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ABSTRACT

In this study, we state the principal Stark conjecture by defining Stark regula-
tor which is an analogue of the regulator appearing in the Dirichlet Class Number
Formula. The conjecture is independent of a choice of a set of places and a certain
isomorphism of Q[G]-modules. We state Stark’s refinement of this conjecture (‘over
Z’) for abelian L-functions with simple zeros at s = 0. This refinement predicts the
existence of Stark units and we explain that the field generated over a totally real
field £ by the Stark units provides an answer to Hilbert’s twelfth problem. We also
express John Tate’s reformulation for this refinement. Then, we give proofs of the
conjecture in some simple cases and Stark’s computational verification of the conjec-
ture in a specific case. In the last chapter, we state the Rubin-Stark conjecture which
is an extension of this conjecture which includes the case of abelian L-functions with
higher order zeros at s = 0. We end by giving proofs of the conjecture in some cases

and showing its relations between the Stark conjecture.



OZET

Bu ¢aligmada, ilk 6nce Stark regiilatorlerini tanimlayarak, Stark varsayimini gosteriyoruz.
Daha sonra, bu varsayimin degismeli L-fonksiyonlarimin s = 0 da tek sifirli oldugu
durumlar i¢in verilmis varsayimini gosteriyoruz ve bu varsayimin 6zel bir durum igin
Hilbert’in 12. problemine ¢6ziim sundugunu gosteriyoruz. En son kisim da ise Ru-

bin’in bu varsayimi genislettigi durumu inceliyoruz.
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1 Introduction

Number theorists have been studying the fundamental interactions between the
analytic and algebraic points of view. One of these interactions, probably the most
crucial one, is the relationship between Dirichlet zeta function (x(s) of a number field
k and the invariants of k. When k£ = Q the Dedekind zeta function is exactly the
same as the Riemann zeta function (g(s) which also attracts mathematicians due to
the relation between its zeros and the distribution of prime numbers.

Dirichlet proved the celebrated class number formula, which gives a formula for
the residue of (i (s) at s = 1:

lim(s — 1) - Gu(s) = Resyy(Ge(s)) = 22 1t

s—1 \/W e

where 7 is the number of real and r5 is the number of complex places in k, dj, is the
discriminant, R is the regulator, h is the class number, e is the number of roots of
unity in k. The regulator R is the determinant of (r; + 7o — 1)-dimensional square
matrix whose entiries are logarithms of the archimedean valuations of global units
belonging to k. By using functional equation of the zeta function, Dirichlet also
proved that the leading term of the Taylor expansion of the zeta function at s = 0 is:

hR
: 1—ri—rg _

(&

In the 1970’s, Stark gave the conjectural generalization of the above Dirichlet
class number formula in the context of Artin L-functions. The Stark conjectures
predict that the leading coefficient of an Artin L-function is the product of a type of
the Stark regulator with an algebraic number. The Stark regulator is similar to the
classical regulator as a determinant of global units.

In the case of abelian extension, Stark gave a refinement for the case of L-function
with simple zero at s = 0. Stark’s refined conjecture predicts the existence of the
Stark units such that specific linear combinations of its archimedean valuations give

the values of the derivatives of L-functions at s = 0.



Kronecker-Weber theorem states that every finite abelian extension of QQ is a
subfield of cyclotomic field. Hilbert’s twelfth problem is an extension of Kronecker-
Weber theorem which states that every finite abelian extension of Q is a subfield of
cyclotomic field. In his twelwe problem, Hilbert suggested that any abelian extension
of any base number field could be constructed via special values of complex analytic
functions. In the case of totally real base field &, the field extension generated over k
by the Stark units contains the maximal abelian extension of k. Thus, this provides
an answer to Hilbert’s twelfth problem.

In the 1990’s, Rubin formulated an extension of this refinement of Stark conjecture
which includes the case of the abelian L-function with multiple zeros at s = 0.

We begin this thesis by defining Artin L-functions and giving its properties. Then,
we state the non-abelian Stark conjecture by defining Stark regulator. After, we prove
that the Stark conjecture is true for L-functions with r(x) = 1 over Q and r(x) =0
where r(x) is the degree of vanishing of the relevant L-function at s = 0. Then, we
give the refinement, noted above, for abelian L-functions with simple zeros at s = 0.
We also provide an example of the abelian conjecture for a specific cubic base field
k. Then, we show that for a specific case this refinement provides an answer for
Hilbert’s twelfth problem. We also state the Tate’s reformulation of this refinement.
Finally, we finish by stating Rubin’s extension for the refined Stark Conjecture of

abelian L-functions with multiple zeros at s = 0.



2 Some Notations and Definitions

In this thesis, the symbol k& will denote an algebraic number field; that is, a finite
extension of Q and K/k will denote a finite Galois extension of k& with Galois group
G = Gal(K/k). The group of roots of unity in k is denoted p(k) and the number of
roots of unity in £ is denoted ey.

The set S will denote the set of infinite (archimedean) places in k and the set S
will be any finite set of places including all infinite places of k. We use the notations
p,q,... for finite (non-archimedean) places and v, v, ... for general (archimedean or
non-archimedean) places in S. The set Sk will be the set of places of K lying above
the places in the set S. We write p for a place of K lying above the place p and we
write w,w’, . .. for places of K lying above the places v, v, ... of k.

The completions of the fields K and k will be denoted k,, K, ky, Ky, ... with
respect to the places p, p, v, w,.... If w is a place of K lying above v, then the degree
of local extension K, /k, is denoted [w : v]. The ring of integers of k will be denoted
Oy, or simply O and the group of fractional ideals of O will be denoted I.

For a place v of k the associated normalized valuation | - |, on k is defined by
0], = 0 and, for = € k*:

(
(Np)—orde(@) if v = p is a finite place

||y = q |z = = if v is a real place

xT if v is a complex place
\

where ord,(z) := ord,(xOy) is the exponent of p in the prime ideal decomposition of
2Oy and where Np is the size of the finite field Oy /p.

With these normalized valuations, the product formula can be written as

[Tzl =1

where the product is taken over all places of k, [Neu, IV.-§1.]. Furthermore, if w is a

place in K lying above the place v in k then, for u € k,, we have the equality
[l = uly™.
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When K/k is a Galois extension, for z € K and ¢ € GG, we have
|27 g = |-

The S-integers Og is defined by

Og={zr €k:xz €0, forall places of k with p ¢ S} (2.1)
=)0 (2.2)
pES

where O, = {z € k : [z|, < 1}.

The group of fractional ideals of Qg is called the ideal group of Og and is denoted
by I(Og). The collection of all principal fractional ideals of Og forms a subgroup
in 1(Og) which is denoted by P(Og). The size of the ideal class group Cl(Og) =
I(Og)/P(Og) of the Dedekind ring Og is denoted by hy g or, simply hg. When
S = S, we denote the size of the ideal class group by hy. [Jan, [-4.].

If K/k is a Galois extension and p is a finite place of k, p splits in K into a product

and efr = [K : k|, where f = f(p;/p) is the degree of residue class field extension
and the integer e = e(gp;/p) is called the ramification index of p.

If e > 1, then we say that @ is ramified over p or p is ramified in K/k . If e =1
then we say that p is unramified in K/k.

The real place v € k is ramified in K/k if and only if there is a complex place of
K lying above the place v, because in this case e(w|v) = 2. On the other hand, the
complex place v € k is always unramified in K/k.

If there is a unique prime ideal p lying above p (so r=1 ) and the relative degree
f(plp) = 1, then we say that p is totally ramified in K/k. In this case, e(p|p) = [K

If e(p|p) = f(p|p) = 1, then we say that p is totally split (or splits completely) in
K /k. Notice that there are exactly r = [K : k] prime ideals of Ok lying above p.

For each place v of k, the Galois group G = Gal(K/k) acts transitively on the set

of places w of K lying above the places v of k. The stabilizer of one of these w’s is

11



a subgroup of G, is called the decomposition group of w and is denoted by G,,. By
the theory of finite fields, the Galois group of a finite field extension is cyclic and
there exists a unique automorphism of Ok /g over O /p which generates the Galois
group of the residue class field extension by sending = to ™*. For a finite place p,
an element o of GG, induces an automorphism ¢ on the residue class field extension

(Ok/9)/(Or/p) and for x € Ok, 7 is defined by
oz +p) =o0(x)+ p.

The mapping o — ¢ is a homomorphism of G, into the Galois group of the residue
class field extension. The kernel of this map is called inertia group of p and is denoted
by I,. The orders of G, and I, equals to ef and e, respectively. [Jan, III-1.]. Any
element of the coset of I, in G, is called the Frobenius automorphism of o and is
denoted by Frob,,. If p is unramified in K then the inertia group I, is trivial and
Frob,, is uniquely determined as an element of the decomposition group G, of G.
When K/k is abelian, we denote the decomposition group and inertia group by G,
and I,,, respectively since in this case G|, and I, does not depend on the place g in

K.

2.1 Some Facts from Finite Representation Theory

Let G be a finite group of order n. Then, the group algebra C[G] is a vector space
of dimension n over C with the elements of G as basis. A linear representation of a

group G in a vector space V over C is a group homomorphism
p:G— GL(V)

where GL(V) is the group of C-linear automorphisms of V. Indeed, by representation
of G we mean a finite dimensional left C[G]-module V' by action p(o)z (or simply
ox) forx € V, 0 € G. If V = C|[G], the representation is called regular and G acts
on V' by left multiplication . If V = C, the representation is called trivial and cx = x

forallc e Gand x € V.

12



Let K be a field of characteristic zero. If V is a K-vector space, we let Vi denote
the C-vector space C ®x V' (in terms of modules C[G] ®kj¢ V') obtained from V/
by extending scalars from K to C. If G is a finite group, each linear representation

p: G — GL(V) over the field K defines a linear representation
pc: G — GL(V) = GL(V¢)

over C. A linear representation of G over C is said to be realizable over K if it is
isomorphic to a representation of the form pc. (see [Ser, II., 12.1})
Let V and V' be vector spaces and V ®¢ V' be the tensor product space over C.

Then we have, for z € V, 2/ € V' and ¢ € G,
olr®a) =o(r)®ao(z).

The dual representation V* of V' is defined Hom(V, C).

A module is said to be semisimple if it is a direct sum of simple submodules.
If K is a field of characteristic zero, the group algebra K[G] is semisimple. To say
that K[G] is semisimple algebra is equivalent to saying that each K[G]-module V is
semisimple. (see [Ser, 1., 6.1])

The character of a representation p is the function x, = xv : G — C given by
xv (o) = Tr(p(o)), where Tr(p(0)) is the trace of the map = — ox of V into V. The
degree of a character y of a representation p is x(1) = dim V. If V and V' are vector

spaces over C then, the character of a direct sum is
Xvacv (o) = xv(0) + xv(0);
the character of a tensor product is
Xveev (o) = xv(o) - xvi(o);
and the character of the dual representation is

xv+(0) = xv(c™") =Xy (o)

13



Let {W;} be the irreducible representations of the finite group G. Let V =
Ui ®...0U, be a decomposition of V' into a direct sum of irreducible representations.
Then, V has a ‘canonical decomposition’ V' = &@;V; where V; is the sum of those of
the Uy, ..., U, which are isomorphic to W;.

The characters of a finite group G are class functions (that is, x is constant on
conjugacy classes).

If ¥ and ¢ are the characters of a finite group G, we define inner product

1 _
(0, 0)q = Gl > 9(0)d(0).

This is a real number since (3, ¢), = (¥, ¢) .
Let H be a subgroup of G. Let W be a representation of H over C with character

x. From W we construct a representation of G called induced representation
Indi = (C[G] QclH] w

where C[G] acts by multiplication on the left factor. The character of Ind$W is
written by Indgx and defined by
Ind$x(o) = T Z x(t7toT). (2.3)
T—TSSGH

Theorem 2.1 (Frobenius Reciprocity). (see [Ser, II, 7.2]) Let H be a subgroup of a

finite group G. If x is a character of H and 6 is a character of G, then

<Inng7 9>G = <X7 6|H>H

Theorem 2.2. (see [Das, Theorem A.12.4.]) Let x be the character of an irreducible
representation V' of G over C. Then there is an irreducible representation V' of G
over K(x) with character X' = myx, where m is the Schur index of x' over K(x).
Furthermore, ¢ = Tri/x(X') is the character of an irreducible representation W of
G over K, where Trg ) x denotes the trace associated with the extension K(x)/K.
Finally, D = EndgigW is a division algebra with center E = K(x) and [D : E] =

m2.

14



Remark 2.3. Fvery x € G extends by linearity to a C-algebra homomorphism
C[G] — C. The x € G form a basis for the space of linear functionals C|G|] — C.
Thus, if z, y € C[G] and x(x) = x(y) for all x € G, then z = v.

3 The non-abelian Stark Conjecture

In this section, most of the results are taken from [Tat] and [Das].

3.1 The Dedekind zeta-function

Let k be an algebraic number field and let S, be the set of all infinite places. Define
the Dedekind zeta-function for Re(s) > 1

()= Y o

U A (N
where the sum runs over the nonzero ideals U of the ring of integers O, of k and
N4 denotes the absolute norm of 4. Furthermore, we define the Euler product for
Re(s) > 1

Ge(s) = [J(1 = Np™) !

p
where p ranges over all finite places in k.

Theorem 3.1 (Dirichlet Class Number Formula at s = 1). [Neu, V.-§2, Theorem
2.2] The Dedekind zeta-function (x(s) has a simple pole at s = 1 with residue
27 (27)™2 hR

Vide| €

where 11 is the number of real and ro is the number of complex places in k, d is the

lim(s — 1) - Gy(s) = Rese=1(Ce(s)) =

discriminant, R is the regulator, h is the class number, e is the number of roots of

unity in k.

Note that the regulator R is the determinant of (r; 4+ ro — 1)-dimensional square
matrix whose entiries are logarithms of the archimedean valuations of units belonging

to k.

15



Proposition 3.2. For xy = 1, Artin L-function gives us the Dedekind zeta-function

LK/k,S(Sa ]l) = Ck(S)

Proof. If p: G — GL(C) is trivial representation, p(c) = 1 for any ¢ € G, then we

have

[T det((1 — Frob,Np~)jC)~" = J[(1 — Np~)~".
p¢s p¢s
]

Remark 3.3. If we rearrange the functional equation of L(s,x) as carried out in the

Theorem 3.15, for x = 1, we get the functional equation for (y

Al —s,1)=A(s, 1)

as W(1) =1, and
A(s, 1) = |di|*”*Tr(s)" Tc(s)2C(s).

By using the functional equation for (;, we may write the leading coefficient of

the Taylor series at s = 0.

Theorem 3.4 (Dirichlet Class Number Formula at s = 0). The leading coefficient

of the Taylor series of ¢, at s =0 is

li_I)Iésl’|S°°‘Ck(s) =— (E) :

(&

Proof. By using the functional equation for (;, we get the equality
L((1=5)/2)" T (1 = )21 — ) = [df* 77 (2" 7 72%)"2 (727" (5/2) T ()2 Gi(s).

