
Selective and Periodic Inventory Routing Problem for Collection of

End-of-Life Products

by

Yeliz AKÇA
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ABSTRACT

Our study is motivated from a biodiesel production facility in Istanbul that collects

waste vegetable oils from source points such as restaurants and hospitals that generate

waste in large amounts and are dispersed throughout the city. The production facility uses

the collected waste oil as raw material for biodiesel production. The manager of this facility

needs to decide which of the present source points to include in the collection program,

which of them to visit on each day, which periodic routing schedule to repeat over an

infinite horizon and how many vehicles to operate such that the total collection, inventory

and purchasing costs are minimized while the production requirements and operational

constraints are met. For this selective and periodic inventory routing problem: First, we

propose a flow-based mixed integer linear programming (MILP) formulation and test it on

a real-world problem with 36 scenarios. We generate lower bounds using a partial linear

relaxation model, and observe that the solutions obtained through our model are within

3.28% of optimality on the average. Several insights regarding the customer selection,

routing and production decisions are acquired with further sensitivity analysis. Secondly,

we compare alternative formulations and test them on six scenarios. Here, we compare three

alternatives to optimize the visiting schedule and observe that our first proposed MILP

model yields the best solutions. Thirdly, we propose a Lagrangian Relaxation approach

for the solution of single vehicle problems. The relaxed model decomposes into two mixed

integer programming models that optimize the visit schedule and the collection route in

each period separately. We test the performance of this solution approach and compare

the lower bounds obtained by the Lagrangian relaxation method to the ones obtained by

solving the proposed MILP model within a pre-specified time limit.
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ÖZETÇE

Bu çalışmada, restoran ve hastane gibi büyük miktarda atık üreten ve şehre yayılmış

kaynak noktalarından atık bitkisel yağ toplayan İstanbul’daki bir biyodizel üretim tesisini in-

celiyoruz. Bu üretim tesisi, toplanan atık yağları biyodizel üretiminde hammadde olarak kul-

lanmakta. Üretim tesisinin yöneticisi mevcut kaynak noktalarından hangilerini atık toplama

programına dahil etmesi gerektiğine; hangilerinin her gün ziyaret edilmesi gerektiğine; son-

suz süre zarfında hangi periyodik rotalama çizelgesinin tekrarlanması gerektiğine, üretim

gereksinimleri ile operasyonel kısıtlar altında toplama, envanter ve satın alma maliyetlerin

toplamını minimize etmek için kaç tane araç kullanılması gerektiğine karar vermelidir. Bu

seçici ve periyodik envanter rotalama problemi için ilk olarak akış tabanlı bir doğrusal tam-

sayılı programlama (DTP) modeli geliştirdik ve bu modeli 36 gerçek problem senaryosu ile

test ettik. Kısmi doğrusal gevşetme modeli kullanarak alt limitleri oluşturduk ve modelin

çözümlerine baktığımızda ortalamada 3.28% uygunluk düzeyi sağladığını gözlemledik. Du-

yarlılık analizleri ile müşteri seçimi, rotalama ve üretim kararları ile ilgili çeşitli gözlemler ile

elde ettik. İkinci olarak, değişik formülasyonlar içeren alternatif modeller geliştirdik ve bu

modelleri seçilen 6 senaryo üzerinde test ettik. Burada müşteri envanteri tutatn (DTP), zi-

yaret çizelgesini eniyilemek için üç alternatifi karşılaştırdık ve birinci olarak sunmuş olduğumuz

DTP modelinin en iyi sonuçları sağladığını gözlemledik. Üçüncü ve son olarak da, tek araçlı

problemler için Lagrange Gevşetme yaklaşımını uyguladık. Gevşetme modeli, biri ziyaret

çizelgesini, diğeri ise her bir periyot için toplama rotasını eniyileyen olmak üzere iki adet

karışık tamsayı programlama modeline ayrılır. Bu çözüm yaklaşımının performansını test

ettik ve önceden belirlenen bir zaman limiti dahilinde, Lagrange gevşetme metodu ile elde

edilen alt limitler ile önerilen DTP model ile elde edilen alt limitleri karşlaştırıldı ve metodun

az miktarda geliştirme elde ettiğini gözlemledik.

v



ACKNOWLEDGMENTS

First of all, I would like to express my gratitude to my supervisors, F. Sibel Salman,

Onur Kaya, and Deniz Aksen. Their expertise, understanding and patience contributed

considerably to my thesis and graduate experience. I consider myself very lucky to have

advisors such as them and I am also very proud of being one of their students.
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Chapter 1

INTRODUCTION

Our study is motivated from a biodiesel production facility (the company) in Istanbul

that collects waste vegetable oils from source points at different locations throughout the

city to utilize as input material in biodiesel production. Typically, the source points include

businesses that consume cooking oil in large volumes, such as restaurants, hotels and hospi-

tals. The company makes an agreement with each source point and specifies on which days

of the week it will collect the accumulated waste oil from that point. The company neither

pays nor receives any money from the source points for collecting the waste oils since it is

mandatory for the source points to give their waste oils to recovery facilities by law. Waste

vegetable oils accumulate at different rates at the source points and uncollected amounts at

any day are carried on to the next day. Thus, the company may prefer to wait for several

days in order to allow a high enough amount to accumulate at that location before visiting

it.

The company has a predetermined production plan and needs to obtain the input ma-

terials to follow this production plan. Thus, the production plan dictates the daily input

requirements for vegetable oil. The company can satisfy the vegetable oil needed for biodiesel

production either by the waste vegetable oil it collects or by purchasing virgin oil, but the

latter is considered to be more costly in general. However, collection also has a certain cost

due to the requirements of vehicles, drivers, fuel, etc. Thus, the manager needs to decide

on how much waste vegetable oil to collect, if possible, from source points and how much to

purchase on each day, depending on the available inventory at hand, in order to satisfy the

input requirements for production. The manager also needs to decide on the route of each

vehicle in order to make the collection at the minimum possible cost. Moreover, the amount

of waste vegetable oil accumulated at the source points might be more than the amount

needed for production or more than the production capacity. In such cases visiting all the
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source points will not be necessary. Hence, the manager has to decide which of the source

points should be made a collection agreement with. In addition, some of the source points

might be too far away from the biodiesel facility or their accumulation amounts might be

too low which makes it uneconomical for the company to collect from such source points

and purchasing virgin oil for some of the production requirements might be a better option

in these situations. The company can also keep an inventory at its production facility if the

available amount of waste vegetable oil is more than the production requirement in that

day. In this study, we analyze the decisions considering which of the potential source points

to include in the collection program, which of them to visit on each day, which periodic

routing schedule to repeat over an infinite horizon and how many vehicles to operate such

that the total collection, inventory and purchasing costs are minimized while the production

requirements and operational constraints are met. We name this routing and scheduling

problem as the selective and periodic inventory routing problem.

Our problem has some differences from the literature: (i) There is no need to visit

all source points, (ii) In our models schedules are structured on the days rather than the

source points, (iii) Differently from PVRP, there is no fixed visit frequency requirements

from customers and our models consider inventory management issues, (iv) Differently from

IRP, the company collects to satisfy its production requirements rather than deliver to avoid

customer stock-outs in IRP models.

We review the related literature in Chapter 2. In Chapter 3 we give the problem defini-

tion and describe the variations of the problem. In Chapter 4 we focus on the Selective and

Periodic Inventory Routing Problem with a cyclic schedule and multiple heterogenous vehi-

cles. We develop a mixed integer programming formulation and analyze it by computational

tests on data based on a real life case with 25 source points and a weekly planning cycle.

Then, we compare three formulations for the problem with an acyclic planning horizon in

Chapter 5. We implement a Lagrangian Relaxation approach in Chapter 6 for the acyclic

problem with a single vehicle and test it with the three formulations given in Chapter 5.

Finally, in Chapter 7 we give our concluding remarks and discuss briefly directions for future

work.
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Chapter 2

LITERATURE REVIEW

Reverse logistics, recycling and remanufacturing received considerable attention in recent

years due to increasing environmental and ecological concerns as well as economical benefits.

In addition to saving from direct material costs, companies can also save from disposal and

energy costs through reverse logistics and remanufacturing. Studies have shown that the

unit cost of remanufacturing can be about 40-60% of the unit manufacturing cost of an

original product in some industries [1], [2]. Biodiesel production from waste vegetable oils

is such an example. While the cost of virgin oil used in the production of biodiesel constitutes

85% of the total production cost, Gonzalez et al. [3] and Predojevic [4] state that collecting

and using waste vegetable oil costs almost half the price of using virgin vegetable oil in

biodiesel production.

Recovery of waste vegetable oil plays an essential role in both the environmental and

economic sustainability of biodiesel [5]. It is estimated that waste cooking oils in the USA

amount to somewhere between 4.5 billion to 11.3 billion liters a year; in Japan nearly 400

to 600 thousand tons of waste cooking oils are generated annually [6]. A total of 108 billion

liters of waste vegetable oil is estimated to be generated in the world every year, but still,

out of this quantity only 6 billion liters are collected and used in biodiesel production [7].

Utlu [8] states that about 390 thousand tons of used cooking oil is wasted per year in Turkey.

This much of waste cooking oil could be used in the production of about 390 thousand tons

of biodiesel which would meet 5% of total diesel fuel consumption in Turkey, and save 300

million dollars per year. In addition to the economical savings, collecting waste vegetable oil

has also significant benefits to the environment by decreasing the contamination of rivers,

lakes or oceans. It is stated that one liter of waste oil poured down the drain can contaminate

one million liters of water and cause serious damage to the environment and the ecological

life [7].

Reverse logistics and collection of recoverable products are widely studied problems in
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the literature [9]. Fleischmann [10] analyzes the effect of product recovery on network design

issues. Teixeira [11] analyzes a case study planning vehicle routes for the collection of urban

recyclable waste and develop heuristics to design vehicle routes for every day of the month,

to be repeated every month. Repoussis [12] presents a web-based decision support system

for efficiently and effectively managing waste lube oils collection and recycling operations.

They apply their system to an industrial environment and show that improved productivity

and competitiveness can be achieved.

Periodic vehicle routing problems (PVRP) (Christofides and Beasley [13] and Ball [14])

and inventory routing problems (IRP) (Dror and Ball [15], Campbell [16]) are two of the

research streams related to our study. In the PVRP, routes are designed for a fixed fleet of

capacitated vehicles on each day of a planning horizon to visit customers exactly a preset

number of times. Beltrami and Bodin [17] and Russell and Igo [18] use PVRP for the

modeling of waste collection and Golden and Wasil [19] consider beverage distribution.

Since PVRP is an NP-hard problem, generally, heuristics or metaheuristics are used to

solve instances of realistic sizes [20], [21]. Tan and Beasley [22], Russell and Gribbin [23],

Gaudioso and Palletta [24], Chao [25], Alonso [26] and Coene [27] implement different

heuristic ideas for PVRP. Mathematical programming based methods are also developed

in the literature by some authors such as Francis and Smilowitz [28] and Mourgaya and

Vanderbeck [29]. Francis [30] widen PVRP by defining visit frequency as a decision variable

in the formulation of the problem, which is called PVRP with Service Choice (PVRP-SC). In

most of the PVRP models, a feasible set of visit schedules are generated beforehand for each

customer and a part of the problem is assigning one schedule to each customer. However,

in this study, we propose a flexible model without fixed schedules that are defined a priori.

Different from the previous models in the PVRP literature, we reckon with the production

requirements and accumulation rates at the customer sites in forming the visit schedules

and routes. This leads to a periodic routing problem integrated with the production and

inventory decisions similar to the models in the IRP literature.

IRP combines the periodic routing problem with inventory control and has many appli-

cations in different areas such as the gas distribution industry, suppliers of supermarkets,

department store chains, parts distribution in the automotive industry, etc (Campbell [16]

and Lee [31]). In IRP, customers have a daily usage rate of a product and the product must
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be supplied before depletion of the stock (Moin and Salhi [32] for a review). The initial

research related to IRP includes single period models where optimization is carried out over

a single period (Campbell and Savelsbergh [33], Beltrami and Bodin [17], Federgruen and

Zipkin [34], Federgruen [35] and Chien [36]. Because of the inefficiencies of single period

models, multi period models, which are computationally more complex but tend to give

better quality solutions, are developed (e.g., Dror [37] and Dror and Ball [38], Dror and

Levy [39]). Anily and Federgruen [40] and Raa and Aghezzaf [41] consider infinite horizon

models to create a multiple day schedule that can be repeated indefinitely. Mostly, heuristics

or metaheuristics are used for the solutions of IRP (e.g., Trudeau and Dror [42], Dror and

Trudeau [43], Bard [44], Jaillet et al. [45], Campbell and Savelsbergh [33], and Lee [31]).

IRP combined with production decisions is referred to in the literature as the production,

inventory, distribution and routing problem (PIDRP) (see Lei [46], Boudia [47], Savelsbergh

and Song [48] and Bard and Nananukul [44, 49]). Again, heuristics are the main tool used

to solve PIDRP since the full PIDRP has so far proven to be beyond the capability of exact

methods as stated by Bard and Nananukul [49].

In this paper, we have several variations from the studies in the IRP literature. First

of all, we have customer selection in our model. That is, some of the source points may

not be visited at all if that is profitable to do so, whereas in the classical IRP literature all

customers must be visited such that they will not be out of stock. In addition, in the classical

IRP literature the need for routing stems from the stock-out constraints at the customers.

However, in our model, visits to source points are due to the production requirements

at the production facility. Therefore, our study also includes lot-sizing considerations as

in PIDRP, which makes the problem much harder. In addition, we allow the option of

purchasing the required material as a substitute to the collection activity. This option adds

another dimension to the problem making the feasible solution space much larger. Note

that both PVRP and IRP are known to be notoriously difficult, thus it is not realistic to

expect large instances of our problem to be solved to optimality. Beside the complexity of

routing, additional customer selection, lot-sizing and inventory management considerations

in our problem make it much harder.

We give the related problems from the literature:
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2.1 VRP

The Vehicle Routing Problem (VRP) is a known combinatorial optimization problem seeking

to service a number of customers with a fleet of vehicles depart and end from one or several

depots. The Vehicle Routing Problem (VRP) is introduced by Dantzig and Ramser in

1959 and the Vehicle Routing Problem (VRP) still an important problem in the fields of

transportation, distribution and logistics [50].

