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Abstract

In this study, we first prove the classical Prime Number Theorem
which gives an estimate on the number of primes not exceeding x where
x is a given real number. Then, in the third chapter we prove the
Wiener-Ikehara Tauberian Theorem and as a result of this theorem,
we deduce the Prime Number Theorem just from the non-vanishing
of the Riemann Zeta function on the line ¢ = 1. In chapter four, we
prove Beurling’s Generalized Prime Number Theorem on semi-groups
of integers and we investigate the boundary condition of this theorem.
Also, we consider the partial sums of the M&bius function over such
semi-groups and we show the difference between the Generalized Prime
Number Theorem and the partial sums of the Mobius function over
semi-groups. Based on this difference, in the last part (which is a
joint work with my supervisor Assoc. Prof. Emre Alkan) we give
quantitative estimates on partial sums of the Md6bius function over
semi-groups that are also in a given arithmetic progression. Lastly, we

apply our results to the fractions.
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OZET

Bu galigmada ilk olarak herhangi bir x reel sayisina kadar olan asallarin
sayisi lizerine sonug veren Asal Say1 Teoremi kanitlanacaktir. Daha sonra
ticlincii boliimde Wiener-Tkehara Tauberian Teoremini kanitlayip, bunun
sonucunda Asal Say1 Teoremini kanitlamak i¢in Riemann Zeta fonksiyonunun
o = 1 dogrusu iizerinde hig sifirinin olmamasinin yeterli olacagini gésterecegiz.
Dordiincii boliimde, Beurling’in genellegtirilmig Asal Say1 Teoremini tam-
sayilarin sadece carpma altinda kapali olan kiimeleri {izerine kanitlayacagiz
ve bu Teoremin sinirlarini aragtiracagiz. Ayrica Mobius fonksiyonunun kismi
toplamlarini tamsayilarin bu tiir alt kiimeleri iizerinde diiglinecegiz ve genel-
legtirilmig Asal Say1 Teoremi ile Mobius fonksiyonunun kismi toplamlar:
arasindaki farki gosterecegiz. Son boliimde de (bu boliim danigmanim Emre
Alkan ile yaptigimiz ortak bir ¢alismadir.) bu farklihga dayali olarak, aym
zamanda tamsayilarin sadece carpma altinda kapali olan bir kiimesi ve ar-
itmetik dizi tizerindeki M&bius fonksiyonunun kismi toplamlarina niceliksel
iist sinirlar verecegiz. Son olarak da, elde ettigimiz sonuclar: kesirlere uygu-

layacagiz.
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The Euler-Gamma constant.

[e.e]
/ f(t)e~?™®qdt; the Fourier transform of f.
—00

The space of all Lebesgue integrable functions.
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The Prime Number Theorem.
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1 Preliminaries

This chapter includes the basic information needed to understand the text
as we frequently will refer in the following chapters. It consists of five main
sections and in each of them, we will present some functions and their prop-
erties that we are going to deal with. We also will introduce some theorems
and tools that are widely used in Analytic Number Theory and Analysis.
All these will be given briefly, without proof since detailed arguments can
be found in [7], [26], [27], [30] or [32].

Throughout the text, log x denotes the natural logarithm and p always

denotes a prime number.

1.1 Arithmetic Functions

Definition 1.1. A complez-valued function defined on the positive integers

1s called an arithmetic function.

Now we introduce some arithmetic functions which play an important

role on the distribution of prime numbers.
1. Define I(1) =1 and I(n) =0if n > 1.

2. Another aritmetic funciton is u which is defined by u(n) = 1 for all
n > 1.

3. The Mobius function p is defined as follows:

p(l) =1;

If n > 1, write n = pj* - - - p;*. Then

—1k ifa1:a2:-~ak:1,
p(n) = =1) .
0 otherwise .

4. If n > 1 the Euler totient ¢(n) is defined to be the number of positive

integers not exceeding n which are relatively prime to n; i.e.,

pn)= Y 1L

(m,n)=1



5. The Von-Mangoldt function A(n) is defined as:

An) logp if n =p" for some prime p and some integer m > 1,

n)=
0 otherwise.

This function seems intricate at a first sight, but as we progress we see

that this function is natural and deeply related to the distribution of

the primes and we deal with this function throughout this thesis.

Definition 1.2. Given two arithmetic functions, we define their Dirichlet
product as
(fxg)(n) =>_ f(d)g(n/d).
djn
It can be shown that I(n) is the identity function of the operation % and
pwxu=1I.

Definition 1.3. An arithmetic function f is called multiplicative if

whenever (m,n) = 1.
f is called completely multiplicative if f(mn) = f(m)f(n) holds for all

integers m and n.

Now let f(n) be an arithmetic function. We usually denote by F'(z), the

summatory function of f(n)

=Y f(n)

n<x
Now we give summatory functions of some important arithmetic functions.

Definition 1.4. Given x > 0 define 7( Zl and M(x Z,u
p<lzx n<lz
The function 7w(x) is called the prime counting function and the function

M (x) is called the Mertens function.

In the next chapter we find the asymptotic behavior of the function m(z)

without an error term. More precisely in Chapter 2, we prove the Prime

Number Theorem (PNT) which says that lim m(w) = 1. In Chapter 3,
z—oo x/log x




we investigate the connection between these two functions and in Chapter
4 we generalize this connection and we also show how they differ from each
other. The main idea of this thesis is to study these two functions.

In analytic number theory, we estimate the summatory function F'(z)
of arithmetic functions because they are expected to behave more regularly
whereas an arithmetic function may behave very irregularly even on consec-
utive integers. So we are interested in tools for evaluating the averages. One
of them is Abel’s summation formula which is sometimes called the partial

summation. We use Abel’s summation frequently throughout the text.

Theorem 1.5 (Abel’s Summation Formula-The Partial Summation For-
mula). Let x and y be real numbers with 0 < y < x. Let a(n) be an arith-
metic function with summatory function A(x) and f(t) be a function with
a continuous derivative on [y,z]|. Suppose also that A(x) = 0 when z < 1.
Then,

y<n<z
In particular, if x > 1 and f(t) is continuously differentiable on [1,x], then
> alm) () = Ao - [ AOF W) (1.2
n<x
This theorem, applied to the functions a(n) = 1 and f(t) = 1/t gives
1 1
Z — logz +~+r(z) where |r(z)] < - (1.3)
n<x

The number « in (1.3) is called the Fuler-Gamma constant.

1.2 Elementary Results in the Distribution of Primes

Let us first introduce Chebyshev’s functions v (z) and 9¥(x) which have a

key role in the study of distribution of primes.

Definition 1.6. We define Chebyshev’s 1p(z) function to be the summatory
function of A(n) by

V()= An).

n<x



Definition 1.7. We define Chebyshev’s ¥(x) function by

I(x) =) logp,

p<w
where p runs over primes < x.

Chebyshev has showed that the functions v (z) and J(z) are of order
O(x) and their relation gives equivalent forms of the PNT. More precesiley,

he has proved the following two theorems:

Theorem 1.8. There exists xg € R such that, for all x > x¢ we have
(0.92)x < d(x) < ¢(x) < (1.06)x. (1.4)

The following theorem states three equivalent forms of PNT (without

error term) and its proof is simply based on Abel’s summation.

Theorem 1.9. The following relations are equivalent:

X

m(x) ~ gz (1.5)
I (z) ~x 1.6
Y(z) ~ . (1.7)

1.3 Dirichlet Series

Given an arithmetic function f(n), we define the Dirichlet series associated
by f as

Fs) =37 ;L”)
n=1

A Dirichlet series can be regarded as a function of the complex variable
s, defined in the region in which the series converges. We write the variable
s as

s=o0+it, where o =Rs,t=Ss,

and we will use this notation throughout the text. Every Dirichlet series has
an absciss of convergence 0., which means there is a half-plane that the series
converges for o > o.. Also for every Dirichlet series there is a number o, such

that, for o > o, the series converges absolutely. Moreover, a Dirichlet series



constitutes an analytic function in its half-plane of convergence. There is
a close relation between the summatory function and the Dirichlet series of
an arithmetic function; and we will be considering this in the next chapter.

Another important result about Dirichlet series is the Euler Product

Identity when applied to the Dirichlet series.

Theorem 1.10 (Euler Product Identity). Let f be a multiplicative arith-

metic function with Dirichlet series F'(s E s). Assume F(s) con-
n
n=1

verges absolutely for o > o, then we have

2
F(s):H< f;f) f;fs)+...> for o > o, (1.8)

If f is completely multiplicative, then

F(s)=]] <1 - f;f)>_1 for o > a,. (1.9)

p

The most famous Dirichlet series is the one associated with the function

u(n), so-called the Riemann zeta function,

(=Y

n=1

(0 >1)

By the Euler product identity (1.9), we have

21 1\
((s) =) — = 11 <1 - ps> (o0 >1). (1.10)
Logarithmic derivative of the identity (1.10) gives that

j Zzlogp if:) (o >1). (1.11)

pnl n=1

It can be shown that if F(s) and G(s) are the Dirichlet series of the
arithmetic functions f(n) and g(n) respectively and if F'(s) and G(s) con-
verge absolutely in o > o, then the Dirichlet series of (f*g)(n) is F(s)G(s)

which is absolutely convergent in o > o,.



Using the above fact, we can show that
>
—~ ¢(s)

when o > 1. This and (1.10) both imply that {(s) has no zero in o > 1.

1.4 Dirichlet Characters and L-functions

Definition 1.11. An arithmetic function x(n) is called a Dirichlet character
modulo q if it satisfies

(i) x(n) =0 for (n,q) > 1,

(ii) x(1) = 1

(iii) x(n)x(m) = x(nm) for all integers m,n,

(iv) x(n) = x(m) whenever n =m (mod q), i.e. x(n) is q-periodic.

Since x(1) = 1 and n®?9 = 1 (mod ¢q) when (n,q) = 1, x(n) must be a
(¢(q))-th root of unity for (n,q) = 1. Also, there are ¢(q) characters to the
modulus g. One of them takes the value 1 for all integers relatively prime
to ¢ and 0 otherwise, this is called the principal character and denoted by
Xo(n)-

A character x(n) modulo ¢ satisfies the following relations:

1oy X(n):{ L X =, (1.12)

0 otherwise.

and

1 Z (n) = { 1 ifn= 1‘ (mod q), (1.13)

v(q) x(mod q) 0 otherwise.

From the relation (1.13), it is possible to deduce a relation which will be
useful when we aim at working on integers belonging to a certain residue

class modulo ¢. If (a,q) = 1, then for any n we have

Y M) = (1.14)

©(q) x(mod q) 0 otherwise.

{ 1 ifn=a (modyg),

This enables us how to catch numbers belonging to a certain residue

class modulo gq.



Dirichlet also defined L-functions denoted by L(s, x) to be the Dirichlet
series of x(n) for o > 1,

:ix(n).

n=1

All L(s, x) converges absolutely in o > 1. Moreover if x is a non-principal
character modulo ¢, then L(s, x) converges conditionally in o > 0.

By the Euler product identity we have

-1
L(s,0) =[] (1 - X(p)> (0 >1). (1.15)

s
p p

As for the function ((s), logarithmic differentiation gives that

ZZX logp iA(nzf(") (0 > 1). (1.16)

p n=1 n=1

1.5 Results from Fourier Analysis

In this subsection, we state some results from Fourier Analysis without proof.
The details can be found in [27], [30] or [32].

Theorem 1.12. Suppose that T > 1. Let

sin Tz 2 37 (sinwTxz/2\*
Arp(z) = T< — > and Jr(z) = = (WT$/2 )

be the Fejer and Jackson kernels respectively. Then these functions have a
peak of height < T and width < 1/T at 0, and have a total mass 1.

Definition 1.13. Suppose f € L' = LY(R). Then the function f(:v) =
/ f(t)e(—tz)dt is called the Fourier transform of f where e(x) = *™*,

Theorem 1.14 (Fourier Inversion Theorem). If f € L' and fE L', and if
x) —/ Flt)e(tz)dt, then f(z) = g(x) almost everywhere.