By the fact that I'(s) has a simple pole at s = 0 with residue 1 and I'(n + 1) = nl!
when n € Zsg, I'(1/2) = (7)~'/? and the Dirichlet Class Number Formula at s = 1,

we can simplify the equality and at last we get our result as s — 0. O

16



3.2 The function (g

Let S be a finite set of places including all infinite places of k. Define the general
Dedekind zeta-function for Re(s) > 1 by

1
<k,S<S): Z (Nil)s

(11,8)=1

where the sum runs over the nonzero integral ideals which are relatively prime to S.

We write the Euler product expansion of (s for Re(s) > 1

Grs(s) =[O =Np™) " = [ (1=Np™)-Gls).

Definition 3.5 (S-regulator). Let uy, ..., u, be the set of generators of Os™ /(Os™)tors

with r = |S| — 1, and let us fiz an arbitrary vy € S then the S-requlator of k is

Rs(uy, ... u,) = | 1(<1;a<tr (log |wil,)|- (3.1)

’UE(S:’U())

Theorem 3.6. Let p ¢ S be a place in k and let S = S\Up. If m is the order of p

in the ideal class group of Og, then we have
(i) hs =m - hg
(ii)) Rsr =m - (logNp) - Rg
(111) Crs(s) ~ (logNp) - s-(rs(s) ass—0
Proof. [Das]
(i) For the first assertion, we will show that the sequence
0 — ([p]) — CU(Os) % CLO) — 0

is exact where ([p]) is the subgroup of Cl(Og) generated by the class of p.
Because in the case of exactness of the above sequence, we get the first assertion,

by definition m = | ([p]) |.

17



(iii)

Indeed, the map I(Og) — I(Og) is a natural surjection given by (4) — (UOg/).
Then composing with the projection map [(Og/) — Cl(Og/), we get the sur-
jection ¢ : Cl(Og) — Cl(O%). Now, we wish to show that ([p]) is the kernel
of the map ¢. The ideal ([p]) generated by the class of p is in ker(¢). Con-
versely, for a given any element il € ker(¢) we may find an element 5 € K*
satisfies UODg = POs. Hence, for all finite places q # p of Og we have
ordy () = ordy(8Ogs). Then we find 4 = p°SOg where e = ord, (L) —ord, (5Os).
So, 4l is in ([p]) and the proof of (i) follows.

Let {u1,...,u,} be the set of fundamental units in Og* with r = |S| — 1 (i.e.,

freey  We have the following exact

uy,...,u, be a set of generators of (OF)
sequence,

0— O — 0% 28 mZ — 0

Clearly, O% injects into O% and ord, is a surjection given by a — m when
aQg = p.

If o is an element of OF with ord,(a) = m then a generates 0% /0% and

{uy, ..., u,, a} gives a basis for (Og*)free.

Now, assume Mg = (log|u;|q) 1<i<r for fixed vy € S then Rg = |det(Msg).
q€(S—vo)
So, the regulator Rg is the absolute value of the determinant

MS‘ *

MS’ = det
0 ‘log]ﬂp

since vq(a) = 0 for all g # p in S’. Hence,

Rg = |log ||y - Rg = m - (logNp) - Rg.

We may write the following equality by defnition,

Crsr(5) = (1= Np™) - G,s(s)-

Then, taking the limits as s — 0 gives the desired result.

18



Corollary 3.7. The Dirichlet class number formula can be generalized as follows

lim s'181¢, 5 = — (hSRS>
s—0

e
Proof. Let S be a finite set of primes of k. Assume that the set of finite places
S — S = {p1,-..,pn} and m; is the order of p; in the class group of Og Then, by
the Theorem 3.4 and Theorem 3.6-(iii), we get

Crs(s Hlong glS=5el . <_@> . glSwl—1

(&

, _ [Imi - hsRs 1S|-1
(Hlongl) ( HlOngszze §

o (_hsBs glsI-1
. :

3.3 Abelian L-functions

Suppose that K/k is a finite abelian extension and y is a character of Galois group
G = Gal(K/k). Let S be the finite set of places which contains all infinite places of
k, as well as all finite places of k which ramify in K. Define L-function for Re(s) > 1
by

Ls(s, x) = LK/kS 5%) Z X Frobg

where the sum runs over the nonzero integral ideals which are relatively prime to S.

Define the partial zeta function of K/k associated to o € G as, for Re(s) > 1,

(s = Cryp,s(s,0) = Z (NLD)™. (3.2)

w,98)=1
Froby=0

Theorem 3.8 (Siegel). If K/k is an abelian exstension and o € Gal(K/k), then

(s(0,0) is a rational number.

Siegel’s proof of this theorem can be found in [Sie].

19



Remark 3.9. The L-function Lg and the partial zeta function (s can be meromor-
phically continued to the entire complex plane. Furthermore, these functions have the

following relations

Ls(s,x) = > x(0)(s(s,0)
ceG
and

1
Cs(s,0) = T Zy@)LS(s,X).

xX€G
The Euler product of the abelian L-function for Re(s) > 1 is defined by

Ls(s,x) = [ J(1 = x(Froby)Np~*)~"
pgs

where Np = |Oy/p|.

3.4 Artin L-functions

Let K/k be a Galois extension with the group G = Gal(K/k). Let p be a place in k
and g be the place in K lying above p with ramification index e. We define

T€l,
where I, = ., 7 € Z|G]. For an integer m > 1 and the element Frob, € G,/I,,

we define
X(P™) = x((Frob,)" I,)
and this can also be viewed as the value of y on the element
é Z Frob{'t.
rel,
We now define the Artin L-function Ly k(s, x) by defining its logarithm, following

[Lan, XT1-§2,
log Lre/k(s, x) = ml(\ILpﬂzs

p7m

For Re(s) > 1, the Artin L-function is then the exponent of this logarithm and

the following definition express the Euler product representation of Artin L-function,

[Neu, V-§4, Prop. 4.4].

20



Definition 3.10. Let K/k be any Galois extension with Galois group G = Gal(K/k)
and S be the finite set of places contains all infinite places of k. The element Frob,, €
G,/1, is an endomorphism of the fized module V'e. Then, for Re(s) > 1, we define

Licsrs(s,x) = | [ det((1 = Frob,Np~*)[V/e)~! (3.3)
p¢S

where p is a finite place in k and @ is the place in K lying above the place p. Since
the elements Frob,, are conjugate, the value of ‘characteristic polynomial’ of Frob,,

which is written as p-factor of the Euler product, does not depend on the choice of p.

Proposition 3.11. Let K/k be a finite Galois extension with the group G and let S
be a finite set of places of k containing infinite places. Then Artin L-function satisfies

the following properties:

(i) Additivity: If x1, x2 are the characters of G, then
Liks(s,x1+x2) = Lr/es(s,x1) - Lr/ks(s, X2);

(i1) Inflation: If K' D K D k is a bigger Galois extension with the group G' =
Gal(K'/k) and x is a character of G, denote Infly is a character G' — G = C,
then

LK/k,S(s7 X) = LK//k,S(Sa Inflx);

(iii) Induction: If H is the subgroup of G and K" = F is the fized field of H and x
is the character of H, then

LK/kz,S(Sa Iﬂng) = LK/F,SF(57 X)§

Proof. The proof of (i) is trivial since the character y appears linearly in the loga-
rithmic definition of L-function. The proof of (iii) may be found in [Neu, V-§4]. Now,
we will prove (ii), following [Lan, XII-§2].

Let K" D K D k be a finite Galois extension with the group H = Gal(K'/K).

Let ¢, p be places in K’ and K, respectively, lying above p in k. Let G be the
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decomposition group and I, be the inertia group of the place ¢’ in G'. We first show
that

G, =~ G H/H

I,~I,H/H.

When we restrict an element of G/ H into K this restriction leaves g fixed, since
the restriction to K of an element of G is in G,. Conversely, let A be an element
in G" and its restriction to K be in G,. Since A maps @’ on another divisor of p and
H permutes such divisors transitively, then there exists an element v € H such that

M €Gy. So A€ Gy H, and this proves that
G,=GyH/H.

By the same way, we can show that
I,=1,H/H.

Since the restriction homomorphisms G, — G, and I, — I, from K’ to K are

surjective, we have

Gy, =Gy /(Gy NH)

and

I, = Ip’/(]p’ NH).

The value of Infly on an element of G’ depends only its conjugacy class mod H, by
definition, so we can see Infly as equal to x mod H. Lastly, if Frob,, is a Frobenius
element of ¢’ in G then Froby|x = Frob,, is a Frobenius element in G, by the

above isomorphisms. It follows that

1 1
XB™) = = 37 x(FrobZr) = = 37 x(Frobli)

T€l, TEl,

and hence the value x(p™) does not depend on the field K’. So, the result follows
from the logarithmic definition of the Artin L-function. O
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Theorem 3.12 (Brauer). [Ser, 10.5] Each character of a finite group G can be
written as a Z-linear combination of characters induced from characters of elementary
subgroups.

In particular,
X = Z n; - Indgixi
where n; € 7, ; x; be the one-dimensional character of H; C G and x be the character
of G.
Let k; be the fixed field of H;, then by the addition and induction properties of
Artin L-function and the Brauer’s theorem 3.12, we have
Li/k,s(5,xX) = Lik,s(s, Z niIndeiXi)

= [ Lx/.s(s. Indf x)™ (Additivity)

=1 Zx/mse, (5, x0)™ (Induction)

Remark 3.13. The function Lk /s can be meromorphically continued to the entire

complex plane, [Mar].

3.4.1 The Functional Equation for Artin L-function

In this section, we will state the functional equation of Artin L-functions for S = S,
and we denote L(s,X) = L k5. (5, X)-
Now, we define the following functions to define local factors for L-function at the

infinite places of k. Set:
Tr(s) = */"I(s/2);
Le(s) =Tr(s)Ir(s+ 1) = 2(2m)°T'(s). (3.4)
Let v be a real place of k and w be the place of K lying above v. Let us define
ny = dim V% and n_ = codimV %,

Note that I'(s) is Euler’s gamma function with a simple pole at s = 0 with residue

1. We also note that I'(n 4+ 1) = n!l if n € Z>¢, [Apo, 12.2].
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Now, we define the local factors of L-function;

Le(s)x) if v is a complex place
Ly(s, x) =
Pr(s)™Tr(s+1)" if v is a real place

In particular, we conclude that if v is complex place then L, has a pole of order
x(1) = dimV at s = 0 and if v is real place then L, has a pole of order n, = dimV
at s =0.

Now, let us define

HL 5,X) H Ly(s,x) - H Ly(s,x) (3.5)

v]oo v: real v: complex

Then by definition of I'y, it has a pole at s = 0 with order

ords—ol'y (s) = Z ny + Z

v: real v: complex
= Z dim V& + Z dim V
v: real v: complex
= Z dim V& + Z dim V&
v: real v: complex
=> dim V. (3.6)
v|oo

The third equality is because G,, is trivial when v is a complex place of k.

Note that I'y(s) is non-zero at s = 1 because I'(s) is non-zero at s = 1.

Definition 3.14. Let p be a finite place of k, let us fix ¢ of K lying above p. Let
I, =Gy D Gy D Gy D ... be the sequence of ramification groups where the G; are
normal subgroups of G, [SLF, ch. IV]. For |G;| = g¢;, define

o0

foop) = Z 9 codim VG,

—o J0

=0
If x is a character of G, then f(x,p) is a non-negative rational number [SLF, ch.
VI-§2]. If p is unramified in K/k then Gy = I, is trivial and codim V% = 0. Hence,
f(x,p) =0. Then, we define f(x), the Artin conductor of x, by

X) — H pf(X’p)7
p
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where p runs over all finite places of k.

Theorem 3.15. [Tat, 0.-§6] Let the notation be as above. Then, the completed L-
function, for S = S, is defined by

A(S> X) = {|dk‘|X(1)Nf<X)}S/2 ’ H LU(S7 X) ’ L(Sv X)

v]oo

Then, A(s,x) can be extended to a meromorphic function on the complex plane sat-

isfing the functional equation

A(l -5 X) = W(X) ’ A(S7 X)

where |dy| is the absolute discriminant of k/Q, Nf(x) > 0 is the absolute norm of

f(x), and the Artin root number W (x) € C* is a constant with absolute value 1.

This functional equation helps us to find the order of the zero of the L-function

at s =0:
ords—g A(s, x) = ords—o I'y(s) + ords—o L(s, x) = Z dim V + ord,—q L(s,x)
’UGSOO
ords—o A(1 — s, x) = ords—y I'y(s) + ords—y L(s, x) = ords—1 L(s, X).

Hence, when S = S, the order of the zero of L-function at s = 0 is

ordy_gL(s,x) = —dim V% + Z dim V& (3.7)

VESso

as ords—; L(s, ¥) = —dim V.

3.5 The Stark Regulator

Notation 3.16. For any finite set of places with Sy, C S, we write the Taylor series
of Artin L-function at s =0

Ls(s,x) = cs(x)ssX + O(s"s0F1)
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Now, we will determine the multiplicity rs(x), that is, the order of the zero of
Ls(s,x) at s =0.

Let Ys x be the finitely generated abelian group with basis Sk. Note that G =
Gal(K/k) acts on Sk by permuting the places w of K lying above the places v € S.

In particular, if we choose v € S and fixed a place w € Sk lying above v, we write

Yes=Y = |Pzw| =P mdg, z (3.8)

veSs wlv veS
where the decomposition group G, acts trivially on Z.

Then, the augmentation map

augK:Y—>Z:an-w»—>an (3.9)

wWESK wWESK

is surjective G-module homomorphism with kernel

XKS:X:{an-wEY:an:O} (3.10)

Then, we have the following short exact sequence

aug e

00— X —Y =7 —0.

and tensoring the above exact sequence with C over Z, we have the short exact

sequence of C[G]-modules
0 —CX —CY —C-—0

Since C[G]-modules are semi-simple, the above exact sequence splits. In particular,
CY = CX @ C as C|G]-modules.
If we denote the characters of CX and CY by xx and yy, respectively, then we

have

Xy = xx + lg. (3.11)
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Since Y is the free abelian group generated by the places w lying above the places
v € S, we may write the characters xyy and yx as

Xy = Z Indgw]lgw

vES

Xx = Zlndgwﬂgw — ﬂg.

vES

Note that yx and yy takes rational values.

Remark 3.17. Suppose k C L C K with L/k Galois. Let H C G be the subgroup
fizing L and Yk.s, Y5 and Xk s, Xp s be defined as in (3.8) and (3.10). Then, we
have the natural embedding
Yis— Yrs:w,— Z [w:wpwy = Z hwg
wlw, heH

where [w : wy] is the degree of local extension K, /L., and wqy is an arbitrary
fized place of K lying above wy. Then, we find that X1 s = NyXg g where Ny =
>onen b € Z[G). We do not say in general X s = Xil g however Ny Xy g has finite
index in Xk g then we have E®z X g = E®g XI}({S for any field E of characteristic

ZEro.