The objective is to find a set of delivery routes satisfying some requirements or con-

straints result minimal total cost. Because of its essential role in logistics and distribution

systems, over the last decades the VRP has drawn enormous interests by many researchers.

In many sectors such as garbage collection, mail delivery, task sequencing, collection of

household waste, gasoline delivery, goods distribution and snow plough the VRP has wide

application area.

The VRP plays a vital role in distribution and logistics. According to the investigations

of Maffioli [51], Toth and Vigo [52] reported that the use of computerized methods in

distribution processes generally concludes with a savings among 5% to 20% in transportation

costs.

The classical Vehicle Routing Problem (VRP) is defined on an undirected graph G =

(V ;E) where V = {v0; v1; ...; vn} is a vertex set and E = {(vi; vj) : vi; vj ∈ V ; i < j} is an

edge set. The depot, represented by v0 and it houses a fleet of vehicles with capacity of

Q, the rest of the vertices represent the customers. Positive distance or travel time matrix

is described with C = (cij). C matrix can be used as transportation costs between each

couple of vertices on E. Also each customer has a positive demand and service time.

The VRP consists of determining a set of vehicle routes, minimum total cost; starting

and ending at the depot; and such that each customer is visited exactly once by exactly

one vehicle; the total demand of any route does not exceed the vehicle capacity; the total

duration or length of any route does exceed a preset bound.

The number of vehicles can either be defined in advance or be a decision variable in the

model. If the vehicle numbers are a decision variable, in this case fixed-costs are sometimes

incorporated in the objective function.
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2.1.1 Variants of Vehicle Routing Problem (VRP)

Different variant of Vehicle Routing/Scheduling Problem:

- Capacitated VRP (CVRP)

- Distance-Constrained-VRP (DVRP)

- Distance-Constrained CVRP (DCVRP)

- VRP with Time Windows (VRPTW)

- VRP with Backhauls (VRPB):

- VRP with Pickup and Delivery (VRPPD)

- Multi-compartment Vehicle Routing Problem (MCVRP)

- Periodic Vehicle Routing Problem (PVRP)

- Stochastic VRP

- Arc Routing Problems

2.1.2 Common Properties of Vehicle Routing Problems (VRPs)

Routing and Scheduling problems including all these VRP variants have some common

characteristics such as:

- Size of available fleet; one or multiple,

- Type of available fleet; homogenous or heterogeneous,

- Housing of vehicles; single depot or multiple depots,

- Nature of demands ; deterministic or stochastic or partial satisfaction of demands

allowed,

- Underlying network; directed or undirected or mixed or Euclidean,

- Vehicle capacity restrictions; limited or unlimited,

- Maximum route times; same for all routes or different for all routes or not imposed,

- Operations; pickups only or deliveries only or mixed (pickups & deliveries) or split

deliveries (allowed or disallowed),

- Planning Horizon; single period or multiple periods,

- Time windows; one sided or two sided or soft windows or hard windows,

- Costs; variable/routing cost or fixed operating/variable acquisition costs or common

carrier cost (for unserviced demands),

- Objectives; single-objective or multi-objective.
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2.1.3 Solution Methods for Vehicle Routing Problem

Many researchers worked on the VRP, therefore different solution methods developed by

these researchers. The proposed solution methods are:

i. Exact Solution Methods: Some methods developed and widely used as exact solution

methods are Branch-and-Bound [53], [54], [55], [52], Branch-and-Cut [56], [57], [58], and

Branch-and-Cut-and-Price [59], [60].

ii. Classical Heuristics: Algorithms Some classical heuristics algorithms are local search

(simulated annealing, deterministic annealing, tabu search), population search (adaptive

memory procedures, genetic search) and Learning mechanisms (neural networks, ant colony

systems).

iii. Metaheuristics: Tabu Search, Simulated Annealing, Population Search, Genetic

Algorithm, Ant system optimization and some variations or hybridizations of these meta-

heuristics.

2.2 PVRP

Most of the real problems which need pick-up and/or delivery operations, customers gen-

erally require frequent visits over a planning horizon. This creates demand to development

of Periodic Vehicle Routing Problem (PVRP) also called allocation/routing problems. In

classical VRPs the planning horizon is most of the time limited with very short time hori-

zon, such as 8-10 hours or a day. On the other hand, PVRP one of the main additional

consideration is longer planning horizons in which vehicle routes are constructed for a period

(for example, one week or more than a week, also different units of times may be used).

In the periodic vehicle routing problems, deliveries are made to a set of customers over

multiple time units during the period and optimizing these iterative operations can resulted

significant cost savings. During each time unit within the planning period, a fleet of capac-

itated vehicles travels along routes which begin and end at a single depot. According to the

underlying complete graph G = (N,A) we can find the distances among all arcs; therefore,

by using these distances we can calculate the travel costs. All the nodes N , including depot

and customers are visited with predetermined frequencies over the planning period. In most

of the PVRP models, researchers propose a set of schedules which are a collection of time

units within the planning period in which customers receive service. During the planning
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period by choosing one of these schedules customers can be visited several times and the

visiting frequencies k for each customer may be in a predetermined interval 1 ≤ k ≤M .

In general, after creating set of schedules, the PVRP is viewed as a multi-stage combina-

torial optimization problem combining two defined problems: the assignment problem and

the vehicle routing problem. Eventually, the PVRP includes three synchronous decisions: i.

Choosing a schedule for each customer from predefined schedule set, ii. Assigning a group

of customers to each vehicle on each day, and iii. Routing the vehicles for each time unit

of the planning horizon.

In the classical VRP, only (ii) and (iii) decisions are made only over a single time unit.

In the PVRP, each customer needs to be visited several times with a frequency of fi during

the planning period.

The PVRP has many application areas such as courier services, elevator maintenance

and repair, vending machine replenishment and the delivery of interlibrary loan material.

Also some applications of the PVRP can be found in environments such as fuel, oil and

industrial gas distribution and waste collection.

The first PVRP model was introduced in 1974 by Beltamin and Bodin for assigning

hoist compactor trucks in municipal waste collection [17]. They proposed heuristics to solve

the PVRP, but did not present any model, just enlightened its complexity in comparison of

the Classical VRP.

After Beltamin and Bodin, Russel and Igo [18] and Christofides and Beasley [61] put

formal definitions and improved heuristic solution methods.

Russel and Igo [18] gave the formal definition of Assignment Routing Problem and they

draw attention to the difficulties of choosing a schedule for each customer beside solving

the routing problem. They also did not give any formulation of the problem but they offer

heuristics instead.

Christofides and Beasely [61] proposed the first formulation of the PVRP. They devel-

oped a model which gives the routes at each time units in the planning period to meet the

customer visit frequency requirements. They presented an integer programming problem

which considers both assignments of schedules to the customers and routing of a vehicle at

each time unit.
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2.2.1 Variants of the Periodic Vehicle Routing Problem

Mainly the literature includes three variants related to Periodic Vehicle Routing Problems:

i. Multi-Depot PVRP

ii. PVRP with Time Windows

iii. PVRP with Service Choice

In the Multi-Depot Vehicle Routing Problem (MDVRP), period deliveries are fulfilled

by using a fleet of vehicles that are holding on a number of depots. Hadjiconstantinou and

Baldacci [62] combine the ideas of periodicity and multiple-depots, carrying on the PVRP to

include multiple depots. This causes an increase on the complexity of the problem because

besides assigning customers to depots, it includes extra decisions of assigning vehicles to

depots. Also, in this problem a set of routes are designing for each day of a given D- day

planning period. A fleet of vehicles based at one of the depots complete the routes for each

time unit in the planning period, and vehicles must begin and end the route at its appointed

depot.

The PVRP with Intermediate Facilities (PVRPIF) is close to the MDPVRP. Angelelli

and Speranza [63] instead of promising multiple vehicle depots, used the idea of ”drop-off

points”, or intermediate facilities, and at these points/facilities vehicle can stand along their

vehicle routes to replenish their capacities. Vehicles begin and end their routes at their own

depots, but visit these intermediate facilities along the way. The authors used Tabu Search

method to solve the extended PVRP problem.

The Multi-Depot Vehicle Routing Problem (MDVRP) and the PVRP with Intermediate

Facilities (PVRPIF) have some application areas such as waste collection recycling facilities

or goods collection with warehouse facilities.

The Periodic Vehicle Routing Problem with Time Windows (PVRPTW) is also a variant

which K different vehicle routes are designed to visit all customers with their allowed service

frequency over the planning period, and each visit should be within a predefined time

interval.

By adding time-windows, Cordeau [64] improved their previous work [20]. Their method

includes a Tabu Search method for the PVRPTW, which can be used to solve the VRPTW

and MDVRPTW as special cases. The improvement into the heuristic is extra penalty term

included to the objective function for violations of time window constraints.
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The authors also generated a set of new instances for the PVRPTW and MDVRPTW,

and gave numerical results, although the quality of the solutions cannot be specifically

measured in the absence of optimal solutions or lower bounds. The authors contributed a

comparison of the performance of their heuristic on the Solomon VRPTW test instances

[65], where it performs favorably when compared to the best known solution.

PVRP with Service Choice (PVRP-SC) is also a variant of PVRP which concerns cus-

tomers who have a minimum requirement for visits over the period but are willing to accept

higher visit frequency as well. This property changes the problem in terms of arrangement

of visit frequencies for each customer in a flexible way and this may decrease in the routing

costs.

2.2.2 Common Properties of the Periodic Vehicle Routing Problems

In general the objective of PVRP is to find a set of tours on each time unit over the plan-

ning period for each vehicle which minimizes total travel cost while satisfying operational

constraints (some requirements and capacities).

Inputs, variables and aims for the PVRP can be summarized:

Given: A complete network graph G = (N,A) with known arc costs cij , ∀(i, j) ∈ A,

a planning period of D days indexed by d; a depot node indexed i = 0; a set of customer

nodes N ′ = N\{0} with each node i ∈ N ′ having a total demand of Wi over the planning

period, and requiring a fixed number of visits fi; a set of vehicles K each with capacity C;

a set of schedules S.

Find: An allocation of customer nodes to schedules such that each node is visited the

required number of times; a routing of vehicles for each day to visit the selected nodes

during that day; with,

Objective: Minimum cost of visiting the nodes. [66]

2.2.3 Solution Methods for Periodic Vehicle Routing Problem

In particular, there exist three main solution methods which are implemented to solve

PVRPs. These methods are classical heuristics, metaheuristics and mathematical program-

ming based models.

Classical heuristics are implemented by some authors such as Beasley and Tan, Russell,
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and Gaudioso [22] , [23] and [24].

Beasley and Tan [22] proposed a two stage method to solve PVRP. In the first stage

the authors defined the allocation of customers into predetermined schedules by solving

assignment problem. Then they determined the identical VRPs for each time unit in the

planning period. The most important performance criterion for their method is a cost

measurement on which customer assigned to which time unit routes.

Russel and Gribbin [23] presented a multi-phase approach to the period routing problem.

The first phase of analysis consists of a generalized network approximation to achieve an

efficient initial solution. The second phase involves an interchange heuristic that reduces

distribution costs by solving a surrogate Traveling Salesman Problem. The third phase

consists of an interchange heuristic that further reduces the distribution costs by addressing

the actual vehicle routes of the Period Routing Problem. A fourth phase utilizes a binary

integer model to attempt further improvements.

Gaudiosio and Paletta [24] introduced a different heuristic for the PVRP which minimizes

fleet size instead of transportation costs. They enforced maximum route duration and

vehicle capacity constraints. Rather than enforcing a schedule set from which to choose

time unite combinations, they put some upper and lower bounds on number of time units

between visits for each customer. Because their algorithm’s objective function is minimizing

fleet size rather than transportation costs, the distance cost is generally worse than other

PVRP solution methods.

Metaheuristics are also implemented by some authors such as Chao, Cordeau, and Drum-

mond [25], [20] and [21].

Chao et al. [25] developed a method that generate an initial feasible solution to the

PVRP and then iteratively use improvement steps to progress towards the optimal solution

to the problem. The initial feasible solution is obtained from previously developed by

Christofides and Beasley [61]. They solved a linear relaxation of the assignment problem of

allocating nodes to delivery days, while minimizing the maximum load carried in any given

day. While the resulting solution may not be capacity feasible, it is still useful as an initial

starting point.

Cordeau et al. [20] developed a Tabu search specific insertion and route improvement

techniques.
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Drummond et al. [21] proposed a metaheuristic based on a combination of genetic

algorithm concepts and local search heuristics. This metaheuristic is a parallel-thread pop-

ulation mechanism heuristic (Cordeau et al. [20]). Their method is an implementation of

genetic algorithms on a parallel computing framework together with modified local search

methods.

Furthermore, mathematical programming based models are implemented by some au-

thors such as [67],[68] and [29].

Francis et al. [67],[68] widened the PVRP by defining visit frequency as a decision

variable in the formulation of the problem. This newly launched problem is called the

PVRP with Service Choice (PVRP-SC). This increases the difficulty of solving the problem

in two ways: first, there is the added complexity of determining the service frequency;

second, the vehicle capacity requirement when visiting a node also becomes a decision of

the model. In the formulation of the PVRP-SC from Francis et al. [67],[68] each schedule

has a monetary benefit. A positive weight converts vehicle travel and stopping time into

comparable costs in the objective function. However the demand accumulated between

visits, depends on the demand of the node i ∈ N and the frequency of schedule s ∈ S, in

this formulation it is approximated by the maximum accumulation between visits.

Fancis et al. [67],[68] solved this problem using the Lagrangian relaxation method, by

combining branch and bound method. Instances which have at most 50 nodes can be solved

with 2% of optimality gap. The conclusion from Fancis et al. [67],[68] is the largeness of

the savings gained by adding service choice in the PVRP for a given instance depends on

geographic distribution of nodes (especially, nodes of highest visit requirements).