Theorem 1.15 (Riemann-Lebesgue Lemma). Suppose f € L'(R). Then

the Fourier transform of f vanishes at infinity, in other words

lim f(z) =

|z|—o00



2 The Prime Number Theorem

Recall that m(x) = number of primes p < x = [{2 < p < x: pis prime}|.
The infinitude of primes was first proved by Euclid. Then Euler also gives
another proof of this by showing that the series

>

p<w

diverges. In the proof, Euler used some analysis and thus this result can
be seen as the birth of Analytic Number Theory. Around 1792, Gauss

conjectured that a good approximation to 7 (z) is the logarithmic integral

rodt

Li(z) = —.
iz) 5 logt

Gauss made this observation by finding all primes up to 3.000.000. Almost

at the same time, Legendre conjectured that m(x) is approximately

_r
logx — A

where A = 1.08... is some constant. Later it was proved that if

X

m(@) = logz — A(x)

then lim A(z) = 1. After about 100 years later in 1896, PNT was proved by
Tr—00
Jacques Hadamard and de la Vallée Poussin independently. In this chapter,

our aim is to prove so-called the Prime Number Theorem that is

X

m(x)

- log

l1.e. ﬂ_(m)

z—o0 z/log x -

In fact we will prove an equivalent form of this:

P(x) = ZA(n) ~ T i.e.

n<zx



There is a close relation between the summatory function of A(n)

w(x) = 37 Aln) and its Dirichlet series Y ) = ‘44/8
n<lx iy

given in the Fundamental Formula (2.7). So the Dirichlet series of A(n) is

, which will be

related to ((s). This is why we prefer ¥(x) and not m(z), in other words
the Dirichlet series of A(n) is more familiar than the Dirichlet series of the
characteristic function of prime numbers.

Thus the idea is to study the function

M8
=
=
~
=

e ((s)

n=1

where o > 1. ((s) occurs in the denominator, so we have to be careful about
its zeros! Therefore we have to analyse ((s) and its zeros as best we can.

By Abel’s summation, we have

AW _ vl ),

ks = ns +s 1 s+l L.
k=1
Since ¢7§7:) —0asn— oo for o > 1, we get
o An) *Y(z) , ¢'(s) *Y(z)
7§nszs/l xSHda: i.e. ~ ) :3/1 xs+1da: (2.1)

and this is called the Mellin transform of ¢ (x).
¢'(s)
¢(s)

we pass to ¢(x) from ;1 (x) so as to understand the distribution of primes.

and then

Our goal is to express 11 (z) = / ¥(u)du in terms of —
0

2.1 Riemann Zeta Function

Now we study ((s) further since this function is deeply connected with the
distribution of primes.

o0

1
Theorem 2.1 (Analytic continuation of {(s) ). {(s) = Z — defined for
n

n—=
o > 1 has an analytic continuation to a function defined on the half plane

o > 0, and that is analytic in this plane exception of a simple pole at s =1



with residue 1, given by

C(s):i—s G dzx.

s—1 1 s+l
Proof. By Abel’s Summation formula ,

1 T Tt
ZTLS:[J/‘S]—’_S/I ts[jldt’

n<x

Therefore, for ¢ > 1, we have
< |z Cx—{x
¢(s) = 3/1 x[sde = 5/1 st }d‘r
= 5/ x %dx — s/ {1;}1 dx
1 1 T

s > {x}
28_1—8\/1 xs+1d.7].

Given € > 0,

* {z}
|/1 xsﬂdx

Therefore the integral converges absolutely and uniformly in the half plane

RO | 1 1
< ld:cg ldx:f when o > e.
1 .fL'gJF 1 .fL'€+ €

o > €, and represents an analytic function of s for ¢ > €. Since o > 0 is
arbitrary, this function is analytic in o > 0. Also, %y =1+ ﬁ gives a
simple pole at s = 1 with residue 1. =
Riemann Hypothesis(RH): We know that ((s) # 0 for ¢ > 1. RH says
that if ((s) = 0 in o > 0 then R(s) = 3.

Note that

& 1
C(s):()@/l ii}ldx: T

Next we bound on the functions ((s) and (’(s) at infinity This will be useful
in the proof on the PNT.

Theorem 2.2. We have
(i) IC(s)| < Alogt (0 >1,t>2),
(ii) |¢'(s)] < Alog?t (0> 1,1 > 2),

(iii) [¢(s)] < BO)0 (¢0>6,t>2,0<5<1)

10



where A is an absolute constant and B(0) is a constant that may de-

pend on 4.

Proof. By Abel’s summation, we obtain

1 vt [«] s s v A{t} 1 {z}
n 8/1 s+l dt—i_i s—1 (s—1)as1 o 1 st dH—xS—l T
n<x
Since

C(s)—zizé—{m} s {}dt

n®  (s—1)zs—1 xs , st

Hence for 0 > 0, ¢t > 1, x > 1 we have

©dt 1 1 1 1
s)| < Z +t o— 1+ +| |/ t0'+1 = +tl“771+ <1+ ):L‘U

n<x

since |s| < o +t.
Ifo>1,
1 1 1 1+t t
<Nyt 1)+3+-
S)|*Zn+t+x+ . < (logz +1) + +
n<x
since t > 1, x > 1. Taking = =t we obtain (7).
If 0 >0 where 0 < § < 1,

1 1 t\1 20 s 3t
< — 4+ — 24 - =< U+ —,
S)_Zn5+t$51+<+5>az5 = " +5.CL‘5
n<x
1 1E1_6
since E 5 < 5 Taking x =t as before we get

n<x

C(s)] <0 (115 +1+ ?) (2.2)

B(%)

and this proves (ii).

11



Lastly we prove (7). Let so = o¢ + ity be any point in the region o > 1,
t > 2 and C a circle with center sg and radius p < % Then by Cauchy’s

integral formula for ’(sg), we have

1/ ¢(s)ds
210 Jo (s — 80)?
where M is the maximum of |((s)| on C. Now, for all points s on C, we
have 0 > 09 —p>1—pand 1 <t < 2tp, and hence by (2.2), (p=1—9)

M
p

<

¢ (s0)] =

1 3 10t,°
M < (2t0)”<+1+) <=2
p I—p p

since p <1 —p <1 and 2” < 2. Hence

10¢,°
1¢"(s0)] < .
2
Now take 1
=3 + log tg

i.e. tgf = erlo8%0 < ¢ and |('(s0)| < 10e(2 + logtg)?. This implies (ii). m

2.2 Zeros of ((s)

Zeros of ((s) play an important role for the distribution of primes. The

following result is the most significant result for the PNT.

Theorem 2.3. ((s) has no zeros on the line o = 1. Furthermore, there is
an absolute constant A > 0 such that @ = O((logt)?) uniformly for o > 1,

ast — 0o.

Proof. First observe that
3+4cosf 4 cos20 = 2(1 + cos ) > 0. (2.3)

For o > 1,

g ¢(3)] = Rlog(s) = (LY )

= %(i n:izt> = i cnn” % cos(tlogn)

n=2 n=2

12



where ¢, = % if n = p™ for some p prime and 0 otherwise. Hence by (2.3)
log[¢*(0)¢* (o +it)¢ (o +2it)| =D cun™7 (3+4 cos(t log n)+cos(2t log ) > 0
since ¢, > 0. Therefore we have

(0 — 1)¢(0))? M

1
(o +2it)] > —, o>1. (24)
o

This shows that 1+ it (¢ # 0) cannot be a zero of ((s). Otherwise the left
hand side tends to |¢’(1 + it)|*|¢(1 + 2it)| but the right hand side tends to
infinity as o — 1T,

For the second part we may assume 1 < o < 2 since for o > 2,
1 win =1 1 s
ol PR SR SRR

If 1 <o <2andt>2 then by (2.4) and Theorem 2.2 (i) we have

[e.9]

(0 —1)° < (0 = 1)¢(0))*[¢ (o +it)[*[¢ (o + 2it))|
< A3|¢(o +it)|* Ay log 2t
< A3|¢(o 4 it)|* A2 1og t.

for some constants A; and As. Thus

(0 —1)3/4

|C(o +it)| > W

(2.5)

(1 <0 <2,t>2) for some constant Az. Now let 1 < < 2. For 1 <o <2,
t > 2, by Theorem 2.2 (ii) we see that

é
IC(o +it) — (0 + it)| = ‘ / ¢'(u+it)du| < Aglog?t(d — 1) (2.6)

for some constant A4. Hence combining (2.5) and (2.6) we get

IC(o +it)| > |¢(6 +it)] — Ag(d — 1) log?t
(6 —1)3/4

2 W — Ay(6 — 1)(10gt)2.

13



Now, let § = 1 + (2434,4) 4(logt)~? i.e. % = 2A4(6 — 1)(log t)?2

(when t is large enough) to obtain
IC(o +it)| > Ay(6 — 1)log? t = As(logt) ™",

if 1 <o <2andt >ty (i.e. when t is large enough) and A5 is some absolute
constant. So we can take A = 7.

2.3 Fundamental Formula

Working with ¢ (z) = Z A(n) has some convergence problems. So we will

n<x
T

work with ¢ (z) = / ¥ (u)du instead of ¢(z). This is called the smoothing

0
argument. By Abel’s summation, we have

1(x) = /Ox Y(u)du =" A(n)(z —n).

n<x

Since we will prove ¥(x) ~ x, we expect ¢ (x) ~ %2 Transition from 1 (x)

to ¢(x) will be easy. Our aim is to show that the fundamental formula:

- 1 c+ioo $S+1 CI(S)
wl(:c)—m/c_ioo s(s+1)<_ C(s))ds when > 0,¢ > 1

where the path of integration is the straight line o = c.

This formula is significant since it enables us to pass from discrete sum
to a continuous sum. Therefore we can use the tools of analysis to determine
the asymptotic behavior of a discrete sum. This is the philosophy of Analytic
Number Theory.

First we require a lemma in order to obtain the Fundamental Formula.

Lemma 2.4. For ¢ >0 and y > 0, we have

1 ctioco y® _ 0 ifyél,
2 Joioo S(s+1) 1—% ify > 1.

Proof. Note that the integral is absolutely convergent since the integrand
has modulus less than »¢|t|~2 on the line of integration. Denote by J the

infinite integral and J7 the integral from ¢—iT to c+iT (with the factor 5-).
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We apply Cauchy’s Residue theorem. We replace the line of integration Jp
by an arc of the circle ¢ having its centre at s = 0 and passing the points
ct¢T. If y > 1, we use the arc ¢; which lies to the left of the line o = ¢,
assuming 7T is large, R > 2 where R is the radius of the centre. This gives
Jr = S+ J(c1) where S is the sum of residues at s = 0, —1 and J(cp) is the
integral along ¢;. Now, on ¢; we have o < ¢ and thus |y®| < y° since y > 1.
Moreover |s| and [s+ 1] > R—1 > g. This gives

y° 4y©  4y©

1
— 2R = < .
27 (%)2 R T

[ J(e1)] <

Thus Jr - S asT — . i.e. J=.5. But

S S

,0] —i—Res[y -1

)
_ =14+ ==1-
S Res[s S5 117 ] +

(s+1)

The proof in the case y < 1 is similar: take co right-hand arc of ¢ and no

1
Yy y

poles are passed over.
|

Fundamental Formula: For z > 0,c > 1, we have

)= 5 /+: s(isfn SHE @7)

Proof. For x > 0, by Lemma 15 taking y = x/n we have

R (- [

n<lx n=1

If ¢ > 1, the order of summation and integration can be interchanged since

A < dt
ds < z° (n)/ < 0.

f: /CC“O" 'A(n)(w/n)s

oo | s(s+1) — ¢ ) o+t
Hence i " -
Vule) = 21m/ o s(f—i— 1) <n—1 Ar(:)>ds’
e ctico s+l /
o =gm [ @)
[

15



2.4 Prime Number Theorem

Now we have all tools so as to prove the PNT. Philosophy of the proof is:
We will shift the path of integration to the left side of the line ¢ = 1 in the
Fundamental Formula. This is useful because when shifting the integral we
catch the residue at s = 1 which contributes to the main term and the power
z® will be small in the left side of the line ¢ = 1. Also we need bounds on
the function ((s) at infinity and since we deal with ((s), the Theorem 2.3

will be vital.

Theorem 2.5. We have i1 (x) ~ % when T — o0.

¢(s)
a simple pole at s = 1 with residue 1. We will take ¢ =1 + % > 1 in the

log
Fundamental Formula (2.7) . From (2.7) we know that

bile) _ / o g(s)z* ds

Proof. From now on, we assume z > 1. Note that the function —

2
x —100

where

o) = s (- o)

2mi s(s+ 1)

1
Moreover ¢(s) is analytic in 0 > 1 except s = 1 with residue o Also by
i

Theorem 2.2, we have
l9(s)| < Au|t|*As(log [t])* A3 (log [¢])" < [t~/

(U > 17 |t| > tO)
Let € > 0 be given.

Now we replace the path of integration in (2.7) which is a vertical line
5

by L = U L; where
i=1

Ly = (c—io00,c—iT],

Ly =[c—iT,a — 1T},
Ly = [a — iT, a +iT),
Ly = [a — T, c + 4T,
Ls = [c+iT,c+ic0).

