x`

(x` − xk)2r

)`−k−1

.

Thus we obtain the integral

P2,n =

∫ 1

1/2

∫ x`/r

0
κ xk−1

k (1− x`)n−` ((1 + 1/r)x` − xk − 1/2)`−k−1 dxk dx`.

Again, we calculate limn→∞ P2,n. By Proposition 4.18 and under the condi-
tions (C1) and (C3) (i.e., X`:n ≤ p and Xk:n ≤ 1−p) we write for sufficiently
large n ∈ N

P2,n ≈
∫ p

p−ε

∫ 1−p

1−p−ε
κxk−1

k (1−x`)n−` ((1 + 1/r)x` − xk − 1/2)`−k−1 dxk dx`.

For the convenience we will translate the variables to origin, considering the
change of variables zk := (1− p)− xk and z` := p− x`, where zk, z` ≥ 0, or,
equivalently,

xk = (1− p)− zk,
x` = p− z`,

to get that

P2,n ≈
∫ ε

0

∫ ε

0
κ (1− p− zk)k−1(1− p+ z`)

n−`

(2p− 1 + zk − (1 + 1/2p)z`)
`−k−1 dzk dz`.

We will again use the Stirling’s Approximation for κ, the equation (16), to
get that
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P2,n ≈
∫ ε

0

∫ ε

0

n
√

2p− 1

2πe2(1− p)

(
1− zk

1− p

)n(1−p)(
1 +

z`
1− p

)n(p−1)

(
1 +

zk − (1 + 1/2p)z`
2p− 1

)n(2p−1)

dzk dz`. (18)

Again, note that the integral is critical at zk = z` = 0. We will again use
the fact that integrands converge to exponential terms with the help of the
change of variables, uk := nzk and u` := nz`, or, equivalently,

zk = uk/n,

z` = u`/n,

the integral in Equation (18) becomes

P2,n ≈
∫ nε

0

∫ nε

0

√
2p− 1

2nπe2(1− p)

(
1− uk

n(1− p)

)n(1−p)(
1 +

u`
n(1− p)

)n(1−p)

(
1 +

uk − (1 + 1/2p)u`
n(2p− 1)

)n(2p−1)

duk du`.

For sufficiently large n ∈ N,

P2,n ≈
∫ nε

0

∫ nε

0

√
2p− 1

2nπe2(1− p)
e−u`/2p duk du`

=

∫ nε

0

ε
√

2p− 1

2πe2(1− p)
e−u`/2p du`

and as n→∞ we have

P2,n ≈
∫ ∞

0
c1εe

−u`/2p du`

where c1 ∈ R. Therefore

P2,n ≈ c1αε = c2ε

for some c2 ∈ R. Since this is true for any sufficiently small and arbitrary
ε > 0, letting ε → 0, we get limn→∞ P2,n = 0. Thus follows the proof of
claim (II). The last claim to prove is

(III) : P3,n = P (Xn ∩ Ip = ∅, case(iii))→ 0 as n→∞.
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This is quite similar to the case (ii). We show that there is symmetry
between cases (ii) and (iii) and then directly make use of it.

Proposition 4.21. Considering the events of case(ii) and case(iii), there
is symmetry in the following sense

P (Xn ∩ Ip = ∅, case(iii)) = P (Xn ∩ Ip = ∅, case(ii)) .

Proof. For case(iii) we have Ip = [1/2, 1 + (Xk:n − 1)/r) and for Xn ∩ Ip to
be empty, Xk:n < 1/2, X`:n > 1+(Xk:n−1)/r and no element of the random
sample between Xk:n and X`:n should be in Ip. Let ξi := 1−X(n+1−i):n for
i = 1, 2, . . . , n. See that the set {ξ1, ξ2, . . . , ξn} is also a random sample
from the distribution U(0, 1). Recalling that ` = dnpe and k = n − bnpc,
the equality ` = n+ 1− k follows from

n+ 1− k = n+ 1− n+ bnpc = bnpc+ 1 = dnpe.

Thus we have

ξk = 1−Xn+1−k:n = 1−X`:n,

ξ` = 1−Xn+1−`:n = 1−Xk:n.

