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Department of Mathematics, Koç University
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Department of Mathematics, Koç University
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ABSTRACT

ON A RESOLUTION OF SOME NON-ISOLATED HYPERSURFACE SINGULARITIES

Çevik, Gülen

M.S, Department of Mathematics

Supervisor : Assist. Prof. Sinan Ünver

Co-Supervisor : Assoc. Prof. Meral Tosun

September 2011, 52 pages

In 1970s, F. Ehlers [6] and A. Kouchnirenko [13] defined the class of nondegenerate hyper-

surface singularities and computed some invariants of these singularities from the Newton

polyhedron. The notion of nondegeneracy is extended to complete intersection singulari-

ties by A. Khovanskii [12]. In 1993, in his book M.Oka gave an algorithm to construct a

resolution of a nondegenerate complete intersection singularity by using toric modification

associated with Newton polyhedron. In this thesis we apply Oka’s algorithm to find explicitly

the minimal resolution graph of ADE singularities and we show that the same algorithm gives

the minimal resolution graph of some non-isolated hypersurface singularities. We also give

an example that the minimal resolution graph of degenerate non-isolated singularities can be

obtained by Newton polyhedron and toric modification.

Keywords: surface singularities, Newton polyhedron, toric modification
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ÖZET

BAZI AYRIK OLMAYAN HİPERYÜZEY TEKİLLİKLERİNİN ÇÖZÜMLEMESİ
ÜZERİNE

Çevik, Gülen

Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi : Yard. Doç. Dr. Sinan Ünver

Ortak Tez Yöneticisi : Doç. Dr. Meral Tosun

Eylül 2011, 52 sayfa

1970’lerde, F.Ehlers [6] ve A. Kouchnirenko [13] belirli dejenere olmayan hiperyüzey tekil-

lik sınıfı tanımlamış ve bu tekilliklerin bazı değişmezlerini Newton polihedronunu kullanarak

hesaplamıştır. A. Khovanskii, [12], dejenere olmama tanımını tam kesişme tekilliklerine

genişletmiştir. 1993 yılında ise M. Oka kitabında torik modifikasyon vasıtası ile dejenere

olmayan tam kesişme tekilliklerinin çözümlemesinin inşasını tarif etmiştir. Bu tezde M.

Oka’nın tarif ettiği algoritma kullanılarak ADE tipindeki tekilliklerin minimal çözümleme

çizgesi bulunmuş ve aynı zamanda bazı ayrık olmayan hiperyüzey tekilliklerinin aynı al-

goritma kullanılarak minimal çözümleme çizgesinin bulunabileceği gösterilmiştir. Buna ek

olarak bazı dejenere ayrık olmayan tekilliklerin minimal çözümleme çizgesinin Newton poli-

hedronu ve torsal modifikasyon kullanılarak elde edilebileceği bir örnek ile gösterilmiştir.

Anahtar Kelimeler: yüzey tekillikleri, Newton poligonu, torsal modifikasyon
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CHAPTER 1

INTRODUCTION

In singularity theory the main problem is to find a non-singular algebraic variety, called res-

olution of singularities which is a sequence of blowing up maps together with normalization.

The existence of resolution of singularities in dimension 2 over C proved by Robert J. Walker

in 1935 [18] and in 1964, Japanese mathematician Heisuke Hironaka proved that any alge-

braic variety over a field of characteristic zero admits a resolution of singularities. Hironaka

was awarded a Fields Medal for this work in 1970. However, the existence of a resolution

does not help to determine explicitly the process of resolution, especially in higher dimen-

sion; a curve singularity can be resolved by a sequence of blowing up or normalization. The

surface singularities can be isolated or non-isolated and their resolution can be rather com-

plicated. There are some methods which enables us to rather overcome the difficulty of the

resolution process. The simplest singularities of surface are of type ADE, of type quotient, of

type simple elliptic, of type rational,... etc. These are classified according to the similarity of

their resolution process. One of the important class of surface singularities are Newton non-

degenerate singularities which are introduced, in hypersurface case, by F. Ehlers [6] and A.

Kouchnirenko [13]. The importance of these singularities is coming from the fact that there is

an explicit construction of resolution which depends only on Newton boundary (see below).

Given any polynomial f , let V = V( f ) be an algebraic variety over an affine n-space. The

Newton polyhedron of f is defined as the intersection of finitely many rational halfspaces. In

1980s, Mutsuo Oka give an explicit way to construct resolution of hypersurface and complete

intersection singularities. We call this construction Oka’s algorithm. Our aim here is to

describe Newton non-degeneracy condition for non-isolated hypersurface singularities. To

do this, we consider a class of some non-isolated hypersurface singularities and we construct

their resolution via “Newton polyhedron” by applying Oka’s algorithm.
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In Chapter 2 of this work we recall some basic definitions and results on the subject. In Chap-

ter 3 we first construct explicitly the minimal resolution of ADE singularities which appears

in [15]. Then we construct a resolution of some non-isolated singularities of hypersurfaces.

It is well known that an isolated surface singularity is obtained as the normalization of a

non-isolated hypersurface singularity. We were planning to establish a relation between the

Newton polyhedron of our non-isolated hypersurface singularity and the Newton polyhedron

of its normalization but this will appear as a forthcoming work. In Chapter 4 we give the

resolution of some surface singularities via toric modification. We obtain an example of non-

isolated hypersurface singularity which is degenerate and which admits a resolution by toric

modification.

2



CHAPTER 2

PRELIMINARIES

2.1 Cones and Fans

Let M be an integral lattice and N be its dual integral lattice. Let MR := M ⊗ Rn and NR :=

N ⊗Rn be corresponding n-dimensional real vector spaces. As NR is the dual space of MR, a

point w = (w1, · · · ,wn) in NR defines a linear functional on MR. Namely w : MR → R such

that m 7→ w(m) = 〈w,m〉 where m ∈ MR.

Definition 2.1.1. A polyhedral cone in NR is the set

Cone(w1, . . . ,wn) = {
∑n

i=1 riwi : wi ∈ NR, ri ∈ R≥0}

The finite set of vectors {w1, . . . ,wn} is called generators of the cone. We will consider wi’s

as primitive vectors, that is the coordinates of w are coprime. If there is no confusion, σ will

be used instead of Cone(w1, . . . ,wn).

The dimension of σ is the dimension of the smallest subspace containing σ. A cone is said

to be rational if it has integral generators. A cone is said to be strictly convex if it does not

contain any positive dimensional vector subspace.

Remark 2.1.2. A polyhedral cone is in fact convex which means that for any a, b ∈ σ implies

ta + (1 − t)b ∈ σ for all 0 ≤ t ≤ 1.

Example 2.1.3. The cone σ = 〈(−1, 0), (0, 1)〉 ⊆ NR is a rational cone but it is not strictly

convex since it contains a line passing through the origin. The cone τ = 〈(1, 0), (1, 3/2)〉 is

strictly convex cone but not rational.

3



σ

(0,1)

(-1,0) (1, 0)

(1, 3/2)

τ

Throughout this thesis the word ‘cone’ will stand for a strictly convex rational polyhedral

cone.

Definition 2.1.4. The dual σ̌ of σ is the set

σ̌ = {m ∈ MR : 〈w,m〉 ≥ 0 ∀w ∈ σ}

Remark 2.1.5. If σ is a cone then so is σ̌.

Example 2.1.6. The dual σ̌ of σ above will give again σ itself. However the dual cone of τ

is the following:

σ̌

(1,−3/2)

(0, 1)

For a fixed m ∈ MR, we define the hyperplane

Hm = {w ∈ NR : 〈w,m〉 = 0}

and the half-space

H+
m = {w ∈ NR : 〈w,m〉 ≥ 0}.

If σ ∩ Hm , ∅ and σ ⊆ H+
m with m ∈ σ̌ − {0} then Hm is said to be the supporting hyperplane

of the cone σ.

Remark 2.1.7. σ can also be expressed as the intersection of the half-spaces H+
m for any

m ∈ σ̌.
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Definition 2.1.8. A face τ of σ is

τ = σ ∩ Hm = {w ∈ σ : 〈w,m〉 = 0}

for some m ∈ σ̌.

It is denoted by τ � σ. If m = 0 then σ ∩ Hm = σ. So σ is a face of itself. If τ , σ then we

call τ proper face and write τ ≺ σ.

A vertex of σ is a face of dimension 0. An edge of σ is a face of dimension 2. A facet of σ is

a face of codimension 1.

Definition 2.1.9. Let τ � σ ⊆ NR. The dual τ̌ of τ is the set τ̌ = σ̌ ∩ τ⊥ where

τ⊥ := {m ∈ MR : 〈w,m〉 = 0 ∀w ∈ τ}.

Proposition 2.1.10. Let τ be a face of σ and τ̌ = σ̌ ∩ τ⊥. Then;

i. τ̌ is a face of σ̌.

ii. The map τ 7→ τ̌ is a bijective inclusion-reversing correspondence between the faces of

σ and the faces of σ̌.

iii. dim τ̌ + dim τ = n.

Example 2.1.11. Let σ = 〈(1, 0), (1, 2)〉 ⊆ NR and τ1, τ2 be facets of σ. Then dual cone σ̌ is

generated by 〈(2,−1), (0, 1)〉. The dual faces τ̌1 = σ̌ ∩ τ⊥1 and τ̌2 = σ̌ ∩ τ⊥2 are facets of σ̌.

σ

(1, 2)

(1, 0)

τ1

τ2

σ̌

(2,−1)

(0, 1)

τ̌1

τ̌2

τ⊥1

τ⊥2

Figure 2.1: The cone σ and its dual σ̌

Note that dim τi + dim τ̌i = 2 for i = 1, 2.

5



Definition 2.1.12. Let σ = 〈w1, . . . ,wk〉 be a cone in NR. The determinant of σ,denoted

det(w1, . . . ,wk), is the greatest common divisor of k × k minors of the integral n × k matrix. If

n = k then the determinant of σ is the usual determinant. If there is no ambiguity, we denote

det(σ).

Remark 2.1.13. By applying elementary row operations one can always multiply the deter-

minant by −1. To avoid ambiguity, from now on we will consider determinant to be a positive

integer.

Example 2.1.14. Let σ = 〈(3, 2, 1), (1, 2, 3)〉 ⊆ NR. Then

det(σ) = gcd(
( 3 2

1 2
)
,
( 2 1

2 3
)
,
( 3 1

1 3
)
) = gcd(4, 4, 8) = 4.

