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ABSTRACT

This study presents different proofs and applications of the celebrated Erdös-
Kac theorem, named after Paul Erdös and Mark Kac, also known as the
fundamental theorem of probabilistic number theory which states that if n
is a randomly chosen large integer, then the number of distinct prime factors
of n has approximately the normal distribution with mean and variance
log logn.

We first give the original proof from the authors which is so called ele-
mentary proof meaning that the complex functin theory is not used. This
proof does not give an error term but rather gives an asymptotic result. In
the second part we give the proof of A. Renyi and P. Turan which makes
use of the standard tools of analytic number theory, Dirichlet series, con-
tour integration. Although the latter method is not elementary, it is much
simpler than the original proof and also helps us get an error term besides
an asymptotic result.

Finally we use the article ” On the Normal Number of Prime Factors of
φ(n) by Paul Erdös and Carl Pomerance where φ ” is Euler’s function. We
also give the related result for the divisor function which counts the number
of positive divisors for a given integer.
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ÖZET

Bu çalışmada, Olasılıksal Sayılar Teorisinin temel teoremi olarak bilinen
Erdös-Kac teoreminin farklı ispatlarının yanısıra aynı konuyla ilgili birkaç
çalışma verilmiştir. Öncelikle ana teoremi kompleks fonksiyon teorisi kullan-
madan elementer metotlarla ispatlayarak hata terimi içermeyen bir asimp-
totik buluyoruz. l̇kinci kısımda, olasılıktan gelen bir teoremle, Riemann
zeta-fonksiyonun ve genel Dririchlet serilerinin bazı özellikleri kullanılarak
bulunan asimptotiğin yanısıra hata terimi de hesaplanmıştır. Son kısımda
ise, konuyla ilgili elementer metotlar kullanılarak yapılan iki farklı çalışma
incelenmiştir.
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µ(n) The Möbius mu function.
f(x) = O(g(x)) |f(x)| ≤ Cg(x) where C is an

absolute constant.
f(x) = o(g(x)) lim f(x)/g(x) = 0.
f(x)� g(x) f(x) = O(g(x)).
f(x) ∼ g(x) lim f(x)/g(x) = 1.

vii



1 Preliminaries

This chapter includes the basic information needed to understand the text
as we frequently will refer in the following chapters. It consists of four main
sections and in each of them, we will present the functions and some of their
properties that we are going to deal with. We also will introduce some main
formulas and tools that are widely used in Analytic Number Theory. All
these will be given briefly, without proof, since detailed arguments can be
found in [3] or [2].

1.1 Arithmetic Functions.

Definition 1. A real- or complex-valued function defined on the positive
integers is called an arithmetic function.

We introduce some arithmetic functions which play an important role
on distribution of primes.

1. The Möbius function µ is defined as follows:

µ(1) = 1;

If n > 1, write n = pa1
1 · · · p

ak
k . Then

µ(n) =

{
(−1)k if a1 = a2 = · · · ak = 1,
0 otherwise.

2. If n > 1 the Euler totient φ(n) is defined to be the number of positive
integers not exceeding n which are relatively prime to n; i.e.,

φ(n) =
n∑

m=1
(m,n)=1

1.

3. The Von Mangoldt function Λ(n) is defined as:

Λ(n) =

{
log p if n = pm for some prime p and some integer m ≥ 1,
0 otherwise.

Let f(n) be an arithmetic function. We usually denote by F (x), the
summatory function of f(n)

F (x) =
∑
n≤x

f(n).

1



In analytic number theory, we estimate the averages F (x)
x of arithmetic

functions because they are expected to behave more regularly for large x
whereas an arithmetic function may behave beyond prediction when n is
large. So we are interested in tools for evaluating the averages.

Now let us give the partial summation formula which is one of the most
powerful methods for estimating the summatory of arithmetic functions.

Theorem 1.1 (The Partial Summation Formula). Let x and y be real num-
bers with 0 < y < x. Let f(n) be an arithmetic function with summatory
function F (x) and g(t) be a function with a continuous derivative on [y, x].
Then,

∑
y<n≤x

f(n)g(n) = F (x)g(x)− F (y)g(y)−
∫ x

y
F (t)g′(t)dt. (1.1)

In particular, if x ≥ 2 and g(t) is continuously differentiable on [1, x],
then ∑

n≤x
f(n)g(n) = F (x)g(x)−

∫ x

1
F (t)g′(t)dt. (1.2)

This theorem, applied to the functions f(n) = 1 and g(t) = 1/t gives∑
n≤x

1

n
= log x+ E + r(x) where |r(x)| < 2

x
. (1.3)

The number E in (1.3) is called the Euler’s constant.

1.2 Dirichlet Series.

Given an arithmetic function f(n), we define the Dirichlet series associated
by f as

F (s) =
∞∑
n=1

f(n)

ns
.

A Dirichlet series can be regarded as a function of the complex variable
s, defined in the region in which the series converges. We write the variable
s as

s = σ + it, where σ = <s, t = =s,

and we will use this notation throughout the text.
An important result about Dirichlet series is the Euler product identity

when applied to the Dirichlet series.

Theorem 1.2 (Euler Product Identity). Let f be a multiplicative arithmetic

function with Dirichlet series F (s) =
∑∞

n=1
f(n)
ns . Assume F (s) converges

2



absolutely for σ > σa, then we have

F (s) =
∏
p

(
1 +

f(p)

ps
+
f(p2)

p2s
+ . . .

)
for σ > σa. (1.4)

If f is completely multiplicative, then

F (s) =
∏
p

(
1 +

f(p)

ps

)−1

for σ > σa. (1.5)

The most famous Dirichlet series is the one associated with the function
f(n) = 1, so-called the Riemann zeta function ζ(s),

ζ(s) =
∞∑
n=1

1

ns
. (σ > 1)

We initially define ζ(s) for σ > 1 but it has an analytic continuation to
the half-plane σ > 0:

ζ(s) =
s

s− 1
− s

∫ ∞
1
{u}u−s−1du. (1.6)

Moreover, by the Euler product identity (1.15), we have

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1

(σ > 1). (1.7)

Logarithmic derivative of the identity (1.17) gives the Dirichlet series for

− ζ′(s)
ζ(s) ,

−ζ
′(s)

ζ(s)
=
∑
p

∞∑
n=1

log p

pms
=
∞∑
n=1

Λ(n)

ns
=
∏
p

(
1 +

1

ps

)−1

(σ > 1). (1.8)

Another important property of Dirichlet series is that we can relate them
to the summatory functions of arithmetic functions. Finally lets indicate one
of the inversion formulas which we will need later.

Theorem 1.3 (Riesz typical means.). For positive integer m and positive
real x put

Rm(x) =
1

m!

∑
k≤x

ak(log x/k)m. (1.9)
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Then

Rm(x) =
1

2πi

∫ σ0+i∞

σ0−i∞
α(s)

xs

sk+1
ds (1.10)

where α(s) =
∑∞

n=1 ann
−s, x > 0 and σ0 > max(0, σc).

1.3 The Sieve Method.

Let Φ(x, z) := ] {n ≤ x : n is not divisible by any prime < z} and Pz :=∏
p<z p. Then

Φ(x, z) =
∑
n≤x

∑
d|(n,Pz)

µ(d)

= x
∑
d|Pz

µ(d)

d
+O

∑
d|Pz

|µ(d)|


= x

∏
p<z

(1− 1

p
) +O(2z).

Observation: One can notice that

π(x) ≤ Φ(x, z) + π(z) ≤ Φ(x, z) + z.

By means of an elementary inequality 1− x ≤ e−x for x > 0 we obtain∏
p<z

(1− 1

p
) ≤ exp(−

∑
p<z

1

p
).

Now by choosing z := c log x for some small constant c and using the fact
that

∑
p<z

1
p ≥ log log z +O(1) we get

∏
p<z

(1− 1

p
)� x

log log x
.

And since 2z < (elog x)c � x
log log x , then we obtain π(x)� x

log log x . Although
this is a weak result in comparison to the result of Prime Number Theorem,
but still better than a trivial bound.

Brun’s Pure Sieve: By comparing the coefficients of xr in the inequal-
ity (1− x)−1(1− x)w = (1− x)w we can get the equality of the form∑

k≤r
(−1)k(wk ) = (−1)r(w−1

r ).

4



Now let 0 ≤ r ≤ w(n)− 1. Then∑
d|n

w(d)≤r

µ(d) =
∑
k≤r

(−1)k(
w(n)
k ) = (−1)r(

w(n)−1
k ).

If we set

Ψr(n) =
∑
d|n

µr(d) where µr(d) =

{
µ(d) if w(d) ≤ r
0 otherwise.

then we get Ψr(n) = (−1)r(
w(n)−1
k ) is ≥ 0 if r is even and ≤ 0 if r is odd.

