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The Regression Model of Machine Translation

by

Mehmet Ergun Biçici

Dissertation submitted to the Department of Computer Engineering
for ful�llment of the requirements for the degree of

Doctor of Philosophy

Abstract

Machine translation is the task of automatically �nding the translation of a
source sentence in the target language. Statistical machine translation (SMT) use
parallel corpora or bilingual paired corpora that are known to be translations of
each other to �nd a likely translation for a given source sentence based on the
observed translations. The task of machine translation can be seen as an instance
of estimating the functions that map strings to strings.

Regression based machine translation (RegMT) approach provides a learning
framework for machine translation, separating learning models for training, train-
ing instance selection, feature representation, and decoding. We use the transduc-
tive learning framework for making the RegMT approach computationally more
scalable and consider the model building step independently for each test sentence.
We develop training instance selection algorithms that not only make RegMT com-
putationally more scalable but also improve the performance of standard SMT
systems. We develop better training instance selection techniques than previous
work from given parallel training sentences for achieving more accurate RegMT
models using less training instances.

We introduce L1 regularized regression as a better model than L2 regularized
regression for statistical machine translation. Our results demonstrate that sparse
regression models are better than L2 regularized regression for statistical machine
translation in predicting target features, estimating word alignments, creating
phrase tables, and generating translation outputs. We develop good evaluation
techniques for measuring the performance of the RegMT model and the quality
of the translations. We use F1 measure, which performs good when evaluating
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translations into English according to human judgments. F1 allows us to evaluate
the performance of the RegMT models using the target feature prediction vectors
or the coe�cients matrices learned or a given SMT model using its phrase table
without performing the decoding step, which can be computationally expensive.

Decoding is dependent on the representation of the training set and the fea-
tures used. We use graph decoding on the prediction vectors represented in n-gram
or word sequence counts space found in the training set. We also decode using
Moses (Koehn et al., 2007) after transforming the learned weight matrix represent-
ing the mappings between the source and target features to a phrase table that can
be used by Moses during decoding. We demonstrate that sparse L1 regularized
regression performs better than L2 regularized regression in the German-English
translation task and in the Spanish-English translation task when using small sized
training sets. Graph based decoding can provide an alternative to phrase-based
decoding in translation domains having low vocabulary.

Thesis Advisor: Deniz Yuret
Title: Assistant Professor
Date: August, 16, 2011
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Otomatik Çeviride Regresyon Modeli

Mehmet Ergun Biçici

Bilgisayar Mühendisligi Bölümü'nde doktora derecesinin
gereklerinin tamamlanmas� için haz�rlanm�³

doktora tezi

Özet

Otomatik çeviri, bir dilde yaz�lm�³ bir cümlenin ba³ka bir dildeki çevirisini
otomatik olarak bulma i³idir. �statistiksel otomatik çeviri (SMT) birbirlerinin çe-
virisi oldu§u bilinen paralel dökümanlar veya çiftdilde dökümanlar kullanarak ver-
ilen bir cümleye en uygun gelecek çeviriyi önceden görülmü³ çevirileri kullanarak
hesaplamaya çal�³�r. Otomatik çeviri i³i kelime dizimlerinden kelime dizimlerine
e³le³tirebilen fonksiyonlar�n hesaplanmas� örne§i olarak görülebilir.

Regresyon tabanl� otomatik çeviri (RegMT) yakla³�m� otomatik çeviriye ö§renme
modellerini, ö§renme örnekleri seçimini, özellik gösterimini, ve çeviriyi yaratmay�
ay�ran bir ögrenme platformu sa§lar. Transdüktif ö§renme platformu RegMT yak-
la³�m�n� say�sal olarak daha hesaplanabilir yapar ve her test cümlesi için ba§�ms�z
olarak model kurar. Geli³tirdi§imiz ö§renme örnekleri seçim algoritmalar� RegMT
yakla³�m�n� say�sal olarak daha hesaplanabilir yapman�n yan�nda standart SMT
sistemlerinin performans�n� artt�r�r. Paralel ö§renme cümlelerinden önceki i³ler-
den daha iyi cümle seçme metodlar� geli³tirerek daha do§ru RegMT modellerini
daha az ö§renme cümlesi kullanarak elde edebiliyoruz.

Otomatik çeviri için L1 düzenli regresyon tekni§ini L2 düzenli regresyon tekni§in-
den daha iyi bir model olarak sunuyoruz. Elde etti§imiz sonuçlar seyrek re-
gresyon modellerinin L2 düzenli regresyon modelinden hedef özellikleri tahmin
ederken, kelime e³le³melerini bulurken, kelime dizimi tablolar� olu³tururken, ve
çeviri yarat�rken daha iyi oldu§unu göstermektedir.

RegMT modelinin performans�n� ve çevirilerin kalitesini ölçmek için iyi ölçüm
teknikleri gelistirdik. �ngilizceye çevirileri ölçerken insanlar taraf�ndan performans�
iyi bulunan F1 ölçüsünü kullan�yoruz. F1 bizim RegMT modellerinin performans�n�
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hedef özellik tahmin vektörlerini veya ö§renilen katsay� matrislerini veya verilen
bir SMT modelini kendi kelime dizimi tablolar�n� kullanarak, hesaplamas� pahal�
olabilen çeviri ad�m�n� uygulamadan ölçmemize olanak sa§lar.

Çeviri, ögrenme kümesinin gösterimine ve kullan�lan özelliklere ba§l�d�r. Biz
ögrenme kümesinin bulundugu n-gram veya kelime dizisi say�lar� uzay�nda goster-
ilen tahmin vektörleri üzerinde gra�k çevirisi kullan�yoruz. Ayrica Moses (Koehn
et al., 2007)'� kullanarak çeviri s�ras�nda kaynak ve hedef özellikler aras�ndaki
e³le³tirmeleri gösteren ö§renilmi³ a§�rl�k matrisini Moses taraf�ndan kullan�labile-
cek kelime dizimi tablosuna dönü³türdükten sonra çeviri yap�yoruz. Seyrek L1

düzenli regresyonun L2 düzenli regresyondan Almanca-�ngilizce çeviri i³inde ve
küçük ö§renme kümeleri kullan�rken �spanyolca-�ngilizce çeviri i³inde daha iyi
oldu§unu gösteriyoruz. Gra�k tabanl� çeviri kelime dizimi tabanl� çeviriye az ke-
lime hazineli çeviri i³lerinde alternatif olabilir.

Tez Dan�³man�: Deniz Yuret
Ünvan: Yard�mc� Doçent
Tarih: August, 16, 2011
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Chapter 1

Introduction

Machine translation is the task of automatically �nding the translation
of a source sentence in the target language. Statistical machine trans-
lation (SMT) use parallel corpora or bilingual paired corpora that are
known to be translations of each other to �nd a likely translation for a
given sentence based on the observed translations. The task of machine
translation can be seen as an instance of estimating the functions that
map source strings to target strings. The machine translation problem
requires special attention for constraining and regularizing the learning
models and guiding the outputs of the translation for a smooth and
natural performance.
This work focuses on the investigation of the regression-based ma-

chine translation model (RegMT) as an alternative to the current
phrase-based statistical machine translation systems. RegMT approach
provides a learning framework for machine translation, separating learn-
ing models for training, training instance selection, feature representa-
tion, and decoding.

Learning: We use L2 regularized regression and sparse regression
techniques including L1 regularized regression to predict the target fea-
tures for given input source features. We also investigate other learning
models and compare with the models in the regression framework. We
develop good evaluation techniques that allow us to measure the per-
formance of the learned models or the predicted feature vectors before
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actually performing the decoding, which can be computationally ex-
pensive.

Instance Selection: Regression is a computationally demanding
learning model. We use the transductive learning framework for mak-
ing the RegMT approach computationally more scalable and consider
the model building step independently for each test sentence. For
achieving more accurate RegMT models using less training instances,
we develop better training instance selection techniques than previous
work from given parallel training sentences. Machine translation can
be considered as a data intensive learning problem. If you have the
right translations in your parallel training sentences, then the transla-
tion task can be easier.

Decoding: Decoding is dependent on the representation of the
training set and the features used. The features representing text are
generated by string feature mappers, known as string kernels, which
can incorporate various features de�ned on string sequences. We use
graph decoding on the prediction vectors represented in n-gram or
word sequence counts space found in the training set. We also decode
using Moses (Koehn et al., 2007) after transforming the learned weight
matrix representing the mappings between source and target features
to a phrase table that can be used by Moses during decoding.

1.1 RegMT Publications

This work builds on several publications, which are referenced in the
chapters that follow. We list RegMT system publications below:

� L1 Regularization for Learning Word Alignments in Sparse Fea-
ture Matrices (Bicici and Yuret, 2010a): We learn word alignments
using L1 regularized regression and interpret the weight matrix as
the phrase table and show the e�ectiveness of using sparse regres-
sion models for word and phrase alignment.

2
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� L1 Regularized Regression for Reranking and System Combination
in Machine Translation (Bicici and Yuret, 2010b): We show that
regression mapping is e�ective in reranking translation outputs
and in selecting the best system combinations with encouraging
results on di�erent language pairs.

� Adaptive Model Weighting and Transductive Regression for Pre-
dicting Best System Combinations (Bicici and Kozat, 2010): We
analyze adaptive model weighting techniques for reranking using
candidate translation scores obtained by L1 regularized transduc-
tive regression for translation outputs generated by di�erent trans-
lation models. Without any pre-knowledge of the performance of
the translation models, we succeed in achieving the performance
of the best model in all translation experiments and surpass their
performance in most of the language pairs we considered in an
online machine translation scenario.

� Instance Selection for Machine Translation using Feature Decay
Algorithms (Bicici and Yuret, 2011a): We present an empirical
study of instance selection techniques for machine translation. Fea-
ture decay algorithms increase the diversity of the training set by
devaluing features that are already included and achieve perfor-
mances that exceed the baseline using smaller training data than
the baseline system.

� RegMT System for Machine Translation, System Combination,
and Evaluation (Bicici and Yuret, 2011b): We show that L1 reg-
ularized regression performs better than L2 regularized regression
and other learning models we compared when measuring the qual-
ity of the prediction vectors and the word alignment performance.
We present encouraging results when translating from German to
English and Spanish to English.
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1.2 Thesis Outline

Regression based machine translation model (RegMT) is a learning
framework for machine translation that we develop, aiming the sepa-
ration of training instance selection, feature representation, the learn-
ing algorithm, and decoding. RegMT uses regression to estimate the
mappings between source and target features. We give the outline of
the sections of this thesis below:

� Chapter 2: Statistical Machine Translation Problem.

Presents and reviews the statistical machine translation problem,
model training, decoding, evaluation, and phrase-based statistical
machine translation work �ow.

� Chapter 3: Regression Based Machine Translation.

We model machine translation as an instance of estimating the
functions that map source features to target features and use re-
gression to learn the mappings. We give an overview of the RegMT
work �ow.

Appendix A gives an overview of the linear regression model and
the least squares estimation.

� Chapter 4: Sparse Regression for Statistical Machine Trans-
lation.

We de�ne and use sparse regression techniques including L1 reg-
ularized regression model for learning and we demonstrate their
usefulness in an example word alignment task.

� Chapter 5: Instance Selection for Machine Translation
using Feature Decay Algorithms.

We use transductive regression techniques to learn mappings be-
tween source and target features of given parallel training sentences
and use these mappings to generate machine translation outputs.
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We present an empirical study of instance selection techniques for
machine translation. Selection of training instances relevant to
the test set improves the �nal translation quality as in transduc-
tive learning and decreases human e�ort by identifying the most
informative sentences for translation as in active learning. Feature
decay algorithms increase the diversity of the training set by de-
valuing features that are already included. We evaluate the best
instance selection methods trained with a Moses baseline SMT sys-
tem using the whole 1.6 million sentence English-German section
of the Europarl corpus. We demonstrate that feature decay algo-
rithms perform better than previous work both by selecting more
relevant instances and by obtaining a higher BLEU performance.
We show that selecting the best 3000 training sentences for a spe-
ci�c test sentence is su�cient to obtain a score within 1 BLEU
of the baseline, using 5% of the training data is su�cient to ex-
ceed the baseline, and a ∼2 BLEU improvement over the baseline
score is possible by optimally selected subset of the training data.
In out-of-domain translation, we are able to reduce the training set
size to about 7% and achieve similar performance as the baseline.

� Chapter 6: L1 Regularized Regression for Reranking and
System Combination in Machine Translation.

We use L1 regularized transductive regression to learn mappings
between source and target features of the training sets derived for
each test sentence and use these mappings to rerank translation
outputs. The results show the e�ectiveness of using L1 regular-
ization versus L2 regularization used in ridge regression. We show
that regression mapping is e�ective in reranking translation out-
puts and in selecting the best system combinations and we obtain
statistically signi�cant improvements over the baseline system re-
sults with the RegMT system on multiple language pairs.

� Chapter 7: Adaptive Model Weighting and Transductive
Regression for Reranking Machine Translation Outputs.
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We analyze adaptive model weighting techniques for reranking us-
ing candidate translation scores obtained by L1 regularized trans-
ductive regression for translation outputs generated by di�erent
translation models. Competitive statistical machine translation is
an online learning technique for sequential translation tasks where
we try to select the best among competing statistical machine
translators. The competitive predictor assigns a probability per
model weighted by the sequential performance. We de�ne additive,
multiplicative, and loss-based weight updates with exponential loss
functions for competitive statistical machine translation. Without
any pre-knowledge of the performance of the translation models,
we succeed in achieving the performance of the best model in all
translation experiments and surpass their performance in most of
the language pairs we considered.

� Chapter 8: Prediction, Evaluation, and Decoding with
RegMT.

We show that L1 regularized regression performs better than L2

regularized regression in the regression measurements as measured
by the prediction performance and obtain comparable performance
in the translation experiments. We present encouraging results
when translating from German to English and Spanish to English
using graph decoding. Especially, when the vocabulary size is low,
we observe that graph decoding can achieve the performance of
Moses or perform better. We also present translation results when
the phrase table of a phrase-based decoder is replaced with the
mappings we �nd with the regression model.

� Chapter 9: Conclusion.

We present an overview of the RegMT model and list our research
contributions and �ndings. We also discuss some future directions.

� Appendix A: Linear Regression Model and Least Squares
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Estimation.

Appendix A gives an overview of the linear regression model and
the least squares estimation. We discuss regularized least square,
its dual representation, and stochastic least squares estimation.

� Appendix B: Statistical Signi�cance Testing of Results.

We give the details of statistical signi�cance testing in general and
as it is used for SMT in Appendix B.

1.3 Research Contributions

This thesis investigates techniques for making the RegMT model more
practical by:

� using transductive learning when building the RegMT learning
model,

� developing better training data selection techniques that improves
the relevance of the selected instances and reduces the training set
size,

� building better regression models that �ts the sparse nature of the
translation problem,

� creating translation performance evaluation metrics that �t our
learning approach better,

� evaluating the performance at various stages of the learning process
and performing comparisons with a phrase-based decoder,

� investigating decoding alternatives including graph decoding using
the target feature prediction vectors obtained with the regression
model.

We make the following main research contributions:

� RegMT is useful for reranking: We show that regression map-
ping score can be used to improve over a baseline SMT system by
reranking the N -best lists generated by it.
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� RegMT is useful in online SMT:We develop adaptive learning
models for online SMT problems and achieve the performance of
the best model in the system combination challenge and we are
able to surpass its performance as well as RegMT's performance
with some of the weight update models we considered.

� Better Training Instance Selection Techniques: We develop
instance selection algorithms that not only make RegMT compu-
tationally more scalable but also improve the performance of SMT
systems.

� Sparse RegMT: We use sparse regression models for statistical
machine translation and achieve better target feature predictions
and word alignment performance than other learning models. We
use F1 measure, which performs good when evaluating translations
into English according to an evaluation by human judgments. F1

measure allows us to evaluate the performance of the RegMT mod-
els using the target feature prediction vectors or the coe�cients
matrices learned or a given SMT model using its phrase table with-
out performing the decoding step, which can be computationally
expensive.

� Decoding with RegMT:We show that sparse regression models
are better than other learning models we compared for statistical
machine translation in predicting target features, estimating word
alignments, creating phrase tables, and generating translation out-
puts. Our graph based decoding experiments demonstrate that
sparse L1 regularized regression performs better than L2 regular-
ized regression in the German-English translation task as well as in
the Spanish-English translation task, which has small sized train-
ing set and low vocabulary. Graph based decoding can provide an
alternative to phrase-based decoding in translation domains hav-
ing low vocabulary.
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Chapter 2

The Statistical Machine Translation

Problem

This section presents the statistical machine translation problem and
discusses phrase-based statistical machine translation (SMT).
In machine translation, we are interested in automatically �nding a

target sentence containing the same information as the source sentence.
Given a source sentence, x, from source language LX , �nd a target
sentence, y, in the target language LY , conveying approximately the
same information:

infoLX(x) u infoLY (y).

We de�ne infoL(.) as a function returning the information content of
its argument sentence in language L.
Phrase-based statistical machine translation approaches the problem

as follows. Given a source sentence xJ1 = x1, . . . , xj, . . . , xJ containing
the words xj with J words, which is to be translated into a target
sentence yI1 = y1, . . . , yi, . . . , yI containing the words yi with I words,
themaximum aposteriori (MAP) translation attempts to �nd the most
likely translation for a given source sentence:

ŷI1 = arg max
yI1

Pr(yI1 | xJ1 ) (2.1)

where xJ1 is the source sentence to be translated and Pr(yI1 | xJ1 ) gives
the posterior probability that yI1 is the translation of xJ1 . Equation 2.1
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Figure 2.1: The noisy channel model of SMT.

can be rewritten by using the Bayes' rule:

ŷI1 = arg max
yI1

Pr(yI1)Pr(xJ1 | yI1)/Pr(xJ1 ),

≈ arg max
yI1

p(yI1)︸ ︷︷ ︸
increased

p(xJ1 | yI1)︸ ︷︷ ︸
modularity

,
(2.2)

where Pr(xJ1 ) in the denominator is eliminated since it acts as a con-
stant and p(.) is a model-based probability distribution approximat-
ing the general probability distribution Pr(.). The Bayesian litera-
ture refers to Pr(xJ1 ) as the evidence, Pr(yI1 | xJ1 ) as the posterior,
Pr(xJ1 | yI1) as the likelihood, and Pr(yI1) as the prior. Equation 2.2
o�ers an alternative model which also makes use of the probability
of yI1 in the estimation. This yields a modular approach in which
two di�erent knowledge sources, namely the language model and the
translation model, that are trained independently are used instead of
modeling only Pr(yI1 | xJ1 ).
Equation 2.2 is sometimes referred to as the noisy channel model (Knight,

1999b), since yI1 is hypothetically corrupted by some �noise� and turned
into xJ1 . Figure 2.1 presents the noisy channel model of SMT. Pr(yI1) ≈
p(yI1) corresponds to the target language model score evaluated on the
target sentence yI1, which is higher for frequently observed sentences in
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the target language and it is usually estimated using the target side of
the parallel training sentences or a large external corpus in the target
language. Pr(xJ1 |yI1) ≈ p(xJ1 |yI1) corresponds to the translation model
score evaluated on both the source (xJ1 ) and the target sentence (yI1),
which assigns higher probability to sentences that are accepted to be
the translations of each other and it is estimated using the bilingual
corpora.
SMT problem can be considered as an instance of structured learn-

ing, which learn models in structured space or in the space of joint
correlations and constraints (Taskar, 2004). Structured learning mod-
els are commonly applied to sequence labeling problems where the
output can be a set of values like characters in words in the optical
character recognition problem (Nguyen and Guo, 2007) or words in a
sentence as in the machine translation problem.

2.1 Parallel Corpus and Parallel Sentences for Training

SMT systems harvest parallel corpora using statistical techniques. Par-
allel corpora resources include books that are translated to di�erent
languages, parliament discussions, web sites, etc., documents that are
translated in more than one language. LX and LY represents the
source and the target languages respectively. A parallel corpus is a
paired bilingual corpus, (CX , CY ), where CX denotes the source lan-
guage corpus and CY denotes the target language corpus such that CY
is the translation of CX . Since the translation could have been done out
of order or lossy, the task of sentence alignment is to �nd a mapping
function, m : CX → CY , such that a set of sentences SY ⊆ CY where
SY = m(SX) is the translation of a set of sentences SX ⊆ CX . Then,
under the mapping m, we can use SY whenever we use SX . The pair
(SX , SY ) forms a parallel sentence, which may contain more than two
sentences and can be used for training SMT models.
Figure 2.2 depicts a given parallel text and a given sentence align-

ment found in it. The mappings need not necessarily be 1-to-1, mono-
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Figure 2.2: Sentence alignment instance in some parallel text.

tonic, or continuous. Sentence alignment is an important preprocessing
step that a�ects the quality of parallel text. Our previous e�orts in
sentence alignment led to the development and investigation of context-
based sentence alignment techniques (Biçici, 2008, 2007) and learning
techniques for sentence alignment. From now on we assume that for
a given parallel corpus the alignment of sentences is known or given.
We refer to the parallel sentences obtained from a given parallel corpus
and their representation as a line by line paired parallel sentences as
parallel training sentences.

2.2 Training

Training is typically based on themaximum likelihood estimation (MLE)
of the parameters (p(D|Θ) for training data D and parameter set Θ).
The language model, Pr(yI1) ≈ pγ(yI1) = p(yI1|γ), depends on pa-
rameters γ and the translation model, Pr(xJ1 | yI1) ≈ pθ(xJ1 | yI1) =
p(xJ1 | yI1, θ), depends on parameters θ. Given parallel training sen-
tences containingm sentences, T = (Xm

1 ,Y
m
1 ) = (x1,y1), . . . , (xm,ym),
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training proceeds as follows (Och and Ney, 2002):

θ̂ = arg max
θ

m∏
i=1

pθ(xi | yi),

γ̂ = arg max
γ

m∏
i=1

pγ(yi),

(2.3)

The arg max rule for determining the translation for a source sentence
xJ1 becomes:

ŷI1 = arg max
yI1

pγ̂(y
I
1)pθ̂(x

J
1 | yI1), (2.4)

MLEmodel served as the general form of the initial SMTmodels (Brown
et al., 1993). Och and Ney (2002) argue that it is not straightforward
to add additional dependencies into Equation 2.4 and a di�erent com-
bination of the models may produce better results.
Maximum entropy training retains a set of M feature functions

hk(xJ1 ,y
I
1), k = 1, . . . ,M , where for each feature function, there ex-

ists a feature function weight or model scaling factor λk. The direct
translation probability is given by:

Pr(yI1 | xJ1 ) ≈ pλλλM1 (yI1 | xJ1 )

pλλλM1 (yI1 | xJ1 ) =

exp

[
M∑
k=1

λkhk(x
J
1 ,y

I
1))

]
∑
y′J1

exp

[
M∑
k=1

λkhk(x
J
1 ,y

′I
1)

] (2.5)

Equation 2.5 corresponds to a softmax operation and it can be used
to combine multiple models and can also be referred to as the multiple
logistic model (Ripley, 1996). Estimating the maximum pλλλM1 (yI1 | xJ1 )
is known as the logistic discrimination (Ripley, 1996). Since the results
of softmax are in the range [0, 1] and taking its derivative is easy, it is
used in many applications. Figure 2.3 present SMT model with feature
functions trained with the maximum entropy model. The new decision
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Figure 2.3: SMT with maximum entropy model of training.

rule becomes:

ŷI1 = arg max
yI1

{
Pr(yI1 | xJ1 )

}
,

= arg max
yI1

{
logPr(yI1 | xJ1 )

}
,

≈ arg max
yI1

M∑
k=1

λkhk(x
J
1 ,y

I
1)

(2.6)

Note that the MLE formulation given in Equation 2.4 is a special
case of the maximum entropy model (Equation 2.6) (i.e. when we
use two feature functions h1(yI1,x

J
1 ) = log pγ̂(yI1) and h2(yI1,x

J
1 ) =

log pθ̂(x
J
1 | yI1) with λ1 = λ2 = 1). In fact, maximum likelihood and

maximum entropy provide dual solutions (Berger et al., 1996).
The maximum class posterior probability criterion is used as the

training criterion for the maximum entropy model (Och and Ney,
2002):

λ̂λλ
M

1 = arg max
λλλM1

{
m∑
i=1

log pλλλM1 (yi | xi)

}
(2.7)

Such optimization of the posterior probabilities directly in Bayes deci-
sion rule is referred as discriminative training.
There are two main machine learning models: generative (pΘ(yI1,x

J
1 ))

and discriminative (i.e. λλλM1 h
M
1 (yI1,x

J
1 )). Models that are based on the
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distribution of inputs and outputs are referred as generative models
since they allow the generation of synthetic datasets by sampling (Bishop,
2006). Generative models are computationally demanding since they
involve �nding the joint distribution. Discriminative models use dis-
criminant functions to discriminate among labels. Discriminative meth-
ods model the posterior probabilities directly and lead to better predic-
tive performance (Bishop, 2006). Generative models can handle miss-
ing values and sequences of varying length for hidden Markov models
and discriminative models generally perform better than generative
models on discriminative tasks (Bishop, 2006). These modeling tech-
niques are parametric methods since the probability distributions that
govern the data are based on a small number of parameters. The
probabilistic conditional models (pΘ(yI1|xJ1 )) do not use pΘ(y) and use
conditional feature distributions to determine the label.
The trend in SMT training is towards purely discriminative ap-

proaches. Perceptron (Liang et al., 2006) or large margin training (Watan-
abe et al., 2007) techniques are used to handle the large number of
features used in these models. Regression model attempts to �nd
mappings between features of inputs and outputs and the learned co-
e�cients matrix �ts in the discriminative learning framework. The re-
gression approach in kernel induced spaces that we discuss in chapter 3
provides a general discriminative approach where we can use kernels
from generative models in a discriminative framework.
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2.3 Decoding

Once we are �nished with optimizing the parameters, what is left is
the following decision rule:

ŷI1 = arg max
yI1

M∑
k=1

λ̂khk(x
J
1 ,y

I
1)

= arg max
yI1

λ̂λλ
T
h(xJ1 ,y

I
1)

≈ arg max
yI1∈ GEN(xJ1 )

<λ̂λλ,h(xJ1 ,y
I
1)>

(2.8)

where GEN(.) in the last equation produces a �nite enumeration of all
valid target sentences for a given source sentence and we assume that
GEN(xJ1 ) ⊆ LY . When GEN(xJ1 ) = LY , last equation in Equation 2.8
becomes an equality.