Definition 2.1.15. Let σ be a cone in NR. Then

i. σ is simplicial if the generating set {w1, . . . ,wk} of σ is linearly independent over R.

ii. σ is regular if the generators form a basis for the lattice N ' Zn. In other words if

det(w1, . . . ,wn) = 1.

Example 2.1.16. The cone σ1 = 〈(1, 2), (3, 1)〉 ⊆ NR is simplicial because the generators

are linearly independent, however it is not regular as det((1, 2), (3, 1)) = 5 , 1. The cone

σ1 = 〈(1, 0), (1, 1), (0, 1)〉 is not simplicial because (1, 1) = (1, 0) + (0, 1) hence it is not

regular.

(3, 1)

(1, 2)

(1, 0)

(0, 1)
σ1

σ2

(1, 1)

Figure 2.2: The cone σ1 is simplicial but σ2 is not

Example 2.1.17. The cone σ in Example 2.1.14 is simplicial but it is not regular as

det(σ) , 1.

A fan Σ in NR is a finite family of strictly convex rational polyhedral cones σ ⊆ NR such

that

6



i. Each face of any cone σ is also a cone in Σ.

ii. Any intersection of two cones in Σ is a face of each cone.

Moreover, if Σ is a fan then the support of Σ is defined as
⋃
σ∈Σ σ.

Definition 2.1.18. Let Σ be a fan in NR. Then,

i. Σ is simplicial if every cone σ in Σ is simplicial.

ii. Σ is regular if every cone σ in Σ is regular.

iii. Σ is complete if its support
⋃
σ∈Σ σ = NR.

Example 2.1.19. Let Σ1 = τ1 ∪ τ2 and Σ2 = σ1 ∪ σ2 be two fans in NR(see below figure).

Then Σ1 is regular since each cone τ1 and τ2 are regular (as det(τ1) = det(τ2) = 1). The fan Σ2

is not regular since σ1 is not regular as det(σ1) = 2. Here v1 = (1, 0), v2 = (1, 1), v3 = (0, 1),

w1 = (1, 0),w2 = (1, 2),w3 = (0, 1).

σ1

σ2

τ1

τ2

Σ1 Σ2

v3

v1

v2

w3

w1

w2

Figure 2.3: Regular fan Σ1 and non-regular fan Σ2

Note that the support of both fans is the positive quadrant NR
+. So both fans are not complete.

Definition 2.1.20. We say that Σ∗ is a refinement of a fan Σ if each cone of Σ∗ is contained in

a cone of Σ. If each cone of Σ is regular then Σ∗ is called a refinement of a regular fan.

Theorem 2.1.21 ([11]). A rational fan can always be refined into a fan.

2.2 Normalization of varieties

Let k be an algebraically closed field of characteristic 0. The set

An(k) = {z = (z1, . . . , zn)|zi ∈ k}

7



is called the affine n-dimensional space over k. Let f be a polynomial in k[z1, . . . , zn]. The set

V = V( f ) = {z ∈ An(k) : f (z) = 0}

is called a hypersurface in An(k). The set

V( f1, . . . , fk) = {z ∈ An : f1(z) = · · · = fk(z) = 0}

is called a complete intersection variety if the defining ideal of V is also generated by k

functions.

Let V be an affine variety defined by f . A point p ∈ V is called singular point if

(
∂ f
∂z j

(p))1≤i≤k = 0.

The set of singular points of V is called the singular locus and denoted by VS ing. V is said to

be smooth (or non-singular) if there is no singular point.

Remark 2.2.1. The singular locus VS ing is a subvariety of V.

Example 2.2.2. Let f (z1, z2) = z2
2 − z3

1 then (0, 0) is a singular point of V( f ) because t

[ ∂ f
∂z1

∂ f
∂z2

] = [−3z2
1 2z2] is 0 at the point (0, 0).

A singular point p is said to be isolated if there is no other singularities in some small neigh-

bourhood of p. If we can find other singularities in some small neighbourhood of p then p is

called a non-isolated singular point.

Example 2.2.3. Consider f (z1, z2, z3) = z2
1 + z3

2 + z4
3, then V( f ) has an isolated singularity at

(0, 0, 0).

Example 2.2.4. Let f (z1, z2, z3) = z2
1z2

2+z3
2z3+z3

3. V( f ) has a singularity along z1-axis because

[ ∂ f
∂z1

∂ f
∂z2

∂ f
∂z3

] = [2z1z2
2 2z2

1z2 + 3z2
2z3 z3

2 + 3z2
3] = (0, 0, 0) along the line z2 = 0, z3 = 0. So f

has a non-isolated singularity.

Let R be an integral domain with field of fraction K. Let f be any monic polynomial in R[z].

R is called integrally closed if every root m/n ∈ K of f is in R. The set of elements of K

which satisfies f is R, integrally closure of R.

Let V be an affine variety. V is said to be normal at a point p ∈ V if the local ring Op is

integrally closed. V is normal if it is normal at every point of V . As normality is a local

property; [1] V is normal if its coordinate ring is normal.
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Remark 2.2.5. If V is a non-singular variety, then it is normal since regular local rings are

normal.

Example 2.2.6. An(k) is a normal variety since its coordinate ring is C[z1, · · · , zn]; recall that

a UFD is a normal ring.

Example 2.2.7. Let V = V(z2
2 − z3

1). Then the coordinate ring of V is C[z1, z2]/(z2
2 − z3

1) �

C[t2, t3]. The root of the monic polynomial z2
1 − t2 ∈ C[t2, t3][z1] is t, but t < C[t2, t3]. So

C[t2, t3] is not a normal ring, hence V is not a normal variety.

If a variety is not normal we can normalize it:

Definition 2.2.8. Let V be an affine variety with a coordinate ring OV . Then W is called the

normalization of V if OW = OV together with a birational map f : W → V where OV is the

integral closure of OV .

Example 2.2.9. In Example 2.2.7 we have seen that the variety V is not normal. Now we

want to normalize the non-normal coordinate ring C[t2, t3]. Observe that the only missing

element in C[t2, t3] is t. Since t is a root of the equation z2
1 − t2 ∈ C[t2, t3][z1], t and every

element of C[t] is in the normalization of C[t2, t3]. C[t] is UFD hence it is normal. Therefore

C[t] is normalization of C[t2, t3] and C is the corresponding normal variety with birational

map f : C→ V such that t 7→ (t2, t3).

2.3 Resolution of singularities

Let V be an affine variety in An(k). A resolution (or desingularization) of V at a point p is a

map π : Ṽ → V such that

i. Ṽ is a non-singular variety.

ii. π is proper map.

iii. Ṽ − π−1(p) −→ V − {p} is an isomorphism.

The inverse image of the point p by the map π, π−1(p), is called the exceptional divisor. A

resolution is called good if the exceptional divisor E := π−1(p) is a normal crossing divisor, i.e

if E consists of a finite union of smooth irreducible components,say E1, . . . , Ek, intersecting

transversally.
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A resolution is called minimal if any other resolution π′ : Ṽ ′ → V factorizes by π.

Ṽ ′ V

Ṽ

π′

π

Theorem 2.3.1. [10] A resolution of a surface exists and it is obtained by a sequence of

normalized blowing-ups of singular points.

Suppose π : Ṽ → V be a good resolution and let E =
⋃k

i=1 Ei be the exceptional divisor. We

associate a weighted graph G to the resolution π as follows:

i. A vertex vi of G corresponds to each component Ei = E(vi) of E.

ii. Two vertices vi and vj are attached by an edge if and only if the intersection Ei ∩ E j is

non empty.

iii. Each vertex vi is decorated by a weight −mi which is a self intersection number E2
i .

The graph G is called the resolution graph of the resolution π : Ṽ → V .

If in G the vertex of weight −1 does not exist or is of valency ≥ 3, then G is called the minimal

resolution graph.
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CHAPTER 3

RESOLUTION VIA NEWTON POLYHEDRON

3.1 Newton Polyhedron

In this section we introduce the notion of Newton polyhedron associated with a hypersurface.

Then we define a polyhedral cone subdivision of the given Newton polyhedron.

Let f : (Cn, 0)→ (C, 0) be an analytic function germ of n variables defined by f (z) =
∑
ν aνzν

where ν = (ν1, · · · νn) ∈ Zn and zν = (zν1
1 ...z

νn
n ).

Definition 3.1.1. The Newton polyhedron NP( f ) of f is the convex closure of⋃
ν∈supp( f )

{ν + Rn
>0} ⊆ Rn

where the support of f , denoted by supp( f ), is defined as {ν : aν , 0}. The Newton boundary

NB( f ) of f is the union of boundary faces of NP( f ).

Example 3.1.2. Let f (z1, z2) = z3
1 + z1z2 + z3

2. We have supp( f ) = {(3, 0), (1, 1), (0, 3)}, so the

NP( f ) and the NB( f ) is as follows:

NP( f )

(a) Newton polyhedron of f

NB( f )

(b) Newton boundary of f
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Example 3.1.3. Let f (z1, z2, z3) = z2
1 + z3

2 + z4
3. Then supp( f ) = {(2, 0, 0), (0, 3, 0), (0, 0, 4)}.

The Newton boundary of f contains one compact and three non-compact facets, three edges

and three vertices.

x

y

z

Figure 3.1: The Newton polyhedron of z2
1 + z3

2 + z4
3

Definition 3.1.4. A support function s : Řn
≥0 → R associated with NP( f ) defined by

s(w) = min
ν∈NP( f )

〈w, ν〉

The support function takes integral values on the lattice N and it is piecewise linear in its

domain.

By using the support function, one can define the Newton polyhedron in the following way:

NP( f ) = {ν ∈ Rn : 〈w, ν〉 ≥ s(w) ∀w ∈ Řn
≥0}

Given a vector w ∈ Řn
≥0. A face of NP( f ) with respect to w is defined as

Fw := {ν ∈ NP( f ) : 〈w, ν〉 = s(w)} ⊆ Rn

Remark that w is the normal vector to the face Fw.

We define an equivalence relation on Řn
≥0: w ∼ w′ if and only if Fw = Fw′ . In other words,

any two element is in the same equivalence class if and only if they take their minimum values

on the same face of NP( f ). Hence to each equivalence class of w
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[w] := {w ∈ Řn
≥0 : 〈w, ν〉 = s(w) ∀ν ∈ NP( f )}

we associate a cone, the inner product of any element of this cone is minimized by these ν.

