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ABSTRACT 

Development of a machine in order to impose a manufacturing technology is crucial 

improvement for mankind. Generally there is parallelism between the scientific evolution 

and current available key manufacturing technology.  Development of laser technology has 

affected our lives significantly. The methods such as laser marking, laser cutting, laser 

machining and laser sintering are some of the key usage of this technology as a tool. In 

addition to that the progresses, the digital technology yields to control this tool in a precise 

manner. Virtual artifacts that are generated by computer aided design (CAD) programs 

might be carried out in wide range areas from macro to micro applications. 

This dissertation describes the development of a versatile laser workstation which is 

capable of using subtractive-additive manufacturing (SAM) methods such as laser cutting, 

laser machining, laser marking and direct selective laser sintering (SLS). The design and 

manufacturing of the mechanical components; the selection and programming firmware of 

programmable electronics and the computer software are developed in this manner. In the 

aim of this thesis, virtual 3D CAD geometries (in stereo lithography (STL) or G-Code 

format) are planned to manufacture by developed workstation. Therefore, an in-house built 

3D scanner is also implemented to the system and the scanned point clouds would also be 

converted in STL file by using some commercial software packages. In addition to that, 

there isn't any geometrical constraint in the developed software which confirms the 

possibility of calculation of toolpath for any application such as custom biomedical 

implants, MEMS (Micro Electro Mechanical Systems) devices or even a jet turbine’s 

complex impeller blade. 

The current software and hardware technology are used to solve some of engineering 

problems in laser based manufacturing. The proposed general solutions in the engineering 

problems (i.e. three-dimensional freeform geometry slicing and toolpath generation, servo 

system (position/ velocity) control, multitasking equipment control by simultaneous signal 



 

 
 
 
 
 

generation (via Field Programmable Gate Arrays (FPGA) and microcontrollers), reverse 

engineering of freeform surfaces etc.) are available to use in different machines and 

methods (i.e. laser marking, laser machining and SLS). 

In the light of forgoing points, the production of permanent high resolution images on most 

of the engineering materials (i.e. polymers or metals) is possible in a fast, non-contact 

manner via laser machining. The most popular used laser’s wavelengths are 10640 nm and 

1064 nm. The developed toolpath (rastering or continuous scanning) are control points for 

the FPGA controlled mirrors oscillating along orthogonal axes in this study. The minimum 

resolution is depends on the optics on the galvanometric scanner which is capable of using 

in mentioned laser wavelengths (ܱܥଶ 10640 nm, Ytterbium Fiber Laser 1064nm) due to the 

specific coating that the mirror has.  

Another application of this workstation is direct SLS, which is a laser based rapid 

manufacturing technology that enables production of functional, metal or polymeric 

components via the direct, layerwise consolidation of constituent powders. Specifically, 

this dissertation focuses on a different laser wavelength usage to consolidate different type 

of materials due to material dependent absorption without changing any structural 

components. Moreover, the fundamental machine technology development was established 

with processing science to enable aforementioned additive manufacturing technology 

composed of polymers (e.g. Polyamide). This process is intended as a significantly faster, 

low cost, versatile, highly automated and hopefully replaceable with the laser workstations 

which are recently used in the industry. 

All of the mentioned processes based on a physical facts behind it. Therefore, a study of 

some of the important laser material processing mathematical models is completed and an 

analytical one is built. This model was undertaken especially for laser material interactions 

to obtain a fundamental understanding of the underlying process physics. In addition to 

that, this model helps in developing selection schemes (i.e. starting parameters) for the 



 

 
 
 
 
 

materials that are most amenable to the process. This physical understanding is the 

paramount importance in the development of machine and process control technology. 

The development of machine, processing and control technologies during this research 

effort enabled successful production of a number of different geometries by two-

dimensional (2D) and three-dimensional (3D) manner. In order to show this, sub-scaled 

demonstration components in different materials processed by laser workstation are given. 

The overall goal of this research was to develop a laser workstation which is capable of 

laser machining (laser drilling, laser cutting and laser marking) and direct (SLS) armed 

with a fundamental understanding of the underlying physics behind it. The knowledge 

gained from experimental (with technological demonstration) and analytical work is 

essential for machine design, process development and control. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 
 
 
 

ÖZET 

Herhangi bir üretim teknolojisi geliştirmek ve bunu makinalaştırmak insanlık için büyük 

önem arzetmektedir. Bunun sebebi bilimsel ilerleme ile ilerlemeyi sağlayan anahtar üretim 

teknolojisi üzeride parallellik olmasıdır. Örnek olarak Galile'nin teleskobu (1609 yılında 

yeni geliştirilen camdan lens üretme teknolojisi) veya James Gregory ve Isaac Newton'un 

yansıtmalı teleskobu (1660 yılında metal aynaların taşlama ve parlatma teknolojileri), o 

yıllarda varolan üretim teknolojileri sayesinde bilimsel ilerlemede kullandıkları araçları 

geliştirmişlerdir. Bu verilen örneklerin ötesinde 20. yüzyılın en büyük icatlarından bir 

tanesi lazerdir. İlk kullanılan lazerden günümüze lazer teknolojisi hayatımız üzerinde 

büyük etkiye sahiptir. Bu teknoloji kullanılarak lazer markalama, lazer kesme, laser işleme 

ve lazer sinterleme gibi üretim metodlarında lazer teknolojisi araç olarak kullanılmaktadır. 

Buna ek olarak gelişen dijital teknoloji sayesinde bu araç hassas bir şekilde kontrol 

edilebilmektedir. Bilgisayar destekli yazılım (BDT) programları kullanılarak yaratılan sanal 

nesneler mikrodan makro uygulamaya kadar büyük bir yelpazede üretilebilmektedirler. 

Bu tezde çok amaçlı bir lazer işistasyonunun geliştirilmesini kapsamaktadır. Kullanılan 

üretim metotları lazer markalama, lazer kesme, laser işleme ve direkt lazer sinterleme 

olarak sayılabilir. Mekanik komponentlerin tasarımı ve üretimi; programlanabilir elektronik 

malzemelerin seçimi ve programlanması; bilgisayar yazılımının geliştirilmesi bu amaçla 

yapılan işlerin konu başlıklarıdır. Bu tezde amaçlanan, planlanan BDT geometrilerinin üç 

boyutlu tarayıcı, stereolitografi (STL) veya G-Code (G programlama dili, Massachusetts 

Institute of Technology) gibi geometri bilgilerini kullanarak üretilmesidir. Bundan dolayı, 

üç-boyutlu tarayıcı geliştirilmiştir ve sisteme dahil edilmiştir. Buradan elde edilen nokta 

bulutları daha sonra ticari yazılımlar kullanılarak STL dosya formatına 

dönüştürülebilmektedir. Buna ek olarak, geliştirilen bilgisayar programında herhangi bir 

geometrik kısıt bulunmamaktadır. MEMS cihazları, biyomedikal implantlar veya kompleks 



 

 
 
 
 
 

geometriye sahip jet türbinlerini üretmek için gerekli matematiksel hesaplamalar 

yapılabilmektedir. 

Bütün yapılan çalışmalarda günümüz teknolojisini üretimde ortaya çıkan sorunları 

çözebilmek için birleştirmek amaçlanmaktadır. Üç boyutlu serbest yüzey geometrilerinin 

dilimlenmesi ve lazer yollarının çıkarılması; servo sistem pozisyon ve hız kontrolü; aynı 

anda çoklu işlem yapabilecek sinyal sistemlerinin geliştirilmesi ; serbest yüzey 

geometrilerinin tersine mühendislikte kullanımı ile ilgili önerilen çözümler farklı 

makinalarda farklı uygulamalar için kullanılabilir.  

Yukarıda anlatılanların ışığında, yüksek çözünürlüklü imgelerin mühendislik 

malzemelerinde kalıcı, hızlı ve temas etmeden üretilmesi lazer markalama olarak 

tanımlanabilir. En çok kullanılan lazer dalga boyları 10640 nm ve 1064 nmdir. Geliştirilen 

takım yolları (duraksayarak veya sürekli tarama) FPGA aygıtı için komut zincirlerini 

oluşturur. Böylece tarama işlemini gerçekleştiren aynalar ortogonal eksenlerde hareket 

etmektedirler. En küçük elde edilen hassasiyet kullanılan merceğe bağlıdır ve bu sebepten 

seçilen galvo ܱܥଶ (10640 nm) ve Ytterbium (1064 nm) için kullanılabilir.   

Geliştirilen sistemle uygulanabilecek bir başka uygulama da direkt lazer sinterlemedir. 

Metalik veya polimerik toz malzemenin katmanları olarak birleştirilmesi ile tasarlanan 

geometri üretilmeye çalışılır. Özellikle bu tezde yapısal herhangi bir değişikliğe gitmeden 

çoklu dalga boyunda çalışan bir sistem yapılması planlanmaktadır. Temel makina tasarımı 

ilkeleri yanında polimerik malzeme (poliamid) üzerinde proses  çalışmaları yapılmıştır. Bu 

süreç önemli ölçüde hızlı, düşük maliyetli, farklı kullanım alanlarına sahip, otomatik ve 

endüstriyel uygulamadaki muadillerinin yerine geçebilir şekilde tasarlanmıştır. 

Yukarıda bahsedilen üretim metotları içerisinde fiziksel gerçekleri barındırır. Bundan 

dolayı bazı önemli lazer malzeme işlem süreci matematik modelleri literatürden incelenmiş 

ve analitik bir tanesi oluşturulmuştur. Bu model özellikle lazer malzeme etkileşimlerinin 

temellerini anlamak ve altında yatan süreç fiziğini kavramak için kullanılmıştır. Buna ek 



 

 
 
 
 
 

olarak, bu model bu işlemde kullanıma en uygun malzemeler için başlangıç 

parametrelerinin belirlenmesinde yardımcı olmaktadır. Bu tezde, üzerinde çalışılan sürecin 

kontrolü ve bu süreci gerçekleştiren makina teknolojisinin yaratılmasında arkasında yatan 

fiziksel nedenleri anlamak en önemli kısmı olarak düşünülebilir. 

Tez sırasında bir makinanın tasarımı, makinanın çalıştırılması ve kontrol teknolojileri 

sayesinde farklı iki-boyutlu ve üç-boyutlu geometriler üzerinde çalışılmıştır. Bu çalışmaları 

göstermek için farklı ölçeklerde ve farklı malzemeler kullanan parça örnekleri verilmiştir.  

Tezde nihai olarak yapılmak istenen daha önceden de belirtildiği gibi lazer kesme, lazer 

markalama, lazer işleme ve direkt lazer sinterleme işlemlerini yapabilen bir lazer iş 

istasyonunun yazılımı ve bütün donanımıyla geliştirilmesi; bunun yanında, bu işlemlerin 

arkasındaki fiziksel nedenleri de ele alarak temeldeki amaç olan makina tasarımı, süreç 

gelişimi ve kontrolünü tamamlamaktır. 
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1. Introduction 

1.1 Motivation of this study 

Manufacturing brings key thoughts and ideas into being.  In this project, one of the most 

complex manufacturing tools, laser light, is used to cut, machine or combine materials to  

any desired two-dimensional or three-dimensional shape. This technology could be 

considered for use in cost efficient, fast and local in manufacturing of medical devices such 

as heart pump impellers; complex shaped hip implants for patients or in manufacturing of 

micro devices such as MEMS based biosensors, light scanners for advanced technology 

developments.  

Due to the physical characteristic of the mentioned manufacturing technologies, functional 

products  can be manufactured without any post-processing methods. Unfortunately, there 

is no laser workstation developed and manufactured in Turkey which has such developed 

software (capable of processing all types of STL geometries without defects) or versatile 

construction. Therefore, the intention with such and following efforts is to create a know-

how and capacity for our industry. 

1.2 Dissertation Outline 

Chapter 2 digs into the physics of the target manufacturing technologies. Thereafter, an 

analytical model is written in MATLAB with the details of intended goals, objectives and 

potential pay-offs. 

Chapter 3 details the design of the subtractive-additive manufacturing (SAM) laser 

workstation built for polymer sintering and engineering materials cutting, marking, and 

machining. In addition to the former studies at the Koç University Manufacturing and 

Automation Research Center, the current contributions and different design studies are 

given with one detailed analysis result. 
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Chapter 4 focuses on the optical, electronic and software parts which comprise the 

workstation. In order to develop the open-architecture scheme, the current device 

properties, which are used in processing, are identified from the datasheets and applied 

tests.  Elaborate hardware explanations are given in order to ease future progress in the 

study.  Every controllable parameter and how to control them are explained. In addition, 

geometrical aspects, which includes importing (by 3D scan or STL, slicing, toolpath 

generation etc.) of the software is added for understanding of reader. 

Chapter 5 concentrates on the technological demonstration of the developed software and 

hardware. Through the developed G-code parsing algorithm scaffold meshed structures are 

built. For laser cutting, some two-dimensional geometry is cut and the kinematic errors are 

understood by examining these test geometries. Single line track sintering tests are 

completed in order to understand the warping, sintering with different laser powers or scan 

speeds for different polymeric materials. Finally a few primitive and complex shaped 

geometries are tried to manufacture and their errors are discussed. 

The references are given at the end of each chapter, after the recommendations related to 

the presented chapter. Hopefully, these endeavors are for something which will be 

developed further for future of our industry. 
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2. General Review of Laser Materials Processing 

2.1 Introduction 

In 1900, quanta theory was named by Planck and in 1920, it was admitted distinctly from 

the wavelike characteristics of light it also shows particle nature while interacting with 

matter and exchanges energy in the form of photons[1]. The theory of stimulated emission 

was laid by Einstein in 1917[2], and this theory was put into application 50 years later in 

1957 by Townes and Schawlow with a ruby laser at Bell Labs. [3] At the end of 1950’s, a 

graduate student of Columbia University, Gordon Gould, was also looking into the 

conditions required for stimulated emission at visible wavelengths and patented his 

applications [4]. 

LASER is an acronym which stands for “light amplification of stimulated emission of 

radiation,” denoting a coherent and amplified beam of electro-magnetic radiation. The key 

element in making a practical laser is the light amplification achieved by stimulated 

emission due to the incident photons of high energy. Three principal components are 

required: the lasing medium, means for exciting the lasing medium into its amplified state 

(lasing energy source), and an optical delivery/feedback system. Additional provisions 

could be added into the system such as beam guidance, cooling systems and the target 

manipulation etc. The laser medium may be solid, liquid or gas. Laser light differs from 

ordinary light because it has all of its photons have the same frequency, wavelength and 

phase. In addition, unlike ordinary light; laser beams are highly directional, have high 

power density, and have better focusing characteristics. These unique characteristics of 

laser beams are useful in the processing of materials. Among different type of lasers, 

Ytterbium fiber and ܱܥଶ [Carbondioxide] are the ones most widely used for laser beam 

machining applications and therefore, these are selected for the our machine design. ܱܥଶ 

lasers have wavelength of 10 ݉ߤ in the far infrared region. It has high average beam 

power, good efficiency and beam quality. It is suitable for fine cutting of sheet metal at 

high speeds. Ytterbium fiber lasers have low average beam power; but when operating in 
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pulsed mode, high peak power enables them to machine even thicker materials. In our 

design, the selected laser’s pulse mode is Q-Switched between 20-200 kHz [5]. The 

machining of thinner materials would be possible with shorter pulse duration. This shorter 

wavelength of the Ytterbium fiber laser, 1064 nm, allows the processing of reflective 

materials which are difficult to machine by CO2 lasers. On the other hand, it is also limited 

in comparison to other shorter wavelengths then Ytterbium fiber. 

The processing mechanism of material removal in LBM comprises melting, vaporization, 

and degradation (chemical bonds are broken and the material is degraded). As stated 

before, when the laser beam is focused on the workpiece, thermal energy is absorbed by the 

workpiece, which changes its state into molten and vaporized so that the material can be 

removed by flow of pressurized air. Thermal machining is affected by following material 

properties: Favorable materials for laser processing have common properties such as low 

thermal diffusivity and conductivity, and high degree of brittleness or hardness (i.e. 

Ti6Al4V, Inconel etc.). The advantages of laser machining with respect to conventional 

machining are the lack of tool wear, machine vibration (w/ galvoscanner) and material 

damage. In addition to that, there is no maximum tool force, build up edge formation or 

tool chatter. The major laser machining configurations in this thesis covers drilling (1D), 

cutting (2D) and machining (3D). The processes are given in following sections. In this 

section, the process details by means of analytical models are given in order to understand 

the workstation system clearly. 

In this work, first, a short literature study is given in order to understand the processes 

by using mathematical models. The mathematical model gives the temperature distribution, 

roughly predicted by an analytical solution strategy, on the workpiece during laser material 

interactions. The mentioned processes are given according to the capabilities of the Laser 

Workstation. The modeling efforts provide qualitative insight to the process of interest and 

give quantitative system-specific information. While numerical heat transfer solutions are 

often tedious to develop and computationally intensive, there isn’t any general solution 

which can be easily employed by other researchers. However, development of an analytical 
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solution or application of an existing analytical solution for predicting the temperature 

distribution in the workpiece would provide a good starting point for parameter estimation 

for laser material processing applications. For example, Rosenthal [5] provides a 

mathematical solution to a point-like moving heat source, which is used to give information 

regarding to the temperature distribution for the heat affected zone during a welding 

operation; the model is frequently used for benchmarking with new thermal models of the 

welding process. Rosenthal’s model is specifically used for welding since the mathematical 

equations of this physical scenario are well represented especially for this process. 

In the following paragraphs, analytical heat transfer solutions which have applicability 

to laser material processing will be reviewed. These models are generally analytic instead 

of being finite element, difference volume or boundary problems. Therefore, in the 

literature review part of the modeling effort, other approaches than finite element solutions 

are employed. In the former research and during this thesis, several simplifications and 

assumptions are made about the material properties and geometry of the system. 

At the first look, the challenge of modeling is unsurpassable. In addition, some 

phenomena, such as free surface deformation, are shrouded under plasma during the 

process and are difficult to measure for model validation. Therefore, some researchers 

approach this modeling effort saying “why bother;” while others say “why not” and plunge 

in with curiosity regardless of direction. On the other hand, an intelligent application of 

boundary conditions can make the mathematical challenge more amenable, and the 

availability of fast computer power has made modeling of many complicated processes 

possible in recent times. There are even software packages, such as ANSYS, SIMPLE, 

ABAQUS, FLUENT, SOLA, FIDAP etc., which simplify the coding and modeling of the 

processes, so that even the uninitiated can have a go.  

2.2 An Overview for Laser Material Processing Methods  

The reasons for investigating the laser material processing by using mathematical models 

are simple. First of all, the heat and the fluid flow that occur during laser processing 
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influence the microstructures (through grain structure and phases that are formed), residual 

stresses (through the thermal stresses that result from differential strains), and distortions 

that evolve during the process. Secondly, these in turn affect the mechanical properties of 

the final product and thus the quality of the process. In addition to these, due to the 

following general reasons such as a semi-quantitative understanding of the process 

mechanisms for the design of experiments and displaying results (dimensional analysis, 

order of magnitude); and parametric understanding for control purposes (empirical and 

statistical processing diagrams), a system model is needed for laser material interactions. 

However, because of the versatility of the developed laser workstation, the literature survey 

is covered for the processes such as Laser-induced Rapid Prototyping, Laser Machining 

[LM], Laser Marking [LM], Laser Cutting [LC]. 

Among the common and mature RP processes, those based on the use of a laser for 

materials processing are the Stereolithography (SL) process, the Laminated Object 

Manufacturing (LOM), the Selective Laser Sintering (SLS) and SLS-like processes. The 

basic building-block mechanisms of the SL and SLS processes, which are the most 

important laser-induced RP processes, are presented in literature widely [6, 7].  