2.3.1 Computational Complexity of Statistical Machine Translation

Decoding can be thought of being composed of two problems: selection
of appropriate words or phrases in the target language and ordering
them properly. Both of these two problems cause SMT decoding to
be NP-complete (Knight, 1999a). Knight performs a reduction from
source word ordering problem to Hamilton circuit problem and reduces
the problem of selecting concise set of target phrases to minimum set
cover problem, both of which are NP-complete problems. Similarly,
�nding the most likely alignment of tokens between the source sentence
x and the target sentence y using Viterbi alignment:

â = arg max
a

p(x, a|y) (2.9)

as well as the expectation maximization (EM) parameter estimation
of IBM models 3, 4, and 5 (Brown et al., 1993) and the conditional
probability estimation of the following form:

p(x|y) =
∑
a

p(x, a|y) (2.10)
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are shown to be #P -complete problems and the exact decoding prob-
lem of the following form:

ŷ = arg max
y

∑
a

p(x, a|y)p(y) (2.11)

is shown to be #P -hard problems (Udupa and Maji, 2006).
If we concentrate on Equation 2.8 again, we note that the prob-

lem in the search approach using enumeration over possible sentences
is mainly due to the need to check the value of exponentially large
number of sentences. Heuristic search techniques such as beam search,
greedy search, and A∗ search are generally employed to search for a
translation.

2.3.2 Reranking

An N -best list stores the top N best scoring translations generated by
an SMT system the top of which is returned as the translation. How-
ever, there can be discrepancies in the orderings achieved by human
judgments of this list and the ordering present in the output N -best
list. Multiple explanations can be given for this discrepancy:

1. Some complex features that can better evaluate the quality of a
translation may be computationally complex to apply on the whole
training set and instead a reranking or rescoring approach to the
generated N -best list might be more appropriate.

2. Trained parameters might correspond to a local optimum and
therefore may not model the performance well enough.

3. The training corpus used might belong to a domain that is di�erent
than the test set and therefore statistical models built and the
parameters learned may not be good enough to be applicable on
the test set. Assuming that training and test sets are sampled
from the same distribution can be a good simpli�cation in theory
but in practice, this is rarely the case.
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4. The learned models can �t the training data perfectly but perform
poorly on the test set as there can be many functions that explain
the training set. This is called over-�tting in machine learning and
it is also related to the bias-variance trade-o�, which models the
expected loss of di�erent models obtained from the same dataset
by resampling via the di�erence between the average model and
the true distribution (bias), the di�erence between the average
model and individual models (variance), and the inherent noise in
the dataset.

The opportunity loss that results from the existence of a better trans-
lation among the translations produced by an SMT system is called
model error (Lopez, 2007). Some systems rerank or rescore the gen-
erated N -best list by using additional scoring functions that have the
potential of ranking the best translation as the top of the list. The
scores obtained from these new feature functions can be interpolated
with the original translation scores of the SMT system.

2.4 Translation Performance Evaluation

We give the de�nition of two commonly used translation evaluation
techniques: NIST (Doddington, 2002) and BLEU (Papineni et al.,
2001). NIST and BLEU scores use n-gram co-occurrence counts de-
rived from the whole set of sentences in the translated documents.
BLEU score is de�ned for order n as follows:

logBLEU = min(1− r/t, 0) +
n∑
i=1

λi log pi (2.12)

The �rst term is the brevity penalty, which computes a penalty for
the di�erence between the sum of reference sentence lengths (r) versus
the sum of translation sentence lengths (t) in terms of the number of
tokens. The positive weights λi are chosen as 1/i (Papineni et al.,

18



2.5. PHRASE-BASED STATISTICAL MACHINE TRANSLATION WORK FLOW

2001). pi is the modi�ed i-gram precision term de�ned as:

pi =

∑i
p=1
∑

pgram ∈ matched-pgrams count(pgram)∑i
p=1
∑

pgram ∈ translation-pgrams count(pgram)
, (2.13)

where p-gram matches for 1 ≤ p ≤ i are computed for reference and
translation sentences and these are divided by the overall p-gram oc-
currences in the translation sentences. As can be seen from the formu-
lation, BLEU score is not symmetric and to prevent degenerate transla-
tions, it makes sense to divide by the overall counts in the translation
sentences. Thus, BLEU may not be the best choice to evaluate the
performance on the sentence level.
NIST score (Doddington, 2002) weights n-grams that occur less fre-

quently more using the information coming from n-gram counts calcu-
lated as follows:

info(w1, . . . , wn) = log2

(
count(w1, . . . , wn−1)

count(w1, . . . , wn)

)
, (2.14)

where wi corresponds to a word in n-gram w1, . . . , wn. The �nal NIST
score becomes:

NIST =

nX
p=1

(P
pgram ∈matched-pgrams info(pgram) count(pgram)P

pgram ∈ translation-pgrams count(pgram)

)
exp

˘
β log2 min(r/t, 1)

¯
(2.15)

where β is a constant chosen to make the brevity penalty 0.5 when
r/t = 2/3.

2.5 Phrase-based Statistical Machine TranslationWork Flow

This section gives an overview of the phrase-based statistical machine
translation work �ow. The initial step is sentence alignment, which
maps the sentences of a parallel corpus to parallel units where each
line is a translation pair, one on the source side and one on the target
side. We obtain parallel training sentences from a parallel corpus after
sentence alignment. Then, a word alignment step allows the generation
of a phrase table to be used during translation. Some parallel training
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2.5. PHRASE-BASED STATISTICAL MACHINE TRANSLATION WORK FLOW

sentences are set aside as development sentences for tuning. Model
tuning and translation generation or decoding steps follow. Parallel
training sentences as well as monolingual corpora are used to develop
language models to be used during decoding.
The work �ow is given in Figure 2.4. Additional details on the

mathematical models used can be found in (Knight, 1999b). Lopez
(2007) gives a survey of statistical machine translation.
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Figure 2.4: Phrase-based SMT work �ow.
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Chapter 3

Regression Based Machine

Translation

Machine translation is the task of automatically �nding the transla-
tion of a source sentence in the target language. The task of machine
translation can be seen as an instance of estimating the functions that
map strings to strings. Assuming that X and Y correspond to the sets
of tokens that can be used in the source and target strings, a train-
ing data of m inputs, T , which may be generated by an underlying
generative model, can be represented as:

T = (Xm
1 ,Y

m
1 ) =

{
(x1,y1), . . . , (xm,ym)

}
⊆ X∗ × Y ∗,

where each parallel training instance (xi,yi) ∈ T corresponds to a pair
of source and target language token sequences for 1 ≤ i ≤ m.
Our goal is to �nd a mapping f : X∗ → Y ∗ that can convert a given

source sentence to a corresponding target sentence sharing the same
meaning or containing the same information in the target language;
hence, f is the many-to-many mapping that we are trying to �nd.
Regression is generally used to estimate a mapping function between
a real valued covariate, x ∈ X∗, and a real valued response variable,
y ∈ Y ∗ using labels in RN for N ≥ 1. We can de�ne feature mappings
as ΦX : X∗ → FX = RNX and ΦY : Y ∗ → FY = RNY that map each
string sequence to a point in high dimensional real space where the
dimensions dim(FX) = NX and dim(FY ) = NY . Note that NX and
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NY are determined based on the number of features generated via ΦX

and ΦY respectively on the training data. This scenario is depicted in
Figure 3.1 (also presented in (Cortes et al., 2007)).

X∗ Y ∗-

? R ?

-FX FY

g

ΦX ΦY

6

Φ−1
Y

f

w

Figure 3.1: String-to-string mapping.

In Figure 3.1, f is the mapping we are trying to �nd, w is the map-
ping we learn after transforming the training set to a high dimensional
feature space, and g is the mapping we can use, which also transforms
the source to the new space in which the training data lives. The fol-
lowing are two of the main problems involved as depicted in Figure 3.1:

� Regression problem: The problem of learning g : X∗ → FY
that maps a given source sentence to a point in the feature space
of the target language. Again, this is a many-to-many mapping.

� Pre-image problem: Given the features of the estimated target
string sequence, g(x) = ΦY (ŷ), �nd y ∈ Y ∗:

f(x) = arg min
y∈Y ∗

||g(x)− ΦY (y)||2,

which approximates the target sentence when an exact pre-image
does not exist (Φ−1

Y (g(x)) = ∅).
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3.1. REGRESSION PROBLEM

3.1 Regression problem

In general, regression estimation involves features in real space. We
use feature mappings that transform input and output instances to
real points in high dimensional spaces: RNX and RNY . A feature map-
ping could be the count of observed n-grams in a given sentence. We
give the result of using n-gram counts as feature mappers for some
example sentences in subsection 3.4.1. FX and FY belong to NX and
NY dimensional real spaces. The feature mappings ΦX and ΦY can be
used to de�ne positive de�nite symmetric kernels, kX and kY , that cor-
respond to inner products in Hilbert spaces FX and FY such that for all
x,x′ ∈ X∗, kX(x,x′) = ΦX(x).ΦX(x′) and kY (y,y′) = ΦY (y).ΦY (y′).
In a linear regression setting, the linear interpolation function g(x) :

X∗ → FY is de�ned as follows:

g(x) = WΦX(x), (3.1)

where x is an input string, W : FX → FY is a matrix of size NY ×
NX , and ΦX(x) ∈ RNX×1 is the representation of x in FX . Similarly,
ΦY (y) ∈ RNY×1 is the representation of y in FY . 1 Both ΦX and ΦY

transform source and target sentences respectively to numerical vectors
in high dimensional space.
The regression problem tries to minimize the following regularized

loss function:

J (W) =
m∑
i=1

‖ΦY (yi)−WΦX(xi)‖2 + λ ‖W‖2
F , (3.2)

for W ∈ RNY×NX . We can think of the loss function as a Lagrangian
function with λ being the Lagrange multiplier for the contraint, specify-
ing that the norm ofW will be close to zero. This penalty ensures that
the learned coe�cients do not have large values. Let MX ∈ RNX×m

and MY ∈ RNY×m represent the training data in matrix form such
that MX = [ΦX(x1), . . . ,ΦX(xm)] and MY = [ΦY (y1), . . . ,ΦY (ym)].

1Appendix A gives an overview of the linear regression model and the least squares estimation.
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3.1. REGRESSION PROBLEM

Then, our regularized least squares regression problem can be rewritten
as:

W = arg min
W′∈RNY ×NX

‖MY −W′MX ‖2
F︸ ︷︷ ︸

training error

+ λ ‖W′‖2
F︸ ︷︷ ︸

regularization penalty

. (3.3)

Here, the norm becomes the Frobenius norm since we sum the squared
norms of the individual errors where the Frobenius norm of a matrix
A ∈ Rn×m is de�ned as follows (Trefethen and Bau, III, 1997, lecture
3):

‖A‖2
F ,

n∑
i=1

m∑
j=1

A2
i,j = <A,A>F = tr(ATA) = tr(AAT ) =

p∑
i=1

σ2
i ,

(3.4)
where <A,A>F is the Frobenius inner product that induces the norm
and σi corresponds to the ith singular value of A.

Proposition 1. The solution to our cost function given in Equa-
tion 3.3 can be found by the following identities:

W = MYM
T
X(MXM

T
X + λINX)−1 (primal)

W = MY (KX + λIm)−1MT
X (dual)

(3.5)

where KX = MT
XMX is the m × m Gram matrix with KX(i, j) =

kX(xi, xj) and kX(xi, xj) is the kernel function de�ned as kX(xi, xj) =
ΦX(xi)

TΦX(xj).

Proof. Since J (W) is convex and di�erentiable we can �nd the W
that minimizes it by taking the derivative:

(MY −WMX)MT
X = λW

MYM
T
X = WMXM

T
X + λW

MYM
T
X = W(MXM

T
X + λINX)

W = MYM
T
X(MXM

T
X + λINX)−1 (3.6)

This derivation is also presented by Cortes et al. (2007). Equa-
tion 3.6 becomes the primal solution. We can invert the primal solu-
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3.2. PRE-IMAGE PROBLEM

tion given in Equation 3.6 by using the matrix inversion lemma (Equa-
tion A.34) to obtain the dual solution:

W = MYM
T
X(MXM

T
X + λINX)−1

= MYM
T
X

[
λ−1INX − λ−1MX(Im + λ−1MT

XMX)−1λ−1MT
X

]
= MY

[
λ−1MT

X − λ−1MT
XMX(Im + λ−1MT

XMX)−1λ−1MT
X

]
= MY

[
Im − λ−1MT

XMX(Im + λ−1MT
XMX)−1]λ−1MT

X

= MY

[
Im − (−Im + Im + λ−1MT

XMX)(Im + λ−1MT
XMX)−1]λ−1MT

X

= MY (Im + λ−1MT
XMX)−1λ−1MT

X

= MY (λIm +MT
XMX)−1MT

X (3.7)

= MY (KX + λIm)−1MT
X (3.8)

We see that the regularization term also prevents the Gram ma-
trix, K = MT

XMX , in the dual formulation or the covariance matrix,
C = MXM

T
X , in the primal formulation from being singular. The

regularization term prevents the normal equations to be singular (i.e.
λI term in XTX + λI makes the whole matrix invertible (Taylor and
Cristianini, 2004)) and prevents coe�cients to have large values by
diverging too far away from the diagonal matrix.

3.2 Pre-image problem

The pre-image problem in regression mapping model corresponds to
the problem of decoding in machine translation where we try to �nd
the translation from a target feature prediction vector. The pre-image
problem involves predicting the target string f(x) ∈ Y ∗ for a given
source string x ∈ X∗ such that the corresponding translation is close:
y ∈ Y ∗, ΦY (y) ≈ g(x) = WΦX(x). We approximate the features of
the target string when an exact pre-image does not exist (Φ−1

Y (g(x)) =
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∅):

f(x) = arg min
y∈Y ∗

‖ΦY (y)−WΦX(x)‖2

f(x) = arg min
y∈Y ∗

(ΦY (y)TΦY (y)− 2ΦY (y)TWΦX(x))

f(x) = arg min
y∈Y ∗

(ΦY (y)TΦY (y)− 2ΦY (y)TMY (KX + λIm)−1MT
XΦX(x))

f(x) = arg min
y∈Y ∗

(kY (y,y)− 2(Ky
Y )T (KX + λIm)−1Kx

X), (3.9)

where Ky
Y ∈ Rm×1 and Kx

X ∈ Rm×1 are de�ned as follows:

Ky
Y =

kY (y,y1)
. . .

kY (y,ym)

 and Kx
X =

kX(x,x1)
. . .

kX(x,xm)

 . (3.10)

As we can see, in the dual formulation, W need not be involved in
the computations and kernel functions can be used instead and the
term (KX + λIm)−1 can be calculated once and reused. When ΦY

corresponds to polynomial kernels of odd degree, then ΦY becomes
invertible and the pre-image problem becomes trivial (Cortes et al.,
2007).

3.3 Related Work

Regression techniques can be used to model the relationship between
strings (Cortes et al., 2007). Wang et al. (2007) applies a string-
to-string mapping approach to machine translation by using ordinary
least squares regression and n-gram string kernels on a small subset
of the Europarl corpus. Later they use L2 regularized least squares
regression (Wang and Shawe-Taylor, 2008). Although the translation
quality they achieve is not better than Moses (Koehn et al., 2007),
which is accepted to be the state-of-the-art, they show the feasibility
of the approach.

Serrano et al. (2009) use kernel regression to �nd translation map-
pings from source to target feature vectors and experiment with trans-
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lating in a constrained hotel front desk requests domain. Ue�ng et al.
(2007) approaches the transductive learning problem for SMT by boot-
strapping the training using the translations produced by the SMT
system that have a scoring performance above some threshold as esti-
mated by the SMT system itself. Transductive SVMs (Joachims, 1999)
learn a hyperplane that separates both the labeled and the unlabeled
data.
Online large margin training techniques are being used to incorpo-

rate millions of features for SMT (Watanabe et al., 2007). Structured
learning techniques are proposed as another technique for SMT (Daumé
III, 2006). In the context of regression, transduction can be consid-
ered similar to weighted mixed regression. Rao and Toutenburg (1999)
de�ne weighted mixed regression to handle missing values in the data
where another regression model �lls in the missing values, a process
called imputation or repair. Locally weighted regression (LWR) solves
separate weighted least squares problems for each instance (Hastie
et al., 2009), weighted by a kernel similarity function.
We observe that L1 reularized regression is e�ective in learning map-

pings between sparse features versus L2 used in ridge regression on the
word and phrase alignment task of machine translation (Bicici and
Yuret, 2010a).

3.4 Practical Issues

In this section, we discuss techniques for making the RegMT approach
more practical.

3.4.1 Kernel Implementation

Feature mapping can be done by using an n-spectrum word kernel
de�ned as:

k(x,x′) =
n∑
p=1

|x|−p+1∑
i=1

|x′|−p+1∑
j=1

I(x[i : i+p−1] = x′[j : j+p−1]) (3.11)
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where x[i : j] denotes a substring of x composed of the words in the
range [i : j] and I(.) is the indicator function. It considers all word
sequences of order p. Note that the basis functions corresponding to
this kernel are count vectors corresponding to all of the word n-grams
that are found in the parallel training sentences. We give example fea-
ture vectors obtained using the 2-spectrum word kernel on two sample
source sentences in Table 3.1.

x1 = �the book is on the table�

x2 = �I saw the man�

FX th
e

b
o
o
k

is o
n

ta
b
le

I sa
w

m
a
n

th
e
b
o
o
k

b
o
ok

is

is
o
n

o
n
th
e

th
e
ta
b
le

I
sa
w

sa
w
th
e

th
e
m
a
n

φX(x1) 2 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0
φX(x2) 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1

Table 3.1: Example feature mapping on sample source sentences. Columns correspond to the
features, rows correspond to the observation counts.

The �rst six columns in Table 3.1 correspond to unigram features
and the remaining correspond to bigram features. We note that as
new instances are added to the set, which can be the source side of
the training set, the number of features in the feature vectors increase.
The corresponding representation for a training set becomes sparser
as new training instances are included. The size of the feature vectors
can be proportional to the size of the vocabulary of the training set,
O(V ) for vocabulary size V .
Another string kernel that can be used is the weighted word n-gram

string kernel de�ned as:

k(x,x′) =
n∑
p=1

|x|−p+1∑
i=1

|x′|−p+1∑
j=1

I(x[i : i+p−1] = x′[j : j+p−1]) exp(−α
p

),

(3.12)
which weighs the similarity based on the length of the string match
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and α is a threshold of length below which the similarity is considered
as atypical and a smaller similarity score is given. This kernel is similar
to the weighted substring kernels de�ned by Vishwanathan and Smola
(2003).
When operating in the Reproducing Kernel Hilbert Spaces (RKHS),

the distance between two objects can be calculated by using kernel
functions, which can be interpreted as dot products. The distance
between two objects, xi,xj ∈ X∗ can be found as follows given that a
kernel function k is already de�ned (Bakir et al., 2007):

d(xi,xj) = ‖Φ(xi)− Φ(xj)‖H
= <Φ(xi),Φ(xi)>− 2<Φ(xi),Φ(xj)> + <Φ(xj),Φ(xj)>

=
√
k(xi,xi)− 2k(xi,xj) + k(xj,xj), (3.13)

where H is the RKHS in which the dot product can be evaluated by
kernel functions. Thus, the distance can be de�ned as the distance
between the images obtained after mapping the features by Φ.

3.4.2 Feature Engineering for Machine Translation

In this section, we discuss how to model features and create feature
mappers that can bene�t the machine translation task between source
and target languages. One of the main questions we can ask is which
feature space measures the similarities between the sentences better for
higher SMT performance and therefore which kernel to choose? Can
we automatically select the optimal kernel for a given learning task or
automatically learn kernels from data? (KernelLearning, 2008) Can we
combine multiple kernels for learning? (Bach et al., 2004) These are all
relevant questions we might ask while choosing an appropriate space
for learning.
Feature modeling for some languages like Turkish can be a challenge.

In morphologically rich languages such as Turkish the stem and su�x
forms bear their own regularities. Morphemes, the smallest unit in a
given language carrying meaning (Mitkov, 2003), play an important
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role in the syntactic dependency structure and they can have long-
distance dependencies. The dependencies are not just between stems
but also between stems and su�xes. If we use complete words as unit
tokens, we will not be able to represent these sub-word dependencies.
Also, for less monotonic languages such as Turkish, the role of the

language model can increase as the correct ordering improves BLEU
performance. Language models in machine translation are generally
used to measure the amount of �uency the translation sentence is ex-
pected to have. Language models are also used to constrain the search
space used during decoding for selecting appropriate tokens or phrases
for phrase based systems. Selection of features become important as a
bigram may not model a given word having multiple su�xes. A better
language model should be able to mirror the linguistic dependencies
as the ones observable in (Hakkani-Tür et al., 2002) more e�ectively.
Morpheme-aware language models such as FlexGrams (Yuret and Bi-
cici, 2009) not only allow syntactic links to be made between di�erent
possible phrases that can be used to construct a sentence for phrase-
based machine translation systems but can also help overcome the dis-
tortion cost used in SMT systems to sort out sentences that are highly
irregular in their respective orderings relative to the source sentence.
Previous work shows that the e�ect of �nding the correct morpho-

logical form for a given stem can increase the BLEU score by 8 when
translating from English to Czech (Koehn et al., 2006). For trans-
lating into Turkish, word repair heuristic is being used to increase
the BLEU for �nding the correct morphological form (O�azer, 2008).
Error-tolerant �nite state recognition (O�azer, 1996) helps generate
morphological alternatives for a word which can then be rescored us-
ing separate word and morpheme language models to pick the best
alternative for the purpose of morphological disambiguation.

3.4.3 Decoding with the RegMT Model

The options we consider for decoding with the RegMT model include:
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1. Re-ranking Moses (Koehn et al., 2007) outputs with the translation
scores we obtain with the RegMT model. This option is discussed
and explored in chapter 6 and in chapter 7.

2. Interpreting W as the phrase table and using Moses to perform
decoding (discussed in chapter 8).

3. Using graph decoding (discussed in chapter 8).

3.5 Computational Complexity

In this section, we discuss computational complexity of the RegMT
model and techniques for making the RegMT approach computation-
ally more scalable. The computational complexity of the primal or
dual solutions given in Theorem 1 depend largely on the matrix inver-
sion, which is in O(n3) for n representing the dimension of the square
matrix. If we use the primal solution, then it is in O(N 3

X) and if we
use the dual solution, it is in O(m3).
In the inductive learning setting where we build a model using all

of the training set, primal solution can be used after a feature pruning
step or using a low rank approximation. To reduce the computational
complexity, Cortes et al. (2007) propose �nding a matrix L ∈ Rm×n,
where n� m, such that KX = LLT by using incomplete Cholesky de-
composition, which has O(mn2) complexity to speed up the training.
When KX ∈ Rm×m we can use the matrix inversion lemma (Equa-
tion A.34) as follows:

(LLT + λIm)−1 = λ−1 [Im − L(λIn + LTL)−1LT
]
. (3.14)

This reduces the cost of the matrix inversion in the dual solution from
O(m3) to O(n3). More predictive techniques exist for low rank ap-
proximations (Bach and Jordan, 2005).
However, for some learning tasks where we have access to the test

set beforehand, we need not induce a model from the full training set,
which can be computationally demanding. In transductive learning,
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test instances are used to learn speci�c models tailored towards the
test set. Machine translation �ts the transductive learning paradigm
well if we have access to the test set. Also, machine translation is
usually performed at the sentence level and we can build a learning
model speci�cally for a given test sentence by assuming that sentences
in the test set are independent from each other.

3.5.1 Transductive Learning vs. Inductive Learning

Transduction is referred as the learning process by which we move from
a set of training examples to points of interest directly without inducing
a model from the training set and deducing the value of the points of
interest by using the induced models (Vapnik, 2000). Figure 3.2 is
from (Vapnik, 2000) and describes di�erent types of inference that are
being employed in machine learning. Vapnik argues that in cases where
limited amount of information exist, we do not need to solve the more
general problem of induction and then deduction.

Figure 3.2: Di�erent types of inference.

In our transductive learning setting, the transduced instances are se-
lected from the training set and therefore we have access to their labels
as well. In an approach closer to transduction, we can have the SMT
system generate possible translations and use those labels in training
as well, a process referred as bootstrapping. The goal in transduc-
tive regression based machine translation (RegMT) is both reducing
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the computational burden of the regression approach by reducing the
dimensionality and improving the translation quality by using trans-
duction, which we know to improve the performance of the learning
model.

3.6 Training Instance Selection per Source Feature

Proper selection of training instances plays an important role to learn
feature mappings with limited computational resources accurately. In
previous work (Wang and Shawe-Taylor, 2008), training sentences were
selected using tf-idf 2 information retrieval technique. We transform
test sentences to feature sets obtained by the kernel mapping before
measuring their similarities and index the sentences based on the fea-
tures found sorted by the length of the sentences, enabling us to �nd
shorter matches faster. However, as we see in chapter 5, although se-
lecting the shortest sentences is a good heuristic, it does not give us a
training set with a target feature set coverage better than the instance
selection methods that we develop in chapter 5: FDA and dice. We
de�ne coverage as the percentage of test source and target features
found in a given training set.
Given a source sentence of length 20 tokens, its feature representa-

tion would have 57 total 1/2/3-gram features. If we only include the
closest sentences to the set of test instances, then we may not have
translations covering all of the features. But if we search for trans-
lations of each source feature, then we may have a higher chance of
covering all the features found in the test sentence we are trying to
translate. The index is used as a dictionary of source phrases stor-
ing training set entries whose source sentence match the given source
phrase.
The selected number of training instances per source feature, fx, is

chosen inversely proportional to the frequency of the source feature
determined by the following formula:

2tf-idf: term frequency - inverse document frequency.
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idfScore(fx) =
∑

x∈Y (fx)

idf(x) (3.15)

numTrain(fx) = max

(
1, d c

ln(1 + α/idfScore(fx))
e
)
, (3.16)

where idfScore(fx) sums the idf (inverse document frequency) of the
tokens in source feature fx, Y (.) lists the tokens of a given feature, α is
an idf score threshold, and c is a small number. 3 numTrain tries to
select more for rare features; selecting more for common features also
works in some cases as it helps in disambiguating the features.

3.7 RegMT Work Flow

This section gives an overview of the RegMT work �ow. We highlight
the di�erences with the phrase-based SMT work �ow given in Fig-
ure 2.4. After a sentence alignment step, we perform training instance
selection over the parallel training sentences using the source sentences
of the test set. We obtain the training data to be used during training
following this procedure. Then we transform the sentences found in
the training data to feature matrices using the corresponding feature
mappers for source and target language sentences. RegMT learning is
performed on the feature matrices to obtain the regression mapping,
W. The mapping becomes the translation model and it can be di-
rectly used as a phrase table and we see how this transformation is
performed in chapter 8. Model tuning and translation generation or
decoding steps follow.