See that

Xk:n < 1/2⇔ 1− ξ` < 1/2⇔ ξ` > 1/2

as well as

X`:n > 1 +
Xk:n − 1

r
⇔ 1− ξk > 1 +

1− ξ` − 1

r
⇔ ξk <

ξ`
r
.

Also Xi:n ∈ Ip = [1/2, 1 + (Xk:n − 1)/r) if and only if

1

2
≤ Xi:n ≤ 1 +

Xk:n − 1

r
⇔

−1

2
≥ −Xi:n ≥ −1 +

1−Xk:n

r
⇔

1

2
≥ 1−Xi:n ≥

1−Xk:n

r
⇔

1

2
≥ ξi ≥

ξ`
r
⇔

ξi ∈
(
ξ`
r
,
1

2

)
=: I∗

p
.

Notice that the set I∗
p

is the set Ip for case(ii). Hence cases(ii) and (iii) are
symmetric in the sense that Xn∩Ip = ∅ occurs, i.e., P (Xn ∩ Ip = ∅, case(iii)) =
P (Xn ∩ Ip = ∅, case(ii)).
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Therefore, by Proposition 4.21 we see that P (Xn ∩ Ip = ∅, case(iii))→ 0
as n → ∞. Hence we have the desired result, concluding the proof of
Theorem 4.12.

4.4.2 Proof of Theorem 4.14

Recall that in this case we want Xk:n < 1 − p and X`:n > p. So letting
P4,n := P (case(iv)) we have

P4,n =

∫ 1

p

∫ 1−p

0
fk,`(xk, x`) dxk dx`.

By Proposition 4.18 we have, for sufficiently large n ∈ N,

P4,n ≈
∫ p+ε

p

∫ 1−p

1−p−ε
κxk−1

k (1− x`)n−`(x` − xk)`−k−1 dxk dx`. (19)

After we move the integral variables to the neighborhoods of zero with the
change of variables zk := (1− p)− xk and z` := x` − p, i.e.,

xk = (1− p)− zk,
x` = z` + p,

the integral (19) becomes

P4,n =

∫ ε

0

∫ ε

0
κ(1− p− zk)k−1(1− p− z`)n−`(2p− 1 + z` + zk)

`−k−1 dzk dz`,

or, equivalently,

P4,n =

∫ ε

0

∫ ε

0
κ

1

(1− p− zk)(2p− 1 + zk + z`)
(1− p− zk)k(1− p− z`)n−`

(2p− 1 + z` + zk)
`−k dzk dz`.

Now we decompose κ so that we will get rid of the exponential powers
in the Stirling’s approximation, seeing that

κ =
n!

(k − 1)!(`− k − 1)!(n− `)!
= n(n− 1)

(n− 2)!

(k − 1)!(`− k − 1)!(n− `)!
,

and applying the Stirling’s approximation to the factorial terms, (n−2)!, (k−
1)!, (`− k − 1)! and (n− `)!, we obtain for sufficiently large n ∈ N,
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κ ≈ n

2π

(n− 1)√
k − 1

√
n− `

√
n− 2

`− k − 1

(
n− 2

k − 1

)k−1(n− 2

n− `

)n−`( n− 2

`− k − 1

)`−k−1

.

By Lemma 4.19,

κ ≈ n
√

2p− 1

2π

(
1

1− p

)n(1−p)( 1

1− p

)n(1−p)( 1

2p− 1

)n(2p−1)

,

and for sufficiently large n ∈ N we get,

κ ≈ n
√

2p− 1

2π

(
1

1− p

)2n(1−p)( 1

2p− 1

)n(2p−1)

.

We organize the integral in the following way

P4,n ≈
∫ ε

0

∫ ε

0

n
√

2p− 1

2π
C−n1

1

(1− p− zk)(2p− 1 + zk + z`)
g(zk, z`) dzk dz`,

where
C1 = (1− p)2(1−p)(2p− 1)2p−1

and

g(zk, z`) = (1− p− zk)n(1−p)(1− p− z`)n(1−p)(2p− 1 + zk + z`)
n(2p−1),

since, for large n ∈ N, k ≈ n(1− p) and ` ≈ np. Now let

h(zk, z`) = (1− p− zk)1−p(1− p− z`)1−p(2p− 1 + zk + z`)
2p−1,

so that
g(zk, z`) = (h(zk, z`))

n .