Proposition 3.18. If x is the character of C[G]|-module with finite C dimension V,
then

ords—oLs(s, x) :==rs(x) = Zdim VO —dim VY = (x, xx)g
vES
= dim¢(Homg (V*, CX))
where V* = Hom(V, C)

Proof. Since Homg(V*,CX) = (V ® CX)% has the character y - xx and xx takes

only rational values,we have

dimc(Homg(V*,CX)) = (x - xx, La)g = (X Xx)a = (X Xx) g
So, the last equality holds.
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Now, we prove the second equality by using Frobenius Reciprocity

<X7 XX>G — <X, Zlndgw:ﬂ_gw - ]]‘Gw>
G

veS
- Z<Xa1ndG ]]-G >G X7 I]-G
veS
= <Z Resgwx, ]le> — dim V¢
veS el

- Z dim VE — dim V¢

ves
It remains to show that rg(x) is equal to the second expression. By using Brauer’s
theorem 3.12, we can write y as a Z-linear combination of monomial characters so,
we may assume that y is a monomial character.
If x = 1g, then we have Lg(s,1¢) = (rs(s). Furthermore, we obtain from

Corollary 3.7 that
rs(x)=15]—-1= Zdim Ve — dim V¢
ves
since dim V% =1 and dim V¢ = 1 when y = 1.
If x # 1 and ¥ is one dimensional, then V¢ = {0}. If S = S, the equality holds
as we stated before in (3.7). Now, assume that S is a finite set of places including all

infinite places in k. Then we have

L /k,s(s, x) H det((I — Frob,No~*)|[V) . Lg_(s,x).
vES—S0o

Now, we claim that
ord,—q det((I — Frob,Nv~*)|V*) = dim V.

If A1, Ao, ..., )\ is the eigenvalues of Frob,, on V'» then

det((I — Frob,Nuv~%)|V1) = ﬁ(1 —

=1

Ai
Nv®

)

and we thus, write
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s d i
ord,—o det((I — Frob,Nv™*)|V!*) = ord,_ g(l — NUS)
_ dim(vlw)Frobwzl

= dim VE.
We, therefore, see that
ords—o Lk /k,s(5,X) = Z dim V& + ords—oLs._ (s, %)
vES—Sae
=H{v €S —Sx:x(Gy) =1} +ords—oLs_ (s, x)

= Z dim V&=

vES

The second equality is because V is one-dimensional and dim V% is 1 when the
character y is trivial on G, and 0 otherwise. Similarly, the third equality is sat-
isfied because ords—oLg,. (s, X) = 7s.(X) = Ypeg. dim V& —dim VE by (3.7) and
dim V¢ = 0 in the case of the non-trivial character .

O
Corollary 3.19. IfV is one-dimensional, then the order of vanishing of Lk s(s, )
18
5] -1 if x =1¢g
[{ve§:x(Guw) =1} if x # 1c
Definition 3.20 (S-units). Let S be the finite set of primes that includes all infinite

rs(x) =

primes of k. The set of S-units of the Dedekind ring Oy g is
Uks=Ors ={v €k i |x|, =1 for allv ¢ S}.

We generally use the notation U for Sg-units in K. Now, for the set U of Sk-units

we define a Z[G]-module homomorphism
A= Ag U —RX

U —> Z log|ul,, - w.

wWESK
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This map is well-defined due to the product formula [Jan, I-§5], indeed
Zlog|u|w =0 < lOg(H |u|w) =0 & H |u|w =L
wesS wes wesS

Theorem 3.21 (Unit Theorem). [Lan, V.-§1] Let K be a number field and Sk be a
finite set of places of K including all infinite places. Then U™ = U/Uyyys is a free
abelian group on |Sk|—1 generators. Equivalently, if {uq,...,u,} is a basis of a free

abelian group U™ then a Sy -unit u can be uniquely written as

— ai ar
U—wul "'UT,

for some root of unity w € u(K) and integers a;.

Furthermore, the kernel of A is exactly the group of the roots of unity u(K) in
K and the image of X is a lattice of full rank |Sk| — 1. Thus, U/u(K) is a free
abelian group on |Sk| — 1 generators and 1 ® A : RU — RX is an isomorphism of

R[G]-modules, [Lan, V.-§1].

Lemma 3.22. Suppose that K/k is a finite Galois extension. Recall the embedding
J: Xks — Xk shown in Remark 3.17. Then, the diagram

U —% RXx

b

U, — RX} s
k
commutes.

Proof. 1f u € Uy, then

M) = 3 togfuhw =3 37 logulllow

wWESK vES cGwEG /Gy

= Z Z |G| log |u|,ow

vES cGwEG/Guw

=3 loguluj(v) = j(Au(u))

veS
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since

J) = w:vjw =Y |Gulw="Y_ |Gulow.

w|v wlv 0Gw€EG /Gy
[l

Since A : RU — RX is an isomorphism, RU and RX have the same characters.
Since tensoring a Q[G]-module with R over Q does not change characters, the charac-
ters of QU and QX are equal. Hence, they are isomorphic as Q[G]-modules, but not
canonically. Let f: QX — QU be a Q[G] isomorphism. By extending scalars from Q
to C, we get an isomorphism f : CX — CU. Any isomorphism f : CX — CU is said
to be defined over Q if it is obtained as above. Thus, A o f gives an automorphism
of CX.

Let V be a finite dimensional C[G]-module with a character x and
V* = Homgjg (V;, C[G]) = Homc(V, C). Then, Ao f induces a C-linear automorphism

under the functor Homg(V*, )

(Ao f)v : Homg(V*,CX) — Homeg(V*,CX) (3.12)
6— Ao foo.

The Stark regulator is defined to be the determinant of this automorphism:

R(x, f) = det((Ao f)v). (3.13)

Remark 3.23. Let K =k and S = {vo, ..., v.}. So, we have the trivial Galois group

and character for this trivial extension. For a fixed place vy € S, we may write X as

T

X = @Z:(’UZ — Uo).

i=1
Let f: X — U be an injection given by f(v; — vo) = w; for u; € U. Note that the
unit u; € U/u(k) since X is a finitely generated torsion-free abelian group and f is

an ingection. By complezifying, we get an isomorphism f : CX — CU. We also have

Homg(V*,CX) = Homg(C,CX) = CX.
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Thus,
(Ao fly =Xo f = Au;) = Y _logluilov =Y _loglusl., (v; — o)
ves j=1
and we could write the last equality because ) _, log ||, v0 = 0 by the product
formula. Therefore, the matriz for Ao f with respect to our basis {v;i—vg : 1 <i <r} of
CX and the basis {u1, ..., u.} of U/u(k) is (log u;ly,; )i ;. The Stark regulator R(1, f)
and the S-requlator Rg as defined in Definition 3.5, have the following relation

U : f(X)]

€k

R(L, f) = det(X o f) = det(log [uil, )i; = +Rs[U : f(X)u(k)] = Rs

where e, = |p(k)|. Note that [U : f(X)u(k)] gives us the index of the subgroup of
U/u(k) generated by w;. The last equality comes from the fact that f(X)Nwu(k) = 0.

We conclude that the Stark regulator differs from Rg by a factor which is a rational

number when y = 1.

3.6 The non-abelian Stark conjecture

Let K/k be a finite Galois extension with G = Gal(K/k). Let x be a character of
finite dimensional representation of G over C and let f : QX — QU be a Q[G]-module

isomorphism.

Conjecture 3.24 (Stark). Let us define A(x, f) = RC((’;’{) € C where c¢(x) is the

leading coefficient of the Taylor series of the Artin L-function L(s,x). Then, for any
a € Aut(C)
A(x, ) = Ax, f). (3.14)

Equivalently,

A(x, ) € Qx)
A(x, ) = Ax®, f) for all o € Gal(Q(x)/Q)

(3.15)
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These two statements of the conjecture are equivalent. Suppose the statement
(3.14) holds. Then, for any a € Gal(C/Q(x)) we have A(x, f)* = A(x*, f) =
A(x, f) and hence A(x, f) € Q(x). Since Aut(C) — Gal(Q(x)/Q) is a surjection,
A(x, f)* = A(x, f) for all & € Gal(Q(x)/Q). The converse implication is trivial.

Here, Q(x) is the subfield of C generated by its values of x (o), o € G. Note that
each x(o) is a sum of roots of unity, so that Q(x) is an abelian extension of Q.

Let E be a field of characteristic zero and x : G — E be a character of a
representation G — GLg(V'), where V' be a finite dimensional vector space over E.
Let f be any E[G]-module isomorphism £X — EU. For any a € Homg(E, C), we
get the C[G]-module V¢ = C®pg ,V whose character is x* = aoy. The corresponding
Artin L-function of « o x of Gal(K/k) is L(s, x*). Also, we define f*: CX — CU
by extension of scalars of f by means (¢ ® 1) o f : X — CU and this map induces
an endomorphism (Ao f%),,, of the C|G]-module Homg((V*)*,CX). Note that the
determinant of (Ao f*),.. is the Stark regulator R(x®, f*), which is independent of

realization V of y over E.

Conjecture 3.25 (Deligne). There ezist an element A(x, f) € E such that for all
a: E — C, we have

R(X*, ) = A(x, [)* - e(x?)-

Note that if £ = C then we have f : CX — CU and f* = f for all a € Aut(C).
As wee see that Conjecture 3.24 is a special case of Conjecture 3.25. Conversely, we
will show that Conjecture 3.24 implies Conjecture 3.25 and then, we will conclude
that these conjectures are equivalent. This equivalence shows that Stark’s conjecture

is independent of the choice of f.

3.6.1 Independence of f

Definition 3.26.
Let x be a character of a C[G]-module V. For each C[G]-endomorphism 6 of CX,
we define §(x,0) to be the determinant of the automorphism 0y of Homg(V*, CX)

induced by 6. In fact, 0 is independent of the realization V' of x.
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We can write the Stark regulator in terms of §

R(x, f) = 0(x, Ao f)

where Ao f : CX — CX is an automorphism induced by f : CX — CU defined over
Q.

Proposition 3.27. The determinant 0 satisfies the following properties:

(i) For characters x1, x2 of a finite group G = Gal(K/k), we have
5(X1 + X2, 9) = 5<X17 9) ’ 5(X27 8)

(ii) If H is the subgroup of G = Gal(K/k) with the character x and 0 is considered
as C[H|-module of CX, then we have

d(Indfx, 0) = 8(x, 0).

(111) Let H be a normal subgroup of G = Gal(K/k) and E C K be its fived field. If
X is the character of Gal(E/k) and 0|cxyn is considered as C|G/H|-module of
(CX)H then, we have

d(Inflx, 0) = 0(x, 0] (cx)m)-
(iv) For C[G]-endomorphisms 0, 0 of CX,
5(x,006) =d(x,0)5(x,0).
(v) For any a € Aut(C), 6% is the C[G]-endomorphism of C ®¢ o CX and we have
0(x,0)" = o(x*,0%).
Proof.

(i) This is clear, because we may write the representation of the sum of two char-
acters in a block matrix is so the determinant of the block matrix is equal to

the multiplications of the determinants of these two matrices.
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(ii) For any representation V' of the subgroup H of G and C|[G]-module CX, there

is an isomorphism,
Homeg(Ind%V*, CX) = Homey (V*, CX)

where on the right hand side CX is considered as a H-module, [Ser, 7.2, pg.54].

Then the following commutative diagram

HOIH((:[H] (V*, CX) M

lG (/\of)lndgv lG
Homg(g)(Indf; V*, CX ) —Homg(g(Indf; V*, CX)

HOmc[H] (V*, CX)

commutes as Ind$V* 22 (Ind%V)*. So, the result follows.

(iii) Let V be a representation of Gal(E/k) with the character y. Then, there is an

isomorphism
Homgg (InfiV*, CX) = Homgyg,m (V*, (CX)7).

where on the right hand side CX is considered as a GG/H-module, [Ser]. Then,
the following diagram

(0|(CX>H)V

HOIH(C[G/H] (V*, CX) —_— Homc[g/H] (V*, (CX)

l% lg

Homge (InflV*, CX) Srntty Homgjg (InflV*, CX)
commutes. Hence, the result follows.
(iv) This is clear, since (f 0 6')y = Oy o 6y,

(v) Let @ € AutC. Then V* = (C®¢ V) is arealization of x*. For the determinant
of 6y on Homeg)(V*,CX) = V @ CX, the determinant of 6y, is defined on
Homeg)(C ®@c,o V*,C ®c,o CX). Then, the following diagram

0%
Homc[g] (C ®c,a V", CQc.a CX) s HomC[G} (C ®c,a V", C Q¢ (CX)

- -

9 «@
C ®c,a HomC[G] (V*, (CX) (Ov) C ®c,a HOIH(Q{Q} (V*, (CX)
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commutes, since

Ve CX = (Ve CX)?,
by sending (y®v)®z to y® (v®x). So, we have the equality of determinants.
O

Proposition 3.28. If Conjecture 3.25 with E = C is true for a particular choice of
an isomorphism f, : CX——CU, then it is true for all f : CX—CU. In particular,
Congecture 3.25 implies Conjecture 3.24 with E = C.

Proof. We have the equality R(x, f) = d(x,0) where § = X o f for a C[G]-module
isomorphism f : CX — CU. Now, let us take § = f; 1o f : CX — CX. For any

complex character y of G, we have the equalities

S(x, Ao foo fitof)=680x, Ao f,)d(x, f, ' o f) by Proposition 3.27, (iv);
R(x, f) = R(x, fo)0(x, ;" o f) by definition of 4;
A, f) = A fo)o(x, 0).

where A(y, f,) satisfies Conjecture 3.25 for all @ € Aut(C).
Then, by Proposition 3.27,

So, for any f: CX — CU, Conjecture 3.25 holds.
Since f¢ = f with £ = C, we have

o B )  RIXYf) .
Alx, f)* = e R = A(x*, f)

So, Conjecture 3.25 implies Conjecture 3.24. n
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Proposition 3.29. Conjecture 3.25 and Conjecture 3.24 are equivalent.

Proof. For E = C we have shown that Conjecture 3.25 implies Conjecture 3.24. Now,
we will show the converse implication so assume that Conjecture 3.24 holds. Let E
be finitely generated over Q and f : EX — EU be an isomorphism of E[G]-modules.
Let V' be a representation of G = Gal(K/k) over E with a character x. Let us fix
an injection a : £ — C and consider f* : CX — CU. By our assumption that
Stark Conjecture holds and by Proposition prop Deligne to Stark, we may assume
that Conjecture 3.25 holds for f*. Thus, A(x%, f*) € C and for any v € Aut(C) we
have
RGP, (F7)7) = A, F2)Te((6)").

If v is any automorphism fixing «(E) C C, then A(x?, f*)” = A(x*, f*). By our
assumption A(x, f)* = A(x%, f*) thus, A(x, f)* is fixed by v and A(x, f) € E.
Moreover, for any injection 8 : £ < C we may find v € Aut(C) such that yoa = .
Then

Ay = A gy = TG RGES)

c((x*)7) c(x”)

as desired. So, Conjecture 3.25 holds. O

3.6.2 Independence of S

In this section we prove that the conjecture 3.24 is independent the choice of the set

of places S. First, we will state some properties of A(x;, f).

Proposition 3.30. With the notations in Conjecture 3.24, A(x, f) satisfies the fol-

lowing properties.

(i) For characters x1, x2 of a finite group G = Gal(K/k), we have
Alx1 + x2, ) = Alxa, f) - Alxe, f)-
(ii) If H is the subgroup of G = Gal(K/k) with the character x then we have

A(IndGx, f) = Ax, f)-
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(11i) Let H be a normal subgroup of G = Gal(K/k) and E C K be its fized field. If
X 18 the character of Gal(E/k) then we have

A(Infly, f) = A(x, f’((CX)H)'

(w) Alx, f) = AKX ).