The Laser Lithography process creates three-dimensional parts by selectively solidifying 

polymeric materials layer-by-layer upon exposure to UV radiation or laser beams. It is still 

the most accurate RP process in terms of dimensional accuracy and capability in creating 

small, fine features [8] in industrial level. On the other hand, the selective laser sintering 

(SLS) process was developed at the University of Austin by Beaman and Deckard. In the 

SLS process, a layer of powder is deposited on a support and leveled by the combination of 

cylinders and sweep mechanism as shown in Fig. 2.1. Similar, to LL process, a laser beam 

scans a two-dimensional pattern on the deposited powder to sinter a powder layer. After 

sintering of a layer, a new layer of powder is deposited in the same manner. This is one 

type of consolidation mechanism for powder fusion mechanism, along with selective laser 

melting (SLM) and selective laser cladding (SLC). As the word implies this powder fusion 

mechanism occurs when the powder materials are fused in their solid state at elevated 
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temperatures. The advantage of SLS is that it requires only a low power laser. In addition 

to that, there is a possibility to get more accurate than LL based system by using Selective 

Micro Sintering [9] at the research level (used currently in the industry with low production 

rates). However, since the powder is not totally melted during laser scanning, the SLS-

processed parts are not fully dense and hence, have relatively low strength compared to 

SLM and SLC manufactured parts. In order to overcome these disadvantages of traditional 

SLS, SLM and SLC processes have been developed that enable full melting of powder or 

post processing (i.e. Hot Isostatic Pressing etc.) is added into the SLS manufacturing 

process. Fundamentally, the SLM process is the same as SLS except for the much higher 

laser energy density used. There are many ways in which liquid phase sintering (LPS) can 

be utilized as a fusion mechanism in additive manufacturing processes. For purposes of 

clarity, the classification proposed by Kruth et al. has formed the basis for the distinctions 

discussed in [10]. The powder bed is fully or partially melted directly to form metallic 

bonding [11]. This might occur also for polymers between one half of the absolute melting 

temperature and the melting temperature [12, 13]; for other materials, for instance, metals, 

there are other practical useful approaches the reader may see [14]. After patenting the 

system [15] in 1988 and building the conceptual structure, Sun et al. present a one 

dimensional model of the LS process which considers the sintering of a single layer in 1990 

[16]. The beam energy is modeled as a moving square flux, convective heat loss at the 

powder surface is not considered and temperature independent material properties are 

assumed in the solution of this heat transfer problem. Nelson et al. 1993 [17], Childs et al. 

1994 [18], Weissman and Hsu 1991 [19], Williams and Deckard 1998 [20], Cervera and 

Lombera 1999 [21], Tontowi and Childs 2001[22] are other important LS models in the 

literature.  
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The other laser machining application is drilling, which is a continuation of scribing and 

the beam is normally stationary with respect to the workpiece. The aim is to produce a 

cavity with a very high aspect ratio. The beam heats the material to the vaporization 

temperature, after which it penetrates to form a cavity, in a similar manner to keyhole 

welding. The pressure induced by vaporized material, together with any assist gas, forces 

molten material at the cavity wall to its outer rim where it is expelled. Radiation becomes 

trapped in the keyhole, inducing plasma formation. A portion of the energy may then be 

absorbed by the plasma and reradiated to the cavity wall, increasing the process efficiency; 

however, plasma formation has to be limited through careful control of an assist gas. Holes 

can be formed by three practical techniques: direct drilling (roughest), multi-pulse 

percussion drilling (for tighter tolerances) and trepanning (for larger holes). 

The aforementioned process methods mainly depend on the material to be worked up and 

laser wavelength to be used. Generally speaking, there is a close relation between the 

selected laser beam wavelength and material to be processed. The laser beam wavelength is 

chosen to match the absorptive characteristics of the material, i.e. short wavelength light is 

used to machine metals, alloys and some ceramics, whereas organic materials absorb 

relatively long wavelength far infrared light sufficiently for efficient machining. Materials 

with high values of specific heat capacity require larger amounts of energy to raise their 

temperature to that required for melting. Similarly, materials with high latent heats of 

melting and vaporization require more energy for the changes in state relevant to the 

processing mechanism. The material-laser wavelength correlation is given in Table 2.4-

2.5.[25]. 

2.3 Analytical Thermal Modeling of Laser Material Processing 

Analytical process modeling is applied to illustrate the effects of changes in processing 

variables on performance, and to enable practical processing parameters to be selected as 

mentioned before. All the processes have used some parts of analytical model solutions 

from the literature in the beginning part of the research and these models could be used like  
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Table 2-1 Sources of data for metals, ceramics, glasses, polymers and composites 

Material Laser Reference 

Fe, Ti Cu-vapor (Lash et al, 1993, [26]) 

C-Mn Steel ܱܥଶ (O’Neill et al. 1995, [27]) 

C-Mn Steel Cu vapor (Chang, et al., 1996, [28]) 

Co-based Hayes 188 Cu vapor (Knowles et al., 1995, [29]) 

Cu Nd:YAG ( ߣ 2⁄ , ߣ 3⁄  Q-switched) (Tunna et al., 2001, [30]) 

Ni on ceramic Cu vapor (Knowles, 2000, [31]) 

Nimonic Nd:YAG (Kamalu et al. 2002, [32]) 

Various Cu vapor (Chang, et al. 1998, [33, 34]) 

Alumina ܱܥଶ (Olson, et al. 1992, [35]) 

Ceramics Nd:YAG (Pffeferkorn et al., 2003, [36]) 

Cordierite Nd:YAG (Kirby et al., 1998, [37]) 

Diamond Cu vapor (Barnes, 2001, [38]) 

 Nd:YAG (Miyazawa et al., 1994, [39]) 

 Ruby (Anon., 1966, [40]) 

Diamond(CVD) Nd:YLF (Shaeffer, 1995, [41]) 

Eng. Ceramics Nd:YAG (Harryson, et al., 1987, [42]) 

Glass Nd:YAG (ߣ 4),⁄  ଶ(Q-switched) (Schaeffer et al., 2002, [43])ܱܥ

 Various (Atanasov, et al., 1987, [44]) 
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Table 2-2 Sources of data for metals, ceramics, glasses, polymers and composites 

Material Laser Reference 

Rocks COIL (Hallada, et al., 2000, [45]) 

Sandstone HF (Graves, et al., 1998, [46]) ܵ݅ଷ ସܰ ܱܥଶ (Bang et al., 1993, [47]) ܵ݅ଷ ସܰ Nd:YAG (Rozzi et al., 2000, [48]) ܵ݅ଷ ସܰ,  ଶ (Kitagawa, et al, 1990, [49])ܱܥ ܥ݅ܵ

Paint ܱܥଶ(ܶܣܧ) (Cottam et al., 1998, [50]) 

PMMA ܱܥଶ (Berrie, et. al, 1980,[51]) 

Polymers ܱܥଶ (Q-switched), Nd:YAG ߣ 3⁄  

(Schaeffer, et al, 2002, [52]) 

modules if needed. Some of the important models are listed in Table 2.2 without giving 

their equations. 

However, before using one of these, understanding the correct assumptions are critical such 

as the homogeneity and isotropicity of the materials, conduction dominated heat flow, 

energy-free the material transformation, thermally independent material properties etc.   

Before starting into more details, one important mathematical aspect should be 

considered: the dimensional analysis of heat flow or any other physical problem implies a 

total knowledge of all the variables involved, but no knowledge of how they are related. 

For any equation describing a physical relationship, we know that the units must balance 

and that therefore there is a restriction on the number of ways the variables can be related. 

The way to take advantage of this is to arrange for the variables to be grouped as 

dimensionless groups, in which case the units will automatically balance and we are left 

with a reduced number of variables – the groups. Once that has been done, then some 

experiments must be performed to show how the groups are related. For instance, the 

Buckingham Π Theorem tells us how many groups to expect: the number of independent 

groups, ݊ = ݅ −  where ݅ is the number of variables, and r is the greatest number of these ,ݎ
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which will not form a dimensionless group (usually the same as the number of basic 

dimensions, except where there is an unusual symmetry). The usual dimensionless groups 

involved in heat transfer problems are: Fourier Number [Form of dimensionless time]; 

Andrew Number [A measure of the energy deposited per unit are over the surface of 

material by moving energy source][61]; Péclet Number [Form of dimensionless velocity 

(ratio of convection to conduction)]; Reynolds Number [Another form of dimensionless 

velocity (ratio of viscous to inertial forces)]; Weber Number [Ratio of internal forces to 

surface tension forces]; Dimensionless Temperature; Dimensionless Power, Dimensionless 

Distance etc. Some other parameters are given in the nomenclature of this thesis. In the 

following equations, these variables are used as they are needed.  

Table 2-3 Analytical equations for the temperature fields around a surface energy source 

Type Shape Energy Distribution Source 

Stationary Area ܣ Uniform Carslaw et al., 1959 [53] 

Stationary Square Uniform Carslaw et al., 1959 [53] 

Stationary Circular Uniform Bass, 1983[54] 

Stationary Rectangular Uniform Bass, 1983[54] 

Stationary  Circular Gaussian Ready, 1971, [55] 

Moving Point - Ready, 1971[55]; 

Rosenthal 1941&1946 

[56, 57]; Ashby & 

Easterling, 1982 [58] 

Fast moving Circular Gaussian Rykalin et al., 1978[59] 

Moving  Circular Gaussian Ashby & Easterling, 

1984[60] 

To find the appropriate power rating to use in the analytical model; there exists a well-

known relationship among laser peak power, average laser power, repetition rate, and pulse 

width, which can be expressed as follows in case of a pulsed laser usage [62]: 
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Peak	Power	[kW] = ௩	௪[ௐ]×ଵோ௧௧	ோ௧	[ு௭]×௨௦	ௐௗ௧	[௦]           [2.1] Energy	per	Pulse	[mJ] = ௩	௪	[ௐ]ோ௧௧	ோ௧	[ு௭]            [2.2] 

The pulse width, the laser peak power and energy per pulse are used in these equations. An 

increment on these parameters is caused by an increment in the average laser power and/or 

a decrement on the repetition rate. After laser irradiating, the absorbed laser energy heats 

up a volume of the target material, which is transformed into liquid and/or vapor phase, and 

then this material removed [63]. 

The following table gives the measured absorbance using Ytterbium fiber and ܱܥଶ lasers 

for different materials. Thus, in the analytical model the following list might be used in 

order to do a rough estimation of the initial process condition [25]. 

As a rule of thumb, the reflectivity of a material is the most dependent on its electrical 

conductivity. A metal with high electrical conductivity has the highest reflectivity; for 

example, copper. Hence a high energy density is required to process a material like copper. 

A material with high thermal diffusivity will normally allow a greater depth of processing 

penetration with no thermal shock or cracking. In addition to that, materials in powder form 

exhibit higher absorbance than their bulk form [64]. 
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Table 2-4 Absorbance of elemental and compound powders, Ytterbium (1.06=ߣ	ߤm) and ܱܥଶ(ߤ 10.6=ߣm)  

Material Absorbance ࣆ 1.06=ࣅm ࣆ10.6=ࣅm 

Cu 0.59 0.26 

Fe 0.64 0.45 

Sn 0.66 0.23 

Ti 0.77 0.59 

Pb 0.79  

Co-Alloy (1%C; 28% Cr; 4%) 0.58 0.25 

Cu-Alloy (10% Al) 0.63 0.32 

Ni-Alloy I (13%Cr; 3%B;4%Si;0.6%C) 0.64 0.42 

Ni-Alloy II(15%Cr; 3.1%Si; 0.8%C) 0.72 0.51 

   

ZnO 0.02 0.94 ݈ܣଶܱଷ 0.03 0.96 ܱܵ݅ଶ 0.04 0.96 

BaO 0.04 0.92 

SnO 0.05 0.95 

CuO 0.11 0.76 

SiC 0.78 0.66 ݎܥଷܥଶ 0.81 0.7 
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Table 2-5 Absorbance of elemental and compound powders, Ytterbium (1.06=ߣ	ߤm) and ܱܥଶ(ߤ 10.6=ߣm) 

Material  ߤ 1.06=ߣm ߤ 10.6=ߣm 

TiC 0.82 0.46 

WC 0.82 0.48 

NaNܱଷ 0.16 0.8 

NaCl 0.17 0.6 

Polytetrafluoroethylene 0.05 0.73 

Polymethylacrylate 0.06 0.75 

Epoxypolyether-based polymer 0.09 0.94 

2.4 The Temperature Distribution 

In many forms of laser technology, the coherent light from the laser forms a spot that can 

be a concentrated source of heat or, in laser surface treatment, for example, a rather more 

diffused region of heating. Some of techniques used in the simpler mathematical models 

that first found use in welding problems in fact prove to be of considerable value in more 

general context. In particular, the point and line source solutions associated in the context 

of welding with Rosenthal as stated before [56, 57] , but also very well described from a 

rather different point of view by Carslaw and Jaeger [53], have proved to be extremely 

useful. They will be derived first, before considering specific applications, after which they 

will be used to obtain simple descriptions of the temperature in a workpiece. Since then 

Carslaw and Jaeger’s study has taken more than 18351 citations in the literature until June 

2011 which also proves its reliability by over 300 citations per year. 

From these elementary solutions, it is possible to build up more complex solutions to 

describe different incident intensity distributions at the surface of the workpiece. They can 

be extended to cover time-dependent situations. The line solution can be applied to a plate 

of finite thickness as well as an infinite or semi-infinite workpiece. The point solution in its 
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basic form only applies to an infinite or semi-infinite workpiece, but it can be extended 

very simply to cover other cases, such as a plate of finite thickness, for example. 

In various ways it is therefore possible to solve more complicated problems in terms of 

these simple analytical solutions, an approach that can lead to better understanding before 

resorting to more complicated computational methods. 

Whatever approach is used to calculate the power of the incident radiation and the energy 

transfer mechanism, the result is a prediction for the temperature distribution in the 

workpiece. This result can then be used as the basis for further calculation to obtain such 

quantities as 

 the thermal history of individual points in the workpiece; 

 metallurgical properties deduced from the thermal histories; 

 more accurate solutions for the temperature distribution, using the scheme, which 

might be analytical or, more usually numerical; 

 the consequences of varying the absorption models in order to test their validity and 

reliability; 

 the distribution of thermal stress on the workpiece; 

 the deformation of the workpiece resulting from thermal stress 

The developed MATLAB model discussed in this thesis calculates the temperature profile 

(temp structure) in a semi-infinite solid, induced by a moving heat source-i.e. induced by 

absorbed laser energy. That is, the temperature rise is calculated in a homogenous solid (so 

no melting, nor vaporization) of infinite thickness, with constant material properties. 

Solution of classical heat conduction problems were presented by Carslaw and Jaeger as 

mentioned before [53], but the implementation of most functions of the proposed 

MATLAB code were based on the solutions derived in a more recent book on thermal 

modeling of laser material processing by Dowden [65], including point heat source and line 

heat source solutions. The derivations are given in the - Appendix 2.1 Derivation of the 

Analytical Model-. For more complex analytical model, the MATLAB Laser Toolbox 

would be useful [66]. The developed MATLAB code is given in Appendix 2.2. 
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As a rule of thumb, the following approaches might be useful in their application to the 

following models. As if the application is a thick plate with a moving heat source, this 

might be the case, for example, in conduction mode welding. If the workpiece is considered 

to be a thin plate and the line heat source penetrates through the thickness and involves 2D 

heat flow, this would be example for keyhole welding or laser cutting. The concepts of 

these analytical solutions might be used in these manners. 

2.4 Material Characterizations for Laser Material Processing 

The principal mechanical and thermal properties of engineering materials are described 

below.  Material Properties play a dominant role in determining the interaction between the 

laser beam and engineering materials, dictating the processing mechanisms. Many material 

properties change with temperature; although this would at first sight appear to present 

problems in modeling, it is an interesting phenomenon that could be exploited in novel 

laser treatments. These values are also valuable in order to simulate the system properly by 

using the committed analytical model. 

These parameters are determined experimentally material by material. Following analysis 

are generally used for that purpose. Unfortunately, in this thesis, none of them are used but 

in future these are highly recommended. These experiments cover, relevant material 

properties for polymers, metals and ceramics are able to be determined using the 

characterization techniques listed in Table 2.6. In case of SLS, the particle size 

distributions of the as-received powders will be used directly after getting diameter 

distribution of powders.  
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Laser light impinging on the surface of a material may be absorbed, reflected, transmitted 

or re-radiated. On the macroscopic scale, absorptivity is a measure of the fraction of 

incident radiation absorbed. As the absorption coefficient indicates, radiation is absorbed 

by electrons in the upper 10ି to 10ିହcm of the surface the electromagnetic skin depth. 

The absorption mechanism is known as the inverse Bremsstrahlung (braking radiation) 

effect, which means energy is subsequently transferred into the material by a mechanism 

that depends on the energy of the photons of that material. The classical thermal conduction 

through collision with lattice defects and other electrons is the dominant heat transfer 

mechanism because the photon energy of material processing lasers that emit with a 

wavelength that lies above ultra violet region of the electromagnetic spectrum, in the 

literature these and other properties are included [71-75]. As the interaction time 

approaches that of the mean free time of electrons (10-13 s in a conductor), classical 

thermal conduction laws are no longer valid and athermal processing mechanisms, 

associated with rapid picosecond (10ିଵଶ s) and femtosecond (10ିଵହ s) pulses apply. The 

absorptivity versus wavelength for Ag and Fe is shown schematically in Fig. 2.4. The angle 

of incident is also important factor for absorption of laser light. For vertical condition (ߠ = 

0), the beam oriented parallel to the incidence, the absorption of ܴ increases and ܴ௦ 
decreases. In Brewster angle, the absorption of ܴ reaches a maximum value and ܴ௦ drops 

to zero (Brewster effect). 
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around	25	ି݈݉ܬଵିܭଵ. The heat capacity increases with temperature to about 1000 °C for 

ceramics and glasses, above this temperature remains approximately constant. On the other 

hand, in polymers the heat capacity increases steadily up to the glass transition temperature. 

2.4.3. Thermal Conductivity 

Thermal conductivity is the parameter which heat flows through material and it is crucial 

esp. in steady state thermal processes. It is proportional to the amount of energy present 

(the volumetric heat capacity), the number and velocity of energy carriers (electrons and 

phonons) and the amount of energy dissipation the amount of scattering of the attenuation 

distance of lattice waves, i.e., the mean free path. When the temperature rises, the amount 

of energy dissipated increases by collisions, and naturally the thermal conductivity 

decreases. Oppositely, the carriers in ceramics and glasses are phonons, which can be 

thought as lattice vibrations that occur on discrete energy levels or quanta. Electrons are 

restrained in ionic and covalent bonds, and so cannot participate in thermal conduction at 

low temperatures. Thermal conductivity is highest in materials that have an orderly 

structure comprising single element or elements of similar atomic weight because the 

strong periodic bonds transfer lattice waves efficiently. Structurally two dimensional 

layered materials have high the thermal conductivity in the direction of bonding; however 

in the perpendicular direction the van der Waals forces attenuate vibrations, which decrease 

conductivity. As mentioned before, in ceramics the thermal conductivity is decreases as 

temperature increases due to the inverse proportion of the mean free path with temperature. 

The amorph-structure of the glasses has a relatively short mean free path which does not 

change significantly with temperature. However, the thermal conductivity is also increase 

with the temperature because of its increment in the heat capacity. The thermal 

conductivity of the polymers is low with compare to the other materials. The reason behind 

it is generally the electrons are bounded covalently, molecular sizes are large and the 

crystallinity is low. 
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2.4.4. Density 

Density is commonly known material property shows the mass quantity in a unit volume. 

Therefore close packing of atoms results in high density and a high melting temperature. 

This is generally true for accounts for high values in metals and alloys, and low values in 

polymers. 

2.4.5 Thermal Diffusivity 

Thermal diffusivity ߢ [݉ଶ/ݏ] is the ratio of the energy transmitted by conduction to the 

energy stored in unit volume material. Thermal diffusivity is also referred as the diffusion 

coefficient of heat and determines how rapidly material will accept and conduct thermal 

energy. It is very important for characterization of transient thermal processing. ߢ = ఒఘ                  [2.3] 

Especially in pulsed laser treatment or moving heat source analysis this parameter is 

crucial. It determines the penetration depth of the material. It is also important for laser 

heating processes. As a rule of thumb the relation between penetration depth, heating time 

and thermal diffusivity Eq. 2.25 is valid. ݖ =  [2.4]                ݐߢ4√

The diffusivity of alloys is generally lower than of the pure metal in the alloy; stainless 

steel is particularly low in comparison with plain carbon steels. 

2.4.5. Coefficient of Thermal Expansion 

The ratio of The change in length, Δl, and in temperature, Δܶ, with respect to length (at 

known temperature) is clarified as the coefficient of thermal expansion, ߙ, and given as, ߙ = Δ݈/݈Δܶ. 

The thermal expansion coefficient is mainly controlled by atomic and molecular vibration; 

as the temperature increases, the amplitude of vibration increases.  

In metals and alloys, which have close-packed structures, the increment in atomic 

vibrations is accumulated in neighboring atoms, producing relatively high expansion in the 

lattice. 
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The predominantly ionic bonded ceramics has also high values of thermal expansion due to 

this close-packed structure. The structures which contain spaces such as in covalently 

bonded ones the thermal expansions are reducing because of the absorption of vibrations. 

The thermal history, structure and composition are the most important control parameters 

for thermal expansion of glasses. However, thermal shock, which generally occurs in 

glasses, can be notified by proper heat treatment of the glasses. Isotropicity and 

anisotropicity is another important characteristic of materials while investigating the 

thermal expansion. Anisotropic materials have different expansivity along different axes. 

The heating may stretch (depends on their types) extensively polymers and elastomers 

before failing. 

2.4.6. Transformation Temperatures 

Heating, melting and vaporization are three important dependences of laser material 

processing principles. These transformations state the phases such as solid, liquid and 

vapor.  In literature, for the most important phase transformations, some empirical formulae 

are derived. Sodium potassium like alkali metals are bounded with low energy electrons, 

which result in weak bonding. Therefore have low strength and melting temperatures. 