3.8 Summary

This chapter described the mathematical background for the RegMT
model, the feature representation used, and the pre-image �nding prob-

3We use α = 9.0, c ≥ 1.
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lem. We discussed related work and explained techniques for making
the RegMT model more practical and computationally more scalable.
In subsection 3.4.1, we give an example feature representation for a
set of source sentences. The feature representation of a training set
constructed with n-spectrum word kernels can become a sparse repre-
sentation. However, in contrast, the coe�cients matrix obtained from
solving the problem in Equation 3.3 can still become a dense matrix.
In machine translation, we would like to obtain sparser models as we
describe in chapter 4, where we discuss techniques for obtaining sparser
coe�cients matrices that can also be used to create a phrase table for
machine translation.
We described our transductive learning approach and how we select

training instances per source feature found in each test source sentence.
The next section discusses sparse regression models for statistical ma-
chine translation, which �t the machine translation task better.
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Figure 3.3: RegMT work �ow.
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Chapter 4

Sparse Regression for Statistical

Machine Translation

This chapter introduces sparse regression techniques for statistical ma-
chine translation. The feature representations of source and target sen-
tences belonging to a training set used for statistical machine transla-
tion can be sparse. Sparse feature representations can also cause the
data matrices used to have more unknown features than the number
of training instances.
The quadratic regularization penalty used with the L2 model pre-

vents the normal equations from becoming singular yet most of the
coe�cients remain non-zero and the L2 model does not give us a sparse
solution. When we perform machine translation, we would like to ob-
serve only a few nonzero target feature coe�cients corresponding to a
source feature in the coe�cients matrix. Regularization with the L1

norm helps us achieve sparse solutions to the mapping problem.
We present various techniques of regression leading to sparse coef-

�cients matrices. We show the e�ectiveness of L1 regularized regres-
sion or lasso to learn the mappings between sparsely observed feature
sets versus L2 regularized regression in an example word alignment
scenario. Comparative results on the learning performance of the al-
gorithms with other learning models is given in chapter 8.
Outline: In the �rst two sections we discuss the sparseness in the

data and mappings when modeling source to target feature mappings
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for statistical machine translation and show that L1 norm regulariza-
tion can help us achieve sparse solutions to the mapping problem. In
section 4.3, we introduce the L1 regularized regression techniques and
techniques for L1 minimization. Then in section 4.4 we give an exam-
ple word alignment scenario which demonstrates the di�erence between
word alignment matrices obtained using L1 and L2 regularized regres-
sion models.

4.1 Sparsity in Translation Mappings

In statistical machine translation, parallel training sentences, which
contain translations of the same sentences in source and target lan-
guages, are used to estimate a likely target translation for a given
source sentence based on the observed translations. String kernels lead
to very sparse representations of the feature space and we examine the
e�ectiveness of L1 regularized regression to �nd the mappings between
sparsely observed feature sets.
We would like to observe only a few nonzero target feature coef-

�cients corresponding to a source feature in the coe�cients matrix.
If the coe�cients matrix obtained resembles a dictionary or a phrase
table, then it can be useful during machine translation. An example
solution matrix representing a possible alignment between unigram
source and target features could be the following:

W x1 x2 x3

y1 1 1
y2 1
y3 1

Table 4.1: Sparsity in translation mappings.

Here xi represents unigram source features and yi represent unigram
target features. x1 and x3 have unambiguous translations whereas x2

is ambiguous. Even if unigram features lead to ambiguity, we expect
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higher order features like bigrams and trigrams to help us resolve the
ambiguity. Typical W matrices have thousands of features. L1 regu-
larization helps us achieve solutions close to permutation matrices by
increasing sparsity (Bishop, 2006, page 145). In contrast, L2 regular-
ized solutions give us dense matrices and when we consider a phrase
table, the correct solution is very sparse.

4.2 L1 Norm Regularization

We describe the L1 norm and its sparsity inducing characteristic in this
section. The quadratic regularization penalty used with the L2 model
helps to ensure that the learned coe�cients do not have large values
by diverging too far away from the diagonal matrix and prevents the
normal equations become singular. Although this term becomes easy
to take the derivative, most of the coe�cients remain non-zero and it
does not give us a sparse solution. We are interested in penalizing the
coe�cients more e�ectively; zeroing the irrelevant ones and thereby
leading to sparsi�cation. L1 norm behaves both as a feature selection
technique and a method for reducing coe�cient values.
We use the following de�nitions for L1 vector norm (Trefethen and

Bau, III, 1997, lecture 3) and L1 matrix norm:

‖x‖1=
N∑
i=1

|xi| ‖X‖1=
I∑
i=1

J∑
j=1

|Xi,j|. (4.1)

L1 is a sparsity inducing norm, making some of the coe�cients zero (Bach
et al., 2011). We show the e�ectiveness of using L1 regularization ver-
sus L2 used in ridge regression on the word and phrase alignment task
of machine translation (Bicici and Yuret, 2010a). Figure 4.1 depicts an
L1 norm constrained objective function minimization problem in 2D.
The �gure shows why L1 norm induces sparsity. L1 norm constraint
forces the function minimum to be found at an edge of the constraint
square, which is likely to be at one of the corners of the square, enabling
a sparse solution.
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Figure 4.1: L1 norm in 2D (|x|+ |y| = 1)

L1 norm regularized regression is also referred as lasso (least abso-
lute shrinkage and selection operator) (Tibshirani, 1996) and the cor-
responding minimization problem is given below (Hastie et al., 2009):

ŵ = arg min
w

{
N∑
i=1

(yi − w0 −
p∑
j=1

xijwj)
2 + λ

p∑
j=1

|wj|

}
(4.2)

ŵ = arg min
w

‖y−Xw‖2 + λ ‖w ‖1 (4.3)

ŵ = arg min
w

L(y,X,w) + λ ‖w ‖1 (4.4)

ŵ = arg min
w

L(y,X,w) s.t. λ ‖w ‖1≤ C (4.5)

where w ∈ Rp×1, y ∈ RN×1, andX ∈ RN×p for a given loss function L.
The formulation in Equation 4.5 is a quadratic programming criterion
for each C (Hastie et al., 2006).

4.3 L1 Regularized Regression Techniques

In this section, we give details of the various techniques of regression
leading to sparse coe�cients matrices. The problem we are trying
to solve is learning mappings between sparse feature representations
of text using a small number of training instances for computational
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e�ciency. The lasso (least absolute shrinkage and selection operator)
regression problem is given below:

WL1
= arg min

W∈RNY ×NX
‖MY −WMX ‖2

F + λ ‖W‖1 . (4.6)

lasso has the property that as we increase the λ, some Wi,j shrink
towards zero, increasing the sparseness (Bishop, 2006). When the data
matrix is sparse, L1 regularized regression (lasso) is known to perform
better than L2 regularized regression in reducing the test set error and
it can still perform better in dense settings (Bach, 2008).
We use two lasso techniques:

� Forward stagewise regression (FSR): Iteratively increases the weight
of the variable most correlated with the residual by ε to approxi-
mate the lasso (Hastie et al., 2006).

� Quadratic programming (QP): Optimizes the lasso cost by using
quadratic programming to reach the lasso solution (Mørup and
Clemmensen, 2007).

In Equation 4.6, no analytical solution exists but we know that it is a
convex problem and therefore it has a single global minimum. The L2

regularized regression problem given in Equation 3.3 as well as the L1

regularized problem given in Equation 4.6 belong to convex optimiza-
tion problems where both the objective and the constraint functions
are convex such that they satisfy the following inequality (Boyd and
Vandenberghe, 2004):

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

for all x,y ∈ Rn, α ∈ R, α ≥ 0, and f : Rn → R. Additionally,
the a�ne combination or the sum of two convex functions, such as the
training error term and the regularization penalty term, results in a
convex function and the locally optimal points in convex optimization
problems are also globally optimal (Boyd and Vandenberghe, 2004).
Hence, lasso is a convex problem with a single global minimum and
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we can use optimization to �nd the minimum. FSR and QP approach
the same minimum solution to the cost function.
We also explore the following techniques for L1 norm minimization,

which are closely related:

� L1 norm minimization using linear programming (LP): Faster than
QP but optimizes a di�erent cost than the lasso, interpreting the
error term as the constraint to satisfy (Chen et al., 1998).

� L1 norm minimization using iterative thresholding (iter-ε): Itera-
tive technique for L1 norm minimization (Herrity et al., 2006).

When working in high dimensional spaces, we may experience mul-
ticollinearity (i.e. some predictors being highly correlated) or redun-
dancy of the coe�cients. Therefore, we are interested in penalizing the
coe�cients more e�ectively; zeroing the irrelevant ones and thereby
leading to sparsi�cation. We discuss in subsection 4.3.5 that for prob-
lems with large number of correlated variables, FSR has smoother and
monotone coe�cient values and rate of increase in the coe�cient val-
ues with increasing number of iterations whereas the QP solution to
lasso has �uctuating coe�cient values.

4.3.1 lasso with Forward Stagewise Regression (FSR):

The incremental forward stagewise regression (FSR) algorithm for ap-
proximating the lasso is given by Hastie et al. (2006). We use FSR,
which approximates the lasso faster than quadratic programming. The
incremental forward stagewise regression algorithm increases the weight
of the predictor variable that is most correlated with the residual by
a small amount, ε, multiplied with the sign of the correlation at each
step. As ε→ 0, the pro�le of the coe�cients resemble the lasso (Hastie
et al., 2009). The corresponding incremental forward stagewise regres-
sion algorithm for multivariate data is given in Algorithm 1. We can
set ε = |cj| for |cj| storing the magnitude of the largest current corre-
lation value, which would eliminate the covariates that are correlated
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with xj (Efron et al., 2004). This would decrease multicollinearity and
the approach is referred as forward selection.
In the multivariate case, we have multiple response variables and

a regressor variable has varying degrees of correlation with each one.
Turlach et al. (2005) view the value of each component of the weight
matrix, Wi,j as the explanatory power that the jth regressor vari-
able has on the ith response variable. Therefore, they propose to
use Wmax

∗,j = max(|W1,j|, |W2,j|, . . . , |WNY ,j|) as a measure of the ex-
planatory power of the jth regressor on all the response variables. The
corresponding norm is l1,∞:

Ŵ = arg min
W

‖MY −WMX ‖2
F +λ ‖W‖1,∞ (4.7)

This also makes sense in terms of the features obtained from word se-
quence kernels as we might prefer one translation corresponding to a
word sequence above others.

In Algorithm 1, MY = {MY1
, . . . ,MYNY

} and MX = {MX1
, . . . ,

MXNX
}. We assume that each target feature is independent and for

each of the target feature row vector as represented by MYi we �ll a
row ofW. We repeat steps 6 to 9 until all predictors have a correlation
value less than ε with r; thus we continue while maxcorr > ε. At each
iteration, we have a matrix multiplication with a vector to �nd the
correlations, which costs O(NXm). If the number of repetitions in the
inner loop isM , the algorithm is in O(NYNXMm). If we consider the
number of repetitions in the inner loop as constant, the algorithm is
in O(NYNXm).

4.3.2 lasso with Quadratic Programming (QP):

We also use quadratic programming (QP) to �nd WL1
. We can pose

lasso as a QP problem as follows (Mørup and Clemmensen, 2007). We
assume that the rows of MY are independent and solve for each row i,
Myi ∈ R1×m, using non-negative variables w+

i ,w
−
i ∈ RNX×1 such that

wi = w+
i −w−i :
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Algorithm 1: Incremental Forward Stagewise Regression - FSRε - for Multivariate Data

Input: Source and target feature matrices, MX and MY , step
size, ε.

Output: Coe�cient matrix W.
W← 01

for i← 1 to NY do2

Let r = MY
T
i ∈ Rm×1

3

maxcorr ← 14

while maxcorr > ε do5

Let c = MXr store the correlations where6

cj′ = corr(r,MXj′) =
〈
r,MXj′

〉
. Then,

j = arg max
j′

|cj′|

maxcorr = |cj|7

Update Wi,j ←Wi,j + δj for δj = ε · sign[cj]8

Update r← r− δjMXj9

wi = arg min
w

‖Myi −w MX‖2
F + λ

NX∑
k=1

|wk|, (4.8)

ŵi = arg min
w̃i

1

2
w̃i M̃XM̃X

T
w̃i

T − w̃i (M̃XM
T
yi
− λ111), (4.9)

s.t. w̃i > 0, M̃X =

[
MX

−MX

]
, w̃i =

[
w+
i
T w−i

T
]
.

Due to using quadratic constraints, QP solution is slower than the
FSR solution. Interior-point method for solving quadratic constraints
is in O(NYN

3
X l) where l is the required number of bits to represent

the data (Potra and Wright, 2000).
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4.3.3 L1 Minimization using Linear Programming (LP):

L1 minimization can also be posed as a linear programming (LP) prob-
lem by interpreting the error term as the constraint (Chen et al., 1998)
and solving for each row i.
Let the minimization problem be:

min ‖x‖1 subject to Ax = b. (4.10)

The dual formulation of linear programming solves problems of the
form:

max−hTz subject to GTz+ c = 0 and z ≥ 0. (4.11)

Then, we can use linear programming by using non-negative variables
x+,x− ∈ RNX×1 such that x = x+ − x− and using the following
transformations:

z =

[
x+

x−

]
, h =

[
1
1

]
, G =

[
AT

−AT

]
, and c = −b. (4.12)

For the multivariate case, we can assume that the rows of MY are
independent and solve for each row i,Myi ∈ R1×m, using non-negative
variables w+

i ,w
−
i ∈ RNX×1 such that wi = w+

i −w−i . The constraint
given in Equation 4.10 may not be satis�able, in which case we can
use the L2 regularized ridge regression solution.

wi = arg min
w

‖w‖1 subject toMyi = wMX , (4.13)

which can again be solved using non-negative variables. This is a
slightly di�erent optimization problem and the results can be di�er-
ent but linear programming solvers o�er computational advantages.
We are selecting among the ws that satis�es the contraint having the
minimum L1 norm. If the constraint is not satis�able, we use the L2

regularized regression solution.
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4.3.4 L1 Minimization using Iterative Thresholding (iter-ε):

When the size of the training matrices increase, the constraint given in
Equation 4.10 can become harder to satisfy. In such cases, an iterative
solution can be helpful. Iterative thresholding algorithms for sparse ap-
proximation iteratively update the coe�cient vector after some thresh-
olding of its values (Herrity et al., 2006).
Iterative thresholding assume that x is sparse with k nonzero entries

and A is close to unitary such that xnew = δk(A
Tb) = δk(A

TAx),
where δk(.) is a thresholding operator (Maleh, 2009) and n is the step
number. The error becomes y u ATAy = ATA(x − x[n]) = ATb −
ATAx[n]. This allows us to �nd a recurrence relation (Maleh, 2009):

x[n] = δk
(
x[n−1] + µ(ATb− ATAx[n−1]))

)
, (4.14)

where µ is the step size used for better convergence and 0 < µ ≤ 1.
We select δk(.) such that it retains only the top k entries whose value
is greater than 0.
Gradually decreasing the threshold as the number of iterations in-

crease is also used (Drori, 2007). Instead of thresholding, we retain
the largest k values, where k is estimated using the number of features
found in the source sentence.

4.3.5 Regularization Parameter Optimization

lasso has the property that as we increase the λ, some Wi,j shrink
towards zero, increasing the sparseness (Bishop, 2006). For L2 regu-
larization, λ needs to be optimized.
The number of iterations and the ε value used for FSR corresponding

to a given λ value is harder to calculate. Hastie et al. (2009) show that
Mε → λ ‖W ‖1 where M is the number of iterations and ε > 0 is
the step size. As ε→ 0, the incremental forward stagewise algorithm,
FSRε, approximates the lasso. However, at each step FSRε and lasso
optimize a di�erent criteria. lasso optimally reduces the error for unit
increase in the L1 norm of the coe�cients. FSRε is optimal for unit
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increase in the L1 arc length of the coe�cients, which is the sum of the
L1 norms of the changes in the coe�cient values (Hastie et al., 2009,
page 74).
However, we don't know the value of ‖W‖1 beforehand and there-

fore it is not easy to choose appropriate M and ε values that will also
achieve fast computation. Instead, we choose the amount of L1 arc
length that we would like to distribute among the various features or
we optimizeM and ε values directly on the development set separately.
For each source or target feature, we would like to observe only a few
corresponding features in the coe�cients matrix.
We also de�ne the correlation used in FSR (Algorithm 1, line 6) as

follows to make it scale invariant:

corr(x,y) =
〈x,y〉

length(x)
=

xTy
length(x)

. (4.15)

This allows us to use the sameM and ε value for all sentences regardless
of their length. We also limit the total L1 arc length that is to be
distributed by Mε and set its total to around 2.5. This allows us to
select few target features for a given source feature.

Hastie et al. (2006) note that for problems with large number of
correlated variables, FSR making L1 arc length minimizing steps can
be preferable to lasso, which makes L1 norm minimizing steps. Hastie
et al. (2006) show that (in Figure 7, Hastie et al. (2006)), in such cases,
FSR's coe�cient paths (paths that show the coe�cient values and the
rate of increase in the coe�cient values) are monotone and smoother
when compared with the lasso, which tend to �uctuate. FSR always
makes a step in the direction of the largest correlation with the residual
whereas lasso makes a step minimizing the L1 norm, which need not
be in the direction of the largest correlation. This explains the case
for word sequence kernels where consecutive bigrams are related and
unigrams are related to the their parent bigrams. We demonstrate an
example word alignment scenario in the following section where FSR
is preferable to lasso using QP optimization.
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4.4 Example Word Alignment Scenario

In this section, we compare the e�ectiveness of L1 regularized regres-
sion algorithms for the word alignment task on a sample test sentence.
In the word alignment problem, we are interested in �nding correspon-
dences or alignments between source and target words. This example
scenario can also be considered as a small, simpli�ed machine trans-
lation exercise where we try to �nd which source words correspond
to which target words. We are trying to align the following German-
English sentence pair:

Source: ich hoffe, dass wir dies hier im europäischen

parlament tun werden .

Target: i hope that we will do that here in the european

parliament .

We select 1000 training sentences for training the corresponding
RegMT models and remove the irrelevant features that are found in
the training sets such that we retain only the unigram features found
in the source and the target sentences. The coe�cients matrix that we
obtain using L2 regularization is given in Figure 4.2. We use Hinton
diagrams (Hinton et al., 1986) to depict the coe�cients matrices where
a white square corresponds to a positive coe�cient value and a black
square corresponds to a negative coe�cient value. The area of each
square drawn corresponds the coe�cient value at that corresponding
location.
As we expected, L2 regularized regression is giving us a dense so-

lution with most of the entries remaining nonzero. There exists some
problems with the coe�cients we obtain using the L2 regularization.
For instance the German source word dass is mapped to the word
the on the English side as found by the largest corresponding coe�-
cient value. Also, the word europäischen is mapped to the word the.
From this word alignment matrix, we can obtain phrase pairs using
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Figure 4.2: L2 Regularized Regression for word alignment �gure, 1000 training instances.

similar heuristics used in Moses (Koehn et al., 2007) such as the grow-
diag-�nal heuristic, which grows the intersection of source to target
and target to source alignments with additional alignment points. We
form a blue rectangle around possible phrase pairs in Figure 4.2.
Figure 4.3 depicts the coe�cients matrix we obtain using QP for

L1 regularized regression. We observe a sparser matrix than the L2

regularized solution. However, as with the L2 solution, we observe
problems with the alignment in some cases. For instance, the German
words europäischen and dass are mapped to the on the English side,
which is a function word.
Figure 4.4 depicts the coe�cients matrix we obtain using FSR for

L1 regularized regression. We again observe a sparser matrix than the
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Figure 4.3: L1 Regularized Regression for word alignment �gure, QP, 1000 training instances.

L2 regularized solution and we observe better word alignments. All
of the alignment problems we mentioned are now solved with FSR.
Using these alignments, we can generate a phrase table as depicted in
Figure 4.5.
When we compare the �gures, we see a clear advantage of using

sparse regression techniques for learning the coe�cients matrix. Sparser
coe�cients matrix corresponds to fewer translation alternatives for
each phrase, which can reduce the computations during test time.
However, selecting fewer alternatives can correspond to a higher chance
of missing the correct translation as well.
When we compare the coe�cients matrices obtained with QP and

FSR, we see that FSR obtains a sparser solution whereas QP's coef-
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Figure 4.4: L1 Regularized Regression for word alignment �gure, FSR, 1000 training instances.

�cients matrix contain largely nonzero entries, most of which appear
close to zero. QP solution can be made sparser by thresholding the
values afterwards; but we still observe problems with the mappings
obtained such as the source feature dass being mapped to the feature
the on the English side.
We have seen that on this example word alignment scenario, sparse

regression models can perform better than L2 regularized regression
and FSR performs better than QP in terms of obtaining a sparser co-
e�cients matrix and better alignments. We discuss word alignment
performance of RegMT on a sample test set in section 8.7 where we
compare the performance of FSR to a larger number of learning algo-
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Figure 4.5: L1 Regularized Regression for word alignment �gure, FSR, with phrases identi�ed,
using 1000 training instances.

rithms and observe supporting results.

4.4.1 Evaluating Phrase Alignment Performance

In (Bicici and Yuret, 2010a), we show the e�ectiveness of using L1

regularization versus L2 used in ridge regression on the word and phrase
alignment task of machine translation. We observe that after using
about 200 instances for training, F1 measure results as well as the
squared error used start improving slowly, which suggests that we may
obtain similar performance using a few hundred training instances for
each test sentence. In chapter 5, we show how we can improve the
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training instance selection methods we use by optimizing the coverage
of source and target features of the test sentences.

4.5 RegMT W Cost Functions

We present the L2 regularized regression problem and the lasso (least
absolute shrinkage and selection operator) or the L1 regularized regres-
sion problem again in this section.
L2 regularized regression solution:

WL2
= arg min

W∈RNY ×NX
‖MY −WMX ‖2

F + λ ‖W‖2
F . (4.16)

The lasso (least absolute shrinkage and selection operator) solution:

WL1
= arg min

W∈RNY ×NX
‖MY −WMX ‖2

F + λ ‖W‖1 . (4.17)

4.6 Summary

We introduced sparse regression techniques for statistical machine trans-
lation. We show that obtaining a few nonzero target feature coe�-
cients corresponding to a source feature in the coe�cients matrix can
be preferable for machine translation.
We presented various techniques of regression returning sparse co-

e�cients matrices. The e�ectiveness of lasso to learn the mappings
between sparsely observed feature sets versus L2 regularized regression
is demonstrated in an example word alignment scenario.
The next section discusses our training instance selection techniques

using feature decay algorithms. chapter 6 shows the results we obtain
when we use the RegMT system scores to rerank alternative transla-
tions and pick the best one.
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Chapter 5

Instance Selection for Machine

Translation using Feature Decay

Algorithms

We present an empirical study of instance selection techniques for ma-
chine translation. In an active learning setting, instance selection min-
imizes the human e�ort by identifying the most informative sentences
for translation. In a transductive learning setting, selection of training
instances relevant to the test set improves the �nal translation quality.
After reviewing the state of the art in the �eld, we generalize the main
ideas in a class of instance selection algorithms that use feature decay.
Feature decay algorithms increase the diversity of the training set by
devaluing features that are already included. We show that the fea-
ture decay rate has a very strong e�ect on the �nal translation quality
whereas the initial feature values, inclusion of higher order features, or
sentence length normalizations do not. We evaluate the best instance
selection methods trained with a Moses baseline SMT system using
the whole 1.6 million sentence English-German section of the Europarl
corpus. We demonstrate that feature decay algorithms perform better
than previous work both by selecting more relevant instances and by
obtaining a higher BLEU performance. We show that selecting the
best 3000 training sentences for a speci�c test sentence is su�cient to
obtain a score within 1 BLEU of the baseline, using 5% of the training
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data is su�cient to exceed the baseline, and a ∼ 2 BLEU improvement
over the baseline score is possible by using optimally selected subset
of the training data. In out-of-domain translation, we are able to re-
duce the training set size to about 7% and achieve similar performance
as the baseline. Part of this work is published as (Bicici and Yuret,
2011a).