16



Choose T'=T(¢) and a = a(€) (0 < v < 1) such that

oo € 1

| late+iniar < o (12| = a7 = s =)
T 2e

and the rectangle a < 0 < 1, =T < ¢t < T contains no zeros of ((s). This

is possible since ((s) has no zero on the line ¢ = 1 and such a rectangle

can contain at most finitely many zeros of ((s) because otherwise, zeros of

¢(s) accumulate and ¢(s) would be zero. By Cauchy’s Residue theorem we

obtain that (@) ) .
1\T _ = s—1 —
2~ 3 + /Lg(s)x ds 3 +J.

(1/2 arises from the pole at o = 1).
Note that the integral / g(s)z*"tds is absolutely convergent.
L

Write
/ g(s)x* tds = J1 + Jo + J3 + Jy + J5,
L

where Jy,...,J5 are the integrals along L1, ..., Ls, respectively.
Since g(5)z° "' = g(s)z51, we have

€ €

Ji| =I5 < —e = —.

[l =105 < 5 e =5

Also, if we let M be the maximum of |g(s)| on the finite segments

Lo, L3, Ly then (since z > 1)

|Ja| = |Ja| = ’/ (o + it)zo Tt

dO’<M/ 2° Ldo

_a? =11 Me -1
logz | _ logx logac
a+iT
’/ 2 lds| < Mz 12T,
Therefore
Pi(x) 1 Me M 1
- < — Mz 2T.
x2 2| =€ logz  (logz)xl—« M

Now choose xg = xg(€, T, a, M) = xg(€) such that if z > xg then

(@) — 1‘ < 3e.

2 2

17



This proves the theorem.
|
Transition from v (x) to ¢ (z)

Let 0 < o < 1 < . Since ¥ (x) is monotone increasing, we obtain that

1 pr Y1(Bz) — Y1 ()
< t)dt = .
vle) < o | i = S
Therefore
V) 1 (6(F) ()
r ~ B—1\ (Br)? x2 )
_ . ooly) 1
Letting © — oo and keeping S fixed we have, since 2 — 5 as y — oo,
Plx)  1p2—-1 B+1
1 < — =
P =251 2
Similarly, lim inf @ > QTH. Since «, 8 are arbitrary, we get
T—00 T
Y(z)

— > lasx — oo.
T

So we obtain (ultimately!)

Prime Number Theorem (PNT): 7(x) ~ ] T
ogx
Proof. We know that ¢ (z) ~ %2 and so 1(z) ~ . Now by Theorem 1.9,
we get m(x) ~ i as desired. =

2.5 PNT and ((s) on the line 0 =1

The proof of the PNT is based on the fact that {(s) has no zeros on the line
o = 1. Now, we will show the converse. Suppose we have the PNT. Then
by (2.1) we have

/loo(x>_xdx——1</(8)— 1 = afs).

astl s ((s) s—1

18



Let € > 0 be given. Then by PNT [i(z) — z| < ex for x > z¢g = zo(€). So
for o > 1,

xo _ [e'e]
la(s)] </ W)(x)x'da:—k/ S dr < K+
1 zo T

€
5 :
T 0

c—1

Thus |(c—1)a(o+it)| < K(o—1)+e < 2efor 1 < o < g9 = gg(e, K) = op(e).
Hence for any fixed t, (0 — 1)a(c +it) — 0 as ¢ — 11. This shows that
the point 14 it cannot be a zero of ((s) because otherwise, (o — 1)a(o + it)
would tend to a limit different from 0, namely the residue of a(s) at the
simple pole 1 + it.

NOTE: In the next section we will show PNT < ((1+it) # 0 for all t € R.
We already showed <. For the converse, we need some Fourier Analysis

and the Tauberian Theorem of Wiener and Ikehara.

2.6 Further Works in PNT and Riemann’s Memoir

Now we will state some results without proof. All the details can be found
in [12] or [26] .

The functional equation of ((s):

Riemann made the greatest contribution to the study of distribution of

primes with his memoir in 1859. In his paper he showed that

e The function ((s) satisfies the functional equation

w—%r(g) ((s) =7 5T <1;S> C(1—s), (2.8)

where I'(s) is the so-called Gamma function which is analytic in the

o
half plane o > 0 with the integal representation I'(s) = / e a1,
0

e ((s) can be continued analytically over the whole plane and ((s) is

meromorphic with the simple pole at s = 1 with residue 1.

The second can be deduced from the functional equation regarding the

properties of the I'(s) function.

To use the functional equation effectively, we define the function

S

£(s) = %s(s ~ir

) ¢s). (2.9)
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The function &(s) is an entire function since it has no poles for o > 1 and

satisfies £(s) = &(1 — s). Moreover £(s) has the product representation
£(s) = eAtBs H <1 — S) e’lP (2.10)

where A and B are constants and p runs through the zeros of {(s) in the
critical strip 0 < o < 1. This was proved by Hadamard and lead to im-

provements in enlarging the zero-free region of ((s)

c
c>1—— 2.11
- logt’ (2.11)
|t| > 2, which was previosly shown as o > 1.
Improved zero-free region: For |t| > 2 there exists a positive number

¢ such that ((s) has no zeros in the region

Best zero-free region: For |t| > e we have ((s) # 0 for

A

>1—
7 (log |¢))2/3(log log [t])1/3

where A > 1/100 is an absolute constant. This result was proved indepen-
dently by Vinogradov [33] and Korobov [23] in 1958.

Explicit Formulas: Explicit formulas give the relation between the
summatory functions related to primes and the zeros of ((s).

By the Fundamental Formula, we know that

o=z [ (-G )

when z > 0, ¢ > 1. In fact a similar formula exists for ¢(x), for x ¢ Z and

c>1,
- 1 c+1i00 8 C/(S)
w(x> B 27i /c—ioo S ( - C(S) )ds

But working with ¢(x) has some convergence problems since the denom-
inator in the integrand is 1/s and the integrand is not absolutely convergent

in the vertical line of integration.
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If we define vg(x <ZA + ZA( )), then we have the two

n<lx n<x
explicit formulas :

Yo(x) =z — Z xl)—cl(o)—;log(l—xd)

p: nontrival

zero of ¢
B .1‘2 xp—i—l CI(O) C,(_l) e xl—?r
L I B e A U R P Py

Moreover, it is known that
>
~ |l

diverges but for any € > 0

E : < 0
1+e€
— |rl

where the summations are taken over non-trivial zeros of ((s).
Improved PNT (de la Vallée Poussin) If we use the improved zero-

free region in the proof of PNT, we can obtain
Y(x) = x + O(xe cVIET),

and

7(x) = Li(z) + O(ze 1V18%),

Riemann Hypothesis (RH):

After the PNT had been proved, the main problem has become obtaining
the PNT with an error term as good as possible. Riemann, in his paper in
1859 has conjectured the Riemann Hypothesis which states that all non-
trivial zeros of the Riemann zeta-function have real part 1/2. As the error
term is related to the zero-free region of ((s), the Riemann hypothesis is
equivalent to the both following two form of PNT: ¢ (z) = 2 + O(y/z log? )
and 7(z) = Li(x) + O(y/zlog z).

Moreover, O(y/z) is the best possible error term since it is known that
((s) has a zero on the critical line ¢ = 1/2. Unfortunately this prob-
lem is still wide open and we are very far from getting what is conjec-

tured. The last progress about the error term has been made by Vino-
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gradov and Korobov in 1958. They have enlarged the zero-free region to

A
oc>1-— which resulted in the error term
(log [t])%/3(log log |t[)1/3

e =w+0(“xp(‘cm>>'

Another important property of Dirichlet series is that we can relate them
to the summatory functions of arithmetic functions. Now let f(n) be an
arithmetic function with summatory function F'(x). Let a(s) be the Dirichlet
series of f(n) with finite abscissa of convergence o.. Then we have two
versatile theorems that allow us to pass from discrete to continuous and from
continuous to discrete. These theorems generalize the Mellin transform of
¥ (x) and the Fundamental Formula.

Theorem 2.6 (Mellin Transform Representation of Dirichlet Series).
o0
a(s) = s/ F(z)z™*'dz o > max(0,0.). (2.12)
1

Theorem 2.7 (Perron’s Formula). For any ¢ > max(0,0,), we have

Z/f(n) -1 /CHOO a(s)x—sds (2.13)

ot 2 oo 5
and x 1 [etioo 25+l
Fy(z) = /O Fludu =5 [ ol (2.14)
Here, Z, indicates that we take the term f(z) to be halved in the case when
x is an integer and the improper integral / e is to be interpreted as the
c—ico

c+iT
symmetric limit lim
T—o00 c—iT
Now we state the more generalized version of Mellin transform and Per-
ron’s formula.

Theorem 2.8 (Cesaro Weights). For a positive integer k, put

Crla) = 27 3 fm)(ax — m)"

n<x

22



Then Ci(x) = / Ci—1(u)du for k > 1 and Cy(x) = F(x). Moreover, for

o > max(0,0.), we have
a(s) =s(s+1)...(s + k)/ Ck(iﬂ)x*s*k’ldx
1

and for ¢ > max(0,0,) and z > 0, we have

c+oo xs—i—k
() = /c_oo Sy pary Lo

Now we state Plancherel Identity which concerns the space
LY(R) N L?(R). This theorem will be useful in Chapter 4.

o0
Theorem 2.9 (Plancherel Identity). Suppose that/ |w(z)|z77tda < oo,
0

ond also that [ (o) ¥ s < oo, Put K(s) = [ wla)a™ ld.
0 0
Then we have
o / (@) a2 1dz = / K (o + it) . (2.15)
0 —00

One of the significiant application of this identiy is the following. Sup-
pose f(n) is an arithmetic function with the summatory function F'(x). Let

a(s) be the Dirichlet series of f(n) with a finite abscissa of convergence o..

277/ |F(a:)23:_2"_1d:c:/
0 —00

for o > max(0,0.).

Then we have

a(o +it)|?

o+ it

Perron’s formula itself is not enough to satisfy an error term for the sum-
matory functions. To estimate the error term for the summatory function

of f(n), we need the following result.

Theorem 2.10 (Truncated Perron’s Formula). For any ¢ > max(0,0,),
T > 0 and non-integral x, we have
1 c+iT s
Y fn) = / a(s)~-ds + R(T), (2.16)

n<x 2m c—iT’
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o~ |f(n)]
where R(T) < T Z nellog(z/n)|

n=1
PNT for Arithmetic Progression: For a and ¢ positive integers
with (a,q) =1, define

Plega)= > AMm)

and

m(x,q,a) = #{p <z : pisprime and p=a (mod q)}.
PNT for arithmetic progression states that for a fixed modulus q,

¢($; q, CL) ~ @

and
x
i@ 0,0) ~ p(q)logz’
This is expected if we assume that all primes are well distributed to the
all residue classes that are coprime to the modulus ¢q. These two estimates

comes from tha fact that

HL(S,X) #0, for o> 1 (2.17)
X

Moreover, it is known that

Y(x,q,a) = Lx + O(zeVIogT), (2.18)
(q)
In fact we are allowed to make ¢ grow with x. The following theorem is
called the PNT for arithmetic progression with large moduli.
Siegel-Walfisz Theorem: Given A > 0 and for ¢ < (logz)4, (2.18)
holds uniformly with a constant ¢ = ¢(A) that may depend on A.
This is the best known range for the modulus ¢ for PNT on arithmetic

progression. This theorem will be significiant in Chapter 5.
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3 Wiener-lIkehara Tauberian Theorem

3.1 Tauberian Theory and an Approximation Lemma

In the previous chapter we derived the Prime Number Theorem 9 (z) ~ x

without the error term. For this it is crucial that we have to use

C(L+it) £0

for all t # 0 real numbers. But we also need to bound on ((s), ﬁ and ¢'(s)
at infinity because we use the Fundamental formula. The natural question is:
what is the least information concerning ((s) that would suffice to establish
PNT? In this section we only use ((1 4 it) # 0 for all real ¢ and the functions
((s) = g0 () +

s—1’ (s —1)2

Then we prove a general Tauberian theorem of Wiener and Ikehara and as a

are continous in the closed half plane ¢ > 1.

result we deduce the PNT. Let us make a few words on Tauberian theorems.
A Tauberian theorem is one in which the asymptotic behavior of a function
is deduced from the behavior of some of its averages or its some generating
functions. Generally Tauberian theorems are converses of fairly obvious re-
sults, but usually these converses depend on some additional assumptions
that are called Tauberian condition. The name Tauberian comes from the

Tauber who proved that :

Let (an)n be a sequence of complex numbers and put s, = ag + ... + a,.

Suppose also that

i f Zanr 0<r<land lim f(r)=

=0 r—1-

(ii) nh_)rrolo nay, = 0.

Then we have lim s, = s.
n—oo

It can be easily shown that lim s, = s implies the condition (7). But
the condition (7) only is not ennggO}ol to prove that hm sp, = s. We need
the condition (i7) also. The condition (i) is called the Tauberlan condition.
Later the Tauberian condition (i7) replaced by (nay)y is bounded by Little-

wood and that makes the proof much more difficult.
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First we require a two sided approximation lemma which is the heart of the

Wiener-Ikehara Tauberian Theorem.