Mourgaya and Vanderbeck [29] proposed a model which schedules visits and assigns

these visits to vehicles but they disregarded sequencing customers will be visited within

each time unit for each vehicle. In the model they had two objectives; one is regionalization

which is clustering customers geographically for tour lengths and the other one is workload

balancing among vehicles. The authors used truncated column generation method with

rounding heuristic to solve the model. With this model they could solve the instances 50-

80 customers with 5 day planning period and this range of instances are solved by using

metaheuristics in most of the PVRP literature.
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2.3 IRP

The inventory routing problem (IRP) is an integration of two supply chain operations,

namely inventory control and vehicle routing. Inventory allocation and distribution (vehicle

routing) are interrelated operations one entails information from the other. In order to

decide which customers must be visited and the amount to supply each selected customer,

the routing cost information is needed thus the marginal cost for each customer can be

properly computed. On the other side, the transportation cost for each customer depends

on the vehicle routes, which in turn requires information about customer selection and the

amount of inventory allocated for each customer. Although these two issues have been

examined separately, the integration of both issues can have a vital impression on entire

system performance.

The IRP has received much interest, especially in the context of Vendor Managed Inven-

tory (VMI) in a supply chain. VMI applies due to an agreement between a vendor and his

customers in which the vendor has the right to choose the timing and size of the deliveries

to the customers while ensuring that the customers do not run out of products.

Inventory routing problem (IRP) is a variation of well-studied vehicle routing problem

(VRP) where orders are given by the customers and the aim of the supplier is to satisfy these

customer orders while minimizing its total distribution cost and the planning horizon is just

a single day. On the other hand, in the IRP there are no customer orders, delivery company

decides how much to deliver to which customer at each day. Another difference is the

planning horizon, instead of single day planning like in VRP, IRP considers a longer horizon.

All the decisions taken on a day have impact on the future decisions in the IRP. One more

difference is the objective functions in the IRP the objective function is to minimize total

costs incurred over the planning period such as transportation costs and inventory holding

costs while ensuring no customers run out of product, but VRP just consider minimizing

total transportation costs.

The flexibility increases by integrating the inventory allocating problem and routing

problem over the planning horizon and this may conclude with an important decrease on

the distribution costs. However, increasing flexibility and the planning horizon makes the

problem computationally more complex. IRP models are more realistic in the long term

planning, their results are more valuable and cost efficient rather than VRP models, thus
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the high computational complexity can be acceptable.

There are many applications of IRP in several industries such as: The gas distribu-

tion industry [69], The petrochemical industry, Suppliers of supermarkets [70], Radice [71],

Department store chains, including Walmart [72], Home products, such as Rubbermaid

[73], The clothing industry, where vendor managed resupply (VMR) is encouraged by the

American Apparel Manufacturers Association [74], and The automotive industry (parts

distribution) [75].

2.3.1 Problem Definition

More specifically, the IRP is concerned with the repeated distribution of a single product

from a single facility to a set of N customers over a given planning horizon of length T ,

possibly infinity. Customer i consumes the product at a given rate Ui (volume per day) and

has the capability to maintain a local inventory of the product up to a maximum of Ci. The

inventory at customer i is I0
i at time 0. A fleet of M homogeneous vehicles, with capacity

Q, is available for the distribution of the product.

The objective is to minimize the average distribution costs during the planning period

without causing stock-outs at any of the customers.

Three decisions have to be made: (i) When to serve a customer, (ii) How much to

deliver to a customer when served, and (iii) Which delivery routes to use.

There are various characteristics of inventory routing problem: (i) The planning hori-

zon can be finite or infinite, (ii) Inventory holding costs may or may not be considered,

(iii) Inventory holding costs may be charged at the supplier only, at the supplier and the

customer, or at the customers only, (iv) The production and the consumption rates can be

deterministic and stochastic, (v) Production and consumption take place at discrete time

instants or take place continuously, (vi) Production and consumption rates are constant over

time or vary over time, and (vii) The optimal delivery policy can be chosen from among all

possible policies or has to be chosen from among a specific class of policies.

2.3.2 Solution Methods

Solution techniques in the IRP can be classified into two groups which are theoretical

approach; creation of the lower bounds to the problem and practical approach; heuristics
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to obtain near-optimal solutions.

Large majority of the papers deal with the theoretical approach use some tactics that

lead to separate the IRP into two subproblems which are inventory allocation and trav-

eling salesman problem (TSP). The inventory allocation problem is solved to decide the

replenishment times and the replenishment quantities for each customer and the traveling

salesman problem is solved to determine the sequences of customers will be visited on each

day.

Most papers in this category adopt a two-stage solution approach:

They either find the routes first and then solve the IRP formulation, which is a simple

linear programming-based inventory control problem, or solve the inventory control problem

first (sometimes with approximated transportation cost), aggregate (cluster) the customers

with the same replenishment time instants and then construct the routes for each cluster.

As the modification of routes entails resolving a new inventory allocation problem and vice

versa, most algorithms iterate between obtaining a new set of routes and resolving the

inventory problem until a suitable stopping criterion is satisfied.

2.3.3 Review of the Previous Studies on IRP

Most of the research on the IRP can be categorized into four groups as follows: (i) Single

period models (short term), (ii) Multi period models (long term), (iii) Infinite horizon

models (permanent), (iv) Stochastic variation of the models.

We next review studies according to these four groups.

Single Period Models

The initial studies related to the IRP include single period models where the authors focused

on optimizing the problems over a horizon of one day. Beltrami and Bodin [17], Federgruen

and Zipkin [34] were among the pioneers of integrating the inventory allocation and routing

problems with single period models. Federgruen et al. [35] and Chien et al. [36] present

some other papers employ single period models to the IRP.

A non-linear mixed integer programming model developed by Federgruen and Zipkin

[34] and they used Bender’s decomposition approach which decomposes the problem into a

nonlinear inventory allocation problem and a TSP for each vehicle. The idea is to construct
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an initial feasible solution and iteratively improve the solution by exchanging customers

between routes. The idea is extended for two product classes by Federgruen et al. [35].

A mixed integer programming model stated by Chien et al. [36] and they proposed a

Lagrangian based procedure to generate good upper bounds.

Later on, single period models was found to be very myopic, delaying all deliveries but

those necessary today. According to Campbell and Savelsbergh [33] single day approaches

simplify the problem but it increase inefficiency of overall system and even create infeasi-

bilities. Although the single period models may not project the long term planning, the

models are still of some relation as they are sometimes used as the basis in the study of

multi period models.

Multi Period Models

Because of inefficiencies of single period models, multi period models become popular among

researchers. The multi period models are computationally more complex but they tend to

give better quality solutions. The first study is implemented by Dror et al. [37] and Dror

and Ball [38]. They analyzed the effect of the short term on the long term planning,

they proposed single period models as subproblems and also proposed a mixed integer

programming model where effects of current decisions are counted on using penalty and

incentive factors. Then a similar analysis are used in Dror and Levy [39] with weekly

schedule, they performed a heuristic using node and arc exchanges to decrease costs in the

planning period. Same ideas enlarged in Trudeau and Dror [43] while considering stochastic

demands and they developed heuristics based on linear mixed integer programming sub-

models to solve their problems. In the Dror and Trudeau [43] also the same idea extended

and both deterministic and stochastic demands are considered. Their concentration was

on the maximization of operational efficiency (average number of units delivered in one

hour of operation) and the minimization of the average number of stock out in one period.

Jaillet et al. [45], Bard et al. [76] and Jaillet et al. [77] extended the idea of Dror et al.

[37] by considering long term. They took a rolling horizon approach to the problem by

determining a schedule for two weeks, while implementing only the first week. The problem

is solved iteratively in the following week for the next two weeks horizon. They considered

the customers which are in optimal replenishment days within the next two weeks. An
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allocation problem is solved, by making little changes for customers in their replenishment

days (from optimal solution) one day to another to prevent too large of a demand on any

day in the two week horizon. After the customers are allocated to days, the result is a

set of daily vehicle routing problems where the delivery quantity used is a quantity that

approximates what will be necessary to fill each customer on that day.

Campbell and Savelsbergh [33] proposed a model, using a vendor-managed resupply

policies, which considers routing customers together on a day where stock-out is not occured,

but if combined they can make a full or near-full truckload delivery route. The authors

introduced a two-phase solution approach implemented in a rolling horizon framework. In

phase I, an approximation of the problem is constructed based on a k days planning using

integer programming to find the customers to serve each day and how much to serve them.

The obtained solution is then used as information for phase II where the daily scheduling

plan takes place. In phase I, a large set of possible clusters are generated and the cost of

serving each cluster is estimated. In the second phase, the departure times and customer

sequence for the different vehicles are carried out using an insertion heuristic for solving the

vehicle routing with time windows.

Lee et al. [75] worked on the inventory routing problem in an automotive part supply

chain that includes several suppliers and an assembly plant. The problem is based on a

finite horizon, multi-period, multi-supplier and a single assembly plant part supply network

where a fleet of capacitated identical vehicles transport parts from the suppliers to satisfy the

demand specified by the assembly plant for each period. This problem shows an in-bound

logistic problem of type many-to-one network and is equivalent to the one-to-many under

certain conditions. The authors proposed a mixed integer programming model to minimize

the overall transportation cost and the inventory costs. This mixed integer programming

model is decomposed into two subproblems, namely the VRP and the inventory control.

A heuristic based on simulated annealing is improved to generate and evaluate alternative

vehicle route sets while a linear program determine the optimum inventory levels for a given

set of routes. After that, a route perturbation routine is implemented to modify a set of

vehicle routes based in some information obtained from the optimal solution to the linear

program. The modification of routes requires solving the linear program again to get new

inventory levels. This part is implemented iteratively until a stopping criterion is reached,
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namely the specified maximum number of iterations. They also observed an important

property that the optimal solution is dominated by the transportation cost regardless of the

magnitude of the unit inventory carrying cost. Then they proved this argument analytically

for a simpler version of the problem based on an infinite planning horizon and stationary

demand with a single supplier providing either a single-part type or multiple-part types.

The multi-period models are useful, because they offer a more realistic trade-off be-

tween the strategic and the operational nature of the IRP models. High-quality solutions

are produced by these approaches but they require significantly larger computing effort.

Furthermore, they allow the effect of the long-term cost on the current schedules to be

studied. Because of the increase complexity of the problem, most multi-product and multi-

period models consider deterministic demand at the retailers and heuristic methods to find

solutions for the multi-period models.

Infinite Horizon Models

Infinite horizon models are designed for creating a p-day schedule that can be repeated

indefinitely. Christofides and Beasley [61] and Gaudioso and Paletta [24] showed that infinite

horizon models are good for making strategic decisions such as determining fleet size instead

of short term planning. Anily and Federgruen [40], [78] studied minimization of long-

run average transportation and inventory costs in the existence of deterministic demand.

Using ideas similar to those of Anily and Federgruen, Gallego and Simchi-Levi [79] showed

the long-run effectiveness of separate loads to each customer by direct shipping. They

presented that direct shipping is at least 94% effective over all inventory routing strategies

whenever minimal economic lot size is at least 71% of truck capacity. The effectiveness

worsens as economic lot size gets smaller. In most of the infinite horizon models, the

demand rate is assumed to be constant and deterministic. However, when stochastic demand

is incorporated into the problem, infinite time horizon approaches are unsuccessful and

inefficient in the short term.

Stochastic Models

Recently, interest on stochastic models increasing because in real life product usages and

consequently customer demands are stochastic rather than deterministic. Therefore an
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important variant of the IRP is the stochastic inventory routing problem (SIRP). These

models assume that the probability distribution for customer demand is known. Kleywegt

et al. [80],[81] formulated the SIRP as a Markov decision process and proposed approximate

dynamic programming approach to find good solutions with reasonable computational effort.

Some examples of this approach are by Minkoff [82], Bassok and Ernst [83], Barnes-Schuster

and Bassok [83], Berman and Larson [84], Cetinkaya and Lee [85], Furnero and Vercellis

[86]. Although the results of these researches are promising, it is hard to implement this

solution approach in real life because of its computational time for realistic instances of the

IRP and still inappropriate for real applications, since it is not easy to obtain probability

distributions of customer demands.

2.4 Collection Problems

The information stated in this section are from a review paper proposed by Beullens and

Wassenove and Oudhusden [87].

Main objectives of the reverse logistics are both the collection and movement of recover-

able products. Inefficient transportation activities limit the economic success of reprocess-

ing products. So some models developed to cope with this inefficiency and in general these

models can be stated with two types: normative models and descriptive models.

The normative models search to find the optimal solution for a given problem instance.

These models are combinatorial optimization problems and generally NP-hard. Greedy

heuristics, various local improvement heuristics, and mathematical programming are some

solution methods for normative models.

The descriptive models study the general behavior of complex systems. Detailed instance

data are replaced by concise summaries, and numerical methods are often replaced by

analytic methods or simulation runs. These models lead to define wide features of solutions

close to the optimal. These features are then used to formulate guidelines for the design of

implementable solutions.

In reverse logistics there are several application areas for implementing collection and

transportation approaches: (i) Refuse collection from households. (ii) Collecting hazardous

materials from industrial firms. (iii) White goods collection. (iv) Combining deliveries and

collections.
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All the applications implemented on these areas have common objective which is obtain-

ing the returning goods at the lowest possible cost. In every application area there should

be taken two decisions; (i) the decisions relevant the design of the system, such as the

customer service policy according to the available degrees of freedom, and (ii) the decisions

of vehicle routing problems which are solved taking into account the specific design and

relevant additional constraints.

There are different available system design options and categorized according to four

aspects; the collection infrastructure, the collection policy, the combination level of the

collection, and the characteristics of the collection vehicles.

The collection infrastructure is related to places that the used products turn back to the

collector. (i) On site collection: collecting directly from the generators, (ii) Unmanned drop-

off sites: the generators leave the used products to previously defined sites, (iii) Staffed and

smart drop-ff: staff supervision exists (second-hand shop or smart glass collection machine),

and (iv) Ad hoc and mobile drop-off sites: the generator leaves the used products to a site

on a given time interval, vehicles can make short stops nearby to some proper locations.

The collection policy decides the moments at which a collection point is serviced and the

volume collected per visit. There are some ways to define the collection policy: (i) Periodic

schedules: according to fixed frequencies, (ii) Call services (ad hoc visit): by a call from

collection point, (iii) Triggered by a distribution schedule: if the integration of collection

and delivery is allowed.

The combinational level of the collection is differs according to the different classes of

goods. The combinational level may change in these ways: (i) Separate routing of inde-

pendent resources: dedicated single compartment vehicle, (ii) Separate routing of shared

resources: two or more classes of flows are collected by a set of vehicles (not mixing), (iii)

Co-collecting source separated flows of goods: two or more classes are collected simultane-

ously, and (iv) Integrated collection and delivery tasks: mixing, backhauling, and partial

mixing.