Proof. The first three assertions follow from Proposition 3.11 and Proposition 3.27.
Furthermore, the inclusion Xy < X = X induces the equality (CX)? = CXp and
so we might have stated the third equality as A(Inflx, f) = A(x, flcx,)-For the last
assertion, the statement (v) of Proposition 3.27 gives us R(, f) = R(¥X, f) since Ao f
is defined over R. By the fact that complex conjugation is continuous, we say that

Ls(5,x) = Ls(s,X) and hence ¢(x) = ¢(x). O
Lemma 3.31.

(i) If Stark Conjecture is true for every finite Galois extension K/Q, then it is true

i general;

(i1) If Stark Conjecture is true for every abelian extensions K/k, then it is true for

every finite Galois extensions.
Proof.

(i) Assume that K/k is Galois with a character y and L is the Galois closure of Q
over K with the Galois group G = Gal(L/Q). Assume that S is the finite set of
places containing the archimedean places in K. Then, let us restrict the places
of S onto Q and take the places of L lying over them. For any C[G]-module

isomorphism f : CX;, — CUp, over Q, we have

A(IndgInfly, f) = A(Infly, f) = A(X, flex,)

by Proposition 3.30. So, if Stark Conjecture is true for the Galois extension

L/Q, then it is true for any Galois extension K/k.

38



(ii) Let L/k be an arbitrary Galois extension. By Brauer Theorem 3.12, we can

write the character y of Gal(L/k) as

X = Z niIDd%Xi

where n; € Z ; x; is the one-dimensional character of H; C G. Then we can

write
Alx, f) = HA(xi, r

by additivity of A(x, f). So, if Stark’s Conjecture holds for one dimensional
characters, it is true for all x. So, we can take x to be a one dimensional
character: and we can also take L**X/k which is an abelian extension in L/k

which satisfies Stark Conjecture as we assumed. Then, by the inflation property

of A(x, f), Stark Conjecture also holds for L/k.
]

Remark 3.32. Stark Conjecture is true for the trivial character 1. Remark 3.23
says that when K =k,
U: f(X
(1 ) = BT g

€k
and by Class Number Formula at s = 0,
hsRs
1) =— .
(1) = ===
Therefore,
U: f(X
A, ) == LHE
S

which is also in Q. By Inflation property of A(x, f), Stark Conjecture is true for the

trivial character 1 for any extension of k.
Proposition 3.33. Stark’s Conjecture is independent of the set of places S.

Proof. 1t will be enough to prove this statement for one dimensional characters due
to Lemma 3.31. Now, assume that S is a finite set of places with S D S, and

let us define S = S U {p} for a place p ¢ S. The conjecture is true for the set
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S if and only if it is true for S'. Let f : CXg — CUg, and f': CXg — CUs;,
be C[G]-module isomorphisms. We know that f'|cx, = f by semi-simplicity and
7' (x) = r(x) + dim VG where p € S} is the place lying above p and G, C G is the
decomposition group of p. We may assume that K/k is abelian since we may replace
K with K¥e™X due to the inflation property in Proposition 3.30. Since we assumed
that K /k is abelian, we may write G, instead of G, because G, does not depend on
the choice of p.

Now, we divide the proof into two cases;

Case 1: x(G,) #1

Since V' is one dimensional, dim V% = 0, and so 7 (x) = ().

We can decompose Xg as

Xy X@(@ Zp)
wlp
where (D, Zp) = Z|G/Gy]. Then,
Homg(V*,CXy) = Homg(V*, CX) @ Homg(V*, C[G/G,)).
However, Hom¢(V*, C[G/G,]) = 0 since G acts on G, trivially. So,
Homg(V*,CXy) = Homg(V*, CX).
Thus, Rs(x, f) = Rg (x, f) since f'|cxs = f. We also have

Lg(s,x) = Ls(s,x) - (1 — x(Frob,)Np™*).

If x(I,) # 1, then ce(x) = cs(x) and so Ay (x, f) = As(x, f). If x(L,) = 1, then
cs/(x) = cs(x)(1 — x(Froby)). Therefore,

Ag (X, f) = As(x, f)(1 — x(Froby)).

and

(Ag (x, )" = (As(x, f))*(1 — x(Frob,))”
= As(x*, f)(1 — x*(Froby))
= As/ (X%, f)-
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The result follows.

Case 2: x(G,) =1

Since x(Gy) = 1 and x is faithful character then Frob, = 1 and dim V© = 1.
Then, we have ' () = 7(x) + 1 and Ly (s, x) = Ls(s, x) - (1 = Np~). Thus, cs/(x) =
¢s(x) - log(Np).

Furthermore, we have the following exact sequence

0 — Ofse — Ok, — P Zp
plp

and by tensoring with Q, we get

0 — QO 5, — QOx s, — P Qp — 0

plp
(B, Q) = Q[G] since G, = 1.
Suppose that 7Ok s, = " for some positive h € Z and 7 € K. By semi

simplicity, this sequence splits and we get

Q0% 5, = Q0K 5, ® Q[G]m.

By similar reasoning we find that
QXy =~ QXs QG

where z = o — |—Cl;| > e ow for an archimedean place w € K.
Now, fix an Q[G]-module isomorphism f : QXs——Q0O% s, . Let j : Q[G]z —
Q[G]7 be the Q[G]-module isomorphism which sends z to 7. Since Stark’s conjecture

is independent from the choice of f we may assume that f/ = f @& : QX g —

QWi

No(fo)a™) =N@")= > |77, w=log|r|,,00

weS),
since 7’s are all units for Ok s, namely > ¢ [77], - w = 0.
Then,
Ao f] ‘ *
0 ‘ thg(Np)ﬂG‘

Ao(fou]=
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where Iig is |G| x |G| identity matrix. Finally we have,

Ao f] *
Ao (@ ulv = d
0 ‘ hlog(Np)

Thus Ry (x, f') = hlog(Np)Rs(x, f), so

AS' (X7 f/)

———==hcQ

AS(X7 f)
and so which is independent of . O

Remark 3.34. With the assumptions and notations in Remark 3.23, we have shown

that
At = L)
By definition of A(L, f),

i

where hg is the class number of the ring Os of S integers of k. To conclude this
result we assumed K = k, but the inflation property of A(x, f) we can generalize the

result. So, Stark Conjecture is true for the trivial character.

3.7 The Cases r(x) =0 and r(x) =1

In this section, we analyze the cases r(x) = 0 and r(x) = 1. In the first case,
we reduce the extension to the abelian case and then we use Seigel theorem 3.8, to
indicate Conjecture 3.24 is true when r(x) = 0. In the second case, at first we express

the truth of Conjecture 3.24 for r(x) = 1.

3.7.1 The Case r(x) =0

We have proved that Conjecture 3.24 is independent from the choice of the set of
places. Furthermore, if 7g(x) = 0 then this implies rg_(x) = 0 and thus, we can

assume S = So.. When r(x) = 0, the conjecture becomes L(0, x*) = L(0, x)* for all
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a € AutC as R(x, f) =1 and Lg(0, x) # 0. To reduce the conjecture to the abelian

case, we will need a stronger version of Brauer’s Theorem stated by Serre [[ColL],

App.].

Remark 3.35. [Das/The commutator group G' = |G,G] of G is normal subgroup
of G. Furthermore, G/G" is abelian and |G : G'] gives us the order of the group of

1-dimensional representations of G.

Lemma 3.36. Let G be a finite group with center C', and x be an iredducible character
of G. The restriction of x to C' is a multiple of a 1-dimensional character 1, of C,

and we can write
X = Z niIndgi X

where for each i, H; is a subgroup of G containing C', x; s the character of H; whose

restriction to C is ¢, and n; € Z.

Proof. [Das] For any subgroup H and the center C' of G, the commutator group
[CH,CH)] is equal to [H, H] since any element in C' commutes with the elements
of H. Denote CH (resp., H ) as the group of 1-dimensional representations of C'H
(respectively, H). By Remark 3.35, we have

\CH| = [CH : [H,H]] = [CH : H|[H : [H, H]] = [CH : H]|H|.

Therefore, for each element of H there are exactly [CH : H] elements in CH which
restrict to it. Suppose that x; g € CH for i = 1,..,|[CH : H] have restriction equal
to xg. Frobenius Reciprocity provides that

<Ind§HxH,Xi,H>CH = (Xt X, lH) g = (X#, XE) = 1

Therefore, as ;g appears as a summand of IndG" x ;. As Ind5" xy is a [CH : H]-
dimensional character, we find

(CH:H]

IndgHXHZ Z Xi,H
1
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and

[CH:H]

Ind§xy = > Indfyxin (3.16)
1
By combining (3.16) with Brauer’s Theorem, we can write
X = Z niIndgi X

where n; € Z, H; D C and Y; is one dimensional.
Now, let V' be a realization of x. Consider V' as a representation of C' C GG and
W be an irreducible component of the decomposition of V. Since W is irreducible

and C is abelian, W must be one dimensional. Consider the subspace W’

W'=Y gWcV.

Since W' is G-stable and V is irreducible, we have W’ = V. Thus, as a representation
of C'we have V =) gW and x|c = m,4, where m, € Z and 1),, to be the character
of W. Furthermore, for an irreducible character y, Frobenius Reciprocity provides

that

(¢ IndG xi) o = (Xl Xa) gr,- (3.17)

Since x is irreducible and with (3.17), x is a summand of Ind%xi only if x|g, is a

summand of ;. This occurs only if x|c = m,, with ¢, = x;|c. Thus, we have

X = Z niIndfliXi.

Xilo=x

Thus, this gives the desired result. O
Theorem 3.37. Conjecture 3.24 is true if r(x) = 0.

Proof. Since Conjecture 3.24 is independent from the choice of S, we can take S =
Se. Furthermore, by replacing K with KXX we can assume that y is a faithful
character and the extension is abelian. We can also take y to be an irreducible

character since r(y) behaves additively under direct sums. In particular, if x is
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written as a linear combination of irreducible characters y;, then r(x) = 0 if and only
if r(x;) =0.

We can also assume y # 1 because we have proved that Conjecture 3.24 is true
for x = 1 as A(L, f) is a rational number. The zero rank of L-function of y # 1
implies dim V& = 0 for each archimedean place w of K. In particular, k is totally
real and K is totally complex field. If G,, = {1,7,} for a complex place w of K,
72 =1 hence 7, acts as —1 on V. Since V is faithful representation, all 7, are equal
to the same element, say 7, in G. This implies that K is totally imaginary quadratic
field of a totally real field K7. Furthermore, G,, = {1, 7} is contained in the center

of C' since for any o € G we have

oot =010 =T, =T

By Lemma 3.36 we have
X = milndf i
H,

7

where n;, € Z, C C H;, x; is 1-dimensional character of H; and x;|¢ = v, with the
definition of %, as in Lemma 3.36. Thus,

Xi(T) = Un(7) = =-1

and we obtain
LK/KHi(Oa xi) # 0

since Ki ¢ K7 is totally real. We therefore have
LK/IC<07 X) = H LK/KHi (07 Xl)nz

We may take K = KX to reduce the problem about general L-functions to the
problem about L-functions corresponding to abelian extensions with faithful charac-
ters x;. Furthermore, it will be enough to prove the proposition for Ly, g (0, x4)
thus, we can assume k = K and ¥ = y;. Then, we can write this abelian L-function
as a linear combination of partial zeta function

Lik(s,x) = Z x(0)¢(0,0).

ceG
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Siegel’s theorem 3.8 implies (0, o) is a rational number for all o € G, thus L(0, x)* =
L(0, x*) for any o € AutC. H

3.7.2 The Case r(x) =1

Since the conjecture is independent of the choice of S we do not make any assump-
tion for S. We may suppose x is irreducible since we can write x as a direct sum of
irreducible characters with r(6;) = 0 and an irreducible character with r(6) = 1. As
we have shown in (3.11), the values of yx are rational integers and so r(x) = r(x%)

for all @ €AutC.

Definition 3.38. Let x be an irreducible character. Then the idempotent element of
C[G] is
x(1 -
(=55 Lo e

ceG

and acts as projection onto x-component in the canonical decomposition of any C[G]-

module, (see [Ser, §2]).

If I' = Gal(Q(x)/Q) and a € Q(x) we define

m(a,x) =Y _a'Ls(0,x")ex» € C[G]. (3.18)

vyel

If r(x) > 1 then L4(0, x) = 0 and if 7(x) = 0 then ¢,QX =0 as (x, xx) = r(x) = 0.
In particular, QX has no subrepresentations isomorphic to y when r(x) = 0. So,
m(a,x)QX = 0 unless r(x) = 1. Note that multiplication by m(a,x) is a G-
homomorphism CX — CX. Suppose that ) s, GwW 1s the image of an element of
X under 7(a, x). Thus, the coefficients a,, are Q(x)-linear combinations of L (0, x7)

for v € I'. Therefore, if there is a unit € € U such that \(e) = > log |€|,w =

wWESK
a,w then the logarithms of the valuation of € are equal to these linear combi-

wESK g
nations of Ly (0, x7). Thus, we try to understand the intersection between 7(a, x)QX

and AQU.
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Let V be a realization of y over C. Then by Theorem 2.2, there is an irreducible
representation V’ of G over Q(x) with character y' = my where m is the Schur index

of X" over Q(x). Thus,

O, xx) = (mx, xx) =m(x,xx) =m

and this implies that V' (respectively, C ®q(y) V' = mV') can be seen as a subrepre-
sentation of Q(x)X (respectively, C ®q(,) Q(x)X = CX). Hence,

m < (x,xx) =r(x) =1

Thus, x is realizable over Q(x). Furthermore, Theorem 2.2 shows that

= Tropox) = > _ X7

~er
is the character of an irreducible representation W of GG over Q. This implies that
W is the simple Q[G]-module with character ¢. By the similar arguements to the
proof above that m = 1 we can show that (¢, xx) = 1, thus the multiplicity of W
in QX is 1. Then, we write Xy (respectively, Uy ) is the unique Q[G]-submodule of
QX (respectively QW) isomorphic to W.

Proposition 3.39. Let a € Q(x)* and let x be the irreducible character of G over C

with r(x) = 1. The following statements are equivalent:
(i) m(a,x)QX NAQU # {0} in CX;
(ii) m(a, x)QX = AUy in CX;
(i1i) the Stark conjecture is true for x.
Proof. (i) < (ii) The canonical decomposition of QX is
QX = Xy & PWi
and so we can write CX as

CX = @Vv ® (Wi)c

yel’
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where (W;)c = C ®q (B, W;). Since (W;)c does not have any subrepresentation
isomorphic to V7, e,~ annihilates each (W;)c. So, 7(a, x)QX = 7(a, x)Xw and which
is {0} or a simple Q[G]-module isomorphic to W. Thus, if 7(a, x)QX N AQU # {0}
and since \ is an isomorphism, this implies that A~!(7(a, x)QX) N QU # {0} and
it must be a simple Q[G]-submodule Uy, of QU. Hence, 7(a, x)QX = AUy and so
equivalence of (i) and (ii) is proven.

(17) = (i11) Let us decompose QX as QX = QXy @ QX' and QU as QU = QUw @
QU’. Since QX = QU and Xy = Uy then X' = U’ by semisipmlicity of Q[G].

Similarly, by extending scalars from Q to C, we have
CX2CXy®CX' and CU=CUy & CU'.