Lemma 3.1. Let E(x) = €* for x < 0 and E(x) =0 for x > 0. For any
given € > 0 there is a T and continuous functions fy, f— with f+ € L*(R)
such that

(i) - < E(z) < fs+ forallz € R,

(ii) F=(t) =0 for all |t| > T ,

(i) /+°0 fr(x)dr <1+, /+°0 fo(x)dx >1—¢€.

Remark 3.2. Some remarks are in order. Since f+ € L*(R), we have that

the Fourier transform

_ +00
fe(t) = / fr(w)e(—tw)dw

—00

are uniformly continuous. Therefore from (i) above it follows that E(:ET) =
0 so that ]/C;(t) =0 for all |t| > T. Since fi(t) are also continuous , by the

Fourier integral theorem we have

Jim w( _Li'>?;(t)e(tx)dt_ i)

w—oo J_ .

for all x. But the functions f; are supported on the fized interval [T, T].

T
From this observation we see that the limit above is / fe(t)e(tx)dt, hence
-T

we get

T o~
fe(z) = /T fr(t)e(tx)dt

T
for all x. Moreover the function / f=(t)e*™™=dt is an entire function of
T

z. Therefore fi is the restriction to the real axis of an entire function.

Proof. We may suppose that T'> 1. Let

sin Tz 2 3T (sinnTz/2\*

be the Fejer and Jackson kernels respectively. These functions have a peak
of height < T and width =< 1/7 at 0, and have a total mass 1 by Theorem
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1.12.

Now put
—+00

f(z) = (ExJr)(z) = E(u)Jr(x — u)du.
This is a weighted average of the values of F(u) with special emphasis on
those u near z.

Next we show that
f(x) = E(x) + O(min(1, 1/(T:c)2)). (%)

To see this we consider several cases. N
o0

If |z| <1/T, we observe that 0 < f(x) < / Jr(u)du = 1.
Ifo> 1T, -
I —4 3
OSf($)<<ﬁ 7oo(w—u) du < 1/(Tx)”.

Note that

+oo
since / Jr(u)du = 1.
—00
Now, suppose that —1 < < —1/T. If 22 < u < 0 then

E(u) — BE(z) = e®(e" " —1) = ®(u — z + O((u — z)?)).

Therefore

—Z

Az(E(u)E(x))JT(xu)du: em/m uJT(u)dquO(/x

—Z

u2JT(u)du> .

Note that the first integral on the right above vanishes since the integrand
is an odd function, furthermore the second integral is < 1/72. On the other
hand

/OOO(E(u) — B@)Jr(z — u)du < % /_OO %du < 1/|Tzf
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2x
and similarly / (E(u) — E(x))Jr(z —u)du < 1/|Tz|?, so we have (x*) in
this case. -

Finally, suppose that < —1. Then
E(u) — E(z) = e"(u — z 4+ O((u — 2)?))

forz —1<u<x+1, so that

1 1

/:+1(E(u) — E(z))Jr(z — u)du = _ex/

-1 -1

wr(w)du + O <em /

-1

UQJT(u)du>

< e'T? < 1/(Tx)?,

Also,

/ N B) - B@) (e — w)du < T / T < 1/(Ta)?
1

—00

and

/OO (E(u) — E(z))Jr(z — u)du < T 3274,
z+1

hence we have (x%) again.
Now observe that Ar(z) < Tmin(1,1/(Tx)?), but there is no inequality
in the reverse direction since Ar(x) = 0 at integral multiples of 1/7". To

overcome this problem we consider a translate of the Fejer kernel. Since

Ar(z) 4+ Ap(z +1/(27)) > Tmin(1,1/(Tz)?)

we take fi(x) = f(x) + ;(AT(QZ) + A<;1: + % .
By (#x%), we see that if ¢ is large enough, then f_ < E(x) < fi for all
x. Next we show these functions satisfy the conditions (7), (i¢), (7). By
Fubini’s theorem, if fi, fo € L'(R) then so is fi * f> and m = ]?1]?2
Hence, in particular, f € L'(R) and f(t) = E(t)j;(t) But j;(t) = 0 for
|t| > T, thus f(t) = 0 for |t| > T. Similarly A\T(t) =0 for [t| > T, thus we
have (¢) and (ii).

Lastly, by Fubini’s theorem again, we obtain that

/:o flz)dz = (/Z E(m)dm) (/Z JT(u)du> .
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o
2
hence / fe(x)de =1+ ?C Now, to satisfy the (iii), we take T'> c/e. m
—0o

3.2 The Theorem of Wiener-Ikehara and Its Corollaries

Now we are ready to prove Wiener-lTkehara Tauberian Theorem.

Theorem 3.3. Suppose that the function a(u) is non-negative and incresing
o0
on [0,00), that a(s) = e “*da(u) converges for all s with o > 1, and

that 7(s) = a(s) — ;5 ewtends to a continuous function in the closed half-

plane o > 1.
Then / lda(u) = ce” 4+ o(e").
0

First we prove the theorem and then we deduce its corollaries which
consists of the Prime Number Theorem. The theorem was first proved by
Ikehara in 1931 who assumed that a(s) — ;%5 is analytic in the closed half-
plane o > 1. Wiener(1932) showed that mere continuity is enough.

Proof. Take § > 0 and let E(u) be the same function in the Lemma 3.1.
Then we can write / ““da(u) = e / E(u e+ dg(u) and by
0

the previous Lemma this is < e / fr(u—1x)e (1+6)“da( ). Now by the
0

Remark 3.2, this is equal to

" /O b ( / Zﬁ(t)e(tu - m)dt>e—<1+6>“da(u).

By Fubini’s theorem we are allowed to interchange the order of integration.

2mix

This will enable us to work with the function e(z) = e in the inner

integral. Thus by interchanging the order of integration the above integral

becomes

T 00
e’ /_Tﬁ(t)e(—taﬁ)/o e~ IH0=2mit)u gy () dit
T —_~
e / T (B)e(—tz)a(l + 6 — 2mit)dt.
-T

Now we make an important observation. If a(u) = e* then a(s) = 21 and
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from the calculation above we reach that
/ folu—x) 5“du—/ 7l ) L
+ +( —2mit

Therefore from the previous observation we obtain that

/ e “da(u <e/ f+ (—tx)r(1+5— 27rzt)dt—|-ce/ fi(u—z)e 2"du.
0

Now since the function r(s) is uniformly continuous in the closed rectangle
1 <o <1409, |t| <2xT, each of the three terms above tends to a limit as
§ — 0%. Thus we obtain

/0 lda(u) <e / f+ (=tx)r(l — 2mit)dt + ce® / f+(u — z)du.

Now we divide both sides with e” and let x — oo. By Riemann-Lebesgue

lemma, the first integral on the rlght tends to 0 as  — oo, and the second
integral on the right tends to ¢ / f+(u)du which is less than ¢(1 + €) by
the Lemma 3.1. Thus we obtain that

limsupe_x/ lda(u / fr(u)du < c(1+¢).
0

T—r00

Similarly by using the function f_, we can also show that

lim inf ex/ lda(u) > ¢(1 —€).
0

T—r00

Since € > 0 is arbitrary we have the Theorem. m
By making the change of variable a(u) = A(e") we obtain the following

equivalent formulation of the theorem.

Corollary 3.4. Suppose A(v) is non-negative and increasing function on
oo
[0,00), that a(s) = / v *dA(v) converges for all o > 1 and that

1
r(s) = a(s) — ;55 extends to a continuous function in the closed half-

plane o > 1. Then

/100 1dA(v) = cx + o(x).
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By setting A(v) = Z ay, we get a useful Tauberian Theorem for Dirich-
n<v
let series.

Corollary 3.5. (Wiener-Ikehara) Suppose that an, > 0 for alln, that a(s) =

oo

Z a—z converges for all s with o > 1 and that r(s) = a(s) — ;57 estends to
n

n=1
a continuous function in the closed half-plane o > 1. Then

Z an = cx + o(x).

Corollary 3.6. (Prime Number Theorem) We have ¥(x) ~ x.

Proof. Taking a, = A(n), we have

> A(n) =z + o(x)

n<x

oo A_ /

since g (Z) =— CC ((S)) satisfies the conditions of the Corollary 3.5 with
n s

n=1

¢ =1 via Theorem 2.3. =
Now first we show directly that M (z) = Z p(n) = o(z), then we show

n<x

M(x) = o(z) iff Prime Number Theorem.
Corollary 3.7. M(x) = o(x).

Proof. We take a,, = 1+ u(n). Then a,, > 0 for all n > 1 and

n 1
ofs) = E % =((s) + @ converges for all s with 0 > 1 and a(s) —
1

=7 extends to a continuous function in ¢ > 1 by Theorem 2.3. Thus by

Corollary 3.5, we get Zan = [z] + M(xz) ~ z. Hence we obtain that

n<x

n=1

Corollary 3.8. Prime Number Theorem iff M(x) = o(x).

Proof. We take a, = 1+ p(n) + A(n). Then a, > 0 for all n > 1 and

afs) = Z Gn _ ¢(s) + {(15) — QCI((SS)) converges for all s with ¢ > 1 and

extends to a continuous function in ¢ > 1 by Theorem 2.3.
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Thus by Corollary 3.5, we get Z ap = [z] + M(x) + ¢ (x) ~ 2x. Hence we
n<x

obtain that M (x) = o(x) iff ¢¥(x) ~ .

]

Now we can prove the Prime Number Theorem for arithmetic progres-
sions by applying Wiener-lkehara Tauberian Theorem. Similar to the classi-
cal Prime Number Theorem , we require that for a given character y modulo

q, L(s, x) does not vanish on the line o = 1.

Corollary 3.9. Let ¢ > 1 be a fized modulus and a be a positive integer
with (a,q) = 1. Then we have

Wasga)= Y An) =~ +o(x).

n<x
n=a (mod q)

A
Proof. Consider the Dirichlet Series a(s) = E @ where o > 1.
n
n<x
n=a (mod q)

Thus a(s) is analytic in ¢ > 1. By using the orthogonality relation of

characters we obtain that

)= 3 20 (S @)

_ L Ny XA
_ w(q)?“ ); o
RS o b T A CIDY
N @(q)ZX:X( )< L(sax))

=l Ten) "o 2 O Te)

X7X0

L 1 L
Since ( - (s, XO)) — and for any non-principal character x, ( — (s, X))
L(S)XO) s—1 L(57X)

can be continuously extended to the half-plane o > 1 by (2.17), we see that

a(s) — can be continuously extended to the half-plane o > 1 where

1
c= @ Hence by Corollary 3.5 we get that ¥ (z;q,a) ~ ﬁ.
[

Using Abel’s summation, we have the Prime Number Theorem for arith-

metic progressions.
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Corollary 3.10. Let g > 1 be a fized modulus and a be a positive integer
with (a,q) = 1. Then we have

xT
[q,a) = v ———
(w5 q,a) ;ﬂ () Togz

a (mod q)

P
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4 Beurling’s Prime Number Theorem

In this section we prove a generalized version of the Prime Number Theorem.
First we define Beurling type of integers that is sometimes called the semi-
group on integers. Now let P be a set of primes and B be its complementary
set in the set of all primes. Let (P) = Np be the integers that are coprime

to all primes in B, thus

k
Np=(P)=q]I#y + k210,20, pyeP
j=1

={n>1:(n,p)=1 Vpe B}

Also we define Np(x) and P(z) be the counting functions of Np and P
respectively.
For example if P is the set of all primes then Np(z) = [z] = x + O(1) and

if P is the set of all odd primes then Np(z) = § 4+ O(1).

The question is knowing the asmyptotic behavior of Np(z), can we deter-
mine the asymptotic behavior of P(z)? What growth condition must Np(z)

have in order to prove

L o

Pla) ~ logx”

In this chapter we answer this question. Similar to Chapter 2, we study the
function Ap(n) which is defined by Ap(n) = A(n) if n € Np and Ap(n) =0
otherwise.

One can easily show that P(z) ~ gz 1L Yp(z) = Z Ap(n) ~ x by apply-

n<x
ing Abel’s summation (partial summation) formula.

Now we define the generating function of Np, namely

Cp(s) = X

nS
TLENP

for 0 > 1. This function is called the Beurling-Zeta function.