These cones form a decomposition of Řn
≥0. The collection of these cones constitutes a fan,

denoted DNP( f ), called the dual fan of the Newton polyhedron. The elements of DNP( f ) is

called dual vectors.

Remark 3.1.5. There is a one to one correspondence between the faces of all dimensions of

NP( f ) and the cones of DNP( f ).

Example 3.1.6. Let f (z1, z2) = z3
1 + z1z2 + z3

2 = 0.

We have supp( f ) = {ν1, ν2, ν3} = {(0, 3), (1, 1), (3, 0)}. The NP( f ) ⊆ R2 has three vertices

ν1, ν2, ν3, two compact faces F2, F3 and two non-compact faces F1, F4 respectively.

ν1

ν2

ν3

F1

F2

F3
F4

(a) NP( f )

(2, 1)

(1, 2)

σ1

σ2

σ3

(1, 0)

(0, 1)

(b) DNP( f )

To compute DNP( f ) first we find normal vectors to the faces. The equations of the lines

passing through F2, F3 are 2x + y − 3 = 0 and x + 2y − 3 = 0 respectively. So the normal

vector to F2 is (2, 1) and to F3 is (1, 2). The normal vectors to the non-compact faces F1, F4

are (1, 0), (0, 1) respectively. As it can be seen in the figure these vectors form a decomposition

of Ř2
≥0. Let w ∈ σ1 then w = a(2, 1) + b(1, 0) = (2a + b, a) for some a, b > 0. The inner

products

〈(2a + b, a), ν1〉 = 3a = s(w)

〈(2a + b, a), ν2〉 = 3a + b

〈(2a + b, a), ν3〉 = 6a + 3b

The elements of σ1 take their minimum value on the vertex ν1. Similarly, ν2, ν3 minimizes

the inner product of the elements of σ2, σ3 respectively. The dual fan of Newton polyhedron

is DNP( f ) =
⋃3

i=1 σi.
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Example 3.1.7. Let f (z1, z2, z3) = z2
1 + z3

2 + z4
3.

We have supp( f ) = {ν1 = (2, 0, 0), ν2 = (0, 3, 0), ν3 = (0, 0, 4)}. The NP( f ) ⊆ R3 contains

three vertices ν1, ν2, ν3, three edges [ν1, ν2], [ν1, ν3], [ν2, ν3],and one compact facet FP and

three non-compact facets F1, F2, F3 where Fi = V(zi) for i = 1, 2, 3.

F1F2

F3

FP

ν2

ν1

ν3

Figure 3.2: NP( f )

The normal vector to compact facet FP is computed as follows: ν1 − ν2 = (2,−3, 0) and

ν1 − ν3 = (2, 0,−4) then the perperdicular vector to both these vectors is:


i j k

2 −3 0

2 0 −4


= (12, 8, 6)

The normal vector to FP is the primitive vector P = (6, 4, 3). For the non-compact facets

F1, F2, F3 the normal vectors are E1 := (1, 0, 0), E2 := (0, 1, 0), E3 := (0, 0, 1) respectively.

The dual fan DNP( f ) ⊆ Ř3
≥0 is:

E1

E3

E2

P

Figure 3.3: DNP( f )

The DNP( f ) has three 2-dimensional cones:
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1. σ1 = 〈(6, 4, 3), (1, 0, 0)〉

2. σ2 = 〈(6, 4, 3), (0, 1, 0)〉

3. σ3 = 〈(6, 4, 3), (0, 0, 1)〉

In what follows we will say that E1, E2, E3 form the canonical basis for R3.

3.2 Minimal resolution graphs of ADE singularities via Newton Polyhedron

In this section we will consider a hypersurface in A3(C) with a singularity of type ADE.

We will first write the corresponding Newton polyhedron then we will construct a regular

subdivision of this polyhedron. We will see that there exist a suitable regular subdivision of

Newton polyhedron which gives the minimal resolution graph of the singularity. We will call

this construction as Oka’s algorithm [15].

Theorem 3.2.1 ([3]). Let f be an analytic function germ of n variables defined by

f (z) =
∑
ν aνzν where ν = (ν1, . . . , νn) and zν = (zν1

1 . . . zνn
n ). The function f has an iso-

lated singularity if and only if the Newton polyhedron NP( f ) satisfies the following additional

properties:

i. {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} ∩ NP( f ) = ∅

ii. NP( f ) has a vertex on each coordinate plane.

iii. For each coordinate axis, NP( f ) has a vertex at most one unit far from the axis.

Proposition 3.2.2 ([15], p. 94). Let Σ be a fan in Řn
≥0. Letσ = Cone(P,Q) be a 2-dimensional

cone in Σ where P,Q are primitive integral vectors and s := det σ. If s > 1 then there exists

an integral vector P1 ∈ σ such that det(P, P1) = 1. We can write P1 =
Q + s1P

s
with s1 ∈ Z≥0

satisfying 1 ≤ s1 < s where s1 = det(P1,Q).

Proof. We can assume that P = (1, 0, . . . , 0). Let Q = (q1, q2, . . . , qn) be a primitive vector.

Then s = det(P,Q) = gcd(q2, . . . , qn) and gcd(s, q1) = 1. Let R ∈ σ be an integral vector with

det(P,R) = 1. So we can write R = aP + bQ = (a + bq1, q2, . . . , qn) for some positive rational

numbers a, b. Then bs, cs are integers as det(P,R) = bs and det(R,Q) = cs are integers.

Hence the assumption det(P,R) = 1 implies that we can write R = Q +αP/s where α ≥ 0. As
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we know R is an integral vector, s|α + q1. Thus it has a unique solution s1 with 0 < s1 < s as

gcd(s, q1) = 1. �

By applying the proposition above to each cone in DNP( f ), we can obtain a regular subdi-

vision of DNP( f ): If s1 > 1, we apply again Proposition 3.2.2 to cone σ1 = Cone(R1,Q).

Then R2 =
Q + s2R1

s1
with 1 ≤ s2 < s1 < s. Hence by induction, we get primitive integral

vectors R1, . . . ,Rk and unique integers 1 = sk < · · · < s1 < s = s0 where si := det (Ri,Q),

R0 = P and Rk+1 = Q. It can be written as Ri =
Q + siRi−1

si−1
with det (Ri−1,Ri) = 1. Then the

decomposition {P,R1, . . . ,Rk,Q} of σ is called regular subdivision of σ.

If we generalize the Proposition 3.2.2 then we can find regular subdivision of a cone of di-

mension ≥ 3.

Proposition 3.2.3 ([15], p. 98). Letσ = Cone(P1, . . . , Pk+1) be a cone in Rn
≥0 where P1, . . . , Pk+1

are primitive integral vectors and assume det(P1, . . . , Pk) = 1 and s := det(P1, . . . , Pk+1) > 1.

Then there exists unique integers 1 ≤ s1, . . . , sk < s such that R = (Pk+1 +
∑k

i=1 siPi)/s is an

integral vector.

Before giving the Oka’s algorithm we need one more definition:

Definition 3.2.4. Let σ = Cone(P,Q) be a cone in Řn. Let FP be a compact face of NP( f )

and dim FP∩FQ = 1. The integer r(σ) is the number of integral points in the relative interior

of FP ∩ FQ.

In general the resolution process of a singularity is a difficult task. By the following algorithm

we construct the minimal resolution graph of ADE singularities. Then, we will apply this

algorithm to find the minimal resolution graph of some non-isolated singularities.

OKA’S ALGORITHM

Let f be an analytic function germ of n variables defined by f (z) =
∑
ν aνzν with isolated

singularity. Let F be the set of all faces of NP( f ) and Fc be the set of compact faces of

NP( f ). For any FP ∈ Fc, let FP be the set of all faces of NP( f ) which are adjacent to FP. We

consider the normal vectors to the faces as vertices of a tree. The (dual) resolution graph G is

obtained by the following construction:

Take a face FP ∈ Fc and let FQ be its adjacent face. Let σ = Cone(P,Q) be a 2-dimensional
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cone and s := det σ. If s > 1 then by Proposition 3.2.2 there is a unique integer s1 such

that 1 ≤ s1 < s for which R1 =
Q + s1P

s
is an integral vector with det (P,R1) = 1. Let

si := det (Ri,Q). We write
s
si

as a continued fraction:

s
si

= m1 −
1

m2 −
1

. . . −
1

mk

(3.1)

Then we connect the vectors P,Q by r(σ) + 1 copies of the following tree:

−m1 −m2 −mk

P R1 R2 Rk Q

If s = 1 then P,Q are joined by an edge (setting P1 := Q and s1 = 0) and put r(σ) + 1 copies

of them. Then all the copies of the both end points are identified with P,Q. After that we

omit the vectors (also the edges adjacent to them) which are not strictly positive, that is we

delete the vectors which correspond to non-compact faces. Applying the same procedure for

all adjacent faces of P what we obtain is the resolution graph G of f .

Let P1, . . . , Pl be the adjacent vectors to P in regular DNP( f ). For any FQi ∈ FP with

dim FP∩FQi = 1, let σi := Cone(P,Qi) and Pi ∈ σi for i = 1, . . . , l. The weight of P, denoted

w(P), is computed by

w(P) = −

∑
FQi∈FP

(r(σi) + 1)Pi

P
(3.2)

Definition 3.2.5. The integer −mi above is called weight of the vector Pi and for brevity we

denote the continuous fraction defined in 3.1 by [m1 : . . . : mk].

Now we will consider each of the singularities of type ADE and we will apply Oka’s algorithm

to find their resolution graph via Newton polyhedron.

Notation 1. We will denote DNP2( f ) as the set of all 2-dimensional cones σ of DNP( f ) such

that interior points of σ are strictly positive, i.e. all the components of the vector is > 0. We

will not consider σ as a subset of Cone(Ei, E j) where Ei’s are the canonical basis for Rn.

Moreover, we will use regular DNP2( f ) to express regular subdivision of each 2-dimensional

cones of DNP( f ) containing P.
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Notation 2.In each graph the ‘•’ vertices means that it is of weight −2.

Example 3.2.6 (The singularity E6). Consider f (z1, z2, z3) = z2
1 + z3

2 + z4
3.