Chromium, tungsten and iron like transition metals are bonded by inner electron, and 

exhibit high strength and melting temperature. The covalent bonding type in glasses (esp. 

silica) gives them high strength, stability and softening temperature. A softening or melting 

temperature, ܶ, would be identified in polymers that contain a high degree of crystallinity.  

This is becomes with an increase in energy named as latent heat of melting. As the 

temperature is raised there is a continuous increment in the heat capacity for amorphous 

polymers, until the glass transition temperature, ܶ, in which the rate of energy absorption 

increases without any discontinuity[76]. The amorphous polymers have not any latent heat 

of melting and the melting temperature is approximately1.5 × ܶ. For metals and alloys the 

vaporization temperature is about the twice of the melting temperature. [77] 
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The required energy change from free vibrated solid state to a free rotated liquid state is 

stated as the latent heat of melting without a change in temperature. The ܮ/ ܶ is 

approximately constant with a similar value as gas constant (8.314	ି݈݉ܬଵିܭଵ) for most 

of the metals (Richards Rule, [78]). 

If the materials hold the relationship due to such as Van der Waals bonding this rule is not 

valid. Richard’s Rule is good with high bond strength which has high values for latent of 

fusion and melting temperature. 

On the other hand, the latent heat of vaporization presents the energy required to convert 

from liquid state to gas at the vaporization temperature. The ratio of ܮ௩/ ௩ܶ is appx. 

constant and about 83.14	ି݈݉ܬଵିܭଵ for most metals with some assumptions (Trouton's 

Rule, [79]). Similar to Richard’s rule, in Trouton’s rule the materials with high bond 

strengths have high values for latent heat of vaporization and vaporization temperature. 

This rule is invalid for small and light molecules such as ܪଶ or He and for materials which 

have strong hydrogen bonding such as	ܪଶܱ. 

These aforementioned thermal properties could be found in literature easily. Ashby 

describes means of charting and relating the basic mechanical and thermal properties of 

engineering materials by using Material Property Charts[80]. These charts give also 

valuable information for materials which are processed with laser or being processed with 

laser instead of using analytical model. 
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3. Laser Workstation Design 

3.1 Introduction  

The machine design stage is the main and the most important part of machine tool 

research projects. Without a good mechanical design, the rest of the machine will be 

ineffective, even if the most advanced and expensive controllers or electronics are 

implemented. In this part of thesis, from the design and analysis of machine structure to 

fine details of the designed sub-components of SAM workstation will be explained. 

Fundamentally, some topics should be included such as stiffness requirements, damping 

requirements, structural configurations for machine and other structural system 

configurations for a machine conceptual design approach.  

In precision machine design strategy; accuracy, kinematic design, system elasticity, 

passive or active temperature control, structural configurations and damping are the main 

concerns. In the following paragraphs, most of the design fundamentals are considered with 

this respect. However, there are some limitations and tradeoffs due to lack of time and 

funding. 

Beyond the design strategy and approach, the purpose of this study is to demonstrate 

the use of methods and strategies for designing high accuracy workstation for industry and 

research. The challenge is to achieve the productivity and the precision that needs for a 

price that the project is able to handle. While many of the decisions made will be unique to 

this example, the process and logic behind the decisions should be quite simple and 

applicable to other types and sizes of future machine design studies in Manufacturing and 

Automation Research Center (MARC), Koç University. 

3.2 Design Procedure of Subtractive-Additive Manufacturing (SAM) Workstation 

In order to follow the design procedure the first step will be the definition of the 

problem. In SAM workstation design procedure, the main aim is to produce the designed 
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geometry as accurate as possible by optimum conditions. Thereby, this dimensional 

accuracy need depends on production method that the SAM workstation is using at that 

moment. For instance, if the machine is set to work in FDM mode (if possible), the 

resolution of the manufacturing will be theoretically in between 100-500 ߤm at each slice 

and in dimension (height-, width-, lengthwise) due to mechanical constraints. Moreover, 

the machine designer must be conscious of the purpose which is satisfying the needs and a 

well-defined set of design goals should represent the best vision of the end product or 

demonstrate the know-how of how to get there. 

The highest level of guidance must be provided by the functional requirements and these 

requirements must properly represent the industrial and research necessities. Some of them 

may be listed as follows 

- The workstation must capable of removing metal and polymeric based or sintering 

powder based material by using ܱܥଶ(:ߣ	10640 nm) and Ytterbium Fiber (ߣ: 
1064nm) lasers. 

- The most general configuration requires the three-degree-of-freedom relationship 

between laser optics due to the physics of the desired manufacturing methodologies. 

The workstation is going to work mainly 2ଵ ଶൗ  axes kinematic movement while in 

processing. 

- The horizontal axes which are capable of reaching to all exposed sides of the 

workspace as provided. In all cases this relationship must be sufficiently accurate 

and rigid to meet the requirements. 

- The work table must be perfectly horizontal to facilitate the manufacturing 

methodology. 

- The working range of the machine must be roughly equal in three spatial directions 

X, Y and Z. 
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- The atmospheric environment should be arranged in order to constitute proper 

process condition and to avoid suffocation of operator during operation due to 

hazardous gases. Therefore, the work volume must be enclosed and proper air 

circulation must be provided within the machine. 

- The selected subcomponents and design should be compatible to automation. This 

means that after succeeding the process control, the main process is going to be 

automated by all manner such as atmosphere, temperature etc. 

- The system must be readily transportable to the locations where it is going to 

operate on standard utilities. 

3.3 Developing Methodology of Machine Specifications 

After completing detailed literature survey, the specification of the developed machine 

versus the forgoing machines could be compared. Therefore, the developed ideas in this 

recent machine might fill the missing points on the literature. For example, in the literature, 

there isn’t any machine which is capable of working such a versatile manner by usage of 

different wavelengths and different manufacturing methodologies. In addition, there isn’t 

any machine which has 3D scanner on it. These specifications should also require iterations 

to be better since the decision depends on the design solutions that evolve over the course 

of the project. This is why the specifications are considered design goals at this stage. 

The completed studies in University of Michigan, Ann Arbor (Center for Laser-Aided 

Intelligent Manufacturing)[1-6]; University of Texas, Austin (Laboratory for Freeform 

Fabrication)[7-10]; Katholieke Universiteit Leuven (Division of Production Engineering, 

Machine design and Automation [Division of PMA] )[11-13]; University of Applied 

Science Mittweida (Laserinstitute der HochschuleMittweida)[14] show great efforts in 

literature since the invention of first laser based workstation.  

On the other hand, at Manufacturing and Automation Research Center (MARC), the 

development of an additive manufacturing machine design has been a long sought goal of 
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Oppositely, developed syringe injection head, which is compatible with multiple type of 

syringe such as 5mL, 10 mL and 20 mL has promising results by means of design. With 

this head the injector may be pushed or pulled, in order to provide continuity and stop of 

the polymeric solvent. The former experience on polymeric solutions leads this thesis 

focusing more on bio application side of the additive manufacturing. Thereby, several 

solvent and materials is tried for producing scaffolds and there are several successful trials 

completed by using different cell types. 

In the developed control system, the former 100 MHz 8050 based Cyrix microcontroller is 

redundant for this project, so a 20 MHz 16F877PIC microcontroller is used. In addition, the 

micro stepping behavior of POLOLU step motor driver and the 2.5 mm pitch sized ball 

screws enhanced theoretical resolution of the system. On the other hand, the newly 

developed firmware is still need for CAM program in order to produce desired geometries 

with a G-code parsing algorithm.  

These efforts affect great the current state of the specifications and followed procedure in 

this thesis. The specifications presented in the following sections are developed rather for a 

potential application field. 

3.3.3 Laser Material Processing [LMP] 

The laser material processing model (Chapter 2), relates different laser material 

interaction conditions to the corresponding requirements for the workstation. These 

necessities are given shortly in 3.2 Design Procedure section. In addition, a short literature 

survey would be indicated for conceptual design and represented the boundary parameters 

for designed workstation. These parameters are not as highest possible parameters in the 

literature but these will give some rough ideas on that topic. In the literature survey, several 

fundamental parameters of LMP and FDM are focused such as SS: Scanning Speed, HD: 

Hatch Distance, LP: Laser Power, EHF: Extrusion Head Feedrate, PF: Piston Feedrate, T: 

Temperature, OL: Oxygen Level, PTC: Preheat Temperature Condition as indicated in 
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Table 3.1. The selected components of the proposed design should provide these 

parameters. Further reading is suggested to the reader in order to inspect not mentioned 

properties such as material, optical systems etc. from the given references of this chapter.  

Table 3-1 Laser Processing Parameters from the Literature Survey 

Parameters 
\ 

Literature 

 ܵܵଵ 
 ଶܦܪ 

ଷܲܮ  ସܨܪܧ  ହܨܲ  ܦܤ   ܮܩ 
 ଼ܥܶܲ 

 ଽܹܮ 
 

ଵଽଽ଼ 0.71 127 130 - - 500 10ିTorrݏܽܦ ଵଽଽଵ 0.104 - 18 - - 254 - - 10640 SLS݊݅ݐݎܽܯ - - 1064 SLS ܥℎ݁݊[21] 1.27e-2 - 2 - - 38 30 [psi] - 1064 LM ݐݑݎܭℎ[22] 0.1-0.6 200 300 - - 600 Ni - 1064 ܵ[23]ݎܽݑܭܯܮ          LMD ܿݏ݅ܨܲܯܮ 1064 - - 930 - - 900 - 0.033 [24]ݖ݅݇݅݉ܽܮℎ݁14 - - 475 - 0.12 [26]݅ܮ ܯܮ 355 - - 30 - - 23 75 2 [25]ݎ Ar, 25 
[L/min] 

 ܹܮ 1075 -

1- Scanning Speed [m/s] 2- Hatch Distance [um] 3- Laser Power [W] 

4- Extrusion Head Feedrate[m/s] 5- Piston Feedrate [m/s] 6- Beam Dia.[um]
7- Gas Level [-] 8- Preheat Temp. [K] 9- Las. Wave.[nm] 

 

There are 5 different laser material processing operations on Table 3.1, which are LM: 

Laser Machining; SLS: Selective Laser Sintering; SLM: Selective Laser Melting; LMD: 

Laser Micro Drilling; LMP: Laser Marking/Polishing; LW: Laser Welding. 

In the first step of the designing stage, the thermal calculations and models should be 

concluded, because the proposed SAM method in this thesis is a thermal based laser 

processing method. The effective parameters on thermal model is mainly the laser scanning 

speed, laser power, spot diameter and hatch distance, which constitute the energy density or 

Andrew Number. In order to understand this in details, a model is also given in Chapter 2 

to adjust the parameters according to processed material in a scientific outlook, instead of 

estimation by infinite trials. However, the limit conditions are still needed for conceptual 

design of the SAM workstation. Therefore, for different laser processing methods and their 
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conditions are given in Table 3.1. For example, the fastest condition of laser scanning 

speed from the table might seem as 2m/s for laser machining operation of composite 

materials[25] and the slowest operating condition with 0.033 m/s was in[24]. 

In second stage, due to this thermal effect, other concerns in the conceptual design 

should be included such as selection of the structural material of the SAM workstation, 

insulation of the workstation construction and design-evaluate atmospheric conditions. The 

small changes on the temperature may cause some undesired conditions in the processed 

material (i.e. insufficient interlayer bonding, undesired porous micro/macrostructure, 

agglomeration of the material etc.). These micro/macro structural concerns may be avoided 

by preheating and adjusting the atmospheric conditions of processing chamber. In addition 

to that, the limit values regarding to preheating and atmospheric gas/pressure are mainly 

depends on the material that is processed. Das is used rough vacuum conditions (30 mTorr) 

and high vacuum conditions 3 × 10ିହܶݎݎ in his experiments on Inconel 625 and 

Ti6Al4V [27]. Moreover, the preheating temperatures that he is dealing with is in between 

  .ܥ° 300-600

Table 3.1 demonstrates some of the pure scientific push on a developed manufacturing 

technology in between 1990-2011. Moreover, the industry pulls this research area and 

design laser stations in order to use this technology. In table 3.2 some of the examples from 

industrial systems are given. 

Table 3-2 Specifications of commercial laser workstations[28] 

 EOSINT M 250 DTM Sinterstation 2000 
Work Volume 250x250x150 [݉݉ଷ] 304.81[߶]x381 [L] [mm] 
Laser Type/ Power ܱܥଶ/ 200 W ܱܥଶ/ 50 W 
Laser Scan Speed Up to 3 m/s Up to 5 m/s 
Layer Thickness 0.05 – 0.1 [mm] 0.0752-0.508 [mm] 
Interface CAD Standard STL, CLI, VDA-FS, 

IGES, CATIA 
STL 
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Working with the tables as in 3.1 and 3.2, that is, by entering parameters and reviewing 

the calculated values from literature and industry, is a judgment process based on 

anticipated machine capabilities and the expected operation conditions. The variety of 

operations represented in the Table 3.1-3.2 tax the workstation in different ways. The 

specifications developed using this approach should result in a machine that is versatile and 

well balanced. 

3.4 Design Strategies 

The strategies for satisfying the design goals should clearly guide the designer to the 

basic technologies to use and how to approach the fundamental problems. This section is 

important to this study because many of ideas may not appeared or be obvious in the 

conceptual design drawings. 

3.4.1 Accuracy 

Friction, backlash and temperature change are the sources of unrepeatability and 

instability. The accuracy of the workstation, whether software corrected or mechanically 

compensated, is fundamentally limited by the repeatability of the axes and the stability of 

the metrology loop. In order to support repeatability and robustness to flying optic or FDM 

head movement, the axis should have widely spaced bearings for greater moment stiffness 

and a minimum lever arm between the moving stage and the feedback device of the moving 

component. In addition to that, greater dynamic stiffness and reduced dynamic moments 

would be provided by acting actuators through center of mass. 

In this concept design, the compensation are not fully effective on errors, it might be 

easily corrected by mechanical alignments by axis correction.  Axis correctness 

significantly reduces sine errors that result from errors acting through Abbé offsets. X-Y-Z 

alignment reduces to a minimum those errors associated with volumetric property of 

designed machine.  
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In general aspect, the design of accurate machine tools includes preloaded rolling-

elements such as thrust bearings, ball screws and linear guides. These components have 

almost zero backlash, low frictional hysteresis and relatively low heat generation. In 

addition to that, increased contact surfaces results in high capacity, stiffness and smooth 

repeatable motion. On the other hand, the designed workstation has to have some limits 

such as velocity boundaries, as stated before, in all axes which require faster transmission 

system response (e.g. 0 - 10 m/s) than ball screw without any additional inertial effect. The 

additional mass and inertia of the ball screw transmission is decreased the system response 

even increased the robustness of the system.  

Belt drives consist of flexible elements running on either pulley. A belt drive transmits 

power between shafts by using a belt to connect pulleys on the shafts by means of frictional 

contact or mechanical interference. In this current design, the constant speed ratio or 

synchronization of angular position of the driving and driven shaft is critical to operation 

due to the need for controlling position and velocity. This requirement can be achieved by 

means of special toothed belts, called synchronous or timing belt. Belt drives have 

numerous advantages over other power transmission systems such as easy transmission, 

low maintenance (no lubrication need), high reliability, adaptability to non-parallel drives 

and -most important for our case is- high transmission speed with lowest inertia. The 

principle disadvantages of synchronous belt drives are their limited power transmission 

capacity, susceptibility to environmental conditions (e.g. chemicals, vibration shock), 

generated noise by compression of air between teeth especially at high speeds and limited 

speed ratio capability. In this study the selected synchronous belts are steel wired inside, 

which decrease the elasticity and increase the positional accuracy. Moreover, in order to 

increase the tension on the belt, S shaped parts are manufactured on ThingoMatic and 

plugged through the belt as shown in Fig. 3.6. 
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ଶܶ = ݕ)݇ −  [3.2]                (ߠݎ

From Eqs. [3.1] & [3.2], the net tension at the mass m is, 

ଵܶ − ଶܶ = ݉݀ଶݐ݀ݕଶ  

ଵܶ − ଶܶ = ߠݎ)2݇ − (ݕ =  ଵݔ2݇

Therefore the state variables are ݔଵ = ଵߠݎ − ଶݔ ,ݕ = ௗ௬ௗ௧  ௗ௫భௗ௧ = ݎ ௗఏௗ௧ − ௗ௬ௗ௧ = ଷݔݎ − ଶ               [3.3] ௗ௫మௗ௧ݔ = ଶ௫భ ݐଷ݀ݔ݀ [3.4]                  = ݀ଶݐ݀ߠଶ  

Hence, ௗ௫యௗ௧ = ் −  ଶݔ −  ଵ               [3.5]ݔݎ2݇

The state space form this equations are 

ݔଵሶݔଶሶݔଷሶ ൩ =  0 −1 0ݎ 2݇/݉ ݎ0−2݇ 0 ൩ܬ/ܾ− ݔଵݔଶݔଷ൩ + 001൩ ܶandݕ = [1 0 0] ݔଵݔଶݔଷ൩ 
By using this state space equation, the system response versus different stiffness and 

damping values would be compared.  

3.4.2 Stiffness and Damping Outlook for Designed Workstation 

The workstation requires sufficient stiffness in the structure between the moving axes so 

that the dynamic movement of flying optics or FDM head results in insignificant 

deflections. The entire structure isn’t exposed to process loads while other types of loads 

may act on portions of the structural loop due to non-contact nature of laser processing. In 

addition, in the designed workstation, tool workpiece contacts do not occur as occurred in 

milling or turning. For example, the extruded material in the head flows out through nozzle 

and gently touches with the worktable by negligible force. Therefore, the dynamic 
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compliance calculations are not taken into consideration during designing stage. Except the 

dynamical movement of the flying optics, the quasi-static analysis (inertial loads from 

accelerating masses) act on the static compliance to generate position errors and resonant 

frequencies of the system will be examined during trial tests. Thus for high accuracy and 

minimum position errors the workstation requires low static compliance, well-damped 

resonances and high resonant frequencies. In short, the goal of design is achieving lower 

resonant peaks (indicating greater damping) and higher resonant frequencies to balance in 

smaller amplitudes, better finish, and allow greater servo stiffness. 

For most large machine structures, the economics guide the design toward typical 

engineering materials such as steel, cast iron or aluminum. The specific modulus of cast 

iron is only 65% that of steel or aluminum yet it remains the preferred material for general-

purpose outweigh its extra manufacturing cost. Aluminum castings are less expensive to 

manufacture but the material cost exceeds cast iron even though the weigh required is less.  

On the other hand, especially in the prototyping stage of the machine design, there is an 

alternative to expensive casting procedure. Several machine companies and research 

laboratories are using extruded aluminum parts. However, there is several necessities while 

choosing these components such as dimensional accuracy of standard part and assembly. 

Even the usage of extruded aluminum profile is decreased the cost of design, the thermal 

expansion coefficient of aluminum is the main disadvantage to use in precision machinery 

applications. In order to solve this problem, a network of tubes can be cast in or the profiles 

internal channels could be used to provide internal passages to flow temperature controller 

water. In addition, aluminum can be used as matrix in a composite with ceramic fibers. The 

use of a structural ceramic such as aluminum oxide may have application for smaller 

components that have difficult design constraints. For example, a quill made of aluminum 

oxide would be 80% stiffer than steel for one-half weight. 
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Usually, the material selection has a relatively small role in the stiffness of a machine 

tool structure to the placement of the material. It is a matter of using the material most 

efficiently in the design. Obviously, the usage of structurally closed sections and favorable 

aspect ratios are priorities in the design of the machine. For each component, it is important 

that loads carried by a structural member be in plane to produce tension, compression or 

shear rather than bending. This is especially important in areas of concentrated loads such 

as bearing supports. For structures that see bending loads such as the machine base, the 

members in tension and compression must have adequate shear members connecting them. 

For structures that see torsional loads such as the column, all faces must support shear 

loads and should enclose the maximum volume. The open face of a bifurcated column 

requires a stiff perimeter frame around the opening to support the shear load. The shear 

load produces a bending moment in the frame that is maximum at the corners. The tension 

and compression members of the frame require extra support around the corners to prevent 

localized bending and the resulting loss of stiffness. In the designed layout, these physical 

aspects are taken into account in order to decrease the mechanical effects. 