So what we obtain is

Ψ2r+1(n) ≤
∑
d|n

µ(d) ≤ Ψ2r(n)

and

Ψ2r+1(n) =
∑
d|n

w(d)≤2r

µ(d) +
∑
d|n

w(d)=2r+1

µ(d)

= Ψ2r(n) +O

 ∑
d|n

w(d)=2r+1

|µ(d)|


By the last inequality, by playing with the parity of r, we can easily get that

∑
d|n

µ(d) = Ψr(n) +O

 ∑
d|n

w(d)=r+1

|µ(d)|


Now, doing all these combinatorical calculations more precisely, one can

get for the natural numbers n and r with r ≤ w(n), there exists |θ| ≤ 1 such
that ∑

d|n

µ(d) =
∑
d|n

w(d)≤r

µ(d) + θ
∑
d|n

w(d)=r+1

µ(d)

And putting this into the identity

S(A,P, z) =
∑
a∈A

∑
d|(a,P (z))

µ(d)

5



by choosing log z < c log z
log log x , with c small, we can get

S(A,P, z) = XW (z)(1 + o(1))

where X denotes the number of elements in the set A,

S(A,P, z) := ] {a ∈ A : a is not divisible by any prime < z}

and

W (z) :=
∏
p|P (z)

(1− 1

p
).

We should also notice that∏
p<z

(1− 1

p
) =

e−C

log z

(
1 +O(

1

log z
)

)
where C is an Euler constant.

1.4 Results from Probability.

An additive function f(n) is called strongly additive if f(pa) = f(p) for all
a ≥ 1. If f(n) is real-valued and strongly additive, let

A(x) =
∑
p<x

f(p)

p
, B(x) =

(∑
p<x

f(p)2

p

)1/2

(1.11)

We have the following theorem:

Theorem 1.4 (Kubilius-Shapiro). Suppose for each ε > 0, we have

lim
x→∞

1

B(x)2

∑
p≤x

|f(p)|>εB(x)

f(p)2

p
= 0 (1.12)

then for each real number u,

lim
x→∞

1

x
· ] {n ≤ x : f(n)−A(x) ≤ uB(x)} = G(u), (1.13)

where G(u) is defined as

G(u) := (2π)−1/2

∫ u

−∞
e−t

2/2dt.

What theorem says is that, if (1.12) holds then the normal value for
n ≤ x of f(n) is A(x) and the standard deviation is B(x).
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Continuity theorem for characteristic functions in R1: For a
scalar random variable X the characteristic function is defined as the ex-
pected value of eitX , where i is the imaginary unit, and t ∈ R is the argument
of the characteristic function:

ϕX(t) = E
[
eitX

]
=

∫ ∞
−∞

eitXdFX(x). (1.14)

Here FX is the cumulative distribution function of X, and the integral is of
the RiemannStieltjes kind. In probability theory and statistics, the charac-
teristic function of any random variable completely defines its probability
distribution. Thus it provides the basis of an alternative route to analytical
results compared with working directly with probability density functions or
cumulative distribution functions. In the applications it is sometimes very
difficult to investigate directly the convergence of a sequence of distribution
functions, while the convergence problem for the corresponding sequence of
characteristic functions may be comparatively easy to deal with. Because of
the same reason, we will need the following theorem, which is due to Levy:

Theorem 1.5. We are given a sequence of distributions, with the distri-
bution functions F1(x), F2(x), ..., and the characteristic functions ϕ1(t),
ϕ2(t),... A necessary and sufficient condition for the convergence of the
sequence {Fn(x)} to a distribution function F (x) is that, for every t, the se-
quence {ϕn(t)} converges to a limit ϕ(t), which is continuous for the special
value t = 0.

When this condition is satisfied, the limit ϕ(t) is identical with the char-
acteristic function of the limitting distribution function F (x).

Another theorem that comes from probability theory is Turan-Kubilius
inequality which is useful for proving results about the normal order of an
arithmetic function. Theorem was proved in a special case in 1934 by Paul
Turan and generalized in 1956 and 1964 by Jonas Kubilius.

Theorem 1.6 (Turan-Kubilius inequality). Suppose f is an additive complex-
valued arithmetic function, and write p for an arbitrary prime and m for an
arbitrary positive integer. Write

A(x) =
∑
pm≤x

f(pm)

pm
(1− p−1)

and

B(x)2 =
∑
pm≤x

|f(pm)|2

pm

7



Then for x ≥ 2 we have

1

x

∑
n≤x
|f(n)−A(x)|2 ≤ 32B(x)2.

In fact in the right part of the inequality above, 32 can be replaced with
2 + ε(x), where ε(x) is a function that goes to zero when x goes to infinity.
But the given version is sufficient for us.

1.5 Primes in arithmetic progression

The following two results about the primes in arithmetic progression, will
be beneficial in later chapters.

Theorem 1.7 (The Brun-Titchmarsh inequality). Let a and k be coprime
integers and let x be a positive real number such that k < x.Then

π(x; k, a) ≤ 2x

φ(k) log(x/k)
,

where φ is Euler’s totient function.

Theorem 1.8 (The Bombieri-Vinogradov Theorem). For any A > 1 and
Q = x1/2(log x)−B, where the constant B only depends on A, one has∑

k≤Q
max

(a,k)=1

∣∣∣∣π(x; k, a)− π(x)

φ(k)

∣∣∣∣� x(log x)−A.

8



2 The Gaussian Law of Errors in the Theory of
Additive Number Theoretic Functions

2.1 Introduction.

One of the first results in probabilistic number theory is the theorem of
Hardy and Ramanujuan that the normal value of w(n) is log log n, where
w(n) counts the number of distinct prime factors of n. What this statement
means is that for each ε > 0, the set of n for which

|w(n)− log log n| < ε log log n (2.1)

has asymptotic density 1.
A particular simple proof of these result was later given by P. Turan. He

showed that ∑
n≤x

(w(n)− log log x)2 = x log log x+O(x) (2.2)

from which (2.1) is an immediate corollary. The method of proof of the
asymptotic formula (2.2) was later generalized independently by Turan and
Kubilius to give an upper bound for the left hand side where w(n) is replaced
by an arbitrary additive function. The significance of the ”log log x” in (2.2)
is that it is about ∑

p≤x
w(p)p−1

where p runs over primes. Similarly the expected value of an arbitrary
additive function g(n) should be about∑

p≤x
g(p)p−1.

What we will do in this chapter is to formulate the celebrated Erdös-Kac
theorem [14] and give the original proof of authors. To begin with let f(m)
be an additive number theoretic function, so that f(mn) = f(m) + f(n)
if (m,n) = 1. Suppose |f(p)| ≤ 1 and f(pα) = f(p). Obviously f(m) =∑

p|m f(p). Put

An =
∑
p≤n

f(p)

p
, Bn =

∑
p≤n

f(p)2

p

1/2

.

Then we have:

Theorem 2.1 (Erdös-Kac). If Bn → ∞ as n → ∞ and Kn denotes the

9



number of integers m from 1 up to n for which

f(m) < An + w
√

2Bn

then

lim
n→∞

Kn

n
= π−1/2

∫ w

−∞
exp(−u2)du = D(w).

2.2 Preparation for the proof.

To prove the theorem we will need a couple of Lemmas.

Lemma 2.2. Let
fl(m) =

∑
p|m p<l

f(p).

Then denoting by σl the density of the set of integers m for which fl(m) <
Al + w

√
2Bl one has

lim
l→∞

σl = D(w).

The Lemma above is the only ”statistical” lemma in the proof. Using
this lemma, the main result will be established bu purely number-theoretic
methods.The following lemma is just simple application of Brun’s pure sieve.
So we omit the proof.

Lemma 2.3. If mn tends to ∞ (as n → ∞) more rapidly than any fixed
power of sn, then the number of integers from 1 up to mn which are not
divisible by any prime less than sn is equal to

mne
−C

log sn
+ o

(
mn

log sn

)
,

where C denotes Euler’s constant.

Now, let φ(n) represent a function which tends, as n→∞, to 0 in a such

way that nφ(n) →∞. The function nφ(n) will be denoted by αn and n
√
φ(n)

by βn. Let a1(n), a2(n),... be the integers whose prime factors are all less
than αn, and let ψ(m;n) be the greatest ai which divides m. We then have
the following:

Lemma 2.4. The number of integers m ≤ n for which ψ(m;n) = ai(n),
where ai(n) ≤ βn is equal to

e−Cn

ai(n)φ(n) log sn
+ o

(
n

ai(n)φ(n) log sn

)
.