The hypersurface V = {(z1, z2, z3) ∈ C3 | f (z1, z2, z3) = 0} has an isolated singularity at

(0, 0, 0) ∈ C3. Its minimal resolution graph is

T ′1 T ′2T2 PT1

R

Figure 3.4: Resolution graph of E6

Let us obtain this minimal resolution graph by using Oka’s algorithm. The support of f is

supp( f ) = {(2, 0, 0), (0, 3, 0), (0, 0, 4)}. (See Figure 3.2 for NP( f ). Consider 2-dimensional

cones in DNP( f ) as in Example 3.1.7. First we should find the regular subdivisions of these

cones.

det(σ1) = det(P, E1) = det


6 4 3

1 0 0

 = gcd(4, 3) = 1. σ1 is a 2-dimensional regular cone.

det(σ2) = det(P, E2) = det


6 4 3

0 1 0

 = gcd(3, 6) = 3. So σ2 is not regular. In this case by

Proposition 3.2.2:

T1 :=
E2 + s1P

s
=

(0, 1, 0) + 2(6, 4, 3)
3

= (4, 3, 2)

T2 :=
E2 + s2T1

s1
=

(0, 1, 0) + (4, 3, 2)
2

= (2, 2, 1)

where s = 3, s1 = 2, s2 = 1

det(σ3) = det(P, E3) = det


6 4 3

0 0 1

 = gcd(4, 6) = 2. So σ3 is not regular and by Proposi-

tion 3.2.2 we have:

R =
E3 + s1P

s
=

(0, 0, 1) + (6, 4, 3)
2

= (3, 2, 2)

where s = 2, s1 = 1.

The regular DNP2( f ) is as follows:

18



E1

E3

E2

P
T1

T2

R

Figure 3.5: Regular DNP( f )

In fact we constitute the regular DNP( f ) if we add the vectors A, B as follows:

E1

E3

E2

P
T1

T2

R

A

B

where A = (2, 1, 1), B = (1, 1, 1) are the vectors that we should add for the cone Cone(R, E1)

and Cone(R, E2, E3) respectively. As we mention, to find the resolution graph of f we only

focus on the regular subdivision of each two dimensional cones containing P.

Remark 3.2.7. The integers r(σ1) = r(σ3) = 0 and r(σ2) = 1. The fact that r(σ2) = 1, we

copy T1,T2 to the right side of P.

After copying and identifying all end points we obtain the following tree:

T1
′

T2
′

P

R

E3

T1
T2

E2

E1

Figure 3.6: Tree
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The weights of each vector in the graph above is calculated as follows:

w(P) = −[(r(σ1) + 1)E1 + (r(σ2) + 1)T1 + (r(σ3) + 1)R]/P

= −[1(1, 0, 0)) + 2(4, 3, 2) + 1(3, 2, 2)]/(6, 4, 3)

= −(12, 8, 6)/(6, 4, 3) = −2

The weights m1,m2 for the vectors T1 and T2 is calculated by the equation 3.1 we have
s
s1

=

3
2

= 2 −
1
2

. Hence [m1 : m2] = [2 : 2]. The weight of R is also [2]. So all the weights are −2.

After omitting the vectors E1, E2, E3 which correspond to the non-compact faces of NP( f )

we get the minimal resolution graph given in Figure 3.4 by the singularity defined by f .

Example 3.2.8 (The singularity E7). Consider f (z1, z2, z3) = z2
1 + z3

2 + z2z3
3.

The hypersurface V = V( f ) has an isolated singularity at (0, 0, 0) ∈ C3. The minimal resolu-

tion graph of f is

K2 P R2R1K1

S

K3

Figure 3.7: Resolution graph of E7

We have supp( f ) = {(2, 0, 0), (0, 3, 0), (0, 1, 3)}. The NP( f ) has one compact facet FP and

four non-compact facets F1, F2, F3, FQ as follows:

F1

F2
F3

FP

FQ

z1

z2

z3

Figure 3.8: Newton polyhedron NP( f )

The normal vector of the compact facet FP is P = (9, 6, 4). The normal vectors of the non-
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compact facets F1, F2, F3, FQ are E1, E2, E3, Q = (1, 2, 0) respectively. The DNP2( f ) has

four cones:

1. σ1 :=< (9, 6, 4), (1, 0, 0) >

2. σ2 :=< (9, 6, 4), (0, 1, 0) >

3. σ3 :=< (9, 6, 4), (0, 0, 1) >

4. σ4 :=< (9, 6, 4), (1, 2, 0) >

Let us refine DNP2( f ) into a regular DNP2( f ):

det(σ1) = det(P, E1) = 2. This says that we add one vertex S = (5, 3, 2). The weight of S is

[2].

det(σ2) = det(P, E2) = 1. So σ2 is regular.

det(σ3) = det(P, E3) = 3. So σ3 is not regular. We add R1 = (6, 4, 3) and R2 = (3, 2, 2). The

weights of R1 and R2 are [2 : 2].

det(σ4) = det(P,Q) = 4. Hence we add K1 = (7, 5, 3), K2 = (5, 4, 2), K3 = (3, 3, 1). The

weights of K1,K2,K3 are [2 : 2 : 2].

The regular DNP2( f ):

E1

E3

E2

P

Q

K1

K2
K3

R1

R2

S

Figure 3.9: Regular DNP( f )

Remark 3.2.9. The integers r(σ1) = r(σ3) = r(σ4) = 0.

Let us take out the bold points from the figure above and note that the points form the resolu-

tion graph of our singularity E7.

It only remains to check the weight of P. So w(P) = −[(r(σ1) + 1)S + (r(σ3) + 1)R1 + (r(σ4) +
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1)K1]/P = −(18, 12, 8)/(9, 6, 4) = −2. Hence this graph is the minimal resolution graph of

E7 singularity which is given in Figure 3.7.

Example 3.2.10 (The singularity E8). Consider f (z1, z2, z3) = z2
1 + z3

2 + z5
3.

The hypersurface V = V( f ) has an isolated singularity at (0, 0, 0) ∈ C3. The minimal resolu-

tion of f is the following

Figure 3.10: Resolution graph of E8

The support of f is supp( f ) = {(2, 0, 0), (0, 3, 0), (0, 0, 5)}. The Newton polyhedron NP( f ) has

one compact facet FP and three non-compact facets F1, F2, F3 as follows:

F1
F2

F3

FP

Figure 3.11: Newton polyhedron NP( f )

For the compact facet FP the dual vector is P = (15, 10, 6). For the non-compact facets

F1, F2, F3 the dual vectors are E1, E2, E3 respectively. The DNP( f ) has three 2-dimensional

cones:

1. σ1 =< (15, 10, 6), (1, 0, 0) >

2. σ2 =< (15, 10, 6), (0, 1, 0) >

3. σ3 =< (15, 10, 6), (0, 0, 1) >

The regular DNP2( f ) is:
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E1

E3

E2

P

S
T1

T2

R1

R2

R3

R4

Figure 3.12: Regular DNP( f )

where S = (8, 5, 3), T1 = (10, 7, 4), T2 = (5, 4, 2), R1 = (12, 8, 5), R2 = (9, 6, 4), R3 = (6, 4, 3),

R4 = (3, 2, 2).

Remark 3.2.11. The integers r(σ1) = r(σ2) = r(σ3) = 0.

Note that the bold points on the subdivision gives exactly the minimal resolution graph (see

Figure 3.10) of our singularity E8 as the weights of all the vertices are −2.

Example 3.2.12 (The singularity Dn). Consider f (z1, z2, z3) = z2
1 + z2

2z3 + zn−1
3 .

The hypersurface V = V( f ) has an isolated singularity at (0, 0, 0) ∈ C3 which has the follow-

ing minimal resolution graph

n-2

Figure 3.13: Resolution graph of Dn

We have supp( f ) = {(2, 0, 0), (0, 2, 1), (0, 0, n − 1)}. The NP( f ) has one compact facet FP and

four non-compact facets F1, F2, F3, FQ as follows:
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F1

F2

F3

FP

FQ

Figure 3.14: Newton polyhedron NP( f )

For the compact facet FP the dual vector is P = (n − 1, n − 2, 2). For the non-compact facets

F1, F2, F3, FQ the dual vectors are E1, E2, E3, Q = (1, 0, 2) respectively. The DNP( f ) has

four 2-dimensional cones:

1. σ1 =< (n − 1, n − 2, 2), (1, 0, 0) >

2. σ2 =< (n − 1, n − 2, 2), (0, 1, 0) >

3. σ3 =< (n − 1, n − 2, 2), (0, 0, 1) >

4. σ4 =< (n − 1, n − 2, 2), (1, 0, 2) >.

Let us consider 2-dimensional cones in DNP( f ).

det(σ1) =


2, if n is even

1, if n is odd

We add S =
E1 + P

2
= (

n
2
,

n − 2
2

, 1) with a weight [2] if n is even.

det(σ2) =


2, if n is odd

1, if n is even

We add T =
E2 + P

2
= (

n − 1
2

,
n − 1

2
, 1) with a weight [2] if n is odd.

det(σ3) = 1 for all n. So σ3 is regular.
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det(σ4) = n − 2 for all n. We add n − 3 vertices K1, . . . ,Kn−3 with weights [2 : · · · : 2] where

K1 =
Q + (n − 3)P

n − 2
= (n − 2, n − 3, 2).

The regular DNP2( f ) is as follows:

E1

E3

E2

P
S

Q

K1

Kn−3

Figure 3.15: DNP( f ) if n is even

Remark 3.2.13. If n is even, the integers r(σ1) = 1 and r(σ2) = r(σ4) = 0. Hence we copy

S to the other side of P. If n is odd the integers r(σ1) = r(σ4) = 0 and r(σ2) = 1. Hence we

copy T to the other side of P.

The weights of the vertices is −2 because if n is even (similarly if n is odd) then w(P) =

−[(r(σ1) + 1)S + (r(σ2) + 1)E2 + (r(σ4) + 1)K1]/P = −(2n − 2, 2n − 4, 4)/(n − 1, n − 2, 2) =

−2. Hence after deleting the vectors which are not strictly positive we get graph given in

Figure 3.13 which is the exactly the minimal rersolution graph of f .

Example 3.2.14 (The singularity An). Consider f (z1, z2, z3) = z2
1 + z2

2 + zn+1
3 .