Therefore, finite element analysis (FEA) is the proper tool to provide visual and 

numerical information required to evaluate competing structural designs and/or to improve 

the design iterations. A plot of strain energy density is useful in optimizing the thicknesses 

of structural members by thickening high energy regions and thinning low energy regions, 

thus trying to achieve a uniform distribution. A sensitivity analysis, obtained by varying a 

design parameter and observing its effects on a figure of merit, is useful to assess the 

impact of a design change. A parameter study is similar except that it extends over a range 

that hopefully encompasses the optimum. These techniques are most applicable after the 

conceptual stage of design. Ideally, simple finite element models should be developed 

concurrently with the design concepts since much can be learned about the general 

behavior from simple models. 
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3.4.3 Structural Stability 

Structural stability means that the metrology loop must remain robust through time to 

obtain error-free results either by mechanical compensation or software based pre-

correction. A previously addressed thermal stability is another aspect of this requirement; 

therefore thermal analysis of the structure must be included in the analytical results. By 

including this and other aspects in to the design, we are concerned with eliminating 

variable loads on the metrology structures and/ or making those invariant structures to ones 

that are unavoidable. Transient response of the system from the short-term load sources are 

mobile and variable masses within the system, friction in rails, constraints between moving 

components, inertial and process loads. Long-term load sources result from movement in 

the foundation due to settling or hygroscopic action and whenever a friction joint slips and 

releases built-up stress. 

 The separation principle needs to be applied on structure to understand better the structural 

robustness of the system. This methodology will eliminate changing forces from the 

metrology loop; however, this is hard to apply to the workstation in the purest sense. Even 

a separate metrology frame and system of sensors is used, this frame become awkward for 

three or more axes and the expense is unwarranted for this level of accuracy. On the other 

hand, other approaches might be used as a principle. For example, the effect of a moving 

mass can be separated out through compensation if the mass is constant or if an exact 

model exists and the change in mass is measured. In applying, the separation principle, the 

first step is to identify the metrology loop and the parts within it. The parts list for the 

workstation includes the main structures (base, column, etc.), the linear guides, the laser 

guide, the extrusion head, the workpiece, and due to overconstraint, the foundation and 6 

leveling caster with vibration dampers. The next step is to identify and classify the variable 

loads as separable, repeatable (or compensable) and non-repeatable. Large separable loads 

or ones that are easy to separate should be removed from the metrology loop while others 
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that are small relative to the process load may be ignored. Compensation can reduce the 

effects of repeatable loads but simply stiffening the structures may be the better solution 

since the effects of non-repeatable loads are also reduced. 

The base is the primary metrology structure for the laser workstation like the most other 

machine tools. It supports and is influenced by the weight of moving and non-moving 

structures, the part weight and variable loads such as process and inertial loads as 

mentioned before. The undesirable influence from primary movement is mitigated by 

eliminating overconstraint in the machine support. The simplest approach is to use three 

support points aligned with gravity and incorporating elastic or viscoelastic interfaces to 

avoid frictional hysteresis. The number of supports can be increased up to six (the number 

required for exact constraint) to distribute more uniformly the weight of the machine but 

this requires the constraints to be angled appropriately. The additional support points will 

not affect the stiffness of the machine base but they may affect the mode shapes and the 

degree of damping that can be gained from viscoelastic supports. For considerably larger 

machines that may require multiple base sections each section should have exact constraint 

support relative to the foundation and adjacent sections so that movement coupled from the 

foundation is a detectable using sensor between sections. This information can be used to 

calculate compensation or to automatically level the machine with appropriately placed 

actuators. 

The conceptual workstation will have a multi-piece base with a sufficient stiffness and 

damping (due to the effect of fasteners) so that non-compensable deflections are not so 

significant. The aluminum sigma profiles selected for this reason due to their high surface 

area far from neutral axis (important for bending) and their closed shaped inner structure 

(important for torsional effects). The jogging test of the servo driver shows that the upper 

machine base does not have sufficient stiffness to damp the movement of the y axis due to 
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to function or that simplify some other aspect of the machine. The principles of exact 

constraint provide guidance in determining the essential structural supports for and 

connections between components. The use of pre-qualified modules and subassemblies, 

while costing more per unit, reduces the time required to build the machine, reduces the 

chances of rework and increases the flexibility to reconfigure the machine for faster 

delivery or field retrofication. Therefore in the design stage, the workstation is designed by 

using standard parts and assemblies. In addition to that, the selection of the component 

builder companies is also important. The selected native company may have shorter 

delivery time and less cost with respect to competitive foreign companies, but the provided 

materials has dimensional inaccuracies up to 10 cm. The other important mistake is 

incorrect information of main CNC workspace which is given on the CNC machine label. 

The main CNC MAZAK FJV 200 has insufficient workspace on it so the main 

manufacturing is completed in universal milling machine of machine shop of the Koc 

University. The universal milling machine has inaccuracies up to 200 ߤm. This leads also 

additional manufacturing problems.  

Unfortunately, because of the aforementioned reasons, scraping, shimming and other fitting 

techniques are used and these decrease the manufacturing precision of the designed 

machine by means of main structure. On the other hand, at critical points such as main axes 

bearing locations, actuator flange plates etc. is manufactured in MAZAK FJV 200 CNC in 

high accuracies of this machine tool up to 50 ߤm. In addition to that, this method may 

require in-process inspection of certain features and may become impractical if too many 

tolerances stack up in the design. This trial and error method may criticize by some people 

and seem as trivial but such cases require correction either through simple adjustments or 

software compensation. Therefore each manufactured parts are tested and required 

arrangements are completed. 
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fastener locations is necessary and may require the additional connection such as long type 

nuts or connection strengthening plates. 

The base has six supports to the floor but the two rear and two front supports have 90°  
angled chasis support in the Y-Z plane to form the structural constraint. The instant center 

of the structure is approximately 1320 mm above the floor and placed on the X-Z plane of 

symmetry. The node of the torsional mode (given in Fig 3.10 - 53.783 Hz) of the base 

typically lies close to the instant center as in Fig. 3.10. Placing the node nearer the centroid 

reduces the inertia of this mode and increases its frequency.  

The two supports at the front of the base could also have constraints but it is more common 

to use flat pad air bearings, where friction provides the horizontal constraints. In either 

case, friction also causes over-constraint between the base and the floor and this over-

constraining is good for static and dynamic stiffness. However, bad for precision, if air 

isolators are used in the lateral direction this over-constrained structure is no more a 

problem or a benefit. On the other hand, air isolators does not have very high viscous 

damping that a requirement for dynamical coupling from the base to the floor. A more 

practical and feasible approach for this machine is using a viscoelastic material its 

maximum damping in a range from 10 to 100 Hz. The viscoelastic components which are 

used for the mobility and leveling of the structure are used in order to damp the 

aforementioned frequency levels. 

The guarding, operator control station and various utilities are not demonstrated in the 

figures. These are designed but in order to decrease the complexity of the system for the 

analysis is not included. The main effects of these components are mentioned in 

Productivity and Manufacturability part of this chapter. In the design strategy these 

equipment are supported from the base structure of the designed workstation. There will be 

reference features machined on the base to set up critical alignments. As mentioned before, 

the guarding is free standing on main chassis so as to be easily removed for transportation 
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or any major repairs or mobility requirement for the machine. Most utilities will be at the 

bottom part of the machine and have quickly disconnects from the machine. 

Apart from the chassis or main structural components of the designed workstation some 

subassemblies are included such as laser-extrusion head (X-Y axes) stage, powder storage 

and feed cylinders and laser feedback structure. 

The XY stage finalized after eight different designs. In the earlier design, the ܱܥଶ resonator 

is put on the XY stage and the fast movement is expected from that stage. This approach is 

useless due to the mass and dimensions of the ܱܥଶ resonator. In the other designs, the 

methodology is changed in to moving optic device but the question is the supplying the 

correct equipment which has high accuracy, speed and low inertia. The ball screw actuation 

mechanism is included in the later design, which is also not good idea to get rid of the 

required speed limitations. The rotating ball screw nut and stationary ball screw mechanism 

was thought to design but there is other transmission requirement for the rotation of ball 

screw nut is required. Therefore this design is also cancelled from the beginning. Finally, a 

belt system was included to the system. After that, different belt actuation systems were 

considered in the conceptual design stage. These design efforts are given in the following 

figures and the final design is already given separately in Fig. 3.9. 

In powder based fusion processes, powder delivery is the most critical and mandatory 

topic. The designed system is based on the pneumatic actuated piston on a doctor blade to 

spread the powder from the main pool to the processing pool. The beauty of this design is 

possibility of conversion to the counter rotating roller mechanism from mentioned blade. 

The mechanism has several variables that influence the bed density, the linear speed of the 

blade, feed ratio, blade roughness, blade geometry and layer thickness. The feed ratio and 

the layer thickness are controlled by the movement of the feed side and part side cylinders. 

The feed ratio is the ratio of the inward movement of the feed side cylinder to the outward 

movement of the part side cylinder. To ensure full coverage on the part side the feed ratio 
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It is easy to get the impression that this design is versatile and complex. Rather it is smaller 

and lighter than the equivalent designs in the industry. A key difference is the versatility 

and combined functions of the structure being long enough to support the other utilities. 

The Y axis is the heaviest part on that design. The decision to use a different actuation 

mechanism was considered carefully. On the other hand, its inertia and centroid base 

location will degrade these unwanted dynamic responses. In addition to that, the adaptive 

adjustment and created motion profile algorithm of the servo controller is also helped to get 

rid of with dynamic response problems. 

Table 3-5 The masses of the given assemblies 

Laser Cutting Machine mass (gram) 
Main Chassis 98695.25 
Front Y-axis 2198.49 
Fly Optics X-axis 400.61 
Table Front Z-axis 11531.33 
Laser Feedback 3478.23 
Powder Piston 1712.71 
Powder Sinter 1066.33 
Powder Sinter Space 1066.33 
Bottom Chassis  36066.12 
Total 156215.4 

3.6 Analytical Results 

In this analytical result part of this chapter, the simple test methodologies and the results 

will be given for X axis sub-assembly component in the order to understand the safe 

frequency zone for developed machine as in given Fig. 3.13. The results show that the first 

mode is far from the first mode of the chassis and beyond the working frequencies. 
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Table 3-6 Measurement results of the points in Fig. 3.12 

 X [°] Y [°]  X [°] Y [°]
1 -0.9 -0.4 9 -1.5 -0.1 

2 -0.5 0.2 10 -1.6 -0.1 

3 -0.5 0.2 11 -0.1 0 

4 -0.9 -0.4 12 -0.1 0 

5 0.2 -0.1 13 -0.2 -0.3 

6 0.2 -0.1 14 -0.2 -0.2 

7 -1.6 -0.1 15 -0.3 -0.3 

8 -1.4 -0.2    

The tensioning mechanism on the laser workstation is the belt itself. The belt is cut so that 

pulling the belt is possible at the disconnected parts which are fixed at the moving part of 

the X and Y axis centroid locations. In general, belts should be tight enough to minimize 

slack, but not so tight that they start placing a lot of stress on the motor shaft or pulleys. 

Once a belt is on, turn the motor pulley to gauge if there's too much resistance. If the belt 

makes and audible noise when it is plucked, it is too tight. The laser workstation operation 

should be nearly silent. In order to test if the belt is too loose, rotate the motor pulley back 

and forth. If the head moves back and forth in a synchronized manner with the AC servo 

motor rotation, then the tension will be okay. If there is a lag, the belt is too loose. A more 

quantitative test is to write a circle on the laser workstation. If any of the sides are flattened, 

then the belt on the corresponding axis is too loose. The results will be given in Chapter 5 –

Conclusion Technological Demonstration. 

There is other better way to measure these double axes inaccuracies such as laser 

interferometer, linear scale measurement or using robot arm probe etc. However, these 

methods require expensive infrastructures, which are out of the capabilities of the 
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laboratory. On the other hand, the following measurements are taken by using one axis of 

the laser workstation and laser displacement sensor is selected as measurement device. 

As mentioned earlier in Design Layout part of the chapter, the powder mechanism has 

several features in it. Therefore, a couple of tests are required in order to estimate proper 

powder sweeping parameters. Thus, fragmented materials are placed in feeding cylinder 

and then the sweeping cycle is started. The sweeping speed and the leveling ratios are 

estimated according to supplied materials which is relevant to the layer thickness and the 

layer thickness is the amount the part cylinder is lowered after each scan. The typical value 

of layer thickness used for mesh powders (<100 um) in SLS is approximately 150 um. 

Unfortunately the designed pneumatic actuated system is not sufficient for this purpose. 

According to our applications, the reverse turnable cylindrical sweeper would be better. 

However, the electronic system and the code have compatible with any changes on that 

system. The user need to plug the new actuator into the solenoid I or solenoid II output of 

Arduino board and change the firmware PWM frequency from the given firmware. 

On the other hand, the structural modal analysis results are promising. The first six modes 

of the designed workstation are given with bottom and without bottom chassis. The 

analysis shows that there isn’t any significant change. The analysis is completed in ANSYS 

12.0. The components which are given in Design Layout are sent from Solidworks to 

ANSYS in an assembly manner. Then the redundant details are decreased and the meshing 

(pre-processing) is completed in ICEM CFD. The used element geometry in modal analysis 

is in tetrahedral mixed (due to the 3D solid structure of the system). The boundary 

conditions are given in the following figures and the total deformations are also included in 

that figures for each mode.  
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 3.7 Recommendations for Design of Laser Workstation 

In this part of the thesis, the aim was to develop a conceptual design for a research and 

industrial purposed multi wavelength laser workstation. This conceptual design is deeply 

analyzed and manufactured in Manufacturing and Automation Research Center and 

Machine Shop, Koç University. The followings include a few remaining thoughts and hints 

on the design and the possible future steps required for workstation when they arise by 

means of funding and time. 

- Especially a manufacturing method which uses thermal energy should be considered by 

adopting some strategies for thermal management. These may increase the costs but the 

results will be remarkable (i.e. using machinable ceramic base material in cylinders and 

plates on powder part). These changes create the possibility of sintering  

- The placement of material in a structural design usually has the greatest impact on 

stiffness. These placements should be in the direction of tension, compression or shear 

except bending. Simple FEA might be useful in order to optimize the structural behavior. 

- Special leveler/anti vibration casters might be used in order to damp the system. Thereby,  

that the system would have mobility by means of transportation of the system. Deeper 

impedance math between the structure and damping mechanism should be applied in order 

to understand the required (optimum) parameter.  

- Design of Injector based System or Fused Deposition (FD) head: The developed front part 

of the machine is capable of using 21 2ൗ  type manufacturing. It is also possible to add 

robocasting system via injector exhaust system or fused deposition head. (i.e. in order to 

produce tissue engineering scaffolds, or other polymeric material manufacturing) 

- Strategies for the conceptual design: A number of useful thoughts and ideas are given in 

design layout part. A timing belt is the final decision on that and included in this system. 

On the other hand, the servos full closed loop capability might be added into the system in 
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4. Development of Optic-Electronic Hardware and Computer Software for Laser 
Workstation 

4.1 Introduction  

Many of the recent laser workstations involve automated devices for controlling the 

process, such as atmospheric, temperature, laser power, position and velocity control 

devices. These controlling efforts are due to the necessity of increasing the productivity in a 

manner of repeatability, accuracy and continuity of manufacturing. Therefore, almost all of 

the recent products are manufactured using automated processes which referred as 

automation. The basic elements of an automated system depend on the physics behind the 

production methodology, which would consist of optics, electronics, computer 

programming and mechanical design for this thesis. The mechanical design is already 

detailed in Chapter 3 Machine Design of this study. Herein, optical and electronic hardware 

and programming parts are deeply focused on. 

In the software programming part of this study, the laser workstation instructions are 

calculated, that command the workstation how perform their specific function. The 

developed laser workstation can perform the same instruction over and over or it can be 

programmed to perform multiple jobs simultaneously by using the developed software, 

which is based on MATLAB and uses lots of its toolboxes. 

Merely MATLAB software is not sufficient for commanding the instructions to the system. 

There is system specific electronic equipment that needs to be used to generate the required 

operations physically. These physical interactions between the software and the outer world 

are possible with basic electronic equipment such as microcontrollers, actuators, sensors, 

etc. An actuator conducts the required movement for the machine and basically, these 

would be the same like as workhorses of old-fashioned systems. In this thesis, in the front 

part (Module I) of the developed laser workstation, Alternative Current (AC) servo 

actuators are used and in the Module II galvanometric scanners and pneumatic piston are 
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used in order to position the laser and supply new layer on the manufacturing cylinder, if 

the workstation is powder based manufacturing mode. In order to control the required 

movement in precise manner, sensors should be included in to the system. The 

aforementioned servo motors and galvano scanners have their own built in sensor to 

measure the movement that they completed. Except position control, the laser power could 

also be controlled by using the prepared optical/ electronic feedback mechanism, which 

measures the melt pool radiation and plan to adjust the laser power according to that 

parameter. The actuator movement and the sensors feedbacks are fed in the controller of 

the system. The developed laser workstation has a hierarchy in its control mechanism 

which might be concluded as upper controller (PC with MATLAB) lower controllers 

(FPGA and microcontrollers with its firmware). These upper and lower controllers control 

the motion and operation of the system components based on inputs from sensors or the 

pre-programmed instructions. Simply, a controller would be thought of as "the brain" of the 

laser workstation. It makes calculations and performs the particular action.  

These calculations are mainly used in 2.5 axes based manufacturing. In 2.5 axes 

manufacturing, which could be solid freeform fabrication (SFF) or machining operation, 

objects are transformed from computer drawings into tangible objects in a specific axial 

movement order (X-Y axes and then Z axis). Currently, this methodology is popular due to 

the developments in digital fabrication and the link between computers and the machines 

using this technology is strengthening day by day. These technological developments 

involve some key points which are comprises by solving problems in each step such as 

importing the geometry, processing the geometry, create physical interaction between the 

digital and real world and manufacturing this virtual geometry. In importing and processing 

the geometry step, mainly depends on computer graphics. By using the former dedicated 

studies in this computer graphics, the stereo lithography file format (STL file) is selected 

for importing the geometry with its pros and cons which are explained in details in this 
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chapter. In order to import the physical part into the virtual part, also a 3D scanner is 

developed. Both of the importing methods mainly served to the MATLAB software as 

STL.  

The embodiment, which comes from computer aided design (CAD) programs to STL files, 

is used in prototyping and prototyping allows design engineers to share their work; the 

manufacturing engineers to estimate of the cost and difficulty of making the designed 

objects, thus completing a communication channel. Recently, prototypes are possibly 

manufactured mainly two different machines: computer numerical control (CNC) machine-

tools and three dimensional printers (additive manufacturing or free-form fabrication 

machines). All of them create a physical object that may or may not allow being fully 

functional products and each has its place in the design and manufacturing process by 

additive or subtractive manner.  

Both the subtractive and additive manufacturing made products which start as a rendering 

on the computer. CAD is the first step in this process, and the ability to render the three-

dimensional physical part depends on the output of the CAD modeler (i.e. Solidworks, 

Unigraphics, Catia etc.) and on the user of the technology. The contention is developing a 

laser workstation which inserts a step between the CAD and the physical model.  

The calculations mainly depends on importing a CAD neutral format STL as mention 

before and the solution of the calculations created in a neutral format G-code which is 

capable of open by the most basic text-read program such as Notepad, Textpad or 

Wordpad. The details are given in the following parts on G-code. Generated G-codes are 

sent to developed workstation line by line to control the process properly.  

In the following paragraphs, the mentioned details are explained in details on laser optics, 

laser hardware interfaces and developed laser material processing software. 
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4.2 Laser Beam Delivery 

The laser workstation is using two different type of the laser, an IPG YLP-1-120-50-50-HC 

Ytterbium fiber laser (50 Watt pulsed wave with Q-switching) and Teknofil ܱܥଶ	 (17 W 

continuous wave ܱܥଶ laser). The laser beam on IPG exits the cavity between 6 to 9 mm 

beam diameters with a beam quality [ܯଶ] of 1.5 to 2 [1]. The beam delivery system of 

Ytterbium Fiber laser initially consisted three coated mirrors, one dichroic mirror, Raylase 

SuperScan galvanometer and laser feedback system as given in Fig. 4.16. On the other 

hand, the ܱܥଶ	laser is capable of used the same system by changing a suitable mirror which 

could reflect the far infrared wavelength but transparent to 900 -1000 nm. The scanning 

system consists of a pair of scan head instrumented with 15 mm clear aperture for 

Ytterbium Fiber [1064nm] and ܱܥଶ [10640 nm] wavelengths. The scan head communicate 

with and receive motion signals from an Altera FPGA and Motorola 32 bit microcontroller 

based Raylase SP-ICE 2 controller. The scan controller receives motion and laser switching 

commands from the software in MATLAB.  

At the end of the IPG fiber there is a collimator which serves as the purpose of expanding 

or "up-collimating" the incident laser beam to a larger diameter collimated beam. 