5.1 Introduction

Statistical machine translation (SMT) makes use of a large number of
parallel sentences, sentences whose translations are known in the target
language, to derive translation tables, estimate parameters, and gen-
erate the actual translation. Not all of the parallel training sentences
nor the translation table that is generated is used during decoding a
given set of test sentences and �ltering is usually performed for compu-
tational advantage (Koehn et al., 2007). Some recent regression-based
statistical machine translation systems rely on a small sized training
data to learn the mappings between source and target features (Bi-
cici and Yuret, 2010b; Serrano et al., 2009; Wang and Shawe-Taylor,
2008). Regression has some computational disadvantages when scaling
to large number of training instances.
Previous work shows that the more the training data, the better the

translations become (Koehn, 2006). However, with the increased size
of the parallel training sentences there is also the added noise, making
relevant instance selection important. Phrase-based SMT systems rely
heavily on accurately learning word alignments from the given parallel
training sentences. Proper instance selection plays an important role
in obtaining a small sized training set with which correct alignments
can be learned. Word-level translation accuracy is also a�ected by the
number of times a word occurs in the parallel training sentences (Koehn
and Knight, 2001). Koehn and Knight �nd that about 50 examples per
word are required to achieve a performance close to using a bilingual
lexicon in their experiments. Translation performance can improve
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as we include multiple possible translations for a given word, which
increases the diversity of the training set.
Transduction uses test instances, which can sometimes be accessi-

ble at training time, to learn speci�c models tailored towards the test
set which also reduces computation by not using the full training set.
Transductive retrieval selects training data close to the test set given a
parallel training sentences and a test set. This work shows that trans-
ductive retrieval of the training set for statistical machine translation
allows us to achieve a performance better than using all of the parallel
training sentences. When selecting training data, we seek to maximize
the coverage or the percentage of test source and target features (i.e.
n-grams) found in the training set using minimal number of target
training features and a �xed number of training instances. Diversify-
ing the set of training sentences can help us increase the coverage. We
show that target coverage bounds the achievable BLEU score with a
given training set and small increases can result in large increases on
this BLEU bound.
We develop the feature decay algorithms (FDA) that aim to maxi-

mize the coverage of the target language features and achieve signi�-
cant gains in translation performance. We �nd that decaying feature
weights has signi�cant e�ect on the performance. We improve the
BLEU score by ∼2 using about 20% of the available training data
in terms of target words and by ∼1 with only about 5%. We show
that selecting 3000 instances for a test sentence is su�cient to obtain a
score within 1 BLEU of the baseline. In the out-of-domain translation
task, we are able to reduce the training set size to its 7% to achieve
similar performance as the baseline.
The next section reviews related previous work. We discuss the

FDA in section 5.3. section 5.4 presents our coverage and translation
results both in and out-of-domain and includes an instance selection
method also designed for improving word alignment results. We list
our contributions in the last section.
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5.2 Related Work

Transductive learning makes use of test instances, which can some-
times be accessible at training time, to learn speci�c models tailored
towards the test set. Selection of training instances relevant to the
test set improves the �nal translation quality as in transductive learn-
ing and decreases human e�ort by identifying the most informative
sentences for translation as in active learning. Instance selection in a
transductive learning framework selects the best instances for a given
test set (Lü et al., 2007). Active learning selects training samples that
will bene�t the learning algorithm the most over the unlabeled dataset
U from a labeled training set L or from U itself after labeling (Banko
and Brill, 2001). Active learning in SMT selects which instances to
add to the training set to improve the performance of a baseline sys-
tem (Ananthakrishnan et al., 2010; Ha�ari et al., 2009). Recent work
involves selecting sentence or phrase translation tasks for external hu-
man e�ort (Bloodgood and Callison-Burch, 2010). Below we present
examples of both with a label indicating whether they follow an ap-
proach close to active learning [AL] or transductive learning [TL] and
in our experiments we use the transductive framework.
TF-IDF [TL]: Lü et al. (2007) use tf-idf information retrieval tech-

nique based cosine score to select a subset of the parallel training sen-
tences close to the test set for SMT training. They outperform the
baseline system when the top 500 training instances per test sentence
are selected. The terms used in their tf-idf measure correspond to
words where this work focuses on bigram feature coverage. When the
combination of the top N selected sentences are used as the train-
ing set, they show increase in the performance at the beginning and
decrease when 2000 sentences are selected for each test sentence.
N-gram coverage [AL]: Eck et al. (2005) use n-gram feature cov-

erage to select training instances:
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φNGRAM(S) =

∑n
i=1
∑

unseen x ∈ Xi(S)C(x)

|S|
, (5.1)

for sentence S with Xi(S) storing the i-grams found in S and C(x)
returning the count of x in the parallel training sentences. φNGRAM
score sums over unseen n-grams to increase the coverage of the training
set. The denominator involving the length of the sentence takes the
translation cost of the sentence into account. Eck et al. (2005) also
note that longer sentences are more di�cult for training SMT models.
In their experiments, they are not able to reach a performance above
the baseline system's BLEU score, which is using all of the parallel
training sentences, but they achieve close performance by using about
15% of the parallel training sentences.
DWDS [AL]: Density weighted diversity sampling (DWDS ) (Am-

bati et al., 2010) score tries to select sentences containing the n-gram
features in the unlabeled dataset U while increasing the diversity among
the sentences selected, L (labeled). DWDS increases the score of a sen-
tence with increasing frequency of its n-grams found in U and decreases
with increasing frequency in the already selected set of sentences, L,
in favor of diversity. Let PU(x) denote the probability of feature x in
U and CL(x) denote its count in L. Then:

d(S) =

∑
x∈X(S) PU(x)e−αCL(x)

|X(S)|
(5.2)

u(S) =

∑
x∈X(S) I(x 6∈ X(L))

|X(S)|
(5.3)

φDWDS(S) =
2d(S)u(S)

d(S) + u(S)
, (5.4)

where X(S) stores the features of S and α is a decay parameter. d(S)
denotes the density of S proportional to the probability of its features
in U and inversely proportional to their counts in L and u(S) its un-
certainty, measuring the percentage of new features in S. These two
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scores are combined using harmonic mean. DWDS tries to select sen-
tences containing similar features in U with high diversity. In their
active learning experiments, they selected 1000 training instances in
each iteration and retrained the SMT system.
Log-probability ratios [AL]: Ha�ari et al. (2009) develop sentence

selection scores using feature counts in L and U , increasing for frequent
features in U and decreasing for frequent features in L. They use
geometric and arithmetic averages of log-probability ratios in an active
learning setting where 200 sentences from U are selected and added
to L with their translations for 25 iterations (Ha�ari et al., 2009).
Later, Ha�ari and Sarkar (2009) distinguish between features found in
the phrase table, xreg, and features not found, xoov. OOV features are
segmented into subfeatures (i.e. feature �go to school� is segmented
as: (go to school), (go)(to school), (go to)(school), (go)(to)(school)).
Expected log probability ratio (ELPR) score is used:

φELPR(S) = 0.4
|Xreg(S)|

∑
x∈Xreg(S)

log
PU(x)

PL(x)

+ 0.6
|Xoov(S)|

∑
x∈Xoov(S)

∑
h∈H(x)

1

|H(x)|
∑

y∈Yh(x)

log
PU(y)

PL(y)
,

(5.5)

where H(x) return the segmentations of x and Yh(x) return the fea-
tures found in segment h. φELPR performs better than geometric av-
erage in their experiments (Ha�ari and Sarkar, 2009).
Perplexity [AL & TL]: Perplexity of the training instance as well

as inter-SMT-system disagreement are also used to select training data
for translation models (Mandal et al., 2008). The increased di�culty in
translating a parallel sentence or its novelty as found by the perplexity
adds to its importance for improving the SMT model's performance. A
sentence having high perplexity (a rare sentence) in L and low perplex-
ity (a common sentence) in U is considered as a candidate for addition.
They are able to improve the performance of a baseline system trained
on some initial parallel training sentences together with additional par-
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allel sentences data using the initial parallel training sentences and part
of the additional data.
Alignment [TL]: Uszkoreit et al. (2010) mine parallel text to im-

prove the performance of a baseline translation model on some initial
document translation tasks. They retrieve similar documents using in-
verse document frequency weighted cosine similarity. Then, they �lter
nonparallel sentences using their word alignment performance, which
is estimated using the following score:

score(A) =
∑

(s,t)∈A

ln
p(s, t)

p(s)p(t)
, (5.6)

where A stands for an alignment between source and target words and
the probabilities are estimated using a word aligned parallel training
sentences. The produced parallel data is used to expand a baseline
parallel training sentences and shown to improve the translation per-
formance of machine translation systems.

5.3 Instance Selection with Feature Decay

In this section we will describe a class of instance selection algorithms
for machine translation that use feature decay, i.e. increase the diver-
sity of the training set by devaluing features that have already been
included. Our abstraction makes three components of such algorithms
explicit permitting experimentation with their alternatives:

� The value of a candidate training sentence as a function of its
features.

� The initial value of a feature.

� The update of the feature value as instances are added to the
training set.

A feature decay algorithm (FDA) aims to maximize the coverage of
the target language features (such as words, bigrams, and phrases) for

61



5.3. INSTANCE SELECTION WITH FEATURE DECAY

the test set. A target language feature that does not appear in the
selected training instances will be di�cult to produce regardless of the
decoding algorithm (impossible for unigram features). In general we
do not know the target language features, only the source language
side of the test set is available. Unfortunately, selecting a training
instance with a particular source language feature does not guarantee
the coverage of the desired target language feature. There may be
multiple translations of a feature appropriate for di�erent senses or
di�erent contexts. For each source language feature in the test set,
FDA tries to �nd as many training instances as possible to increase
the chances of covering the appropriate target language feature. It does
this by reducing the value of the features that are already included after
picking each training instance. Algorithm 2 gives the pseudo-code for
FDA.
The input to the algorithm is parallel training sentences, the number

of desired training instances, and the source language features of the
test set. We use unigram and bigram features; adding trigram features
does not seem to signi�cantly a�ect the results. The user has the
option of running the algorithm for each test sentence separately, then
possibly combining the resulting training sets. We will present results
with these variations in section 5.4.
The �rst foreach loop initializes the value of each test set feature. We

experimented with initial feature values that are constant, proportional
to the length of the n-gram, or log-inverse of the corpus frequency. We
have observed that the initial value does not have a signi�cant e�ect on
the quality of the training instances selected. The feature decay rule
dominates the behavior of the algorithm after the �rst few iterations.
However, we prefer the log-inverse values because they lead to fewer
score ties among candidate instances and result in faster running times.
The second foreach loop initializes the score for each candidate train-

ing sentence and pushes them onto a priority queue. The score is cal-
culated as the sum of the feature values. Note that as we change the
feature values, the sentence scores in the priority queue will no longer
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Algorithm 2: The Feature Decay Algorithm

Input: Parallel training sentences U , test set features F , and
desired number of training instances N .

Data: A priority queue Q, sentence scores score, feature values
fvalue.

Output: Subset of the parallel sentences to be used as the
training data L ⊆ U .

foreach f ∈ F do1

fvalue(f)← init(f,U)2

foreach S ∈ U do3

score(S)←
∑

f∈features(S) fvalue(f)4

push(Q, S, score(S))5

while |L| < N do6

S ← pop(Q)7

score(S)←
∑

f∈features(S) fvalue(f)8

if score(S) ≥ topval(Q) then9

L ← L ∪ {S}10

foreach f ∈ features(S) do11

fvalue(f)← decay(f,U ,L)12

else13

push(Q, S, score(S))14

be correct. However they will still be valid upper bounds because the
feature values only get smaller. Features that do not appear in the test
set are considered to have zero value. This observation can be used to
speed up the initialization by using a feature index and only iterating
over the sentences that have features in common with the test set.
Finally the while loop populates the training set by picking candi-

date sentences with the highest scores. This is done by popping the top
scoring candidate sentence S from the priority queue at each iteration.
We recalculate its score because the values of its features may have
changed. We compare the recalculated score of S with the score of the
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next best candidate. If the score of S is equal or better we are sure
that it is the top candidate because the scores in the priority queue are
upper bounds. In this case we place S in our training set and decay
the values of its features. Otherwise we push S back into the priority
queue with its updated score.
The feature decay function (Equation 5.8) is the heart of the algo-

rithm. Unlike the choice of features (bigram vs trigram) or their initial
values (constant vs log�inverse�frequency) the rate of decay has a sig-
ni�cant e�ect on the performance. We found it is optimal to reduce
feature values at a rate of 1/n where n is the current training set count
of the feature. The results get signi�cantly worse with no feature de-
cay. They also get worse with faster, exponential feature decay, e.g.
1/2n. Table 5.1 presents the experimental results that support these
conclusions where the obtained coverage values for the source and tar-
get language bigrams, scov and tcov respectively, are given. We use
the following settings for the experiments in section 5.4:

init(f,U) = 1 or log(|U|/cnt(f,U)) (5.7)

decay(f,U ,L) =
init(f,U)

1 + cnt(f,L)
or

init(f,U)

1 + 2cnt(f,L) (5.8)

en→de de→en
init decay scov tcov scov tcov
1 none .761 .484 .698 .556
log(1/f) none .855 .516 .801 .604
1 1/n .967 .575 .928 .664

log(1/f) 1/n .967 .570 .928 .656
1 1/2n .967 .553 .928 .653
log(1/f) 1/2n .967 .557 .928 .651

Table 5.1: FDA parameter selection experiments. The �rst two columns give the initial value
and decay formula used for features. f is the corpus frequency of a feature and n is its count in
selected instances. The next four columns give the expected coverage of the source and target
language bigrams, scov and tcov respectively, of a test sentence when 100 training sentences are
selected.
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5.4 Experiments

We perform translation experiments on the English-German (en-de)
language pair using the parallel training sentences provided by Callison-
Burch et al. (2010) (WMT'10). The English-German section of the
Europarl corpus contains about 1.6 million sentences. We perform in-
domain experiments to discriminate among di�erent instance selection
techniques better in a setting with low out-of-vocabulary rate. We ran-
domly select the test set test with 2, 588 target words (100 sentences)
and separate development set dev with 26, 178 target words (1000 sen-
tences). We use the language model corpus provided in WMT'10 to
build a 5-gram model.
We use target language bigram coverage, tcov, as a quality measure

for a given training set, which measures the percentage of the target
bigram features of the test sentence found in a given training set. We
compare the achieved tcov and the translation performance of FDA
with related work. We also perform small scale SMT experiments
where only a couple of thousand training instances are used for each
test sentence.

5.4.1 The E�ect of Coverage on Translation

BLEU (Papineni et al., 2001) is a precision based measure and uses
n-gram match counts up to order n to determine the quality of a given
translation. The absence of a given word or translating it as another
word interrupts the continuity of the translation and decreases the
BLEU score even if the order among the words is determined cor-
rectly. Therefore, the target coverage of an out-of-domain test set
whose translation features are not found in the training set bounds the
translation performance of an SMT system.
We estimate this translation performance bound from target cover-

age by assuming that the missing tokens can appear randomly at any
location of a given sentence where sentence lengths are normally dis-
tributed with mean 25.6 and standard deviation 14.1. This is close to
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Figure 5.1: E�ect of coverage on translation performance. BLEU bound is a third-order function
of target coverage. High coverage → High BLEU.

the sentence length statistics of the German side Europarl corpus used
in (Callison-Burch et al., 2010) (WMT'10). We replace all unknown
words found with an UNK token and calculate the BLEU score. We
perform this experiment for 10, 000 instances and repeat for 10 times.
The sentences tested has the form: Si u a b UNK d e, for tokens a, b,
d, e.
The obtained BLEU scores for target coverage values is plotted in

Figure 5.1 with the label estimate. We also �t a third order polyno-
mial function of target coverage 0.025 BLEU scores above the esti-
mate values to show the similarity with the BLEU scores bound es-
timated, whose parameters are found to be [0.56, 0.53,−0.09, 0.003]
with a least-squares �t. Thus, in this setting, given a translation for
a test set, T, and its tcov value, we can estimate the BLEU perfor-
mance without performing the translation and calculating BLEU with
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reference set R:

BLEU(T,R) ≈ BLEU(T, tcov) (5.9)

= 0.56 ∗ tcov3 + 0.53 ∗ tcov2 − 0.09 ∗ tcov + 0.003.

Figure 5.1 shows that the BLEU score bound obtained has a third-
order polynomial relationship with target coverage and small increases
in the target coverage can result in large increases on this BLEU bound.

5.4.2 Coverage Results

We select N training instances per test sentence using FDA (Algo-
rithm 2), TF-IDF with bigram features, NGRAM scoring (Equa-
tion 5.1), DWDS (Equation 5.4), and ELPR (Equation 5.5) techniques
from previous work. For the active learning algorithms, source side
test corpus becomes U and the selected training set L. For all the
techniques, we compute 1-grams and 2-grams as the features used in
calculating the scores and add only one sentence to the training set at
each iteration except for TF-IDF. We set α parameter of DWDS to 1
as given in their paper. We adaptively select the top scoring instance
at each step from the set of possible sentences U with a given scorer
φ(.) and add the instance to the training set, L, until the size of L
reaches N for the related work other than TF-IDF. We test all of the
algorithms in this transductive learning setting.
We measure the bigram coverage when all of the training sentences

selected for each test sentence are combined. The results are presented
in Figure 5.2 where the x-axis is the number of words of the train-
ing set and y-axis is the target coverage obtained. FDA has a steep
slope in its increase and it is able to reach target coverage of ∼ 0.84.
DWDS performs worse initially but its target coverage improve after
a number of instances are selected due to its exponential feature de-
cay procedure. TF-IDF performs worse than DWDS and it provides
a fast alternative to FDA instance selection but with some decrease
in coverage. ELPR and NGRAM instance selection techniques per-
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Figure 5.2: Target coverage curve comparison with previous work. Figure shows the rate of
increase in tcov as the size of L increase.

form worse. NGRAM achieves better coverage than ELPR, although
it lacks a decay procedure.
When we compare the sentences selected, we observe that FDA

prefers longer sentences due to summing feature weights and it achieves
larger target coverage value. NGRAM is not able to discriminate be-
tween sentences well and a large number of sentences of the same length
get the same score when the unseen n-grams belong to the same fre-
quency class. The statistics of L obtained with the instance selec-
tion techniques di�er from each other as given in Table 5.2, where
N = 1000 training instances selected per test sentence. We observe
that DWDS has fewer unique target bigram features than TF-IDF
although it selects longer target sentences. NGRAM obtains a large

68



5.4. EXPERIMENTS

number of unique target bigrams although its selected target sentences
have similar lengths with DWDS and ELPR prefers short sentences.

Technique Unique bigrams Words per sent tcov
FDA 827,928 35.8 .74
DWDS 412,719 16.7 .67
TF-IDF 475,247 16.2 .65
NGRAM 626,136 16.6 .55
ELPR 172,703 10.9 .35

Table 5.2: Statistics of the obtained target L for N = 1000.

5.4.3 Translation Results

We develop separate phrase-based SMT models using Moses (Koehn
et al., 2007) using default settings with maximum sentence length set
to 80 and obtained baseline system score as 0.3577 BLEU. We use the
training instances selected by FDA in three learning settings:

L∪: L is the union of the instances selected for each test sentence.

L∪F : L is selected using all of the features found in the test set.

LI : L is the set of instances selected for each test sentence.

We develop separate Moses systems with each training set. L∪
results are plotted in Figure 5.3 where we increasingly select N ∈
{100, 200, 500, 1000, 2000, 3000, 5000, 10000} instances for each
test sentence for training. The improvements over the baseline are
statistically signi�cant with paired bootstrap resampling using 1000
samples (Koehn, 2004). We give the details of statistical signi�cance
testing in general and for SMT in Appendix B. As we select more in-
stances, the performance of the SMT system increases as expected and
we start to see a decrease in the performance after selecting ∼107 tar-
get words. We observe that a ∼2 BLEU improvement over the baseline
is possible by optimally selected subset of the training data. We ob-
tain comparable results for de-en direction. The performance increase
is likely to be due to the reduction in the number of noisy or irrele-
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Figure 5.3: BLEU vs. the number of target words in L∪.

vant training instances and the increased precision in the probability
estimates in the generated phrase tables.
L∪F results given in Table 5.3 show that we can achieve within 1

BLEU performance using about 3% of the parallel training sentences
target words (30,000 instances) and better performance using only
about 5% (50,000 instances).

# sent # target words BLEU NIST
10,000 449,116 0.3197 5.7788
20,000 869,908 0.3417 6.0053
30,000 1,285,096 0.3492 6.0246
50,000 2,089,403 0.3711 6.1561

100,000 4,016,124 0.3648 6.1331

ALL 41,135,754 0.3577 6.0653

Table 5.3: Performance for en-de using L∪F . ALL corresponds to the baseline system using all
of the parallel training sentences. bold correspond to statistically signi�cant improvement over
the baseline result.

The results with LI when building an individual Moses model for
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each test sentence are given in Table 5.4. Individual SMT training and
translation can be preferable due to smaller computational costs and
high parallelizability. As we translate a single sentence with each SMT
system, tuning weights becomes important. We experiment three set-
tings: (1) using 100 sentences for tuning, which are randomly selected
from dev, (2) using the mean of the weights obtained in (1), and (3)
using the weights obtained in the union learning setting (L∪). We ob-
serve that we can obtain a performance within 2 BLEU di�erence to the
baseline system by training on 3000 instances per sentence (underlined)
using the mean weights and 1 BLEU di�erence using the union weights.
We also experimented with increasing the N -best list size used during
MERT optimization (Hasan et al., 2007), with increased computational
cost, and observed some increase in the performance.

N 100 dev sents Mean L∪
1000 0.3149 0.3242 0.3354
2000 0.3258 0.3352 0.3395
3000 0.3270 0.3374 0.3501
5000 0.3217 0.3303 0.3458

Table 5.4: LI performance for en-de using 100 sentences for tuning or mean of the weights from
LI or dev weights obtained for L∪.

Comparison with related work: Table 5.5 presents the transla-
tion results compared with previous work using N = 1000. We observe
that coverage and translation performance are correlated. Although
the coverage increase of DWDS and FDA appear similar, due to the
third-order polynomial growth of BLEU with respect to coverage, we
achieve large BLEU gains in translation. We observe increased BLEU
gains when compared with the results of TF-IDF, NGRAM, and ELPR
in order.

FDA DWDS TF-IDF NGRAM ELPR

0.3645 0.3547 0.3405 0.2572 0.2268

Table 5.5: BLEU results using di�erent techniques with N = 1000. High coverage → High
BLEU.

We note that DWDS originally selects instances using the whole test
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corpus to estimate PU(x) and selects 1000 instances at each iteration.
We experimented with both of these settings and obtained 0.3058 and
0.3029 BLEU respectively. Lower performance suggest the importance
of updating weights after each instance selection step.

5.4.4 Instance Selection for Alignment

We have shown that high coverage is an integral part of training sets
for achieving high BLEU performance. SMT systems also heavily rely
on the word alignment of the parallel training sentences to derive a
phrase table that can be used for translation. GIZA++ (Och and
Ney, 2003) is commonly used for word alignment and phrase table
generation, which is prone to making more errors as the length of
the training sentence increase (Ravi and Knight, 2010). Therefore,
we analyze instance selection techniques that optimize coverage and
word alignment performance and at the same time do not produce
very long sentences. Too few words per sentence may miss the phrasal
structure, whereas too many words per sentence may miss the actual
word alignment for the features we are interested. We are also trying to
retrieve relevant training sentences for a given test sentence to increase
the feature alignment performance.
Shortest: A baseline strategy that can minimize the training fea-

ture set's size involves selecting the shortest translations containing
each feature.
Co-occurrence: We use co-occurrence of words in the parallel

training sentences to retrieve sentences containing co-occurring items.
Dice's coe�cient (Dice, 1945) is used as a heuristic word alignment
technique giving an association score for each pair of word positions (Och
and Ney, 2003). We de�ne Dice's coe�cient score as:

dice(x, y) =
2C(x, y)

C(x)C(y)
, (5.10)

where C(x, y) is the number of times x and y co-occur and C(x) is
the number of times x appears in the selected training set. Given a
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LU BLEU
Unique bigrams Words per sent tcov LU LI 100 dev LI Mean

FDA 827, 928 35.8 .74 .3645 .3149 .3242
dice 707, 802 26.2 .73 .3635 .3144 .3171

Table 5.6: We compare the translation performance of dice with FDA as well as the statistics of
the LU obtained.

test source sentence, SU , we can estimate the goodness of a training
sentence pair, (S, T ), by the sum of the alignment scores:

φdice(SU , S, T ) =
1

|T | log |S|
∑

x∈X(SU )

|T |∑
j=1

∑
y∈Y (x)

dice(y, Tj), (5.11)

where X(SU) stores the features of SU and Y (x) lists the tokens in
feature x. The di�culty of word aligning a pair of training sentences,
(S, T ), can be approximated by |S||T |. We use a normalization factor
proportional to |T | log |S|.
The average target words per sentence using φdice drops to 26.2

compared to 35.8 of FDA. We still obtain a better performance than
the baseline en-de system with the union of 1000 training instances
per sentence with 0.3635 BLEU and 6.1676 NIST scores. Coverage
comparison with FDA shows slight improvement with lower number of
target bigrams and similar trend for others (Figure 5.4). We note that
shortest strategy achieves better performance than both ELPR and
NGRAM. We obtain 0.3144 BLEU and 5.5 NIST scores in the indi-
vidual translation task with 1000 training instances per sentence and
0.3171 BLEU and 5.4662 NIST scores when the mean of the weights
is used. Comparison of dice with FDA is given in Table 5.6.

5.4.5 Out-of-domain Translation Results

We have used FDA and dice algorithms to select training sets for the
out-of-domain challenge test sets used in (Callison-Burch et al., 2011)
(WMT'11). The parallel training sentences contain about 1.9 million
training sentences and the test set contain 3003 sentences. We built
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en-de de-en en-es es-en

BLEU
ALL 0.1376 0.2074 0.2829 0.2919
FDA 0.1363 0.2055 0.2824 0.2892
dice 0.1374 0.2061 0.2834 0.2857

# target words ×106
ALL 47.4 49.6 52.8 50.4
FDA 7.9 8.0 8.7 8.2
dice 6.9 7.0 3.9 3.6

% of ALL
FDA 17 16 16 16
dice 14 14 7.4 7.1

Table 5.7: Performance for the out-of-domain translation task of Callison-Burch et al. (2011).
ALL corresponds to the baseline system using all of the parallel training sentences.

separate Moses systems using all of the parallel training sentences for
the language pairs en-de, de-en, en-es, and es-en. We created training
sets using all of the features of the test set to select training instances.
The results given in Table 5.7 show that we can achieve similar BLEU
performance using about 7% of the parallel training sentences target
words (200,000 instances) using dice and about 16% using FDA. In the
out-of-domain translation task, we are able to reduce the training set
size to achieve a performance close to the baseline. The sample points
presented in the table is chosen proportional to the relative sizes of
the parallel training sentences sizes of WMT'10 and WMT'11 datasets
and the training set size of the peak in Figure 5.3. We may be able
to achieve better performance in the out-of-domain task as well. The
sample points in Table 5.7 may be on either side of the peak.

5.5 Contributions

We have introduced the feature decay algorithms (FDA), a class of in-
stance selection algorithms that use feature decay, which achieve bet-
ter target coverage than previous work and achieve signi�cant gains
in translation performance. We �nd that decaying feature weights
has signi�cant e�ect on the performance. We demonstrate that target
coverage and translation performance are correlated, showing that tar-
get coverage is also a good indicator of BLEU performance. We have
shown that target coverage provides an upper bound on the translation
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performance with a given training set.
We are able to improve the BLEU score by ∼2 using about 20%

of the available training data in terms of target words with FDA and
by ∼1 with only about 5%. We have also shown that by training on
only 3000 instances per sentence we can reach within 1 BLEU di�er-
ence to the baseline system. As the length of the parallel sentences
decrease, word alignment task becomes easier. We develop dice sen-
tence selection technique that optimizes coverage and word alignment
performance and at the same time reduces the average length of the
selected sentences. In the out-of-domain translation task, we are able
to reduce the training set size to about 7% and achieve similar perfor-
mance with the baseline using FDA. dice method reduces the training
size further.
Our results demonstrate that SMT systems can improve their per-

formance by transductive training set selection. The results show that
making relevant instance selection is important and the performance
increase is likely to be due to the reduction in the number of noisy or
irrelevant training instances and the increased precision in the proba-
bility estimates in the generated phrase tables. We have shown how to
select instances and achieved signi�cant performance improvements.
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Figure 5.4: Target coverage per target words comparison. Figure shows the rate of increase in
tcov as the size of L increase. Target coverage curves for total training set size is given on the
left plot and for average training set size per test sentence on the right plot.
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Chapter 6

L1 Regularized Regression for

Reranking and System Combination

in Machine Translation

This chapter shows that regression mapping score can be used to im-
prove over a baseline SMT system by reranking the N -best lists gener-
ated by it. We use L1 regularized transductive regression to learn map-
pings between source and target features of the training sets derived for
each test sentence and use these mappings to rerank translation out-
puts. We compare the e�ectiveness of L1 regularization techniques for
regression to learn mappings between features given in a sparse feature
matrix. The results show the e�ectiveness of using L1 regularization
versus L2 used in ridge regression. We show that regression mapping
is e�ective in reranking translation outputs and in selecting the best
system combinations with encouraging results on di�erent language
pairs. Part of this work is published as (Bicici and Yuret, 2010b).