Define

A Y (a, x)) on CXy
fla,x) =
1® f on CX’

where f' : X’ — U’ is any Q|G]-isomorphism and A\™! : CXy — CUy is an
isomorphism and 7(a, x) represents multiplication by 7(a,x) which is also a G-
homomorphism. Since dimc(Homg((V7)*,CX)) = (X", xx) = r(x7) = r(x) = 1,
Homg ((V7)*, CX) is one dimensional and A o f(a, x) acts on Homg((V7)*, CX) as
7(a, x) acts on (V7)*; namely by multiplication by the complex number a” Ls(0, x7).

Therefore, we have

AGC o) = ol - SR (319)

for all vy € T".

Thus, if (ii) is true, then we have A~ (7(a, x))QX = QUy, and f(a, x) is a Q[G]-
isomorphism. The formula (3.19) is then the expression of the Stark conjecture for
X-

(131) = (i) Suppose that the Stark Conjecture 3.24 is true. Then by Theorem 3.29,
and the formula (3.19) we deduce that, for all «, § € Aut(C),

AKX, fla,x)?) = AP, fla,x)? = (079 = a® = A(x°, f(a, X))
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Therefore, the determinant of A o f(a,x)” and X o f(a,x) on the one dimensional
space Homg((V*)*,CX) are equal. Thus, these automorphisms are equal on the
subrepresentation of CX isomorphic to V¢ and since this is true for all «a, they are
equal on CXyy. Since Ao f(a, x)? and Ao f(a, x) coincide on CXyy for all 3 and since
f' is defined on over Q on X’ we deduce that f(a,x) is defined over Q. Therefore,

m(a, x)QX = 7(a, x)QXw C A\Uw

and since 7(a, x) act as multiplication by a - L's(0,x) # 0 on QX, this implies that

(i) is true. O
Let W be a finite set of irreducible characters of G satisfies 7(x) = 1 such that
-lg ¢V
- if x € ¥ then, for all @ € Aut(C), x* € V.

Assume Stark Conjecture 3.24 is true for all x € W. Proposition 3.39 implies that

> " a Ls(0,x)exX C AQU = QAU (3.20)
XEV
for any family (a,)yew of elements of C satisfies aya = (a,)® for all x € ¥ and

a € Aut(C). Since 14 ¢ U, the trivial representation is annihilated by each ey with
X € V. Therefore, we can replace X by Y in the inclusion (3.20). Given any place
w € Sk lying above the place v € S, we can write
m Y ayLs(0, x)exw = A(e)
XEW

where m is a nonzero integer and € is a unit in U. This € is called a Stark unit. When
the integer m is fixed, the unit € is uniquely determined up to a root of unity.

In the next section, we will state the refinement of the Stark Conjecture for an

abelian L-function with simple zeros by using the Stark units.
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4 The rank one abelian refined Stark conjecture

4.1 Notations

From now, we suppose that K/k is an abelian extension with Galois group G.
Lemma 4.1. Suppose that T is a finite set of primes of k, containing

(i) all archimedean places

(i1) all places ramified in K/k
(111) all finite places dividing e = e = |pu(K)|

Then we have the following equalities:

(1)
Anngq(u(K)) = {a € Z[G] : (* = 1,V( € p(K)} =< Froby, — Np >p¢r

where Frob, = Frob,(K/k),
(2)
e = gedygr(Np — 1).

Proof. If ¢ € p(K), then for p ¢ T and a place p of K lying over p, we have
¢Frobe=NP = 1(modgp). Thus, ¢°P»~NP is a solution of the equation z¢ — 1 = 0 in
Ok /. Since p does not divide e, by Hensel’s Lemma we can lift this uniquely to a
solution in K. Thus, ¢"P»»~™° =1 and < Frob, — Np >C Anngg(u(K)).
Now, suppose that a € Anngg)(1(K)). By Chebotarev Density Theorem (see [Neu,
V.-§6]), any o € G is a Frobenius element Frob, = Frob,(K/k) for some p ¢ T'. Thus,

any a € Anngg (#(K)) can be written as

a= Z ay(Frob, — Np) +n, ne€Z. (4.1)
pET
Hence, n € Anngg (1(K)) if only n is divisible by e. To finish the proof of (1), it

suffices to show e €< Frob, — Np >,¢7p so it is enough to show (2).
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If p splits completely in K/k, then Frob, = 1. So, we have Np — 1 € Anngg)(1(K))
and e|Np — 1.
Now, let us take

d=ged per  (Np—1).

Froby (K /k)=1
Let L be the abelian extension of K such that L = K(u4) and o be an element of

Gal(L/K) C Gal(L/k) such that ¢ = Frob,(L/k) for some p ¢ T. Note that the
restriction of o to K/k is Froby(K/k). If Frob,(K/k) = 1 then ;""" = (N =
Ca(modgp). So, o = Frob,(L/k) = 1. Since o was an arbitrary element in Gal(L/k),
we conclude that (; € K and d|e.

To summary, we have shown that dle and e|Np — 1 hence this proves the second
assertion. For the first assertion, we know that e € Anngg(u(K)) and we have
shown that e = gedygr(Np — 1), so e €< Frob, — Np >,¢7. We conclude that e|n,
and so a €< Frob, — Np >,¢r. Hence, Anngq(u(K)) C< Frob, — Np >. So, the

result follows. O]

Let k% be the abelian closure of k containing K. For all intermediate field L, we
define the canonical map ~: O} — QO; by x — = = 1 ® x where Oj is the group
of Sp-units in L. The kernel of this homomorphism is the group of roots of unities

(L) of L. Now, define
Uf(b/k ={e€ O} : K(¢%)/k is abelian}.

Proposition 4.2. For any o € G, choose n, € Z such that (° = (" for each

¢ € W(K). Then for u € QO3 the following statements are equivalent:
(i) There exists € € Uf(b/k such that € = eu,
(i) There exists an abelian extension L/k such that u € L; equivalently, u € /;1/”,

(i1i) There exists a finite set of places T of k containing the archimedean places
and the ramified places in K/k such that for p ¢ T there exists e, € Of with

¢, = 1(mod pOy) and €, = utroP»—Nv,
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(iv) For each o, o' € G, there ezists e € Oy and oy, oy € Oj such that

€ = €U
a—n —-n
Oéo_/ 7 = Oég o!
af = 7N

Proof. (i) = (ii): Take L = K(e/¢)/k. Since € € U}I(b/m then L/k is abelian. Hence,
u = %Ez el/e € (5%

(ii) = (ii1): Let L C k% and T be a finite set of places of k satisfying the
conditions of Lemma 4.1 for KL/k. For p ¢ T, define ¢, = o™ "NF where a € O3

and Frob, = Frob,(KL/k). By assumption (ii) we can write v = . For any 7 €

Gal(KL/K), we have ;=" = (P ~NP)7=1 = (@7~ 1)oP% =N and there exists d € Z

such that a? € O%. Since 7 € Gal(KL/K), 7 fixes a?. Hence (a"1)? = (a4)™1 =1,
T—1

T—

1 . . . .
» = 1 and this implies

and so o7 is KL root of unity. By Lemma 4.1, we have ¢
that €, € O). Furthermore, ¢, = o™ N? = 1(mod pOk;) and since ¢, € K, we

—_——

have €, = 1(mod pOy). Lastly, we have ¢, = afrobr—Np — ¢, Frobp=Np,

(14i) = (iv): Let us consider T is defined as in Lemma 4.1 for K/k. Now, for

p, q ¢ T observe that

6(FrobCI —Njq)
b

egFrObp_Np)( u(Frobprp)(Frobquq)»

Thus, we have
C . E(FI'Obp—Np) _ 6(Frobquq)
P,q q p

for a root of unity ¢, which is congruent to 1 modulo p and q since €, and ¢, are
congruent to 1 modulo p and q respectively, thus by Hensel’s Lemma ¢, = 1. In

particular, we have

EgFYObq —Njg) — E(Frob;J —Np)
q .

Lemma 4.1 implies that we can find integers b, and b, , for p ¢ 7" and o € Gal(K/k)
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such that

e= Z b,(Frob, — Np)

peT
o — Ny = E by o (Frob, — Np).
p¢T
Now, define
_ by _ bp,o
e—Hep and ag—Hep )
peT peT
Then, we have
- Z €~pbp _ Zubp(Frobp—Np) — ew.
peT pgT
Furthermore,
af — Heebp,g _ H Ebp,abq(Frobq*NQ) _ H ¢bp.oba(Froby—Np) _ o—no
o p p q
p¢T p.a¢T p,a¢T

Finally, for 0,0 € Gal(K/k) we have

-y B bp.ob, s (Frobg—Na) bp,ob, s (Froby—Np)
ag' —_— Ep — Eq - aal .

pagT pagT
(tv) = (7): Assume that the equalities in (iv) hold, then we need to show that
K(€'/¢)/k is abelian. Let suppose 1 be the ¢ root of €. Let 7 be an automorphism
of k over k, so we get 7| € Gal(K/k) and write o, € O% and n, € Z for 7|x. Thus,
we have
(") =" =e"al =" ar)",
Hence ™ = (n" a, for some €' root of unity ¢ € u(K). This implies that 7 € K(n)

for all 7, so K(n)/k is a Galois extension. Since (7 = ("7, we have

!

(777——77,7)7' n_r _ (gaT)T n_r_ (aT)T -n_r _ (aT,)T—nT — (n‘r 7717/)7—717

for 7,7 € Gal(k/k). Thus, 77”/ = nT,T and K (€¢'/¢)/k is abelian. O

*

Corollary 4.3. In QO;,,, we have QO3 N O;,, = %U?f/k

93



Proof. Let € be an element in Uf‘{b/k Then, this implies that € € O} and 1€ € Q0.
Thus, lU“ we C Q0% N (9 . Conversely, let us

Also, we have —e = elle ¢ Ozab
consider u € QO7%. If u has an image in QO;,, satisfying u =17 € Okab for n € 07,
then the second statement of Proposition 4.2 holds with L = k(n). Then, by the first

statement of the same proposition eu € U%’/k Thus, u € lUf{b/k O

Corollary 4.4. If L is an extension of k contained in K and u € an/k in QO

then Ngpu € U“bk in QO .

Proof. Let u be an element in an/k such that u = 1€ = eu = € for € € Uf{b/k

Thus, u satisfies the first condition of Proposition 4.2. Now, consider a finite set
T of places as defined in (iii) of Proposition 4.2. Then there exists €, € O} with
€ = 1(modpOk) and €, = u™P»~NP where Frob, = Frob,(K/k). Now, let us define

€, = Ng/rep € Of. Since €] = 1(modpOy) for all o € Gal(K /L), we have

7=
e; = Ng/re, = Ho(ep) = epza = 1(modpOk)
€, =

1(modpOf) and this gives e; = 1(modpQp). Hence for o € Gal(K/L),

Ep — ENPZU _ (uFrobp—NP)Za — (UZJ)Frobp—Np _ (NK/LU)Frobp—Np

Since the condition (iii) of Proposition 4.2 satisfied for Ng,,u € QO7, we conclude

from (i) of Proposition 4.2 that N/ u € Ug?k O
Now, we will make some definitions to state the rank one abelian Stark conjecture.

Definition 4.5. (i) We define the Stickelberger element

Os(s) = Oxrs(s) = ) Ls(s, Xex

xGG

which we view as a meromorphic function on C with values in C[G].

(ii) For every finite place p of k, we define

where Frob, is the coset of I, in G, corresponding to Frobenius automorphism.
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Proposition 4.6. The function © satisfies the following properties:

(i) If s € C and x is a character of G, then we have
X(Os(s)) = Ls(s,X)-
(i) For Re(s) > 1, we have

Os(s) = [J(1 - F,Np~)~".

pgsS

(111) If S contains all ramified places of K/k, then for Re(s) > 1, we have
Og(s) = Z N oyt = ZC(S,O)U_I
us)=1 oeG

where ((s,0) is the partial zeta function of o € G as defined in (3.2).

Proof. (i) The definition of e, and the orthogonality relations of irreducible char-

acters provide that
0 ifx#¢

1 ifxy=2v

x(ey) =

So, the first assertion follows.

(i)
X(Frob, ') = x(Frob,)  if x(I;) = 1
X(Fp) = _
|I_1p| ZTEFrobp x(771) =0 otherwise

Hence, for Re(s) > 1

(T =FNp=)™") = [T(1 = x(Fy)Np~) " = [ [(1 — X (Frob,)Np~) !

pes pé¢s pes
= LS(‘Sv Y)
= X(Os(s)).
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Note that G form a basis for the space Hom¢(C[G],C). For an element p €
C|[G], we have the action e, p = x(p)e, and C[G] = &Ce,. It follows that for
p,p € C[G], x(p) = x(p') if and only if p = p". So, we have
Os(s) = [J(1 - F,Np~)~".
peS
(iii) Since S contains all ramified places and for unramified p, we have F, = Frob.
Then, by (ii) and the definition of Lg(s,y) with respect to the partial zeta

function we get the last assertion.

[
Corollary 4.7. For s € C and p ¢ S we have
(i) Osugpy(s) = Os(s)(1 — FNp™),
(i) Osiypy(0) = O5(0)(1 = Fyp) +log Nip - F', - ©5(0).
Proof. These two assertions directly come from Proposition 4.6, (ii). O

Definition 4.8. Let H be a subgroup of G and K' be the fixed field of H. Then there
1 a natural homomorphism

7 : C|G] — C|G/H]
which is a projection from G to G/H. Also, any p € C[G] gives by multiplication an
endomorphism of the free C{[H|-module C[G]. The determinant of this endomorphism
is called the norm of p € C[G]. In particular, the homomorphism C|G] — EndyC|[G] :
p — M, induces the norm N(p) := det(M,).

Lemma 4.9. Let X be a character of G induced by the character x € H. Then, X
can be written as a sum of characters {1} in G restrict to x on H, namely

X= D> ¢

e
YlE=Xx

xoN = H Y.

e
YlE=X

Then, we have
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Proof. The first assertion directly comes from Frobenius Reciprocity,

<5(:¢>G = <X7¢|H>H

which is equal to 1 if |y = x, otherwise 0 valued.

For i € H, let us fix 7 € G with plg=p lfoe CT/?[ then we may write
C[H] = @ Cepn = @D Cepy
H peH

and

ClG]= P (P Cens).

beG/H pel

For p € C[G] and fixed ¢ we have

Py agens =Y fid(p)agemy = (Z ﬂcb(p)@u,H) (Z %%) :

So

N(p) = det(M,) = [] (Zﬁszﬁ(p)@p,H) = llfub(p) €t

beG/H

Thus, we have

xoN(p) = [] xe(p) = [] ¢

beG/H el
Yla=X

]

Proposition 4.10. With the above notations, if k C K' C K with Galois group
H = Gal(K'/k) and G = Gal(K/k). Denote Sk as the set of places of K' lying

above the set S. Then, we have
(Z) @K//kjs(s) = W@K/k75(8)

(ZZ) @K/K/SK,(S) == N@K/k,S(5)~
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Proof. (i) For x € CT/?{, then by Proposition 4.6, (ii) and Proposition 3.11 we

have

X(Oxrks(s)) = Licrjk,s(5,X) = Liew,s(s, nfl(x))
= Inflx (O k/k,s(5))
= x o T(Ok/k,s(s))
= X(m(Ok/k,s(s)))-

The assertion follows from Remark 2.3.