Expanding the diameter of the beam incident on the focusing lens allows it to be focused to 

a smaller diameter at the focal plane. The diffraction limited spot size for a singlet lens can 

be estimated by the diameter of the first minimum of the Airy diffraction pattern in the 

focal plane and is given by,  ݀ௗ = 2.44 × ߣ × ௗబ                [4.1] 

where ߣ is the wavelength, ݂ is the focal length and ݀ is the diameter of the beam incident 

on the focusing lens. It is necessary to emphasize that Eqs. 4.1 predicts the theoretical spot 

size assuming the laser beam incident on the lens is perfectly collimated and composed of 

pure ܶܯܧ mode. The diameter of a multimode ܶܯܧ beam is given by [2] 
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݀ = ߣ2.44 ௗబ 2)	 + ݈ + ݈)                [4.2] 

In practice, industrial Ytterbium Fiber lasers always have a finite divergence and multiple 

modes. Multiple modes result in a larger beam diameter	݀ > ݀ௗ, typically increasing 

with input power (i.e. lamp current in the case of lamp excited solid state ytterbium fiber 

lasers) as higher order modes are emitted. Thus, rather than predicting the true focused 

beam diameter, Eqs. 4.2 merely serve as a lens selection guide. One method of maintaining 

beam quality across the input power range is to introduce a limiting aperture ahead of the 

laser cavity. The aperture only permits lower order modes to be transmitted at the expense 

of reduced peak power lost to the higher order modes. 

Ytterbium fiber ( 1.06 ݉ߤ) laser beam exiting the laser cavity,  at the end the collimator 

expands the beam for a diameter of 6 to 9 mm and pass through a 160 mm focal length 

lens, the diffraction limited spot size is around 20	݉ߤ. Finer spot sizes would be desirable 

in laser material processing esp. on micro machining for better feature definition and 

increased laser energy density. An additional beam expander would be possible which is 

depending on the clear aperture size of the galvanometric scanner. If we roughly calculated, 

the maximum beam expanding factor is approximately 1.5. This means that the minimum 

laser spot diameter could be 13.3 ݉ߤ with this selected galvanometric scanner, which has 

15 mm clear aperture. The expander allowed up-collimating the maximum 9 mm laser 

beam exiting the cavity to 13.5 mm. The existing focusing lens for Ytterbium Fiber having 

a 14.92 mm clear aperture was retained [3]. The ܱܥଶ lenses have also similar properties. 

These limitations prevented the usage of a larger expansion ratio over 15 mm by using 

beam expander and hence smaller spot size. 
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With focusing optics and this quality is considering the fact that most industrial ytterbium 

fiber lasers have ܯଶ typically one order of magnitude larger owing to the small 

wavelength. With known ܯଶ, the hyperbolic relation for the beam radius (1/݁ଶ) as a 

function of distance from the laser's exit is defined by [5] 

(ݖ)ܹ = ܹ ൜1 + ቂܯߣଶ (௭ି)గௐబమ ቃଶൠభమ               [4.4] 

where W(z) is the radius at a distance z from the laser exit and a is the distance of the waist 

from the laser exit. An approximation for the beam diameter at the focal plane of a focusing 

lens gives [5] 2 ܹ = ସఒగ ଶௐೞ  ଶ                  [4.5]ܯ

where 2 ܹ is the beam diameter at the focal plane, ݂ is the focal length of the focusing lens 

and 2 ܹ௦ is the beam diameter incident on the focusing lens. Substituting equation 4.3 

into equation 4.5 yields, 2 ܹ = ଶௐೞ 2 ܹ2[4.6]                 ߚ 

From this equation 4.6, it is apparent that given a fixed focal length and a laser with fixed 2 ܹ and 2ߚ, a larger diameter beam incident on the focusing lens results in a smaller 

diameter focused beam. The technique of obtaining this effect is to expand or up-collimate 

the beam via a beam expander prior to focusing it. If the beam is expanded, it is 

recommended that the expansion be done at the beam waist since the beam has the highest 

degree of collimation (minimum divergence) and hence least distortion at this point. 

The distance between the present location of the laser cavity's exit and the location on the 

laser table where the feedback mirrors presented might be exactly the "exit to waist" 

distance for this particular laser. The laser beam exits the cavity at approximately 6 mm 

diameter (1/݁ଶ). A 2x beam expander might be used in a design to acquire smaller spot 

diameter as mentioned before and the same clearance parameter of the galvoscanner limits 
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the design of beam expander (max. 2.5X for this case). The measurements, calculations and 

design should be completed according the same criteria as in Ytterbium. 

In order to provide a stable, flat, covered platform for laser beam delivery and optics, an 

optical breadboard implemented on the system. The table, made of 12.7mm of thick 

aluminum tooling plate flat to ±	0.15	mm over 0.3	݉ଶ. A number of M6 holes at 25.4 mm 

spacing were drilled and tapped to enable easy and flexible installation of optics as shown 

in Fig. 4.16. A combination of right angle kinematic mounts and laser tubes was assembled 

for the beam delivery of this table to allow the galvanometer scanners to redirect the beam 

into the fabricating piston. Since accumulation of dust on laser mirrors and lenses can lead 

to severe degradation, fans would be installed on the cover to provide continuous purging 

air flow over the optics. 

Installation of the breadboard with associated chassis mounts resulted in an increase in the 

height of the scanners above the bed by a possible 170 mm  to a total of 320 mm. The laser 

beam delivery configuration and experimental setup for monitoring the laser material 

processing is shown in Fig. 4.16. This setup is constructed on a breadboard for an in-house 

developed machine. Similar monitoring systems have been developed for other laser based 

production processes as laser cladding [6-8], laser beam welding [9-12], laser cutting [13], 

laser hardening [14] and selective laser melting [15]. In the developed setup, the laser 

source is deflected by means of a reflective mirror which transmits the visible spectrum. 

4.3 Hardware Interfaces 

Generally, in the industry the feeding system, laser position and velocity, atmosphere and 

pistons are controlled by combinational work of the electronic components such as motor 

drivers, microcontrollers and computers. In this thesis, as parallel to the industry, the 

aforementioned properties such as feeding, laser position and velocity etc. are also 

automated. However, during the prototyping stage, in some manner the laser workstation is 

tested manually due to the tests of functionality. After doing proper tests the designed 
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input parameter. SP is the time taken by the scanner to move the beam a length of SS 

LSB's. These SP and SS are also depends on the galvomotor drivers. For the developed 

system, the step period (SP) is expressed in ݏߤ and the allowed for SS is 1-32767 LSB's 

and for SP is 20-65534 ݏߤ.  Therefore, the scan speed is ܸ = ௌௌ×ௌௌ×ଵషల 	= ଶோ௧(ఏ)×ଵషల×ௌௌହହଷ×ௌ                [4.8] 10ି used in the formulae is for converting the seconds into microseconds. For uni-

directional or bi-directional raster scanning, the scan spacing is the spacing between two 

successive scan vectors or the case of concentric contour scanning or spiral scanning, the 

scan spacing is the spacing between two successive 360° scan paths. For a given geometry, 

the smaller the scan spacing, the higher the number of scan vectors needed to "fill" the 

geometry. For processing a part, the scan spacing is a process parameter that is determined 

at the time of creation of the scanning geometry file that is derived from the sliced CAD 

file. The smallest scan spacing theoretically is LSB as given before. For the laser 

workstation, with the beam delivery set-up described before, the scan radius R is 160 mm. 

Hence, the smallest scan spacing available is optic dependent and for this case 1.7 ݉ߤ. For 

direct laser material processing of metals and cermets in general, fine spacing or order 127-

 are desirable for full density processing, superior surface finish (inches 0.005-0.0002) ݉ߤ 5

and to avoid undesirable defects such as hot tearing and solidification cracking [17]. 

On the other hand, for the module I of the developed laser workstation, the workspace is 

220 mm x 520 mm. The changeable head apparatus gives to chance to change the 

manufacturing type from laser cutting into fused deposition modeling as mentioned before. 

However, different from module II this part of the machine is using mm based scale and the 

measured tolerances are depends on the driver electronic gear ratio. The selected industrial 

servo drivers have the capability of working with the electronic gear ratio which mainly 

changing the gain from the driver. However, the higher gear ratio means higher velocities, 

but there is a tradeoff in resolution. In addition to that, if the selected gear ratio is beyond 
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Practically, the laser is controlled via signals applied to the DB-25 connector through 

Raylase IPG Interface Card. Please refer to the connector interface description table above 

for pin designation and operating levels. DB-25 is a standard output, which has 25 pins on 

it, from pin 1 to 8, the eight bit bus for the output power setting. Pin 1 is assumed as the 

least significant bit (LSB) and pin 8 is the most significant bit (MSB). This means that the 

0...255 should be applied to these pins, which corresponds to the power tunability 0...100% 

of the specified nominal value. Pin 9 is the "Latch" control wire in order to store power 

settings into the laser. The data are stored in to the laser simultaneously with the rising 

(type B, B1) or falling (type B2) edge on the pin 9. Data on the pins 1-8 should be stable 

during the following time frames for type B: 500 ns before rising edge on pin 9, for type 

B1: 1us before and after rising edge on pin 9 and for type B2: 20 us after the falling edge 

on pin 9. IPG recommends supplying single positive pulse with duration longer than 2us to 

latch the data into the laser. Time interval between adjacent latching pulses should be 

longer than 100 us (latching frequency less than 10 kHz). The red guide option is beneficial 

property for the view of the material processing due to proper adjustment of the processed 

material. Therefore, Pin 17 is connected to 5+VDC power supply voltage for the guide 

laser. The red laser can operate independently of the main +24VDC supply. This ensures 

safe laser class 1 operation of the module, even in case of laser electronics malfunction. In 

order to control red guide laser Pin 22 is used. By applying HIGH to switch the guide laser 

ON and LOW to switch the guide laser OFF. The laser is activated the Master Oscillator 

(MO) and Booster modules of the resonator as shown in Figure 4.10. Pin 18 is the Master 

Oscillator (MO) ON/ OFF signal. The MO should be switched ON at least 7 ms before 

switching ON the Booster (BS). It can be switched OFF simultaneously with BS. After 

switching ON the MO, the laser starts to consume more electrical power and emits remnant 

power to the output even when BS pin 19 is LOW. The average optical power of the 

operating MO passes through the BS without amplification and its average value is 
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If the supplied PRR is out of the specified range (or missing the signal) the laser safety 

circuit will substitute missing pulses or limit the PRR. The laser emission is not allowed 

simultaneously with the guide laser operation. This means that BS is the blocked internally 

during the guide laser operation. If the Emission Modulation (pin 19) was set to HIGH 

level during guide laser operation, the laser will not emit power, and will not start to emit 

even after switching OFF the guide laser. In order to reactivate the laser emission (emission 

modulation) the pin should be reset. It is allowable to switch ON and OFF MO during 

guide laser operation. As any type of industrial machine, emergency stop is mandatory 

specification of the laser system; therefore, Pin 23 is used. It should be set to HIGH for 

normal operation. In case of dropping this pin to LOW state (even for a short period) the 

laser automatically switches OFF (similar state when both MO and BS pins are OFF) 

independently of other control signals. It is necessary to drop both MO and BS pins (if they 

were in HIGH state) to restart laser operation. For laser operation pin 23 should be set to 

HIGH at least 2us before supplying ON signals to MO and BS.  

This simple procedure is used in order to use the laser in required power. The purchased 

Ytterbium laser resonator equipment is very expensive and maybe redundant for a starting 

project like this research. However, this expense is make sure that the laser has robust and 

stable laser output for using in material processing and this laser is useless without the 

developed computer software by means of position, velocity and power settings 

adjustments. Therefore, MATLAB software is used to control the process and give proper 

calculations. The developed process control software was written in MATLAB (Windows 

7 operating system). MATLAB software sends the coordinates and commands for scanning 

to the SP-ICE 2 controller, laser scanning is initiated only after all the coordinates has been 

downloaded into the scan controller's vector table. The time taken to load list of vectors is 

increased as the number of vectors is increased. Thus, the time delay between starting a 

vector list's load operation and initiation of scanning is variable. In addition, the Raylase 
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SP-ICE 2 supports double buffering; this provides the ability to load a vector list ahead of 

manufacturing time. Each buffer has a job limit as 500000, which is well enough for the 

workspace used in the processing operation.  

On the other hand, for Teknofil ܱܥଶ, the duty cycle of the LOW Pulse Width Modulation 

(PWM) signal is used to control the power. Except the SP-ICE 2 card, the ܱܥଶ laser is also 

controlled through the Arduino based microcontroller (i.e. for the Module I of the designed 

machine). This electronic hardware and is firmware is explained in relevant section by 

details. It is also to initiate the emission by using multiple revolute potentiometer and start 

button. However, this is not guarantee robust and repeatable process parameters due to the 

manual operation. 

The mentioned laser power synchronization with the laser position is an obligatory 

specification of this system for ܱܥଶ and Ytterbium fiber laser. In order to understand the 

synchronization  of laser scanning for a particular layer with the start of the laser power 

control, it was necessary to have a timing diagram according to the working mode of the 

selected laser as in Fig. 4.12. On the other hand, the power control of the ܱܥଶ laser is 

manipulated with low state duty cycle (DC) of 20 kHz PWM signal. The BNC input of the 

power supply for resonator is the physical input for that purpose. This hardware is 

controlled in Module I via Timer 2 of the Arduino and Port C laser I/O interface. In order 

to turn off laser, DC should be 100 % (like continuous 5V) and for 50% power output DC 

should be 50% LOW. 
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via software, therefore need proper adjustments before using it. Table 4.2 illustrates this 

synchronization capability of the motion comes from the delays. 

4.3.3 Optical Feedback System 

Even in the process modeling part a system model is given, there are lots of boundary 

conditions and assumptions in order to calculate the system response. These assumptions 

simplify the system, but also alienate from the real process and estimating with an error. In 

literature, tons of other modeling approaches beyond the given in Chapter 2 are available 

such as [13, 20, 21] Some of the given methods depends on the “black box modeling” (via 

system identification) of the process and controlling according to that identified system. In 

addition to that, the feedback system is also preferred method for validating the 

calculations of given system model. 

Basically, the feedback systems are the part of the control systems which has inputs and 

outputs. The changes of input parameter are used to hold the system in a requested state. 

On the other hand the system response of the given input is referred as output which gives a 

measure of the state of the process and its quality. The feedback system should be measure 

processing inputs such as beam power, size and velocity (secondary outputs). Other process 

parameters are detailed in several sections such as software details, process modeling etc.  

Real time measurement of the primary outputs of the system is difficult to detect directly 

and extremely important, while the process is in progress. These primary outputs would be 

penetration depth, bead width, reinforcement, heat affected zone (HAZ) size, 

microstructure, mechanical properties (hardness and strength), residual stresses and defects 

(such as porosity, inclusions, cracks , undercut etc.) whose require destroying the part to 

measure. Oppositely, the secondary outputs of laser processing which are temperatures 

(temperature distribution, peak temperatures, cooling rate), melt pool behavior and acoustic 

emission are easier to measure.  
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the source and from the resonant frequency of the detected signal the cutting front 

geometry especially kerf width and depth of the cut.  

Except acoustic emission and audible sound sensing, the IR/ UV radiation measurement is 

other possibility for getting feedback from laser material processing. A relation is 

inevitable by its nature between high-temperature plasma and emitted ultraviolet radiation 

which would provide a predictive indication of laser processing. In addition to that, the 

changes in the infrared signal also give on variations in the melt pool. Generally, the 

infrared radiation is measured with a germanium photodiode fitted with silicone filter with 

a spectral range from 1.0 to 1.9 ݉ߤ which is similar with the used one in this thesis. Other 

essential measurement is detected with gallium phosphide (GaP) photodiode which has 

spectral range 0.19 to 0.52 ݉ߤ. The generated laser power is proportional with the signal 

intensities which easily affected by atmospheric conditions. The Fig. 4.16 shows for the 

possible setup which is not suitable for this study. However, in order to develop better 

feedback system the former studies should be understood with the physics behind it. 

In the literature, especially in the heat transfer books, the fundamentals of radiations are 

given [22]. Thus, it is good to know about these physical phenomena “radiation” for the 

future developments of the laser feedback system. Physically, above the temperature of 

absolute zero (0 K), all objects emit infrared radiation, which is part of the electromagnetic 

spectrum from 0.75 to 10ଷ݉ߤ. The ratio of the radiant energy with compare to the 

blackbody at the same temperature is defined as emissivity. Emissivity is also depends in 

which direction of the incident radiation came and is highest in the normal direction 

(proportional with cosine). The infrared radiated bodies would be classified into three types 

related to the spectral characteristics of radiation; Blackbody radiation, emitted from a body 

with an emissivity of one. Theoretically, this body absorbs all incident radiation but reflects 

none. Graybody radiation may be defined as one for which ߙఒ and ߝఒ are independent of ߣ 

over the spectral regions of irradiation and the surface emission. In selective body (non-
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(i.e. Pyroelectric Devices, Thermocouples etc.) or photon detectors (i.e. photoconductive 

detectors, photo-resistive detectors, photo-emissive detectors or photovoltaic detectors 

etc.). In temperature sensors, the lattice heating is generated because of absorbed radiation, 

which also changes the electrical properties of the transducer. On the other hand, with 

photon detectors, absorbed radiation directly produces a change in the electrical properties 

of the detector; therefore these sensors have faster responses. 

The detection scheme also an important factor in order to collect the information correctly. 

Single type, linear type or array scheme creates possibility to detect the signals according to 

the usage of the sensors. 

In addition to the collecting the surface temperature information, imaging methods would 

improve the quality of feedback mechanism by concluding the relation between the 

captured image and collected temperature data. The image processing for online laser 

material processing is expensive by all manners. Especially, if the case is thermal imaging, 

the cost of the acquisition equipment and the complexity of programming are high with 

compare to the optical imaging and its processing. However, an imaging methodology 

would add great advantages such as estimating molten pool geometry, kerf size. The 

required equipment would be high speed camera, high sampling rate data acquisition 

system, powerful computer processor etc. and in programming perspective the image 

processing algorithms could be complex. 

In this thesis, the aforementioned topics are studied carefully and later on the sensors are 

selected according to the planned applications of the developed system. In the preferred 

design, the laser is deflected by means of semi-reflective mirror through galvoscanner with 

f-ߠ focusing lens. The focusing lens has a focal length of 160 mm. The radiation from the 

melt pool is transmitted through the f-ߠ lens, scan head and dichroic mirror to beam 

splitter. 
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However, the objective of the usage is to understand the relation between the camera image 

and the simultaneously captured photodiode signal. In other words, the camera is used for 

calibration of the real time photodiode sensor. The CMOS-photodiode couple could also 

compensate the region of the captured signal. CMOS detects local radiation intensity; on 

the other hand photodiode collects global radiation intensity between the selected 

bandwidth. 

The selected feedback mechanism brings the problems with it due to the sensing 

technology. The most important problems that photodiode would have the plasma 

interference and requiring the emissivity data of the processed material. For reliable 

monitoring without plasma interference, the incoming spikes due to that should be 

differentiated (by using additional UV sensors or proper filter selection). This 

differentiation would increase the detecting signal-to-noise ratio.  

There should be taken couple of precautions for protecting the system and acquiring proper 

data against the explained problem. First of all, the sensor must be selected according to the 

proper central bandwidth that the system is designed to. In order to guarantee the 

wavelength range, couple of optical filters is implemented into the system. In addition to 

that focused beam would damage the sensor due to the higher intensity that the radiation 

has. Naturel density (ND) filters are added into the system to protect the sensors against the 

possible overexposure. Moreover, the captured images would also filter for properly 

detection of required feedback. In Image Processing Toolbox, lots of already prepared 

function is available for that reason. For example, in order to identify molten pool library 

edge detection algorithm would be useful. 

The mentioned case is sufficient, if the monitoring is required in order to collect isotherms 

or temperature gradients with photodiode-CMOS couple (knowledge of the emissivity is 

not essential) and some estimation is also possible using single scan track on a test plate, 

which will be mentioned in Chapter 5 Technological Demonstration. On the other hand, for 
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precise determination of the temperature, the emissivity value for the section of interest 

needs to be added. 

Before finalizing this section some of the optical based setup requirements are given such 

as cleaning the dust on the optical equipment, match the image grabber resolution with 

camera resolution (to avoid image digitization noise), CMOS camera offset noise etc. The 

feedback system should have test and validated. 

4.4 Developed Laser Processing Software 

Most of laser material processing software includes three parts: (i) interface software; (ii) 

data processing software, and (iii) model creation software. The developed MATLAB 

program supports IGES, STL and G-Code file formats. Design models can be created by 

any computer aided design (CAD) systems and then translated to the STL format. The 

optimal path orientation should be given to the data processing software for part building 

and to slice the CAD model in the required layer thickness. The software allows the user to 

view the sliced data in geometry window. The model creation software is used to control 

the part-building process. Operating parameters must be appropriately defined within the 

program in order to create a part accurately. Model scaling is also supported by the 

program sub-functions. Some of the important process parameters included in the laser 

processing software will be described later. 