6.1 Introduction

Regression can be used to �nd mappings between the source and
the target feature sets derived from given parallel training sentences.
Transductive learning uses a subset of the training examples that are
closely related to the test set without using the model induced by the
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full training set. In the context of SMT, we select a few training in-
stances for each test instance to guide the translation process. This
also gives us a computational advantage when considering the high di-
mensionality of the problem. The goal in transductive regression based
machine translation (RegMT) is both reducing the computational bur-
den of the regression approach by reducing the dimensionality of the
training set and its feature representation and also improving the trans-
lation quality by using transduction. Transductive regression is shown
to achieve higher accuracy than L2 regularized ridge regression on some
machine learning benchmark datasets (Chapelle et al., 1999).
In an idealized feature mapping matrix where features are word

sequences, we would like to observe few target features for each source
feature derived from a source sentence. In this setting, we can think of
feature mappings being close to permutation matrices with few nonzero
item for each column. L1 regularization helps us achieve solutions close
to the permutation matrices by increasing sparsity.
We show that L1 regularized regression mapping is e�ective in rerank-

ing translation outputs and present encouraging results on di�erent
language pairs in the translation task of Callison-Burch et al. (2010)
(WMT'10). In the system combination task, di�erent translation out-
puts of di�erent translation systems are combined to �nd a better
translation. We model system combination task as a reranking problem
among the competing translation models and obtain statistically signif-
icant improvements over the baseline system results with the RegMT
system.

Outline: In section 6.2 we present our translation experiments where
we discuss how we add the brevity penalty to the RegMT score and
combine other sources of information about translations for rerank-
ing translation outputs. We achieve signi�cant improvements over the
baseline system output. We then discuss results on system combina-
tion in section 6.3 using reranking on both WMT'10 and WMT'11
challenges. The last section presents our contributions.
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6.2 Translation Experiments

We perform experiments on the translation tasks of English-German
(en-de), German-English (de-en), English-French (en-fr), English-Spanish
(en-es), and English-Czech (en-cz ) (in source language-target language
format) using the paired training corpora provided by Callison-Burch
et al. (2010) (WMT'10). We discuss the datasets and the baseline
systems developed, the training instance selection technique used, how
we incorporate the brevity penalty into the score, and the results we
obtain using reranking.

6.2.1 Datasets and Baseline

We developed separate SMT models using Moses (Koehn et al., 2007)
with the default settings including a maximum sentence length limit
of 80 tokens and a 5-gram target language model and obtained dis-
tinct 100-best lists for the test sets. All systems were tuned with
2051 sentences and tested with 2525 sentences. We have randomly
picked 100 instances from the development set to be used in tuning
the regression experiments (dev.100 ). The translation challenge test
set contains 2489 sentences. Number of sentences in the training set
of each system and baseline performances for uncased output (test set
BLEU, challenge test set BLEU) are given in Table 6.1.

Corpus # sent BLEU BLEU Challenge
en-de 1,609,988 .1471 .1309
de-en 1,609,988 .1943 .1556
en-fr 1,728,965 .2281 .2049
en-es 1,715,158 .2237 .2106
en-cz 7,320,238 .1452 .1145

Table 6.1: Initial uncased performances of the translation systems for WMT'10 where the third
and fourth columns list the results on the test set with 2525 sentences and the challenge test set
with 2489 sentences respectively.

Feature mappers used are 3-spectrum weighted word kernel (Equa-
tion 3.11), which considers all n-grams up to order 3 weighted by the
number of tokens in the feature. We segment sentences using some of
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the punctuation for managing the feature set better and do not con-
sider n-grams that cross segments. We use BLEU (Papineni et al.,
2001) and NIST (Doddington, 2002) evaluation metrics for measuring
the performance of translations automatically.

6.2.2 Instance Selection for Transductive Regression

Transduction uses test instances, which can sometimes be accessible
at training time, to learn speci�c models tailored towards the test
set. Transduction has computational advantages by not using the full
training set and by having to satisfy a smaller set of constraints as
de�ned by the training instances and their features. For each test
sentence, we pick a limited number of training instances designed to
improve the coverage of correct features to build a regression model.
section 3.6 details the instance selection method that we use.

6.2.3 Addition of the Brevity Penalty

Detailed analysis of the results shows that RegMT scored best transla-
tion achieves better n-gram match percentages than the Moses trans-
lation but su�ers from the brevity penalty due to selecting shorter
translations. Due to using a cost function that minimizes the squared
loss, RegMT score tends to select shorter translations when the cover-
age is low. We also observe that we are able to achieve higher scores
for NIST, which suggests the addition of a brevity penalty to the score.
Precision based BLEU scoring divides n-gram match counts to n-

gram counts found in the translation and this gives an advantage to
shorter translations. Therefore, a brevity penalty (BP) is added to
penalize short translations:

BP = min(1− ref-length
trans-length

, 0) (6.1)

BLEU = exp
(
log(ngramprec) + BP

)
(6.2)

where ngramprec represent the sum of n-gram precisions. We give more
details about the BLEU score in section 2.4. Moses rarely incurs BP
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as it has a word penalty parameter optimized against BLEU which
penalizes translations that are too long or too short. For instance,
Moses 1-best translation for en-de system achieves 0.1309 BLEU versus
0.1320 BLEU without BP.
We handle short translations in two ways. We optimize the λ pa-

rameter of QP, which manages the sparsity of the solution (larger λ
values correspond to sparser solutions) against BLEU score rather than
the squared loss. Optimization yields λ = 20.744. We alternatively
add a BP cost to the squared loss:

BP = exp

(
min(1− |ΦY (y)|

|pWΦX(x) + αBPq|
, 0)

)
(6.3)

f(x) = arg min
y∈Y ∗

‖ΦY (y)−WΦX(x)‖2 +λBPBP (6.4)

where |.| denotes the length of the feature vector, p.q rounds feature
weights to integers, αBP is a constant weight added to the estimation,
and λBP is the weight given for the BP cost. |pWΦX(x) + αBPq| repre-
sents an estimate of the length of the reference as found by the RegMT
system. This BP cost estimate is similar to the cost used in (Serrano
et al., 2009) normalized by the length of the reference. We found αBP

= 0.1316 and λBP = −13.68 when optimized on the en-de system. We
add a BP penalty to all of the reranking results given in the next section
and QP results also use optimized λ.

6.2.4 Reranking Experiments

We rerank N -best lists by using linear combinations of the following
scoring functions:

1. RegMT: Transductive regression based machine translation scores
as found by Equation 3.9.

2. TM: Translation model scores we obtain from the baseline SMT
system that is used to generate the N -best lists.

81



6.2. TRANSLATION EXPERIMENTS

3. LM: 5-gram language model scores that the baseline SMT system
uses when calculating the translation model scores.

The training set we obtain may not contain all of the features of
the reference target due to low coverage. Therefore, when performing
reranking, we also add the cost coming from the features of ΦY (y) that
are not represented in the training set to the squared loss as in:

‖ΦY (y) \ FY ‖2 + ‖ΦY (y)−WΦX(x)‖2, (6.5)

where ΦY (y) \ FY represent the features of y not represented in the
training set.
We note that RegMT score only contains ordering information as

present in the 2/3-gram features in the training set. Therefore, the
addition of a 5-gram LM score as well as the TM score, which also
incorporates the LM score in itself, improves the performance. We are
not able to improve the BLEU score when we use the RegMT score by
itself however we are able to achieve improvements in the NIST and 1-
WER scores. The performance increase is important for two reasons.
First of all, we are able to improve the performance using blended
spectrum 3-gram features against translations obtained with 5-gram
language model and higher order features. Outperforming higher order
n-gram models is known to be a di�cult task (Galley and Manning,
2009). Secondly, increasing the performance with reranking itself is
a hard task since possible translations are already constrained by the
ones observed in N -best lists. Therefore, an increase in the N -best list
size may increase the score gaps.
Table 6.2 1 presents reranking results on all of the language pairs we

considered, using RegMT, TM, and LM scores with the combination
weights learned on the development set. We are able to achieve better
BLEU and NIST scores on all of the listed systems. We are able to
see up to 0.38 increase in the BLEU score for the en-es pair. Baseline
row corresponds to the baseline system results where the top sentence
from the N -best list as returned by the SMT system is used as the

1We give the details of statistical signi�cance testing in general and for SMT in Appendix B.
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en-de de-en en-fr en-es en-cz

Model BLEU NIST BLEU NIST BLEU NIST BLEU NIST BLEU NIST

Baseline .1309 5.1417 .1556 5.4164 .2049 6.3194 .2106 6.3611 .1145 4.5008
Oracle .1811 6.0252 .2101 6.2103 .2683 7.2409 .2770 7.3190 .1628 5.4501
L2 .1319 5.1680 .1555 5.4344 .2044 6.3370 .2132 6.4093 .1148 4.5187

FSR .1317* 5.1639 .1559 5.4383 .2053 6.3458 .2144 6.4168 .1150 4.5172

LP .1317 5.1695 .1561 5.4304 .2048 6.3245 .2109 6.4176 .1124 4.5143
QP .1309 5.1664 .1550 5.4553 .2033 6.3354* .2121 6.4271 .1150 4.5264

Table 6.2: Reranking results on the translation task using RegMT, TM, and LM scores on the
WMT'10 datasets. We use approximate randomization test (Riezler and Maxwell, 2005) with
1000 repetitions to determine score di�erence signi�cance: results in bold are signi�cant with
p ≤ 0.01 and italic results with (*) are signi�cant with p ≤ .05. The di�erence of the remaining
from the baseline are not statistically signi�cant.

translation. Oracle row corresponds to picking the best translation
using reranking with the BLEU scoring metric as evaluated with the
reference translations at the sentence level.
If we used only the TM and LM scores when reranking with the

en-de system, then we would obtain 0.1309 BLEU and 5.1472 NIST
scores. We only see a minor increase in the NIST score and no change
in the BLEU score with this setting when compared with the baseline
given in Table 6.2. Therefore, we see that RegMT score improves the
results when used in combination with the TM and LM scores.
Due to computational reasons, we do not use the same number of

instances to train di�erent models. In our experiments, we used n = 3
for L2, n = 1.5 for FSR, and n = 1.2 for QP and LP solutions to
select the number of instances in Equation 3.16. The average number
of instances used per sentence in training corresponding to these choices
are approximately 140, 74, and 61. Even with these decreased number
of training instances, L1 regularized regression techniques are able to
achieve comparable scores to L2 regularized regression model or better
in Table 6.2.

6.3 System Combination Experiments

We perform experiments on the system combination task for the English-
German, German-English, English-French, English-Spanish, and English-
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en-de de-en en-fr en-es en-cz

Model BLEU NIST BLEU NIST BLEU NIST BLEU NIST BLEU NIST

Random .1490 5.6555 .2088 6.4886 .2415 6.8948 .2648 7.2563 .1283 4.9238
Best .1658 5.9610 .2408 6.9861 .2864 7.5272 .3047 7.7559 .1576 5.4480

L2 .1694 5.9974 .2336 6.9398 .2948 7.7037 .3036 7.8120 .1657 5.5654
FSR .1689 5.9638 .2357 6.9254 .2947 7.7107 .3049 7.8156 .1657 5.5632
LP .1694 5.9954 .2368 6.8850 .2928 7.7157 .3027 7.7838 .1659 5.5680
QP .1692 5.9983 .2368 6.9172 .2913 7.6949 .3040 7.8086 .1662 5.5785

Table 6.3: Reranking results on the system combination task using RegMT, TM, and LM scores
on the WMT'10 datasets. underlined correspond to the best score in each rectangle of scores.

Czech language pairs using the training corpus provided in WMT'10.

6.3.1 WMT'10 Datasets

We use the training set provided in WMT'10 to index and select trans-
ductive instances from. The challenge split the test set for the transla-
tion task of 2489 sentences into a tuning set of 455 sentences and a test
set with the remaining 2034 sentences. Translation outputs for each
system is given in a separate �le and the number of system outputs
per translation pair varies. We have tokenized and lowercased each
of the system outputs and combined these in a single N -best �le per
language pair. We also segment sentences using some of the punctua-
tion for managing the feature set better. We use these N -best lists for
RegMT reranking to select the best translation model. Feature map-
pers used are again 3-spectrum weighted word kernels (Equation 3.11).

6.3.2 WMT'10 Experiments

We rerank N -best lists by using combinations of the following scoring
functions:

1. RegMT: Transductive regression based machine translation scores
as found by Equation 3.9.

2. CBLEU: Comparative BLEU scores we obtain by measuring the
average BLEU performance of each translation relative to the other
systems' translations in the N -best list.
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3. LM: We calculate 5-gram language model scores for each trans-
lation using the language model trained over the target corpus
provided in the translation task.

Since we do not have access to the reference translations nor to the
translation model scores each system obtained when generating each
translation, we estimate translation model performance (CBLEU) by
measuring the average BLEU performance of each translation relative
to the other translations in the N -best list. Thus, each possible trans-
lation in the N -best list is BLEU scored against other translations and
the average of these scores is selected as the TM score for the sentence.
Sentence level BLEU score calculation avoids singularities in n-gram
precisions by taking the maximum of the match count and 1

2|si| for |si|
denoting the length of the source sentence si as used in (Macherey and
Och, 2007).
Table 6.3 presents reranking results on all of the language pairs we

considered, using RegMT, CBLEU, and LM scores with the same com-
bination weights as above. Randommodel score lists the randommodel
performance selected among the competing translations randomly and
it is used as a baseline. Best model score lists the performance of the
best model performance. We are able to achieve better BLEU and
NIST scores in all of the listed systems except for the de-en language
pair when compared with the performance of the best competing trans-
lation system. The lower performance in the de-en language pair may
be due to having a single best translation system that outperforms oth-
ers signi�cantly. The di�erence between the best model performance
and the mean as well as the variance of the scores in the de-en language
pair is about twice their counterparts in the en-de language pair.
Due to computational reasons, we do not use the same number of

instances to train di�erent models. In our experiments, we used n = 4
for L2, n = 1.5 for FSR, and n = 1.2 for QP and LP solutions to
select the number of instances in Equation 3.16. The average number
of instances used per sentence in training corresponding to these choices
are approximately 189, 78, and 64.
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BLEU en-de de-en en-es es-en ht-en

Min .1064 .1572 .2174 .1976 .2281
Max .1727 .2413 .3375 .3009 .3708

2nd best .1572 .2302 .3301 .2973 .3288
Average .1416 .1997 .292 .2579 .2993
Oracle .2529 .3305 .4265 .4233 .4336
RegMT .1631 .2322 .3311 .3052 .3234

Table 6.4: System combination results on the WMT'11 datasets.

6.3.3 WMT'11 Results

We perform experiments on the system combination task for the English-
German, German-English, English-Spanish, Spanish-English (es-en),
and Haitian Creole-English (ht-en) language pairs using the training
corpus provided in WMT'11 (Callison-Burch et al., 2011). We have to-
kenized and lowercased each of the system outputs and combined these
in a single N -best �le per language pair. We use these N -best lists for
reranking by RegMT to select the best translation model. Feature
mappers used are 2-spectrum counting word kernels (Equation 3.11).
Table 6.4 presents reranking results on all of the language pairs we

considered, using RegMT, CBLEU, and LM scores with the same com-
bination weights as above. We also list the performance of the best
model (Max) as well as the worst (Min). We are able to achieve close
or better BLEU scores in all of the listed systems when compared with
the performance of the best translation system except for the ht-en
language pair. The lower performance in the ht-en language pair may
be due to having a single best translation system that outperforms
others signi�cantly. This happens for instance when an unconstrained
model use external resources to achieve a signi�cantly better perfor-
mance than the second best model. 2nd best in Table 6.4 lists the sec-
ond best model's performance to estimate how much the best model's
performance is better than the rest.
RegMT model may prefer sentences with lower BLEU, which can

sometimes cause it to achieve a lower BLEU performance than the
best model. This is clearly the case for en-de with 1.6 BLEU points
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di�erence with the second best model performance and for de-en task
with 1.11 BLEU points di�erence. Also this observation holds for en-es
with 0.74 BLEU points di�erence and for ht-en with 4.2 BLEU points
di�erence. For es-en task, there is 0.36 BLEU points di�erence with
the second best model and these models likely to complement each
other.
System combination models may segment alternative translations to

generate a new one. Reranking approach can achieve a better perfor-
mance only when competing models exist in a case similar to the XOR
truth value: it performs good when one of them performs better than
the other on di�erent instances. If a model performs much better than
the others, then it makes it harder to achieve a performance better
than the best model.
The existence of complementing SMT models is important for the

reranking approach to achieve a performance better than the best
model, as there is a need for the existence of a model performing
better than the best model on some test sentences. We can use the
competitive SMT model to achieve the performance of the best with
a guarantee even when a single model is dominating the rest (Bicici
and Kozat, 2010). For competing translation systems in an online ma-
chine translation setting, adaptively learning of model weights can be
performed based on the previous translation performance. We discuss
these techniques in chapter 7.

6.4 Contributions

We use transductive regression to learn mappings between source and
target features of given parallel training sentences and use these map-
pings to rerank translation outputs. We compare the e�ectiveness of L1

regularization techniques for regression. RegMT score has a tendency
to select shorter translations when the coverage is low. We incorporate
a brevity penalty to the squared loss and optimize the λ parameter of
QP to tackle this problem and further improve the performance of the
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system.
The results show the e�ectiveness of using L1 regularization versus

L2 used in ridge regression. Proper selection of training instances plays
an important role to learn correct feature mappings with limited com-
putational resources accurately. We notice that we may improve on
the training instance selection technique that we use. We investigate
and use better instance selection methods that optimize for coverage
of the test set features in chapter 5.
Reranking approach shows that RegMT score is valuable in selecting

the good translations among the alternatives in an N-best list. We
show that RegMT system is useful with reranking system outputs and
with system combination results. We can also incorporate a decoder
to actually generate translation results. We experiment with graph
decoding and decoding with Moses in chapter 8.
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Chapter 7

Adaptive Model Weighting and

Transductive Regression for

Reranking Machine Translation

Outputs

In this chapter, we analyze adaptive model weighting techniques for
reranking using candidate translation scores obtained by L1 regular-
ized transductive regression for translation outputs generated by di�er-
ent translation models. Competitive statistical machine translation is
an online learning technique for sequential translation tasks where we
try to select the best among competing statistical machine translators.
The competitive predictor assigns a probability per model weighted
by the sequential performance. We de�ne additive, multiplicative, and
loss-based weight updates with exponential loss functions for compet-
itive statistical machine translation. Without any pre-knowledge of
the performance of the translation models, we succeed in achieving the
performance of the best model in all translation experiments and sur-
pass their performance in most of the language pairs we considered.
Part of this work is published as (Bicici and Kozat, 2010).
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7.1 Introduction

In the system combination task of machine translation, multiple trans-
lation system outputs are combined to achieve a better performance
than the translations of all the competing translation models. When we
view each sentence to be translated as independent instances, system
combination task can be solved with a sequential learning algorithm.
Online learning algorithms enable us to bene�t from previous good
model choices to estimate the next best model. Online SMT receives
test source sentences one by one and generates a translation for each
instance, which can be modeled with the reranking approach given an
N -best list. We use transductive regression based machine translation
model to estimate the scores for each sentence.
We analyze adaptive model weighting techniques for system combi-

nation when the competing translators are statistical machine transla-
tion (SMT) models. We use separate model weights weighted by the
sequential performance. We use additive, multiplicative, or loss based
techniques to update model weights. Without any pre-knowledge of the
performance of the translation models, we show that we can achieve
the performance of the best model in all translation experiments and
we can surpass its performance as well as the regression based machine
translation's performance in some cases.
We provide empirical results on the performance of various class of

algorithms including results with some possible variations for a range of
translation language pairs. We experiment in two main settings: sim-
ulated online learning setting where only the scores obtained from the
regression model are used and online learning setting where reference
translations are used to estimate the performance for each instance.
Outline: The next section presents competitive statistical machine

translation model for solving sequential translation tasks with com-
peting translation models. We present techniques for estimating the
best performing translation model and discuss how we handle model
selection and adjust learning rate. Then we discuss the transductive
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regression approach for machine translation, which we use to obtain
instance scores. section 7.4 presents our experimental setup and the
algorithm we use for predicting the best translation model. In sec-
tion 7.5 we give the results on the test sets. The last section gives a
summary of our contributions.

7.2 Adaptive Model Weighting for Statistical Machine Trans-
lation

We develop the adaptive model weighting techniques for statistical
machine translation for sequential translation tasks when the statistical
machine translators compete to achieve a better overall performance.
The resulting competitive SMT framework uses the output of di�erent
translation models to achieve a translation performance that surpasses
the translation performance of all of the component models or achieves
the performance of the best.
Competitive SMT (CSMT) uses online learning to update the weights

used for estimating the best performing translation model. Competi-
tive predictor assigns a weight per model estimated by their sequen-
tial performance. The sequential prediction problem we investigate
is in the following setting. Given a sequence of observations, x[n] =
(x[1], . . . , x[n]) and their previous outcomes, y[n−1] = (y[1], . . . , y[n−
1]), the observer predicts y[n]. In machine translation, the obser-
vations, x[i], represent the source sentences and the outcomes, y[i],
represent the reference target sentences. At each step, M component
translation models are executed in parallel over the input source sen-
tence sequence and the loss lp[n] of model p at observation n is cal-
culated by comparing the desired data y[n] with the output of model
p, ŷp[n]. Individual performances of the models at each observation
are also stored in x[n]. CSMT selects a model based on the weights
and the performance of the models and adaptively updates the weights
given for each model. This corresponds to learning in full information
setting where we have access to the loss for each action (Blum and
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Mansour, 2007).
CSMT learning involves two main steps: estimation and weight up-

date:

ŷc[n] = E(w[n],x[n]), (estimation)

lp[n] = y[n]− ŷp[n], (instance loss)

Lp[n] =
∑n

i=1 lp[i]
2, (cumulative loss)

w[n+ 1] = U(w[n], ŷc[n],LLL[n]), (update)

(7.1)

where w[n] = (w1[n], . . . , wM [n]) stores the weights for M models,
Lp is the cumulative squared loss of model p, LLL[n] stores cumulative
and instance losses, and ŷc[n] is the competitive model estimated for
instance n. The learning problem is �nding an adaptive w that min-
imizes the cumulative squared error with appropriate estimation and
update methods.

7.2.1 Related Work

Multistage adaptive �ltering (Kozat and Singer, 2002) combines the
output of multiple adaptive �lters to outperform the best among them
where the �rst stage executes models in parallel and the second stage
updates parameters using the performance of the combined predic-
tion, ŷc[n]. Macherey and Och (2007) investigate di�erent approaches
for system combination including candidate selection that maximize a
weighted combination of BLEU scores among di�erent system outputs.
Their system uses a �xed weight vector trained on the development set
to be multiplied with instance BLEU scores.

7.2.2 Estimating the Best Performing Translation Model

We use additive, multiplicative, or loss based updates to estimate
model weights. We measure instance loss with trLoss(y[i], ŷp[i]),
which is a function that returns the translation performance of the
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output translation of model p with respect to the reference translation
at instance i. 1-BLEU (Papineni et al., 2001) is one such function
with outputs in the range [0, 1]. Cumulative squared loss of the p-th
translation model is de�ned as:

Lp[n] =
n∑
i=1

trLoss(y[i], ŷp[i])
2. (7.2)

We use exponentially re-weighted prediction to estimate model per-
formances, which uses exponentially re-weighted losses based on the
outputs of the m di�erent translation models.
We de�ne the additive exponential weight update as follows:

wp[n+ 1] =
wp[n] + e−η[n] lp[n]

M∑
k=1

(
wk[n] + e−η[n] lk[n]

) , (7.3)

where η > 0 is the learning rate and the denominator is used for
normalization. The update amount, e−η[n] lp[n] is 1 when lp[n] = 0 and
it approaches zero with increasing instance loss. Perceptrons, gradient
descent, and Widrow-Hu� learning have additive weight updates.
We de�ne the multiplicative exponential weight update as follows:

wp[n+ 1] = wp[n]× e−η[n] lp[n]2

M∑
k=1

wk[n] e−η[n] lk[n]2
, (7.4)

where we use the squared instance loss. Equation 7.4 is similar to the
update of Weighted Majority Algorithm (Littlestone and Warmuth,
1992) where the weights of the models that make a mistake are multi-
plied by a �xed β such that 0 ≤ β < 1.
TheWinnow algorithm (Littlestone, 1988) makes multiplicative up-

dates, however, performs an update only if there is a mistake with a
�xed update amount. We present a Winnow-type algorithm that uses
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instance loss with positive exponential update and �xed η:

wp[n+ 1] = wp[n]× eη[n] lp[n]

M∑
k=1

wk[n] eη[n] lk[n]

. (7.5)

We use Bayesian Information Criterion (BIC) as a loss based re-
weighting technique. Assuming that instance losses are normally dis-
tributed with variance σ2, BIC score is obtained as (Hastie et al., 2009):

BICp[n] =
Lp[n]

σ2 + dp log(n), (7.6)

where σ2 is estimated by the average of model sample variances of
squared instance loss and dp is the number of parameters used in
model p which we assume to be the same for all models; therefore
we can discard the second term. The model with the minimum BIC
value becomes the one with the highest posterior probability where
the posterior probability of model p can be estimated as (Hastie et al.,
2009):

wp[n+ 1] =
e−

1
2BICp[n]

M∑
k=1

e−
1
2BICk[n]

. (7.7)

The posterior probabilities become model weights and we basically for-
get about the previous weights, whose information is presumably con-
tained in the cumulative loss, Lp. We de�ne multiplicative re-weighting
with BIC scores as follows:

wp[n+ 1] = wp[n]× e−
1
2BICp

M∑
k=1

wk[n] e−
1
2BICk

. (7.8)

94



7.2. ADAPTIVE MODEL WEIGHTING FOR STATISTICAL MACHINE TRANSLATION

7.2.3 Model selection

We use stochastic or deterministic selection to choose the competi-
tive model for each instance. Deterministic choice randomly selects
among the maximum scoring models with minimum translation length
to reduce ties whereas stochastic choice draws model p with probabil-
ity proportional to wp[n]. Randomization with the stochastic model
selection decreases expected mistake bounds in the weighted majority
algorithm (Blum, 1996; Littlestone and Warmuth, 1992).

7.2.4 Variations

We can obtain a number of variations of the presented online learning
algorithms.

Learning rate: We can choose the learning rate adaptively based on
the incurred loss so far instead of using a constant value. Auer
et al. (2002) show that optimal �xed learning rate for the weighted
majority algorithm is found as η[n] =

√
M/L∗[n] where L∗[n] =

min1≤i≤M Li[n], which requires prior knowledge of the cumulative
losses.

Averaging: Averaging is used in averaged perceptron to improve the
performance (Collins, 2002). We perform averaging as follows: the
weights obtained at step n+ 1 is averaged over the last k weights:
w[n+ 1] =

∑k−1
j=0 w[n− j] / k.

Update when correct: Especially the multiplicative updates may
su�er from the �winner takes all� phenomenon where the best
model's weight becomes dominant over others. To prevent such
cases, we also test with updating only when the selected model
di�ers from the best model as it is done in the Winnow algorithm.
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7.3 Transductive Regression Based Translation Scoring

Transduction uses test instances, which can sometimes be accessible
at training time, to learn speci�c models tailored towards the test set.
Transduction has computational advantages since we are not using the
full training set and a smaller set of constraints exist to satisfy. Trans-
ductive regression based machine translation (RegMT) aims to reduce
the computational burden of the regression approach by reducing the
dimensionality of the training set and the feature set and also improve
the translation quality by using transduction. We select a subset of the
training set for each test sentence to train regression models. For each
test sentence, we pick a limited number of training instances designed
to improve the coverage of correct features to build a regression model.
We use the instance selection technique given in section 3.6. We use L1

regularized regression to deal with the sparsity of the features derived
from a small training set.