By Euler product formula, for ¢ > 1 we have

peP

Therefore (p(s) does not have a zero in o > 1.
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Note also that, for ¢ > 1 we have

—Ap(n) _ Cp(s)
; ns o (p(s)

First we obtain an analytic continuation of this function under some
conditions that depend on the asymptotic behavior of Np(z). Then we

show (p(s) cannot have a zero on the line o = 1 under the same conditions.

x
logz*

(Because this is significiant so as to prove P(x) ~ ) Our main tool will
be the Wiener-lTkehara Tauberian theorem because otherwise, in order to
apply Perron’s formula, we have to put bounds on the functions {p(s) and
its derivative at infinity. Moreover we have to pass to the left of the line
o = 1. But this can be difficult or sometimes impossible since the function

depends on the set P.

Lemma 4.1. Suppose

Np(z) = cz + 0(@) (4.1)

where ¢ s some positive constant and A > % Then we can extend the defi-
nition of Cp(s) to the half-plane o > 1 so that

Cp(s) = 5 +7als)

and ro(s) is continuous in o > 1. Furthermore (p(s) does not vanish on the

line o0 = 1.

Proof. Note that (p(s) is a Dirichlet Series with 0, = 1. For ¢ > 1 by Abel’s

summation we have

1 Np(x) z Np(u)
Zﬁzixs +s ) du.
n<x 1
ne(P)
Therefore
* Np(u) cs * (Np(u) — cu)
CJP(S):S/1 sl +S/1 IS a—
oo
N _
From (4.1) we know that / Mdu < oo. Hence the integral is
1 u
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uniformly convergent in ¢ > 1 and therefore the integral is continuous in

o > 1. So we can extend the definition of (p(s) so that

Cpls) = —— +70(s)

and 7¢(s) is continuous in o > 1.

Also for o > 1, (p(s) = —z r1(s) where
* (Np(u) — cu) * (Np(u) — cu)logu
ri(s) =ro(s) = /1 e du- /1 ] du.

Next we show that (p(1+1it) # 0 when ¢ is real and non-zero. Now we make
a crucial observation which is not true if A < %
First note that

00 1-X oo
/ (10g u) du = / vlf)\ef(afl)vdv
2 It

u? og 2

o
= (o — 1)’\_2/ w e du
(c—1)log2

< (0 — 1)7%”

where 6 = §(\) > 0.

Now combining (4.1) and the observation above we get
ri(s) < (o — 1)*%“5.
Consequently if ¢ is fixed and non-zero, then
g 1 6
Cp(o+it) — (p(l+it) = / (pla+it)da < (o —1)27
1

for ¢ > 1 and ¢ near 1. By Euler product formula for ¢ > 1 we have

r(s) =11 <1 - pls> _1-

peP

o0
1
Taking logarithm of both sides, we obtain that log (p(s) = Z Z g
peEP r=1
(As in the proof of Theorem 2.3, the trigonometric polynomial 3 + 4 cos 6 +

cos 20 may not work. So instead of this trigonometric polynomial, we work
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with another non-negative trigonometric polynomial ag+ Z,Ile ay, cos k6 for

which the ratio a;/ag is larger.)

K : 2
1 K
Note that Ag(0) =1+ 2 E <1—Ik() :<s1r'17r 0) > 0.

K\ sinmf
Thus if ¢ > 1 then ,

1 (cpto+ i) R (T3 - atrttospyen))

k=—K peEP r= 1

Now since (p(o —it) = (p(o + it), we have |(p(o —it)| = |(p(o + it)|.

From the observation above we see that

=

))2(1—|k|/1<>‘ -

Assume t # 0 is a fixed real number. As o — 11, |(p(0 + ikt)| tends to

a finite limit for k = 1, .., K. Moreover since (p(0) =< ﬁ, we get that
ICp(o +it)| > (o — 1)K/2HE=1)

as o — 17T,
Now suppose that (p(1+it) = 0. We know that (p(o+it) < (o — 1)%”

Therefore as ¢ — 17 we have

K
(0—1)210 > (¢ — 1)2&-D,

This gives a contradiction if K > 1+ %.
Hence (p(1 + it) # 0 as desired.
]

4.1 Generalized Prime Number Theorem

Now we are ready to prove a generalized version of the prime number theo-

rem. The following theorem was first proved by Beurling in 1937.

Theorem 4.2. Suppose (4.1) where c is some positive constant and X > %
Then we have P(x) ~

x
logz*
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Before proving this heorem, note that this Theorem is really general-
ization of the classical Prime Number Theorem since if P is the set of all
primes then Np(z) = [z] =z + O(1).

Proof. We define Ap(n) = A(n) if n € Np and Ap( ) = 0 otherwise.
One can easily show that P(x) ~ gz AL Yp(x Z Ap(n) ~ x by apply-

n<z
ing Abel’s summation (partial summation) formula.

Moreover note that for o > 1,

i Ap(n) _ (p(s)

n=1 n CP(S)
. Cpls) 1
S
o) a1
where

—ro(s) + (s — 1)r1(s))
(s = 1)¢p(s)

and 7o(s) ,r1(s) are same as in the Theorem 15.

r(s) =

If A > 2 then the functions r(s) and r;i(s) are continuous in o > 1

since from (2) the integral

du < 0.

/°° (Np(u) — cu)logu
1

u2

Therefore r(s) is continuous in ¢ > 1 by Theorem 4.1. Hence by Wiener-

Ikehara Tauberian theorem, we obtain that ¢¥p(x) ~ z and so P(z) ~ ez
From now on we assume % < A<2.

Under this condition we cannot ensure that r1(s) is continuous thus we
cannot guarantee that r(s) is continuous. Thus we benefit from the fact
that 71(s) is bounded in mean-square by Plancherel’s identity (2.15). So we
follow a similar proof of Wiener-Ikehara theorem and we apply Plancherel’s
identity.

Suppose that 6 > 0, that T is a large positive number, and that E(u) is

defined as in Lemma 3.1. Then

Z A(n)n~ —xZA “1=9E(logn — log x)

n<x
nENp
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which by Lemma 3.1 is

<z Z A(n)n~ 70 f, (logn — log x)

neNp
T —2mit
—1-6 e T
< xngV:P A(n)n /T Fa(t) <n> dt
T !
= —x/ ﬁ(t)x—%“ci(l + 6 — 2mit)dt. (4.2)
-7 Cp

Note that, similarly

o) 00 T —2mit
/ w170 f, (logu — log z)du = / y~ 19 / f+(t)(x> dudt
1 1 -T n

T —_ . S .
— / f+ (t)x727mt / u7175+2mtdudt
=T 1

T 2mit 1
= t)x™ T ————dt.
/_T @
We multiply both sides of this by x and combine with (4.2) to see that
Z A(n)n=° < x/ w0 fy (logu — log ) du (4.3)
n<x 1
TLGTVP

T !
+x/ ﬁ(t)x_%it<— C—P(l+5—2m't)—

-T CP (5—27Tit>dt

By using our formula for 7;(s) in terms of integrals we see that we may write

r1(s) =ry(s) = —sJ(s + M)

where
96) = [ (N(w) — cu)log - du
and
~Cp(s) = (5_01)2 _nze ).
Hhus / 1 e(s—1)+(1—25)ro(s) s
SO e T a@®
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and by splitting the integral at €2, where €) is a large parameter , we have

Cp 1
CP() s—1

=C(s) + R(s)

where

R(s) = /Qoo(Np(u) — cu)(logu)u=*"tdu

and C(u) is continuous for o > 1. We consider first contribution of the

remainder R(s) to (4.3). By the Cauchy-Schwartz inequality, we see that

T , 2
‘ / fr@®)x 2™ R(1 + 6 — 2mit)dt
=T

(/. ([,

In Plancherel’s identity (2.15), we take 0 = 1+ § and w(u) = (Np(u) —
cu)logu for u > Q, w(u) = 0 otherwise. Thus we see that

140 —2mit g,
t T
I+ )gp(1 06— 2mit)"

2
U dt).

(4.4)

[ el e
Q

u—2+o—2mit

2 0o
dt:/ (Np(u)—cu)?(logu)?u=2"2du,

‘ / (Np(u)—cu)(log u)u 202 gy
Q Q

which by (4.1) is

oo
< / u (logu)?> 2 du <, (log Q)32
Q

uniformly for § > 0. The first integral on the right-hand side of (4.4) is also
uniformly bounded as 6 — 0, because (p(1 + it) # 0. Thus the contribution
of R(s) to (4.3) is < (log Q)3/2~*, uniformly for § > 0. Therefore if we let
d — 01in (4.2) and divide both sides by z, we obtain that

Yp()

x

[ T )
< / u ' £y (logu—log x)du+/ Fr )z~ 2 C(1=2mit)dt+0, ((log Q)3/27H).
1 -T

Thus as  — oo, the first integral on the right of the above inequality tends
to / f4(v)dv. Also since f+( )C(1 — 2mit) is continuous, by Riemann-

Lebesgue lemma the second integral on the right of the above inequality
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tends to 0 as z — oo. Hence

wz(:c) = /_00 f1(v)dv + Ox((log 2)**74).

lim sup
T—>00
So by Lemma 3.1, we know that the integral on the right is < 1 + € if T is
sufficiently large. Since {2 might also be taken arbitrarily large, we conclude
that

lim sup vr(z)

T—00 x

<1

Similarly using the function f_, we can show that

lim inf Y2 > 1.
T—00 T
Thus we have
Yp(z) ~ .
Hence we have the generalized Prime Number Theorem
x
P(z) ~ :
(z) log

]

So far we have discussed generalized Prime Number Theorem without
an error term. This results from two the following two reasons. The first
reason is that we apply Wiener-Ikehara Tauberian theorem and this theorem
gives just an asymptotic result. The second reason is that, in order to get
an error term in the Prime Number Theorem we need to apply Perron’s
formula, thus we have to work with the function (p(s) in the left side of
the line 0 = 1. However if we assume (4.1) with some A > 0 we cannot
ensure that (p(s) has an analytic continuation to the left of o = 1. Thus we
require better error term in (4.1). If we have Np(z) = cz + O(2?) for some
¢ > 0 and 0 < 1 then we can guarantee at least that (p(s) has an analytic
continuation to ¢ > 6. Applying the same method in the proof of the Prime
Number Theorem with classical error term O(xe*C/\/@), we can prove the

following Theorem.

Theorem 4.3. Suppose we have
Np(z) = cx + O(z?)
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for some ¢ > 0 and 6 < 1. Then we have P(x) = Li(z) + O(ze=¢VI8?) for

some constant ¢ > 0.

4.2 Mobius Function over Semi-Groups

Now we define the Mobius function over a semi-group on integers and we
discuss when the partial sums of the Mobius function over a semi-group has

a cancelation.

Define Mp(z) = Z u(n) = Z,up(n), where pp(n) = pu(n) if n € Np
n<x n<x
nEWP -

and pp(n) = 0 otherwise. Then observe that, for o > 1 we have

o~ pp(n) 1
ns Cp(s)

n=1

Since the Dirichlet series of p1p(n) only depends on (p(s) and not on (p(s),
we expect that it is easier to work with Mp(x). Indeed this is the case and
compared to the Theorem 4.2 ;| proving Mp(x) = o(z) under the condition

(4.1) is much easier.
Theorem 4.4. Suppose (4.1) with X > 3/2. Then we have Mp(x) = o(x).

Proof. Since we have (4.1) with A > 3/2, by Theorem 4.1 the function (p(s)

does not vanish on the line ¢ = 1. Thus the Dirichlet series

o) = 3 H G+

n=1
neNp
is analytic in o > 1 and a(s) — ;% extends to a continuous function in the
closed half-plane ¢ > 1. Hence by Wiener-lIkehara Tauberian theorem we
obtain that Np(x) + Mp(x) ~ cx and so Mp(z) = o(x).
]
In the previous chapter we showed that Prime Number Theorem is equiv-
alent to M(z) = o(x). In fact by mimicking the proof of the Theorem 4.2,

we can prove the following Theorem.

Theorem 4.5. Suppose we have (4.1) with A > 3/2. Then P(z) ~ o iff
Mp(x) = o(x).
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Remarks: Zhang show that (see [34]) if (4.1) holds with A > 1 then it is
still true that Mp(x) = o(x). This is a bit surprising compared to the classi-
cal case w(x) ~ x/logx iff M(z) = o(x), because when 1 < A < 3/2, Prime
Number Theorem may fail (see [13]) but we can still have Mp(z) = o(z).
Thus it seems that partial sums of the Mobius function have a tendency
to make a cancelation on semi-groups that even have not very much prime
numbers. Based on this observation in the next chapter we discuss the Mo-
bius function supported on a semi-group of integers and we give quantiative
upper bounds for partial sums of the Mobius function supported on a semi-
group. The next chapter is the main part of my thesis and it is a joint work
with Emre Alkan.
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5 Sums over the Mobius function and discrepancy

of fractions

In this chapter we obtain quantitative upper bounds on partial sums of the
Mobius function over semigroups of integers in an arithmetic progression.
Exploiting the cancelation of such sums, we deduce upper bounds for the
discrepancy of fractions in the unit interval [0, 1] whose denominators satisfy
the same restrictions. In particular, the uniform distribution and approxi-
mation of discrete weighted averages of such fractions are established as a

consequence.