The hypersurface V = V( f ) has an isolated singularity at (0, 0, 0) ∈ C3. The minimal resolu-

tion graph of f is

R′1 R′2 R′n−1/2

P

R1 R2 Rn−1/2

Figure 3.16: Resolution graph of An

We have supp( f ) = {(2, 0, 0), (0, 2, 0), (0, 0, n + 1)}. The NP( f ) has one compact facet FP and

three non-compact facets F1, F2, F3 as follows:
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F1
F2

F3

FP

Figure 3.17: Newton polyhedron NP( f )

For the compact facet FP the orthogonal vector is P = (n + 1, n + 1, 2). For the non-compact

facets F1, F2, F3 the normal vectors are E1, E2, E3 respectively. The corresponding dual fan

DNP2( f ) has three cones:

1. σ1 :=< (n + 1, n + 1, 2), (1, 0, 0) >

2. σ2 :=< (n + 1, n + 1, 2), (0, 1, 0) >

3. σ3 :=< (n + 1, n + 1, 2), (0, 0, 1) >.

Let us check whether each cone in DNP2( f ) is regular. We have two cases for P:

Case 1. n is odd, i.e n + 1 = 2k, and P = (k, k, 1)

det(σ1) = det(σ2) = 1. So σ1, σ2 are regular.

det(σ3) = k. We add further k − 1 vertices R1, · · · ,Rk−1 where R1 = E3 + (k − 1)P/k =

(k − 1, k − 1, 1). The weights are [2 : . . . : 2] since s = k, s1 = k − 1.

The regular DNP2( f ) is:
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E1

E3

E2

P

R1

Rk−1

Figure 3.18: DNP( f )

The weight of P is w(P) = −2. So the weights of each vertices is −2. Remark that the integers

r(σ1) = r(σ2) = r(σ3) = 1. Thus we copy the corresponding branches and we obtain the

graph given in Figure 3.16 which is the minimal resolution graph of A2k−1. singularity.

Case 2. n is even, i.e n = 2k, and P = (2k + 1, 2k + 1, 2)

det(σ1) = det(σ2) = 1. So σ1, σ2 are regular.

det(σ3) = k. We have additionally k vertices R1, · · · ,Rk where R1 =
E3 + kP
2k + 1

= (k, k, 1) with

weights [3 : 2 : · · · : 2].

The regular DNP2( f ) is:

E1

E3

E2

P

R1

Rk

Figure 3.19: DNP( f )

The integers r(σ1) = r(σ2) = 0 and r(σ3) = 1. So we copy R1, . . . ,Rk to the other side of P.

Note that w(P) = −1. We obtain the following graph from the DNP( f ):

Here the weight of vertex ‘◦’ is −1, ‘•’ is −2 and ‘N’ is −3. The graph is not minimal. If
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R′1 R′2 R′k

P

R1 R2 Rk

we blow down the −1 vertex once, we obtain the following graph in Figure 3.16 which is the

minimal resolution graph of A2k. This example shows us that the resolution graph obtained by

this method may not be the minimal resolution graph. However, after successive blow downs

one can obtain the minimal resolution graph.

3.3 Minimal resolution graphs of some non-isolated hypersurface singularities

via Newton Polyhedron

In this section we will deal with non-isolated hypersurface singularities. An isolated sur-

face singularity is obtained by normalization of a non-isolated hypersurface singularity. Here

we consider some examples of non-isolated hypersurface singularities and we construct the

minimal resolution graph of these singularities by using Oka’s algorithm.

Notation. The weight of vertex ‘N’ is (−3) and of the vertex ‘•’ is (−2).

Example 3.3.1 (The singularity NE6). Consider f (z1, z2, z3) = z2
1z2

2 + z3
2z3 + z3

3.

The partial derivatives of f ; ∂ f
∂z1

= 2z1z2
2, ∂ f

∂z2
= 2z2

1z2 + 3z2
2z3, ∂ f

∂z3
= z3

2 + 3z2
3. The hypersurface

V = V( f ) has a non-isolated singularity along z1 axis. Its minimal resolution is

K2 P L2L1K1

S

K3

Figure 3.20: Resolution graph of NE6

We have supp( f ) = {(2, 2, 0), (0, 3, 1), (0, 0, 3)}. The NP( f ) has one compact facet FP and five

non-compact facets F1, F2, F3, FQ1 , FQ2 as following:
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F1

F2

F3

FPFQ2

FQ1

Figure 3.21: Newton polyhedron NP( f )

The dual vector P to the compact face FP is (5, 4, 6). For the non-compact faces F1, F2, F3, FQ1 , FQ2

the dual vectors are E1, E2, E3, Q1 = (1, 0, 2), Q2 = (0, 3, 2) respectively. The DNP2( f ) has

three cones: σ1 :=< (5, 4, 6), (1, 0, 0) >,σ2 :=< (5, 4, 6), (0, 3, 2) >,σ3 :=< (5, 4, 6), (1, 0, 2) >.

Let us find regular subdivision of each cone in DNP2( f ).

det(σ1) = det(P, E1) = gcd(4, 6) = 2. We have S =
E1 + P

2
= (3, 2, 3) with weight [2].

det(σ2) = det(P,Q1) = gcd(8, 4, 4) = 4. We have K1 =
Q1 + 3P

4
= (4, 3, 5), K2 =

Q1 + 2K1

3
= (3, 2, 4), K3 =

Q1 + K2

2
= (2, 1, 3) with weights [2 : 2 : 2].

det(σ3) = det(P,Q2) = gcd(15, 10, 10) = 5. We have L1 =
Q2 + 3P

5
= (3, 3, 4), L2 =

Q2 + L1

2
= (1, 2, 2) with weights [2 : 3] respectively.

The regular DNP2( f ) is:

E1

E3

E2

P

Q1Q2

K1

K2

K3

L1

L2

S

Figure 3.22: DNP( f ) of NE6

The integers r(σ1) = r(σ2) = r(σ3) = 0. So we will not copy any branch. Also, note that
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w(P) = −(L1 + K1 + S )/P = −2. By taking out the bold points from the figure above we have

the minimal resolution of f given in Figure 3.20.

Example 3.3.2 (The singularity N1E7). Consider f (z1, z2, z3) = z2
1z2z3 + z4

2 + z3
3.

The hypersurface V = V( f ) has a non-isolated singularity along z1 axis. Its minimal resolution

is

K2 P L2L1K1

S

K3K4

Figure 3.23: Resolution graph of N1E7

We have supp( f ) = {(2, 1, 1), (0, 4, 0), (0, 0, 3)}. The NP( f ) has one compact facet FP and five

non-compact facets F1, F2, F3, FQ1 , FQ2 as follows:

F1

F2

F3

FP

FQ1

FQ2

Figure 3.24: Newton polyhedron NP( f )

The orthogonal vector P to the compact face FP is (5, 6, 8). For the non-compact faces

F1, F2, F3, FQ1 , FQ2 the dual vectors are E1, E2, E3, Q1 = (0, 1, 3),Q2 = (0, 2, 1) respec-

tively. The DNP2( f ) has three cones: σ1 :=< (5, 6, 8), (1, 0, 0) >, σ2 :=< (5, 6, 8), (0, 1, 3) >,

σ3 :=< (5, 6, 8), (0, 2, 1) >.

det(σ1) = det(P, E1) = 2. We have S = (3, 3, 4) with weight [2].

det(σ2) = det(P,Q1) = 5. We have further 4 vertices K1 = (4, 5, 7), K2 = (3, 4, 6), K3 =

(2, 3, 5), K4 = (1, 2, 4) with weights [2 : 2 : 2 : 2] respectively.

det(σ3) = det(P,Q2) = 5. We have L1 = (3, 4, 5), L2 = (1, 2, 2) with weight [2 : 3] respec-
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tively.

The regular DNP2( f ) is:

E1

E3

E2

P
Q2

Q1

S
L1L2

K1
K2

K3

K4

Figure 3.25: Regular DNP( f ) of N1E7

Remark that the integers r(σ1) = r(σ2) = r(σ3) = 0. Moreover, observe that w(P) = −(S +

L1 + K1)/P = −2. After taking out the bold points we obtain the minimal resolution graph

given in Figure 3.23.

Example 3.3.3 (The singularity N2E7). Consider f (z1, z2, z3) = z2
1z2

2 + z5
2 + z3

3. The hyper-

surface V = V( f ) has a non isolated singularity along z1 axis. Its minimal resolution graph is

K2 P R2R1K1

S

K3K4

Figure 3.26: Resolution graph of N2E7

We have supp( f ) = {(2, 2, 0), (0, 5, 0), (0, 0, 3)}. The NP( f ) has one compact facet FP and

four non-compact facets F1, F2, F3, FQ as follows:
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F1

F2

F3

FP
FQ

Figure 3.27: Newton polyhedron NP( f )

For the compact facet FP the dual vector is P = (9, 6, 10). For the non-compact facets

F1, F2, F3, FQ the dual vectors are E1, E2, E3, Q = (0, 3, 2) respectively. The DNP( f ) three

2-dimensional cones: σ1 :=< (9, 6, 10), (1, 0, 0) >, σ2 :=< (9, 6, 10), (0, 0, 1) >, σ3 :=<

(9, 6, 10), (0, 3, 2) >.

det(σ1) = det(P, E1) = 2. We have S = (5, 3, 5) with weight [2].

det(σ2) = det(P, E3) = 3. We have R1 = (6, 4, 7),R2 = (3, 2, 4) with weights [2 : 2].

det(σ3) = det(P,Q) = 9. We have K1 = (7, 5, 8), K2 = (5, 4, 6), K3 = (3, 3, 4), K4 = (1, 2, 2)

with weights [2 : 2 : 2 : 3] respectively.

The regular DNP2( f ) is:

E1

E3

E2

P
Q

S

K1K2K3K4

R1

R2

Figure 3.28: Regular DNP( f ) of N2E7

The integers r(σ1) = r(σ2) = r(σ3) = 0. The weight of P is w(P) = −2. Let us take out the

bold points and what we obtain is same figure which is given in Figure ??.

Example 3.3.4 (The singularity NDn). Consider f (z1, z2, z3) = z3
3 + z1z2

3 + zn+3
2 z3 + z2

1z2n+2
2 .

The hypersurface V = V( f ) has a non-isolated singularity along z1 axis. Its minimal resolution
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is

n

Figure 3.29: Resolution graph of NDn

We have that supp( f ) = {(1, 0, 2), (0, n + 3, 1), (0, 0, 3), (2, 2n + 2, 0)}. The NP( f ) has two

compact facet FP1 , FP2 and five non-compact facets F1, F2, F3, FQ1 , FQ2 as follows:

F1F2

F3

FP1

FQ2

FP2

FQ1

Figure 3.30: Newton polyhedron NP( f )

The orthogonal vectors P1,P2 to the compact facet FP1 , FP2 is (n + 3, 2, n + 3), (4, 3, 3n +

5) respectively. For the non-compact facets F1, F2, F3, FQ1 , FQ2 the orthogonal vectors are

E1, E2, E3, Q1 = (1, 0, 2), Q2 = (0, 1, n + 1) respectively.