7.4 Experimental Setup

We give empirical results and analysis for the performance of the mod-
els considered in reranking machine translation outputs coming from
di�erent systems. We perform experiments on the system combina-
tion task for the English-German (en-de), German-English (de-en),
English-French (en-fr), English-Spanish (en-es), and English-Czech
(en-cz ) language pairs using the translation outputs for all the com-
peting systems provided in (Callison-Burch et al., 2010) (WMT'10).
We experiment in two main settings: simulated online learning,

where only the scores obtained from the RegMT system are used, and
online learning, where reference translations are used to estimate in-
stance losses. We do not use reference translations in measuring in-
stance performance in the simulated online learning setting for the
results we obtain be in line with system combination challenge's goals.
We use model weights, instance scores as estimated by the RegMT
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model, and the instance losses found by the RegMT model scores or
reference translations to achieve performances better than the compet-
ing models. For the learning rate, we use η =

√
M/(0.05n) when η

is constant and set η[n] =
√
M/(L∗[n] + c) when it is adaptive with

constant c = 3.

7.4.1 Datasets

We use the training set provided in WMT'10 to index and select trans-
ductive instances from. The challenge split the test set for the transla-
tion task of 2489 sentences into a tuning set of 455 sentences and a test
set with the remaining 2034 sentences. Translation outputs for each
system is given in a separate �le and the number of system outputs
per translation pair varies. We have tokenized and lowercased each
of the system outputs and combined these in a single N -best �le per
language pair to be used in reranking. We use BLEU (Papineni et al.,
2001) automatic evaluation metric for measuring the performance of
the translations automatically.

7.4.2 Reranking Scores

The problem we are solving is online learning with prior informa-
tion, which comes from the comparative BLEU scores, LM scores, and
RegMT scores at each step n. Scoring functions are explained below:

1. RegMT: Transductive regression based machine translation scores
as found by Equation 3.9. We use the RegMT scores obtained by
the FSR model (subsection 4.3.1).

2. CBLEU: Comparative BLEU scores we obtain by measuring the
average BLEU performance of each translation relative to the other
systems' translations in the N -best list.

3. LM: We calculate 5-gram language model scores for each trans-
lation using the language model trained over the target corpus
provided in the translation task.
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To make things simpler, we use a single prior RegMT system score
representing the linear combination of the three scores mentioned with
weights learned on the tuning set. The overall RegMT system score
for instance n, model i is referred as RegScorei[n].
Since we do not have access to the reference translations nor to

the translation model scores each system obtained for each sentence,
we estimate translation model performance by measuring the average
BLEU performance of each translation relative to other translations in
the N -best list. Thus, each possible translation in the N -best list is
BLEU scored against other translations and the average of these scores
is selected as the CBLEU score for the sentence. Sentence level BLEU
score calculation avoids singularities in n-gram precisions by taking
the maximum of the match count and 1

2|si| for |si| denoting the length
of the source sentence si as used in (Macherey and Och, 2007).

7.4.3 Adaptive Model Weighting for Predicting Best Translations

The generic adaptive model weighting algorithm is given in Algo-
rithm 3. The algorithm has an additional update step, which estimates
the model after incorporating the current instance's scores in the esti-
mation without changing the losses. If averaging is performed with a
window of the last N weight vectors, then it is applied after weight up-
dates, where w[j−N : j] represent the last N weight vectors obtained.
Model selection is another parameter a�ecting the model estimation
function: E(w[j], Model.selection). For simulated online learning,
y[n] are the model with the highest RegMT score and for online learn-
ing, they are the model with the closest translation to the reference
as measured by the BLEU scoring metric. We initialize the weights to
1/M for all models.
Table 7.1 presents the simulated online learning performances of the

weight update algorithms on the en-de development set. Add. stands
for additive, Mul. for multiplicative, and BICW for BIC with weighting
weight update algorithms. We have measured their performances with
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Algorithm 3: Best Translation Estimation with Adaptive Model Weighting

wi[1]← 1/M ∀i, 1 ≤ i ≤M1

η ←
√
M/(0.05n)2

c← 33

N ∈ {1, 5, 10, 50}4

for j ← 1 to n do5

if Mixture.weighting then6

w[j]← w[j] · RegScore[j]7

ŷc[j]← E(w[j], Model.selection)8

w[j]← U(w[j], ŷc[j],LLL[j]) // Initial update9

ŷc[j]← E(w[j], Model.selection)
if not Update.when.correct and y[j] 6= ŷc[j] then10

(w[j + 1],LLL[j + 1])← U(w[j], ŷc[j],LLL[j])11

else12

(w[j + 1],LLL[j + 1])← U(w[j], ŷc[j],LLL[j])13

if Averaging then14

w[j + 1]← Average(w[j −N : j])15

if Dynamic.η then16

η[j] =
√
M/(L∗[j] + c) where L∗[j] = min1≤i≤M Li[j]17

four di�erent setting combinations: (1) Model selection: S: Stochastic
or D: Deterministic, (2) Mixture model: W: Weights, M: Mixture,
(3) Update when di�erent: T: True, F: False, (4) η update: static,
dynamic. Wmixture model use only the current weights while selecting
the model. Mixture weights consider instance scores as well and are
obtained by: wi[n] = wi[n] RegScorei[n], for instance n, model i,
which is equivalent to w[n] = w[n] ·RegScore[n] for · denoting the dot
product and RegScore[n] the vector of RegMT scores of instance n.
We found the variance for the stochastic model choice to be ≤ 0.006 for
100 repetitions. Therefore, we do not list the variance in the results.
Baseline performance obtained with random selection has 0.1407

BLEU score on the en-de development set. RegMT model score itself
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BLEU Multiplicative

Setting Add. BIC BICW Mul. Winnow

S

M
T

static .1421 .1433 .1579 .1535 .1525
dynamic .1422 .1431 .1573 .1550 .1523

F
static .1421 .1432 .1569 .1529 .1525
dynamic .1423 .1433 .1576 .1544 .1523

W
T

static .1419 .1439 .1563 .1523 .1526
dynamic .1426 .1440 .1576 .1526 .1522

F
static .1417 .1439 .1562 .1526 .1524
dynamic .1430 .1440 .1560 .1526 .1526

D

M
T

static .1642 .1529 .1531 .1535 .1522
dynamic .1641 .1530 .1531 .1520 .1528

F
static .1643 .1530 .1507 .1536 .1521
dynamic .1643 .1530 .1507 .1519 .1526

W
T

static .1643 .1638 .1646 .1638 .1522
dynamic .1643 .1638 .1646 .1647 .1525

F
static .1644 .1638 .1646 .1638 .1522
dynamic .1644 .1638 .1646 .1647 .1524

Table 7.1: Simulated online learning BLEU score performances of the algorithms on the en-de
development set over 100 repetitions. Setting has four parts: (1) Model selection: S: Stochastic
or D: Deterministic, (2) Mixture model: W: Weights, M: Mixture, (3) Update when di�erent:
T: True, F: False, (4) η update: static, dynamic.

obtains a performance of 0.1661 BLEU with reranking. The best model
performance among the 12 en-de translation models has 0.1644 BLEU
score. Therefore, by just using the RegMT score, we are able to achieve
better scores. Deterministic model selection results in Table 7.1 almost
always achieve the performance of the best translation model.
Not all of the settings are meaningful. For instance, stochastic model

selection is used for algorithms having multiplicative weight updates.
This is re�ected in the Table 7.1 by the low performance on the addi-
tive and BIC models. Similarly, using mixture weights may not result
in better scores for algorithms with multiplicative updates, which re-
sulted in decreased performance in Table 7.1. Also, η = 0.5 for BIC
(Equation 7.7) and BIC with weighting (Equation 7.8), therefore η up-
date has no e�ect. Decreased performance for BIC with deterministic
model selection hints that we may use other techniques for mixture
weights.
We do not observe a signi�cant e�ect of η selection except for mul-
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Figure 7.1: BLEU performance for di�erent selection methods using averaging for increasing N .

tiplicative updates where dynamic selection performs slightly better.
Therefore, we choose dynamic η on the test sets. We also do not ob-
serve signi�cant di�erence between update when di�erent selections
(not Update.when.correct) and we choose to update at each in-
stance. This is di�erent than how Winnow algorithm performs up-
dates. We consider only the deterministic model selection for additive
and loss based weight updates. We select two best settings for each
algorithm to be used in obtaining test results.

Averaging: We present averaging results for each learning algorithm in
Figure 7.1. For multiplicative updates, averaging with N decreases
the performance. In general, for other algorithms, averaging improves
the performance. Winnow algorithm achieves signi�cant gains with a
small sized window.
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BLEU en-de de-en en-fr en-es en-cz

Random .1490 .2088 .2415 .2648 .1283
Best model .1658 .2408 .2864 .3047 .1576
RegMT .1689 .2357 .2947 .3049 .1657
Add-D-M-F .1697 .2353 .2948 .3044 .1641

Add-D-W-F .1697 .2354 .2948 .3044 .1642

BIC-D-M-F .1580 .2141 .2791 .2876 .1577

BIC-D-W-F .1613 .2407 .2841 .2785 .1621

BICW-D-W-T .1647 .2357 .2807 .2785 .1511
BICW-S-W-T .1621 .2247 .2796 .2882 .1568

Mul-D-W-F .1590 .2267 .2797 .2842 .1613

Mul-S-W-F .1568 .2094 .2810 .2920 .1611

Winnow-D-W-T .1567 .2139 .2792 .2879 .1576

Winnow-S-W-T .1567 .2140 .2792 .2877 .1576

Challenge .1567 .2394 .2758 .3047 .1641

Table 7.2: CSMT BLEU results with simulated online learning where bold corresponds to scores
better than or close to the best model. Underlined scores are better than both the RegMT model
and the best model.

7.5 Test Results

This section presents the results we obtained on the test sets.

7.5.1 Simulated Online Learning Results

Table 7.2 presents reranking results on all of the language pairs we
considered with the random, RegMT, and CSMT models. Random
model score lists the random model performance selected among the
competing translations randomly and it can be used as a baseline.
Best model score lists the performance of the best model performance.
CSMT models are named with the weighting model used, model se-
lection technique, mixtures model, and update when di�erent with
hyphens in between. We submitted part of the initial simulated online
results to the WMT'10 system combination challenge (Callison-Burch
et al., 2010).
We have presented scores that are better than or close to the best

model in bold. We observe that the additive model performs the best
by achieving the performance of the best competing translation model
and performing better than the best in most of the language pairs.
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BLEU en-de de-en en-fr en-es en-cz

Random .1490 .2088 .2415 .2648 .1283
Best model .1658 .2408 .2864 .3047 .1576
RegMT .1689 .2357 .2947 .3049 .1657
Add-D-M-F .1689 .2360 .2948 .3049 .1657

Add-D-W-F .1689 .2360 .2950 .3049 .1657

BIC-D-M-F .1636 .2141 .2790 .2876 .1578

BIC-D-W-F .1620 .2374 .2340 .2918 .1574

BICW-D-W-T .1497 .2419 .2807 .2785 .1405
BICW-S-W-T .1461 .2121 .2541 .2677 .1282
Mul-D-W-F .1611 .2373 .2360 .2918 .1574

Mul-S-W-F .1585 .2054 .2543 .2729 .1271
Winnow-D-W-T .1595 .2142 .2792 .2877 .1576

Winnow-S-W-T .1592 .2143 .2792 .2877 .1576

Challenge .1567 .2394 .2758 .3047 .1641

Table 7.3: CSMT BLEU results with online learning where bold corresponds to scores better
than or close to the best model. Underlined scores are better than both the RegMT model and
the best model.

For the en-de language pair, additive model score achieves even better
than the RegMT model, which is used for evaluating instance scores.
Another observation is that with the adaptive weighting model, we

can achieve scores better than the best model and the RegMT model.
In cases where the RegMT model score is not better than the best
model, CSMT is able to achieve the performance of the best model as
in the de-en system.

7.5.2 Online Learning Results

We also experiment with the online learning setting where reference
translations are used to estimate instance losses. We still use RegMT
scores for mixture weights and the initial weight update. The results
are given in Table 7.3. In general, we see some increase in the scores
with the online learning setup. We did not in general see signi�cant dif-
ferences between the results obtained with the simulated online learn-
ing and online learning. This may indicate that RegMT scores can
e�ectively select the best model. Also, the performance di�erences
between the oracle best model and the best model according to the
RegMT score may be low. Since we measure the performance with
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sentence level BLEU scores, rather than binary losses, the di�erences
may be negligible.

7.6 Contributions

We have analyzed adaptive model weighting techniques for system
combination when the competing translators are statistical machine
translation models. We de�ned additive, multiplicative, and loss-based
weight updates with exponential loss functions for the competitive sta-
tistical machine translation learning framework.
We applied these weight update models in simulated online learn-

ing and online learning settings. We observe that with the adaptive
weighting model, we can achieve scores better than the best model and
the RegMT model. In cases where the RegMT model score is not bet-
ter than the best model, CSMT is able to achieve the performance of
the best model. By following the combination techniques we pursued,
we may achieve performances with worst case guarantees such as the
performance of the best among the competing models.
Competitive SMT via adaptive weighting of various translation mod-

els is shown to be a powerful technique for sequential translation tasks.
We have demonstrated its use in the system combination task by us-
ing the instance scores obtained by the RegMT model. Without any
pre-knowledge of the performance of the translation models, we have
been able to achieve the performance of the best model in all trans-
lation experiments and we are able to surpass its performance as well
as RegMT's performance with some of the weight update models we
considered.
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Chapter 8

Prediction, Evaluation, and

Decoding with RegMT

In this chapter, we use the RegMT model as a stand alone machine
for translation. We present our target feature prediction results in
comparison with other learning techniques, evaluation metrics that
we develop and use, and decoding results with the RegMT outputs
including graph decoding and decoding with Moses.
We show that L1 regularized regression performs better than L2

regularized regression and other learning models we compared when
predicting target language features, estimating word alignments, cre-
ating phrase tables, and generating translation outputs.
We discuss the F1 measure, which performs good when evaluating

translations into English according to human judgments. Weighted F1

measure allows us to evaluate the performance of the RegMT model
using the target feature prediction vectors or the coe�cients matrices
learned. We can also evaluate a given SMT model's performance using
its phrase table without performing the decoding step.
We present encouraging results when translating from German to

English (de-en) and Spanish to English (es-en) using graph decoding.
We demonstrate that sparse L1 regularized regression performs better
than L2 regularized regression in the de-en translation task sampled
from the WMT'10 datasets and in the es-en translation task when
using small sized training sets. Graph based decoding can provide an
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alternative to phrase-based decoding systems in translation domains
having low vocabulary.
Outline: We describe the datasets we use in the next section. In

section 8.2, we introduce the F1 measure, which correlates with human
judgments better than BLEU for evaluating both the predictions and
the phrase table. We compare performances of various learning models
with lasso and �nd that lasso achieves better performance. We also
give results about using F1 as an evaluation metric to measure the
translation quality. In section 8.3, we show how we can convert the
learned coe�cients matrix, W, to a phrase table that can be used by
the Moses decoder to generate translations. Later in section 8.4, we
develop an evaluation metric to determine the quality of a given phrase
table for comparing phrase table quality. section 8.5 demonstrates that
weighted F1 score correlates better with the BLEU scores obtained
than a phrase table evaluation measure that we develop and therefore
it is a better measure for evaluating translation performance. We give
evaluation results with weighted F1 in section 8.6 where we compare
various learning algorithms. In section 8.7, we present word alignment
results comparing the learning algorithms and in section 8.8 we give
decoding results using both graph decoding and the Moses decoder.
The last section lists our contributions.

8.1 Datasets

We use the German-English (de-en) parallel training sentences of size
about 1.6 million sentences from WMT'10 (Callison-Burch et al., 2010)
to select training and in-domain test instances. For development and
test sentences, we select randomly among the sentences whose length
are in the range [10, 20] and target language bigram coverage in the
range [0.6, 1]. We select 20 random instances from each target cover-
age decimal fraction (i.e. 20 from [0.5, 0.6], 20 from [0.6, 0.7], etc.) to
obtain sets of 100 sentences. Sampling from training instances having
high target coverage leads to the creation of in-domain datasets and
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selecting instances belonging to varying coverage ranges allows us to
measure the performance on sentences with di�erent translation dif-
�culties. We create in-domain dev, dev2, and test sets following this
procedure and make sure that test set source sentences do not have
exact matches in the training set. We use n-spectrum weighted word
kernel (Equation 3.11) as feature mappers which considers all n-grams
up to order n. Features used are 1-grams, 2-grams, or 1&2-grams.
Our selection of in-domain development and test sets enable us to

evaluate the performance of di�erent learning algorithms better with
less concerns about whether a given translation exists in the training
set or not. This choice does not limit the applicability of the RegMT
system to only in-domain test sets.

8.2 F1 Measure for Evaluating the Estimates and the Phrase
Table

F1 is a commonly used information retrieval measure de�ned as the
harmonic mean of precision and recall values. The following table
gives the types of errors for binary classi�cation:

Prediction
Truth Class 0 Class 1
Class 0 TN FP
Class 1 FN TP

Let TP be the true positive, TN the true negative, FP the false positive,
and FN the false negative rates, then the measures are de�ned as:

prec =
TP

TP + FP
, BER = (

FP
TN + FP

+
FN

TP + FN
)/2 (8.1)

rec =
TP

TP + FN
, Fβ = (1 + β2)

prec × rec
β2prec + rec

(8.2)

where BER is the balanced error rate, prec is precision, and rec is
recall. For β = 1, precision and recall values are equally weighted in
Fβ and for β > 1 recall is weighted more than precision.
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φY (y) 1 1 2 1 1 1 1 1 2 1 1 1

ˆφY (y) 0.9 1.2 0.4 0.1 1.6 0.3 0.2 1.1 0.8 1.5 0.3 0.4

σ( ˆφY (y)) 1 1 1 0 1 0 0 1 1 1 0 1

∆ a b c

prec =
b

b+ c
rec =

b

a+ b
(8.3)

Table 8.1: Precision and recall diagram shows the feature vectors for the reference, φY (y), its
prediction, ˆφY (y), the thresholded prediction, σ( ˆφY (y)), the element-wise absolute di�erence,

∆ = |φY (y)− σ( ˆφY (y))|, and the corresponding precision and recall calculation over ∆.

Given a feature prediction vector, we can use a threshold for deter-
mining which features can be considered signi�cant to exist in a given
prediction. After classifying the features in the two categories, 0 (ab-
sent) or 1 (present), we can use binary classi�cation tests to evaluate
the performance. The evaluation techniques measure the e�ectiveness
of the learning models on distributing the weights and in identifying
the features of the target sentence while making minimal error and
increasing the performance of the decoder and its translation quality.
BER has the problem that if the estimate is only zeros, then BER
becomes 0.5; however, F1 is 0 in this case, which is more acceptable. If
a learning model optimizes its parameters with BER, there is a chance
that it will prefer an empty output than making some error and cor-
recting it later. Thus, it may get stuck in the pit of BER.
We can determine whether a feature is present in the estimation

by using the 0/1-class predictions obtained after thresholding ΦY (ŷ),
the target features prediction vector. The thresholds are used to map
real feature values to 0/1-class predictions and they are also optimized
using the F1 measure on dev. We obtain optimized feature thresh-
olds in subsection 8.6.1. Table 8.1 depicts the calculation of precision
and recall on sample reference and prediction feature vectors. The
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top row represents the reference sentence in feature counts vector and
the second row corresponds to the feature prediction vector obtained.
The third row corresponds to the transformed prediction vector after
thresholding with a thresholding function σ(.). The element-wise abso-
lute di�erence vector ∆ = |φY (y)− σ( ˆφY (y))| is given in the last row.
The �rst part of the prediction corresponds to features that are not
covered in the training set and its sum is represented with a in the ∆
row. The second part is the covered features with cost b and the third
part is the extra feature predictions over the features in the training
set that are neither covered nor observed in the reference sentence with
cost c.
We can also incorporate the weights in the prediction to calculate

weighted binary classi�cation performance and weighted precision and
recall values to be used for measuring the weighted F1 and weighted
BER scores. After thresholding, instead of adding a 1 to the binary
classi�cation test errors, we increase them by the weight obtained.
We �nd that weighted F1 score correlates well with the BLEU scores
obtained (section 8.5) and therefore it is a good measure for evaluating
translation performance, which also considers the estimate weights.
We refer to the weighted F1 measure when we use F1. The model
parameters such as the regularization λ and the number of iterations
for FSR are optimized on dev using the weighted F1 measure. Slightly
better results can also be obtained by optimizing F1's β against the
sentence level correlation with BLEU.

8.2.1 Target F1 as a Performance Evaluation Metric

We use target sentence F1 measure over the target features as a trans-
lation performance evaluation metric. We use gapped word sequence
kernels (Taylor and Cristianini, 2004) when using F1 for evaluating
translations since a given translation system may not be able to trans-
late a given word but can correctly identify the surrounding phrase.
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Format BLEU F1

Ref: a sound compromise has been reached a b c d e f 4-grams 3-grams 4-grams 5-grams
Trans1: a sound agreement has been reached a b x d e f .2427 .6111 .5417 .5
Trans2: a compromise has reached a c d f .137 .44 .3492 .3188
Trans3: a sound agreement is reached a b x y f .1029 .2 .1558 .1429
Trans4: a compromise is reached a c y f .0758 .2 .1587 .1449
Trans5: a good compromise is reached a z c y f .0579 .1667 .1299 .119
Trans6: a good compromise is been a z c y e .0579 .2 .1558 .1429

Table 8.2: BLEU vs. F1 on sample sentence translation task.

For instance, let the reference translation be the following sentence:

a sound compromise has been reached

Some possible translations for the reference are given in Table 8.2
together with their BLEU (Papineni et al., 2001) and F1 scores for
comparison. F1 score does not have a brevity penalty but a brief
translation is penalized by a low recall value. We use up to 3 tokens
as gaps. F1 measure is able to increase the ranking of Trans4 by using
a gapped sequence kernel, which can be preferable to Trans3.
We note that a missing token results in an increasing loss in the n-

gram precision used in the BLEU score proportional to n. A sentence
containing m tokens has m 1-grams, m− 1 2-grams, and m−n+ 1 n-
grams. A missing token degrades the performance more in higher order
n-gram precision values. A missing token decreases 1-gram precision
by 1

m and by n
m−n+1 for n-grams. Based on this observation, we use F1

measure with gapped word sequence kernels to evaluate translations.
Gapped features allows us to consider the surrounding phrase for a
missing token as present in the translation.
Let the reference sentence be represented with a b c d e f where

a-f, x, y, z correspond to tokens in the sentences. Then, Trans3 has the
form a b x y f, and Trans4 has the form a c y f. Then, F1 ranks
Trans4 higher than Trans3 for orders greater than 3 as there are two
consecutive word errors in Trans3. F1 can also prefer a missing token
rather than a word error as we see by comparing Trans4 and Trans5

and it can still prefer contiguity over a gapped sequence as we see by
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comparing Trans5 and Trans6 in Table 8.2.
We calculate the correlation of F1 with BLEU on the en-de devel-

opment set. We use 5-grams with the F1 measure as this increases
the correlation with 4-gram BLEU. Table 8.3 gives the correlation re-
sults using both Pearson's correlation score and Spearman's correlation
score. Spearman's correlation score is a better metric for comparing
the relative orderings.

Metric No gaps (F1) Gaps (F g31 )
Pearson .8793 .7879
Spearman .9068 .8144

Table 8.3: F1 correlation with 4-gram BLEU using blended 5-gram gapped word sequence features
on the development set.

We refer to F1 measure with features using up to 3 tokens as gaps
as F g3

1 , which we compare in Table 8.3. Although F g3
1 has lower cor-

relation scores with BLEU compared to F1, we prefer to use F g3
1 as

an evaluation metric due to its better discriminative power as exem-
pli�ed in Table 8.3 with di�erent translations. We have submitted the
results obtained using both of the measures to the WMT'11 automatic
evaluation metrics challenge, which we discuss in the next section.

8.2.2 WMT'11 Automatic Evaluation Metrics Challenge Results

We participated in the WMT'11 automatic evaluation metrics chal-
lenge, which examines automatic evaluation metrics and calculates the
correlation of their rankings with human judgments. We participated
in the challenge with the F1 measure with up to 5-gram features (F15)
without gapped features and with the F1 measure with up to 5-gram
features with up to 3 tokens as gaps (F15g3). System-level correlation
comparison results are given in (Callison-Burch et al., 2011, Table 12)
for translations out of English and (Callison-Burch et al., 2011, Table
13) lists translations into English.
We observe that in Table 13 both F15 and F15g3 perform better

than BLEU in evaluating the overall translation quality of di�erent
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translation systems. However, we observe lower performance in Table
12. The lower performance compared to BLEU for translations out of
English given in (Callison-Burch et al., 2011, Table 12) is likely to be
due to the increased reorderings involved in the target languages. For
a highly non-monotonic language, some gapped features may become
less meaningful, making those features less useful in the evaluation
or even degrading the performance. This is observed for the en-cz
and the en-de language pairs in Table 12. We also observe better
performance for the en-es direction, where Spanish is considered to
be a more monotonic language than German. When evaluating non-
monotonic languages, we can optimize the maximum size of the gap
accordingly to improve the performance. With no gaps involved, the
features used become the n-gram features used in BLEU.
Overall, the good performance of F1 measure in the evaluation task

demonstrates that we can also use F1 to evaluate the quality of trans-
lations using their feature representations without actually performing
decoding. We can estimate the set of target features using the RegMT
system and use F1 measure to evaluate the performance. F1 measure
can be a good alternative to BLEU when working with machine learn-
ing algorithms optimizing the prediction of target feature vectors.

8.3 Phrase Table Generation fromW andMoses Integration

We can obtain a phrase table (PT) such as the one Moses is using from
a given W, the coe�cients matrix. After performing this conversion,
we can use Moses decoder for translation, which has built in reordering
features, lexical weights, and phrase translation probabilities in both
translation directions. We interpret the coe�cients matrix W as the
phrase table, which enables us to perform experiments with Moses.
In our transductive learning framework, a W matrix is created for

each test sentence, which replaces the phrase table. Moses loads the
phrase table once in the beginning and uses it to translate test sen-
tences. We modify Moses such that it reloads the phrase table before
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translating each test sentence.
Moses is using 5 scores in the generated phrase table:

� ϕ(fx|fy): inverse phrase translation probability.

� lex(fx|fy): inverse lexical weighting.

� ϕ(fy|fx): direct phrase translation probability.

� lex(fy|fx): direct lexical weighting.