The characteristics of the collection vehicles have to conform to the collection infras-

tructure, policy and combinational level. They can either have single compartment or

multi compartments or relative size compartments or different rate compartments or dual-

compartment (co-collect two classes).
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Some properties that may be faced with in the reverse logistics can be counted like;

(i) Node, arc and general routing, (ii) Low time pressure, (iii) Low value of the goods,

(iv) Standardized collection policies, (v) Allowing split collection, (vi) Sector solution, (vii)

Minimizing the fixed cost first, (viii) Combining multiple inbound and outbound flows, (ix )

Multiple vehicle types, and (x ) Supply uncertainty.

2.4.1 Vehicle Routing Models

There are some basic models described related to vehicle routing problems (VRP), these

are Single period models concerning a single collection tasks; (i) Node routing: Capacitated

Vehicle Routing Problem (CVRP) with non-negative edge lengths/costs and non-negative

demands for service on every vertex [50], (ii) Arc routing: Capacitated Arc Routing Problem

(CARP) with non-negative lengths/costs and non-negative demand for service on every

edge [88], and (iii) General routing: some necessary edges associates with non-negative

length/costs and some necessary vertices are used [89].

Also there exist some Multi period vehicle routing problems where the planning horizon

consists of several periods (days). Solution methods are; (i) Node routing: Periodic Vehicle

Routing Problem where each vertex specifies a service frequency and considers a set of

allowable combinations of service days [17], (ii) Arc and general routing.

Furthermore there are Co-collection models which classes have to be collected in separate

vehicle compartments [90],[91], [92] and Integration models dealing with both collection and

distribution some variants are (i)Backhauling [93], (ii) Mixing [94], (iii) Partial mixing [95],

which are also represented as the specification of the vehicle routing problems.

2.4.2 System Design Models

Economic order quantity (EOQ) models; a famous approach to find optimal periodic sched-

ules. With EOQ models multiple stops per vehicle generally concludes to lower collection

cots than direct shipping. However this method has seen inappropriate for reverse logistics

[96].

Sector Design models, aim to find a set of sectors with corresponding periodic schedules

to achieve the investment cost in vehicles and crew, and weekly routing costs are minimized

while giving a certain level of service to the generators [92], [91].
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Co-collection models, the hope is to reduce the collection costs with combining collection

of different flows of goods. [97].

Integration models; combining several flows of goods to integrate collection and distri-

bution activities [98].

2.5 Our Contribution to the Literature

The problem we study differs the literature in the following ways:

(i) There is no need to visit all source points; (ii) In our models schedules are structured

on the days: a schedule presents the visit days of a source point. On the other hand, in

the literature schedules are structured on the source points: a schedule presents the source

point which will be visited on that day; (iii) There is no fixed visit frequency requirements

from customers as in the PVRP. In our models the decision of when to visit each customer

is taken among all possible day combinations rather than taking among predefined schedule

sets; (iv) Considers inventory management issues. Customers accumulate used vegetable

oils and they do not require fixed visit frequency by collection company. On the other hand,

the collection company has to decide the quantity that he needs to collect according to the

production requirements to produce bio-diesel; (v) In our models, the company collects to

satisfy its production requirements. On the other hand, in comparison IRP delivers to avoid

customer stock outs.

We define and introduce SPIRP to the literature. We provide a novel mixed integer

programming formulation that is effective in solving realistic sized instances to near op-

timality. We investigate various versions of SPIRP and formulate alternative models for

them. We compare the models computationally and conduct further sensitivity analysis

using the best performing model. We also implement a Lagrangian relaxation approach for

a special case of the problem, namely the single vehicle case. We test this approach using

three alternative models. We introduce new and realistic instances of the problem that can

be used for computational testing purposes.
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Chapter 3

A SELECTIVE AND PERIODIC INVENTORY ROUTING PROBLEM

FOR WASTE VEGETABLE OIL COLLECTION

In this chapter, we define the waste vegetable collection problem formally as a selective

and periodic inventory routing problem and discuss problem characteristics.

We are given a set of n source nodes (waste oil accumulation points) and a depot (the

biodiesel production facility). A complete directed graph is defined on these nodes, with

real road distances dij for each arc (i, j) in the graph. The planning horizon is cyclic and

each cycle consists of a fixed number of periods, e.g., seven days. Each source node i has a

fixed accumulation rate ait in period t. If a source node is visited in any period, all of the

waste oil accumulated so far is collected by the company. In other words, partial collection

is not allowed. The biodiesel production facility has requirements rt of used vegetable oil for

each period t in the planning horizon. The requirements are satisfied from: 1) the collected

waste oil, 2) the purchased virgin oil, 3) the inventory on hand, or any combination of

these options. Correspondingly, the following costs are incurred: a traveling cost c per unit

distance traveled, a purchasing cost p per liter of virgin vegetable oil, a holding cost h per

liter of waste oil per period, and a vehicle operating cost v per vehicle per period. Each

vehicle has a fixed capacity Q.

The Selective and Periodic Inventory Routing Problem (SPIRP) is to find a periodic

collection schedule that repeats itself in every cycle. This schedule identifies the set of

source nodes to be visited and the associated vehicle routes in each period. The objec-

tive is to minimize the sum of total travel cost, vehicle operating cost, inventory holding

cost and purchasing cost while satisfying the production requirements and vehicle capacity

constraints.

SPIRP is NP-hard as it generalizes several well known NP-hard problems related to

routing and lot-sizing. In the case of a single period, the problem reduces to a variant of

a vehicle routing problem in which customer visits are selective and the required amount
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should be satisfied from collection and/or purchasing. When multiple periods exist in the

planning horizon but only a single customer (source node) is available, then the problem is

a variant of the capacitated lot-sizing problem since the main decision is on which days to

visit the customer, while considering the trade-offs among the transportation cost (which

is a step function due to vehicle costs), the inventory holding cost, and the purchasing cost

(which is analogous to the shortage cost).

We formulated SPIRP models with different properties and these models are presented in

Chapters 4-6. These models differs depending on the planning horizon types (cyclic/acyclic)

and depending on the vehicles used (single/multiple homogenous vehicles). Formulations of

the models are differs according to these characteristics.

i. Cyclic Planning Horizon vs. Acyclic Planning Horizon

Cyclic planning horizon indicates infinite horizon (long-term) and acyclic planning hori-

zon denotes finite horizon (short-term). If the model is formulated according to a cyclic

planning horizon it means the results (collection program) of the model can be used each

consecutive period. Ending inventories at the source points and the depot in a period are

the beginning inventories for the next period for the cyclic schedule models. Results gath-

ered from acyclic planning horizon models are valid only for the next period, because the

input parameters change for the following periods. This type of models have to be executed

at the beginning of each period.

According to the nature of the problems both cyclic and acyclic planning horizon models

have advantages. For example if a long-term collection plan needed and the production

requirement is stationary in that case cyclic planning horizon models will be more useful.

On the other hand, if the production requirement is not stationary and differs period by

period in this case acyclic will be more valuable.

ii. Single Vehicle vs. Multiple Vehicles

Using multiple vehicles enables collecting larger amounts at any day of the cycle, but it

also increases the total vehicle operating costs, which is charged per each vehicle used.

The objective function also changes depending on the single and multiple vehicle cases.

To minimize the total cost, in case of multiple vehicles, we include the Vehicle Operating

cost to the objective function. new paragraph:

In the multiple vehicle case, we assume a homogeneous fleet with fixed capacity and
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operating cost.



Chapter 4: SPIRP with Cyclic Schedule and Multiple Vehicles: A MIP Model and a Case Study 27

Chapter 4

SPIRP WITH CYCLIC SCHEDULE AND MULTIPLE VEHICLES: A

MIP MODEL AND A CASE STUDY

In this chapter, we solve the collection logistics problem of a biodiesel production fa-

cility in Istanbul, Turkey and model it using mixed integer linear programming (MILP).

We solve problems of size 25 source points for a 7-day cyclic planning period. We generate

lower bounds with a partial linear relaxation model and observe that the solutions obtained

through our MILP model are within 3.28% of optimality on the average. We extract man-

agerial insights regarding the customer selection, routing and production decisions with

further sensitivity analysis. We give the formulation of the MILP model in Section (4.1).

In Section (4.2), we describe the data set and present the computing platform. Finally,

Section (4.3) includes the computational results of this chapter.

4.1 Mathematical Model Formulation

In this section, we formulate a MILP model to solve SPIRP. A solution to SPIRP consists of

mainly two components: 1) a visiting schedule that reveals which nodes are visited, and 2)

a set of vehicle routes in each period of the planning cycle. The proposed MILP formulation

determines the visiting schedule using binary variables that select sources to visit in each

period. In addition, it employs variables to account for the collected amounts and maintains

inventory variables to update the amount of accumulated waste at the sources according to

the visiting schedule. The requirements at the biodiesel production facility are satisfied via

an inventory balance constraint. For the vehicle routing decisions, our MILP model uses

a single commodity flow formulation to ensure connectivity and subtour elimination. That

is, we define continuous variables to represent the flow of the commodities along the arcs

traveled by the vehicles and incorporate the binary node selection variables into the flow

balance constraints.

In the literature, to solve the vehicle routing problem (VRP) and its variants, vehicle
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flow models that utilize one of the numerous types of subtour elimination constraints, and

set-partitioning models that require a very large number of variables have been used ex-

tensively (see [99] for an in-depth discussion on the basic models proposed for the VRP).

Recently, the use of the commodity flow variables have been observed to be computation-

ally advantageous for some VRP variants [100]. Motivated by these results, we adapted

a single commodity flow formulation for SPIRP. In our computational tests, we observed

that our commodity flow formulation presented in Section 3.1 outperforms the vehicle flow

formulation that uses lifted Miller-Tucker-Zemlin (MTZ) constraints [101]. Furthermore,

we tested a multi-commodity flow model by adapting the Gouveia-Pires [102] formulation

for the asymmetric traveling salesman problem (ATSP). The linear programming (LP) re-

laxation of such formulations has been shown to be stronger than using the lifted MTZ

constraints for the ATSP (see Öncan et al. [103]). However, the presence of a very large

number of variables in the resulting MILP model of SPIRP slows down the branch and

bound algorithm dramatically. Hence, we propose the single commodity flow MILP model

formulated in Section 3.1.

We also note that our MILP formulation for SPIRP does not impose any restrictions

on the schedule of customer visits. It does not assume fixed visit frequencies or a limited

number of predetermined schedules as most studies in the literature do (e.g., Francis and

Smilowitz [28]). If we generate all possible schedules a priori and assign a schedule to each

source node using binary variables, then there would be O(n2τ ) binary variables in our

problem, where τ is the number of periods in the cycle. Instead, in our proposed MILP

formulation we keep the number of binary variables in the order of O(n2τ).

4.1.1 MILP model

The index sets, parameters, and decision variables of the model are defined below.

Index Sets
I = 0, 1, ..., n : the set of n source nodes and the depot 0,

IC = 1, ..., n : the set of n source nodes only (a subset of I),

T = 1, ..., τ : the set of τ periods in the cyclic planning horizon.
Parameters
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c : traveling cost per unit distance.

dij : distance from node i to node j, (i, j ∈ I, dij 6= dji).

ait : waste vegetable oil accumulation amount in period t at node i, (i ∈ IC, t ∈ T ).

rt : waste oil requirement of the company per period, t ∈ T .

h : inventory holding cost per period for storing one liter oil at the depot.

v : operating cost per vehicle.

p : virgin vegetable oil purchasing price per liter.

Q : vehicle capacity in liters.

Ai : total weekly accumulation of waste oil at node i, (i ∈ IC). This number serves

as the Big-M number in our model. It is given by the formula Ai =
∑

t∈T ait.

Decision variables
Xijt : binary variable indicating if arc (i, j) is traversed by a vehicle in period t, (i, j ∈ I, t ∈ T ).

Yit : binary variable indicating if node i has been visited in period t, (i ∈ IC, t ∈ T ).

Zi : binary variable indicating if node i has been visited at least once during

a cycle (i ∈ IC). It attains the value 0, if node i is not visited at all.

Fijt : the amount of waste oil flow from node i to node j in period t, (i, j ∈ I, t ∈ T ).

Wit : the amount of waste oil collected from node i in period t, (i ∈ IC, t ∈ T ).

Iit : ending inventory of waste oil by the end of period t at node i, (i ∈ I, t ∈ T ).

Ii0 : initial inventory of waste oil at the beginning of the cycle at node i, (i ∈ I).

St : the amount of waste oil purchased by the collecting company in period t, (t ∈ T ).

MILP formulation

min TC = c
∑
i∈I

∑
j∈I, (j 6=i)

∑
t∈T

dijXijt + v
∑
i∈IC

∑
t∈T

X0it + h
∑
t∈T

I0t + p
∑
t∈T

St (4.1)

s.t.

∑
j∈I, j 6=i

Fijt −
∑

j∈I, i 6=j
Fjit = Wit, ∀i ∈ IC, ∀t ∈ T (4.2)

Fijt ≤ (Q− ajt)Xijt, ∀i ∈ I, ∀j ∈ I, ∀t ∈ T, i 6= j (4.3)

Fijt ≤ Q−Wjt, ∀i ∈ I, ∀j ∈ IC, ∀t ∈ T, i 6= j (4.4)

Fijt ≥Wit −Ai(1−Xijt), ∀i ∈ IC, ∀j ∈ I, ∀t ∈ T, i 6= j (4.5)
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∑
j∈I, j 6=i

Xjit = Yit, ∀i ∈ IC, ∀t ∈ T (4.6)

∑
j∈I, j 6=i

Xijt = Yit, ∀i ∈ IC, ∀t ∈ T (4.7)

∑
i∈IC

Xi0t =
∑
i∈IC

X0it, ∀t ∈ T (4.8)

Wit ≤ AiYit, ∀i ∈ IC, ∀t ∈ T (4.9)

Iit ≤ Ai(1− Yit), ∀i ∈ IC, ∀t ∈ T (4.10)

Iit = Iit−1 + aitZi −Wit, ∀i ∈ IC, ∀t ∈ T (4.11)

Ii0 = Iiτ , ∀i ∈ I (4.12)

I0t = I0t−1 +
∑
i∈IC

Wit + St − rt, ∀t ∈ T (4.13)

Zi ≤
∑
t∈T

Yit, ∀i ∈ IC (4.14)

Zi ≥ Yit, ∀i ∈ IC, ∀t ∈ T (4.15)

Xijt ∈ {0, 1}, ∀i ∈ I, ∀j ∈ I, ∀t ∈ T, i 6= j (4.16)

Yit ∈ {0, 1}, ∀i ∈ IC, ∀t ∈ T (4.17)

Zi ∈ {0, 1}, ∀i ∈ IC (4.18)

Fijt ≥ 0, ∀i ∈ I, ∀j ∈ I, ∀t ∈ T, i 6= j (4.19)

Wit ≥ 0, ∀i ∈ IC, ∀t ∈ T (4.20)

Iit ≥ 0, ∀i ∈ I, ∀t ∈ T (4.21)

Ii0 ≥ 0, ∀i ∈ I (4.22)

St ≥ 0, ∀t ∈ T (4.23)

The objective function of the model is the total cost TC, comprised of the transportation

costs, vehicle operating costs, inventory holding costs, and purchasing costs incurred by the

collection company during a cycle.