The developed software is using basic principle rapid prototyping algorithms such as 

slicing, which is novel for Manufacturing and Automation and Research Center. The 

geometries are initially generated using a three-dimensional CAD system, can be fabricated 

directly without the need for process planning or computer aided manufacturing (CAM) 

background. In addition using the STL or IGES file types, the software is capable of 

processing the pictures taken by the developed 3D Scanner. The laser workstation software 

needs to be capable of generating laser path for additive or subtractive manner to send the 
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generated commands to the related controller/ actuator. The details of the algorithm are 

presented in the following sections. 

4.4.1 Importing Geometry by Reverse Engineering  

The external shape features of arbitrary objects have been widely scanned by using 3D 

scanning systems. This technology is used for many years in industry in reverse 

engineering part inspection and automated design. The decrease in the cost of this scanner 

equipment has led to its increase usage for other applications such as rapid prototyping, 

video gaming [24], e-commerce, apparel industry [25], digitizing of cultural heritage 

artifacts [26] and in the biomedical field. The motivation to develop a 3D scanner is due to 

the relation of this thesis with some this application list. In addition to that, the newly 

entered biomedical applications are another cause to develop these system algorithms. 

Especially in biomedical engineering, 3D scanning is used by including anatomical part 

reconstruction [27],orthodontic treatment planning [28], cranial deformation research [29] 

cartilage morphology study [30], anthropometric data collection [31] and various forms of 

surgery (plastic and maxilla-facial for example [32]. Beyond that surgical based biomedical 

applications, by using this technology  prosthesis or handicapped equipment would be 

easily manufactured [33]. 

Different techniques are available in the literature for 3D model of object digitization. Each 

of which has wide range of equipment cost, different level of achievable accuracy and 

details. Time-of-flight range finders, stereoscopic image-based techniques [34], shape-

form-silhouette algorithms, structured light techniques [35] and laser light sectioning 

methods [36] are some of the methods which are studied recently. 

The advancements in camera technology and computing power brings the possibility for 

3D scanner as economic and application specific. For this application, the overall objective 

is the development of a simple 3D scanning system and algorithms for laser workstation 

applications with underlying goals of cost effectiveness and versatility as designed 



 

 

Chapter 4: Development of Optic-Electronic Hardware and Computer Software  112 

 
 
 
 
 

machine. Laser-light-sectioning technique is accepted as main digitizing method because 

easier to atomize and write the algorithms. During the development of 3D scanning 

process, calibration, image and data processing and surface construction topics are covered. 

The demonstration of the system was also an objective and testing this system on multiple 

tests. 

Different methods for accomplishing various stages of scanning process have been 

examined with their advantage and disadvantages. Due to the feasibility, the laser light 

sectioning technique is applied and this technique might be used in several areas of reverse 

engineering. 

The calibration procedure is simple and open to the development, the transformation matrix 

is acquired by using a dimensionally-known geometry. The secondary scan is normalized 

by this transformation matrix. This approach is similar with Direct Linear Transformation 

(DLT) algorithm with least squares (LS). Automated laser light movement, image taking 

and image pre-post processing is supported by Laser Workstation software. 

In this section of this thesis, an overview of 3D scanning technology and current literature 

is also given on that topic. As mentioned before, there are different technologies for 

digitizing 3D models of objects with hardware cost, accuracy level and detail in the virtual 

models. In the literature, [1, 2, 19] high-level reviews of 3D scanning techniques are 

possible with numerical representations. 

In Manufacturing and Automation Research Center, contact-based 3D measurement system 

is available (Coordinate Measuring Machine – DEA). Generally contact-based 3D 

measurement equipments are very precise with specific configuration, which requires 

climate controlling environment due to mechanical system that the device has. On the other 

hand, the main disadvantages are slowness, expensive and not easily automated for 

scanning complex shapes (i.e. machining tool helix scanning, machine surface scanning est. 

3 days to scan) In CMM,  the coordinates of a probe are recorded when it is physically 
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brought in contact with the object; this tends to be a very manual process [33]. Therefore, 

this contact based systems are very useful for checking the manufactured geometries (i.e. 

checking the boring tolerances such as diameter or cylindricity of an automobile engine) 

with a conditioned environment as mentioned before. This device is not useful for rapid 

manufacturing based reverse engineering and also has Cartesian coordinate constraints. 

The proposed method is a basically non-contact 2.5 D active system to measure 3D surface 

information. The active scanners actively emit some kind of radiation or light, sometimes 

using textures and masks. Then detect the light's reflection of the object's surface using an 

appropriate sensor [33]. The illumination sources could be different from device to other 

device, such as coherent light (laser) or incoherent light (white light), with varying 

wavelengths or bandwidths [33]. The computational costs of the active systems are less 

with more accurate results.  

In the proposed algorithm, laser light sections are used to derive data coordinates (point 

cloud) via optical triangulation approach. Laser light is used as the illumination source. The 

principle behind optical triangulation is follows. A focused light beam of light illuminates a 

line on the surface of an object. The sensors collected the reflected light beam and the 

center location of the spot is processing afterwards by filtering and noise cancelation. If the 

illuminated point on a line is traced back to the source, the point on the surface of the 

object could be revealed as shown in Fig. 4.17. This location, the camera’s line-of-sight 

and laser beam form a triangle which has the following geometrical relationship. Spot 

location on the sensor u, the triangulation distance b, the angle between the laser beam and 

the camera ߙ and camera’s focal length of ݂, from this given parameters the coordinate 

point of cloud might be calculated from, ݔ = ×௨×௧(ఈ)ି௨                    [4.11] ݖ = ××ୡ୭୲(ఈ)ି௨                    [4.12] 
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patterns on scanned surface. This multi-point calculation has a couple of drawbacks such as 

requirement of complex algorithms in order to separate the adjacent point location from 

each other or light combination which harden to filter the reflected light on scanned 

surface. Hence, Multi-stripe Laser Technology or spectral grid generation techniques help 

to eliminate these drawbacks. Steinbichler, Inspek and 3DMD are some companies that use 

this technology. The final time-of-flight based devices are also using laser light to detect 

the distance from the reflected surface, since the speed of light is approximately known. 

The accuracy of the measurements depends on how accurately the speed of pulse actually 

measured. The speed of light would be effected any physical change of the environment 

and therefore this method should be carefully calibrated (environmental light detectors, 

temperature sensors etc.) before any usage. 

Depending on the technology used in the scanning, the returning data type can come in 

different forms. Most of the 2.5D systems take pictures what is named as a range image. 

This is similar to take pictures from a web based camera, except rather than each pixel 

storing RGB color data (i.e. MATLAB Image Processing Toolbox). Multiple range images 

are processed and then merged in order to create (x, y, z) points in 3D space, referred 

generally as a point could. A 3D model is generated by connecting these data points with 

their adjacent points to form a tessellated, polygonal or NURBS based surface. 

After post processing of this point clouds, it might be used for a number of industrial 

applications including part inspection, rapid prototyping or reverse engineering. 

Reverse engineering is the process of creating processable parts via Computer Aided 

Design (CAD) tools so that it can be copied and re-manufactured. After reverse 

engineering process, the geometries could be manufactured for functional product or 

prototyping by using stereolithography methods 3D Printing or SLS. The video gaming 

market has also great influence on 3D scanning industry, the requirement of artistic 

rendering images and movements create great funding in that area of research. 
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In this thesis, the geometric construction and its re-manufacturing is important rather than 

the system by itself.  

However, the methodology, fundamentals behind it is given so far. Some industrial search 

would be helpful in order to increase the chance of future development and therefore Table 

4.1 is given. Beyond the literature and application of 3D scanner, this 3D scanner is 

developed in order to acquire geometries for Laser Workstation software. None of the 

current laser workstation software available in the literature has such a property combined 

with the 3D scanning. However, the biggest missing part is the requirement of post-

processing in scanning process. 

Table 4-1 Commercial 3D Scanners 

Company Scanner Type of technology 

Konica Minolta Vivid 700 and 910 Laser Light 
Stripe 

Cyberware WB4, WBX Laser Light Stripe 

Metris ModelMaker Laser Light Stripe with digitizing arm 

Polhemus FastScan Handheld laser light stripe 

Shape-Grabber Ai310, Ai810 Laser light strip 

Next-Engine Desktop 3D 
Scanner 

Multistripe 
Laser Technology 

3D Digital 
Corp. 

EScan Laser Light Stripe 

Vitronic Vitus Laser Light Stripe 

Creaform ERGOScan Handheld laser light stripe 

3DMD 3dMDface Active stereophotogrammetry 

 

Beyond the literature and application of 3D scanner, this 3D scanner is developed in order 

to acquire geometries for Laser Workstation software. None of the current software has 
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relative to laser line plane. Each segment is captured by using camera until the trace is 

moving on the complete range image closed geometry. Multiple sections of the images are 

obtained by rotating the geometry and yielding a complete planar cross-section. Multiple 

360° planar sections are stacked until the data points giving the construction of the 

geometry. 

In the light of the forgoing points, this presented system herein consist a 10 megapixel web 

cam, a focusable line laser, two E-Minebea step motor (1.8° nominal step), step motor 

drivers(with microstepping) and Arduino board. The microcontroller send signal to motor 

controller in order to rotate the table and laser. At each rotation of the laser the MATLAB 

program is taken picture. After finishing each segment the part motor is changing the view 

by using main part step motor. The device is calibrated by using the pre-defined geometry 

(calibration box) scan. However, after a couple debugging of v2.0, it is possible to add this 

feature in the system. Therefore a center catching algorithm is written and a proper 

calibration paper is attached on system. 

The laser is starting at 15° to take picture and turns approximately 90°. Between 15° to 90°,  
a lot of redundant pictures are unnecessarily captured. The user might delete them by using 

the developed software in order to process necessary pictures. The captured images are 

filtered in software before calculating the points. 

In this setup, one of the most important design decisions comes from the hardware setup 

which is the angle at which to locate the web cam. The triangulation angle is mainly 

depends on the measurement range and resolution of the system in which the plane of the 

laser line and optical axis of the web camera are reasons for that dependence [39] The 

larger this angle, the larger the observed displacement of the line, which means more 

details would be scanned. If the object has variable surface topography, a smaller 

triangulation angle must be used with the trade-off in poorer details. Therefore in the 

designed system this angle would be changeable within a limit before scanning any object.  
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After applying these steps in order to collect surface data points, the set of coordinates are 

mapped to the Cartesian plane using the transformation matrix obtained from calibration 

box data. Some regions from the captured images tend to be affected with noise, showing 

excessive steep slopes and frequent outliers. This is due to the quality of light signal where 

it intersects the edges of the scanned geometry. Therefore, some point cloud coordinates 

should be neglected in the post processing of those points. 

Micro-movement of the laser motor enhances the resolution of the surface scan. In addition 

to that movement based fine tuning; the sample overlapping is also suggested to increase 

actual surface points. Therefore, the residual error would be also dealt with. Another tuning 

algorithm is adding curve fitting algorithm to the software. The software will fit a curve to 

the points that it processed. From the assumption of the smooth point collection the curve 

fitting technique would increase the minor fluctuations from the collected data. 

The captured images or point clouds produced by 3D scanners are typically not used 

directly as stated before. In order to use scanned data, a 3D model is required. The part of 

converting a point cloud into a 3D model is referred as geometry reconstruction. In this 

reconstruction process, all of the range data precisely registered into a common reference 

system and connecting adjacent points in order to combine the data into a single continuous 

geometry. A lot of research conducted in the area of geometry construction. A review of 

these construction methods can be found in [40]. Some these solutions use the original 

structure of the scanned data. The researcher work on range images which have been 

registered into a common reference system (as described above), process them as surfaces 

and fuse those geometries together. This is referred as integration. Although the captured 

images may be collected continuously, they are still not combined into one surface after 

processing. The area of captured image integration may be found [41, 42]. Unfortunately, 

like captured image collection itself, 3D stitching is quite complex, computationally 
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the system in order to digitize the geometric information of already generated geometries. 

The digitized or created geometries should be converted to STL file format or IGES as 

stated before. This has become a de facto standard and has its own advantages or 

disadvantages. Some of the advantages regarding to STL file format is its platform free 

format, easy to generate, possible to create supporting material toolpath (by using normal 

vector method). On the other hand, some of disadvantages are inconsistency problems such 

as incorrect normal vector [43, 44], second malformation problems such as cracks and 

holes that exist; and illegal overlaps in the STL geometries. The drawbacks of the 

developed software are counted in disadvantages due to the input geometry type and there 

are measures to take in. However, in this study the STL files are assumed as defect free and 

faultless. Even this is the case; the geometries should be checked before slicing operation 

carefully with software programs such as MAGICS (from Materialize, Spin-off Company 

of Technische Universitaet Leuven). This software is capable of repairing STL files and 

showing defects on the selected geometries.  

STL files can be output as either binary or ASCII (text) format. In the developed software, 

ASCII compatible STL files are used. This format is less common than binary format due 

to giving every detail explicitly. On the other hand, ASCII format is easier to understand 

and implement into any code. An STL file consists of list of triangular facets which are 

created during tessellation. Each triangular facet should be uniquely identified by a unit 

normal vector and three vertices or corners without any overlap as stated before. The unit 

normal vector is a line that is perpendicular to the triangle facet and has a length equal to 

1.0. This unit vector also useful while creating the toolpath for support material as stated 

before. The STL file does not include any unit only the numerical vertex points are 

represented. Therefore, the operator should know whether the main unit is mm, inches or 

some other unit. Each triangle has twelve numbers by each three numbers showing one 

vertex. 



Ch

 
 
 
 
 

Ex

"o

co

de

int

by

Th

no

va

hapter 4: D

xcept the co

object name”

ould be und

escribed in, 

teger that in

ytes long.  

he record of

ormal vecto

alues of 4 b

Developmen

oordinate p

” delimited 

derstood ea

an 80 byte

ndicates the

f the 50 by

r, 3 floatin

ytes each to

nt of Optic-

Figure 4.2

oints the A

with “solid

sily using r

e header th

 number of 

yte face incl

ng values of

o describe t

 

 

-Electronic 

20 ASCII S

ASCII file a

d", "outer lo

right hand 

hat can be u

f facets in th

ludes 3 floa

f 4 bytes e

the second v

Hardware 

TL geometr

also include

oop" and "en

rule approa

used to des

he object an

ating values

ach to desc

vertex, 3 fl

and Comp

ry file 

es some tem

ndloop". Th

ach. A bin

scribe the p

nd a list of f

s of 4 bytes

cribe the fir

oating valu

puter Softw

 

mplate word

he order of 

ary STL fi

part; 4 byte

facet record

 each to de

rst vertex, 

es of 4 byte

ware  122 

ds such as 

the vertex 

ile can be 

 unsigned 

s, each 50 

escribe the 

3 floating 

es each to 



Ch

 
 
 
 
 

de

ch

Th

sli

Th

ea

the

po

ac

hapter 4: D

escribe the 

hecking purp

he ASCII ty

iced by the a

F

he slicing al

ach layer. Th

e computer 

owder diam

ccording to t

Developmen

third verte

poses. 

ype STL is g

algorithm w

Figure 4.21 T

lgorithm co

he geometry

that the so

meter should

that physica

nt of Optic-

ex, one uns

given in Fig

which has a f

The flowch

ould be used

y size and t

oftware is in

d be measur

al quantity. 

 

 

-Electronic 

signed integ

g. 4.20. Afte

flowchart as

art for plane

d for freefor

the number 

nstalled.  In

red and thu

Moreover, 

Hardware 

ger of 2 by

er loading th

s in the Fig.

e triangle in

rm surfaces

of contours

n order to s

us, the slice

this iterativ

and Comp

ytes which 

he error-free

 4.21.  

ntersection a

s which has

s are limited

slice the ge

e thickness 

ve procedure

puter Softw

 should be

e CAD data,

 

algorithm 

s multiple co

d with the c

eometry pro

should be 

e requires k

ware  123 

e zero for 

, it will be 

ontours in 

apacity of 

operly, the 

estimated 

knowledge 



Ch

 
 
 
 
 

co

Fi

the

fir

Ce

Fi

hapter 4: D

omes from s

g. 4.22. In 

ere is not an

rst fully wo

enter. 

Figure 4.22
gure c) Atat

Developmen

some testing

order to sh

ny slice thic

orking algo

(a) 

 

 (c) 

2  Sliced ge
turk Mask (

Ataturk m

nt of Optic-

g and calibr

how exact s

ckness limit

orithm sinc

eometry exam
(Multi conto
mask and im

HSB©2011 

 

 

-Electronic 

ration. Som

slicing oper

tation in pro

e 2008 in 

 

mples, Slice
our example
mpeller blad

HSB©2011 

Hardware 

me of the sli

ration the sl

oposed algo

Manufactu

 

e Thickness
e) d) Impelle
de is created

and Comp

iced geome

lice thickne

orithm. Unf

uring and A

(b

(d

s 3mm a) Hi
er (Flat start

d by HSB©2

puter Softw

tries are giv

ess are kept

fortunately, 

Automation 

b) 

d) 

ip Implant b
t point exam
2011] 

ware  124 

ven in the 

t high and 

this is the 

Research 

b) Tiger 
mple) [The 

HSB©2011 

HSB©2011 



Ch

 
 
 
 
 

hapter 4: D

Figure 4.23

Developmen

 Developed

nt of Optic-

d Laser Wor

 

 

-Electronic 

(a)

(b)

rkstation So
Code Pa

Hardware 

ftware GUI
anel 

and Comp

 (a) 3D Geo

puter Softw

 

 

ometry Pane

ware  125 

el (b) G-



 

 

Chapter 4: Development of Optic-Electronic Hardware and Computer Software  126 

 
 
 
 
 

In order to understand the capability of the developed algorithm, detailed software 

benchmarking is studied between several programs such as 3D Lightyear, Buildstation,  

EzMark, WeldMarkt etc. The reason behind that is simple, the capability of this machine is 

basically comes from the capability of the used software. First of all, there is huge 

difference between the subtractive based software and additive based software. The 

commercially available subtractive software (marking or engraving software EzMark or 

WeldMarkt) are working only in two dimensional (2D). However, the developed Laser 

Workstation Software is capable of working in 2D plane or three dimensional (3D) space 

even there isn’t any 3D galvoscanner. In addition, none of the current laser workstations 

accept any G-Code command in order to increase the dependability of their software. 

However, in Laser Workstation software (Fig. 4.23), the user might write with a standard 

notepad and send to the workstation for 2D applications. In any case, it is recommended to 

check the toolpath with the commercial G-code checking software such as CIMCO to avoid 

any errors prior to processing.  

The main menu includes File, Initialize, Model, Tools, 3D Scan and Help as main menu. In 

order to load the geometry File>Load STL file should be selected. The loaded 3D geometry 

would be rotated, zoomed in and out, panned by using toolbar. Moreover, the toolbar is 

also change the style of loaded geometries such as shaded view, no-shaded view and turns 

the 3D model on or off. After slicing the geometry properly or generating the toolpath, the 

model off button is useful to check the contours and the laser on-off points (G1-G0) 

respectively.  

The slicing and toolpath generation settings are in the functions palette tab Manufacture. 

The software might slice in X-Y-Z axes. However, for this laser workstation only slicing 

along Z-axis is sufficient. In order to generate the tool path, the contours must be ordered. 

Therefore, an algorithm is used in the software to order the intersection points. The 

flowchart of this function is given in Fig. 4.24. 
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The communication with scan card and interface card is occurs by using sub functions 

under the initialize menu. The Initialize Scan Card connects the card to main software; by 

the name implies the Remove Scan Card closes the communication between scan card and 

software (If the user want to use the scan card with different software such as Weldmarkt, 

she/ he has to close the communication with the active software.)  

While initialization of the scan card into the system SP-ICE 2 is asking for grid correction 

files. Grid correction is needed to compensate for optical errors induced by all two axis 

laser beam systems. These optical distortions are caused by the distance between each 

mirror, the distance between image field and mirrors and type of lens used in the laser for 

focusing of the laser beam. Some of the distortions are pincushion distortion which is 

caused by 2 axis galvano scanner system. The distortion in the X axis is proportional to the 

tangent of the angle of the Y axis mirror and the distance from Y mirror to the focal plane. 