� phrase penalty: e = 2.718

for source phrase fx and target phrase fy. Phrase translation probabil-
ities are obtained using the phrase counts as follows:

ϕ(fx|fy) =
count(fx, fy)
count(fy)

, ϕ(fy|fx) =
count(fx, fy)
count(fx)

(8.4)

Moses obtains phrase counts after a word alignment step applied on the
training data using GIZA++ (Och and Ney, 2003). Lexical weights,
lex(fx|fy) and lex(fy|fx), are obtained using word translation proba-
bilities w(y|x) and w(x|y) for source word x and target word y and
estimated using the word alignments (Koehn et al., 2003):

w(y|x) =
count(x, y)∑
y′ count(x, y

′)
(8.5)

lex(fx|fy, a) =
n∏
i=1

1

|{j|(i, j) ∈ a}|
∑
∀(i,j)∈a

w(xi|yj) (8.6)

lex(fx|fy) = max
a

lex(fx|fy, a) (8.7)

where a stores the word alignments found in fx and fy and i stores the
source word positions from 1 to n. In case multiple alignments exist
maximum lexical weight is chosen as the lexical weight.
We obtain direct and indirect translation probabilities after retain-

ing the top N scoring target phrase entries for each source phrase.
Moses use a default translation table limit (--ttable-limit) of 20

113



8.3. PHRASE TABLE GENERATION FROMW AND MOSES INTEGRATION

entries per source phrase, which limits the number of translation op-
tions considered for each source phrase. Accordingly, for each source
feature, we choose the top N = 20 target features to be in line with
the translation table limit of Moses. We use fx and fy to refer to a
source phrase and a target phrase respectively. We obtain the scores
for a given source test sentence x as follows 1:

p(fy|fx) =
W[fy, fx]∑

fy
′∈topN (W,FY ,fx)W[fy

′, fx]
, (8.8)

p(fx|fy) =
W[fy, fx]∑

fx
′∈ΦX(x)W[fy, fx

′]
(8.9)

where ΦX(x) return the source features of source test sentence x,
and topN(W, FY , fx) return the top N target features found in W
for given fx. fx are chosen from the feature set of the source test
sentence and fy from whereW[fy, fx] > 0. W[fy, fx] corresponds to the
regression coe�cient mapping fx to fy. This choice of summing over
source features found in the source test sentence helps us discriminate
among target feature alternatives better than summing over all source
features found in the training set. We also �nd that by summing
over all of the positive entries for features selected from FY rather
than over the selected top N aligned target features, we increase the
precision in the phrase translation scores by increasing the denominator
for frequently observed phrases. We then renormalize using the top N
target feature entries.
After this conversion, we obtain 3 scores for each phrase table en-

try: p(fx|fy), p(fy|fx), 2.718, where the last score is used for the phrase
penalty. To compare the performance with Moses, we use the op-
tion -score-options '--NoLex' during training, which removes the
scores coming from lexical weights in the phrase table entries, leaving
3 scores similar to the scores used in the RegMT phrase table. Instead

1p(fy |fx) is the direct phrase translation probability and corresponds to p(e|f) in Moses. Similarly, p(fx|fy) is
the inverse phrase translation probability and corresponds to p(f |e) in Moses.
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of adding extra lexical weights to the RegMT phrase tables, we remove
them to measure the di�erence between the phrase tables better.

8.4 Phrase Table Quality Measure: pmax(fy|ΦX(x))

In this section, we develop a phrase table quality evaluation measure
to be able to compare RegMT phrase tables with Moses phrase ta-
bles. Phrase table is a very important translation model used during
decoding and provides the vocabulary of translation. Our goal is to be
able to evaluate the quality of a phrase table and maybe estimate the
BLEU performance achievable before actually performing the compu-
tationally demanding process of decoding.
We have mentioned in subsection 4.3.1 thatWmax

∗,j = max(|W1,j|, |W2,j|,
. . . , |WNY ,j|) can be used as a measure of the explanatory power of the
jth regressor on all the response variables. Similarly, we use Wmax

i,∗ =
max(Wi,1,Wi,2, . . . ,Wi,NX) as the maximum achievable explanation
available for the ith response variable. When we model translation fea-
tures, Wi,j correspond to the explanatory power that the jth source
feature, fxj , has on the ith target feature, fyi. If we have access to
the target features, we can use Wmax

i,∗ to obtain a quality metric that
measures how well target features are explained by W.
In the transductive learning setting, we do not need to consider

all of the source features fxj for j ∈ {1, . . . , NX} and consider only
the ones that appear in the source sentence. After obtaining a phrase
table, PT , fromW following section 8.3, we have scores for each source
feature mapping to a number of target features that they translate to
with their p(fx|fy) and p(fy|fx) values. We de�ne pmax(fy|ΦX(x)) for a
source sentence x as the maximum phrase translation probability for
fy achievable given the alternative source features:

pmax(fy|ΦX(x)) = max
fx∈ΦX(x)

p(fy|fx). (8.10)

pmax(fy|ΦX(x)) makes sense when we are interested in distribut-
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ing the probability of the source feature to few target translations
that are correct and it also makes sense when we interpret transla-
tion as a classi�cation problem where we are only interested in the
correct label. We will visit the interpretation of translation as classi�-
cation in subsection 8.6.2. Although it favors precision rather than re-
call, pmax(fy|ΦX(x)) is helpful in determining the quality of the phrase
translation probability estimates in a given PT. We are interested in
distributing the probability to only the correct target features.
We de�ne the sum pΣ(ΦY (y) | ΦX(x)) given the translation, y, as

follows:

pΣ(ΦY (y) | ΦX(x)) =
∑

fy∈ΦY (y)

pmax(fy|ΦX(x)) =
∑

fy∈ΦY (y)

max
fx∈ΦX(x)

p(fy|fx).

(8.11)
Using pΣ(ΦY (y) | ΦX(x)), we identify how well a given PT performs
in explaining the features of a target sentence, y, starting from the
features of the source sentence, x.
We de�ne the mean value, pµ(ΦY (y) | ΦX(x)), as follows:

pµ(ΦY (y) | ΦX(x)) = pΣ(ΦY (y) | ΦX(x)) / |ΦY (y)|. (8.12)

In the presence of correlated variables, pmax(fy | ΦX(x)) may be
distributed among multiple variables correlated with fy. In such cases,
as we normalize such that

∑
fyi∈ΦY (y) p(fyi|fx) = 1, pmax(fy | ΦX(x))

may be lower than expected.
For a given test set of sentences, T = (X,Y), we de�ne:

pµ(T ) =

∑
(x,y)∈T

pΣ(ΦY (y) | ΦX(x)))

|
⋃
y∈T

ΦY (y)|
. (8.13)

for the mean value of a test set.
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THE TRANSLATIONS

8.4.1 Optimization with pmax(fy|ΦX(x))

A sharp distribution with only a single translation for a given source
feature fx corresponds to having p(fx|fy) = 1. This makes the inverse
phrase translation probability, p(fx|fy), useless when discriminating
among features. A sharp distribution is useful with respect to estimat-
ing the target features with few estimates however this reduces recall.
We can use pmax(fy|ΦX(x)) to measure the performance of a phrase
table created from a distribution regardless of it is made sharper by
modifying its parameters. We optimize the λ using pmax(fy|ΦX(x))
to obtain phrase tables having sharper distributions and fewer phrase
table entries.

8.5 An Evaluation Metric for Translation Quality Before
Obtaining the Translations

We are interested in obtaining an evaluation metric for machine trans-
lation before actually performing decoding. The question we ask is
given as follows:

Can we estimate the performance of a machine translation
model without going through the computationally complex pro-
cess of decoding?

The answer is YES with the RegMT model, to some degree. We can
estimate the performance using the two measures that we de�ned:

� by looking at either the phrase table performance as measured by
pµ(T ) relative to the pµ(T ) value of the phrase table of a known
BLEU result, or

� by looking at the target sentence estimates obtained from the
learning model or the derived phrase table with the F1 measure
and comparing with a known result.

We compare the performance of both pµ(ΦY (y) | ΦX(x)) and F1

measures with respect to their correlation with the sentence level BLEU
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THE TRANSLATIONS

Corr with BLEU Sent Scores

Model pµ(ΦY (y) | ΦX(x)) F1 pµ(T ) F1 BLEU

Moses 0.5291 0.5102 0.3440 0.51 0.3021
L2 0.5186 0.5742 0.1020 0.36 0.2547
FSR 0.5718 0.6112 0.2616 0.47 0.2511
QP 0.5594 0.5963 0.2976 0.47 0.2296
logreg 0.5303 0.5488 0.2928 0.44 0.1900

Table 8.4: Phrase table performance scores and their Pearson's correlation coe�cient score with
sentence level BLEU scores of the translations obtained. F1 is obtained by using the weighted
precision and recall scores.

scores. Table 8.4 shows that a good performance in these measures
is highly correlated with sentence level BLEU performance but each
model is correlated with a di�erent correlation score. We obtain the
BLEU results for the learning models using Moses after replacing
the phrase table with the phrase table obtained from W following
section 8.3. We use weighted precision and recall values to obtain
weighted F1 score where the weight is the estimation itself. Note that
we use the probability values for the logreg model and Moses and
for others we use the estimate values themselves as the weights after
bounding their values in the range [0, 1].
We observe that both of these measures provide good estimations of

the BLEU performance at the sentence level as can be seen from the
second and third columns of Table 8.4. F1 correlates more with BLEU
than pµ(ΦY (y) | ΦX(x)) at the sentence level, reaching a correlation
of 0.61 using the translations obtained with FSR. When we look at
the fourth and �fth columns, we observe that the pµ(T ) score obtained
is less correlated with the BLEU scores obtained (corr=0.0588) than
F1 (corr=0.3186) at the model level. Therefore, F1 achieves better
correlation with BLEU than pµ(T ) and we can use it, to some degree,
to evaluate the translation quality before actually performing decod-
ing. We can also obtain a translation and optimize on weighted F1 to
achieve a better translation before the decoding step.
When we compare the performance of sparse regression results with

L2 regularized regression in Table 8.4, we observe that sparse regression
models achieve higher F1 score but close or lower BLEU score. When
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THE TRANSLATIONS

Model # entries # words # words per entry

Moses 23, 728 68, 684 2.89
L2 52, 780 162, 599 3.08
FSR 28, 979 80, 342 2.77
QP 52, 780 160, 190 3.04
logreg 29, 078 86, 805 2.98

Table 8.5: Phrase table comparison for various learning models by the number of entries, the
total number of words, and the average number of words in each entry.

creating the translation, other knowledge sources such as the language
model are also incorporated and having more target phrase entries
for each source phrase in the phrase table can compensate for lower
weighted F1 score and result with similar BLEU performance. We
cannot claim that this is due to L2 having higher weighted recall as
we see in Table 8.8 where FSR-lasso performs better than L2 in all
measures used.
We observe that using a phrase-based decoder like Moses, with hav-

ing more entries in the phrase table and caring less about the accuracy
of the phrase translation probabilities present in the phrase table, we
can still achieve similar BLEU with a model having higher weighted F1

score. If we have a decoder that has a performance close to optimal,
then recall can be a more important factor even though the phrase
translation probabilities of the entries are very low. With an opti-
mal decoder, recall is the important, which determines the vocabulary.
Therefore, having more entries in the phrase table can compensate
for worse prediction performance as we see with L2 regularized solu-
tion than having more accurate phrase translations as with the lasso
solution.
In Figure 8.1 we observe similar performance overall for lasso and

L2 and small improvement over L2 using lasso for small training set
sizes. In subsection 8.8.2, we show that with graph decoding on the
target feature prediction vectors, sparse regression can achieve better
performance than L2 regularized regression.
We compare the statistics of the phrase tables obtained in Table 8.5.

We give the number of entries, the total number of words, and the av-
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erage number of words in each entry of the phrase tables. The number
of words per entry is the sum of the number of words in the source and
the target phrase of each entry. We observe that FSR's phrase tables
are the closest to Moses' phrase tables among the di�erent learning
models' obtained phrase tables.

8.6 F1 Experiments

This section presents our experimental results when we use F1 as an
evaluation metric when predicting target features and when evaluating
the phrae table. We experiment with di�erent regression techniques
and learning models and compare their performance to FSR-lasso. We
show that FSR is able to identify features better than the other tech-
niques we compared while making less error. We �rst perform opti-
mization on the dev set to �nd the parameters of the learning models
that maximize F1 value (subsection 8.6.1). Then we interpret target
feature estimation as a classi�cation problem in subsection 8.6.2 esti-
mating the target features which are present rather than estimating
the values of the target features as in regression. We test our learning
models on the test set in subsection 8.6.3.

8.6.1 Optimization with F1

We compare the performance of L2 regularized ridge regression with
L1 regularized regression (lasso) as well as other regression techniques.
We use FSR when we use the term lasso. We also compare the re-
sults we obtain with support vector regression (SVR) using rbf (radial
basis functions) kernel and iterative thresholding (iter-ε) for L1 min-
imization (subsection 4.3.4). As classi�cation methods, we also use
logistic regression (logreg) and support vector classi�cation (SVC) to
determine target features.
We perform parameter optimization for the machine learning models

we use to estimate the target vector on the dev set. Table 8.6 lists
the feature thresholds found optimizing weighted F1 over dev. For
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Regression Classi�cation

L2 FSR QP iter-ε SVR logreg SVC Moses
F1 Threshold 0.2079 0.2599 0.236 0.9615 0.2195 0.0127 0.1201 0.2404

Table 8.6: Feature thresholds are optimized to maximize weighted F1 value over dev. For logreg
and SVC models, we use the probability of class 1 estimates for thresholding.

logreg and SVC models, we use the probability of class 1 estimates for
thresholding (section 8.2).
We also estimate the threshold for Moses by transforming the phrase

table to a prediction vector. For instance, in the individual translation
setting 2, we obtain target feature vector predictions for each test sen-
tence after transforming the phrase tables of individual Moses systems
to prediction vectors by appending the target phrase entries for each
source phrase one after the other. The ordering of the features is not
important when measuring the F1 score with respect to the reference
translation feature vector.
We obtain results on dev2 set using these feature thresholds. The

coverage as measured by the percentage of test bigrams found in the
training set is scov and tcov for source and target coverage (see sec-
tion 5.3 for details). We measure the scov and tcov values for dev2
when using 100 training instances per test sentence to be (1.0, 0.96),
(0.94, 0.74), and (0.97, 0.85) for 1-grams, 2-grams, and 1&2-grams re-
spectively. Table 8.7 presents the results on dev2, listing weighted
BER, precision, recall, and F1 (see section 8.2 for de�nitions) when
using 1-grams, 2-grams, or both. The reason for lower performance
with bigrams is likely to be due to lower counts of observing them in
the training set. Also, the presence of correlation between features in-
crease with increasing order of n-grams used due to increased overlap
with each other.
We compare the performance with individual Moses systems' phrase

tables obtained using maximum phrase length set to 2. We can eval-
uate a phrase table with the weighted F1 measure by �rst converting

2See subsection 5.4.3 for the description of individual translation models developed with Moses for each test

sentence.
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BER Prec Rec F1

1-grams
L2 0.41 0.55 0.43 0.48
lasso 0.37 0.71 0.51 0.59

SVR 0.35 0.52 0.41 0.46
iter-ε 0.37 0.37 0.68 0.48
logreg 0.72 0.71 0.50 0.59
SVC 0.42 0.54 0.37 0.44
Moses 0.52 0.76 0.48 0.59

2-grams
L2 0.48 0.37 0.13 0.19
lasso 0.47 0.64 0.22 0.32

SVR 0.44 0.34 0.14 0.19
iter-ε 0.50 0.34 0.08 0.13
logreg 0.80 0.52 0.19 0.28
SVC 0.48 0.35 0.12 0.17
Moses 0.70 0.35 0.22 0.27

1&2-grams
L2 0.43 0.55 0.29 0.38
lasso 0.41 0.68 0.36 0.47

SVR 0.39 0.53 0.25 0.34
iter-ε 0.43 0.38 0.48 0.42
logreg 0.76 0.71 0.33 0.45
SVC 0.43 0.56 0.23 0.32
Moses 0.53 0.65 0.45 0.53

Table 8.7: Comparison of learning models for the prediction of target features using weighted
scores on dev2 with 100 instances used for each test sentence using dice selection. Dimensions
are NX×NY ≈ 846.97×818.66 for 1-grams, 1678.63×1803.85 for 2-grams, and 2594.55×2684.58
for 1/2-grams. Thresholds used are given in Table 8.6.

it to a target estimate vector. We obtain Moses target vectors from
the target phrase table entries for each source test sentence feature
and optimize the threshold for achieving the maximum weighted F1

value on dev. This threshold is found to be 0.2404. Moses achieves
(1.0, 0.98), (0.90, 0.66), and (0.94, 0.92) coverage values for 1-grams, 2-
grams, and 1&2-grams. These coverage values are higher for 1-grams
and 1&2-grams, which is an indication that Moses retains only the
likely entries in the phrase table. The results on dev2 set are given in
Table 8.7 separated with lines.
FSR-lasso is able to achieve better performance than other learning
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techniques in terms of the weighted BER, precision, recall, and F1

values. logreg achieves similar F1 on 1-grams with worse BER score
but performs worse on 2-grams and 1&2-grams. This may be due to
the dependencies among di�erent higher order n-grams. An evaluation
with the logistic regression model shows that in the presence of many
correlated features, some relevant features may get very low or negative
correlations (Hastie et al., 2009, section 4.4.2). This may be a result of
using an iterative procedure such as iterative reweighted least squares
during the optimization of the weights (Hastie et al., 2009, section
4.4.1). As we have seen in subsection 4.3.1, setting ε to the magnitude
of the largest current correlation value eliminates features that are
correlated with the current feature. FSRε may be exempt from this
error appearing in the presence of correlated variables by making ε→ 0
changes in the coe�cient values at each iteration.
Our experiments with the QP solution to lasso shows that QP

achieves the same or close F1 score to FSR as we expected with slightly
lower precision and higher recall values. FSR achieves better perfor-
mance than other learning models using 1&2-grams where large num-
ber of correlated variables exist.
We observe that Moses performs better when using 1&2-grams but

performs worse with 2-grams. The decrease in the relative perfor-
mance with respect to Moses may be due to the presence of correlated
variables where consecutive bigrams are correlated and unigrams are
correlated to the their parent bigrams. We also note that Moses is per-
forming a word alignment step using GIZA++ (Och and Ney, 2003)
in both the directions from source to target and target to source and
combining these later on to obtain the phrases in the phrase table.
The RegMT results we present rely on a single modeling direction
from source features to target features and RegMT models the phrases
found in the training set features directly.
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8.6.2 Target Feature Estimation as Classi�cation

We can also interpret the feature mapping problem as a classi�cation
problem and estimate whether a feature exists in the target (class 1)
or not (class 0). We use logistic regression (logreg) and support vector
classi�cation (SVC) to determine the target feature for each feature of
the source test sentence. We build a separate classi�er for each target
feature fy ∈ FY and determine if it is a 1.
When the number of 1's is much smaller than the number of 0's in

the training set as we observe in our sparse learning setting, a classi�er
may tend to choose class 0 over class 1. In such cases, we need to
introduce some bias towards choosing 1's. Thresholding approach is
helpful in increasing the recall while maintaining a high precision value
to optimize the F1 measure. For the logreg and SVC classi�cation
models, we use the probability of class 1 estimates for thresholding.
The results on dev2 are given in Table 8.7 separated by a line. Our
interpretation of feature mapping as a classi�cation problem does not
give better results than regression but we achieve close results using
1-grams and logreg.

8.6.3 Regression Results on test

The regression results on test when using 100 training instances per
test sentence is given in Table 8.8. Source and target coverage values,
scov and tcov, are found to be (1.0, 0.97), (0.93, 0.76), and (0.96, 0.86)
for 1-grams, 2-grams, and 1&2-grams respectively. We observe simi-
lar performance of FSR compared to other learning models; however,
Moses achieves better performance when using both 1-grams or 1&2-
grams. The better performance in weighted F1 is re�ected to better
BLEU results as we see in section 8.5.
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BER Prec Rec F1

1-grams
L2 0.42 0.53 0.42 0.47
lasso 0.37 0.71 0.50 0.59

Moses 0.23 0.68 0.64 0.66
2-grams

L2 0.49 0.34 0.12 0.17
lasso 0.48 0.61 0.20 0.31

Moses 0.45 0.29 0.31 0.30
1/2-grams

L2 0.44 0.51 0.28 0.36
lasso 0.41 0.68 0.35 0.47

Moses 0.29 0.53 0.49 0.51

Table 8.8: Weighted F1 results on test with 100 training instances used for each test sentence
using dice selection. Dimensions are NX ×NY ≈ 867.39× 836.69 for 1-grams, 1833.67× 1949.94
for 2-grams, and 2657.03× 2744.96 for 1&2-grams.

8.7 RegMT for Word Alignment

This section presents results on the word alignment performance of
the RegMT model using various learning models. We expand upon
the example word alignment scenario of section 4.4 where we demon-
strate the superiority of sparse regression models in word alignment
and present experimental results on the word alignment task over the
test set.
We experiment with the de-en language pair on the test set using

only 1-gram features allowing multiple alignments. The dataset used
is described in section 8.1. For each source sentence token, we create
a source feature vector, ΦX(fx), which has a 1 for the given feature
and 0 for other features. Then we estimate the target feature vector
as follows:

ˆΦY (y) = WΦX(fx). (8.14)

We set the target features in ˆΦY (y) whose value is greater than
the optimized threshold value 3 as sure (S) alignments (following the
notation used in (Och and Ney, 2003)) and add these alignments to

3See subsection 8.6.1 about how we obtain feature thresholds optimizing the weighted F1 score.
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8.7. REGMT FOR WORD ALIGNMENT

the word alignment �le. Sure alignments correspond to unambiguous
alignments and we have retained only the sure alignments in the de-en
test alignment �le, which we have manually created.
We use the threshold values optimized for the weighted F1 measure,

which can create a large number of word alignments at the expense of
precision for some models. Alignment performance is measured by the
following metrics:

Aprecision =
|A ∩ P |
|A|

, Arecall =
|A ∩ S|
|S|

, (8.15)

AER = 1− |A ∩ S|+ |A ∩ P |
|A|+ |S|

, (8.16)

where A is the set of gold alignments, P corresponds to the possible
alignments including the sure alignments, and AER is the alignment
error rate, the lower the better. The results for de-en test set are
given in Table 8.9. We compare various learning models described
in subsection 8.6.1. We observe that FSR is able to achieve better
performance than other learning models we compared. However, Moses
achieves lower AER score than FSR, which is also re�ected in the
BLEU scores obtained in Table 8.4. Moses creates a phrase table
after pruning the possible alignments and merging them using some
heuristics. Pruning removes the connection between co-occurring but
unlikely to be aligned phrases. However, in the RegMT approach, we
retain all weights coming from the possible feature mappings in a given
W when estimating ŷ.
In the word alignment task, although L2 includes about 30% more

alignment links, it does not achieve higher Arecall than FSR. In line
with our previous �ndings in Table 8.7, QP achieves lower Aprecision
and slightly higher Arecall than FSR but QP achieves higher AER
than FSR. logreg, SVR, and SVC include signi�cantly more alignment
links and achieve higher Arecall but higher AER as well due to lower
Aprecision scores. Moses has the lowest number of alignment links and
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Model Aprecision Arecall AER # of links

L2 0.2653 0.2993 0.7188 1391
FSR 0.2808 0.3106 0.7050 1364
QP 0.2549 0.3277 0.7133 1585
iter-ε 0.0840 0.1906 0.8834 2799
SVR 0.0511 0.8832 0.9033 21300
logreg 0.0702 0.5620 0.8752 9871
SVC 0.0703 0.5296 0.8758 9286
Moses 0.3714 0.3268 0.6523 1085

Table 8.9: Word alignment performance on de-en test set. # of links lists the number of alignment
links found by di�erent algorithms.

achieves the best Aprecision, Arecall, and AER scores.
In Table 8.8, target feature prediction quality is measured using

all of the source features whereas in Table 8.9 individual alignment
performance is measured for each source token. If we have a decoder
that has a performance close to optimal, then recall can be a more
important factor.

8.8 Decoding

Regression is a well studied technique and suits well for learning align-
ment models. However, the learning framework that we use may be
simpler than phrase-based machine translation models, where a large
number of features in addition to the phrase translation probabilities
are used. Also, Moses is obtaining the phrase table after combining the
word alignments obtained in both the directions from source to tar-
get and target to source. RegMT relies on a single modeling direction
from source features to target features and models the phrases found
in the training set features directly. We describe the phrase table fea-
tures used in Moses in section 8.3. In this section, we present decoding
results using the Moses decoder and using the graph-based decoding
algorithm for generating the translation.
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8.8.1 Decoding Results with Moses

In our experiments, we compare the performance of lasso versus L2

after decoding and we measure the e�ect of the number of instances
used for training on the test set performance. We use dev set for tun-
ing the weights, which is constructed similarly as the test set. We per-
form individual Moses translation experiments for each test sentence
to compare the performance with replacing the phrase table with W.
For the de-en system, we built a Moses model with the default

settings including a maximum sentence length limit of 80 tokens and a
5-gram target language model where about 1.6 million sentences were
used for training and 1000 random development sentences including
dev used for tuning. We obtained 0.3422 BLEU score on test.
Individual translations: In the individual translation setting, the

training sets are composed of only the set of instances selected for each
test sentence and separate SMT models are built with Moses for each
sentence (subsection 5.4.3). Individual translation results are given in
Table 8.10. Individual SMT training and translation can be preferable
due to smaller computational costs and high parallelizability. As we
translate a single sentence with each SMT system, tuning weights be-
comes important and the variance of the weights learned can become
high in the individual setting. As we increase the training set size, we
observe that the performance gets closer to the Moses system using all
of the training corpus.

BLEU 100 250 500
≤ 2-grams 0.3021 0.3397 0.3357

Table 8.10: Individual Moses results with training instances selected individually for each source
test sentence.

Transductive RegMT W as the phrase table: The results
obtained when the coe�cients matrix obtained by RegMT is used as
the phrase table for Moses is given in Figure 8.1. Due to computational
limitations, we use the weights obtained for L2 to decode with FSR-
lasso phrase table and skip tuning for FSR-lasso. The learning curve
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Figure 8.1: de-en translation results using Moses decoder with RegMT W used as the phrase
table.

for increasing size of the training set is given in Figure 8.1.
We obtain lower performance with the L2 model when compared

with the individual translations obtained using Moses. lasso selects
few possible translations for a given source feature. The decrease in the
vocabulary and testing smaller target phrase possibilities may result in
lower performance although predictions with higher precision scores are
obtained as we observe in Table 8.8. The increased precision pays when
creating the translation from the bigrams found in the estimation with
graph decoding (subsection 8.8.2). We observe similar learning curves
both with graph decoding and decoding using Moses. RegMT model
may need a larger training set size for achieving better performance
when the learned mappings are used as the phrase table. We are able
to achieve the Moses performance using 100 training instances with 500
training instances when decoding with Moses using W as the phrase
table. RegMT model is good in estimating the target features but has
di�culty in correctly �nding the target sentence when using the Moses
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decoder. Moses achieves higher F1 score than lasso and this is likely
to be due to achieving higher recall on the test set (Table 8.8).