5.1 Introduction

Let p(n) be the Mobius function. Estimating the size of the partial sum

M(z) =) p(n)

n<x

received continuous attention for a long time in the literature since for any
fixed but arbitrary e > 0, the collection of estimates M (z) <. 23 s
known to be equivalent to the Riemann hypothesis. Current unconditional
estimates on M (x) are far from being as satisfactory as the conditional ones,

and the best such result is of form

M(z) < zexp (_C(log:v)5>

(log log x)%

for some constant C' > 0. This estimate is deduced from the strongest zero-
free region for the Riemann zeta function due to Vinogradov and Korobov
[23], [33]. Even the weaker estimate M (x) = o(x) is equivalent to the prime
number theorem and this equivalence is proved in any introductory course
of analytic number theory. For detailed accounts of deeper connections
between M (z) and the distribution of zeros of the Riemann zeta function,
we refer the reader to [12], [31]. Our main concern in this section is to obtain
cancelation for partial sums of the M6bius function when n < x ranges over

certain semigroups of integers. Precisely, if P is a set of primes, then the
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semigroup generated by all primes in P is the set
k
(P) = Hp;j :k>1,a;>0,pjeP
j=1

Alternatively, if B is the set of all primes not in P, then (P) can be viewed
as the set of all remaining integers after sieving by the primes in B. The
asymptotic theory of such semigroups were first investigated by Beurling [8]
(although the original motivation can be traced back to the work of Landau
[24] on the number of prime ideals in algebraic number fields whose norms are
< x) who proved a vast generalization of the prime number theorem valid
for such semigroups (see also [22] for a nice exposition of many different
aspects of the theory). In particular, if Np(x) and P(z) are the counting
functions of (P) and P respectively, then Beurling proved that

Np(x) = cx + 0 <(logxx)>‘>

with constants ¢ > 0 and \ > % implies the asymptotic P(z) ~

connection with this paper, disproving a conjecture of Hall [19] and devel-

T

ez In
ogx

oping a variant of the Haldsz-Wirsing method, Zhang [34] has particularly

shown, among other things, that if

Np(z) =cz+ O (@)

holds with constants ¢ > 0 and A > 1, then

S aln) = ofa)

n<z

ne(P)
This is a surprising phenomenon for such Mobius sums since, unlike the
classical case, the corresponding prime number theorem is not in general
true when 1 < A < % Motivated by Zhang’s result, we give quantitative
cancelations for partial sums of the Mobius function over integers in (P)

that are in a given arithmetic progression.
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Theorem 5.1. Let B be a set of primes such that

B = <z : B

(z)=#{p<z : pe }<<(log:n))‘
with 1 < X < 2. Let P be the set of all primes that are not in B and denote
by (P), the set of integers all of whose prime factors are in P. Then for any
fized k > 1, (b,k) =1 and x > 2, we have

Mppp(x) = Z u(n) = Ok, ((logxx)/\—l> ’

n<x
ne(P)
n=b (mod k)

where the implied constant depends only on k and B. Moreover, if B(x) <

log%w, then for (b,k) =1 and x > 3

xloglog x
M = = [ ——— .
Pk(2) ) u(n) = Ok B ( log = >

n<x
ne(P)
n=b (mod k)

Finally, if B(z) < m with A > 2, then for (b,k) =1 and x > 2

log

Mpypi(z) = Z pu(n) = OB ( - > .

n<x
ne(P)
n=b (mod k)

Some remarks are now in order. First of all, the trivial estimate gives
IMppr(x) <#{n<z : ne(P), n=>b (modk)},

and it is possible to show by a similar reasoning as in the proof of Lemma
5.6 below that the set of all n € (P) with n =b (mod k) has positive lower
density. This justifies the cancelation obtained for Mpy ;(x) in Theorem

5.1. Moreover, by the result of Beurling [8], the estimate

Np(z) =cz+ O (@)
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with ¢ > 0 and A > % implies that

P(z)=n(z)+o (10;,») ,

B(z) :0(10295)

follows. Therefore, the sieve conditions B(x) <

and

(Tog )A with A > 1, used in
Theorem 5.1 are compatible with this consequence. Our method for proving
Theorem 5.1 is indeed flexible and in addition we can even obtain similar
cancelation for Mpy i (z) over arithmetic progressions with large moduli,

namely when k is allowed to grow with z.

Theorem 5.2. Let B and P be complementary sets of primes as in Theorem
5.1. Assuming B(x) < (Tos )A with 1 < A< 2 and 1 < k <logx, we have
for (b,k) =1 and x > e that

n<x
ne(P)
n=b (mod k)

Here the implied constant depends only on B. Moreover, assuming B(x) <
log%z and 1 < k <logz, we have for (b,k) =1 and x > 3 that

z loglog x
Mepae) = X un) = 0p (THECET)

n<x
ne(P)
n=b (mod k)

Finally, assuming B(zr) < (Tos )k with A > 2 and 1 < k < logx, we have
for (b,k) =1 and x > e that

Mpyi(z)= Y un)=0g (10295)'

n<x
ne(P)
n=b (mod k)

Note that, because of the trivial estimate Mpy ,(x) = O (%), only under the

conditions k = o ((logz)*™1), o <1olg°ﬁ)§x , o(log ), nontrivial cancelation

is obtained in Theorem 5.2. It is possible to make interesting choices for
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the set B above. As a consequence of Selberg’s A2 sieve [28], the number of
x
log?
as the set of twin primes in Theorems 5.1 and 5.2.

For @ > 1, let §g denote the Farey fractions of order @ in the unit

interval [0, 1]. It is well known that

twin primes that are < z is < Therefore, one could possibly take B

P

3@

77-[-2

Sal = N(Q) +0(Qlog Q).

For 0 < a < 1, let M(«, Q) be the number of Farey fractions of order @
that are < o. Then the local discrepancy of §¢ at « is defined by

Mo,
e =gy o]

The average behavior of the moments of the local discrepancy is a central
problem since Franel [18] and Landau [25] showed that the Riemann hy-

pothesis is equivalent to both of the estimates

N Q) NQ) 1
> Ry () = 0 (@) and ) Ry(g)(7j) = Oc (Q§+€>
J=1 j=1

for every € > 0, where é =7 < 72 < .. <IN = 1 are the Farey
fractions of order () in increasing order. In another direction, Erdos, Kac,
Van Kampen and Wintner [16] proved that §¢ is uniformly distributed as
Q — o0, namely that Ry(g)(a) — 0 as Q@ — oo for all 0 < a < 1. This
shows that the absolute discrepancy of §g which is defined as

Dy@)(Sq) = sup Ryg)(a)
0<a<l1
tends to 0 as @ — oo. In [5] anf [6], the authors focused on the effect of ad-
dition of Farey fractions and addition of torsion points on elliptic curves to
pair correlation measures. In recent years there has been increasing interest
for the distribution of subsets of g that are defined by certain sieve condi-
tions on the denominators of the fractions. Boca, Cobeli and Zaharescu [9]
and Haynes [20] studied the distribution of fractions with odd denominators.

Then Haynes [21] extended his results to fractions whose denominators are
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not divisible by a fixed prime p. Let B be a set of primes such that

Zpla<oo

pEB

for some o < 1. For a given modulus k, let §q x5 be the set of all Farey
fractions % of order @ such that ¢ = b (mod k), (b,k) = 1 and ¢ is not
divisible by any prime in B. Let

DNQ,b,k,B (SQ,b,k,B) = Ssup RNQ,b,k,B ()
0<a<l

be the absolute discrepancy, where similarly as above

M(a,Q,b,k, B)
RNQ,b,k,B (a) = Novrs -«

is the local discrepancy with Ngyrp = |$0pk 5| and M(a,Q,b,k,B) =
150,668 N[0, ]| It is proved in [4] that

1
DNQ,b,k,B (SQ,b,k,B) = av

where the implied constants depend only on k£ and B. The condition

> <o

peEB p

with ¢ < 1 was essential in [4] since the required estimates for Mpy, ()

depended on an application of Perron’s formula and a contour integral type

argument. Our approach here differs from that of [4] in the respect that

we give upper bounds on the absolute discrepancy of §¢ 5« B even for large
z

modulus k& assuming weaker sieve conditions such as B(z) < Toa o™ with

A > 1. Note that under such an assumption one can only deduce

1
S <o, (5.1)
peEB p
and therefore one can not use the approach of [4] to handle such conditions.
We remark that the distribution of integers subject to (5.1) was first studied
by Erdos [15]. Applications of (5.1) to the non-vanishing of Fourier coeffi-

cients of modular forms are given in [1]-[3]. Armed with Theorem 5.1 and
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Theorem 5.2 above, we are able to deduce the following consequences for

the absolute discrepancy.

Corollary 5.3. If B(z) < m with 1 < X < 2, then for all Q > 2 with

Nobip > 1 and (byk) =1, we have

(log Q)2‘A> |

DNQ,b,k,B (3Q,b,k,3) = OB < 0

where the implied constant depends only on k and B. If B(z) < bg%’ then
for all Q > 3 with Ngy g > 1 and (b, k) = 1, we have

Dng b5 (SQpkB) = Ok,B (Wégw) ,
If B(z) < oy with A > 2, then for all Q > 3 with Noyxp > 1 and
(b, k) = 1, we have
DNy s (SQukB) = OkB <10g1£2)gQ> .
Corollary 5.4. If B(z) < —2— with 1 < X\ < 2, then for all 1 < k <

(log z)*
(logQ)?>*, Q > 3 with Ngprp > 1 and (b, k) = 1, we have

k(log Q)QA) ’

DNQ,b,k,B (SQ,b,k,B) = OB ( Q

where the implied constant depends only on B. If B(z) < logi%’ then for all
1 <k < (loglogQ)?, Q > 16 > € with Ngprp > 1 and (b,k) =1, we have

k(loglog Q)2>
— 0o )

If B(z) < m with X > 2, then for all 1 < k <loglog@, Q > 16 > ¢°

with Ngp kg > 1 and (b, k) =1, we have

DNQ,b,k,B (SQ,b,k,B) = Op (

kloglo
Doy (Squks) =08 <ggQ> ‘

Q

Note that as an immediate consequence of the discrepancy estimates in
the above results, we see that the sets of fractions §¢gpx p are uniformly

distributed. Indeed, even under the condition (5.1), using Lemma 5.6 below
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and the trivial estimate on Mobius sums, one can again deduce the uniform
distribution of §g s but the corresponding discrepancy estimate would
not be as good as above. To mention a further application, let f be a
function of bounded variation V' (f) on [0,1]. Then by Koksma’s inequality,

we see that

1

1
Nowks Z flaj) _/0 f@) dt| <V(f)DnNgoyrr (SQbk.B)-

T;€5Q,b,k,B

Consequently, using our estimates on D, , , 5 (8Q.b,k,B), it is possible to ap-
proximate discrete weighted averages over §¢ p k.5 by the Riemann-Stieltjes
integral on [0, 1] of the weight function f with error tending to zero as a
function of @, k and B as @) tends to infinity.

5.2 Preliminaries
We will need the following lemmas for the proof of our results.
Lemma 5.5. For any nonnegative real number A\ and x > 2, define
A(n)
Si(x) = _
é n(1+ log(%))A

where A(n) is the Von-Mangoldt function. If X > 1, then for x > 2, S\(x) =
O\(1), where the implied constant depends only on A. If A\ = 1, then for
x > 3, Si(x) = O(loglogz). If 0 < X\ < 1, then for x > 2, S\(x) =
Ox((log z)'=).

Proof. First of all note that

SN®) =D T @)

n<x
logp log p
) P I 62
EARRY m T \\A
2 p(T+log(2)) 2= p(1+log())
m>2
Clearly, we have
log p logp
z < < 00. (5.3)
pmz; p™ (1 +log(57))* zp: pp—1)
m>2

o1



Combining (5.2) and (5.3), we see that

Si0) =3 p<1+kiif(x))k +o(). (5.4)
p

Next for x > 2, consider an e-adic division of the interval (1, z] into intervals

of form (5, %] with 1 < s < [log z]+1. Using Mertens’ estimate, we obtain

1
. = (e (Gs

)+o) - (1og( ) +o) = o).