The integral is critical at (zk, z`) = (0, 0), since h(0, 0) = C1, and so

C−n1 g(0, 0) = 1.

We write the bivariate Taylor expansion of 1
(1−p−zk)(2p−1+zk+z`)

up to

order one and h(zk, z`) up to order two, around (zk, z`) = (0, 0). See

1

(1− p− zk)(2p− 1 + zk + z`)
=

1

(1− p)(2p− 1)
+O(zk) +O(z`)

and
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h(zk, z`) =
4p2 − 6p+ 2 + p(z2

k + z2
` )− 2zkz`(p− 1)

2(2p− 1)(p− 1)
+O(z2

k)+O(z2
` )+O(zkz`).

Organizing the terms

h(zk, z`) =

(
1−

p(z2
k + z2

` ) + 2zkz`(1− p)
2(2p− 1)(p− 1)

)
+O(z2

k) +O(z2
` ) +O(zkz`),

letting

zk =
wk√
n

and z` =
w`√
n
,

we obtain

P4,n ≈
∫ √nε

0

∫ √nε
0

√
2p− 1

2π

(
1

(1− p)(2p− 1)
+O(n−1/2)

)
(

1− 1/n

(
p(w2

k + w2
` ) + 2wkw`(1− p)

2(2p− 1)(p− 1)

)
+O(n−1)

)n
dwk dw`,

and letting n→∞

lim
n→∞

P4,n =

∫ ∞
0

∫ ∞
0

1

2π(1− p)
√

2p− 1
e

(
− p(w2

k+w2
` )+2wkw`(1−p)

2(2p−1)(1−p)

)
dwk dw`.

Now we switch to polar coordinates, so we make change of variables,

wk = a cos(t) and w` = a sin(t),

lim
n→∞

P4,n =

∫ π/2

0

∫ ∞
0

1

2π(1− p)
√

2p− 1
ae

(
− pa2+2(1−p)a2 cos(t) sin(t)

2(2p−1)(1−p)

)
da dt,
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lim
n→∞

P4,n =

∫ π/2

0
−

√
2p− 1

2π(sin(2t)p− sin(2t)− p)
dt,

= lim
x→π/2

arctan
(

tan(t)p−p+1√
2p−1

)
2π

t=x
t=0

=
1

4
− 1

2π
arctan

(
1− p√
2p− 1

)
.

Therefore,

πp = lim
n→∞

P4,n = lim
n→∞

P (case(iv)) =
1

4
− 1

2π
arctan

(
1− p√
2p− 1

)
, (20)

and the proof of Theorem 4.14 follows.

4.5 Monte Carlo Simulations

In this section we present the Monte Carlo simulation results and compare
them with the theoretical results we obtained in the previous sections. We
will consider three different set of values, p ∈ (1/2, 1), fractional domination
parameter, r ∈ (1, 2), extension parameter and n ∈ N, number of vertices.
We will get a random sample of size n, subject to uniform distribution, and
then observe the behavior of γ≥p

, estimating the probability of the event
γ≥p

(D) = 1 for various combinations of n, p and r. In particular we choose
r = 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9; p = 0.55, 0.6, 0.65, 0.7, 0.75, 0.8,
0.85, 0.9, 0.95 for n = 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000,
100000. The following is an sample R code that was used in our simulations.

Nmc<-1000

p<-0.8

r<-2*p

n<-100

nlist<-(1:10)*100

set.seed(1)

pg1<-0

k<-n-floor(n*p)+1

ell<-ceiling(n*p)

for (i in 1:Nmc)

{

Xp<-runif(n)
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SX<-sort(Xp)

indl<- (1:n)[Xp<=1/2]

XL<-Xp[indl]

XR<-Xp[-indl]

if (r*max(XL) >= SX[ell] | 1-r*(1-min(XR)) <= SX[k] )

{pg1<-pg1+1}

}

print(pg1/Nmc)
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Here, we present the simulation results.