The DNP2( f ) has five cones: σ1 :=< (n + 3, 2, n + 3), (1, 0, 0) >, σ2 :=< (n + 3, 2, n +

3), (0, 1, 0) >, σ3 :=< (n + 3, 2, n + 3), (4, 3, 3n + 5) >, σ4 :=< (4, 3, 3n + 5), (1, 0, 2) >,

σ5 :=< (4, 3, 3n + 5), (0, 1, n + 1) >.

We have two cases:

Case 1. n is odd, i.e n = 2k+1, then P1 = (k+2, 1, k+2), P2 = (4, 3, 6k+8),Q2 = (0, 1, 2k+2)

det(σ1) = det(P1, E1) = 1. So σ1 is regular.

det(σ2) = det(P1, E2) = k + 2. We have further k + 1 vertices T1, · · · ,Tk+1 where T1 =

E2 + (k + 1)P1/k + 2 = (k + 1, 1, k + 1) with weights [2 : · · · : 2].

det(σ3) = det(P1, P2) = 3k + 2. We have k + 1 vertices U1, . . . ,Uk+1 where U1 = P2 + (3k −

1)P1/3k + 2 = (k + 1, 1, k + 3), Uk+1 = P1 + (2k + 1)P2/3k + 2 = (3, 2, 4k + 5) with weights
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[2 : 2 : · · · : 3 : 2] respectively.

det(σ4) = det(P2,Q1) = 3.We have K1 = (3, 2, 4k + 6) and K2 = (2, 1, 2k + 3) with weights

[2 : 2].

det(σ5) = det(P2,Q2) = 2. We have L = (2, 2, 4k + 5) with weight −2.

The regular DNP2( f ) is:C

E1

E3

E2

P1

P2

Q2
Q1

T1
Tk+1

U1

Uk+1

L K1
K2

Figure 3.31: Regular DNP( f ) of ND2k+1

The weights of the vertices w(P1) = −2 and w(P2) = −2. Hence we have the minimal

resolution graph in Figure 3.29 after deleting the non-strictly convex cones.

Case 2. n is even, i.e n = 2k, then P1 = (2k+3, 2, 2k+3), P2 = (4, 3, 6k+5),Q2 = (0, 1, 2k+1).

det(σ1) = det(P1, E1) = 1. So σ1 is regular.

det(σ2) = det(P1, E2) = 2k + 3. We have k + 1 vertices T1, · · · ,Tk+1 where T1 = E2 + (k +

1)P1/2k + 3 = (k + 1, 1, k + 1) with weights [3 : 2 : · · · : 2] .

det(σ3) = det(P1, P2) = 6k + 1. We have k + 1 vertices U1, . . . ,Uk+1 where U1 = P2 + (3k −

1)P1/6k + 1 = (k + 1, 1, k + 2) and Uk+1 = P1 + 4kP2/6k + 1 = (3, 2, 4k + 3) with weights

[3 : 2 : · · · 2 : 3 : 2] respectively.

det(σ4) = det(P2,Q1) = 3. We have K1 = (3, 2, 4k + 4), K2 = (2, 1, 2k + 3) with weights

[2 : 2].

det(σ5) = det(P2,Q2) = 2. We have L = (2, 2, 4k + 3) with a weight −2.

The regular DNP2( f ) is same as the previous one(see Figure 3.31). The weights of the vertices
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w(P1) = −1 and w(P2) = −2. Hence we can obtain the following graph: The weight of the

-1

k+1 k-1
P2P1

Figure 3.32: Resolution graph of ND2k

vertex ‘N’ is (−3), ‘•’ is (−2), ‘◦’ is (−1). The minimal resolution graph can be obtained after

one blowing down.

Remark 3.3.5. In both cases the integers r(σ1) = r(σ2) = r(σ3) = r(σ4) = r(σ5) = 0.

Example 3.3.6 (The singularity NGn). Consider f (z1, z2, z3) = z3
3 + zp+2

1 z2z3 + z2
1z3

2 for n =

3p + 1.

The hypersurface V = V( f ) has a non-isolated singularity.Its minimal resolution graph is the

following:

3p + 1

L

M1 M2PK1K3p+1

Figure 3.33: Resolution graph of NG3p+1

We have supp( f ) = {(0, 0, 3), (p + 2, 1, 1), (2, 3, 0)}. The NP( f ) has one compact facet FP and

six non-compact facets F1, F2, F3, FQ1 , FQ2 , FQ3 as follows:

F1F2

F3

FP
FQ1

FQ2

FQ3

Figure 3.34: Newton polyhedron NP( f )
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For the compact facet FP the dual vector P is (3, 3p + 2, 3p + 4). For the non-compact

facets F1, F2, F3, FQ1 , FQ2 , FQ3 the dual vectors are E1, E2, E3, Q1 = (3, 0, 2), Q2 = (0, 1, 2),

Q3 = (0, 2, 1) respectively. The DNP( f ) has three 2-dimensional cones: σ1 :=< (3, 3p +

2, 3p+4), (3, 0, 2) >, σ2 :=< (3, 3p+2, 3p+4), (0, 1, 2) >, σ3 :=< (3, 3p+2, 3p+4), (0, 2, 1) >.

Let us check whether each 2-dimensional cone in DNP( f ) is regular.

det(σ1) = det(P,Q1) = 3p+2. So we need 3p+1 vertices with K1 = Q1 + (3p+1)P/3p+2 =

(3, 3p + 1, p + 1) with weights [2 : · · · : 2].

det(σ2) = det(P,Q2) = 3. We have L = (1, p + 1, p + 2) with a weight [3].

det(σ3) = det(P,Q3) = 3. We have M1 = (2, 2p + 2, 2p + 3) and M2 = (1, p + 2, p + 2) with

weights [2 : 2].

The regular DNP2( f ) is:

E1

E3

E2

P
Q3

Q2

M1M2

L
Q1

K1

K3p+1

Figure 3.35: regular DNP( f ) of NG3p+1

The weight of P is w(P) = −2, hence by taking out the inner points we get the minimal

resolution graph.

Example 3.3.7 (The singularity NCm,n). The minimal resolution graph of (i), (ii) is

mn

Figure 3.36: Resolution graph of NCm,n

i. Consider the hypersurface f (z1, z2, z3) = z1z2
2z3 + zm+3

1 z3 + z1zp+4
2 + 2zm+3

1 zp+2
2 + z2m+5

1 zp
2 + z3

3
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for n = 3p + 1. The hypersurface V = V( f ) has a non-isolated singularity.

supp( f ) = {(1, 2, 1), (m + 3, 0, 1), (1, p + 4, 0), (m + 3, p + 2, 0), (2m + 5, p, 0), (0, 0, 3)}

The NP( f ) has two compact facet FP1 , FP2 and five non-compact facets F1, F2, F3, FQ1 , FQ2

as follows: For the compact facets FP1 , FP2 the dual vectors P1 = (2,m+2,m+3),P2 = (2p+

F1

F2

F3

FP1 FP2 FQ1

FQ2

Figure 3.37: Newton polyhedron NP( f )

2, 1, p + 2). For the non-compact facets F1, F2, F3, FQ1 , FQ2 the dual vectors are E1, E2, E3,

Q1 = (3, 0, 1),Q2 = (0, 1, p + 2) respectively. The DNP( f ) has five 2-dimensional cones:

σ1 :=< (2,m + 2,m + 3), (0, 1, 0) >, σ2 :=< (2,m + 2,m + 3), (0, 0, 1) >, σ3 :=< (2,m + 2,m +

3), (2p + 2, 1, p + 2) >, σ4 :=< (2p + 2, 1, p + 2), (3, 0, 1) >, σ5 :=< (2p + 2, 1, p + 2), (0, 1, p +

2) >.

det(σ1) = det(P1, E2) =


2, if m is odd

1, if m is even

We have T = (3, 2, 4) with weight [2] if m is odd.

det(σ2) = det(P1, E3) =


1, if m is odd

2, if m is even
We have R = (1, k + 1, k + 2) with weight [2] if m

is even.

det(σ3) = det(P1, P2) = mp + 2p + m + 1. We have m + p vectors U1, . . . ,Um+p where

U1 = (2,m + 1,m + 2) and Um+p = (2p, 1, p + 1) with weights [2 : . . . : 2 : 3 : 2 : . . . : 2]

respectively.
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det(σ4) = det(P2,Q1) = 1.

det(σ5) = det(P2,Q2) = 2p + 2. So we have 2p + 1 vectors L1, . . . , L2p+1 with weights

[2 : . . . : 2] where L1 = (2p + 1, 1, p + 2).

The regular DNP2( f ) is:

C

E1

E3

E2

P1 P2
Q1

Q2

T

L1

L2p+1

U1 Um+p

Figure 3.38: Regular DNP( f ) of NCm,n

Remark 3.3.8. The integers r(σ1) = 1 if n is odd.(respectively r(σ2) = 1 if n is even.) and

r(σ3) = 0.

The weights w(P1) = w(P2) = −2. The bold points from the DNP( f ) form the graph given in

Figure 3.36 for n = 3p + 1.

ii. Consider the hypersurface f (z1, z2, z3) = z1z2
2z3 + zm+3

1 z3 + zn+5
2 + 2zm+2

1 zn+3
2 + z2m+4

1 zn+1
2 + z3

3

for n . 1 (mod 3).

The hypersurface V = V( f ) has a non-isolated singularity.

supp( f ) = {(1, 2, 1), (m + 3, 0, 1), (0, n + 5, 0), (m + 2, n + 3, 0), (2m + 4, n + 1, 0), (0, 0, 3)}

The NP( f ) has two compact facets FP1 , FP2 and four non-compact facets F1, F2, F3, FQ as

follows:
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F1F2

F3

FP1
FP2

FQ

Figure 3.39: Newton polyhedron NP( f )

For the compact facets FP1 , FP2 the dual vectors P1 = (2,m + 2,m + 3),P2 = (2n + 4, 3, n + 5).