Proof. In fact we are looking for the integers m ≤ n
ai(n) which are not divis-

ible by any prime less than nφ(n). In order to use the Lemma above, with

10



mn = n
ai(n) and sn = nφ(n), it’s enough to check that

lim
n→∞

sαn
mn

= 0

for any fixed α. (i.e. mn → ∞ more rapidly than any fixed power of sn).
But

sαn
mn

= ai(n) · nαφ(n) − 1 ≤ n
√
φ(n)+αφ(n)−1

If we let yn = n
√
φ(n)+αφ(n)−1, then

log yn = [
√
φ(n) + αφ(n)− 1] log n.

And since φ(n) → 0 as n → ∞, we have log yn → −∞, i.e. yn → 0 as
n→∞. So we are done.

Lemma 2.5. The number y of integers ≤ M divisible by an for which
ai(n) > βn is less than bM

√
φ(n), where b is an absolute constant.

Proof. We should notice that m is divisible by ai(n) if and only if ψ(m;n)
is divisible by ai(n), and therefore ψ(m;n) ≥ ai(n). So we have

(βn)y <
M∏
m=1

ψ(m;n) =
∏
p<αn

p
∑∞
r=1[M

pr
]

But
∞∑
r=1

[
M

pr

]
≤M

∞∑
r=1

[
1

pr

]
=
M

pr
· 1

1− 1
p

≤ 2M

p
.

So we get

(βn)y <
∏
p<αn

p
2M
p .

And since

lg
∏
p<αn

p
2M
p = 2M

∑
p<αn

p−1 log p ∼ 2Mφ(n) log n,

we obtain

(βn)y <

M∏
m=1

ψ(m;n) <
∏
p<αn

p
2m
p < nbMφ(n)

for some absolute constant b.
Hence we get

(βn)y = n
√
φ(n)y < nbMφ(n). i.e. y < bM

√
φ(n).

11



We are done.

Corollary 2.6. The density of the integers which are divisible by an ai(n) >
βn is less than b

√
φ(n).

Lemma 2.7. Denote by ln the number of integers from 1 up to n for which

fαn(m) < Aαn + w
√

2Bαn (i)

Then

lim
n→∞

ln
n

= D(w).

Proof. Divide the integers from 1 up to n which satisfy (i) into classes E1,
E2,... so that m belongs to Ei if and only if ψ(m;n) = ai(n). And denote
by |Ei| the number of integers in Ei. Then one obviously has

ln =
∑
i

|Ei| =
∑

ai(n)≤βn

|Ei|+
∑

ai(n)>βn

|Ei|.

By Lemma 2.5 we have ∑
ai(n)>βn

|Ei| < bn
√
φ(n).

Therefore it’s safficient to prove that

1

n

∑
ai(n)≤βn

|Ei| → D(w) as n→∞

On the other hand by Lemma 2.4 we have

∑
ai(n)≤βn

|Ei| =
(

e−Cn

φ(n) log n
+ o

(
n

φ(n) log n

)) ∑
ai≤βn

‘ 1

ai(n)
(ii)

where the dash in the summation indicates that it’s extended over the ai’s
satisfying fαn(ai) < Aαn + w

√
2Bαn . (We should notice that fαn(ai(n)) =

fαn(m) for all m ∈ Ei). Now, in order to evaluate
∑‘, divide all the inte-

gers into classes F1, F2,... having the property that m ∈ Fi if and only if
ψ(m;n) = ai(n) and let {Fi} denote the density of the set Fi. Consider now
the set ∪‘Fi where the dash in union has the same meaning as above. By
putting l = αn and using Lemma 2.1 we have

{
∪‘Fi

}
→ D(w) as n→∞ or{

∪‘Fi
}

= D(w) + o(1). Now

∪‘Fi =
(
∪ai≤βn

‘Fi

)
∪
(
∪ai>βn

‘Fi

)
(iii)

12



and by Lemma 2.5 {
∪ai>βn

‘Fi

}
< b
√
φ(n) (iv)

Furthermore there is only a finite number of ai’s which are less than βn
and therefore

{
∪ai≤βn ‘Fi

}
= ∪ai≤βn ‘ {Fi}. But

{Fi} =
1

ai(n)

(
e−Cn

φ(n) log n
+ o

(
n

φ(n) log n

))
(v)

so we have{
∪ai≤βn

‘Fi

}
=

(
e−C

φ(n) log n
+ o

(
1

φ(n) log n

)) ∑
ai≤βn

‘ 1

ai(n)

Finally by (iii), iv and v we get;

D(w)−b
√
φ(n) <

(
e−C

φ(n) log n
+ o

(
1

φ(n) log n

)) ∑
ai≤βn

‘ 1

ai(n)
< D(w)+o(1).

Combining this with (ii) we get the desired result.

2.3 Proof of the Main Theorem.

Now we are ready to prove the theorem. Since f(m) =
∑

p|m f(p) and

fαn(m) =
∑
p|m
p<αn

f(p),

for m ≤ n, we have

|f(m)− fαn(m)| =

∣∣∣∣∣∣∣∣
∑
p|m

αn≤p≤n

f(p)

∣∣∣∣∣∣∣∣ .
But as |f(p)| ≤ 1 we have that |f(m)− fαn(m)| is less than the number of

those prime divisors of m which are ≥ αn = nφ(n). And since (αn)
1

φ(n) = n
we get |f(m)− fαn(m)| < 1

φ(n) . Also

|An−Aαn | = |
∑

αn≤p≤n
p−1f(p)| ≤

∑
p<n

1

p
−
∑
p<αn

1

p
∼
[
log logn− log log nφ(n)

]

13



therefore

|An −Aαn | < −C1 log φ(n) = C1 log
1

φ(n)
for some C1 > 0.

Similarly

|Bn −Bαn | < −C2 log φ(n) = C2 log
1

φ(n)
for some C2 > 0.

Now choose φ(n) so that 1
φ(n) = o(Bn). Since |Bn − Bαn | < C2 log 1

φ(n)

and 1
φ(n) = o(Bn) we have Bn ∼ Bαn . Letting m ≤ n satisfy f(m) <

An + w
√

2Bn we have

fαn(m)− 1

φ(n)
< f(m) < An + w

√
2Bn

< Aαn + w
√

2Bαn + C1 log
1

φ(n)
+ C2 log

1

φ(n)

and since 1
φ(n) = o(Bn), for sufficintly large n

fαn(m) < Aαn + w
√

2Bαn + ε
√

2Bαn

Similarly for sufficiently large n and for m ≤ n satisfying fαn(m) <
Aαn + (w − ε)

√
2Bαn , we have

f(m) < An + w
√

2Bn +
1

φ(n)
+ C1 log

1

φ(n)
+ C2 log

1

φ(n)
− ε
√

2Bαn

< An + w
√

2Bn since Bn ∼ Bαn .

What we get at last is

D(w − ε) ≤ lim inf
Kn

n
≤ lim sup

Kn

n
≤ D(w + ε)

And since ε > 0 is arbitrary, then the proof is completed.

The immediate corollary is in the case of ω(n), where ω counts distinct
prime factors of n.

Corollary 2.8. If ω(n) denotes the number of prime divisors of m, and Kn

the number of those integers from 1 up to n for which ω(n) < log log n +
w
√

2 log log n, then

lim
n→∞

Kn

n
= π−1/2

∫ w

−∞
exp(−u2)du.
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3 Analytic Proof of Erdös-Kac Theorem.

3.1 Introduction.

The aim of this chapter is to give a new proof of the theorem of P. Erdös
and M. Kac concerning the function Ω(n). To remember what the theorem
states; if Nn(Ω, x) denotes the number of those natural numbers k ≤ n for
which

Ω(k)− log logn√
log logn

< x

then we have

lim
n→∞

Nn(Ω, x)

n
= φ(x),

where

φ(x) =
1√
2π

∫ x

−∞
e−u

2/2du.

In other words, the random variable ξn, which assumes the value Ω(1),
Ω(2),..., Ω(n), each with the same probability 1/n, is, for n→∞, asymptot-
ically normally distributed with mean value log log n and standard deviation√

log logn.
W. J. Leveque introduced certain modifications of the proof of Erdös

and Kac and obtained the following improvement of their result:

Nn(Ω, x)

n
= φ(x) +O

(
log log log n

4
√

log logn

)
.

Le Veque conjectured that the error term is actually of order 1/
√

log logn.

3.2 Analytic proof of the theorem.

Put by definition Ω(1) = 0. We prove the following

Theorem 3.1 (Erdös-Kac). Let us denote by Nn(Ω, x) the number of those
positive integers k ≤ n for which

Ω(k)− log logn√
log logn

< x

Then putting

φ(x) =
1√
2π

∫ x

−∞
e−u

2/2du,

we have

lim
n→∞

Nn(Ω, x)

n
= φ(x) (−∞ < x <∞).