Constraints (4.2) represent the flow balance at each source node i. Constraints (4.3)

and (4.4) provide upper bounds on the flow variables Fijt by taking into account the vehicle

capacity and the waste oil quantity collected from node j when a vehicle travels from i to
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j in period t. Here, the vehicle capacity is adjusted by the amount to be collected at node

j to strengthen the formulation. Lower bounds on the flow variables in Constraints (4.5)

ensure that if a vehicle travels from i to j in period t, all of the accumulated amount at node

i should be collected. Incoming and outgoing degree balance constraints are given in (4.6)

and (4.7) for each source node i, ensuring that the incoming/outgoing degree of node i must

be equal to 1, if node i is visited in period t; and equal to 0, otherwise. These constraints

couple the binary Xijt and Yit variables. The depot’s degree balance constraints, which

enforce the incoming and outgoing degrees to be the same, are provided in (4.8).

Constraints (4.9) ensure that the collection amount at node i in period t must be zero

unless it is visited in that period. Constraints (4.10)-(4.15) are used to calculate the inven-

tory at the source nodes and the depot. To prevent partial collection of waste oil at a source

node i, Constraints (4.10) make sure that the inventory at node i must be zero at the end

of period t, if it is visited in that period. Constraints (4.11) update the ending inventory

at a source node i in period t by incorporating the daily accumulated waste amount at i,

namely ait, and the amount of waste collected from node i in period t, Wit. If node i is not

visited in period t, then Wit will be zero and the inventory increases by ait. However, when

node i is not visited at all within the cycle, i.e., Zi = 0, its inventory remains unchanged.

We impose that the beginning and ending inventories of the cycle be equal for each source

node in (4.12). Inventory balance constraints (4.13) for the depot take into account the

total collected amount, the purchased amount and the requirement in each period t in the

cycle. Finally, Constraints (4.14) and (4.15) relate the binary decision variables Zi to Yit so

that if node i is visited in any period within the cycle, then Zi should take the value 1; and

0, otherwise.

4.1.2 Valid inequalities

We add the following valid inequalities to strengthen the MILP model:

Q
∑
i∈IC

X0it ≥
∑
i∈IC

Wit, ∀t ∈ T, (4.24)

Q(
∑
i∈IC

X0it − 1) + 1 ≤
∑
i∈IC

Wit, ∀t ∈ T. (4.25)

Inequalities (4.24) require that the number of vehicles dispatched in a period must

be sufficient to carry the collected amount by considering both the total vehicle capacity
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and the collected amounts. Furthermore, we enforce by means of inequalities (4.25) that

dispatching one less vehicle will not be sufficient to transport all of the collected amount

in a period. To model the strict inequality required for this purpose, the number one is

added to the left-hand side of the inequality (4.25) under the assumption of integer waste

oil requirements.

In addition, we include the subtour elimination constraints (4.26) to break subtours of

size two, and constraints (4.27) and (4.28) to avoid visits to a node which is not in the

schedule.

Xijt +Xjit ≤ Yit, ∀i ∈ IC, ∀j ∈ IC, i 6= j, ∀t ∈ T, (4.26)

Xi0t ≤ Yit, ∀i ∈ IC, ∀t ∈ T, (4.27)

X0it ≤ Yit, ∀i ∈ IC, ∀t ∈ T. (4.28)

4.1.3 A partial relaxation

Since the LP relaxation of the MILP model gives weak lower bounds, we benefit from a

partial linear relaxation of the MILP model to generate stronger bounds as follows. First,

we eliminate the binary constraints (5.11) and add the following additional constraints.

Xijt ≥ 0, ∀i ∈ I, ∀j ∈ I, ∀t ∈ T, i 6= j (4.29)

Vt =
∑
j∈IC

X0jt, ∀t ∈ T (4.30)

Vt ∈ Z+, ∀t ∈ T (4.31)

This way, the binary sequencing variables Xijt are relaxed, but the formulation is tight-

ened by enforcing integrality on the sum of X0jt variables, namely Vt, using equations (4.30)

and (4.31). The integer variable Vt represents the number of vehicles dispatched in period

t.

Furthermore, instead of using equations (4.26)-(4.28) as valid inequalities, equations

(4.32) and (4.33) are used in the partial relaxation model.

Xijt ≤ Yit, ∀i ∈ IC, ∀j ∈ I, ∀t ∈ T, i 6= j (4.32)

Xjit ≤ Yit, ∀i ∈ IC, ∀j ∈ I, ∀t ∈ T, i 6= j (4.33)

In our experiments, we observed that this partial linear relaxation (PLR) model provides
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quite strong lower bounds when solved within a time limit of one hour, as seen in the next

section.

4.2 Experimentation with real-world data

In this section we analyze the characteristics of the solutions obtained from the SPIRP

model through numerical experiments with the biodiesel producer’s data. The MIP model

and the corresponding PLR model have been solved with real distance and traveling cost

data for a planning horizon of seven days.

4.2.1 Acquisition of the problem data

For waste vegetable oil collection, we include 25 hospitals in the company’s collection pro-

gram. The hospitals and the recycling facility operated by the company constitute a com-

plete collection network. In the remainder of the paper, we refer to the recycling facility as

the depot where all vehicle routes originate and terminate. The asymmetric shortest path

distances between each origin and destination pair on this complete network have been ob-

tained from Google Maps. These distances multiplied by the unit traveling cost correspond

to the asymmetric arc costs of the complete network under consideration. All hospitals are

located on the Asian side of Istanbul, while the depot is situated in Gebze, about 50 km east

of Istanbul on the northern shore of the Sea of Marmara. Figure 4.1 shows the hospitals’

geographical distribution on the eastern side of the Bosphorus.

Besides the distances, there are several other input parameters such as the costs of in-

ventory holding, transportation, purchasing, and vehicle operating; the vehicle capacity,

the daily waste oil accumulation rates at each hospital, and the daily waste oil require-

ment of the company. We obtained the values of these parameters, where possible, from

various information sources on the web and through private communication with the com-

pany. For the ones which remain hypothetical, we conducted systematic scenario analysis

to comprehend their effect on the vehicle schedules and routes obtained.

The company policy is to adopt a uniform vehicle type for its collection operations.

We consider two alternative light commercial vehicles: Fiat Doblo Cargo Maxi and Fiat

Fiorino Cargo, and we aim to analyse which of these two alternatives is more suitable for

the company. Their fuel and operating costs (parameters c and v in the SPIRP model) are
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Figure 4.1: The geographical locations of the hospitals on the Asian side of Istanbul.

calculated in Table 4.1. The data on driver wages, vehicle leasing costs, and Euro 4 diesel

prices were inquired in August 2010, and may show fluctuations throughout the year.

Among all parameters of the SPIRP model, four of them attain hypothetical values: pur-

chasing price (p) and inventory holding cost (h) of one liter of oil, daily waste oil requirement

(r) of the company, and waste vegetable oil accumulation rates (ait) at the hospitals during

the 7-day period. Since virgin oil can also be used as a raw material in biodiesel production

[104], we assume that p is at most as high as the wholesale price of virgin vegetable oil, which

is around 1.25 TL/lt. We have run the base SPIRP model with two other p values, namely

0.50 and 0.25 TL/lt. The cost of storing one liter of waste oil in the depot of the company,

namely h, has been calculated as the daily interest rate times the highest purchasing price.

This yields 0.02 TL/day for h.

The values of ait have been generated in proportion to the average amounts of medical

waste disposed of by the hospitals in 2009, as obtained from the Metropolitan Municipality

of Istanbul. Let wi denote the average medical waste produced by hospital i in kilograms per

day, and let w denote the grand average wi value of all 25 hospitals included in the collection
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Table 4.1: Fuel and daily operating costs of the alternative light commercial vehicles

Vehicle Model Fiat Doblo Cargo Maxi Fiat Fiorino Cargo

Payload (except the driver) 920 kg 550 kg

Fuel Consumption (urban) 7 lt / 100 km 6 lt / 100 km

Leasing Cost 70 TL/day 50 TL/day

Vehicle Operating Cost 110 TL/day 90 TL/day

Traveling Cost 0.22 TL/km 0.19 TL/km

Common Parameters

Wage of the drivers 40 TL/day

Price of Euro 4 Diesel 3.08 TL/lt

program. For each day t ∈ {1, ..., 7}, ait has been derived from a normal distribution with

mean µwi
w and standard deviation equal to one fourth of the mean. We set µ to 30 liters to

analyze the case with low rates of waste oil accumulation, and for the high rates to 60 liters.

Consequently, low (high) accumulation rates vary between 1 and 240 (2 and 468) lt/day.

We tested the proposed SPIRP model with three levels of waste oil requirements: Low,

medium, and high. When the accumulation rates at the hospitals are low, the daily re-

quirements of the company are set to 600, 750, and 900 liters for low, medium, and high

levels, respectively. In case of high accumulation rates, these requirements are adjusted as

1200, 1500, and 1800 liters. Since the waste oil requirements of the company are determined

according to long-term production plans, we assume that the daily requirements do not vary

across the 7-day production cycle.

We created a test bed of 36 SPIRP instances each of which corresponds to a unique sce-

nario. The instances differ in vehicle related cost and capacity data, waste oil accumulation

rates, daily requirement levels, and finally vegetable oil purchasing prices per liter. The

problem instance names are indicative of these specifications. For example, (Fio-30-Med-

050) means that the type of the collection vehicles is Fiat Fiorino Cargo, the mean of the

normal distribution fitted to the waste oil accumulation rates at the hospitals is 30 lt/day,
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the daily waste oil requirement is at medium level, and the unit purchasing price is 0.50

TL/lt.

4.2.2 Computing platform and Cplex options

All experiments and scenario analyses were conducted on a server equipped with Intel Xeon

X5460 3.16 GHz Quad-Core processor and 16 GB RAM. The operating system of this PC

is 64-bit Windows Server 2003 Service Pack 2. The 64-bit version of the mathematical

modeling and optimization suite GAMS 23.6 was used to create the proposed PIRP and

PLR models.

Cplex 12.2 was employed with the following options turned on: nodelim 50000000;

threads 0; parallelmode 1; workmem 14250; nodefileind 2 (GAMS/Cplex 12 Solver Man-

ual, 2007). This way, the computing load of Cplex is distributed on to as many as four cores

of the Xeon Quad-Core processor. The other Cplex options such as cuts, nodesel, varsel,

and bttol did not prove beneficial in our preliminary test runs.

The time limit for each SPIRP model was set to two hours (7200 s), while each PLR

model was run for one hour (3600 s).

4.3 Computational Results

4.3.1 Test results and optimality gaps

After solving the test instances within the specified time limits, we recorded the following

results of interest:

• TCSPIRP : The final upper bound (best feasible objective value) of each SPIRP in-

stance.

• GapSPIRP : The final gap between the upper and lower bounds of each SPIRP instance,

i.e., UBSPIRP−LBSPIRP
UBSPIRP

• GapSPIRP−PLR: The final gap between the SPIRP model’s best upper bound and the

PLR model’s best lower bound, i.e., UBSPIRP−LBPLR
UBSPIRP

• BestGap: The best possible gap, i.e., min{GapSPIRP , GapSPIRP−PLR}.

• TCinv: The total inventory holding cost in the 7-day cycle.

• TCpurch: The total purchasing cost in the 7-day cycle.
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• TCtrans: The total transportation cost in the 7-day cycle.

• TCveh: The total vehicle operating cost in the 7-day cycle.

• #V eh: The total number of vehicle routes in the 7-day cycle.

• %Purch: The ratio of purchased amount to total waste oil requirement.

• I0: The depot’s beginning (as well as ending) inventory in the 7-day cycle.

• Imax: The depot’s maximum inventory in the steady state of the 7-day cycle. It

reveals the storage space needed for the viability of the company’s waste oil collection

operations.

• N : The number of sources visited at least once in the 7-day cycle of the collection

operations.

• V isits: The number of hospitals visited on each day during the 7-day cycle.

The solution quality of our Cplex runs performed on the SPIRP test instances is mea-

sured by the lesser of GapSPIRP and GapSPIRP−PLR, since both LBSPIRP and LBPLR

constitute a lower bound on TC∗SPIRP , the actual optimal objective value of the SPIRP.

Table 4.2 shows the experimentation results. At first glance, we observe that the PLR

model helps reduce the average optimality gap of the instances from 6.31% to 3.28%.

In all 36 scenarios, we looked into the inclusion of the two farthest hospitals (labeled

as 1 and 2 in Figure 4.1) in the collection program of the company. When the daily

waste oil requirement level is low, hospital 2 is never visited regardless of the vehicle type

and accumulation rate. Hospital 1 is visited only in three of the 12 scenarios. When the

requirement level rises to medium, the company includes hospital 1 in seven and hospital 2

in six scenarios. Finally, when the requirements are high, both hospitals are visited in all 12

scenarios. These results suggest that the larger the company’s daily waste oil requirement,

the higher the likelihood of visiting the first two hospitals that are considerably farther than

the others.