Second distortion type is the F-theta objective induced distortion, the other major type of 

distortion is caused by the addition of an f-theta objective to an X-Y galvano scanner 

system. F-theta objective lenses, like all optical lenses, are not perfect and induce their own 

projection field distortions. This type of distortion is also called pillow distortion for what it 

does to a square image as in Fig. 4.27. The correction methodology is based on the 

correction of composite distortion. Correction tables represent a 65x65 element grid 

covering the full addressable projection range of the system. Each grid element contains 

three components: one each for the X, Y and Z axes. The components represent an offset 

that if added to an ideal position command for that point, would alter the galvano scanner 

positions such that the resulting projected point would fall onto a "perfect" grid. Then the 

image would be corrected. In the developed algorithm the correction table of the Raylase 

company is used and the tables are loaded through the menu of Initialize > Load Correction 

File.  
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4.4.3 Software Process Parameters 

The Raylase SuperScan galvano scanner system (Module II) and developed flying optics 

(Module I) installed on laser workstation is capable of move based on the reference that it 

receives from the software bit coordinates (Module II) or millimetric dimensions (Module 

I) according to G-code. Both of the modules are capable of moving in two modes. The first 

more commonly used mode known as vector scanning is a mode in which each pair of 

coordinates is treated by the scan controller as an individual motion segment. In this mode, 

a coordinate point either a jump point (laser off - G0 command) or a move point (laser on – 

G1 command). Thus, an arbitrary sequence of line vectors may be drawn with the laser on 

or off. However, each move to a jump or next point has an associated time delay to allow 

for settling of scanners. This typically leads to laser over-exposure or "blooming" at vector 

end-points, therefore laser on delay and laser off delay are described in the job lists 

function as in Table 4.2. Traditionally in laser material processing, vector scanning mode is 

used for parallel (or anti-parallel) raster scanning. This is akin to filling an arbitrary shape 

with parallel lines as shown in Figure 4.28. 

The second scanning mode known as continuous vector (CV) mode allows each individual 

motion segment to take place in an arbitrary direction but treats successive segments as part 

of a continuous path and hence eliminates the inter-segment delays experienced in vector 

scanning mode. An example of this mode is shown in Figure 4.26. Upon encountering this 

keyword, the scan controller gates the laser on (G1) and keeps it on for all successive 

coordinate point motions until it encounters the a specific keyword, at which point the laser 

is gated off (G0). 

The CV mode is useful for tracing smooth curved paths or outlines of shapes. The CV 

mode is especially useful for full density direct laser processing where maintaining 

continuity of the solid-liquid interface is of utmost importance to obtain defect free 

features. A major advantage of using the CV mode for curved paths is that the coordinate 
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Accuracy and Integrity of STL CAD Data: The CAD model to STL format conversion 

would show errors as mentioned before, due to the tessellation error. The accuracy of built 

part is determined by chosen size of the facets [51, 52]. 

Flatness of the Building Platform: Due to the layer-by-layer manufacturing of the stage, 

any deviation of the stage would create inaccuracies in the part. Unfortunately, the 

developed system has kind a problem, which needs correction by the mechanical 

technician. 

Initial Position of Stage: The laser beam is positioned at a fixed distance according to the 

focal length of the lens from free processing surface to produce accurate X-Y processing. 

The beam is positioned by using red guide of the system. However, if the initial position of 

the stage is above the material surface, it would result in error in the Z direction (vertical) 

of the model. 

Laser characteristics: The laser beam diameter may change slightly as the laser tube ages. 

There may also be shift in the optical alignment due to small temperature variations and the 

mode structure of the laser may be altered. This would in turn alter the processed material 

characteristics. 

Changes in Processed Material Properties: In the normal course of part building, the 

material characteristics may vary upon refilling of the material with a different lot. Also, 

material properties may vary with aging due to atmospheric (i.e. oxidation, humidity) or 

temperature based conditions. 

Variation of Laser Beam Size across Surface: The shape and diameter of the laser beam 

spot change from the center to the outer edge. The laser beam spot changes from a perfect 

circular spot at the center to an elliptical spot at the extreme position. In addition, the beam 

will also move out of focus as the angle increases. Unless these changes are dynamically 

compensated by the software resulting errors may be significant [53]. Thanks to the 
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Raylase SP-ICE 2 the correction tables provides better laser light on the surface with 

minimum error. 

Settling Time (Z-Wait) before Scanning: Once the platform has moved to the required 

position, in principle, the powder on the top of the previous layer should cover seamlessly 

with the free surface after the action of the squeegee (Dr Blade). The relaxation time is 

dependent upon the rise time and sweeping process completion. 

Changes in Material Level during Building: The surface level must be maintained at the 

correct Z-level for optimal laser focus. However, during sintering, the polymer undergoes a 

volumetric shrinkage. Because of this, polymer surface level will deviate from the optimal 

level during fabrication, thereby affecting the laser focus. 

Accuracy of doctor blade (Squeegee): For accurate building, the lower edge of squeegee 

should be leveled with the free surface of the material. 

The other parameters which would affect the system are dimension changes due to 

shrinkage, distortion during building, post-cure distortion, delamination, entrapped bubbles, 

trapped volume effect, swelling effects, distortion after support removal[54]. 
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5. Conclusion: Technological Demonstration 

5.1 Introduction  

The task of technology demonstration for developed laser workstation is crucial to prove 

the capabilities of the current machine. The goal was to fabricate demonstration 

components in the suitable materials by confirming the dimensions and proving of the 

conceptual functionality of the workstation. As it was indicated in previous chapters, the 

components selected for technology demonstration are the scaffolds generated in former 

open-architecture rapid prototyping system (to prove that the proposed algorithm is a 

general solution), the cut laser parts in current developed system (in Module I), polymeric 

powder sintered freeform and primitive geometric components and laser engraved silicon 

parts (in Module II). All of these examples are given for validating the algorithm and 

machine interactions while seeing the results of laser material processing. The geometries 

are given on each section and the dimensional tolerances are also included presented 

sections. Microstructural, chemical and mechanical properties are not included in this 

dissertation. 

5.2 General solution from the plan into the motion G-code Approach 

5.2.1 Scaffold production 

The scaffolds are manufactured in three-dimensional manner. Therefore the operator 

requires including few data about scaffold, which are the distance between each line 

(increment) and dimensions of a scaffold in X, Y and Z directions. This information is 

going to repeated according to rotating manner. This increase the pores and strength of 

fiber in X and Y directions. The proposed algorithm is not only capable of sending signals 

for primitive meshed scaffold structures. It is capable of sending any type of  21 2ൗ   and 3 

axes commands to servo drivers simultaneously. 
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Table 5-1 The given G-code, in order to produce the scaffolds in Fig. 5.1 

G21 (Metric) 
G90 (Abs. positioning) 
G92 (Set home) 
G01 X25 Y-5 Z0 F2 
G01 X25 Y25 Z0 F2 
G01 X-5 Y25 Z0 F2  
G01 X-5 Y-5 Z0 F2 
G01 x25 Y-5 Z0 F4 
G01 X0 Y0 Z0 F21 
G01 X20 Y0  Z0 F21 
G01 X20 Y1 Z0 F21 
G01 X0 Y1 Z0 F21 
G01 X0 Y2 Z0 F21 
G01 X20 Y2 Z0 F21 
G01 X20 Y3 Z0 F21 
G01 X0 Y3 Z0 F21 
G01 X0 Y4 Z0 F21 
G01 X20 Y4 Z0 F21 
G01 X20 Y5 Z0 F21 
G01 X0 Y5 Z0 F21 
G01 X0 Y6 Z0 F21 
G01 X20 Y6 Z0 F21 
G01 X20 Y7 Z0 F21 
G01 X0 Y7 Z0 F21 
G01 X0 Y8 Z0 F21 
G01 X20 Y8 Z0 F21 
G01 X20 Y9 Z0 F21 
G01 X0 Y9 Z0 F21 
G01 X0 Y10 Z0 F21 
G01 X20 Y10 Z0 F21 
G01 X20 Y11 Z0 F21 
G01 X0 Y11 Z0 F21 
G01 X0 Y12 Z0 F21 
G01 X20 Y12 Z0 F21 
G01 X20 Y13 Z0 F21 
 

G01 X0 Y13 Z0 F21 
G01 X0 Y14 Z0 F21 
G01 X20 Y14 Z0 F21 
G01 X20 Y15 Z0 F21 
G01 X0 Y15 Z0 F21 
G01 X0 Y16 Z0 F21 
G01 X20 Y16 Z0 F21 
G01 X20 Y17 Z0 F21 
G01 X0 Y17 Z0 F21 
G01 X0 Y18 Z0 F21 
G01 X20 Y18 Z0 F21 
G01 X20 Y19 Z0 F21 
G01 X0 Y19 Z0 F21 
G01 X0 Y20 Z0 F21 
G01 X20 Y20 Z0 F21 
G01 X20 Y20 Z0 F21 
G01 X20 Y20 Z0.6 F20 
G01 X20 Y0 Z0.6 F20 
G01 X20 Y0 Z0.6 F20 
G01 X19 Y0 Z0.6 F20 
G01 X19 Y20 Z0.6 F20 
G01 X18 Y20 Z0.6 F20 
G01 X18 Y0 Z0.6 F20 
G01 X17 Y0 Z0.6 F20 
G01 X17 Y20 Z0.6 F20 
G01 X16 Y20 Z0.6 F20 
G01 X16 Y0 Z0.6 F20 
G01 X15 Y0 Z0.6 F20 
G01 X15 Y20 Z0.6 F20 
G01 X14 Y20 Z0.6 F20 
G01 X14 Y0 Z0.6 F20 
G01 X13 Y0 Z0.6 F20 
G01 X13 Y20 Z0.6 F20 
G01 X12 Y20 Z0.6 F20 
G01 X12 Y0 Z0.6 F20 
 

G01 X11 Y0 Z0.6 F20 
G01 X11 Y20 Z0.6 F20 
G01 X10 Y20 Z0.6 F20 
G01 X10 Y0 Z0.6 F20 
G01 X9 Y0 Z0.6 F20 
G01 X9 Y20 Z0.6 F20 
G01 X8 Y20 Z0.6 F20 
G01 X8 Y0 Z0.6 F20 
G01 X7 Y0 Z0.6 F20 
G01 X7 Y20 Z0.6 F20 
G01 X6 Y20 Z0.6 F20 
G01 X6 Y0 Z0.6 F20 
G01 X5 Y0 Z0.6 F20 
G01 X5 Y20 Z0.6 F20 
G01 X4 Y20 Z0.6 F20 
G01 X4 Y0 Z0.6 F20 
G01 X3 Y0 Z0.6 F20 
G01 X3 Y20 Z0.6 F20 
G01 X2 Y20 Z0.6 F20 
G01 X2 Y0 Z0.6 F20 
G01 X1 Y0 Z0.6 F20 
G01 X1 Y20 Z0.6 F20 
G01 X0 Y20 Z0.6 F20 
G01 X0 Y0 Z0.6 F20 
G01 X25 Y-15 Z5 F16 
 
 

                                              

5.2.2 Laser cutting operation 

Same algorithm would be used in laser cutting operation as it used in the fused deposition 

method. Instead of injector as in the former section, there is a flying optics which is 
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The G-Code commands for the Module I are given in Table 5.2. The given G-Code 

commands have line length 10 mm x 10 lines; 10mm x 10mm square; 10mm diameter 

circle and a diamond shape with 5√2mm edge length. 

Table 5-2 G-Code Command for the given test pattern of front part 

G21 (Metric units) 
G90 (Abs. positioning) 
G92 (Set home) 
(Layer 1 of 3) 
G0 X0 Y0 F100 
G1 X10 Y0 F100 
G1 X10 Y10 F100 
G1 X0 Y10 F100 
G1 X0 Y0 F100  
G0 X-5 Y10 F100  
G1 X-5 Y0 F100  
G0 X-7.5 Y10 F100  
G1 X-7.5 Y0 F100 
G0 X-10 Y0 F100  
G1 X-10 Y10 F100  
G0 X-12.5 Y0 F100  
G1 X-12.5 Y10 F100 
G0 X-15 Y0 F100 
G1 X-15 Y10 F100 

G0 X-17.5 Y0 F100 
G1 X-17.5 Y10 F100 
G0 X-20 Y0 F100  
G1 X-20 Y10 F100  
G0 X-22.5 Y0 F100 
G1 X-22.5 Y10 F100 
G0 X-25 Y0 F100 
G1 X-25 Y10 F100 
G0 X-27.5 Y0 F100 
G1 X-27.5 Y10 F100 
G0 X12.5 Y5 F100 
G2 X12.5 Y5 I5 J0 F100  
G0 X25 Y5 F100  
G1 X30 Y10 F100  
G1 X35 Y5 F100  
G1 X30 Y0 F100  
G1 X25 Y5 F100  
(END) 
 

5.3 Three-dimensional (3D) Applications of Developed Laser Workstation 

The designed workstation built up by two modules as mentioned before. Hereafter, second 

module examples are given. In order to avoid the confusion between G-Code of the 

Modules, the G-Code output of the three-dimensional software part differs from the 

processed G-Code of Module I. However, due to the open architecture format of the system 

the module II algorithm would be used in first and vice versa. In any case, in this thesis, the 

given G-code format is used as default. In addition to that, instead of flying optics herein 

(Module II) galvanometric scanner is used to guide the laser light. 

The process is simple; first the geometry is loaded to developed software. Afterwards, the 

slicing and toolpath generation steps are completed and coordinate points are generated 

with input parameters. This created file could be checked via CIMCO as stated before.  
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Appendix 2.1 – Mathematical Derivation of Analytical Model 

A.2.1.1 The Point Source Solution 

 

Figure A2.1 Schematic for point source solution 

If it is assumed that the workpiece is in steady motion parallel to the x-axis with velocity U 

and that all the material parameters are constant with respect to time.  The equation, ܿߩܷ డ்డ௫ = ߣ ቀడమ்డ௫మ + డమ்డ௬మ + డమ்డ௫మቁ +  [A2.1]            	ݍ

becomes into ܷ డ்డ௫ = ߢ ቀడమ்డ௫మ + డమ்డ௬మ + డమ்డ௫మቁ                [A2.2] 

The parameter ߢ is the thermal diffusivity (the variables given in Nomenclature of this 

work) and the schematic of geometry and coordinate system are given in the Fig. A2.1. 

The point and line source models are two special solutions of Equation A2.2. That can be 

obtained as follows. If the transformation, ܶ = ܶ + ܵ݁ೆೣమഉ              [A2.3] 

is implemented, where ܶ is the environment temperature, Equation 2.2 reduces to డమௌడ௫మ + డమௌడ௬మ + డమௌడ௭మ = మସమ ܵ             [A2.4] 
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By using ݎ = ඥݔଶ + ଶݕ +  ଶ  a solution for S that depends only on the radial distanceݖ

from the origin is possible. The chain rule shows that ߲߲ܵݔ = ݎ1 ݔ߲߲ܵ + ݎଶݔ ݎ݀݀ ൬1ݎ ൰ݎ݀ܵ݀ = ݎ1 ݎ݀ܵ݀ + ଶݎଶݔ ݀ଶܵ݀ݔଶ − ଷݎଶݔ  ݎ݀ܵ݀

The second derivatives of S with respect to y and z are identical as x, except x is replaced 

by y for 
డమௌడ௬మ and by z for 

డమௌడ௭మ. Addition of these derivatives will give ݀ଶܵ݀ݎଶ + ݎ2 ݎ݀ܵ݀ = ܷଶ4ߢଶ ܵ 

The explicit form of S in general solution is written [67],  ܵ = ݎܣ ݁ି + ݎܤ ݁ଶ  

Combination of these given equations with the definition of S given in (A2.3) shows that ܶ = ܶ +  ݁ቄమೆഉ(௫ି)ቅ +  ݁ቄమೆഉ(௫ା)ቅ            [A2.5] 

In the theory of material processing, there is no additional heat input. The remainder of the 

workpiece acts as a heat sink and the value far from the origin is converges to ܶ. The 

exponential multiplier B, if x>0 then the x+r>0 and so that the coefficient of B tends to 

converge infinity as x tends to, far heat flow of the heat source. Due to this inconsistency 

the coefficient must be zero. 

In the equation 2.5, there is a necessity to explain the coefficient A. This explanation 

depends on where the origin of the point source assumed at the surface of a workpiece or in 

the interior. In this study the point heat source assumed to be in the interior of the small 

sphere Σ of radius ܽ centered on the origin and estimated the flux of heat out of the surface 

of the sphere shown in Fig. 2.3. As long as the thermal energy flows in the sphere across its 

boundaries and flows out across them. Hence, the Fourier’s Law is the only contributor due 

to the assumption that we have made and this is summed over the surface of the sphere. 

This means that the total power flows across the surface is 
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ܣ =  ߣߨ4ܲ

The point source whose power is P in the interior of an unbounded workpiece, whose 

temperature far away is ܶ, gives rise to a temperature distribution given by ܶ = ܶ + ସగఒ ݁ቄమೆഉ(௫ି)ቅ             [A2.6] 

In which r is radial distance from the point source Fig. A2.6 shows the isotherms 

corresponding to such a point source embedded in an infinite medium. They are 

cylindrically symmetric about the x-axis. The diagram has been plotted in dimensionless 

form so that ܶ − ܶ is scaled with ܷܲ/݇ߢ, and the lengths x and r with 2ߢ/ܷ so that ܶ = ܶ + ߣߢ2ܷܲ ߢ(ܷ௫2ܫ ܷ௬2ߢ ௭ܷ2ߢ) 
with 

,ᇱݔ)ܫ ,ᇱݕ (ᇱݖ = ଵସగ ೣᇲషටೣᇲమశᇲమశᇲమඥ௫ᇲమା௬ᇲమା௭ᇲమ            [A2.7] 

and ݔᇱ = ௫ଶ, ݎᇱ = ଶ 

It can be helpful to define the function ܫ in a way that is independent of the specific 

coordinate system in use; one way of doing so is to define ܫ(ݎᇱ, (ොݑ = ଵସగ (ೝᇲೠෝషหೝᇲห)|ᇲ|                 [A2.8] 

The second argument in this generalized notation for ܫ, written here as ݑො , is a unit vector 

in the direction of translation and can usually be omitted since, in any given problem, it 

will always be the same. 

There is a difference, however, if the point source is at the surface of a semi-infinite 

workpiece defined only in ݖ ≥ 0. 
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Figure A2.4 Contours of ܫ(ݔᇱ, ,′ݕ 0), the contours are at min grid size of 0.03125 [mm] 
from written MATLAB algorithm of analytical model 

A.2.1.2 Applications of the point source solution 

If there is a specified incident intensity distribution, the point source solution can be very 

useful in the construction of solutions to problems. The heat conduction equation is not 

given explicitly as x, y and z; ܫ(2ܷߢ ݔ) − ,(ଵݔ ߢ2ܷ ݕ) − ,(ଵݕ ߢ2ܷ ݖ) −  ((ଵݖ
is a solution of the equation, and corresponds to a point source of unit strength located at (ݔଵ, ,ଵݕ  .(ଵݖ
Assume that the power absorbed is ܫ(ݎଵ)ܵߜ over an area ܵߜ centered on the point          ݎଵ = ,ଵݔ) ,ଵݕ 0) in the surface of the workpiece. Then ܫ(ݎଵ)ܷߢߣ ݐ݊݅ ቆܷ(ݎ − ߢଵ)2ݎ ቇ  ܵߜ

is the added temperature at point r for this particular element. The factor 2 comes from the 

fact that the power is absorbed in the surface of the workpiece, not its interior. See Eqs. 
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A2.9. The linearity of the equation of heat conduction (when the coefficients are all 

constants)is used to add the individual values together for each such small element of area 

in the surface, giving a temperature distribution that is approximately ܶ = ܶ +  ߢߣܷ(ଵݎ)ܫ ܫ ቆܷ(ݎ − ߢଵ)2ݎ ቇ ఋௌ	ܵߜ  

In the limit, as the diameter of every element in the surface tends to zero (which is the one 

of the biggest disadvantage of the analytic models), this becomes an integral over the 

surface S of the workpiece, so that ܶ(ݎ) = ܶ +  ூೌ(భ)ఒ ܫ ቀ(ିభ)ଶ ቁ ݀ܵభ∈ௌ          [A2.10] 

or 

,ݔ)ܶ ,ݕ (ݖ = ܶ + නߣߨ12 න ,ଵݔ)ܫ (ଵݕ × ݁ቂ ଶ(௫ି௫భ)ିඥ(௫ି௫భ)మା(௬ି௬భ)మା௭మቃ	ඥ(ݔ − ଵ)ଶݔ + ݕ) − ଵ)ଶݕ + ଶஶݖ
௫మୀିஶ ଵஶݔଵ݀ݕ݀

௫భୀିஶ  

in which ܫ(ݔ,  is the absorbed intensity distribution falling on the surface  of the (ݕ

workpiece. Normally it is calculated from the relation ܫ(ݔ, (ݕ = (1 − ℛ)ݔ)ܫ,  is the actual incident intensity and ℛ is a suitably chosen reflection coefficient. These ܫ (ݕ

coefficients are already given in Table 2.4-2.5 as initial conditions. An alternative way of 

expressing temperature gradient on the surface of the workpiece is to make the substitution ݔଵ = ݔ − ଵݕ ,ଶݔ = ݕ −  ଶ. In that case, the alternative form of the integral isݕ

,ݔ)ܶ ,ݕ (ݖ = ܶ + නߣߨ12 න ݔ)ܫ − ,ଶݔ ݕ − (ଶݕ × ݁ቈ ଶቆ௫మିට௫మమା௬మమା௭మቇඥݔଶଶ + ଶଶݕ + ଶݖ ଶஶݔଶ݀ݕ݀
௫మୀିஶ

ஶ
௫భୀିஶ  

Either of these forms could be used with the following two cases as specially-shaped 

distributions of surface intensity. 