The proof is due to A. Renyi and P. Turan [13]. The strategy is to pass
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from the distribution function

Fn(x) = P

(
Ω(k)− log log n√

log logn
< x

)
=
Nn(Ω, x)

n
.

to the characteristic function

ϕn(u) =
1

n

∑
k≤n

e
iu
(

Ω(k)−log logn√
log logn

)

and then show that ϕn(u)→ e−u
2/2, as n→∞.

Proof. Consider the Dirichlet series

λ(s, u) =
∞∑
n=1

eiuΩ(n)

ns
(3.1)

where u is real and s = σ+ it a complex variable. The series on the right of
(3.1) is convergent for σ > 1. As eiuΩ(n) is (completely) multiplicative, i.e.,

eiuΩ(nm) = eiuΩ(n)eiuΩ(m) (3.2)

for any pair n, m of natural numbers, it follows that

λ(s, u) =
∏ 1

(1− eiu/ps)
, (3.3)

where p runs over all primes. Now let us put

µ(s, u) =
λ(s, u)

(ζ(s))eiu)
(3.4)

where

ζ(s) =

∞∑
n=1

1

ns
=
∏ 1

(1− 1/ps)
(3.5)

is the zeta-function of Riemann, and the product on the right of (3.5) is
extended over all primes p and log ζ(s) is real for σ > 1.
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Evidently for σ > 1

logµ(s, u) = log λ(s, u)− eiu log ζ(s)

= −
∑
p

log(1− eiu

ps
)− eiu

∑
p

log(1− 1

ps
)

=

∞∑
p=2

∞∑
k=1

eiuk

kpks
− eiu

∞∑
p=2

∞∑
k=1

1

kpks

=

∞∑
p=2

∞∑
k=2

eiu(eiu(k−1)−1)

kpks
.

As the last series above converges uniformly for σ ≥ 1
2 + ε where ε > 0

is arbitrary, it follows that, for any fixed real value of u, µ(s, u) is a regular
function of s in the open half-plane σ > 1

2 . Later on we shall need the
following estimation

| logµ(s, u)| ≤ |u| (3.6)

for s = σ + it, σ ≥ 1, which follows from the equality for log µ(s, u) above
and the estimation

|eiu(k−1) − 1|
k

=
|e
iu(k−1)

2 − e−
iu(k−1)

2 |
k

=
|2i sin u(k−1)

2 |
k

≤ |u|(k − 1)

k
≤ |u|

where we used the fact that | sinx| ≤ |x| for all x real.
Now putting

S(n, u) =

n∑
k=1

eiuΩ(k) log
n

k
(3.7)

by (1.10), taking m = 1, x = n and ak = iuΩ(k), we have

S(n, u) =
1

2πi

∫ c+i∞

c−i∞

nsλ(s, u)ds

s2
(3.8)

where c > 1.
In what follows we will always suppose |u| ≤ π/6, which implies cosu ≥

1
2 . Let us effect the decomposition

λ(s, u) =
µ(s, u)

(s− 1)eiu
+ µ(s, u)

(
(ζ(s))e

iu − 1

(s− 1)eiu

)
(3.9)
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with log(s− 1) real for s > 1 and put

I1 =
1

2πi

∫ c+i∞

c−i∞

nsµ(s, u)ds

s2(s− 1)eiu
(3.10)

and

I2 =
1

2πi

∫ c+i∞

c−i∞

nsµ(s, u)

s2

(
(ζ(s))e

iu − 1

(s− 1)eiu

)
ds. (3.11)

Then we have
S(n, u) = I1 + I2. (3.12)

Let us consider first I2. The integrand is regular for s = σ + it, σ ≥ 1,
except for s = 1, but it is continuous at this point also, because (s− 1)ζ(s)
is regular and equal to 1 at s = 1. Thus we have

lim
s→1

∣∣∣∣∣ [ζ(s)(s− 1)]e
iu − 1

(s− 1)eiu

∣∣∣∣∣ = lim
s→1

∣∣∣∣ [ζ(s)(s− 1)]cosu − 1

(s− 1)cosu

∣∣∣∣
and since for 0 ≤ α ≤ 1

lim
t→0

(1 + t)α − 1

tα

exists, then

[ζ(s)(s− 1)]e
iu − 1

(s− 1)eiu
(3.13)

is also continuous at s = 1, though of course it has a branching point
there. Now we aim to push the path of integration to the line s = 1 + it
(−∞ < t <∞). But∣∣∣∣∫ c+i∞

c+iT

nsµ(s, u)

s2

(
(ζ(s))e

iu − 1

(s− 1)eiu

)
ds

∣∣∣∣
≤
∫ ∞
T

nc|µ(c+ it, u)|
t2

(
(|ζ(c+ it))|cosu +

1

T cosu

)
dt

and the last expression goes to zero as T →∞. Similarly∣∣∣∣∫ c−iT

c−i∞

nsµ(s, u)

s2

(
(ζ(s))e

iu − 1

(s− 1)eiu

)
ds

∣∣∣∣→ 0

as T → ∞. Also we should notice that on the line segment s = σ + iT ,
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where 1 ≤ σ ≤ c, the given integral is∣∣∣∣∫ 1+iT

c+iT

nsµ(s, u)

s2

(
(ζ(s))e

iu − 1

(s− 1)eiu

)
ds

∣∣∣∣
≤
∫ 1

c

nσ|µ(σ + iT, u)|
T 2

(
(|ζ(σ + iT ))|cosu +

1

T cosu

)
dσ

and the last expression goes to zero as T → ∞. Similar for on the line
segment s = σ − iT where again 1 ≤ σ ≤ c.

So we are allowed to push the path of integration to the line s = 1 + it.
Now we will apply partial integration in such a manner that ns is chosen as
the factor to be integrated. We will need the following well-known estimates
for Riemann-zeta function on the present line.

|ζ(1 + it)| = O(log t), (3.14)∣∣∣∣ ζ ′(1 + it

ζ(1 + it)

∣∣∣∣ = O(log t). (3.15)

After the integration by parts, we will first need to estimate

1

2πi

ns

log n

µ(s, u)

s2

(
(ζ(s))e

iu − 1

(s− 1)eiu

)
at the end points 1 + iT , 1− iT . But∣∣∣∣ 1

2πi

ns

log n

µ(s, u)

s2

(
(ζ(s))e

iu − 1

(s− 1)eiu

)∣∣∣∣
s=1+iT

� n

log n

1

T 2

(
|ζ(1 + iT )|cosu +

1

T cosu

)
where, by (3.14), the last expression goes to 0 as T →∞. Similarly for the
point s = 1− iT .

Therefore, in order to complete the estimation of I2 we need to handle

1

2πi

∫ 1+iT

1−iT

ns

log n

(
µ(s, u)

s2

)′(
(ζ(s))e

iu − 1

(s− 1)eiu

)
ds (3.16)

+
1

2πi

∫ 1+iT

1−iT

ns

log n

µ(s, u)

s2

(
(ζ(s))e

iu − 1

(s− 1)eiu

)′
ds. (3.17)
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The first part above is∣∣∣∣ 1

2πi

∫ 1+iT

1−iT

ns

log n

(
µ′(s, u)

s2
− 2

µ(s, u)

s3

)(
(ζ(s))e

iu − 1

(s− 1)eiu

)
ds

∣∣∣∣
�
∫ T

−T

n

log n

1

1 + t2

∣∣∣∣(ζ(s))e
iu − 1

(s− 1)eiu

∣∣∣∣ dt.
Now, by dividing the interval |t| ≤ T into three pieces∫

|t|≤T
=

∫
|t|≤1

+

∫
1<|t|≤T

and using the continuity of (3.13) around t = 0, we get

1

2πi

∫ 1+iT

1−iT

ns

log n

(
µ(s, u)

s2

)′(
(ζ(s))e

iu − 1

(s− 1)eiu

)
ds� n

log n

Now, to estimate (3.17), which is in fact

1

2πi

∫ 1+iT

1−iT

ns

log n

µ(s, u)

s2

(
eiu(ζ ′(s))e

iu−1 + eiu
1

(s− 1)eiu+1

)
ds

we use the same arguments above to get

I2 = O(
n

log n
),

where the O-sign uniformly in −1
6π ≤ u ≤

1
6 .

Let us now turn to the investigation of I1. Clearly we have

I1 = I11 + I12 (3.18)

where

I11 =
µ(1, u)

2πi

∫ c+i∞

c−i∞

nsds

s2(s− 1)eiu
(3.19)

and

I12 =
1

2πi

∫ c+i∞

c−i∞

ns(s− 1)1−eiu

s2

(
µ(s, u)− µ(1, u)

s− 1

)
ds. (3.20)

First we should notice that

µ(s, u)− µ(1, u)

s− 1

is regular, and bounded for the half-plane <s ≥ 1. Further <(1−eiu) ≥ 0, so
it’s reasonable to transform the path of integration of I12 to the line <s = 1.
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We will just follow the same arguments we did before:∣∣∣∣∣
∫ c+i∞

c+iT

ns(s− 1)1−eiu

s2

(
µ(s, u)− µ(1, u)

s− 1

)∣∣∣∣∣
� nc

∫ ∞
T

t1−cosu

t2
1

t
dt,

and the last expression goes to 0 as T → ∞. We can get the similar result
on the line segment s = c− it where t ≥ T .