The experimentation results are consolidated in Table 4.3 and Table 4.4 to discern the

effects of problem specifications on the company’s best decisions and associated costs. The

results indicate that the biodiesel production company would be better off by using Doblo

Cargo Maxi which has a slightly higher daily operating cost and worse mileage, but offers

67% more payload capacity than Fiorino Cargo. This advantage is directly reflected on
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the TCSPIRP values. With Doblo Cargo Maxi, the company can save about 21.4% in the

total recurrent cost of the weekly collection operations while meeting the daily requirement

with 0.8% less purchasing from an external virgin oil source and with nine vehicle routes

on average instead of 14. As can be seen in Table 4.3, the average TCSPIRP rises as the

purchasing price p increases from 0.25 to 1.25 TL/lt. This rise is attributable to the total

cost of purchasing, which is rapidly increasing in the case of both Fiorino and Doblo. The

biggest share in the total cost of waste oil collection belongs to vehicle leasing and operating

whereas the smallest share belongs to inventory holding. As p doubles from 0.25 to 0.50,

%Purch drops, but it remains stable when p rises to 1.25 TL/lt.

Table 4.4 displays the effects of three problem specifications on the number of dispatched

vehicles denoted by #V eh and on the values of n and %Purch. The consolidated results

clearly point to an upward trend in the first two outputs no matter which type of vehicle is

used. On the other hand, when the daily requirement level is raised from low to medium,

the third output %Purch first drops if it was nonzero, but then it becomes dramatically

higher than ever as the requirement level is raised further to high. This unimodal trend

can be explained as follows. The total volume of waste oil accumulated daily at all 25

hospitals is 808.6 (1499.4) liters when µ equals 30(60) liters. If the daily oil requirement

level is raised to high, i.e., if it becomes 900 (1800) lt/day for µ=30 (60), it exceeds the total

accumulation amount, and the company has no choice but to purchase virgin oil. However,

if the requirement level is medium, i.e., 750 (1500) lt/day for µ=30 (60), the company meets

the requirement from the accumulated waste oil at the hospitals. Hence, it dispatches more

vehicles to visit more hospitals than it was doing so at the low requirement level, which in

turn leads to a decrease in the ratio of purchased virgin oil.

In Appendix 1 we represent vehicle routes during the planning horizon on a sample

problem solution (Fio-30-Med-0.50).
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Table 4.2: Experimentation results of interest.

Problem Instance TCSPIRP GapSPIRP BestGap TCinv TCpurch TCtrans TCveh #V eh %Purch I0 Imax N V isits

Fio-30acc-LOW-025 906.61 6.14% 6.14% 23.58 1.25 161.78 720 8 0.12% 154 387 18 3, 8, 6, 9, 3, 3, 7

Fio-30acc-MED-025 1099.96 3.24% 1.90% 19.16 82.5 188.3 810 9 6.29% 0 342 18 5, 10, 5, 4, 6, 4, 3

Fio-30acc-HIGH-025 1362.98 4.13% 4.13% 11.74 238.5 212.74 900 10 15.14% 0 297 23 5, 10, 8, 7, 4, 13, 6

Fio-60acc-LOW-025 1763.69 4.20% 3.60% 0 201.5 302.19 1260 14 9.60% 0 0 21 9, 10, 12, 7, 9, 10, 9

Fio-60acc-MED-025 2239.14 5.38% 5.00% 20.42 1 417.72 1800 20 0.04% 23 423 25 9, 11, 6, 11, 6, 5, 11

Fio-60acc-HIGH-025 2747.38 4.47% 4.47% 0 526 421.38 1800 20 16.70% 0 0 25 10, 15, 12, 13, 6, 6, 11

Dob-30acc-LOW-025 704.17 9.98% 1.78% 35.04 3.5 115.63 550 5 0.33% 596 596 15 0, 3, 3, 5, 0, 6, 6

Dob-30acc-MED-025 854.01 7.95% 2.04% 44.2 0.5 149.31 660 6 0.04% 409 748 19 6, 9, 0, 9, 4, 5, 7

Dob-30acc-HIGH-025 1043.33 5.31% 4.05% 1.42 224.25 157.66 660 6 14.24% 11 31 24 0, 5, 4, 5, 5, 11, 10

Dob-60acc-LOW-025 1310.63 5.43% 3.25% 37.78 57.5 225.35 990 9 2.74% 52 628 21 7, 11, 3, 7, 12, 4, 8

Dob-60acc-MED-025 1652.91 6.11% 3.60% 35.88 1 296.03 1320 12 0.04% 105 582 25 9, 8, 8, 10, 9, 3, 6

Dob-60acc-HIGH-025 2133.87 3.93% 3.93% 0.16 526 287.71 1320 12 16.70% 8 8 25 4, 5, 11, 9, 5, 8, 9

Fio-30acc-LOW-050 902.4 6.12% 1.01% 22.78 0 159.62 720 8 0.00% 266 360 16 4, 4, 2, 6, 5, 4, 7

Fio-30acc-MED-050 1128.31 5.69% 1.12% 24.68 0.5 203.13 900 10 0.02% 0 406 19 9, 5, 9, 5, 6, 7, 4

Fio-30acc-HIGH-050 1552.29 5.50% 5.50% 10.16 320 232.13 990 11 10.16% 131 190 25 5, 8, 4, 10, 10, 7, 11

Fio-60acc-LOW-050 1791.48 5.68% 3.01% 20.38 7.5 323.6 1440 16 0.18% 330 330 20 11, 8, 7, 11, 5, 7, 8

Fio-60acc-MED-050 2340.64 9.44% 9.03% 1.4 2 447.24 1890 21 0.04% 9 15 25 16, 12, 13, 16, 9, 10, 11

Fio-60acc-HIGH-050 3264.39 3.48% 3.48% 0 1052 412.39 1800 20 16.70% 0 0 25 8, 13, 9, 7, 9, 11, 8

Dob-30acc-LOW-050 702.82 9.78% 1.02% 36.18 0 116.64 550 5 0.00% 285 601 16 4, 0, 4, 10, 3, 0, 4

Dob-30acc-MED-050 849.02 7.39% 1.46% 41.76 2.5 144.76 660 6 0.10% 745 745 19 0, 3, 5, 4, 5, 5, 8

Dob-30acc-HIGH-050 1259.48 8.78% 5.04% 0 320 169.48 770 7 10.16% 0 0 25 6, 3, 3, 7, 5, 6, 8

Dob-60acc-LOW-050 1371.33 9.54% 5.34% 30 4.5 236.83 1100 10 0.11% 300 573 20 5, 6, 3, 12, 3, 3, 10

Dob-60acc-MED-050 1765.15 12.02% 7.71% 18 2 315.15 1430 13 0.04% 578 578 25 9, 11, 4, 11, 10, 7, 13

Dob-60acc-HIGH-050 2658.82 3.12% 3.12% 0.16 1052 286.66 1320 12 16.70% 0 8 25 5, 7, 7, 4, 6, 11, 5

Fio-30acc-LOW-125 900.23 5.94% 0.77% 22.84 0 157.39 720 8 0.00% 341 341 14 3, 3, 3, 3, 8, 4, 3

Fio-30acc-MED-125 1134.54 6.13% 1.65% 23.88 1.25 209.41 900 10 0.02% 10 405 19 8, 6, 9, 5, 12, 7, 3

Fio-30acc-HIGH-125 2026.03 3.91% 3.91% 10.02 800 226.01 990 11 10.16% 14 236 25 9, 5, 6, 9, 5, 7, 6

Fio-60acc-LOW-125 1807.34 6.51% 4.60% 20.46 18.75 328.13 1440 16 0.18% 0 356 20 11, 13, 7, 8, 13, 5, 11

Fio-60acc-MED-125 2259 6.03% 3.66% 30.36 5 423.64 1800 20 0.04% 117 455 25 13, 11, 9, 12, 10, 9, 13

Fio-60acc-HIGH-125 4947.23 4.42% 4.42% 0 2630 427.23 1890 21 16.70% 0 0 25 7, 9, 7, 11, 7, 9, 11

Dob-30acc-LOW-125 710.94 10.82% 2.15% 37.1 6.25 117.59 550 5 0.12% 28 604 18 10, 2, 0, 7, 6, 0, 4

Dob-30acc-MED-125 847.14 7.08% 1.24% 43.2 1.25 142.69 660 6 0.02% 0 749 19 3, 7, 3, 11, 7, 7, 0

Dob-30acc-HIGH-125 1741.87 6.49% 0.63% 0.08 800 171.79 770 7 10.16% 0 4 25 4, 5, 2, 7, 8, 6, 6

Dob-60acc-LOW-125 1363.81 9.09% 1.05% 30.28 1.25 232.28 1100 10 0.01% 321 591 15 4, 6, 2, 8, 3, 4, 6

Dob-60acc-MED-125 1655.77 6.02% 1.43% 38.18 5 292.59 1320 12 0.04% 320 631 25 9, 5, 7, 7, 11, 5, 5

Dob-60acc-HIGH-125 4238.5 1.99% 1.99% 0 2630 288.5 1320 12 16.70% 0 0 25 5, 6, 8, 6, 4, 8, 6

Averages 1695.5 6.31% 3.28% 19.2 320.1 250.0 1106.1 11.3 0.1 143.1 339.4 21.5
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Table 4.3: The effects of vehicle type and purchasing price on the average results.

Vehicle Type Purch. Price TCSPIRP TCinv TCveh TCtrans TCpurch I0 Imax N %Purch

Fiorino p = 0.25 1687 12 1215 284 175 30 242 21.7 7.98%

Cargo p = 0.50 1830 13 1290 296 230 123 217 21.7 4.52%

p = 1.25 2179 18 1290 295 576 80 299 21.3 4.52%

Grand Avg. 1899 15 1265 292 327 78 252 21.6 5.67%

Doblo p = 0.25 1283 26 917 205 135 197 432 21.5 5.68%

Cargo Maxi p = 0.50 1434 21 972 212 230 318 418 21.7 4.52%

p = 1.25 1760 25 953 208 574 112 430 21.2 4.51%

Grand Avg. 1492 24 947 208 313 209 427 21.4 4.90%

4.3.2 Sensitivity to the purchasing price p

Additional tests were conducted to explore the sensitivity of the MILP model to the pur-

chasing price p. To this end, a problem instance (Fio-30-Med) was selected and solved for

the p values varying between 0.15 and 0.50 TL/lt. The results are provided in Table 4.5.

We observe that when p is as low as 0.15, the biodiesel production company does not en-

gage in waste vegetable oil collection at all, and purchases the entire oil requirement of the

7-day planning horizon (5250 liters) from an external source. The ratio of purchasing drops

rapidly as p gets higher. It becomes negligible after the value of 0.30 TL/lt. The number

of vehicle dispatches increases until this p value too. Thereafter it remains stable at 10.

The other results of interest in Table 4.5 exhibit a nonstationary pattern. The hospital

visitation schedule is sensitive to the slightest change in p. As p increases, the company

apparently collects more waste oil to rectify the shrinking amount of purchased oil. This is

best confirmed by the departure of one extra vehicle during the 7-day cycle when p becomes

0.30 TL/lt or higher. The extra vehicle augments the total cost by 90 TL. The company

reacts to this by not visiting the hospitals with too low accumulation rates. Instead, the

one which has a relatively high accumulation rate, but was not visited before due to its

significant distance from the depot is added to the collection program.
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Table 4.4: The effects of vehicle type, mean accumulation rate, and daily requirement level.

Mean Waste Oil Accumulation Rate

Level of Daily µ = 30 lt/day µ = 60 lt/day

Vehicle Type Requirement #Veh N %Purch #Veh N %Purch

Fiorino Low 8.0 16.0 0.0% 15.3 20.3 3.3%

Cargo Medium 9.7 18.7 2.1% 20.3 25.0 0.0%

High 10.7 24.3 11.8% 20.3 25.0 16.7%

Grand Avg. 9.4 19.7 4.7% 18.7 23.4 6.7%

Doblo Low 5.0 16.3 0.2% 9.7 18.7 1.0%

Cargo Maxi Medium 6.0 19.0 0.1% 12.3 25.0 0.0%

High 6.7 24.7 11.5% 12.0 25.0 16.7%

Grand Avg. 5.9 20.0 3.9% 11.3 22.9 5.9%

Table 4.5: The purchasing price sensitivity in problem (Fio-30-Med).

p TCSPIRP BestGap TCinv TCtrans #V eh %Purch I0 Imax N V isits

0.15 788 0.00% 0 0 0 100.00% 0 0 0 0, 0, 0, 0, 0, 0, 0

0.20 1049 0.60% 0 19 1 89.52% 0 0 6 0, 0, 0, 0, 0, 6, 0

0.25 1100 1.90% 19 188 9 6.29% 0 342 18 5, 10, 5, 4, 6, 4, 3

0.30 1138 3.82% 32 204 10 0.11% 279 479 20 2, 9, 6, 3, 5, 10, 5

0.35 1127 1.62% 24 202 10 0.10% 69 406 19 6, 3, 5, 9, 5, 7, 6

0.40 1127 0.97% 25 202 10 0.02% 8 418 19 7, 7, 9, 4, 4, 6, 5

0.45 1129 1.16% 24 204 10 0.02% 8 407 19 8, 5, 6, 5, 4, 8, 6

0.50 1128 1.12% 25 203 10 0.02% 0 406 19 9, 5, 9, 5, 6, 7, 4
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Table 4.6: Large instances based on Dob-30-0.25.

n DailyReq. TCSPIRP BestGap TCinv TCtrans #V eh %Purch I0 Imax N V isits

30 1000 1117 4.81% 0 186 7 9.21% 0 0 28 10, 5, 7, 11, 5, 3, 7

30 1250 1607 7.19% 2 193 8 24.32% 0 106 30 10, 6, 6, 7, 9, 9, 8

30 1500 2036 5.36% 1 186 8 36.93% 0 28 30 8, 9, 0, 7, 8, 4, 5

Avg. 5.79%

35 1000 1220 13.82% 25 200 9 0.30% 81 446 22 3, 9, 2, 4, 11, 4, 3

35 1250 1507 12.14% 42 255 11 0.01% 572 591 34 7, 10, 9, 12, 14, 3, 10

35 1500 1903 10.16% 3 254 11 16.56% 0 95 35 15, 12, 11, 8, 6, 6, 7

Avg. 12.04%

40 1000 1120 8.37% 50 163 8 1.53% 438 893 19 8, 5, 7, 6, 0, 8, 6

40 1250 1499 14.21% 45 241 11 0.13% 400 806 31 9, 5, 9, 7, 12, 17, 8

40 1500 1984 18.63% 39 292 13 8.51% 555 725 40 13, 9, 11, 12, 3, 15, 12

Avg. 13.74%

4.3.3 Performance on larger instances

We tested the proposed MILP and PLR formulations on nine larger sized SPIRP instances,

and observed the increase in optimality gaps with the problem size. The number of source

nodes, n, in these instances ranges from 30 to 40. The asymmetric distance matrix associated

with the new source nodes was obtained again from Google Maps. For each source node

count, three daily requirement scenarios were tested. GAMS/Cplex 12.2 was run for three

(one and a half) hours to solve the MILP (PLR) model of each larger instance. The results

are presented in Table 4.6. While the BestGap values are quite good for n = 30, they

deteriorate when n becomes 35 and 40. Again we observe a slight increase in the weekly

number of vehicle routes as the daily requirement level grows. The ratio of purchasing

jumps dramatically for the highest daily requirement level.
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Chapter 5

SPIRP WITH ACYCLIC SCHEDULE AND MULTIPLE VEHICLES: A

COMPARISON OF ALTERNATIVE MODELS

In this chapter we solve Selective and Periodic Inventory Routing Problem with acyclic

planning horizon. The models consist of two parts such as Vehicle Routing part and Visit

Schedule part. Vehicle Routing part is common for the three models but the Visit Schedule

parts are different for each model. The first model is exactly acyclic version of SPIRP

model, the second model keeping history about previous visit day in the period, and the

third model is using schedules to obtain visit schedules. All the valid inequality constraints

used for SPIRP model in subsection 4.1.2 are also used for these models.