The only examined case of a Gaussian beam of radius a centered on the origin for which, ݔ)ܫ, (ݕ = ଶగమ ݁ିೣమశమమೌమ               [2.12] 
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The total power in Gaussian beam case is ܲ. Fig. A2.5 shows graph of the intensity with 

the corresponding surface map. In general, the integrations will have to be performed 

numerically to find the temperature below the surface of the intensity region. 

 

Figure A2.5 The Gaussian source is shown as a surface plot P=1kW, ܫ௫ =  ଶ݉/ܹܩ	0.28

Equation A2.12 might be used to study the effect of other shapes into Equation A2.11 by 

integrating it over the required shape using the same power for each individual elementary 

Gaussian source. The discontinuities at the peak position of the Gaussian source should be 

taken care of as the following partial function, ݔ)ܫ, (ݕ = ൜ܲ/ܽߨଶ0 		ඥݔଶ + ଶݕ < ݁ݏ݅ݓݎℎ݁ݐܽ           [A2.13]   

The Equation A2.11 would be converted into polar instead of cartesian one. This would be 

easier in order to get temperature distribution due to the elimination of the double integral. 

Beyond these calculations a mathematical approximation is sometimes available and 

worthwhile to try. If the intensity distribution is characterized by a length scale ܽ, so that 

outside a distance from the origin of this order, ܫ is effectively zero. In that case, there is a 

Péclet number ܲ݁ =  and this determined the relative dominance of the exponential ߢ2/ܷܽ
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term. The exponential falls very rapidly from the maximum value as ߠ from zero and the 

integrand is effectively zero, if the Péclet number is large. What this means is that if ܿߠݏ 

is replaced by its local approximation, 1 − ଵଶ  ଶ, the error introduced will be very smallߠ

indeed. Furthermore, the range of integration can even be extended (purely for 

convenience) to −∞ < ߠ < ∞	without significant additional error. The contribution from 

the intensity can then be approximated by the value local to ߠ = 0. It does not vary rapidly 

on the length-scale ܽ, unlike the exponential, so it will not have changed significantly by 

the time the exponential has become very small. 

A2.1.3 Line Source Solution 

The line source solution can be obtained in essentially the same way as the point source. 

The difference is that a solution is sought that depends only on the coordinate in the 

direction of translation and distance from z-axis, but is independent of distance in the z 

direction. As before, it is assumed that the workpiece is moving steadily parallel to the x-

axis with velocity U, and that all the material parameters are constants. Consequently, the 

temperature satisfies Equation (A2.2). Figure A2.6 shows the relative geometry and the 

coordinate system. Once again, look for a solution of the form given by Equation (A2.3) so 

that S is given by (A2.3). 
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Once again imposes a restriction on the coefficients A and B as stated in point source 

solution, the condition that there is no additional heat input to the remainder of the 

workpiece (acts as a heat sink). For large value of s the asymptotic forms of the Bessel 

functions show that ܶ~ ܶ + ටቀܣ గ௦ቁ ݁ቄమೆഉ(௫ା௦)ቅ + ටగ௦ܤ ݁ቄమೆഉ(௫ି௦)ቅ  
For the coefficient A,  ݔ + ݏ > 0 if ݔ > 0, so that the multiple of A tends to infinity as ݔ 

tends to infinity far from the heat source; consequently, the coefficient A must be zero. 

An explanation of B is valid in the same manner as before; once again some attention is 

required depending on the position of the z-axis whether in interior or on the surface of a 

semi-infinite workpiece. In this study z will be assumed in the interior. 

Instead of the spherical heat flux model, here cylindrical one will be taken for heat flux 

approximation. The consideration based on a small cylinder (radius a) centered on the axis 

and the flux will be estimated from its surface per unit length as in Figure A2.8. As much 

thermal energy flows into the cylinder across its boundaries as flows out across them. The 

only contribution to the flux is the part due to Fourier’s law, and this has to be summed 

over the surface of the cylinder; i.e., the total power flowing across the surface per unit 

length is  ߣ−) డ்డ௦)݀ܥ = ܤߣ−  ቄ݁మೆഉ௦௦ఏܭ ቀ௦ଶቁቅ ܥ݀ 	       [A2.14] 

where the polar coordinate substitution ݔ =  has been used. It should be remembered ߠݏܿݏ

that after the differentiation has been performed, s can be set equal a. 
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Figure A2.8 Heat flux out of a cylinder of a radius a 

By using Euler-Mascheroni coefficient (ߛ = 0.57… ), the ܭ(ݏᇱ) will be ܭ(ݏᇱ) = − ൜ln 12 ᇱݏ +  (ᇱଶݏ)ൠܱߛ
and the derivation is ߲߲ݏ ൜exp ൬2ܷߢ ܭ൰ߠݏܿݏ ൬ܷߢ2ݏ൰ൠ = ݏ߲߲ ൜݁ ଶ௦௦ఏ − ln 12 ݏ − ߛ + ൨ൠ(ᇱଶݏ)ܱ = ݏ1− + ܱ(ln  (	ݏ
The right-hand side of equation (A2.14) is equal to, 	−ܤߣන ൜− 1ܽ + ܱ(݈݊ܽ)ൠ ܥ݀  

As used in the section of point source solution, the notation O(X) is capable of big as ܺ. 

Due to that, the integrand will be progressively like 1/ܽ since ܽ ln ܽ → 0 as ܽ → 0, and  

therefore coefficient on the surface of C for sufficiently small ܽ. In conclusion, the integral 

is just as the length of the circumference of the circle, 2ܽߨ, which multiplied by 
ఒ . If the 

power given by the line source per unit length is Q, ܳ = ܤܽߣ × ܽߨ2 =  ܤߣߨ2

ߣ- డ்డ௦ቚ௦ୀ 



 

Appendix 2.1 Derivation of Mathematical Model           160 

 
 
 
 
 

and ܤ =  ߣߨ2ܳ

Therefore, the ܳ(ܹ/݉) powered line source with the interior of an unbounded workpiece 

whose ambient temperature is ܶ brings the increment to a temperature distribution given 

by equation ܶ = ܶ + ொଶగఒ ݁ೆೣమഉܭ(௦ଶ)           [A2.15] 

s is the distance from the source. 

Figure A2.9 shows the temperature profile corresponding to such a line source embedded 

in an infinite medium (material properties are given in Appendix 2.4). The diagram has 

been plotted in dimensionless form so that ܶ − ܶ is scaled with ܷܳ/ߢߣ and the lengths ݔ 

and ݎ with 2ߢ/ܷ so that 

 

Figure A2.9 Temperature profile for thin steel plate (P=50W, ߣ = ܥ                      ,ܭ/73ܹ = ߩ ,v=50mm/s ,ܭ݃݇/ܬ	472 = 7870݇݃/݉ଷ) ܶ = ܶ + ߣܳ ,ᇱݔ)ܫ  (ᇱݕ
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ܶ = ܶ + ொగఒ ݁ೆೣమഉܭ( ଶ ଶݔ√ + =					(ଶݖ ܶ + 2 ொఒ ,ᇱݔ)ܫ (ᇱݖ               [A2.18] 

 Just as the point source solution can be used to construct further solution by adding 

together individual solutions or, in the limit, integrating over them, so, too, the line source 

solution can be used in exactly the same way. Suppose it is desired to find the temperature 

distribution in a semi-infinite block whose surface ݖ = 0 is subject to an incident intensity, 

whose absorbed value is ܫ(ݔ)[ܹ/݉ଶ], and is independent of the lateral coordinate y. If 

we consider just the effect due to absorption in a strip of width ݔߜଵ in the surface at 		ݔ = ,ݔ) ଵ, the rise in the temperature at the pointݔ ܶߜ caused by absorption in the strip is (ݖ = 2 ߣଵݔߜ(ଵݔ)ܫ ݔ)ܷ)ܫ − ߢଵ)2ݔ ,  (ߢ2ݖܷ
In order to find the rise in temperature caused by all of these small strips it is only 

necessary to add them all together or, in the limit, to use integration. The result is that ܶ = ܶ + ଶఒ  ܫ(ଵݔ)ܫ ቀ(௫ି௫భ)ଶ , ௭ଶቁ ଵஶ௫భୀିஶݔ݀         [A2.19] 

Alternatively, the substitution ݔଵ = ݔ −  ଶ can be made so that the temperature distributionݔ

is given by ܶ = ܶ + ଶఒ  ݔ)ܫ − ܫ(ଶݔ ቀ௫మଶ , ௭ଶቁ ଶஶ௫మୀିஶݔ݀         [A2.20] 

These formulae can be applied for example to the one-dimensional Gaussian distribution 

(ݔ)ܫ = ܳ ష ೣమమೌమ√ଶగ             [A2.21] 

and one-dimensional “top-hat” distribution (ݔ)ܫ = ொଶࡴ(ܽ − (|ݔ| = ൝ 0 ݔ < −ܽܳ/2ܽ −ܽ < ݔ < ܽ0 ݔ > ܽ         [A2.22] 

in which H(x) is the Heaviside step function whose value is zero when its argument is 

negative, and 1 when it is positive. In the problems considered, its value at the point of 

discontinuity is irrelevant provided, in practice, the intensity distribution is not 
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characterized by a sharp spike at these points. In each case ܳ is the absorbed power per unit 

width of the workpiece and 2ܽ is the beam width. Either formula can be used, but in the 

case of the top-hat distribution, care is needed with (A2.20), as the integral is over a finite 

range from ݔ − ܽ to ݔ + ܽ. 

If Equation (A2.20) is used, the problem with the top-hat distribution has a solution that 

can be written [53]. Note that the solution given there is for a line source moving through 

the interior of an infinite medium, and their symbol Q is the quantity used here divided by 

2a; a is b in their notation.) ܶ = ܶ + නܽߣߨ2ܳ ݁ቀ௫భଶ ቁܭ ቆ2ܷߢ ටݔଵଶ + ଶቇݖ ଵ௫ାݔ݀
௫భୀ௫ି  

it can also be written as  ܶ = ܶ + ொଶగఒ ݂(௫ଶ , ௭ଶ , ଶ)           [A2.23] 

with  ݂(ݔᇱ, ,ᇱݖ ܲ݁) = ଵ  ݁௫భᇲܭ ቀඥݔଵᇱଶ + ᇱଶቁݖ ଵᇱ௫ᇲା௫భᇲୀ௫ିݔ݀        [A2.24] 

The form for ݂ is obtained by means of the substitutions ݔᇱ = ݔܷ ⁄ߢ2 ଵᇱݔ , = ଵݔܷ ⁄ߢ2 ᇱݖ , = ݁ܲ and ߢ2/ݖܷ =  Note the way in which the maximum temperature and the .ߢ2/ܷܽ

thickness of the layer affected both decrease as the Péclet number increases. The maximum 

temperature always occurs on the surface. 
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Appendix 2.2 Thermal Model Codes 

function T=PointSrcCal(mat,P,v,x,y,z) 
errorCheck=1e-12; 
s=size(x); 
 
if prod(s)>max(s) 
   error('x shall be a row vector.'); 
end; 
if s(1,1)>1  
    x=x'; 
end; 
s=size(y); 
if prod(s)>max(s) 
   error('y shall be a row vector.'); 
end; 
if s(1,1)>1  
    y=y'; 
end; 
  
LK1=P/2/pi/mat.K; 
LK2=abs(v)/2/mat.kappa; 
  
[X Y]=meshgrid(x,y); 
  
T.name='TempPointSrc'; 
T.x=x; 
T.y=y; 
T.z=z; 
  
for m=1:length(z) 
    R=sqrt(Y.^2+X.^2+z(m)^2); 
    if min(min(R))==0 
        R=R+errorCheck; 
    end 
    T.Txyz(:,:,m)=LK1*exp(-LK2*(X+R))./R; 
end; 
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function T=TempLineSrc(mat,P,v,x,y,z) 
 
s=size(x); 
 
if prod(s)>max(s) 
   error('x shall be a row vector.'); 
end; 
if s(1,1)>1  
    x=x'; 
end; 
s=size(y); 
if prod(s)>max(s) 
   error('y shall be a row vector.'); 
end; 
if s(1,1)>1  
    y=y'; 
end; 
LK1=Q/(2*pi*mat.Ti); 
LK2=v/(2*mat.Ti); 
[X Y]=meshgrid(x,y); 
R=sqrt(Y.^2+X.^2); 
t=LK1*exp(-LK2*X).*besselk(0,LK2*R);  
T.x=x; 
T.y=y; 
T.Txyz(:,:,1)=t; 
  
n=max(size(T)); 
N=4;  
  
for j=1:n  
    [cs,h]=contourf(T(j).x,T(j).y,T(j).Txyz(:,:,1),N); 
    colorbar; 
    xlabel('x [m]'); 
    ylabel('y [m]'); 
    s='Contour'; 
    if isfield(T(j),'z') 
        s=[s ' @ z=' num2str(T(j).z(1)) '[m]']; 
    end 
    if n>1 
        s=['t=' num2str(T(j).t) '[s], '  s ]; 
    end   
    title(s); 
    axis([-0.25e-3 0.25e-3 -0.25e-3 0.25e-3]); 
end
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Appendix 3.2 - Optic Component List 

Table A.3.1 Opto-Mechanical Components related to the flying optic part of the SAM 
Workstation 

Component  Quantity  Description 

KCB2  8  The 30 mm Right Angle Kinematic Cage Mount mounts an optic in a double‐bored 
adjustment plate for two lines of stable contact and securely holds the optic with a 
locking nylon‐tipped setscrew. The kinematic adjustment plate mounts the optic at 
a 45° angle with ±4° pitch and yaw adjustment range and is actuated with 100 TPI 
(Threads Per Inch) adjustment screws for smooth, high sensitivity movement. 

  

SM1L30  2  These stackable Ø1" lens tubes provide a fast and easy means for building compact 
optical assemblies. Their stackable design and direct interfacing with any SM1‐
threaded (1.035"‐40) components provide flexibility for complex optomechanical 
assemblies. One SM1RR retaining ring is included with each lens tube.(V type lens 
tubes are rotating adjustable) 

SM1V10  1 

SM1V05  1 

  

PF10‐03‐P01  1  Silver coated mirrors offer the highest reflection in the visible‐NIR spectrum (450 
nm ‐ 2 µm, ܴ௩  >97.5%) of any metallic mirror. While excellent in the visible, 

silver mirrors also offer high reflection in the IR (2 ‐ 20 µm, ܴ௩> 96%). Please see 
the Graphs tab (above) for reflectance curves. In order to protect them from 
oxidation, these mirrors have a durable SiO overcoat. (Each package includes 10 
mirrors)   

PF10‐03‐
M01  1 

Protected gold is the most efficient reflective coating over the entire IR range. A 
protective overcoat is layered over the gold to help protect it from damage and 
make cleaning easier. The protected gold coating is made by using a proprietary 
protective overcoat, which allows >96% average reflection from 800 nm to 20 μm. 
(Each package includes 10 mirrors) 

  

LA1131‐C  2  N‐BK7 Plano‐Convex Lens, Ø1", f = 50.0 mm, ARC: 1050‐1620 nm  

LA1608‐C  2  N‐BK7 Plano‐Convex Lens, Ø1", f = 75.0 mm, ARC: 1050‐1620 nm 

LA1509‐C  2  N‐BK7 Plano‐Convex Lens, Ø1", f = 100.0 mm, ARC: 1050‐1620 nm   

LA1229‐C  2  N‐BK7 Plano‐Convex Lens, Ø1", f = 175.0 mm, ARC: 1050‐1620 nm 

LA7660‐F  2  Ø1" ZnSe Plano‐Convex Lens, f = 75.0 mm, AR‐Coated: 8‐12 µm 

LA7656‐F  2  Ø1" ZnSe Plano‐Convex Lens, f = 50.0 mm, AR‐Coated: 8‐12 µm 

LA7261‐F  2  Ø1" ZnSe Plano‐Convex Lens, f = 100.0 mm, AR‐Coated: 8‐12 µm 
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Table A.3.1 Opto-Mechanical Components related to the laser feedback part of the SAM 
Workstation 

Component  Quantity Description 

Mechanics    

SM1L10  3  Lens tubes are ideal for several applications, including the creation of optical 
subassemblies. A single tube can house from one to several optical elements, 
which are separated and secured by retaining rings. The retaining rings are easy 
to install using our specialized lens tube spanner wrenches. Five lens tube sizes 
are available: SM05 (Ø1/2"), SM1 (Ø1"), SM30 (Ø30 mm), SM2 (Ø2"), and SM3 
(Ø3") and have adapters to connect lens tubes of different diameters together. 

SM1M10  1 

SM1S10  3 

SM1S30  2 

SM1CP2  1 

  

MB3060/M  1  Aluminum Breadboard, 300 mm x 600 mm x 12.7 mm, M6 Threaded  

C4W  1  30 mm Cage System Cube, 4‐Way

B3C  2  Rotatable Cage Cube Platform for C4W/C6W 

B5C  2  Ø1" Cage Cube Optic Mount For B3C 

B1C/M  1  Blank Cover Plate with Rubber O‐Ring for C4W/C6W, Metric 

MSH075  6  Mini‐Post Holder with Swivel Base, 3/4" (19 mm) High 

MSH1  9  Mini‐Post Holder with Swivel Base, 1" (25 mm) High

MSA4/M  6  Thread Adapter, M4 to M3

MSA25  3  Thread Adapter, 1/4"‐20 to 4‐40

CP02/M  2  SM1 Threaded 30 mm Cage Plate, 0.35" Thick, Metric

MS1R/M  10  Mini Series Mounting Posts, Ø6 mm, 25 mm Long

MS05R/M  6  Mini Series Posts, Ø6 mm, 13 mm Long 

MS1R  2  Mini Series Mounting Posts, Ø6 mm, 1" Long 

Optics 

LA1951  1  N‐BK7 Plano‐Convex Lens, Ø1", f = 25.4 mm, Uncoated (350 nm ‐ 2.0 μm range)

ND01A  1  Mounted Reflective Ø25 mm ND Filter, Optical Density: 0.1 

ND03A  1  Mounted Reflective Ø25 mm ND Filter, Optical Density: 0.3 

ND10A  1  Mounted Reflective Ø25 mm ND Filter, Optical Density: 1.0 

ND20A  1  Mounted Reflective Ø25 mm ND Filter, Optical Density: 2.0 

ND30A  1  Mounted Reflective Ø25 mm ND Filter, Optical Density: 3.0 

CM1‐BS014  1  Cube‐Mounted Polarization‐Insensitive Beamsplitter, 700 ‐ 1100 

FES1000  1  Shortpass Filter, Cut‐Off Wavelength: 1000 nm

MVL8L  1  8 mm EFL, f/1.4, for 2/3" Format Cameras, with Lock

Sensors 

SM1PD2A  1  Mounted UV Enhanced Silicon Photodiode, 200‐1100 nm, Cathode Grounded 

DCC1545M  1  High Resolution USB2.0 CMOS Camera, 1280 x 1024, Monochrome 

 
 
 
 
 
 
 
 



Appendix 5.1 – Technological Demonstration Material Properties          190 

 
 
 
 
 

Appendix 5.1 - Technological Demonstration Material Properties   

SLS Processing material is SLS Innova’PA 1550 (Polyamide 12). The material properties are 
given below. 
 

General Properties Method & Condition  

Average particle size Diffraction Laser 40 −  ݉ߤ	50
Powder packed density Manufacture method 0.5±0.05 

Part density Manufacture method 0.98±0.05 
Moisture absorption (%50 RH, 23°C 24 hrs) ASTM D570 0.5 ± 0.05 ܶ (Melting Point) DSC 181<_<185 ܶ (Glazing Point) DSC 34±2 
Heat deflection temperature at 1.82 MPa  ASTM D648 86±1 ܶ௦௦  Glazing method -14±2 

Tensile Strength  ISO 527 45±1 
Young Modulus  ISO 527 1550±150 

Elongation at break  ISO 527 16 ± 2 
Flexural Modulus  ISO 178 1350 ± 25 

Charpy – Impact Strength  ISO 180 34±2 
Charpy – Notched impact strength  ISO 180 6±0.5 

Shore Test (Shore D)  ISO R 868 68±3 
Chemical Resistance 

 
 
 
 

Chemical resistance to alkaline, 
hydrocarbons, oils, gasolines, gas oil and 
solvents. May be attacked by acids. No 

through porosity with sections greater than 
1.6 mm thick.  

Volume Resistivity, 50% HR, 23°ܥ 
 

CEI 93 1.3ܧଵଷ 
CEI 93 1.5ܧଵହ 

Natural colouration  Visual white‐cream 

Upper facing processed & blasting surface ܴ ISO 4287 9±1 
  ISO 4287 <1±0.5 
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