r=1.1

n\p 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

100 0.802 0.259 0.035 0 0 0 0 0 0

200 0.821 0.127 0.006 0 0 0 0 0 0

500 0.870 0.017 0 0 0 0 0 0 0

1000 0.879 0.001 0 0 0 0 0 0 0

2000 0.883 0 0 0 0 0 0 0 0

5000 0.895 0 0 0 0 0 0 0 0

10000 0.902 0 0 0 0 0 0 0 0

20000 0.908 0 0 0 0 0 0 0 0

50000 0.907 0 0 0 0 0 0 0 0

100000 0.905 0 0 0 0 0 0 0 0

The calculated value of 1−πp, from Equation (20), for p = 0.55 is 0.902.

r=1.2

n\p 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

100 .992 0.827 0.248 0.03 0 0 0 0 0

200 1 0.802 0.119 0.005 0 0 0 0 0

500 1 0.811 0.023 0 0 0 0 0 0

1000 1 0.845 0.001 0 0 0 0 0 0

2000 1 0.856 0 0 0 0 0 0 0

5000 1 0.865 0 0 0 0 0 0 0

10000 1 0.869 0 0 0 0 0 0 0

20000 1 0.872 0 0 0 0 0 0 0

50000 1 0.865 0 0 0 0 0 0 0

100000 1 0.860 0 0 0 0 0 0 0

The calculated value of 1− πp for p = 0.6 is 0.866.
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r=1.3

n\p 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

100 1 0.990 0.792 0.030 0 0 0 0 0

200 1 1 0.795 0.005 0 0 0 0 0

500 1 1 0.792 0 0 0 0 0 0

1000 1 1 0.810 0 0 0 0 0 0

2000 1 1 0.819 0 0 0 0 0 0

5000 1 1 0.842 0 0 0 0 0 0

10000 1 1 0.853 0 0 0 0 0 0

20000 1 1 0.854 0 0 0 0 0 0

50000 1 1 0.838 0 0 0 0 0 0

100000 1 1 0.840 0 0 0 0 0 0

The calculated value of 1− πp for p = 0.65 is 0.840.

r=1.4

n\p 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

100 1 1 0.988 0.773 0 0 0 0 0

200 1 1 1 0.755 0 0 0 0 0

500 1 1 1 0.769 0 0 0 0 0

1000 1 1 1 0.793 0 0 0 0 0

2000 1 1 1 0.788 0 0 0 0 0

5000 1 1 1 0.821 0 0 0 0 0

10000 1 1 1 0.809 0 0 0 0 0

20000 1 1 1 0.831 0 0 0 0 0

50000 1 1 1 0.825 0 0 0 0 0

100000 1 1 1 0.833 0 0 0 0 0

The calculated value of 1− πp for p = 0.7 is 0.820.

r=1.5

n\p 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

100 1 1 1 0.986 0.732 0.173 0 0 0

200 1 1 1 0.998 0.728 0.076 0 0 0

500 1 1 1 1 0.745 0.004 0 0 0

1000 1 1 1 1 0.770 0 0 0 0

2000 1 1 1 1 0.785 0 0 0 0

5000 1 1 1 1 0.787 0 0 0 0

10000 1 1 1 1 0.805 0 0 0 0

20000 1 1 1 1 0.814 0 0 0 0

50000 1 1 1 1 0.800 0 0 0 0

100000 1 1 1 1 0.812 0 0 0 0
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The calculated value of 1− πp for p = 0.75 is 0.804.

r=1.6

n\p 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

100 1 1 1 1 0.980 0.694 0.141 0.005 0

200 1 1 1 1 0.996 0.702 0.061 0 0

500 1 1 1 1 1 0.743 0.004 0 0

1000 1 1 1 1 1 0.765 0 0 0

2000 1 1 1 1 1 0.762 0 0 0

5000 1 1 1 1 1 0.776 0 0 0

10000 1 1 1 1 1 0.782 0 0 0

20000 1 1 1 1 1 0.783 0 0 0

50000 1 1 1 1 1 0.796 0 0 0

100000 1 1 1 1 1 0.795 0 0 0

The calculated value of 1− πp for p = 0.8 is 0.790.

r=1.7

n\p 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

100 1 1 1 1 0.999 0.977 0.657 0.100 0

200 1 1 1 1 1 0.997 0.686 0.034 0

500 1 1 1 1 1 1 0.749 0 0

1000 1 1 1 1 1 1 0.739 0 0

2000 1 1 1 1 1 1 0.753 0 0

5000 1 1 1 1 1 1 0.756 0 0

10000 1 1 1 1 1 1 0.761 0 0

20000 1 1 1 1 1 1 0.746 0 0

50000 1 1 1 1 1 1 0.748 0 0

100000 1 1 1 1 1 1 0.786 0 0

The calculated value of 1− πp for p = 0.85 is 0.778.