Objective Function

min TC = c
∑
i∈I

∑
j∈I, (j 6=i)

∑
t∈T

dijXijt + v
∑
i∈IC

∑
t∈T

X0it + h
∑
t∈T

I0t + p
∑
t∈T

St (5.1)

Vehicle Routing

s.t.

∑
j∈I, j 6=i

Fijt −
∑

j∈I, i 6=j
Fjit = Wit, ∀i ∈ IC, ∀t ∈ T (5.2)

Fijt ≤ (Q− ajt)Xijt, ∀i ∈ I, ∀j ∈ I, ∀t ∈ T, i 6= j (5.3)

Fijt ≤ Q−Wjt, ∀i ∈ I, ∀j ∈ IC, ∀t ∈ T, i 6= j (5.4)

Fijt ≥Wit −Ai(1−Xijt), ∀i ∈ IC, ∀j ∈ I, ∀t ∈ T, i 6= j (5.5)∑
j∈I, j 6=i

Xjit = Yit, ∀i ∈ IC, ∀t ∈ T (5.6)

∑
j∈I, j 6=i

Xijt = Yit, ∀i ∈ IC, ∀t ∈ T (5.7)

∑
i∈IC

Xi0t =
∑
i∈IC

X0it, ∀t ∈ T (5.8)
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Wit ≤ AiYit, ∀i ∈ IC, ∀t ∈ T (5.9)

I0t = I0t−1 +
∑
i∈IC

Wit + St − rt, ∀t ∈ T (5.10)

Xijt ∈ {0, 1}, ∀i ∈ I, ∀j ∈ I, ∀t ∈ T, i 6= j (5.11)

Yit ∈ {0, 1}, ∀i ∈ IC, ∀t ∈ T (5.12)

Fijt ≥ 0, ∀i ∈ I, ∀j ∈ I, ∀t ∈ T, i 6= j (5.13)

Wit ≥ 0, ∀i ∈ IC, ∀t ∈ T (5.14)

Ii0 ≥ 0, ∀i ∈ I (5.15)

St ≥ 0, ∀t ∈ T (5.16)

5.1 Model 1

The first model calculates the Visit Schedule part by using Iit and Zi variables and equations

(5.17-5.21).

Constraints (5.17) make sure that the inventory at node i must be zero at the end of

period t, if it is visited in that period. Constraints (5.18) update the ending inventory at a

source node i in period t by incorporating the daily accumulated waste amount at i, namely

ait, and the amount of waste collected from node i in period t, Wit. If node i is not visited in

period t, then Wit will be zero and the inventory increases by ait. However, when node i is

not visited at all within the cycle, i.e., Zi = 0, its inventory remains unchanged. Constraints

(5.19) represents the initial inventory for at node i.

Constraints (5.20) and (5.21) relate the binary decision variables Zi to Yit so that if node

i is visited in any period within the planning horizon, then Zi should take the value 1; and

0, otherwise.

Zi : binary variable indicating if node i has been visited at least once during

the period (i ∈ IC). It attains the value 0, if node i is not visited at all.

Iit : ending inventory of waste oil by the end of period t at node i, (i ∈ I, t ∈ T ).

Iit ≤ Ai(1− Yit), ∀i ∈ IC, ∀t ∈ T (5.17)

Iit = Iit−1 + aitZi −Wit, ∀i ∈ IC, ∀t ∈ T (5.18)

Ii0 = 0, ∀i ∈ I (5.19)
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Zi ≤
∑
t∈T

Yit, ∀i ∈ IC (5.20)

Zi ≥ Yit, ∀i ∈ IC, ∀t ∈ T (5.21)

Zi ∈ {0, 1}, ∀i ∈ IC (5.22)

Iit ≥ 0, ∀i ∈ I, ∀t ∈ T (5.23)

5.2 Model 2

The second model calculates the Visit Schedule part by using Zit1t variables and equations

(5.24-5.26).

Constraints (5.24) ensure that collected amount from node i must be zero at the day t,

if it is not visited in that day. On the other hand if node i visited at day t, by the help

Zit1t variable and ait parameter we can calculate the accumulated amount from day t1 to t.

Constraints (5.25) relate the binary decision variables Zit1t to Yit so that if node i is visited

in day t1 and the next visit is on day t, then Zit1t should take the value 1; and 0, otherwise.

Constraints (5.26) ensures that there is not a visit between day t1 and t if Zit1t equals 1.

T0 = 0, ..., t = 7 : the set of the eight days of the planning horizon

including previous day of the planning horizon.

Zit1t : binary variable indicating if node i has been visited in period t

and the previous visit was on period t1, (i ∈ IC, t1 ∈ T0, t ∈ T ).

Wi,t =
∑

t1∈T0,(t1≤t)

(
t∑

p=t1+1

aip)Zit1t, ∀i ∈ IC, ∀t ∈ T (5.24)

Yi,t =
∑

t1∈T0,(t1≤t)

Zit1t, ∀i ∈ IC, ∀t ∈ T (5.25)

t−1∑
p=t1

t∑
q=p+1

(Zipq)− Zit1t ≤ (t− t1)(1− Zit1t), ∀i ∈ IC, ∀t1 ∈ T0, ∀t ∈ T, (t1 + 1 < t)

Yit ≥ Zit1t, ∀i ∈ IC, ,∀t ∈ T , ,∀t1 ∈ T0 (5.26)

Zit1t ∈ {0, 1}, ∀i ∈ I, ∀t1 ∈ T0, ∀t ∈ T (5.27)
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5.3 Model 3

The third model calculates the Visit Schedule part by using Zik variables, Schedulekt,

Collectionikt parameters and equations (5.28-5.30).

Constraints (5.28)relate the binary decision variables Zik to Yit so that if schedule k is

chosen for node i and includes a visit at day t then Yit take the value 1; and 0, otherwise.

Constraints (5.29) ensure that only a schedule can be chosen for a node i. Constraints (5.30)

calculates the collected amount for node i at day t.

K = 1, ..., k : the set of k schedules which is consist of 2t=7 planning day combinations.

Zik : binary variable indicating if schedule k is chosen for node i, (i ∈ IC, k ∈ K).

Schedulekt : binary parameter which indicates schedule k includes a visit at day t.

Collectionikt : collection amount at day t if schedule k is chosen for node i.

Yit =
∑
k∈K

Zik ∗ Schedulekt, ∀i ∈ IC, ∀t ∈ T (5.28)

∑
k∈K

Zik = 1, ∀i ∈ IC (5.29)

Wit =
∑
k∈K

Zik ∗ Collectionikt, ∀i ∈ IC, ∀t ∈ T (5.30)

Zik ∈ {0, 1}, ∀i ∈ I, ∀k ∈ K (5.31)

5.4 Computational Results

We compared these three model on 6 data instances consists of 15 hospitals and a depot.

When the accumulation rates at the hospitals are low, the daily requirements of the company

are set to 450, 550, and 650 liters for low, medium, and high levels, respectively. In the case

of high accumulation rates, these these requirements are adjusted as 750, 1000, and 1250

liters.

Firstly, when we compare the complexities of the models on their additional decision

variables to calculate Visit Schedule parts, we resulted as: (i) Model 1 has Iit and Zi

variables with sizes (N × T ) and (N) respectively. The complexity of additional variables
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Table 5.1: Comparison of three models over six scenarios.

Model 1 Model 2 Model 3

Scenario # Scenario Name UB LB Gap UB LB Gap UB LB Gap

1 Fio-60acc-MED-050 1622.94 1537.95 5.24% 1591.84 1519.60 4.54% 1594.19 1536.37 3.63%

2 Fio-60acc-HIGH-050 2218.17 2162.79 2.50% 2245.75 2120.01 5.60% 2229.26 2160.23 3.10%

3 Dob-60acc-LOW-050 839.63 830.32 1.11% 840.4 794.05 5.52% 842.47 798.64 5.20%

4 Fio-30acc-HIGH-025 964.76 959.92 0.50% 969.25 937.71 3.25% 991.09 947.73 4.38%

5 Fio-60acc-MED-025 1473.33 1441.78 2.14% 1473.06 1413.52 4.04% 1484.49 1440.37 2.97%

6 Dob-30acc-HIGH-025 831.57 823.08 1.02% 832.68 792.07 4.88% 831.57 781.20 6.06%

Average 1325.067 1292.64 2.08% 1325.497 1262.827 4.64% 1328.845 1277.424 4.22%

of Model 1 is O(N×T )+(N). (ii) Model 2 has Zit1t variables with size (N × (T + 1) × T ).

The complexity of additional variables of Model 2 is O(N×(T+1)×T ). (iii) Model 3 has Zik

variables with size (N×K) where K = 2T . The complexity of additional variables of Model

3 is O(N×2T ). In our models N = 15 and T = 7, therefore Model 1 is the less complex

model. According to the computational complexities of the additional decision variables of

the models, we are expecting that Model 1 will end up with the best results.

Then, we compare three alternatives to optimize the visiting schedule and according to

the Table (5.1) we observe that our first proposed MILP model yields the best solutions.

Upper bounds for the models are almost same for both, but the lower bound quality deter-

mines the best model. The average optimality gap between upper bound and lower bound

has the minimum values in Model 1. The optimality gap for Model 1 is 2.08%, Model 2 is

4.64% and Model 3 is 4.22% on average. Upper bounds of the both models are almost same

but the lower bounds of Model 1 are stronger than the others.
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Chapter 6

SPIRP WITH ACYCLIC SCHEDULE AND SINGLE VEHICLE: A

LAGRANGIAN RELAXATION APPROACH

In this chapter, we consider the single vehicle version of SPIRP with acyclic schedule

where waste oil collection is conducted by a single vehicle. The MILP formulation of this

problem allows us to decouple the scheduling and routing decisions by relaxing the linking

constraints. Therefore, we investigate a Lagrangian Relaxation approach in order to obtain

strong lower bounds for the problem and generate good feasible solutions.

The relaxed problem is divided into two subproblems: the Visit Schedules Subproblem

(VSS) where the model decides which customers will be visited in which day while satisfying

the constraints, and the Vehicle Routing Subproblem (VRS) where the model defines the

route schedules for each time unit within the planning horizon. The two resulting subprob-

lems are solved independently and Lagrangian multipliers are associated with the relaxed

constraints. In every iteration Lagrangian multipliers are updated according to subgradi-

ent optimization method and both models are solved repeatedly until an acceptable gap

between upper and lower bound is found or the iteration limit is reached.

Each subproblem is a difficult problem by itself. In the visit schedule subproblem, a

vehicle must be assigned to some customers for each day, such that capacity constraints

are satisfied. The capacity constraint is a ”knapsack” type of constraint. The vehicle

routing subproblem decomposes for each day. The daily problem is a version of the traveling

salesman problem (TSP) in which it is not necessary to visit all nodes (TSP with profits).

The objective is to find a route with minimum travel cost, where the costs may be negative

due to the Lagrangian multiplier values.

6.1 Lagrangian Relaxation Approach

The aim of the Lagrangian relaxation approach is to acquire a relaxed problem which can

be solved efficiently. The approach fundamentally removes complicated constraints and
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adds them into the objective function by using Lagrangian multipliers. With these set of

multipliers, the relaxed problem’s objective function value becomes as a lower bound on the

optimal cost of the original problem. In the literature numerous successful applications of

Lagrangian relaxation have been stated, [105] and [106] proposed the Lagrangian relaxation

approach.

We relaxed constraints (6.1) and (6.2) then incorporated them in the objective function

using respective λit and µjt Lagrangian multipliers.

Yit −
n∑

j=0, (j 6=i)

Xijt = 0, (×λit) , ∀i ∈ I, ∀t ∈ T (6.1)

Yjt −
n∑

i=0, (i 6=j)

Xijt = 0, (×µjt) , ∀j ∈ I, ∀t ∈ T (6.2)

Min h
∑T

t=1 It + p
∑T

t=1 St + c
∑N

i=0

∑N
j=0

∑T
t=1Xijtdij

+
∑N

i=0

∑T
t=1 λit(Yit −

∑N
j=0, (j 6=i)Xijt) +

∑N
j=0

∑T
t=1 µjt(Yjt −

∑N
i=0, (i 6=j)Xijt)(6.3)

After rearranging the new objective function given in equation (6.3) we obtain objective

function for the relaxed problem which is represented below with equation (6.4).