(i) Let x € FAI, and let the notation be as in 4.9. Then by 4.6-(ii), 3.11, and 4.9 we

have

X(Or/r",5,,(5)) = Lx/kr.5,.,(5,X) = Lik,s(s, IndX)
= H Lijrs(s,)

e
Y| p=Xx

= [I ©(©xms(s)
Jffx

= X(N(Ok/k,s5(5)))-

Thus, the result follows from Remark 2.3.

Notation 4.11. For any place v of k, we define N¢g, as follows

NGU = Z o€ Z[G]

O'EG'U

where G, is the decomposition group of v.
Proposition 4.12.
(i) If |S| > 2, for v € S, we have Ng, - O5(0) = 0.
(11) If |S| > 3, for v,v" € S with v # v" we have Ng, - NG, - ©5'(0) = 0.
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Proof.

(i) If x(Gy) # 1, then x(Ng,) = 0.
If x(G,) =1 with x # 1, then x(©s(0)) = L(0,%) = 0.
If x(G,) =1 with x = 1, then x(05(0)) = ((0) =0 as |S| > 2.
In each cases we get Ng, - O5(0) = 0.

(ii) We only need to consider the case x(G,) = x(Gy) = 1 with x # 1. In this case
rs(x) > 2 so this leads to L5(0,%) = 0. The other cases satisfied by (i) so the

second assertion follows.

Remark 4.13.
(i) If |S| > 2 then ©5(0)Y = 0 where Y is defined as in (3.8).
(i) We always have ©g(0)X = 0 where X is defined as in (3.10).
Proof.

(i) Let v be a place in k and w € Sk lying above v. Then, Ng,w = |G,|w as
o € G,, and so fixes w. Also, Og(0)w = @S(O)ll\IGGij = 0 by Proposition 4.12.
Hence, ©5(0)Y = 0.

(ii) If |S| > 2 then we are done by (i) as X is a submodule of Y.

If |S| = v, X is generated by w — w? for some w|v and ¢ € G. Then

O5(0)w — " = O5(0) II\CIJGI (w — w7 = (%) ey (w— ") = 0

since eg + (w — w?) = 0. Thus, O©5(0)X = 0.
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4.2 The statement of the conjecture St(K/k,S)

The first form of the conjecture, stated by John Tate in [Tat], will be the reformulation
of the second one which is the orginal statement given by Harold Stark.

We keep the notations of the subsection 5.1.

Conjecture 4.14 (First Form). Suppose that K/k is an abelian extension, and S is
the set of places of k which satisfies the following conditions:

(i) S contains all archimedean places in k and non-archimedean places which ramify
n K,
(ii) S contains at least one place which splits completely in K,
(i11) |S| > 2.
If S satisfies the above conditions, then we have
1 a
05(0) Xk C g)‘(UKb/k)v

or equivalently,
A"H(O54(0) X k) C Upas
where X and X\ are as defined in (3.10) and (3.20), respectively.

Remark 4.15. The equivalence in the above conjecture follows from Corollary 4.3.

Because, when we take an element in ©5(0) Xk its inverse image under \ is always
—

mn UK/k and Corollary 4.3 says that it is also in (7,;

Notation 4.16. Let S be a set of places in k which satisfies the conditions in Con-
jecture 4.14. Let v be a place in S which splits completely in K, and let us fixr an

extension w € Sk lying above v.

If |S| > 3, we define
U ={u€ Ofg, : |ulw =1 forallw fo}.
If S ={v,v'} and if w' is an extension above V', we define

UW = {u e Ok sy * [tlow = |t]uw for all o € G}.
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Conjecture 4.17 (Second Form). With notation as above, there exists a S-unit

€€ U[“(b/,c NU® such that

log |€7], = —e(5(0,0) for all o € G, (4.2)
or equivalently,
1 ~
L5(0,x) = — Zx(a) log |€7| for all x € G. (4.3)
oceG

Remarks 4.18.
(i) The choice of place w lying above v does not affect the truth of the conjecture.
(i) The S-unit €, stated in the conjecture, is called a Stark unit.

(i1i) € is uniquely determined up to multiplication by a root of unity in K.

() If G is cyclic and S contains only one place which splits completely in K, then
such a unit €, if it exists, generates K over k, i.e. K = k(e). By Corollary
3.19, for any faithful character x : G — C* we have rg(x) = 1 and therefore
Ls(0, x) # 0. If we have T € G such that €” = € then we replace €7 = €77 in the
formula (4.3). It follows that

1
L5050 = = 3" x(0)log el

oeG

1
= =3 xro)logl€la

ceG

= XD S (5)1og e,

(&
oceG

= x(7)L5(0, x).
Then, x(7) =1 hence T =1 as x is faithful. So, K = k(e).

Theorem 4.19. The conjecture St(K/k,S) is true if S contains at least two places

which split completely in K.
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Proof. Assume that v and v" are places which split completely in K. Let |S| > 3.
Then by Corollary 3.19, L's(0, x) = 0 for all x € G. Thus, for S-unit € = 1 Conjecture
4.3 is satisfied. Now, suppose S = {v, v'}. Then the rank of the group of S-units is
1, by Unit Theorem 3.21. Let n be the fundamental S-unit with |n|, > 1. For y = 1,
the Dirichlet class number formula 3.1 implies

s - log nl,

x50, 1) = ¢(0) = o

Since u(k) is the subgroup of u(K) and hi g is a multiple of [K : k| (see [Lan,

VIg1]), m = ei}[}’}sk] € Z, we can define ¢ = n™. Since ¢ € k, it follows that

e € U™, Furthermore, K (¢'/¢) lies inside of the compositum K (n/°*) of the abelian
extension K /k and the Kummer extension k(n'/**)/k, so K (¢'/¢)/k is abelian. Thus,
€€ U}‘”{b/k N U®™. Finally, since € € k and v splits completely (in fact, |e|, = |€], =

e = [e7 ),

s loglnly (K : K]

L(0,1) =
S(:) e

1 ag
log|el, = —— > " 1(0) log €]

ceG

For y # 1, again by Corollary 3.19, we have L(0, x) = 0 and

1 " log €],
S @ og e, = 1 S (o) = 0= 40,00
oeG oeG

]

Remark 4.20. St(k/k,S) is true by Theorem 4.19, since all places in any set S (to

be defined in Conjecture 4.14) split completely.
Corollary 4.21.

(1) If S contains two complex places, then St(K/k,S) is true.

(i1) If S contains a finite place which splits completely and k is not totally real, then
St(K/k,S) is true.

Proof. These two assertions are true because all complex places split completely and

the second assertion implies that k& contains at least one complex place. O
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Theorem 4.22. Conjecture 4.14 and Conjecture 4.17 are equivalent.

Proof. Conjecture 4.14 implies Conjecture 4.17:

By assumption, the set of places S has at least two elements and contains at least
one place splits completely in K/k. Let us fix v € S which splits completely in K.
Let w, w’ be places lying above v, v/, respectively. Conjecture 4.14 says that for an

element (w — w') € Xi there exists a S-unit ¢ € Ugf, such that
,(0) (' — w) — éx(@.

By the condition (iii) of Proposition 4.6 we have
05(0)=> ¢'(0,0)07",

ceG

and so

% Z log |€],w = ZC’(O, o)o Hw' —w).

wWESK ceG
On the other hand, we have

O5(0)w = Z ¢'(0,0)0 w

ceG

1
= - jz: 10g|€MﬂU
(&

wESK

1
=—- Z log |€7 | ot w
e

oeG

since |€7], = |€|o-14. Thus, the coefficient of o~'w gives us
!/ 1 o
C(0,0) =~ log €’

for all o € G.
Now, If [S| > 3 then we know Ng, - Ng , - ©5'(0) = 0 by Proposition 4.12. Thus,

Ng, - NGU, - ©4'(0)
|Gv’|

05" (0)uw' = w' =0

since Ng ,w'" = |Gy|w" and Ng, = 1 as v splits completely in K. It follows that
log |€7],» = 0 for all places w’ { v in Sk and Og'(0)(w' —w) = —O4'(0)w. So, e € UM
for |S| > 3.
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If |S| = 2, then Ng, - Ng, - ©4'(0) = a - Ng, for a € C. Then, we write

04 (0)w' = |G“,‘NGU,. Therefore, log |¢|,-1,, is independent of ¢, and so € € U™ for
S| = 2.
4.17 implies 4.14: Suppose that there exists a S-unit e satisfying Conjecture 4.17.

Since we have shown that for any w’ not lying above v,
1
O (0)(w' ~ w) = A

Then this implies O (0)(w' —w) € %)\(U}‘(l’/k) Finally, since X is generated over Z[G|

by (w" — w) we have the desired result

/ 1 a
O5'(0)X € “A(Uzy).

Proposition 4.23. St(K/k,S) implies St(K/k,S’) for S’ O S.

Proof. Without loss of generality S # S’. Let us fix a place v € S which splits
completely in K and choose p € S" — S which is unramified place because the set S
satisfies the conditions in Conjecture 4.14. By Proposition 4.12, we have N, -O5(0) =
0 which implies that ©g(0) = 0 as v splits completely in K. Thus, by Corollary 4.7
and the fact thah F, = Frob,, we have

Olsui(0) = ©5(0)(1 — Froby) € O4(0)Z(G].

f 37
:l , ,

Proposition 4.24. If St(K/k,S) is true then St(K'/k,S) is also true for any inter-
mediate field K' between K and k.

Proof. By the embedding X ¢ — Xk g as stated in Remark 3.17 and by Proposition
4.10, we have

1 a
/K’/lc,S(O)XK’ = (7@,1(/k,s(0))XK’ - @/K/k,S(O)XK - g)‘<UKb/k)
and the result follows. O]
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Remark 4.25. Since Tate’s and Stark’s refined Conjectures are equivalent, we sure
to find a Stark unit € € Of. g for Proposition 4.24. Suppose that v is a fized place
of k which splits completely in K and w is a place of K lying above v. Let € € U}(b/k
be a Stark unit which satisfies Conjecture 4.17. By Corollary 4.4, if u = %EE Uf(b/k
then Nk /g € Uf(b//k Hence there exists an € € Uj“{b/ . such that

(Gl)e/eK’ = BNK/K/U = NK/K/E.
Therefore, for some root of unity ¢ in K' we write €¢/¢x’ = (- Nk rre. Now, we show

that € € U™ . If |S| > 3, then € satisfies |e|w = 1 for all w' { v in Sk. Hence,

€07 = | Nigyrrelur = [€Xe]ur = 1

and € € U™ . Similarly, we can show that ¢ € U™ for |S| = 2. Now, denote
G = Gal(K/k); H= Gal(K/K"); G/H = Gal(K'/k). Let x be a character of G/H
and @ be an element of G restrict to o on G/H. Then, by Proposition 3.11

L k.5(0,X) = Ly 5(0, Infly)

= ——Zlnﬂx ) 10g [€f,

yeG
1 oT
=Y o) Y loele
JEG’/H TeH
= —— Z log] NK/KIG) ‘w
JGG/H
_ = ole/exr
- Z 10g| wa<
UEG/H
=—— Y x(0)10g (') |u-
JEG/H

Hence, € satisfies Conjecture 4.17.
However, it is unclear whether ¢ can be taken equal to 1. It is the case when

e = ek, then we can simply have € = N /gre.

Theorem 4.26. St(K/k,S) is true if k = Q or k is the imaginary quadratic field.
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Proof. Let m > 3 be an integer divisible by 4 or an odd integer and { be the primitive
m-th root of unity. Let £ = Q and K = Q(¢)" denote the maximal totally real
subfield of Q(¢), and S = {oco,p : p|m}. Indeed, the set S has at least two elements
and one (00) is totally split in K since K is a totally real field. Corollary 3.19 implies
that for any character y of GG, including the trivial one, we have r(x) > 1. We
need to consider the case r(x) = 1 since in the other case the conjecture is trivial
for ¢ = 1. Note that the Galois group G = Gal(K/k) is canonically isomorphic
to (Z/mZ)*/{x1}. Denote o, as the K-automorphism corresponding to a (modm)
which is the restriction of the Q(¢)-automorphism to K which sends ¢ to (*. So, we

have o, = 0_, and the partial zeta function is written

[e.9]

((s,o0)= D, "= ) Il
n=1 ne”Z
n=+a(modm) n=a(modm)

Consider Q(¢) injects into C by ¢ = €2™/™, and let us take
e=(1-01 -1 =2~ 2cos(2m/m).

We have |e|ul,uzv} = |e|, = 1 for any v { co. Thus, in both cases, namely |S| > 3 and
S| =2, e € UM, We also have

€ =(1-¢"(1—-¢*) =2—2cos(2ma/m).

When we calculate the derivative of partial zeta function at s = 0 (which is calculated

by H.Stark in [StIV]), we find
, 1 1
¢'(0,0,) = ) log(2 — 2cos(2mwa/m)) = 5 log €7@,
We therefore have, for any character y of G

L(s,x) = > _ x(0)((s,0)

ceG

and

L0, x) = —% > x(o)loge”.

ceG
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In particular, if w is an infinite place of K corresponding to the embedding of K in
R, € is positive, then we find that

1
L'(0,x) = =5 > x(0)1og [’ .

oeG
Since K is totally real field, we can see e = |u(K)| = 2. Therefore, to prove Stark
conjecture for K/k we need to show that K(e'/?) is abelian over Q.
Since

€ = _e—2m'/m(1 . 627ri/m)27

we see that /2

is abelian over Q.

It remains to show in the case when m = 2. In this case, the extension is trivial;
K = @Q, so the character is trivial; 1, and S = {00, 2} and 2 is the only unit element
(in fact, a fundamental unit) in Og g. By Class Number Formula at s = 0,

hsR 1
Lg(0,x) = ¢5(0) = === =~ log 2|

Indeed, 2'/2 is abelian over Q. Thus, the conjecture is also satisfied in this case.

The proof of the quadratic imaginary case can be found in [StIV].

4.3 A numerical example
Let k = Q(B) where § = 3.079118864 ... is one of the root of the polynomial
fX) =X - X?-9X +8= (X -1)(X +3)(X -3) - 1.