58



r=1.8

n\p 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

100 1 1 1 1 1 1 1 0.618 0.052

200 1 1 1 1 1 1 1 0.671 0.005

500 1 1 1 1 1 1 1 0.703 0

1000 1 1 1 1 1 1 1 0.725 0

2000 1 1 1 1 1 1 1 0.729 0

5000 1 1 1 1 1 1 1 0.738 0

10000 1 1 1 1 1 1 1 0.741 0

20000 1 1 1 1 1 1 1 0.751 0

50000 1 1 1 1 1 1 1 0.744 0

100000 1 1 1 1 1 1 1 0.760 0

The calculated value of 1− πp for p = 0.9 is 0.767.

r=1.9

n\p 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

100 1 1 1 1 1 1 1 0.980 0.612

200 1 1 1 1 1 1 1 0.999 0.634

500 1 1 1 1 1 1 1 1 0.659

1000 1 1 1 1 1 1 1 1 0.692

2000 1 1 1 1 1 1 1 1 0.694

5000 1 1 1 1 1 1 1 1 0.719

10000 1 1 1 1 1 1 1 1 0.723

20000 1 1 1 1 1 1 1 1 0.758

50000 1 1 1 1 1 1 1 1 0.725

100000 1 1 1 1 1 1 1 1 0.744

The calculated value of 1− πp for p = 0.95 is 0.758.

The results of our simulations are in agreement with our main result in
Theorem 4.15. Whenever r > 2p, the probability that (γ≥p

= 1) converges
rapidly to 1, i.e., strong p-domination with just one element occurs almost
surely. On the other hand, whenever r < 2p, the probability that (γ≥p

= 1)
converges rapidly to 0, i.e., it is impossible to obtain strong p-domination
with just one element, hence in the limit γ≥p

has the degenerate distribution
at 2. For the case r = 2p, for which we showed the non-degeneracy, we added
the calculated value for 1−πp (which is equivalent to the probability (γ≥p

=
1)), where p = r/2 for specified values of r, and despite the fluctuations due
to randomness caused by Monte Carlo simulations, we can see that values
in simulations and calculated values are in considerable agreement.
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5 CONCLUSIONS

In this study, we provide various graph theoretical extensions of domina-
tion, and their relation to the usual form of domination in literature. The
intuition of these extensions is the possibility of the need for fractional anal-
ysis of graphs and domination. By eliminating the restriction of dominating
all vertices, may be excluding most of the isolated ones, the ‘effort’ to ac-
quire the proposed domination might decreases immensely. The extensions
of domination we proposed are exact p-domination, weak p-domination and
strong p-domination. We mainly focused on strong and weak p-domination
on Class Cover Catch Digraphs (CCCDs) and Proximity Catch Digraphs
(PCDs). For the exact p-domination, we conjectured non-degeneracy in the
limit. We also showed that on CCCDs, whenever we decrease p from 1 to
any real number in (0, 1), we switch from non-degenerate to degenerate dis-
tribution of γ≥p

in the limit. That is, the pdf of γ≥p
for the case p = 1 is a

threshold pdf, switching from non-degeneracy to degeneracy. The degener-
acy and non-degeneracy of the asymptotic distribution of γ≥p

is due to the
relation between the domination parameter p, and the extension parame-
ter r of PCDs and our main result is based on this fact. In particular, we
demonstrate that as n → ∞, the PCD with c = 1/2 has degenerate distri-
bution when r 6= 2p and non-degenerate distribution only if r = 2p. This
gives a rough description of the domination-related behavior of the CCCDs
and PCDs for large sample populations.

Using Monte Carlo simulations, we showed that our estimated probabil-
ities are in agreement with the theoretical probabilities. In quest for more
generality, the ‘centrality parameter’ of PCDs may be added to the study of
these extensions of domination on PCDs. This work also forms the founda-
tion of future work about domination on CCCDs and PCDs based on higher
dimensional data.
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