On the other hand, on the line segment from c+ iT to 1 + iT , we have∣∣∣∣∣
∫ 1+iT

c+iT

ns(s− 1)1−eiu

s2

(
µ(s, u)− µ(1, u)

s− 1

)∣∣∣∣∣
�
∫ 1

c

nσT 1−cosu

T 2

1

T
dσ,

which again goes to 0 as T → ∞. Since we can do the similar staff on
the line segment from 1 − iT to c − iT , the transformation of the path of
integration to the line <s = 1 is justified.

Now, applying again partial integration in such a manner that ns is
chosen as the factor to be integrated, we aim to obtain again uniformly in u

I12 = O(
n

log n
). (3.21)

To do this, firstly we need to estimate

1

2πi

ns(s− 1)1−eiu

s2

(
µ(s, u)− µ(1, u)

s− 1

)
at the points 1 + iT and 1− iT . But∣∣∣∣∣ 1

2πi

ns(s− 1)1−eiu

s2

(
µ(s, u)− µ(1, u)

s− 1

)∣∣∣∣∣
s=1+iT

� n

log n

T 1−cosu

T 2

1

T

which goes to 0 as T → ∞. Similar result can be obtained easily at the
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point s = 1− iT . So it remains only to estimate∫ 1+iT

1−iT

ns

log n

(
(s− 1)1−eiu

s2

)′(
µ(s, u)− µ(1, u)

s− 1

)
ds

+

∫ 1+iT

1−iT

ns

log n

(s− 1)1−eiu

s2

(
µ(s, u)− µ(1, u)

s− 1

)′
ds

In the first part above, we first divide the range of integration as following∫ 1+iT

1−iT
=

∫ 1+i

1−i
+

∫ 1+iT

1+i
+

∫ 1−i

1−iT
. (3.22)

and then calculate separately. In the first range∫ 1+i

1−i

ns

log n

(
(s− 1)1−eiu

s2

)′(
µ(s, u)− µ(1, u)

s− 1

)
ds

�
∫ 1

−1

n

log n

1

tcosu
dt� n

log n
.

The estimations for other two ranges in (3.22) can be done similarly. Finally
we handle up ∫ 1+iT

1−iT

ns

log n

(s− 1)1−eiu

s2

(
µ(s, u)− µ(1, u)

s− 1

)′
ds (3.23)

by again dividing the range of integration into the same pieces as in (3.22)
and use similar arguments to get (3.21).

Now, as regards I11, we have

I11 = µ(1, u)(I111 − I112) (3.24)

where

I111 =
1

2πi

∫ c+i∞

c−i∞

nsds

(s− 1)eiu
(3.25)

and

I112 =
1

2πi

∫ c+i∞

c−i∞

ns(s− 1)1−eiu(s+1)

s2
ds. (3.26)

The integral I112 can be transformed again to the line <s = 1 and by
integrating partially we obtain as before uniformly in u

I112 = O

(
n

log n

)
. (3.27)

On the other hand, by transforming the integral I111 and using the well

22



known integral representation of the Γ-function,

Γ(z) =

∫ ∞
0

e−uuz−1du (<z > 1),

further the functional equation

Γ(z)Γ(1− z) =
π

sinπz
,

we obtain

I111 =
n(log n)e

iu−1

Γ(eiu)
. (3.28)

Collecting our results we obtain by virtue of (3.7), (3.12), (3.18), (3.19),
(3.21), (3.24), (3.27), and (3.28) uniformly for −1

6π ≤ u ≤
1
6π

S(n, u) = n
µ(1, u)

Γ(eiu)
(log n)e

iu−1 +O

(
n

log n

)
. (3.29)

Let us now put

s(n, u) =
∑
k≤n

eiuV (k); (3.30)

then trivially
|s(y, u)− s(x, u)| ≤ |y − x|. (3.31)

Since

S(n, u) =
∑
k≤n

eiuV (k)(log n− log k) =

∫ n

1

s(x, u)

x
dx, (3.32)

we have for any λ > 0

s(n, u) =

∫ n+nλ
n

s(n,u)
x dx

log(1 + λ)

=

∫ n+nλ
n

s(x,u)
x dx+

∫ n+nλ
n

s(n,u)−s(x,u)
x dx

log(1 + λ)

=
S(n+ λn, u)− S(n, u) +

∫ n+nλ
n

s(n,u)−s(x,u)
x dx

log(1 + λ)
.

Thus from (3.31) uniformly

s(n, u) =
S(n(1 + λ), u)− S(n, u)

log(λ+ 1)
+O

(∫ n+nλ
n

x−n
x dx

log(λ+ 1)

)
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and since
1

log(λ+ 1)
=

1

λ
+O(λ) (3.33)

we have

s(n, u) =
S(n(1 + λ), u)− S(n, u)

log(λ+ 1)
+O(λn). (3.34)

But if 0 < λ ≤ 1
2

(λ+ 1)(log n(λ+ 1))e
iu−1 − (log n)e

iu−1

log(λ+ 1)

= (log n)e
iu−1

(
1 +O(λ) +O(

|u|
log n

)

)
, (3.35)

the O-estimates being uniform in n, u and λ. To see (3.35), we notice that,
the left part of the equality is in fact

(log n)e
iu−1

[
(λ+ 1)

log(1 + λ)

(
1− log(1 + λ)

log n+ log(1 + λ)

)1−eiu

− 1

log(1 + λ)

]
.

But since(
1− log(1 + λ)

log n+ log(1 + λ)

)1−eiu

� 1− log(1 + λ)

log n+ log(1 + λ)
(1− cosu),

and
1− cosu� |u|

we verify (3.35). Now,

s(n, u) = n
µ(1, u)

Γ(eiu)
· (λ+ 1)(log n(λ+ 1))e

iu−1 − (log n)e
iu−1

log(λ+ 1)

+
1

log(1 + λ)
O(

n

log n
) +O(nλ).

But since
1

log(1 + λ)
O(

n

log n
)� (

1

λ
+ λ)

n

log n
� n

λ log n
,

and choosing

λ =

(
|u|

log n

)1/2

,
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we obtain uniformly in u

s(n, u)

n
=
µ(1, u)

Γ(eiu)
· (log n)e

iu−1

(
1 +O

((
|u|

log n

)1/2
))

+O

(
1√
|u| log n

)
.

(3.36)
Now, we should notice that, s(n, u)/n is the characteristic function of the
probability distribution of a random variable ξn, which takes on the values
Ω(1), Ω(2), ..., Ω(n) with probability 1/n. Therefore, in order to complete
the proof, by Theorem 1.5, it suffices to show that putting

ϕn(u) =
s(n, u/

√
log log n)e−iu

√
log logn

n
(3.37)

we have
lim
n→∞

ϕn(u) = e−u
2/2. (3.38)

But
µ(1,

u√
log log n

) and Γ(e
i u√

log logn )

go to 1 as n→∞. Also

elog logn·e
i u√

log logn · e−iu
√

log logn → e−u
2/2.

Thus the theorem is proved.

3.3 Proof of the conjecture of LeVeque

In this section we shall prove

Theorem 3.2 (Conjecture of LeVeque). . Let Nn(V, x) denote the number
of those natural numbers k ≤ n for which

Ω(k)− log logn√
log log n

< x.

Then we have uniformly in x

Nn(Ω, x)

n
= φ(x) +O

(
1√

log logn

)
.

Proof. In order to prove the theorem, we follow the same method as that
used in the proof of the previous theorem. The only difference consists
in the fact that now, as we want to estimate the rate of convergence of
(1/n)Nn(V, x) to φ(x), we have to consider the rate of convergence of ϕn(u)
defined by (3.37), to e−u

2/2 and apply the following theorem of C. G. Esseen
[11]:
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If F (x) and G(x) are two distribution functions, G(x) exists for all x
and |G(x)| ≤ A,

f(u) =

∫ +∞

−∞
eiuxdF (x) and g(u) =

∫ +∞

−∞
eiuxdG(x)

denote the characteristic functions of the two distribution functions respec-
tively, and the following condition is satisfied:∫ +T

−T

∣∣∣∣f(u)− g(u)

u

∣∣∣∣ du < ε, (3.39)

then for −∞ < x < +∞

|F (x)−G(x)| < K

(
ε+

A

T

)
,

where K is an absolute constant. Let us verify the fulfilment of the condition
(3.38) with G(x) = φ(x) (which implies A = 1/

√
2π),

F (x) =
Nn(Ω, x)

n
, T =

π

6

√
log logn, ε =

c√
log log n

where c > 0 is a constant. Now, since f(u) = ϕn(u) and g(u) = e−u
2/2, we

have only to prove that∫ +π
√

log logn/6

−π
√

log logn/6

∣∣∣∣∣ϕn(u)− e−u2/2

u

∣∣∣∣∣ du = O

(
1√

log logn

)
.