The discriminant of this polynomial is A(Q(8)/Q) = 2597 = 72 - 53, hence the
embeddings of this extension is all real and the ramified primes are only 7 and 53
in Q(/). The ring of integers of k is Oy = Z[5] due to Stickelberger’s criterian (see
[Lan, III, §3]) (in fact, A(Q(B)/Q) = 2597 = 1(mod 4)). And since we have

(B-1)(E+3)(B-3) =1,

B—1, B+3, f—3 are units in k, indeed, {# — 1, § — 3} is the system of fundamental

units. If one computes the Minkowski bound (see [Jan, Theorem 11.9]), we see that
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every ideal class [U] in the class group Cl(Oy) contains an ideal  with N(&) < 11.
This means that we can generate Cl(Oy) by classes [p] with a prime ideal p having
norm N(p) < 11. So to find these primes, it is necessary to describe pOy when p
is an integral ideal < 11. For the primes p = 2, 3, 5, 7, 11 we use Theorem 7.6 and

Proposition 7.7 in [Jan].

p=2 2—-2*—-9z+8=zx(2*+x+1) (mod?2)
p=3 22—-22-92+8=(r+1)(2®+2+2) (mod3)
p=>5 P —2? =9z +8=(x+1)(z*+32—2) (mod5)
p=7 -9 +8=(x+2)(2*-3x+4) (mod7)
p=11 23—2*—-92+8=(2*—2*—92+38) (mod11)
Thus,
20, = (2,8)(2,8° + B+ 1) = 2 - ¢ with N(p2) = 2 and N(p}) = 22
30, =(3,8+1)(3,82+ B +2) = o3 - @ with N(p3) = 3 and N(p}) = 32
50r = (5,84 1)(5, 5%+ 38 — 2) = p5 - pk with N(ps) =5 and N(gpi) = 5% .
T0p = (7,84 2)(7,5% = 38 +4) = pr - ) with N(p7) = 7 and N(g,) = 72

110y, = (11, 8% — f* — 98 + 8) = p11 with N(py) = 11°

We have [ps] - [p5] = 1 since 20y, is principal. Similarly, we find that Cl(Oy) is
generated by the classes [pa], [ps], [@5], [p7] as [p11] = 1. Now, assume that k, §+ k

has minimum polynomial
(X —k)? = (X —k)?—9(X — k) +8.

So, N(B+k) = k* + k* — 9k — 8 and one finds N(8 —2) =6 = 2-3. Thus, (8 —2)O4
is the product of a prime with norm 2 and a prime with norm 3. In each case the
prime is unique, SO

(B —2)O = g2 - 3.

This means that [ps] = [p3] ! in C1(O},). By applying this method to other primes, we
conclude that C1(O},) is generated by [ps]. Moreover, N(8) = 8, and so SO}, = (p2)°.

Thus, the class number A, = 3.
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where 0 = 2cos(2m/7) = (; + ¢ and 6 = w is the root of the equation
+(B+1)X +1=0.
The extension Q(#)/Q is cyclic of degree 3 and satisfies the equation
XP+X*-2X-1=0.

The only ramified prime is 7 as the discriminant A(Q(#)/Q) = 72 and the class
number of Q(#) = Q(¢;+¢; )T is 1 since for all integral primes < 7, pOj, is principal.
The degree of the extension Q(0)/Q is 3 and so the relative degree f = 1, or3 but
we know that 7 is a ramified prime. Hence, f = 1 and Q()/Q is totally ramified.
By the same reason, Q(f)/Q is also totally ramified extension. Furthermore, the
ramification of 7 disappears over k otherwise the extension k(#)/k would be totally
ramified and the ramification index of 7 in k(#)/Q would be 9 but the degree of a
maximal totally ramified extension of Q is 6. Thus, F'/k is an unramified extension.

The extension K'/k is also unramifed since the discriminant of the equation for § is

(B+1)?—4=(8+3)(—1)

which is unit in Q. Note that fs = 0.878468 ... and 3 = —2.957586 ... are conju-
gates of # and the places co (respectively 0oy, 0o3) are correspondent to the embed-

ding B — B (respectively, B, f3) of k into R. These real places of k splits completely
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in I since F' is totally real field; in K’, oo splits since the discriminant of the irre-
ducible polynomial of § is positive and cos, 0oz ramifies since (53; + 1) —4 < 0 and
hence the places ooy, 003 are real places.

Now, we may consider the conjecture St(K/k,S) for S = {00, o9, 003} since
K /E is abelian and S satisfies the requirments of Conjecture 4.14. The group G =
Gal(K/k) is cyclic of order 6. Let o be the generator of G is given for the Artin
symbol of the ideal gy = (3,2) of Z[f]. Since we have Nps = 2, ¢ acts on 6 as

4 2 o 3
g% =2 — 07 =2 — 07 =40
cos = cos = :

and o acts non-trivially on K’ because g3 = (), and 3,33 < 0. All places in S splits
completely in F', then the Stark Conjecture St(F'/k,S) is true when we take e = 1 as
r(x) > 0. According to Remark 4.25 we thus seek a unit € of K such that Ng/pe = 1;

to find such unit we will try to construct Trg,pe. Then, we will try to find
¢’ = exp(—2¢'(0,07)) for j=0,...,5.
According to [StH], the values of ¢'(0,07) follows:
2¢'(0,0%) = —2¢'(0, 0%) = 2.6229258798145494,
20(0,0) = —2¢'(0, 0%) = —0.55674277199362199,
2¢'(0, %) = —2¢'(0,0%) = —0.72668091960461237.
Construct A = Trg/pe = € + €’ = ¢+ ¢! then we have
A" = exp(—2¢(0, %)) + exp(—2¢'(0, 0%)) ~ 13.84856 . . ., (4.4)
A% ~2.318052..., and A% ~ 2.5517158. ...

We try to write A as a linear sum of {1, 8, 82}. Let 2; = Tr/(A - 6°7) € Z[B] with
2100y < 12, |7;]0cs < 12 and o ~ 11.6392 ..., 21 ~ —7.1582..., 2 ~ —23.1993 ... .

We can write z;’s as a linear sum of the elements {1, 3, 5?}, namely, z = [1, 2, —4],
xy = [0,-2, 1], x5 = [-2, =3, 5] where [I,m,n] = [3*+mfS+n. These r; determines
A; we find, as Stark,

-1 )
A= —([1,4,4)0 +[2,8,1]67 + 4,9, -5]67).
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By construction, A satisfies (4.4).
Let € be the smallest root of the equation X2 — AX +1 = 0. Then, we find that
F(e) = F(v/B —3) = K, because

(B—3)(A* —4) = B

that means

where B € F' is given by

-1
B = —([1,=1,-6]6 + [~1,4,5]6" + (0,4, 1]6°%).

In particular, €’ = e~ ': so |e|, = 1 for all places w { v in K. Hence, this shows that

e e U,

By construction, the numbers ¢ and ¢’ = ¢~ are the roots of the equation

X2 A7 X +1=0since ¢+ = A7 and ¢ -7’ = 1. They are approximately
equal to the values of exp(F2¢’(0,07)). To find that

e = exp(=2('(0,07))

for each j, as desired, it is sufficient to verify the signs of e e s +,+, —

respectively for 7 = 0,1, 2. This results from

because B > 0, B° <0, B” < 0 and (—1)/(v/B —3)” > 0.
It remains to see that K(y/€) is abelian over k. In fact, we have K(y/€) =
K(v/B —1) and Gal(K (v/e)/k) = (Z/67Z) x (Z/2Z). This result follows from

(Vetve P =ct+eldt2=A+2

and
(B—1)(A—2)=C* hence +/B—1=0C/(Ve—+ec )

where C' € F'is given by

—1 2
C = 7([—1,2, 110 + 10,3, —1]6° + [1,2,0]60°").
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4.4 Application to Hilbert’s Twelfth Problem

This part is based on the article by X.-F. Roblot, [Rob].

Let k be a totally real number field distinct from Q and let v be an infinite place
of k. Let us define k5*** as a subfield of C generetad over k by all the Stark units
€(L/k,w) where L/k runs through the finite abelian extensions of k in which v is
totally split, and w is a places of L lying above v and Conjecture 4.17 is true for all

such extensions L/k.

Theorem 4.27. The mazimal real abelian extension of k is contained in kSt*.

Equivalently, for any finite real abelian extension K /k, there exist Stark units ey, . .. €,

such that K C k(e, ..., €).

We will prove the theorem by proving the second assertion. Thus, we need to
construct the Stark units €q,...,€,.
For a prime ideal p of k£ we define an integer r, as follows: If p does not divide

2 then r, = 2, otherwise r, = n, + 2 where n, is the degree of the local extension

ki /Qa.

Proposition 4.28. Let K/k be a finite abelian extension of totally real fields. Let v
be an infinite place of k and T be the set of finite places of k such that for each place
p in T, the 2-rank of the decomposition group G, of p in K/k is strictly less than r,.

Then, there exists a quadratic extension L/K wverifying these three conditions:
(i) The extension L/k is abelian,

(i1) All the infinite places of k except v become complez in L,

(i5i) The finite places of K above T' do not split in L/K.

Proof. Let p be a finite place in T" and fix a place p in K dividing p. Let s, denote the
2-rank of the decomposition group G, of p in K/k (i.e., |G,/G,*| = 2%). Since |G|
is the order of the extension K, /k, we find that the number of quadratic extensions

of k, in K, is 2° — 1. On the other hand, the number of quadratic extensions of £, is
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2™ — 1. We assumed that s, < r,, thus there exists at least one quadratic extension,
say Eg/k,, which is not contained in K, and there exists a p-adic integer =z, in k,
such that Eg = ky(,/Z,). In particular, z, is not in K. For any finite places in T

we can find such z, in k, and let
mp = Ve () +v6(2) +1

where v, denotes the valuation associated to . Since z, € k, and K/k is a Galois
extension, m, does not depend on the choice of p. By Approximation Theorem
([Jan, Theorem 1.1]), for any € > 0 we can find an algebraic integer x € k such that
|z — xy|, < € for each valuation v. This implies that there exists + € k and which

satisfies
1. v(z) >0
2. v'(x) < 0 for any infinite place v" of k distinct from v,
3. = xy(mod p) for any finite place p € 7.

We claim that L = K(y/z) and L/K satisfies the conditions (i)-(iii). The extension
L/k is abelian since L is the compositum of the two abelian extensions K/k and
k(y/z), hence the first condition is satisfied. Furthermore, all infinite places v # v’
become complex places whereas v remains real in L/k hence the second condition is
also satisfied. Lastly, assume that p is a finite place in 7" and splits in L/K. Denote
by ¢ and p finite places in L and K, respectively, lying above p. The place p splits
in L/K means that g splits in L/K, so the order of the decomposition group of g is
1. Then, the local fields Lz and K, are the same, thus z is a square in K. Let us
consider the polynomial X? — x, is in K,[z], v/ is a simple root of this polynomial
modulo ™. By Hensel’s Lemma, it has a root in K, hence z, is a square in K.
But this is not possible, since we know that x, is not a square in K and thus p does

not split in L/K. O

Remark 4.29. These three conditions are very important for the construction. The

conditions (i)-(iii) allow us to apply Conjecture 4.17 to the extension L/k. The
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third condition is necessary to ensure that L's(0,x) is not going to vanish for many
characters x, and so make sure that the Stark unit that we obtain is a generator of

L.

Now, we can prove Theorem 4.27.

Suppose that K/k is cyclic extension with Galois group G and let S be the finite
set of places which contains all infinite places and ramifed places in K/k. We want
to construct a quadratic extension L/K satisfying conditions (i)-(iii). To find Stark
units and to apply Conjecture 4.17 to abelian extension L/K we have to ensure that
L'(s,x) is not going to vanish at s = 0. One way to do this is to guarantee that no
finite places in S splits in L/K. By choosing S as minimal, the finite places in S are
exactly the places that ramify in L/k. Let p be a prime in S which ramifies in L/k. If
p is not ramified in K/k then p must be ramified in L/K and thus p does not split in
L/K. On the other hand, if p is ramified in K /k, then we want to sure that p is not
going to split in L /K and thus choose p as an element of 7. Thus, we choose T is the
set of ramified places of k£ which ramify in K/k. For each finite places in k, 2-rank of
its decomposition group in K/k is equal to 1 since K/k is cyclic. Thus, we can apply
Proposition 4.28 and obtain a quadratic extension L/K verifying conditions (i)-(iii).

Let us fix an infinite place w lying above v in L and let € = ¢(L/k, w) be the Stark
unit in L satisfies the Conjecture 4.17. Since S contains all ramified primes in L/k
not more, r(x) = 1 and so L(0,x) = 0. Finally, we apply the following Theorem
(see [StIII], Theorem 1.).

Theorem 4.30 (Stark). [StIl]] Assume Stark Conjecture 4.17 is true for the exten-
sion L/k and G is the Galois group of the extension L/k. Let T be the quotient group
G/{1, 7}, so that T is the Galois group of K/k. Assume that for every character of
x of G with x(7) = —1, one has L'(0,x) # 0. Then, L = Q(¢) and K = Q(e +¢1).

When K/k is not cyclic, but abelian, we can write K as a compositum of cyclic
extensions K;/k for some i. Then, we can construct a quadratic extension L; for each
K; hence for a fixed w;, we find that ¢; = €;(L;/k, w;) satisfies K; = k(e; +¢; ). The
proof of Theorem 4.27 follows.
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5 Rubin-Stark Conjecture

5.1 Basic Definitions and Facts
5.1.1 The Exterior Algebra

The following definitions and remarks can be seen in details in [SL, ch.XIX].

Let R be a commutative unital ring and M, M’ be R-modules.

Definition 5.1. Let f : M) — M’ be an r-multilinear alternating map. We define

the r'" exterior power of M

AM =T"(M)/a,

where a, is the submodule of the tensor product T"(M) generated by the elements of
type 11 ® .. .Qx, satisfying v; = x; for some i # j. The elements in A" M are denoted
by x1 A ... Az,

Definition 5.2. We define the exterior algebra as the direct sum

G
r=0

which has a Z-graded R-algebra structure.

Facts 5.3. (i) If f : M — M’ is a R-module homomorphism we obtain a homo-
morphism of Z-graded R-algebras

A(f) i AM — AM’
which 1s such that for xi...x, € M we have

AN )i ANoooAxe) = fle) Ao A fzy).

(i1) We write
fTATM — ATM

for the restriction of A(f) on A"M.
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(iii) We have A°M = R and N'M = M and we use the convention that "M = {0}
if r < 0.

Proposition 5.4. Let M be a free R-module of rank n. If n > r then A"M = 0. Let
{v1,...,v,} be the basis of M over R. If 1 < r < n, then \"M s free over R, and
the elements

Vi, N\ A 1 <...<t,

form a basis of N\"M over R. We have

dim A" M = (n)
r

Proof. See the proof of Proposition 1.1. in [SL, ch. XIX] O

5.1.2 Z|G]-modules

Let G be a finite abelian group and M, M’ be Z[G]-modules.

Definition 5.5. A Z[G|-lattice is a Z[G]|-module whose underlying Z-module is a free

on a finite number of generators.

If M is a finitely generated Z[G]-module we define its dual as M* = Homgg (M, Z[G]).
Since G is a finite group, we may also see M as a finitely generated Z-module. Thus,

M* is a finitely generated free as a Z-module. Hence, M* is Z[G]-lattice.

Proposition 5.6. (i) If M is a Z|G]-lattice then there is a canonical isomorphism
M*™ = M.

(ii) If
0—->M —-M-—M -0

is an exact sequence of Z|G|-lattices, then
0— (M")" = (M)" - (M) =0
is also exact.
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Proof. We have a canonical isomorphism of abelian groups
Homy (M, Z[G]) = Homgy (M, Z).

This isomorphism takes f € Homgq(M,Z[G]) to m o f € Homg(M,Z) where
is the ring homomorphism Z[G] — Z given by > a,0 — > a,. The inverse of
this isomorphism sends g € Homgz (M, Z) to the function in Homyq (M, Z[G]) which
sends m € M to Y glom)o~t. Since M, M', M" are Z|G]-lattices, both assertions
follow. O

Every ¢ € M(x) = Homgg (M, Z|G]) induces a Z[G]-homomorphism
b ATM — ATIM
given by

¢(m1 VANPIIAN mr) = Z(—l)’“(b(ml)ml AN o AM_1t Ay Ao Amy
i=1

for all » > 1. For ¢q,...,¢r € M*, we have the map

A*Hom(M, Z[G]) — Hom (A" M, A"* M) (5.1)

¢1A.../\¢kl—>¢k0...0¢1
for all k£ < r; when k& = r the map is
(@1 A Ade)(my A Amy) = det(¢i(my)).