Objective Function of Relaxed Problem:

Min h
∑T

t=1 It + p
∑T

t=1 St +
∑N

i=0

∑N
j=0, (j 6=i)

∑T
t=1Xijt(c× dij − λit − µjt)

+
∑N

i=0

∑T
t=1 λitYit +

∑N
j=0

∑T
t=1 µjtYjt (6.4)

6.1.1 General Flow of the Lagrangian Approach

In the Lagrangian relaxation method: First we initialize the model with initial parameters,

then we calculate the UB and compare the new upper bound UB′ with our current upper

bound UB. If the new upper bound is lower than the current upper bound we update the

current UB. Then we calculate the LB and compare the new lower bound LB′ with our
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current upper bound LB. If the new lower bound is greater than the current upper bound

we update the current LB. We check our Termination Criteria are satisfied or not satisfied?

If the termination criteria satisfied we end the model up with UB and LB, if they are not

satisfied we update the Lagrangian multipliers by using subgradient optimization method

and we continue the process until reaching the termination criteria.

6.1.2 Updating The Lagrangian Multipliers

For a set of Lagrangian multipliers λit and µjt, the objective function value of the relaxed

problem gives a lower bound for the original problem. To find the best lower bound, we

need to searches for the values of the multipliers. For this purposewe used subgradient

optimization method.

According to the subgradient optimization method, the formula of updating Lagrangian

multipliers is given below.

λn+1
it = λnit + φn(Yit −

N∑
j=0, (j 6=i)

Xijt) (6.5)

µn+1
jt = µnjt + ψn(Yjt −

N∑
i=0, (i 6=j)

Xijt) (6.6)

Here φn and ψn are step sizes for the multipliers and the formula for calculating step

sizes are given below.

φn =
αn(UB − Ln)∑N

i=0

∑T
t=1(Yit −

∑N
j=0, (j 6=i)Xijt)2

(6.7)

ψn =
βn(UB − Ln)∑N

j=0

∑T
t=1(Yjt −

∑N
i=0, (i 6=j)Xijt)2

(6.8)

6.1.3 Termination Criteria

The procedures are repeated until one of the termination criteria is met. In our method

we have different termination criteria: (i) Gap between upper bound and lower bound.

If the gap is less than 1% we terminate the method. (ii) Iteration number. We set a

maximum iteration number as 150 iterations, after completing 150 iterations the model

terminated. (iii) Iteration number without improvement. We calculate the improvement
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at every iteration and if the model is not improve at consecutive 5 iterations the method

terminated.

6.2 Subproblems

As we mentioned before in the Lagrangian relaxation method, the assignment decisions (Yit)

are separated from routing decisions (Xijt). Therefore we obtain two separate subproblems:

Visit Schedules Subproblem (VSS) and Vehicle Routing Subproblem (VRS).

6.2.1 Visit Schedules Subproblem (VSS)

The visit schedules subproblem includes the collection quantity constraints, the requirements

& inventory balance constraints, the vehicle capacity constraint. These constraints are the

same constraints mention in Chapter 5.

In the VSS the main decision is to determine which customers will be visited in which

day by satisfying the requirement from manufacturer and the vehicle capacity limitation.

The objective function for the Assignment subproblem in Equation (6.9).

Objective Function for Visit Schedules Subproblem (VSS):

Min h

T∑
t=1

It + p

T∑
t=1

St +
N∑
i=0

T∑
t=1

λitYit +
N∑
j=0

T∑
t=1

µjtYjt (6.9)

6.2.2 Vehicle Routing Subproblem (VRS)

In the vehicle routing subproblem the decision for the model is to determine daily vehicle

schedule. The objective function of the VRS is given in equation (6.10) and the constraints

are only the subtour elimination constraints.

Objective Function for Vehicle Routing Subproblem (VRS):

Min
N∑
i=0

N∑
j=0, (j 6=i)

T∑
t=1

Xijt(c ∗ dij − λit − µjt) (6.10)
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Subtour Elimination Constraints

We test several well-known alternative approaches from the Asymmetric Traveling Sales-

men Problem (ATSP) literature.

In the vehicle routing subproblem constraints shown in equation (6.16) are subtour

elimination constraints that prevents subtours in each time unit over the planning horizon.

Subtour elimination constraints stated in Equations (6.11) gives one of the strongest

formulations but it contains an exponential number of constraints. [107] Therefore solving

large instances models is getting impossible and complex.

∑
i∈Q

∑
j∈Q

Xijt ≤
∑
i∈Q

∑
j

Xijt − 1, Q ⊆ V \ {0}, ‖Q| ≥ 2 (6.11)

The MTZ Subtour Elimination constraints stated in Equations (6.12-6.13) proposed by

Miller et al. [108] and has polinomial number of equations to eliminate the subtours.

uit − ujt + (n− 1)Xijt ≤ (n− 2),

∀i ∈ IC, (i 6= j), ∀j ∈ IC, ∀t ∈ T (6.12)

1 ≤ uit ≤ n

, ∀i ∈ I, ∀j ∈ I, ∀t ∈ T (6.13)

The MTZ Subtour elimination constraints stated in Equations (6.14-6.15) are strength-

ened by Laporte et al. [109].

uit − ujt + (n− 1)Xijt + (n− 3)Xjit ≤ (n− 2)

, ∀i ∈ IC, (i 6= j), ∀j ∈ IC, ∀t ∈ T (6.14)

1 + (n− 3)Xi0t +
∑

j∈IC,j 6=i
Xjit ≤ uit ≤ (n− 1)− (n− 3)X0it −

∑
j∈IC,j 6=i

Xijt

, ∀i ∈ I, ∀j ∈ I, ∀t ∈ T (6.15)
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According to a comparative analysis by Öncan et al. [103] Gavish and Graves (GG)

constraints given in Equations (6.16-6.17) are better than MTZ constraints. According to

our experiment we obtain best results with GG, therefore in our models we use Gavish and

Graves Flow Conservation constraints as the subtour elimination constraints.

∑
j∈I, (j 6=i)

Fjit −
∑

j∈I, (j 6=i)

Fijt =
∑

j∈I, (j 6=i)

Xijt, ∀i ∈ IC, ∀t ∈ T (6.16)

0 ≤ Fijt ≤ nXijt, ∀i ∈ I, (i 6= j), ∀j ∈ IC, ∀t ∈ T (6.17)

Xijt ∈ {0, 1}, ∀i ∈ I, ∀j ∈ I, ∀t ∈ T, i 6= j (6.18)

6.2.3 A Lagrangian Based Heuristic (LBH)

Although the solution of the relaxed problem gives us a lower bound for the original problem,

these solutions are not necessarily feasible solutions for the original problem. To speed up

finding feasible solutions in the Lagrangian relaxation model we propose a Lagrangian base

heuristic method. This method uses the results of the visit schedules subproblem as inputs

and performs traveling salesman problem (TSP) for customers which are defined in the visit

schedules subproblem. According to these routing results which are found in the Lagrangian

Based heuristic and the assignment result that are found in the visit schedules subproblem,

the objective function of the original problem calculated and this value gives us upper

bounds for the original problem.

6.3 Computational Results

We propose a Lagrangian Relaxation approach for the solution of single vehicle problems.

The relaxed model decomposes into two mixed integer programming models that optimize

the visit schedule and the collection route in each period separately. We test the performance

of this solution approach on six scenarios and compare the lower bounds obtained by the

Lagrangian relaxation method to the ones obtained by solving the proposed MILP model

within a pre-specified time limit.
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Results of the Lagrangian Relaxation method are presented in Table (6.1), Table (6.2),

and Table (6.3). According to the results, lower bounds generated by Lagrangian relaxation

method are better than the ones obtained solving the MILP models by Cplex.

Lagrangian relaxation method improves the lower bounds of all models. When we solved

the Model 1 with Cplex as MILP, we end up with lower bound is equal to 821.22 on average

where lower bound obtained after executing Lagrangian relaxation method is equal to 823.52

on average. These improvement can also be seen for Model 2 from 807.00 to 812.95 and

Model 3 from 812.87 to 814.59 on average.

As expected, improvement on lower bounds resulted in improvement on Gaps. Opti-

mality gap is 6.63% for the Model 1 and Lagrangian relaxation method decreases the gap

to 6.37%. The gap is also decreases in Model 2 from 8.00% to 7.32% and in Model 3 from

7.66% to 7.45%. Highest improvement on optimality gap is in Model 2 where the smallest

gap is in Model 1.

To sum up, in our experiments Lagrangian relaxation method has minor improvements

on lower bounds and therefore optimality gaps but has no affect on upper bounds. The

optimality gaps for the models improves from 7.43% to 7.05% on average.
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Table 6.1: Computational results of Model 1 with the Lagrangian Relaxation method.

MODEL 1 UB LB LB Gap Gap

Scenario # Scenario Name with Cplex with Lagrangian LB with Cplex with Lagrangian LB

1 Dob-60acc-LOW-050 837.83 770.64 772.69 8.02% 7.77%

2 Dob-60acc-MED-050 847.19 795.54 799.45 6.10% 5.64%

3 Dob-60acc-HIGH-050 983.78 927.15 929.62 5.76% 5.51%

4 Dob-60acc-LOW-025 837.59 772.57 770.92 7.76% 7.96%

5 Dob-60acc-MED-025 846.91 794.49 798.60 6.19% 5.70%

6 Dob-60acc-HIGH-025 922.01 866.92 869.86 5.98% 5.66%

Average 879.22 821.22 823.52 6.63% 6.37%

Table 6.2: Computational results of Model 2 with the Lagrangian Relaxation method.

MODEL 2 UB LB LB Gap Gap

Scenario # Scenario Name with Cplex with Lagrangian LB with Cplex with Lagrangian LB

1 Dob-60acc-LOW-050 837.24 758.31 769.57 9.43% 8.08%

2 Dob-60acc-MED-050 846.87 781.65 778.71 7.70% 8.05%

3 Dob-60acc-HIGH-050 975.73 915.81 919.61 6.14% 5.75%

4 Dob-60acc-LOW-025 836.14 763.98 772.38 8.63% 7.63%

5 Dob-60acc-MED-025 844.38 776.67 777.58 8.02% 7.91%

6 Dob-60acc-HIGH-025 919.90 845.58 859.85 8.08% 6.53%

Average 876.71 807.00 812.95 8.00% 7.32%

Table 6.3: Computational results of Model 3 with the Lagrangian Relaxation method.

MODEL 3 UB LB LB Gap Gap

Scenario # Scenario Name with Cplex with Lagrangian LB with Cplex with Lagrangian LB

1 Dob-60acc-LOW-050 831.71 754.16 762.19 9.32% 8.36%

2 Dob-60acc-MED-050 857.51 776.62 777.70 9.43% 9.31%

3 Dob-60acc-HIGH-050 986.64 915.72 918.17 7.19% 6.94%

4 Dob-60acc-LOW-025 832.50 765.34 768.34 8.07% 7.71%

5 Dob-60acc-MED-025 843.79 795.86 792.83 5.68% 6.04%

6 Dob-60acc-HIGH-025 927.41 869.53 868.31 6.24% 6.37%

Average 879.93 812.87 814.59 7.66% 7.45%
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Chapter 7

CONCLUSIONS

In this thesis we studied the waste vegetable oil collection problem for a real life biodiesel

production facility. We developed a mixed integer linear program to model the customer

selection and periodic routing problem considering the production requirements at the pro-

duction facility. For this reverse logistics problem, we decide on which of the present source

points to include in the collection program, which periodic routing schedule to repeat over

an infinite horizon, how much virgin oil to purchase on each day and how many vehicles to

operate such that the total collection, inventory and purchasing costs are minimized while

the production requirements and operational constraints are met. The novelty of this model

is that it can handle all possible visit schedules for all source nodes without introducing an

exponential number of binary decision variables.

In this study, we solve problem instances of size n = 25 within 3.28% of optimality on

average, however the solutions obtained for larger-sized SPIRP instances result in much

higher optimality gaps. Thus, heuristics will be required in such cases.

We compare alternative formulations and test them on six scenarios to optimize the

visiting schedule and observe that our first proposed MILP model yields the best solutions.

Since the gap between upper and lower bounds has the minimum values in Model 1 on the

average.

We propose a Lagrangian Relaxation approach for the solution of single vehicle problems.

The relaxed model decomposes into two mixed integer programming models that optimize

the visit schedule and the collection route in each period separately. We test the performance

of this solution approach on six scenarios and compare the lower bounds obtained by the

Lagrangian relaxation method to the ones obtained by solving the proposed MILP model

within a pre-specified time limit. Results concluded with slight improvements on the gap. In

our experiments, Lagrangian relaxation method has minor improvements on lower bounds

and therefore optimality gaps but has no affect on upper bounds. The optimality gaps for
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the models improves from 7.43% to 7.05% on average. Therefore, Lagrangian relaxation

does not seem to be an effective solution approach.

Future work on the SPIRP problem could focus on strengthening the lower bounds

further by deriving some more valid inequalities. in addition for the solution of larger

instances in shorter time, a metaheuristic procedure could be developed.
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[103] Laporte G. Öncan T., Altınel İ. K. A comparative analysis of several asymmet-

ric traveling salesman problem formulations. Computers and Operations Research,

36:637–654, 2009.



Bibliography 67

[104] EPA (United States Environmental Protection Agency). Why use waste cook-

ing oil and not virgin vegetable oil? Region 9: Biodiesel.:Access at:

http://www.epa.gov/region9/waste/biodiesel/questions.html., (Retrieved on October

20, 2010).

[105] Geoffrion A. Lagrangian relaxation and its use in integer programming. Mathematical

Programming Research, 2:82–114, 1974.

[106] Fisher M. The lagrangian relaxation method for solving integer programs. Manage-

ment Science, 27:1–18, 1981.

[107] Fulkerson D.R. Dantzig G.B. and Johnson S.M. Solution of large scale traveling

salesman problem. The Journal of the Operational Research Society, 2:393–410, 1954.

[108] Zemlin R. A. Miller C. E., Tucker A. W. Integer programming formulation of traveling

salesman problems. Journal of the ACM, 7(4):326 – 329, 1960.

[109] Laporte G. Improvements and extensions to the miller-tucker-zemline subtour elimi-

nations cosntraints. Operations Research, 10(1):27–36, 1991.



Vita 68

VITA

Yeliz Akça was born in Antakya, Turkey on July 28, 1986. She graduated from Hatay
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Appendix 1. Illustration of the daily vehicle routes in the best integer feasible solution 

for the scenario Fio-30-Med-050 
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Vehicle Routes at Day 2 
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Vehicle Routes at Day 4 
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