We put ∫ +π
√

log logn/6

−π
√

log logn/6

∣∣∣∣∣ϕn(u)− e−u2/2

u

∣∣∣∣∣ du = ∆1 + ∆2 (3.40)

where

∆1 =

∫
|u|≤1/

√
log logn

∣∣∣∣∣ϕn(u)− e−u2/2

u

∣∣∣∣∣ du (3.41)

and

∆2 =

∫
1/
√

log logn≤|u|≤π
√

log logn/6

∣∣∣∣∣ϕn(u)− e−u2/2

u

∣∣∣∣∣ du. (3.42)

Let us consider first ∆1. Evidently, putting a = 1/
√

log logn, we have
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∫ +a

−a

∣∣∣∣∣ϕn(u)− e−u2/2

u

∣∣∣∣∣ du ≤
∫ +a

−a

∣∣∣∣1− ϕn(u)

u

∣∣∣∣ du+

∫ +a

−a

∣∣∣∣∣1− e−u
2/2

u

∣∣∣∣∣ du.
(3.43)

Generally if f(u) =
∫ +∞
−∞ eiuxdF (x), then

∫ +a

−a

∣∣∣∣1− f(u)

u

∣∣∣∣ du ≤ 2a

√∫ +∞

−∞
x2dF (x). (3.44)

Thus ∫ +a

−a

∣∣∣∣1− ϕn(u)

u

∣∣∣∣ du =

(
1√

log logn

)
. (3.45)

To see the last equality, we should notice that, if X is a random variable
which takes the value

Ω(k)− log log n√
log logn

for each 1 ≤ k ≤ n with probability 1
n , then∫ +∞

−∞
x2dF (x) = E(X2) =

1

n

∑
k≤n

(Ω(k)− log log n)2

log logn

which is bounded by Turan. As

e−u
2/2 =

∞∑
m=0

(−1)mu2m

2mm!
,

we have ∣∣∣∣∣1− e−u
2/2

u

∣∣∣∣∣ = o

(
1√

log log n

)
.

Therefore ∫ +a

−a

∣∣∣∣∣1− e−u
2/2

u

∣∣∣∣∣ du = o

(
1√

log logn

)
,

which follows that

∆1 = O

(
1√

log logn

)
.

Let us now turn to the estimation of ∆2. Owing to the inequality

|eiz − 1− iz + z2/2| ≤ |z|3/6,
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valid for real z, we have from (3.36)∣∣∣∣∣ϕn(u)− e−u2/2

u

∣∣∣∣∣ ≤ 1

|u|3/2
O

(
1√

log n

)
+A(u)

where

A(u) =
e−u

2/2

|u|

[(
1 +

(
|u|√

log logn

))
eϑ|u|

3/6
√

log logn − 1

]
and |ϑ| ≤ 1.

Thus

∆2 ≤ O
(

1

log1/3 n

)
+

∫ π
√

log logn/6

1/
√

log logn
A(u)du. (3.46)

In order to estimate the integral on the right of (3.46) we remark that
for |u| ≤ 6

√
log log n we have

eϑ|u|
3/
√

log logn = 1 +O

(
|u|3√

log logn

)
,

which implies ∫ 6√log logn

1/
√

log logn
A(u)du = O

(
1√

log logn

)
. (3.47)

On the other hand for 6
√

log log n < |u| ≤ π
√

log log n we have

−u
2

2
+

ϑ|u|3

6
√

log logn
≤ −u

2

4
for|ϑ| ≤ 1,

and thus we obtain ∫ π
√

log logn/6

1/
√

log logn
A(u)du.

Thus we have completed the proof of Theorem 3.2.
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4 On the Normal Number of Prime Factors of φ(n)

4.1 Introduction.

Denote by Ω(n) the total number of prime factors of n, counting multiplicity.
For each x ≥ 3, u, let

G(x, u) =
1

x
· ]
{
n ≤ x : Ω(n) ≤ log log x+ u(log log x)1/2

}
.

Then as a corollary of Erdös-Kac theorem, we have

lim
x→∞

G(x, u) = G(u) := (2π)−1/2

∫ u

−∞
e−t

2/2dt,

the Gaussian normal distribution.
The problem that we consider here is the corresponding problem for the

additive function Ω(φ(n)). What we prove is that

lim
x→∞

1

x
· ]
{
n ≤ x : Ω(φ(n)) ≤ 1

2
(log log x)2 +

u√
3

(log log x)3/2

}
= G(u)

Thus the normal number of prime factors of φ(n) is 1
2(log log n)2 and the

”standard deviation” is 3−1/2(log log x)3/2.
To do this, we will need the estimation of the sums∑

p≤x
Ω(p− 1) and

∑
p≤x

Ω(p− 1)2.

Estimations will be simple applications of the Bombieri-Vinogradov and
Brun-Titchmarsh theorems. The proof is due to P. Erdös and C. Pomerance
[12].

4.2 The number of prime factors of a shifted prime.

For any y we define the completely additive function Ωy(n), the total number
of prime factors p ≤ y of n, counting multiplicity. The letters p, q, r always
denote primes. Let P (n) denote the largest prime factor of n.

Lemma 4.1. If 3 ≤ y ≤ x, then∑
p≤x

Ωy(p− 1) =
x log log y

log x
+O(

x

log x
),

where the implied constant is uniform.
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Proof. We have (π(x, k, l) =
∑

p≤x
p≡l(k)

1)

∑
p≤x

Ωy(p− 1) =
∑
p≤x

∑
qa|(p−1)
q≤y

1 =
∑
qa

q≤y

π(x, qa, 1))

=
∑
q≤y

π(x, q, 1) +
∑
qa,a≥2
q≤y

= S1 + S2, say.

In order to evaluate S1 we consider two ranges for the prime q: q ≤
min

{
y, x1/3

}
and min

{
y, x1/3

}
< q < y. Of course, depending on the

size of y, the latter range may be vacuous. Considering the fact∑
q≤y

1

φ(q)
= log log y +O(1),

we estimate the sum in the first range by the Bombierri-Vinogradov theorem
by ∑

q≤min{y,x1/3}
π(x, q, 1) =

∑
q≤min{y,x1/3}

li(x)

φ(q)
+O(

x

log2 x
)

=
x log log y

log x
+O(

x

log x
).

Therefore it’s enough to show that the second range for q in S1 and all of
S2 contribute only O( x

log x) to the sum.
For the second range in S1∑

min{y,x1/3}<q≤y
π(x, q, 1) ≤

∑
q>x1/3

π(x, q, 1)

=
∑
p≤x

∑
q|(p−1)
q>x1/3

1

≤ 2π(x) = O(
x

log x
).

We also break S2 into two ranges: qa ≤ x1/3 and x1/3 < qa ≤ x. By the
Brun-Titchmarsh theorem, the first range is∑

qa≤x1/3,a≥2
q≤y

π(x, qa, 1)� x

log x

∑
qa,a≥2

1

φ(a)
� x

log x
,
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where in the last step we used

1

φ(a)
=

1

qa(1− 1
q )
≤ 2

qa

and the fact that the sum ∑
qa

a≥2

1

qa

is convergent.
For the second part of S2 by using the trivial bound π(x, qa, 1) ≤ x

qa and

an easy fact that
∑

n>x1/3
1
n � x−1/6 we get∑

qa>x1/3,a≥2
q≤y

π(x, qa, 1) ≤
∑ x

qa
� x5/6.

We thus have proved the lemma.

Lemma 4.2. If 3 ≤ y ≤ x, then∑
p≤x

Ωy(p− 1)2 =
x(log log y)2

log x
+O(

x log log y

log x
),

where the implied constant is uniform.

Proof. Let u range over the integers with w(u) = 2 and P (u) ≤ y. Then∑
p≤x

Ωy(p− 1)2 =
∑
p≤x

∑
qa||(p−1)
q≤y

a2 + 2
∑
p≤x

∑
u|(p−1)

1

= S3 + S4, say.

We have

S3 =
∑
p≤x

Ωy(p− 1) +
∑
p≤x

∑
qa||(p−1)
q≤y,a≥2

(a2 − a)

≤
∑
p≤x

Ωy(p− 1) +
∑

qa≤x1/3

q≤y,a≥2

(a2 − a)π(x, qa, 1)

+
∑

qa>x1/3

q≤y,a≥2

(a2 − a)π(x, qa, 1).