Definition 5.7. Suppose M is a finitely generated Z[G|-module and r is a nonnega-
tive integer. By using the map (5.1), forr =k,

¢t : N"Hom(M, Z|G]) — Hom(A"M, Z[G])
we define

NoM = (N (M) C AN"M @ Q

={meAN'MQ: o1 AN...\¢.(m) € Z|G], for every ¢1,...,¢,. € M*}.
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Remark 5.8. If v is surjective then we immediately have NGM = (AN"M )™ = A" M
where N\"M is the image of N"M in N"M & Q.

Proposition 5.9. Suppose M is a Z|G]-lattice and r > 0.
(1) NogM D A"M with finite index,
(1t) N\gM = N"M if r < 1.

Proof. The first assertion comes from the definition of A{M. For the second one;

Ifr =0, A)M =Z[G] = A°M and if r =1, ANM = M** = A'M. O

Corollary 5.10. Suppose M is a Z[G]-lattice and r > 1. If ¢ € M*, then ¢ induces
the map
¢ ANgM — ANy M.

Proof. Suppose ¢1,...,¢,—1 € M* and m € AjM. Then we have the equality
PN NG A(P(m) =oAL AL A Dra(m) € Z[G]

for all ¢y, ..., ¢, 1. Hence, ¢(m) € Aj M.
In particular, by Proposition 5.9, if ® € A" "Homg(M, Z[G]), then

GL A NGy NgM — ANJM = M = M.

5.2 The statements of the conjectures

We define Ok g7 = {a € Of g : a = 1(mod w) for all w € T}.

Hypotheses 5.11. Suppose that S, T are disjoint finite set of places of k and r is a

nonnegative integer.
(1) S contains all infinite and ramified places,

(i1) S contains at least r places split completely in K/k,
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(iii) |S] > r + 1,
(iv) O s is torsion-free.

Remark 5.12. The conditions (i) and (iii) guarantee that s~"Ogr(s) is holomorphic
at s = 0. The last condition is satisfied if T contains places of two different residue

characteristics or a place of sufficiently large norm.
We define A" : N' Ok s — N"R® Xg which is induced by

)\S,T : O;(,S,T — RXS

o Z log(|at|w) - w

wWESK

If » >0 and s‘r@g;)T(O) is holomorphic at s = 0, we define

O4r(0) = lim s "Osr(s) = Y exlims " Lsr(s,X) = Y e Lir(0,%) € C[C]

xe@ XG@

Conjecture 5.13 (St(K/k,S,T)r)). If S, T, r satisfy Hypotheses 5.11, then
OUr(0) A" X5 € AV (NjO% s1) in R® Xg.
Conjecture 5.14 (St(K/k,S,T,r)®Q). If S, T, r satisfy Hypotheses 5.11, then
051 (0) A" Xs € QA (A O% 51) in R® Xs.
For w € Sk, we define w* € Y3 as

w(w') = Z v, for w' € Sk.

veGal(K/k)
Let us fix w; for each v; € S. If n € A"Y{, we define a regulator map
(r)
R”] : /\T(/)KV&T A—) R® /\TXS L) R[G]

Lemma 5.15. Ifuy,...,u, € Usp, wi,...,w, € Sk and n = wi A... ANwy, then

Ry(uy A ... Auy) = det( Z log [t} w,y™").
~YEGal(K/k)
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Proof. By definition of the regulator, we have

Ry(ur Ao oA u) = n(Au) Ao A N(uy))
— det(w)(A\(w)))

and

wiAw)) =wi (Y log sy, yw;)
~EGal(K/k)

= Z log ‘ui|“/wj7

~EGal(K/k)

—1
= Y loglul |

yEGal(K/k)

= Z log |u’iy|wj’7_1-

vEGal(K/k)

]

If Hypotheses 5.11 is satisfied, then r(y) > r for all y € G. Now, we define the
Z|Gl-lattice Agr in QA" Of¢ g1 as

Asr = {u € NyOj 51 : exu = 0 for every x such that r(x) > r}.

Conjecture 5.16 (St(K/k,S,T,r)’). Suppose that Hypotheses 5.11 is satisfied and
Vi, .. .,0 €S split completely in K/k. For each i, fix a place w; € Sk and let

n=wiA... \Nw}. Then there is a unique esp € Agp such that
By(esir) = ©51(0)

equivalently,

X(Ry(esr)) = L(i)T(O,X) for all x € G.

Conjecture 5.17 (St(K/k,S,T,r)®Q). With hypotheses as in Conjecture 5.16, there

is a unique egr € QAgp such that
Ry(esr) = ©57(0).
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5.2.1 Relations between the conjectures

Let us fix vy,...,v. € S which split completely in K/k and for each i fix a place w;
of K lying above v;. Let S be the set of places which do not lie above vy, ..., v, in

K. Note that S% is not empty, since |S| > r + 1 by Hypotheses 5.11.
Lemma 5.18. Let wy,...,w, be the places as above and w € S .

(i) If x # 1 orif |S| > r+1 then ex@g:)T(O)w =0 in CY,

(i) Let = (w; —w) A ... A (w, —w) € N"Xg. Then,

0y (0) A" X = Z|G)O S (0)z.

Proof. (i) If x # 1 and x(G,) # 1, then

N DI MRS D DRI DI G LT

YEGw 0GwEG /Gy ~EGw 0GwEG/Ghy

If x(Gw) =1 and x # 1 then r(x) = |[{v € S : x(Gw) = 1}| > r + 1. Hence,
057 (0) = e Li3(0,3) = 0.

If x =1 and |S| > r+1 then ex@g:) (0) = e3¢ (0) = 0 since 7(x) = |S|—1 > r.

(ii) Suppose |S| >+ 1. We can see Xg as

Xg C iZ[G](u}i —w)+ Y Z[Gw'.

!
w' €S

Thus, we write
N'Xg CZIGl(wy —w) Ao A (w, —w) + Zayy
y

where y runs through w] A ... A w. and at least one of the w; € Sk. For any

X € G and for any element z € A" Xg,

ex@g}_p(O)z = ex@ng(O)ax
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where o € Z|[G] as the component w; € S is annihilated by ex@g:)T(O), by (i).
Hence, ©5):(0) A" X5 C Z[G1OG1(0) (wi — w) A... A (w, — w).
Suppose |S| =r+ 1. Then, Xg can be written in the form

X = iZ[G](wi —w) + Igw

where I is the augmentation ideal of Z[G] (namely, kernel of the map Z[G] —
7). Thus, we write

/\TXS:Z[G](wl—w)/\.../\(wr—w)—l—Z&yy/\w
y

where «, € I. Hence, for any x € G, ex@ng(())ayy Aw = 0.

Converse inclusion also holds, so we have the equality.

Lemma 5.19. Suppose wy, ..., w, are as above and set n =wj A ... Nw} € Yg.
(1) n is injective on @g:)T(O)C A" Xg = CA"(Agr),
(i1) R is injective on Agr @ C — C[G].
Proof. As we know, r(x) = dim¢ Hom(V*, CXg) = dimc e, CXg. Hence:
If 7(x) > r then, dimc e, A" CXg > 1, and
if r = r(x) then, dimce, A" CXg = 1.
If r(x) > r then, dim¢ ex@g:)T(O) A" CXg = 0 by Lemma 5.18 (i), and
if r = r(x) then, dim¢ ex@g)T(O) N CXg =1.
Since 7 : @g)T(O) N CXg — C[G], we can show the injectivity of n for the map
ex@g:)T(O) N CXg — ¢,C[G] as @g)T(O) A" CXg is direct sum of these. Thus, it is
enough to show the injectivity of n on ex@g:)T(O) A" CXg for a character y such that

r(x) = r. For some w € Sy, let x = (w; —w) A ... A (w, —w) € Xg. Then,
nx) = (wy A Aw)((wr —w) A A (w —w,)) = det(w] (w; —w)) = 1.

Hence, n(ex@g)T(O)x) = L"(0,%) # 0, and so 7 is injective on
@gT(O)(/\T(CXS) = A (Agr)®C. Since A : Of 47 ®C = X ®C is an isomorphism,

A" is also an isomorphism and R = 1o A(") is so injective on Asr ® C. O]
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Proposition 5.20.
Congecture St(K/k,S,T,r) is equivalent to Conjecture St(K/k,S,T,r).

Proof. For some w € Sk, let x = (w; —w) A ... A (w, —w) € Xg. Then

OLR(0) A" X5 € XD (AfO5 1) & 5 (0)x € A (MO 5.1)
& 005(0)x € A7 (Agy)
& n(05(0)x) € 7oA (Agy)
= @s (0) € R(As )
) =

(O R(E&T), where €sT € AgyT.

The first equivalence comes from Lemma 5.18 (ii). The second equivalence is true
since A(") is an isomorphism and ex@g}[(O)x = 0 when 7(x) > r. The uniqueness of

es,r comes from the injectivity of R. O
Proposition 5.21. Conjecture St(K/k,S,T,1) is equivalent to Conjecture 4.14.

Proof. By Proposition 5.9 (ii), A\¢O% g1 = OF. g and A' Xg = Xg thus St(K/k, S, T, 1)
implies that
s57(0)Xs C Asr(Ok s.7)

for all T satisfying (5.11). We also have the relations

5r(0) = JJ(1 = Frob, 'Np), [](1 — Frob, 'Np)Oj s C Ok 51
peT peT

and so we get both implications by using these relations.

]

Proposition 5.22. Ifr(x) = r, then Conjecture St(K/k,S,T,r)2Q is equivalent to
Conjecture 3.24.

Proof. Let £ = {x € G : 7(x) = r} and suppose that Conjecture 3.24 holds for all
X € E. Now, let us fix a Q[G]-module isomorphism f : QX — QO% g and denote
the x-th component of f as f, and which is

friex(CX) — ex(CO;{,S,T>-
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For any x € = and a € Aut(C) we have

det(Asz o fy)
Aly, f) = S/AST 2 Ix).
I =T 0

Now, define

p=> e Al )7

XEE

Note that p € Q[G], since

P =D e Al )T

= Zei(fl(x, HH
= e A f) =p

as eya = e, and A(x®, f) = A(x, f)* for all o € Aut(C).

pD_exdetOsro f) =3 exdetsr o f)AC )™

XEE XEE

=Y e L (0.%) = 05(0).

XEE
Ifxe AN"Xgand fO: QA" Xg — QA Ok,s denotes the map induced by f, then

@g:)T(O)X = pz ey det(Asr o f)x

XEE

=p> A0 f(e,x)

XEE

= AO(fD(px)) € QAN Ok 1)

Since A"Oj g7 has finite index in AfO% g, Conjecture St(K/k, S, T,r)®Q is sat-
isfied. The converse direction is similar. If Ag)T( FO(px)) € QA(A"Oj sr), then
since A" is injective, p(x) € Q(f™)) " H (AW Ox g7) = QA" Xg. Hence, p € Q[G]
and Conjecture 3.24 holds. O

Let Aj s denote the class group of Oy g; Aigr denote the quotient group of
the fractional ideals of Oy ¢ prime to 1" by the subgroup of principal ideals with a
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generator congruent to 1 modulo all p € T'; R, = Ry g denote the regulator of O g.

Then, there exists an exact sequence

0= Orsr — Ors— H(Ok,s/p)* — Apst — Aps — 0. (5.2)
peT
We define
Crsr(s) = Gesls) [ [(1 = Np' ™).
peT
Thus,

v (0) = ¢U5(0) T (1 — Np)

peT

sl Bus g

Since Ags7 is Ap,s composed with the inclusion Of g — Oj g/u(k), the definition

peT

of Ry g1 gives

Ry st = [OZ,S,T : OZ,S/N(k)] - Ry.s

[OF s Ok sl

RS RS Ry s
|(F)]

Then, by the exact sequence (5.2) we have

R
BT - Assir| = [LNp = 1)+ [ Aus],
k,S peT

and hence

_|Aks|- Ris
(k)|

Proposition 5.23. Suppose that S contains more then r places which splits com-

pletely in K/k. Then, St(K/k,S,T,r) is true.

H(l — Np) = i|Ak,S,T| . Rk,S,T . (53)

peT

Proof. 1f |S| > r+ 1 or S has more than r places split completely, then @g)T(O) =0
as limg 05" Lgr(s,x) =0 for any x € G. Hence, St(K/k,S,T,r) is trivially true.
If |S| =7+ 1, in which case all places in S = {vy,...,v,41} split completely in
K/k, and x # 1 then @(;)T(O) = 0. Hence by (5.3),
T T N
01 (0) = e:¢{1(0) = iﬁ |Agsr| - Resr
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where Ng =3 0.

Let {uy,...,u,} be basis of the free Z-module Oy g ;. Then, define

A
€sT = ‘ |ZT;T‘U1 N...N\Nu, € (/\TO}}’S’T)G X Q

If we fix w;|v; in Sk, then for n = wi A ... Aw}, Lemma 5.15 provides that

A
Ry(es) = 57 aer S toglufl, )

|G|T veGal(K/k)
I B .
- |G\7" NG Ly s = T€1 - ’ k,S,T\ s vg.s T

= +e1(§7(0) = §7(0)

Now, we need to show egp € Agp. Let us take ¢1,..., ¢, € Hom(O}(757T, Z[GY). Since
uj € (Of.s7)° then ¢;(u;) € Z|G]% = NgZ[G] and we have

[ Ar,s,7|

¢1A"'/\¢T(€S,T) = |G|T

where N.Z|G) = |G|""'Ng. Hence,

[ Ap,s,7|
|G

| Ag 5.7
|GI"

We assumed that |S| = r + 1 and all places split completely so K /k is an unramified
extension. Thus, by class field theory |G| divides |Aj s| and | A s| also divides | A s.7|

| Ak, s,

which implies == € Z. Hence, egp € NOf gp. Lastly, for x # 1, eyesr =

\z‘ﬁg?ﬂ (exur A...Au,) = 0 it follows that es7 € Agr. So, St(K/k,S,T,r) is true. O

Corollary 5.24. Suppose S,T,r satisfies Hypotheses 5.11. Then St(K/k,S,T,r) is
true when K = k.

Proof. When K = k, all places ramify and so |S| contains more than r + 1 places.

Hence, St(K/k, S, T,r) is true by Proposition 5.23. ]

Proposition 5.25. Suppose S,T,r satisfies Hypotheses 5.11 and S" D S is a fi-
nite set of places of k disjoint from T. Then, S',T,r satisfies Hypotheses 5.11 and
St(K/k,S,T,r) implies St(K/k,S,T,r).
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Proof. Suppose St(K/k,S,T,r) is true and egr € Agr which satisfies R(egsr) =
@gT(O). Let S’ = S U {p} for a place p ¢ SUT. Then,

@g’j{T(O) = (1 — Frob, )0 (0).

Let us take egr 7 = (1—F1"Ob;1)657T € Ag. which can be taken since (1—Frob, )Ag7 C
Asr. Hence,

R(esr) = (1 — Frob, ") R(es;r) = ©4)1(0).
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