For the non-compact facets F1, F2, F3, FQ the dual vectors are E1, E2, E3, Q = (0, 1, n + 3)

respectively. The DNP2( f ) has five cones: σ1 :=< (2,m + 2,m + 3), (0, 1, 0) >, σ2 :=<

(2,m + 2,m + 3), (0, 0, 1) >, σ3 :=< (2,m + 2,m + 3), (2n + 4, 3, n + 5) >, σ4 :=< (2n + 4, 3, n +

5), (1, 0, 0) >, σ5 :=< (2n + 4, 3, n + 5), (0, 1, n + 3) >.

det(σ1) = det(P1, E2) =


2, if m is odd

1, if m is even

We have T = (1, k + 2, k + 2) with weight [2] if m is odd.

det(σ2) = det(P1, E3) =


1, if m is odd

2, if m is even

We have R = (1, k + 1, k + 2) with weight [2] if m is even.

det(σ4) = det(P2, E1) = 1.

det(σ3) = det(P1, P2) = mn + 2n + 2m + 1. We should separate into two cases depending on

the value of n:

Case 1. If n = 3p, then P2 = (6p + 4, 3, 3p + 5), Q = (0, 1, 3p + 3).

det(σ3) = det(P1, P2) = 3pm+2m+6p+1. We have m+ p+1 vectors U1, . . . ,Um+p+1 where

U1 = (2,m + 1,m + 2) and Um+p+1 = (4p + 2, 2, 2p + 3) with weights [2 : . . . : 2 : 3 : 2 : . . . :

2 : 3 : 2] respectively.
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det(σ5) = det(P2,Q) = 6p + 4. We have 2p + 1 vectors K1, . . . ,K2p+1 with weights [4 : 2 :

. . . : 2] where K1 = (2p + 1, 1, p + 2).

The weights w(P1) = −2 and w(P2) = −1. So after two blow downs we get the minimal

resolution graph as in Figure 3.36 for n = 3p + 2.

Case 2. If n = 3p + 2, then P2 = (6p + 8, 3, 3p + 7), Q = (0, 1, 3p + 5).

det(σ3) = det(P1, P2) = 3pm+4m+6p+1. We have m+ p+1 vectors U1, . . . ,Um+p+1 where

U1 = (2,m + 1,m + 2) and Um+p+1 = (2p + 3, 1, p + 2) with weights [2 : . . . : 2 : 3 : 2 : . . . :

2 : 4] respectively.

det(σ5) = det(P2,Q) = 6p + 8. We have 2p + 3 vectors K1, . . . ,K2p+3 with weights [2 : 3 :

2 : . . . : 2] where K1 = (2p + 1, 1, p + 2). The weights of P1,P2 are [2 : 1] respectively. Hence

after two blow downs we get the minimal resolution graph as in Figure 3.36 for n = 3p + 2.

Remark 3.3.9. In both cases the integers r(σ1) = 1 if m is odd.(respectively r(σ2) = 1 if m is

even.) and r(σi) = 0 for i = 3, 4, 5.

Example 3.3.10 (The singularity NBm,n). Consider f (z1, z2, z3) = z1z2
3 +z2m+3

2 z3 +z1z2m+3
2 +z3

3

for n = 2m + 1.

The hypersurface V = V( f ) has a non-isolated singularity. Its minimal resolution graph is

nm

Figure 3.40: Resolution graph of NBm,n

We have supp( f ) = {(1, 0, 2), (0, 2m+3, 1), (1, 2m+3, 0), (0, 0, 3)}. The NP( f ) has one compact

parallelogram facet FP and five non-compact facets F1, F2, F3, FQ1 , FQ2 as follows:
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F1

F2

FQ2

FP

FQ1

F3

Figure 3.41: Newton polyhedron NP( f )

For the compact facet FP the dual vector is P = (2m+3, 2, 2m+3). For the non-compact facets

F1, F2, F3, FQ1 , FQ2 the dual vectors are E1, E2, E3, Q1 = (1, 0, 1),Q2 = (0, 2, 2p + 3) respec-

tively. The DNP( f ) has four 2-dimensional cones: σ1 :=< (2m + 3, 2, 2m + 3), (1, 0, 0) >,

σ2 :=< (2m + 3, 2, 2m + 3), (0, 1, 0) >, σ3 :=< (2m + 3, 2, 2m + 3), (1, 0, 1) >, σ4 :=<

(2m + 3, 2, 2m + 3), (0, 2, 2m + 3) >.

det(σ1) = det(P, E1) = 1.

det(σ2) = det(P, E2) = 2m + 3. We have m + 1 vectors T1, . . . ,Tm+1 with weights [3 : 2 : . . . :

2] where T1 = (m + 1, 1,m + 1).

det(σ3) = det(P,Q1) = 2. We have one vector K = (m + 2, 1,m + 2) with weight [2].

det(σ4) = det(P,Q2) = 2m + 3. So we have 2m + 2 vectors L1, . . . , L2m+2 with weights

[2 : . . . : 2] where L1 = (2m + 2, 2, 2m + 3).

The regular DNP2( f ) is:
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E1

E3

E2

P

Q1Q2

T1

Tm+1

K
L1

L2m+2

Remark 3.3.11. The integers r(σi) = 0 for all i = 1, 2, 3, 4.

The weight of w(P) = −2. Hence we get the minimal resolution of NBm,n for n = 2m + 1.
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CHAPTER 4

TORIC MODIFICATION

4.1 Non-degenerate singularities

The polynomial f (z) =
∑
ν aνzν is non-degenerate with respect to its Newton polyhedron if

for every compact face Fw of NP( f ) the polynomial fw defines a non-singular hypersurface

of the torus C∗n where fw(z) =
∑
ν∈Fw aνzν which is called a face function of f . Equivalently,

for every compact face Fw of NP( f ) if the system of equations ∂ fw/∂z1 = ∂ fw/∂z2 = · · · =

∂ fw/∂zn = 0 has no solution in C∗n.

The class of non-degenerate singularities are important as they can be resolved by toric mod-

ifications.

Example 4.1.1. The ADE singularities given in preceding section are all non-degenerate

singularities. For instance:

Let us consider Example 3.2.12. The face function fP defined above equals f and

∂ f
∂z1

= 2z1 = 0,
∂ f
∂z2

= 2z2z3 = 0,
∂ f
∂z3

= 4z3
3 + z2

2 = 0.

These three equations have no solution in C∗3. Hence f defines a non-degenerate singularity

with respect to its NP( f ).

Example 4.1.2. Some of the non-isolated singularities given in preceding section are degen-

erate. For instance:

1. In Example 3.2.12 the face function on FP1 is fP1 = z3
3 + z1z2

3 + zn+3
2 z3 and,

∂ f
∂z1

= z2
3 = 0,

∂ f
∂z2

= (n + 3)zn+2
2 z3 = 0,

∂ f
∂z3

= 3z2
3 + 2z1z3 + zn+3

2 = 0
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has no solution in C∗3. So f is non-degenerate on FP1 . However, the face function on FP2 is

fP2 = z1z2
3 + zn+3

2 z3 + z2
1z2n+2

2 and,

∂ f
∂z1

= z2
3 + 2z1z2n+2

2 = 0,
∂ f
∂z2

= (n + 3)zn+2
2 z3 + (2n + 2)z2

1z2n+1
2 = 0,

∂ f
∂z3

= 2z1z3 + zn+3
2 = 0

has a solution in C∗3. So f is degenerate on FP2 . As f is not non-degenerate on every compact

face of NP( f ), f is degenerate.

2. In Example 3.3.10 the face function fP = f , and

∂ f
∂z1

= z2p+2
2 + z2

3 = 0,
∂ f
∂z2

= (2p + 3)z2p+2
2 z3 + (2p + 3)z1z2p+2

2 = 0,
∂ f
∂z3

= 2z1z3 + z2p+3
2 + 3z2

3 = 0

has a solution (−i, 1, i) in C∗3. So f is degenerate.

All other non-isolated singularities given in preceding section is non-degenerate. Here we

give only one example, the rest can be computed similarly.

Example 4.1.3. In Example 3.3.1 the face function fP = f and,

∂ f
∂z1

= 2z1z2
2 = 0,

∂ f
∂z2

= 3z2
2z3 + 2z2

1z2 = 0,
∂ f
∂z3

= 3z2
3 + z3

2 = 0

has no solution in C∗3. Hence f is non-degenerate.

4.2 Toric Modification

Let k be an algebraically closed field. Let k∗ = k − {0} and (k∗)n be the algebraic torus of

dimension n, denoted by Tn.

Definition 4.2.1. A toric variety X is a normal algebraic variety of dimension n over k if it

contains Tn as a Zariski open dense subset together with an action of Tn on the pair Tn ↪→ X

which is the standard torus action.

We will deal with the construction of an affine toric variety by using combinatorial objects.

Remember that σ is a strictly convex rational polyhedral cone (or simply cone) in Řn.

A set S endowed with an operation + is called a semigroup if it is associative, commutative

and it has identity element 0.

Remark 4.2.2. If σ̌ is a cone in Rn then S σ := σ̌ ∩ M is a semigroup.
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Lemma 4.2.3 (Gordan P.,1873). S σ is finitely generated.

Proof. Let v1, . . . , vn be the generators of σ̌. Each vi is in σ̌∩M. The set K := {
∑n

i=1 λivi : 0 ≤

λi ≤ 1 ∀i} is compact and M is discrete. A discrete set on a compact set cannot contain any

accumulation points. Therefore K ∩ M is finite.

Claim. S σ is generated by K ∩ M.

Take any element v ∈ S σ. It can be written as v =
∑n

i=1 rivi ri ∈ R≥0. Let bric be the greatest

integer less than ri and let ~ri� = ri − bric. Then

v =

n∑
i=1

(bric + ~ri�)vi =

n∑
i=1

bric vi +

n∑
i=1

~ri�vi

As 0 ≤ ~ri� < 1 and
∑n

i=1 bric vi ∈ S σ, the sum
∑n

i=1 ~ri�vi ∈ K ∩ M. Further vi ∈ K ∩ M

(choose λi = 1 and λ j = 0 for j , i). So K ∩ M generates S σ.

�

Remark 4.2.4. Any additive semigroup S determines a group ring k[S ] which is a k-algebra.

Moreover any finitely generated k-algebra determines an affine variety. Hence Rσ := k[S σ]

is a k-algebra such that for any f in Rσ, supp( f ) ⊂ σ̌ ∩ M.

Definition 4.2.5. An affine toric variety Xσ associated to a cone σ is the spectrum of the

finitely generated semigroup algebra Rσ.