By Lemma (4.1), the first sum is � x log log y
log x . For the middle sum we use
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Brun-Titchmarsh theorem and get∑
qa≤x1/3

q≤y,a≥2

(a2 − a)π(x, qa, 1)� x

log x

∑
a≥2

a2
∑
q≤y

1

qa
� x log log y

log x
.

And we use the trivial estimate for the last sum:∑
qa>x1/3

q≤y,a≥2

(a2 − a)π(x, qa, 1)�
∑

qa>x1/3

q≤y,a≥2

a2 x

qa
� x2/3

∑
a≤log x

a2

� x2/3(log x)2 � x log log y

log x
.

For S4, we write
S4 = S4,1 + S4,2

where in S4,1 neither prime power in u exceeds x1/6 and in S4,2 at least one
power in u exceeds x1/6. We have

S4,1 = 2
∑

1<qa,rb<x1/6

q<r≤y

π(x, qarb, 1).

By using Bombieri-Vinogradov theorem, we get

S4,1 = 2li(x)
∑

1<qa,rb<x1/6

q<r≤y

1

φ(qarb)
+O(

x

log2 x
)

=
∑

qa<x1/6

q≤y

1

φ(qa)

∑
rb<x1/6

r≤y

1

φ(rb)
+O(

x

log2 x
)

Now since ∑
qa<x1/6

q≤y

1

φ(qa)
= log log y +O(1)

then,

S4,1 =
x(log log y)2

log x
+O(

x

log2 x
).
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Finally, for S4,2 we have

S4,2 = 2
∑
qa

q≤y

∑
rb>x1/6

π(x, qarb, 1)

= 2
∑
qa

q≤y

∑
r>x1/6

π(x, qarb, 1) + 2
∑
qa

q≤y

∑
rb>x1/6

b≥2

π(x, qarb, 1)

In the first expression above there are at most six r’s in the inner sum, so
the expression is�

∑
qa

q≤y
π(x, qa, 1) which is in fact equal to

∑
p≤y Ωy(p−1).

For the second part, we use the trivial bound and get

� x
∑
qa

q≤y

1

qa

∑
rb>x1/6

b≥2

1

rb
� x11/12 log log y � x log log y

log x
.

And this completes proof.

Lemma 4.3. If 3 ≤ y ≤ x, then∑
p≤x

Ωy(p− 1)

p
= log log x log log y − 1

2
(log log y)2 +O(log log x),

where the implied constant is uniform.

Proof. By partial summation we have∑
p≤x

Ωy(p− 1)

p
=

1

x

∑
p≤x

Ωy(p− 1) +

∫ x

2

1

t2

∑
p≤t

Ωy(p− 1)dt.

Now by Lemma (4.1), the last expression becomes

O

(
log log y

log x

)
+

∫ y

2

log log t

t log t
dt+

∫ x

y

log log y

t log t
dt+O

(∫ x

2

dt

t log t

)
and by simple calculations we get

log log x log log y − 1

2
(log log y)2 +O(log log x).

We are done.

Lemma 4.4. If 3 ≤ y ≤ x, then∑
p≤x

Ωy(p− 1)2

p
= log log x(log log y)2 − 2

3
(log log y)3 +O(log log x log log y),
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where the implied constant is uniform.

Proof. Again by partial summation we have∑
p≤x

Ωy(p− 1)2

p
=

1

x

∑
p≤x

Ωy(p− 1) +

∫ x

2

1

t2

∑
p≤t

Ωy(p− 1)2dt.

Now by Lemma (4.2), the last expression is

O

(
(log log y)2

log x

)
+

∫ y

2

(log log t)2

t log t
dt+

∫ x

y

(log log y)2

t log t
dt+O

(∫ x

y

log log y

t log t
dt

)
and by simple calculations we get∑
p≤x

Ωy(p− 1)2

p
= log log x(log log y)2 − 2

3
(log log y)3 +O(log log x log log y).

So the proof is completed.

Lemma 4.5. If 2 ≤ k ≤ x, then∑
p≤x
p≡1(k)

1

p
=

log log x

φ(k)
+O

(
log k

φ(k)

)
,

where the implied constant is uniform.

4.3 The normal number of prime factors of φ(n).

Now, in order to use the theorem of Kubilius-shapiro we need strongly
additive function, but Ω(φ(n)) is not strongly additive. Instead we define

f(n) =
∑
p|n

Ω(p− 1). (4.1)

Then f(n) is strongly additive and one can easily check that

Ω(φ(n)) = f(n) + Ω(n)− w(n).

Theorem 4.6. For every real number u we have

lim
x→∞

1

x
· ]
{
n ≤ x : Ω(φ(n))− 1

2
(log log x)2 ≤ u√

3
(log log x)3/2

}
= G(u),

(4.2)
where G(u) = (2π)−1/2

∫ u
−∞ e

−t2/2dt.
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Proof. We apply the Kubilius-Shapiro theorem to the strongly additive func-
tion f(n) defined in (4.1). We have

A(x) =
∑
p≤x

Ω(p− 1)

p
=

1

2
(log log x)2 +O(log log x)

by Lemma 4.3 (with y = x). Also

B(x)2 =
∑
p≤x

Ω(p− 1)2

p
=

1

3
(log log x)3 +O((log log x)2)

by Lemma 4.4 (with y = x). Thus to apply the Kubilius-Shapiro theorem
to f(n) it remains to verify (1.12). Let ε > 0 be fixed and define a totally
multiplicative function

α(p) =

{
1 if Ω(φ(p)) > εB(x)
0 otherwise.

We will show that (since f(p) = Ω(p− 1))

1

(log log x)3

∣∣∣∣∣∣
∑
p≤x

α(p)
Ω2(p− 1)

p

∣∣∣∣∣∣→ 0 as x→∞.

But by Cauchy-schwarz inequality

1

(log log x)3

∣∣∣∣∣∣
∑
p≤x

α(p)
Ω2(p− 1)

p

∣∣∣∣∣∣ ≤ 1

(log log x)3

∑
p≤x

α(p)

p

1/2∑
p≤x

Ω4(p− 1)

p

1/2

≤ 1

(log log x)3

∑
p≤x

Ω4(p− 1)

p

1/2

. (?)

To justify the last step above, we need to show that∑
p≤x

α(p)

p
� 1.

But∑
p≤x

(Ω(p− 1)− log log x)2 =
∑
p≤x

Ω2(p− 1)− 2 log log x
∑
p≤x

Ω(p− 1)

+ (log log x)2π(x)� x log log x

log x
.
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Therefore ∑
p≤x

α(p)� x

log x(log log x)2
.

And by partial summation,∑
p≤x

α(p)

p
�
∫ x

2

dt

t log t(log log t)2
� 1.

Finally by using the estimation∑
p≤x

Ω4(p− 1)

p
� (log log x)5

in (?), we get the desired result. Thus (1.12) is verified and, by the Kubilius-
Shapiro theorem, we have (4.2) with f(n) in place of Ω(φ(n)). But Ω(φ(n)) =
f(n) + Ω(n)−w(n) and Ω(n)−w(n) is normally o(log log n) by the Hardy-
Ramanujan theorem. We therefore may replace f(n) with Ω(φ(n)).

The situation with the function w(φ(n)) is the same, but the treatment is
less routine, notably because w(φ(n)) is not additive. As one might expect,
though, the difference Ω(φ(n))−w(φ(n)) is usually not large (compared with
Ω(φ(n))), so we can obtain the same result for w(φ(n)).

Theorem 4.7. For every real number u we have

lim
x→∞

1

x
· ]
{
n ≤ x : w(φ(n))− 1

2
(log log x)2 ≤ u√

3
(log log x)3/2

}
= G(u).

Proof. If we can show that, but for o(x) choice of n ≤ x,

Ω(φ(n))− w(φ(n)) = o((log log x)3/2).

In fact, we shall show the stronger result, that but for o(x) choices of n ≤ x

Ω(φ(n))− w(φ(n)) = O(log log x log log log log x). (4.3)

Let wy(n) denote the number of distinct prime factors of n which do not
exceed y. In order to restrict ourselves to bounding Ωy(φ(n)) − wy(φ(n)),
we should first show that but for o(x) choices of n ≤ x

Ω(φ(n))− Ωy(φ(n)) = w(φ(n))− wy(φ(n)). (4.4)

We apply the Turan-Kubilius inequality to the additive function Ωy(φ(n)).
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We have

Ey(x) : =
∑
pk≤x

Ωy(φ(pk))

pk
(1− 1

p
)

=
∑
p≤x

Ωy(p− 1)

p
+O

∑
pk≤x
k>1

Ω(p− 1)pk−1

pk


= log log x log log y − 1

2
(log log y)2 +O(log log x),

by Lemma 4.3 and

Dy(x)2 : =
∑
pk≤x

Ωy(φ(pk))2

pk
=
∑
p≤x

Ωy(p− 1)2

p
+O

∑
pk≤x
k>1

Ωy(φ(pk))2

pk


= log log x(log log y)2 − 2

3
(log log y)3 +O(log log x log log y)

by Lemma (4.4). Therefore, by the Turan-Kubilius inequality,∑
n≤x

(Ωy(φ(n))− Ey(x))2 ≤ 32xDy(x)2. (4.5)

Now by taking y = (log log x)2, we have

Ey(x) = log log x log log log log x+O(log log x),

Dy(x)2 = log log x(log log log log x)2 +O(log log x log log log log x).