Also assuming 2% < p < =%, one has

$ < (1 +log (Z))A (5.6)

for any A\ > 0. From (5.5) and (5.6), we may deduce that

log p 1 log p 1
_ < — — 5.7
S aerosch XMl e

E<p<Er s<p<Z4

—es—1

where the implied constant is absolute. It follows from (5.7) that

log p log p 1
Z EC Z Z oy S Z Y
p<z p(l + log(p)) s<[log z]+1 % s <p<- = (1 + log(p)) s<[log z]+1 5

(5.8)
Note that if A > 1, then for x > 2,

S
s<[log z]+1

Therefore, combining (5.4) and (5.8), S\(z) = Ox(1) follows in this case,
where the implied constant depends only on A. If A = 1, then

Z % = O(loglog x)

s<[log z]+1

and Si(xz) = O(loglog z) follows from (5.4) and (5.8), when = > 3 (so that
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loglogx > 0). Finally, if 0 < A < 1, then

S <y /mogz L1 (4 10g2) > — 1) = 0y ((log 2)'Y)
A p eI g% = Oallog )™ 7).
s<[log z]+1

Consequently, S)(z) = O, ((logz)'~*) follows again from (5.4) and (5.8)
when x > 2. This completes the proof of Lemma 5.5. =

Lemma 5.6. Assume that B is a set of primes satisfying

Z;<oo.

peEB

Let §g 1,8 be the set of all Farey fractions % of order Q such that ¢ = b
(mod k), (b,k) =1 and q is not divisible by any prime in B. Let f(Q) be a
monotonically increasing function such that f(Q) = O(log Q) for all Q > 2.

If1 <k < f(Q) and Nk, = [SQb.k,B|, then

1 k
—on
Nov kB b <Q2>

for all Q@ > 2 with Ngy . > 1, where the implied constant depends only on
B.

Proof. Let P be the set of primes not in B. Clearly, we have

a
Now kB =# { €JQpkB:q€(P),g=b (mod k‘)} = Z ©(q)-
q q<Q
¢=b (mod k)
qE€(P)

We remark that since B has density zero in the set of primes, the conditions

=b (mod k) and g € (P) are not degenerate. In fact, there are infinitely
many primes g € (P) such that ¢ = b (mod k) (their density being ﬁ in
the set of primes by the Siegel-Walfisz theorem (see [12]) when 1 < k& < f(Q)
and f(Q) = O(logQ)). Let p1,p2,...,ps be the first s primes in B. Then

we have

> vl > > w(q) — > w(q).

<@ q<Q q<Q
g=b (mod k) ¢=b (mod k) g=b (mod k)
qe(P) (¢,pj)=1 for all j<s ¢=0 (mod p;) for some j>s

(5.9)
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Using the Inclusion-Exclusion principle, the main term on the right side of

(5.9) can be written as

dYEnHE YT p(a), (5.10)

K q<Q

¢=b (mod k)

=0 (mod d.)
where k runs over all subsets of {1,2,...,s} and d, = Hjeﬁpj (empty prod-
ucts are assumed to be 1). We may assume that (k, d,) = 1, since otherwise
there are no integers ¢ satisfying ¢ = b (mod k) and ¢ =0 (mod d,;). There-
fore, by the Chinese Remainder theorem, the congruences ¢ = b (mod k)
and ¢ = 0 (mod d) reduce to ¢ = u (mod kd,;) for a suitable u. Using

these observations, one obtains

Yooel= D> elg=)_pd D r (511)

b q(SQ d k) %SQd ked,) =0 r<g
g=b (mo g=u (mo o _
q=0 (mod dy) dr=u (mod kd)

Define
N(u,d,k,dy) = #{1 <r <kd,:dr=u (mod kdy)}.

Assume that r = r; (mod kdy), 1 < j < N(u,d, k,d,) are all solutions of
the congruence dr = u (mod kdy). It follows that

DS S o (12
T‘S% 1S]§N(u7d1k7dﬁ) T‘S%
dr=u (mod kdy) r=r; (mod kdy)
It is elementary to estimate the inner sum on the right side of (5.12) and we

obtain

@ Q
> "= PR +0 <d> + O(kd,), (5.13)

T‘S%
r=r; (mod kdy)

where the implied constants in (5.13) are absolute. Therefore, (5.12) and
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(5.13) give

S = (
<@ 1< <N (u,d,k,dy)
dr=u (mod kd)

2d§1:dn +0 (3) + O(kd,.;)> (5.14)

N K 2 K
_ N(u,d k,do)Q +O(kd Q

2 52
2d4%kd,, d ) Ok dy),

where the trivial bound N(u,d, k,d,) < kd, is used. Using (5.14) on the
right side of (5.11), we see that

u K 2 K
> el = St (MRS o (MDY o)

9<Q d=Q
g=b (mod k)
g=0 (mod d.)
(5.15)
Q> 3 pAN dikde) G0 0log Q) + O(K2A2Q)
2kd, d? e K
<Q
2 oo
2% u(d)N(TZ{Zda B:4e) | 0lkduQlog Q) + O(K2A2Q),

since

iz >
d=1
and
w(d)N (u,d, k,dy) kd,.
Z 2 =0 :
d Q
d>Q

Finally, gathering (5.10) and (5.15), we may rewrite the main term as

2
S (- (W T+ O(kdLQlog Q) + 0(k2d2Q>> (5.16)

2
- iz(_l)lﬁw +O(2°Pik Qlog Q) + O(2°PIKQ),

where
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Next we show that

o M(u,k,dy)
}:(_1y|4448244,

is bounded below by a positive constant depending only on B. Recall that
N(u,d,k,d) counts the number of solutions of the congruence dr = u
(mod kdy) or equivalently the number of solutions of the system dr = b
(mod k) and dr = 0 (mod d). If (d,k) > 1, then (b, k) > 1 so that there
are no solutions and N(u,d,k,d,) = 0 in this case. If (d,k) = 1, then
r=bd~' (mod k) and r = 0 (mod (ddT)) give that N(u,d, k,d.) = (d,d,)
(again assuming (k,d,) = 1). Clearly, N(u,d, k,d,) is a multiplicative func-

tion of d and one can write M (u, k,d,) as an Euler product. Precisely, we

have
 u(d)N (u,d, k,dy) N(u,p,k,dy)
M(u,k,de) = = =] (1- — (5.17)
d=1 p
(ps dn)) 6 p < 1 >_1
1;[ < p? m? pl;l[ p+1 g p?
(p,k)=1

when (k,d,) = 1. Note that if (k,ds) > 1, then N(u,d,k,d;) = 0 for all
d>1 and M (u,k,d,) = 0. Consequently, using (5.17), we see that

A M(uk,dy) M (u, k, dy)
;(—1)' '7% = > '761& (5.18)

K
(k,di)=1

1

:% k<1_1712>—1 2 (_;:lﬂl 11 pt1

D (kydw)=1 plds plds

6 1\' . 1
ll(-5) X eIl

7 (k) =1 Bl
6 1\ ! 1
s <1_p2) 11 <1_p-+1>
plk 1<j<s J
(pj,k‘)=1
6 1
> — H <1 - 1).
T 1g<s pj+
(pj,k)=1
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Note that since

we have

As a result of (5.18), one can deduce that

Z(—1)|”'W > COp = %H (1 - ler1) >0, (5.19)

K peB

where the positive constant on the right side of (5.19) depends only on B.
Combining (5.10), (5.16) and (5.19), we obtain that the main term on the
right side of (5.9) is

2
S CaQ
- 2k

+ O(2°Psk Qlog Q) + O(2° P2E%Q). (5.20)

It remains to treat the error term on the right side of (5.9). Again we may
assume that (k,p;) = 1, since otherwise there are no integers ¢ satisfying
g=b (mod k) and ¢ =0 (mod p;) for some j > s. If (k,p;) = 1, then these
congruences reduce to ¢ = v; (mod kp;) for a suitable v;. We also assume
that p; < @, since otherwise there are no integers ¢ with ¢ < @ and ¢ =0

(mod pj). In this way one obtains

> p(g) < > q (5.21)

q<Q q<Q

g=b (mod k) g=v; (mod kp;) for some j>s
¢=0 (mod p;) for some j>s and p; <Q
and p; <Q

2
QY (g rom) T Lroley
> Pi j>s P P<Q
Pix

Since

Z;<oo,

peEB
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B has density zero in the set of primes and consequently

2 1_0<IOSQ>

pi<Q

follows. Choose s large enough to satisfy

1 Cp
Z*<7

Dy

Therefore, the right side of (5.21) is

CpQ? Q?
<=2 +o <1ogQ>' (5.22)

Putting the estimates (5.20) and (5.22) into (5.9), we deduce that

C 2 2
Nowen= Y o)z L4 (ki Q)+0(25P5k Qlog Q)+0(2° PK*Q).
<
q=b q(n?od k)
q€(P)

(5.23)
Finally, using the fact that 1 < k < f(Q) = O(log @), we obtain from (5.23)

that ) L
—0n| =
NQvkB B <Q2)

for all Q > 2 with Ng g > 1, where implied constant depends only on B.

This completes the proof of Lemma 5.6. =
As was remarked above, replacing ¢(¢q) by 1 and repeating the proof of

Lemma 5.6, one can show that

Z 1>>B%.

n<x
ne(P)
n=b (mod k)

5.3 Proof of Theorem 5.1

Proof. For k > 1, let

- (2

dln
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be the generalized Von-Mangoldt function of order k. Ay is supported on in-
tegers having at most k prime factors. In particular, the connection between

the classical Von-Mangoldt function Ay = A and As via Selberg’s formula

As(n) = A(n)logn + 3 A(d)A (%)

dn

served as the starting point of the first elementary proofs of the Prime
Number Theorem by Erdds [14] and Selberg [29]. The importance of the
class of functions Ay for & > 2 was fully realized later by the work of Bombieri

[11] who obtained, among other things, the asymptotic behavior of sums of

> anhg(n)

n<x

the form

under an average assumption on the remainders arising from the distribu-
tion of the sequence {a,} for all ¥, v < 1. Bombieri [10] then deduced
strong estimates for the number of twin almost-primes. Extreme examples
pertaining to the limitations of such asymptotics were constructed by Ford
[17]. The basic idea behind the proof of Theorem 5.1 is to exploit a simi-
lar connection between A and A, supported on Beurling type integers. To
this end, let B and P be complementary sets of primes and let up be the
Mébius function supported on (P), so that up(n) = wu(n) when n € (P)

and pp(n) = 0 otherwise. It is easy to see that Z,up(d) = 0 when n has
dln
a prime divisor in P and Z,up(d) = 1 when n has no prime divisors in
dn
P. Similarly, let Ap(n) be the Von-Mangoldt function supported on (P), so

that Ap(n) =logp if n = p™, m > 1 with p € P and Ap(n) = 0 otherwise.
Then we have the identity

> Ap(d) =logs(n), (5.24)

din

where s(n) € (P) is the largest such divisor of n. It follows from (5.24) that

Z,u logs< >:logs(n)2u Z,u )logs(d) (5.25)

din dln din
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= —Z,u )log s(d

din
Next we introduce the generalized Von-Mangoldt function of order 2 on P

as

Ao p(n ZM ) log? 5( ) (5.26)

dln

Expanding the right side of (5.26) and using (5.25), we arrive at the identity

Ao p(n) = log? s( Z,u —210gs(n)z,u(d) log s(d —|—Z,u ) log? s(

dn din dn
(5.27)
=2Ap(n)logs(n —&—Z,u )log? 5(d
Consequently, rewriting (5.27), we have
Z u(d) log? s(d) = Ay p(n) — 2Ap(n)log s(n). (5.28)
Thus one obtains
n
u(n)log? s(n) = > u(d) Fr (3), (5.29)
din
where
Fp(n) := Ay p(n) — 2Ap(n)log s(n). (5.30)

In particular, if n € (P), then s(n) = n so that

u(m)log?n = 3 u(d)Fr (%)

dln

follows from (5.29) with

£ (3) = (3) 200 (o (3)
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Let x be a Dirichlet character modulo k. Multiplying both sides of (5.29)

by x(n) and summing over all n < z with n € (P), we deduce that

> x(mpp(n)log’n =Y x(n)>_ u(d)Fp (%)
dln

" nelP)
= 3 x@ud) Y x(m)Fp(m)
d<z m< g
de(P) me(P)
S et (),
n<lz

where

Spx(r) = Y x(n) (Ag,p(n) — 2Ap(n)logn).

n<

nE(Igg>
Moreover, if n € (P), then

Ao p(n Zu ) log® S() ZM 10%() As(n)

dln
and Ap(n) = A(n). Therefore, (5.32) can be written as
Sea() = 37 x(n) (As(n) — 2A(n) logn).
nlx
ne_(P>
Using Selberg’s formula, (5.34) reduces to
Spx(z) = Z x(n)(A*xA)(n) — Z x(n)A(n)logn,
n<x n<x

ne(P) ne(P)

where

(AxA)(n) = 3 A(d) ( )

dln

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

is the convolution of A with itself. We estimate both sums on the right side

of (5.35). Assume that
T

B(.’B) < W
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with 1 < A < 2. Note that

Y x()Am) =) x()A(n) = Y x(n)An). (5.37)

n<x n<x n<z

ne(p) ng(P)