Definition 4.2.6. Let Xσ be an affine algebraic variety of dimension n associated to a regular

cone σ = Cone(w1, . . . ,wn). The toric morphism is locally defined by

πσ : Xσ → Cn

yσ 7→ πσ(yσ) = (u1, . . . , un)

where ui =
∏n

j=1 yσ,
w j

i
j , yσ = (yσ,1 , . . . , yσ,n )

Remark 4.2.7. We can identify σ with the unimodular matrix (w j
i ).

Toric modification associated with Newton polyhedron. Given a rational fan Σ in Řn. Let

M be the set of n-dimensional cones in Σ. If two cones σ and τ inM have a common face στ;
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then the affine algebraic varieties Xσ,Xτ can be glue along the corresponding variety Xστ by

the gluing map πτ−1σ : Xσ → Xτ such that yτ = πτ−1σ(yσ) where τ−1σ is a unimodular matrix.

This gives rise to an algebraic variety.

Let
⊔
σ∈M Xσ be the disjoint union . Define an equivalence relation on

⊔
σ∈M Xσ as fol-

lows; take any points yσ ∈ Xσ and yτ ∈ Xτ and identify them if there exists a gluing map

πτ−1σ : Xσ → Xτ such that yτ = πτ−1σ(yσ).

Definition 4.2.8. Let XΣ be the quotient space of
⊔
σ∈M Xσ by the equivalence relation defined

above. We call XΣ the toric variety associate with Σ. The map πΣ : XΣ → Cn is called the

toric modification with respect to Σ.

Note that the variety XΣ is covered by affine charts Xσ corresponding to n-dimensional cones

σ of Σ. We have πΣ([yσ]) = πσ(yσ) where [yσ] is the equivalence class of yσ ∈ Xσ. In other

words, the morphism πΣ is defined by the restriction on each affine chart Xσ.

Theorem 4.2.9. Let Σ be a fan in NR. Then XΣ is non-singular if and only if Σ is a regular

fan.

Let f (z) =
∑
ν aνzν be any polynomial and let σ = 〈w1, . . . ,wn〉 be a regular cone in Řn

≥0. We

consider the behaviour of f under the toric map πσ : Xσ → Cn corresponding to σ. Recall

that s is the support function associated NP( f ). We have

f ◦ πσ =
∑
ν

aνy
〈w1,ν〉
σ,1 · · · y〈w

n,ν〉
σ,n

= ys(w1)
σ,1 · · · y

s(wn)
σ,n

∑
ν

aνy
〈w1,ν〉−s(w1)
σ,1 · · · y〈w

n,ν〉−s(wn)
σ,n

The support function s determines a divisor on Xσ having the equation ys(w1)
σ,1 · · · y

s(wn)
σ,n . We call

it the exceptional divisor of the map πσ. The strict transform f̃ =
∑
ν aνy

〈w1,ν〉−s(w1)
σ,1 · · · y〈w

n,ν〉−s(wn)
σ,n .

4.3 Examples

In this section we first consider the toric modification of an ADE singularity, then of an

example of a complete intersection singularity. Finally, we find out that there exist a resolution

for the two examples of degenerate non-isolated singularities.
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In the examples below we only do our computations in the chart πσ1 instead of computing in

all other charts πσi because by construction of the toric modification, we will only observe the

same phenomenon in a different chart.

Example 4.3.1. Consider the E6 singularity given in Example 3.2.6.First we write down the

map and then we will find the strict transform and exceptional divisor of the associated map.

The DNP( f ) has four regular maximal dimensional cones:

1. σ1 = 〈(6, 4, 3), (4, 3, 2), (1, 0, 0)〉

2. σ2 = 〈(6, 4, 3), (4, 3, 2), (3, 2, 2)〉

3. σ3 = 〈(6, 4, 3), (2, 1, 1), (3, 2, 2)〉

4. σ4 = 〈(6, 4, 3), (2, 1, 1), (1, 0, 0)〉

Let us take the cone σ1 = 〈(6, 4, 3), (4, 3, 2), (1, 0, 0)〉. We use yi instead of yσi for simplicity

of notation. The toric modification of σ1 is:

πσ : z1 = y6
1y4

2y3

z2 = y4
1y3

2

z3 = y3
1y2

2

Then, f ◦ πσ = y12
1 y8

2(1 + y2 + y2
3).

The strict transform is f̃ = 1 + y2 + y2
3 and exceptional divisor π−1

σ3
(0) = {y1 = 0} ∪ {y2 = 0}.

Example 4.3.2. Let V( f1, f2) = {(z1, z2, z3) ∈ C3 : f1 = f2 = 0} be a complete intersection

defined by the equations f1(z1, z2, z3) = z2
2 − z3

1 and f1(z1, z2, z3) = z2
3 − z5

1z2.

The Newton polyhedron of f1, f2, NP( f1, f2), is defined by the Minkowski sum of the two

Newton polyhedron NP( f1), NP( f2). The Minkowski sum NP( f1)+M NP( f2) = {ν1 +ν2 : ν1 ∈

NP( f1), ν2 ∈ NP( f2)}. Then, NP( f1) is the convex hull of {{(3, 0, 0), (0, 2, 0)} + R3} and

NP( f2) is the convex hull of {{(5, 1, 0), (0, 0, 2)} + R3}. Hence NP( f1, f2) is the convex hull of

{{(8, 1, 0), (3, 0, 2), (5, 3, 0), (0, 2, 2)} + R3}.

The DNP( f1, f2) has four regular maximal dimensional cones in regular DNP( f ) as

1. σ1 = 〈(4, 6, 13), (2, 3, 7), (1, 1, 3)〉

2. σ2 = 〈(4, 6, 13), (2, 3, 6), (1, 1, 3)〉
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3. σ3 = 〈(4, 6, 13), (2, 3, 7), (3, 5, 10)〉

4. σ4 = 〈(4, 6, 13), (3, 5, 10), (2, 3, 6)〉

Let us take σ1 = 〈(4, 6, 13), (2, 3, 7), (1, 1, 3)〉. Then the toric modification is

πσ : z1 = y4
1y2

2y3

z2 = y6
1y3

2y3

z3 = y13
1 y7

2y3
3

Then,

f1 ◦ πσ = y12
1 y6

2y2
3(1 − y3)

f2 ◦ πσ = y26
1 y13

2 y6
3(y2 − 1)

The strict transforms are f̃1 = (1 − y3) and f̃1 = (y2 − 1) and exceptional divisor is

π−1
σ3

(0) = {y1 = 0} ∪ {y2 = 0} ∪ {y3 = 0}

.

Example 4.3.3. Consider the hypersurface in Example 3.3.10 with the equation f (z1, z2, z3) =

z1z2
3 + z2m+3

2 z3 + z1z2m+3
2 + z3

3 for n = 2m + 1. In previous section we showed that it has a

degenerate singularity. The maximal dimensional cones of DNP( f ) are

1. σ1 = 〈(2m + 3, 2, 2m + 3), (m + 1, 1,m + 1), (2m + 2, 2, 2m + 3)〉

2. σ2 = 〈(2m + 3, 2, 2m + 3), (2m + 2, 2, 2m + 3), (m + 2, 1,m + 2)〉

3. σ3 = 〈(2m + 3, 2, 2m + 3), (m + 1, 1,m + 1), (m + 2, 1,m + 2)〉

Let us take the regular cone σ1 = 〈(2m + 3, 2, 2m + 3), (m + 1, 1,m + 1), (2m + 2, 2, 2m + 3)〉

of regular DNP( f ). The toric modification associated to σ1 is

πσ : z1 = y2m+3
1 ym+1

2 y2m+2
3

z2 = y2
1y2y2

3

z3 = y2m+3
1 ym+1

2 y2m+3
3

Then, f ◦ πσ = y6m+9
1 y3m+3

2 y6m+8
3 (y1 + 1 + y2y3 + y2).

The strict transform is f̃ = 1 + y3 + y2 + y2y3 and the exceptional divisor of the map is

π−1
σ2

(0) = {y1 = 0} ∪ {y2 = 0} ∪ {y3 = 0}.
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Example 4.3.4. Consider the hypersurface in Example 3.3.4 which has an equation f (z1, z2, z3) =

z1z2
3 + z2p+3

2 z3 + z1z2p+3
2 + z3

3 for n = 2p + 1. In previous section we showed that it has a de-

generate singularity. The maximal dimensional cones of DNP( f ) are

1. σ1 = 〈P1,T1, E1〉

2. σ2 = 〈P1,T1,U1〉

3. σ3 = 〈P1,U1, E1〉

4. σ4 = 〈P2,Uk+1,K1〉

5. σ5 = 〈P2,K1,Uk+1〉

6. σ6 = 〈P2, L,K1〉

where the vectors P1, P2,K1, L, T1,U1,Uk+1 are given in Example 3.3.4.

Let us take the regular cone

σ1 = 〈P,T1, L1〉 = 〈(2p + 3, 2, 2p + 3), (p + 1, 1, p + 1), (2p + 2, 2, 2p + 3)〉

. The toric modification associated to σ is

πσ : z1 = y2p+3
1 yp+1

2 y2p+2
3

z2 = y2
1y2y2

3

z3 = y2p+3
1 yp+1

2 y2p+3
3

Then, f ◦ πσ = y6p+9
1 y3p+3

2 y6p+8
3 (y1 + 1 + y2y3 + y2).

The strict transform is f̃ = 1 + y3 + y2 + y2y3 and the exceptional divisor of the map is

π−1
σ2

(0) = {y1 = 0} ∪ {y2 = 0} ∪ {y3 = 0}.

4.4 Conclusion

In this work, we are interested in the polynomials of the form

z3 + f (x, y)z2 + g(x, y)z + h(x, y) = 0 (4.1)

which give non-isolated surface singularity at (0, 0, 0) in C3. We showed that a resolution

of a non-isolated hypersurface singularity of the form (4.1) can be obtained by its Newton

polyhedron.
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Some of the singularities of the form (4.1) are special; for example the hypersurface defined

in Example 3.3.4 is a degenerate singularity and its normalization is given by the following

three equations:

f1 = z4
3 − z2

2 − z2
1z2

f2 = −z0z3 + zn+1
1 z2

f3 = z0z2 + z0z2
1 − zn+1

1 z3
3

The normal surface defined by these three equations f1, f2, f3 is non-degenerate.

As the next step we try to see the following question: does the singularities in the form (4.1)

that are degenerate admit a resolution by toric modification.

We will establish a relation between the Newton polyhedron of non-isolated hypersurface

singularity and the Newton polyhedron of its normalization as a forthcoming work.
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