Therefore, by (4.5), the number of n ≤ x with Ωy(φ(n)) > 2 log log x log log log log x
is O(x/ log log x) = o(x). We thus have but for o(x) choices of n ≤ x

0 ≤ Ωy(φ(n))− wy(φ(n)) ≤ 2 log log x log log log log x. (4.6)

We now show that but for o(x) choices of n ≤ x we have (4.4). Suppose
p2|φ(n) where p > y and n ≤ x. There are four possibilities:

(i) p3|n,

(ii) there is some q|n with q ≡ 1 mod p2,

(iii) there are distinct q1, q2 with q1q2|n and q1 ≡ q2 ≡ 1 mod p,

(iv) n|p and there is some q|n with q ≡ 1 mod p
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The number of n ≤ x in the first case is at most∑
p>y

x/p3 = o(x/y2) = o(x).

The number of n ≤ x in the second case is, by Lemma (4.5), at most∑
p>y

∑
q≡1(p2)
q≤x

x

q
=
∑
p>y

x log log x

φ(p2)
+O(

∑
p>y

x log p

p2
)

= O(
x log log x

y log y
) +O(

x

y
) = o(x)

where we used ∑
p>y

1

p(p− 1)
� 1

y log y
and

∑
p>y

log p

p2
� 1

y

which follow easily from partial summation.
The number of n ≤ x in the third case is, by Lemma (4.5), at most

∑
p>y

∑
q1≡q2≡1(p)
q1<q2≤x

x

q1q2
≤ 1

2
x
∑
p>y

 ∑
q≡1(p)
q≤x

1

q


2

=
1

2
x
∑
p>y

(
log log x

φ(p)
+O(

log p

p
)

)2

= O

(
x(log log x)2

y log y

)
+O

(
x log log x

y

)
+O

(
x log log y

y

)
= o(x)

where we used the fact ∑
p>y

log2 p

p2
� log log y

y

which again follows by partial summation.
Finally, in the fourth case, the number of n ≤ x is, by Lemma (4.5) and
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partial summation, at most∑
p>y

∑
q≡1(p)
q≤x

x

pq
=
∑
p>y

1

p

(
log log x

φ(p)
+O(

log p

φ(p)
)

)

= O

(
x log log x

y log y

)
+O(

x

y
) = o(x).

This estimate completes the proof that (4.4) holds for all but o(x) choices
of n ≤ x. Combined with (4.6), we have (4.3) and thus the theorem.
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5 Distribution of values of the arithmetic function
d(n)

The following result is due to M. Kac [9].

Theorem 5.1. Denote by rn(w) the number of integers m ≤ n such that

d(m) ≤ 2log logn+w(2 log logn)1/2

then we have

lim
n→∞

rn(w)

n
= π−1/2

∫ w

−∞
e−u

2
du = D(w),

where d(n) denotes the number of divisors of n.

The proof is based on the Erdös-Kac theorem and two lemmas below:

Lemma 5.2. If f(m) ≥ 0 is such that

lim
n→∞

1

n

n∑
m=1

f(m) (5.1)

is finite, if limn→∞ g(n) = ∞ and if p(n) denotes the number of positive
integers m ≤ n for which f(m) ≤ g(m) then

lim
n→∞

p(n)

n
= 1 as n→∞.

Proof. Let Pn = {m : m ≤ n and f(m) ≤ g(n)}. Therefore by definition
we have |Pn| = p(n). Then

1

n

n∑
m=1

f(m) =
1

n

 ∑
m∈Pn

f(m) +
∑
m/∈Pn

f(m)

 >
1

n

∑
m/∈Pn

=
n− p(n)

n
g(n).

Since

lim
n→∞

1

n

n∑
m=1

f(m)

is finite and limn→∞ g(n) =∞, we get

lim sup
n− p(n)

n
= lim inf

n− p(n)

n
= 0.
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Lemma 5.3. The mean value

M

{
d(m)

2w(m)

}
= lim

n→∞

1

n

n∑
m=1

d(m)

2w(m)

exists and is finite.

Proof. If
d(m)

2w(m)
= f ? U then f =

d(·)
2w(·) ? µ.

Since f is multiplicative then it’s enough to consider

f(pj) =
∑
m|pj

µ(m)
d(m|pj)
2w(m|pj) =

{
0 if j = 1
1/2 if j ≤ 2.

So we get

f(n) =

{
0 if there exists p such that p|n but p2 † n

1
2w(n) if p|n⇒ p2|n.

And also

1

n

n∑
m=1

d(m)

2w(m)
=

1

n

n∑
m=1

∑
d|n

f(d)

=
1

n

n∑
d=1

f(d)
[n
d

]
=

n∑
d=1

f(d)

d
+O

(
1

n

n∑
d=1

|f(d)|

)

Now since the error term is � 1, we have only to show that

n∑
d=1

f(d)

d
(5.2)

converges. In fact if we able to show (5.2), then by Kroneker’s theorem
limn→∞

1
n

∑
d≤n f(d) = 0. (i.e. the error term will go to 0). If we set

S =
{
n : p|n⇒ p2|n

}
then since f(d)

d ≤
1
d , it’s enough to show that

∑
n∈S

1
n

converges. But since the series ∑
p

1

p(p− 1)
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is convergent, then∏
p

(
1 +

1

p2
+

1

p3
+ ...

)
=
∏
p

(
1 +

1

p(p− 1)

)
is also a convergent product. And this completes the proof.

Proof of the Theorem: Let w be an arbitrary real number and ε > 0.
Put

f(m) =
d(m)

2w(m)
and g(n) = 2ε(2 log logn)1/2

.

Let Fn be the set of positive integers m ≤ n for which

w(m) ≤ log log n+ (w − ε)(2 log log n)1/2,

Gn the set of positive integers m ≤ n for which f(m) ≤ g(n) and Hn the set
of positive integers m ≤ n for which

d(m) ≤ 2log logn+w(2 log logn)1/2
.

We should observe that if m ∈ Fn ∩Gn then m ∈ Hn. Hence

Fn ∩Gn ⊂ Hn.

The number of elements in Fn is kn(w − ε); in Gn, p(n); and in Hn, rn(w).
Thus the number of elements in Fn ∩Gn is ≥ kn(w − ε)− (n− p(n)). This
is because of the fact A\Bc ⊆ A ∩B, for any two sets A and B. Finally

kn(w − ε)− (n− p(n)) ≤ rn(w).

On the other hand for every m, 2w(m) ≤ d(m) (the equality occurs only if m
is square-free) and therefore Hn ⊂ Fn or rn(w) ≤ kn(w). The inequalities
combined give

kn(w − ε)− (n− p(n)) ≤ rn(w) ≤ kn(w).

But as n→∞, by Erdös-Kac theorem, we have

kn(w − ε)→ D(w − ε)
kn(w)→ D(w).

Also, by Lemma 5.2 and 5.3

n− p(n)

n
→ 0
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Hence

D(w − ε) ≤ lim inf
n→∞

rn(w)

n
≤ lim sup

n→∞

rn(w)

n
≤ D(w).

Since ε is arbitrary and D(w) is a continuous function of w,

lim
n→∞

rn(w)

n
= D(w)

And this ends the proof of the theorem.
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6 Concluding Remarks

1. In chapter 3, it can be shown by using a theorem of P. Erdös [7] and L.G
Sathe [8] that the result obtained in Theorem 3.2 is the best possible in
the sense that O(1/

√
log logn) cannot be replaced by o(1/

√
log log n)

uniformly in x. Nevertheles the remainder term can be improved in
the sense that its dependence on x can be investigated.

2. Let λ(n) denote the Charmichael function. Then, one can show that
the random variable ξn, which assumes the values Ω(λ(1)), Ω(λ(2)),...,
Ω(λ(n)), each with the same probability 1/n, for n → ∞, asymp-
totically normally distributed with mean value log log n and standard
deviation

√
log log n.

3. The result in chapter 5 has been improved by LeVeque [10] to

rn(w)

n
= D(w) +O

(
log log log n

4
√

log log n

)
,

and by Kubilius to

rn(w)

n
= D(w) +O

(
log log log n√

log logn

)
.
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