Since A(n) is supported only at prime powers, we see that if n ¢ (P) and

A(n) # 0, then n = p™ for some p € B and m > 1. Consequently,

> x(mAm) = x(p)logp+ > x(p)logp. (5.38)

n<w p<z p" <z
ng(P) pEB m>2
peEB

It is easy to see that

> x(p)logp = O(Vx), (5.39)
Py
pEB

with an absolute implied constant. Moreover, using (5.36), one obtains

X
> x(p)logp=0 [ logp | =05 <_> ; (5.40)
p<z p<z (Ing)/\ :
pEB pEB

where the implied constant depends only on B. Combining (5.38), (5.39)
and (5.40), we have

> x(n)A(n) = 0p (Wx)“) — Op <(1+10;)“> (5.41)

n<x

né(P)

for all x > 2. It follows from (5.37) and (5.41) that

52 XA = (w0 + 08 (g ) (5.42)
ne_(P)

for x > 2, where

Pz, x) =Y _ x(n)A(n). (5.43)

n<x

Such sums as in (5.43) are naturally encountered in the proof of the prime

number theorem over arithmetic progressions. We need to distinguish two
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cases here. If x is non-principal and the modulus k is fixed, then it is known
that (see [12])
Y(x,x) =0 (:Ee_cl v logz) (5.44)

for some constant ¢; > 0 and all large x in terms of k, where the implied

constant is absolute (it turns out that a much weaker estimate such as

¥(z,x) =0 (10;,)

would also suffice for our purposes). Combining (5.42) and (5.44), we deduce
that

> x(n)A(n) = O ((1+lozx)H> (5.45)

ne(P)

for x > 2. It follows from (5.45) that

> x(n)A(n)logn = Oy p(x(log z)*~) (5.46)

for x > 2. Moreover, we have

> XA = 3 D ADA(5) = D x(@A@) Y x(m)Am).

n<zc n<lz din d<z mgg
ne(P) ne(P) de(P) me(P)
(5.47)

To estimate the inner sum on the right of (5.47), we obtain, using (5.45),
that

> x(m)A(m) = O p (d(l Tlog (‘2))“> (5.48)

m<%
mée(P)

when d < 5. Clearly,

Z x(d)A(d) Z x(m)A(m) =0 (5.49)
i e
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holds for any character y modulo k. Using (5.48) and (5.49) on the right
side of (5.47), we see that

n<x d<Zz d
ne(P)

> x()(AxA)(n) = Ok (xz 1—|—log E)) 1). (5.50)

Since 0 < A — 1 < 1, one can apply Lemma 5.5 to get

d; d(1 + lﬁéd()fdc))/\—l = Ox ((log fv)H) =03 ((logx)H) . (5.51)

since dependence of the implied constant on A can be viewed as dependence
on B. Combining (5.50) and (5.51), we deduce that

Z X(n)(AxA)(n) = O (m(log :(:)2_)‘> (5.52)

for z > 2. Gathering (5.35), (5.46) and (5.52), one has

Spy(z) = OB (ar(log ;17)2*)‘> (5.53)

for z > 2. Using now (5.31), (5.53) and the fact

o () -0

When < n < x, one obtains that

Z x(n n)log?n = Z x(n)up(n)Spy (%) (5.54)
= OB (:r(log:n)Q)‘Z ;)

= OB (:c(log :c)?’*)‘) .

Applying Abel’s summation to (5.54), we have

3 X ) = O gy ) <0 [ g ) =0 (g

n<x
(5.55)
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since

I, e =0 (o)

with an absolute implied constant. Let us now assume that y is the principal

character modulo k. Then
Y(z,x) =2+ 0 (xefcl v logx) (5.56)

for all large x in terms of k, where the implied constant is absolute. Conse-

quently, one obtains

S ) =2+ O (et (5.57)

n<x
ne(P)

for x > 2. By Abel’s summation on (5.57), we see that

Tt+ R(t
Z x(n)A(n)logn = xlog z+Oy (x(logx)g_k) —/ +t()dt’ (5.58)
n<x 2
ne?P)
where .
R(t) =0 —
=005 (g
for t > 2. It is now easy to see that
Tt+ R(t
/ +t<> dt = Oy, 5(2). (5.59)
2
Combining (5.58) and (5.59), we deduce that
Z x(n)A(n)logn = xlogx + O B (:c(log :c)2_A) (5.60)
n<x
ne(P)
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for z > 2. Using (5.49), (5.57) and Lemma 5.5, we have

> x(m)(AxA)(n) = > x(dAd) > x(m)A(m) (5.61)
nglg dde§<1§>> nTESUg)

d)A(d Ad
R T e re)

<%
de(P)
=7 x(d)A(d + OB <m(logm)2 >‘>
d
<t
de(P)

It follows, by Abel’s summation on (5.57), that

d<z
de(P)

where

for t > 2. Therefore, we have

|5 at=oun ([ o @) = 0us (g2 ) 569

for z > 2. Combining (5.62) and (5.63), one obtains

3 X(d)dA(d) =logz + Oy 5 ((log m)”) : (5.64)
by

Replacing by $ and gathering (5.61) and (5.64), we see that

Z x(n)(AxA)(n) =xlogz + OB (x(log x)Q_)‘) . (5.65)

From (5.35), (5.60) and (5.64), we again have

Spy(z) = OB (ar(log x)2*)‘>
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for x > 2, when x is the principal character modulo k. Consequently as

above, we obtain

> x(n)up(n) = Orp ((bgi)A1> (5.66)

for > 2. Lastly, using (5.55) and (5.66), we deduce that

1 _ T
S ) = g 07 S x(mne(n) = O (o)

nlx nlx
ne(P)
n=b (mod k)
for x > 2. If B(z) < log%m, then by a similar argument as above, using
Lemma 5.5 with A =1 to get S1(z) = O(loglog x), we see for any Dirichlet
character y modulo k£ that

Spy(x) = Oy g(xloglogx)

with > 3. Noting that Sp, (&) = O(1), when § < n < z, one may deduce
that

Z x(n)up(n) = OB (xll(fgl(;gx) (5.67)

n<x

for z > 3. It follows from (5.67) that

z loglog x
S )= 0 (1582)
ogx

n<x
ne(P)
n=b (mod k)

for x > 3. Finally, if B(z) < m with A > 2, then using Lemma 5.5

with A —1 > 1 and S)(z) = Ox(1), we obtain for any Dirichlet character x
modulo k that Sp, (z) = Op(z) with z > 2. It follows as above that

Z w(n) = OB (1023:)

n<x
ne(P)
n=b (mod k)

for x > 2. This completes the proof of Theorem 5.1.
]
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5.4 Proof of Theorem 5.2

Proof of Theorem 5.2 is similar to the proof of Theorem 5.1, the only sig-
nificant modification is needed for obtaining the required uniformity for the
modulus k£ of the arithmetic progression and this is accomplished easily as
a consequence of the Siegel-Walfisz theorem (see [12]). Precisely, if x is a
Dirichlet character modulo k and 1 < k < (logz)4, where A is a positive

constant, then there exists a constant ¢; > 0 such that

U@, x) =Y x(n)A(n) = O(ze~*VIE") (5.68)
n<x
holds with an absolute implied constant when  is non-principal and =z >

xo(A). If x is principal, then
(@, X) = o+ Oe~1VI%ET) (5.69)

holds when xz > z(A). Taking A = 1 and using our assumption 1 < k <
log z (note that this forces x > e), we can see that (5.68) and (5.69) hold
for © > x0(1), where z¢(1) is an absolute constant. Therefore, the required
estimates for Mpy, ,(z) can be obtained similarly as in the proof of Theorem
5.1 for x > xo(1), where the implied constants depend only on B. But
obviously, by adjusting the constants depending on B, these estimates also

hold for smaller values of x as well. O

5.5 Proof of Corollary 5.3

First of all, observing that

M(e,Q,b,k,B)= > #{1<a<agq: (a,q) =1},

q<Q
qe(P)
¢=b (mod k)
we have
M(Oé, QJ b7 k? B)_aNQ,b,k,B = Z (#{1 <a< aq (a’7 q) = ].}—OZQD(Q))
9<Q
qE(P)
g=b (mod k)
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- T Z Dot - B S ([5]-5)

a<Q 1<a<ag mla m|q 9<Q mlq
qe(P) m|q q€(P)
g=b (mod k) g=b (mod k)
== > Yu(Iemp== 3 {am} X uw,
Sh nelP) s
c me B
quq (mod k) (m,k)=1 nelk)

n=m~1b (mod k)

1

where mm™" =1 (mod k) and {x} = = — [z] is the fractional part of x. It

follows that

|M(a, Q. b, k, B) S ’ 3 u(n)’ - ’Mpm . <g> '
m<Q ore] m=Q
me(P) LS me(P)

ne(P)

(m.k)=1 n=m~1b (mod k)

(m,k)=1

Assuming B(z) < m with 1 < A < 2 and using Theorem 5.1, it is easy
to see that

1
Mp p-1p(2) = Ok, T
bk C;(l+logd)>‘ 1

for x > 1. Therefore, we obtain

1

B) - < (1 +1logd1
|M (v, @, b, k, B) — aNQ b k.8l C’“BZZ (1 + logd)*1

m<Q d<

1 1 _
—CkBZW Z 1<CkBQZm Ok,B (Q(logQ)2 /\)

d<Q m<Q

for any @ > 2, where C}, p > 0 is a constant depending only on k and B. If
Ngpk,B = 1, then using Lemma 5.6, we see that

= OB ((log 8)2_A>

M(a,Q,b,k, B)
R a) = —«
Nouss( NQbkB

holds uniformly in a. Taking supremum over all « € [0, 1],

(log Q)z‘A>

Dng s (8QokB) = Okp ( 0
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follows for any () > 2 with Ng 4,3 > 1. The proofs of the other statements

in Corollary 5.3 are entirely similar. Therefore, we omit the details. O

5.6 Proof of Corollary 5.4

Assume that B(z) < m with 1 < A <2and 1 <k < (log@Q)?>~*. We

again have, for any « € [0, 1], that

Q
‘M(a7Q7b7k7B) - aNQ,b,k,B| < Z ’MP,m_lb,k’ (m : (570)
m<Q
me(P)
(m,k)=1
Split the range of the sum on the right side of (5.70) taking into account the
m’s that are close to (. Note that if

Q

ms e(log Q)27

then 1 < k < (log Q)*>~* < log <%) Therefore, we may apply Theorem 5.2
to get

Q Q
Mp m-1p.k (m) =0p - (log <%>>>\_1 =05 dngi Mlg@H

It follows from (5.71) that

> fmen(@lze T 3 g

L < QL

M= op((log @)2-N) M= xp((log @)2- )
me(P)
(m,k)=1

(5.71)

< Cp QUlogQ)* = 05 (QUog Q> ™)

for any @ > 3, where C'p > 0 is a constant depending only on B. If

Q

g r <M=
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then we estimate trivially to get

’MP,mlb,k (g)‘ < %

In this way one obtains

> ‘Mpm_l,,,k (2) ‘ <Q > % (5.73)

Q < Q <
exp((log Q)Q_)‘)<m_Q exp((log Q)2— 1) <m=@
me(P)
(m,k)=1

Using the well known asymptotics of the harmonic series, we have

DR DD

(5.74)

Q < Q
exp((log Q)2 ) M= o ((log @2 X)

(log @)*~*
= logQ — log (Mgw*) +0 (%) =0 ((log Q)27A> )

Combining (5.73) and (5.74), we see that

S e (@)]-ofamary. o

9
exp((log Q)2—) <m=Q

me(P)
(m,k)=1

where the implied constant in (5.75) is absolute. As a result of (5.70), (5.72)
and (5.75), we deduce that

[M(,Q.b,k, B) = aNgy k5| = Op (Q(og @)* ™)

for @ > 3. Therefore, if Q > 3 and Ngprp > 1, then since 1 < A < 2 and
1 <k < (logQ)>* = O(log Q), we may apply Lemma 5.6 to obtain

RNQ,b,k,B (a) =

M(e, Q,b,k,B) ‘ B <k(logQ)2)‘)
NQbk,B | =05 Q
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uniformly in «. Taking supremum over all o € [0, 1], one finally arrives at

the desired estimate

k(log Q)z‘A>

DNQ,b,k,B (8Q,b,k,B) =0p ( 0

for the absolute discrepancy. The proofs of the other statements in Corollary
5.4 are similar. In the case when B(z) < =5~ and 1 < k < (loglog Q)?,

log?
Q
e(loglog Q) e(loglog Q)2 <m S Q When

B(z) < m with A > 2 and 1 < k < loglog ), we split as m < & and

& < m < . This completes the proof of Corollary 5.4. O

we split the range m < @Q as m < > and
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