8.8.2 Graph Decoding Experiments

We demonstrate machine translation results using graph decoding on
the German-English test set as well as in a constrained translation do-
main from Spanish to English (es-en) using the categorized EuTrans
corpus (Serrano et al., 2009) containing low vocabulary hotel front desk
requests. The corpus provides a more restricted translation environ-
ment for decoding and contains 9000 training, 1000 development, and
3000 test sentences.
We perform graph-based decoding by �rst generating a De Bruijn

graph (Cortes et al., 2007) from the predicted features of y, WΦX(x),
and then �nding Eulerian paths with maximum path weight. We
use four features when scoring paths: (1) estimation weight from re-
gression, (2) language model score, (3) brevity penalty as found by
eα(lR−|s|/|path|) for lR representing the length ratio from the parallel
training sentences and |path| representing the length of the current
path, (4) future cost as in Moses (Koehn et al., 2007) and weights are
tuned using MERT (Och, 2003) on the de-en dev set.
Regression results for de-en with increasing training data size, m,

can be seen in Figure 8.2 where 2-grams are used for decoding. We see
a large BLEU gain of lasso over L2 in our transductive learning setting
although the performance is lower than Moses.
In the es-en translation task, Moses achieves 0.9340 BLEU on the

test set using all of the training data. Regression results for increasing
training set size can be seen in Figure 8.3 where 1&2-grams are used for
decoding. The red line corresponds to the Moses baseline. We see that
lasso performs better than L2 in the beginning when we use smaller
number of training instances but it performs worse as the training set
size increase. These results are comparable to previous work (Serrano
et al., 2009).
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Figure 8.2: de-en translation results with graph decoding for increasing training data size, m,
using 2-grams.

We demonstrate that sparse L1 regularized regression performs bet-
ter than L2 regularized regression in the de-en translation task and
in the es-en translation task when using small sized training sets,
m ≤ 100. Graph based decoding can provide an alternative to state
of the art phrase-based decoding system Moses in translation domains
having low vocabulary.

8.9 Contributions

We use transductive regression techniques to learn mappings between
source and target features of given parallel training sentences and use
these mappings to generate machine translation outputs. The results
show the e�ectiveness of using L1 regularization versus L2 used in
ridge regression. We show that L1 regularized regression performs
better than L2 regularized regression in the target features prediction
measurements, in word alignment, and in the translation experiments
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Figure 8.3: es-en translation results with graph decoding for increasing training data size, m,
using 1&2-grams.

using graph decoding. We present encouraging results when translating
from German to English and Spanish to English.
We also demonstrate results when the phrase table of a phrase-based

decoder is replaced with the mappings we �nd with the regression
model. When we use Moses to decode, we observe that RegMT model
achieves lower performance than Moses system built individually for
each test sentence. RegMT model may need a larger training set size
for achieving better performance when the mappings are used as the
phrase table. RegMT model is good in estimating the target features
but has di�culty in correctly �nding the target sentence when Moses is
used as the decoder. Moses achieves higher F1 score than lasso due to
achieving higher recall on the test set (Table 8.8) and higher F1 score
results with higher BLEU performance.
We use F1 measure for evaluating the performance before performing

decoding. F1 performs better than BLEU when translating into En-
glish according to an evaluation by human judgments at WMT'11 (Callison-
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Burch et al., 2011). F1 allows us to evaluate the performance of the
RegMT model using the target feature prediction vectors or the coe�-
cients matrices learned or an SMT model using its phrase table without
performing the decoding step.
Using the Moses decoder, we observe that we can achieve similar

BLEU performance comparing a model having higher weighted F1

score with a model having more entries in its phrase table increas-
ing the recall but with less accurate entries decreasing the precision. If
we have a decoder that has a performance close to optimal, then recall
can be a more important factor even though the phrase translation
probabilities of the entries are very low.
With an optimal decoder, recall becomes important, which deter-

mines the vocabulary. Therefore, having more entries in the phrase
table can compensate for worse prediction performance than having
more accurate phrase translations as we observe when we compare the
L2 regularized solution with the lasso solution.
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Chapter 9

Conclusion

This thesis is about the regression based machine translation (RegMT),
which provides a learning framework for machine translation, separat-
ing learning models for training, training instance selection, feature
representation, and decoding. We investigate techniques for making
the RegMT model computationally more scalable and more practical
by using transductive learning for training, by developing better train-
ing instance selection techniques, by building better regression models
that �ts the sparse nature of the translation problem, by creating trans-
lation performance evaluation metrics for our learning approach, and
by developing decoding alternatives including graph decoding using the
target feature prediction vectors obtained with the regression model.
We use L2 regularized regression and sparse regression techniques

including L1 regularized regression to predict the target features for
given input source features. We develop better training instance se-
lection techniques than previous work from given parallel training sen-
tences for achieving more accurate RegMT models using less training
instances. We use graph decoding on the prediction vectors represented
in n-gram or word sequence counts space found in the training set.
Graph based decoding can provide an alternative to phrase-based de-
coding in translation domains having low vocabulary. We also decode
using Moses after transforming the learned weight matrix representing
the mappings between source and target features to a phrase table.
Our results demonstrate that RegMT is useful forN -best list rerank-
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ing and in online SMT. We develop training instance selection algo-
rithms that not only make RegMT computationally scalable but also
improve the performance of standard SMT systems. We introduce
L1 regularized regression as a better model than L2 regularized regres-
sion for statistical machine translation. We show that sparse regression
models are better than L2 regularized regression for statistical machine
translation in predicting target features, estimating word alignments,
creating phrase tables, and generating translation outputs.
We use F1 measure, which performs good when evaluating trans-

lations into English according to human judgments. F1 allows us to
evaluate the performance of the RegMT model using the target fea-
ture prediction vectors or the coe�cients matrices learned or an SMT
model using its phrase table without performing the decoding step.

9.1 Research Contributions

We review and list our research contributions and �ndings including:

� RegMT is useful for reranking: We show that regression map-
ping score is e�ective in reranking translation outputs and in se-
lecting the best system combinations with encouraging results on
di�erent language pairs. We obtain statistically signi�cant im-
provements over the baseline SMT system by reranking the N -best
lists generated by it. N -best list reranking in SMT can be used
for demonstrating the usefulness of models.

� RegMT is useful in online SMT: Online SMT receives test
source sentences one by one and generates a translation for each
instance, which can be modeled with the reranking approach given
an N -best list. We describe the competitive statistical machine
translation (CSMT) problem where we try to select the best trans-
lator among competing statistical machine translators and provide
a solution using RegMT. The competitive predictor assigns a prob-
ability per model weighted by the sequential performance. We de-
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�ne additive, multiplicative, and loss-based weight updates with
exponential loss functions using the RegMT scores as the basis
for evaluation at each instance. Without any pre-knowledge of
the performance of the translation models, we have been able to
achieve the performance of the best model in all translation ex-
periments and we are able to surpass its performance as well as
RegMT's performance with some of the weight update models we
considered.

� Training Instance Selection Techniques: Proper selection of
training instances plays an important role to learn feature map-
pings with limited computational resources accurately. RegMT
uses training instance selection techniques to reduce the computa-
tional demand and to increase the relevancy of the training data.
The instance selection algorithms we developed not only make
RegMT computationally more scalable but also improve the per-
formance of standard SMT systems.

� High coverage → High BLEU: We show that target feature
coverage (percentage of test features found in the training set)
and BLEU (Papineni et al., 2001) performance are correlated.

� Training on a small subset of the parallel corpora is enough:
We show that selecting the best 3000 training sentences for
each test sentence is su�cient to reach the baseline perfor-
mance or using 5% of the training data relevant to the test set
is su�cient to exceed the baseline SMT model performance.

� We focus on the relevancy of the training data used rather than
the number of training instances they contain: Increased num-
ber of parallel training sentences size may increase the chance
of �nding a good match for a test source sentence but it need
not lead to better translations.

� Sparse RegMT: We use sparse regression models for statisti-
cal machine translation and compare the performance with other

136



9.1. RESEARCH CONTRIBUTIONS

learning models. We show that sparse regression models (i.e. L1

regularized regression or lasso) are better than L2 regularized re-
gression for statistical machine translation:

� lasso is better than other learning models in predicting target
features: When predicting target features, lasso achieves better
performance than the other learning models we compared in
terms of weighted BER, precision, recall, and F1 values.

� RegMT is useful in word alignment: We demonstrate on the
test set that L1 performs better than L2 in the word alignment
task in terms of alignment links precision, recall, and AER.
We also demonstrate that L1 is better than L2 in the word
alignment task on an example word alignment scenario.

� F1 is a good measure for performance evaluation: F1 performs
good when evaluating translations into English according to an
evaluation by human judgments in WMT'11 (Callison-Burch
et al., 2011).

� F1 can evaluate the performance before decoding: We use F1

measure for evaluating the performance before performing de-
coding. F1 allows us to evaluate the performance of the RegMT
model using the target feature prediction vectors or the coe�-
cients matrices learned or an SMT model using its phrase table
without performing the decoding step.

� Decoding with RegMT:We performed RegMT decoding exper-
iments both with graph decoding and with a phrase-based decoder,
Moses (Koehn et al., 2007). We demonstrate that sparse L1 reg-
ularized regression performs better than L2 regularized regression
in the German-English translation task and in the Spanish-English
translation task when using small sized training sets, (m ≤ 100).
Given the same training data, Moses achieves better BLEU perfor-
mance than decoding with Moses using the phrase tables generated
with the RegMT coe�cients matrices. Graph based decoding can
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provide an alternative to phrase-based decoding in translation do-
mains having low vocabulary.

9.2 Future Work

Our new instance selection techniques can be useful for reducing the
time and e�ort for deploying time critical SMT systems. We have
observed that a couple of thousand training instances for each test
sentence is enough to achieve a translation performance close to us-
ing the full training set. The experimental result we obtained can be
helpful in developing machine translation systems in disaster and crisis
situations (Lewis et al., 2011).
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Appendix A

Linear Regression Model and Least

Squares Estimation

The linear prediction problem for multinomial distributions is given in
the following setting. Given a sequence of observations, xi = (x1, . . . , xi)
and their previous outcomes, yi−1 = (y1, . . . , yi−1), the observer pre-
dicts yi for i = 1, . . . , n. Let T = {(x1, y1), . . . , (xm, ym)} be the
training set for the prediction problem, where x = (x1, . . . , xm)T and
y = (y1, . . . , ym)T . In a linear multinomial regression setting, the lin-
ear interpolation function g(xi) of model order i gives the estimate of
the corresponding yi:

g(xi) = <w,xi> = wTxi = ŷi. (A.1)

When xi ∈ Rn, g(xi) corresponds to a hyperplane. Therefore, the
learning problem is choosing w that minimizes the di�erence between
the estimated ŷi for yi for all i = 1, . . . ,m.
The cumulative sum of squared error or loss of a regressor g with

model order p can be de�ned as:

L(g, T ) = L(wp, T ) =
m∑
i=1

(yi − g(xip))
2 =

m∑
i=1

(yi − ŷi)2, (A.2)

where ŷi is the estimated value for yi and xip = (xi−p+1, . . . , xi) for pth

order regressor wp. The learning problem now boils down to choosing
wp that minimizes this cumulative squared error.
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When yi is not a linear combination of wp, i.e. yi is not an element
of R(wp), where R(wp) is the range space of wp, then:

yi = wT
p x

i
p + εi, (A.3)

and the error becomes:

εi = yi −wT
p x

i
p. (A.4)

If we assume that the error is normally distributed:

p(y|xip,wp, σ
2) = N (y|wT

p x
i
p, σ

2). (A.5)

Note that assuming the normality of this error with variance σ2 and
zero mean implies that the distribution of y given x is unimodal. For
the whole training set, the likelihood becomes:

p(y|x,wp, σ
2) =

m∏
i=1

N (yi|wT
p x

i
p, σ

2) (A.6)

=
m∏
i=1

1

2πσ2 exp(− 1

2σ2 (yi −wT
p x

i
p)

2). (A.7)

The maximum likelihood ŵp becomes:

ŵp = arg max
wp

p(y|x,wp, σ
2) = arg max

wp

log p(y|x,wp, σ
2) (A.8)

log p(y|x,wp, σ
2) =

m∑
i=1

logN (yi|wT
p x

i
p, σ

2) (A.9)

= −m
2

log(2πσ2)− 1

2σ2

m∑
i=1

(yi −wT
p x

i
p)

2(A.10)

We can �nd take the derivative of the log likelihood function and set
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it to zero to �nd ŵp:

∇ log p(y|x,wp, σ
2) = 0 =

1

σ2

m∑
i=1

(yi − ŵT
p x

i
p)x

i
p
T
,

m∑
i=1

yix
i
p
T

=
m∑
i=1

ŵT
p x

i
px

i
p
T
,

yTXp = ŵT
pXpXp

T ,

XT
p y = XpXp

T ŵp,

ŵp = (XpXp
T )−1XT

p y, (A.11)

where Xp = [x1
p
T
, . . . ,xmp

T ]. Equation A.11 is known as the normal
equations for the least squares. Therefore, the maximum likelihood
estimate of w is the same as the least squares solution to the problem.
In the multivariate regression model, each xi is a vector, forming

X = (x1, . . . ,xm)T and our system of linear equations becomes:

y = Xw+ εεε, (A.12)

and the error vector can be de�ned as:

εεε = y−Xw. (A.13)

The loss function, L(w, T ) can be written as follows:

L(w, T ) = ‖εεε‖2= (y−Xw)T (y−Xw). (A.14)

By taking the derivative of the loss function with respect to w and
setting it equal to zero, we obtain the normal equations :

XTXw = XTy (A.15)

which leads to the following solution assuming that the matrix XTX
is invertible:

ŵ = (XTX)−1XTy. (A.16)

The inverse operation is approximately cubic in the number of equa-
tions, thus �nding ŵ is in O(n3), when X is m by n.
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When y 6∈ R(X) then the least squares solution, ŵ is the one that
minimizes the error. Therefore,

‖ y−Xŵ ‖2 ≤ ‖ y−Xw ‖2 (A.17)

for all w ∈ Rn (Kailath et al., 2000). If y ∈ R(X) then ŵ will be an
exact solution but there can be other solutions if X is not full rank.
We can also use di�erent regressors to estimate a multivariate target,

y. When each wi is a vector of length n, formingW = (w1, . . . ,wm)T ,
we can represent the least squares estimation problem similarly, where
we are trying to �nd an x that is closest to y that satis�es the following
equation:

Wx ∼= y, (A.18)

where ∼= corresponds to the inconsistency, which is a result of y /∈
R(W). There will be many solutions when W is not full rank.
When we are given a set of multivariate targets, yi, for i = 1, . . . ,m,

the least squares regression problem becomes solving the following sys-
tem of linear equations:

Y = WX+V. (A.19)

V represents the error matrix. After taking the derivative of the cost
function, L(W) = ‖Y−WX‖2, with respect to W and zetting it to
zero, we obtain the least squares solution:

(Y−WX)XT = 0 (A.20)

WXXT = YXT (A.21)

W = YXT (XXT )−1 (A.22)

The training error of a model as found by the loss obtained with
the learned model will be an optimistic estimate of the error obtained
on the test set (Hastie et al., 2009). Mallows Cp statistic estimates
the prediction risk for a model by the sum of the lack of �t and the
complexity penalty and this statistic yields the same results with cross-
validation for the linear regression task (Wasserman, 2004).
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A.1. REGULARIZED LEAST SQUARES AND DUAL REPRESENTATION

A.1 Regularized Least Squares and Dual Representation

Regularized least squares is also known as ridge regression. The loss
function is de�ned as follows:

Lλ(w, T ) =
m∑
i=1

(yi − g(xi))
2 + λ ‖w‖2 (A.23)

where λ ≥ 0.

Proposition 2. The solution to the cost function given in Equa-
tion A.23 can be found by the following identities:

w = (XTX+ λIn)
−1XTy (primal)

w = XT (XXT + λλλIm)−1y (dual)
(A.24)

Proof. We follow a derivation close to the one found in (Taylor and
Cristianini (2004), section 2.2.2). By taking the derivative with respect
to w and setting the resulting equation to zero, we obtain:

XTXw+ λw = (XTX+ λIn)w = XTy, (A.25)

where In is the identity matrix of size n. If λ > 0, then (XTX + λIn)
is always invertible:

w = (XTX+ λIn)
−1XTy (A.26)

Equation A.26 is known as the primal solution. The complexity of
�nding w is still in O(n3). By dividing Equation A.25 by λ, we can
obtain the following:

w = λ−1XT (y−Xw) = XTβββ, (A.27)

where βββ = λ−1(y−Xw). Thus,

λβββ = (y−XXTβββ) (A.28)

(XXT + λIm)βββ = y (A.29)

βββ = (G+ λλλIm)−1y (A.30)
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where G = XXT is the Gram matrix, which is an m ×m symmetric
matrix with:

Gi,j = φ(xi)
Tφ(xj) = k(xi,xj) (A.31)

where k(x, y) is the kernel function de�ned as:

k(x, y) = φ(x)Tφ(y). (A.32)

The complexity of solving for βββ is in O(m3). Equation A.30 is known
as the dual solution.

The prediction function becomes:

g(x) = <w,x> = yT (G+ λλλIm)−1Xx = yT (G+ λλλIm)−1k, (A.33)

where ki = <xi,x>. If the feature space size n is larger than the number
of training examples m, then it is computationally less costly to use
the dual solution. In the dual representation, the least-squares solution
is found entirely by the kernel function k(x,y).
We can also �nd the dual representation by using the matrix in-

version lemma, which is a very useful matrix identity (Kailath et al.,
2000):

Lemma 3 (Matrix Inversion). For any given matrices, A, B, C, and
D:

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1 (A.34)

If C is not invertible, the following can be used:

(A+BCD)−1 = A−1 −A−1B(I+CDA−1B)−1CDA−1 (A.35)

We can invert the primal solution given in Equation A.26 by using
the matrix inversion lemma to obtain the dual solution:

w = (XTX+ λIn)
−1XTy

=
[
λ−1In − λ−1XT (Im + λ−1XXT )−1λ−1X

]
XTy

=
[
λ−1XT − λ−1XT (Im + λ−1XXT )−1λ−1XXT

]
y

=
[
λ−1XT − λ−1XT (Im + λ−1XXT )−1(−Im + Im + λ−1XXT )

]
y

=
[
λ−1XT + λ−1XT (Im + λ−1XXT )−1 − λ−1XT )

]
y

= XT (λIm +XXT )−1y (A.36)
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A.2 Stochastic Least Squares Estimation

In this section, we follow the discussion in (Kailath et al., 2000).
Stochastic estimation seeks to �nd an estimate, ŷ of a random variable
y that is dependent on some other random variable x by using an
estimator h(x), which is optimal based on some criteria. For example,
the optimal least mean squares estimator of y given x is E[y|x], which
becomes E[y] when y and x are independent. The expectation of the
conditional requires the knowledge of the joint distribution of y and x.
When h(.) is a linear estimator we only need the �rst (E[y], E[x])

and the second order (cov(y,x) = E[yxT ] = Ryx, var(y,y) = E[yyT ] =
Ry, var(x,x) = E[xxT ] = Rx) statistics to estimate y. The optimal
linear least mean squares estimator (LLMSE) theorem is given as the
following (Kailath et al., 2000):

Theorem 4 (Optimal Linear Least Mean Squares Estimators). The
LLMS estimator of the zero mean random variable y given the zero
mean random variable x is found by the normal equations:

ŴRy = Rxy (A.37)

where Ŵ is the optimal coe�cients matrix. The corresponding mini-
mum mean square error (MMSE) is given by:

P(Ŵ) = Ry − ŴRxy = Ry −RyxŴ
T

(A.38)

where P(Ŵ) , E[eeT ] and the error is de�ned as e = y− ŷ.
Proof. We are seeking Ŵ such that P(Ŵ) ≤ P(W) for all W. If
we follow a geometric approach, then e ⊥ x and therefore E[exT ] =
〈e,x〉 = 0 for a generalized inner product de�ned as 〈a,b〉 = E[a,bT ]
for two given vectors a and b.

E[exT ] = E[(y− Ŵx)xT ] = 0

E[yxT ] = ŴE[xxT ]

Ryx = ŴRx

Ŵ = RyxR
−1
x (A.39)
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The corresponding MMSE becomes:

P(Ŵ) = E[(y− ŷ)(y− ŷ)T ] = E[(y− ŷ)yT − (y− ŷ)ŷT ]

= E[(y− Ŵx)yT since 〈y− ŷ, ŷ〉 = 0

= Ry − ŴRxy (A.40)

Kailath et al. (2000) show that stochastic least squares estimation
and the deterministic least squares estimation learning settings that
we discussed earlier are equivalent or dual.
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Appendix B

Statistical Signi�cance Testing of

Results

For small sized test sets, comparing the performance of two di�erent
SMT systems can pose a challenge especially when their performance
di�erence is small. Even when the di�erence may seem large, we are
still interested whether the di�erence is signi�cant enough to say that
one is better than the other.
Con�dence interval speci�es an interval of values that contain the

true value with a high probability, where the width of the con�dence in-
terval determines the accuracy for the estimate (Leon-Garcia, 1994). Koehn
(2004) evaluates statistical signi�cance tests for machine translation
performance. For N sentences, X = {x1, . . . ,xN}, sample mean and
variance of sentence scores, {f(x1), . . . , f(xN)}, where f(·) is a scoring
function are found as follows:

x̄ =
1

N

n∑
i=1

f(xi), (B.1)

s2 =
1

N − 1

N∑
i=1

(f(xi)− x̄)2. (B.2)

We are interested in �nding a con�dence interval, [x̄− t s√
N
, x̄+ t s√

N
],

where the value for t is found by the Student's t-distribution for N −1
degrees of freedom with con�dence level α. Thus, the true score lies in
the interval with probability 1−α or for µ representing the true mean
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of the scores:

P (x̄− t s√
N
≤ µ ≤ x̄+ t

s√
N

) = 1− α. (B.3)

Bootstrap resampling method randomly samples from a given test
set with replacement multiple times. Given N data points, X =
{x1, . . . ,xN}, a new dataset Xb is created by randomly selecting N
instances from X with replacement, where Xb may have repeated or
missing instances (Bishop, 2006). This is repeated B times to produce
X1, . . . ,XB, which are then used to examine the behavior of any quan-
tity computed from Xb (i.e. the mean X̄b) (Hastie et al., 2009). In
machine translation evaluation, BLEU scores of each bootstrap sample
are calculated to estimate the true BLEU score of the system within
the con�dence interval for given con�dence level. Usually, 95% con-
�dence interval (0.95 con�dence level) is used where α = 0.05. Let
the function BLEUS(·) return the BLEU score of the translation of a
dataset generated by system S for which the reference is known, then
we can calculate the interval by using the following statistics:

X̄ =
1

B

B∑
i=1

BLEUS(Xi), (B.4)

s2 =
1

B − 1

B∑
i=1

(BLEUS(Xi)− X̄)2, (B.5)

1− α = P (X̄ − t s√
B
≤ µ ≤ X̄ + t

s√
B

). (B.6)

Paired bootstrap resampling (Koehn, 2004) uses bootstrap resam-
pling to create virtual test sets to estimate which of the two trans-
lation systems, S1 or S2, perform better by counting the number of
times one is better than the other with the given con�dence level. We
can estimate the con�dence interval by measuring the BLEU score dif-
ferences over the bootstrap datasets and if the left boundary of the
con�dence interval is greater than zero, accept that the improvement
is statistically signi�cant (Macherey and Och, 2007). This is equivalent
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to saying that the mean value, 0, for the null hypothesis, which claims
that the two systems are not di�erent, is in the con�dence interval.
Therefore, at this con�dence level, the two systems are not di�erent.
Paired t-test can be used to test the null hypothesis and learn the

con�dence level of the test where the null hypothesis is given as follows:

H0: �S1 and S2 have exactly the same performance�.

We calculate the following t-statistic and compare with the value from
the t-distribution table corresponding to the desired level of signi�-
cance (Wasserman, 2004):

∆̄ =
1

N

N∑
i=1

∆i =
1

N

N∑
i=1

(BLEUS1
(Xi)−BLEUS2

(Xi)), (B.7)

s2 =
1

B − 1

B∑
i=1

(∆i − ∆̄)2, (B.8)

t̂ =
∆̄−∆0

s/
√
B
, (B.9)

where ∆0 stands for the ∆ for H0, which is zero and we have B − 1
degrees of freedom. If t̂ is greater than the tabulated value for the
level of signi�cance chosen (i.e. α = 0.05) for t-distribution, then we
accept that the di�erence between the two systems is signi�cant. The
smallest con�dence level α that rejects H0 is called the p-value, since
for all α′ > α, the hypothesis will be rejected (Wasserman, 2004). By
calculating t̂, we can �nd the p-value for the null hypothesis from the
distribution of t, which is also reported for statistical signi�cance tests.
A p-value less than 0.05 is considered to be strong evidence againstH0.
We can use paired t-test to compare the performance at the sentence

level. However, BLEU score may not be informative at the sentence
level as most of the higher order n-grams will not �nd a correspond-
ing match. Other evaluation metrics can be more useful for sentence
by sentence comparison. Bootstrap resampling methods infer statis-
tics from the samples with a cost of reduced accuracy and other test
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Algorithm 4: Approximate randomization test for comparing two systems.

c = 0 ;1

Let S1's and S2's output be X
1 = {x1

1, . . . ,x
1
N} and2

X2 = {x2
1, . . . ,x

2
N} respectively ;

Let d = |f(X1)− f(X2)| be the initial score di�erence using the3

scoring function f(·) ;
for r ← 1 to R do4

X1
r = {} ; X2

r = {} ; // Shu�ed datasets5

for i← 1 to N do6

rand = random(0, 1) ; // Random number in range [0, 1]7

if rand > 0.5 then8

X1
r[i] = X1[i] ;9

X2
r[i] = X2[i] ;10

else11

X1
r[i] = X2[i] ;12

X2
r[i] = X1[i] ;13

if |f(X1
r)− f(X2

r)| > d then14

c = c+ 1 ;15

p = c+1
R+1 ;16

statistics such as the approximate randomization test may measure the
statistical signi�cance of the di�erence better (Riezler and Maxwell,
2005).
Approximate randomization test shu�es the labels of the instances

(i.e. which system they are produced by) to test the con�dence level of
H0. Approximate randomization tests only some of the permutations
since full randomization requires 2N permutations for N scores. The
p-value is found by c+1

R+1 , where c is the number tests that pass and R
is the number of randomized tests (Riezler and Maxwell, 2005). The
pseudocode is given in Algorithm 4.
The more the number of samples selected and their relative size, the

better the estimates would be. Therefore, we try to optimize both with
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the amount of computation time we have.
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