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Abstract

In this study, we first prove the classical Prime Number Theorem

which gives an estimate on the number of primes not exceeding x where

x is a given real number. Then, in the third chapter we prove the

Wiener-Ikehara Tauberian Theorem and as a result of this theorem,

we deduce the Prime Number Theorem just from the non-vanishing

of the Riemann Zeta function on the line σ = 1. In chapter four, we

prove Beurling’s Generalized Prime Number Theorem on semi-groups

of integers and we investigate the boundary condition of this theorem.

Also, we consider the partial sums of the Möbius function over such

semi-groups and we show the difference between the Generalized Prime

Number Theorem and the partial sums of the Möbius function over

semi-groups. Based on this difference, in the last part (which is a

joint work with my supervisor Assoc. Prof. Emre Alkan) we give

quantitative estimates on partial sums of the Möbius function over

semi-groups that are also in a given arithmetic progression. Lastly, we

apply our results to the fractions.
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ÖZET

Bu çalışmada ilk olarak herhangi bir x reel sayısına kadar olan asalların

sayısı üzerine sonuç veren Asal Sayı Teoremi kanıtlanacaktır. Daha sonra

üçüncü bölümde Wiener-Ikehara Tauberian Teoremini kanıtlayıp, bunun

sonucunda Asal Sayı Teoremini kanıtlamak için Riemann Zeta fonksiyonunun

σ = 1 doğrusu üzerinde hiç sıfırının olmamasının yeterli olacağını göstereceğiz.

Dördüncü bölümde, Beurling’in genelleştirilmiş Asal Sayı Teoremini tam-

sayıların sadece çarpma altında kapalı olan kümeleri üzerine kanıtlayacağız

ve bu Teoremin sınırlarını araştıracağız. Ayrıca Möbius fonksiyonunun kısmi

toplamlarını tamsayıların bu tür alt kümeleri üzerinde düşüneceğiz ve genel-

leştirilmiş Asal Sayı Teoremi ile Möbius fonksiyonunun kısmi toplamları

arasındaki farkı göstereceğiz. Son bölümde de (bu bölüm danışmanım Emre

Alkan ile yaptığımız ortak bir çalışmadır.) bu farklılığa dayalı olarak, aynı

zamanda tamsayıların sadece çarpma altında kapalı olan bir kümesi ve ar-

itmetik dizi üzerindeki Möbius fonksiyonunun kısmi toplamlarına niceliksel

üst sınırlar vereceğiz. Son olarak da, elde ettiğimiz sonuçları kesirlere uygu-

layacağız.
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LIST OF SYMBOLS/ABBREVIATIONS

µ(n) The Möbius function.

ϕ(n) The Euler’s totient function.

Λ(n) The Von-Mangoldt function.

ψ(x)
∑
n≤x

Λ(n); the Chebyshev’s ψ function.

ϑ(x)
∑
p≤x

log p; the Chebyshev’s ϑ function.

π(x) The number of primes ≤ x.

π(x; q, a) The number of primes ≤ x
which are ≡ a (mod q).

ψ(x; q, a) The sum of Λ(n) over n ≤ x
which are ≡ a (mod q).

M(x)
∑
n≤x

µ(n); the Mertens function.

χ(n) A Dirichlet character.

χ0(n) The principal character.

L(s, χ) A Dirichlet L-function.

ζ(s) The Riemann zeta function.

Li(x)

∫ x

2

du

log u
; the logarithmic integral.

<s The real part of the complex number s.

=s The imaginary part of the complex number s.

Γ(s) The Gamma function.

γ The Euler-Gamma constant.

f̂(x)

∫ ∞
−∞

f(t)e−2πitxdt; the Fourier transform of f .

L1(R) The space of all Lebesgue integrable functions.

[x] The integer part of x.

{x} x− [x]; the fractional part of x.

f(x) = O(g(x)) |f(x)| ≤ Cg(x) where C is an

absolute constant.

f(x) = o(g(x)) lim
x→∞

f(x)/g(x) = 0.

f(x)� g(x) f(x) = O(g(x)).

f(x) ∼ g(x) lim
x→∞

f(x)/g(x) = 1.

PNT The Prime Number Theorem.
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5 Sums over the Möbius function and discrepancy of fractions 44

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3 Proof of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 Proof of Theorem 5.2 . . . . . . . . . . . . . . . . . . . . . . . 68

5.5 Proof of Corollary 5.3 . . . . . . . . . . . . . . . . . . . . . . 68

5.6 Proof of Corollary 5.4 . . . . . . . . . . . . . . . . . . . . . . 70

vii



1 Preliminaries

This chapter includes the basic information needed to understand the text

as we frequently will refer in the following chapters. It consists of five main

sections and in each of them, we will present some functions and their prop-

erties that we are going to deal with. We also will introduce some theorems

and tools that are widely used in Analytic Number Theory and Analysis.

All these will be given briefly, without proof since detailed arguments can

be found in [7], [26], [27], [30] or [32].

Throughout the text, log x denotes the natural logarithm and p always

denotes a prime number.

1.1 Arithmetic Functions

Definition 1.1. A complex-valued function defined on the positive integers

is called an arithmetic function.

Now we introduce some arithmetic functions which play an important

role on the distribution of prime numbers.

1. Define I(1) = 1 and I(n) = 0 if n > 1.

2. Another aritmetic funciton is u which is defined by u(n) = 1 for all

n ≥ 1.

3. The Möbius function µ is defined as follows:

µ(1) = 1;

If n > 1, write n = pa11 · · · p
ak
k . Then

µ(n) =

{
(−1)k if a1 = a2 = · · · ak = 1,

0 otherwise .

4. If n ≥ 1 the Euler totient ϕ(n) is defined to be the number of positive

integers not exceeding n which are relatively prime to n; i.e.,

ϕ(n) =
n∑

m=1
(m,n)=1

1.
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5. The Von-Mangoldt function Λ(n) is defined as:

Λ(n) =

{
log p if n = pm for some prime p and some integer m ≥ 1,

0 otherwise.

This function seems intricate at a first sight, but as we progress we see

that this function is natural and deeply related to the distribution of

the primes and we deal with this function throughout this thesis.

Definition 1.2. Given two arithmetic functions, we define their Dirichlet

product as

(f ∗ g)(n) =
∑
d|n

f(d)g(n/d).

It can be shown that I(n) is the identity function of the operation ∗ and

µ ∗ u = I.

Definition 1.3. An arithmetic function f is called multiplicative if

f(mn) = f(m)f(n)

whenever (m,n) = 1.

f is called completely multiplicative if f(mn) = f(m)f(n) holds for all

integers m and n.

Now let f(n) be an arithmetic function. We usually denote by F (x), the

summatory function of f(n)

F (x) =
∑
n≤x

f(n).

Now we give summatory functions of some important arithmetic functions.

Definition 1.4. Given x ≥ 0 define π(x) =
∑
p≤x

1 and M(x) =
∑
n≤x

µ(n).

The function π(x) is called the prime counting function and the function

M(x) is called the Mertens function.

In the next chapter we find the asymptotic behavior of the function π(x)

without an error term. More precisely in Chapter 2, we prove the Prime

Number Theorem (PNT) which says that lim
x→∞

π(x)

x/ log x
= 1. In Chapter 3,

2



we investigate the connection between these two functions and in Chapter

4 we generalize this connection and we also show how they differ from each

other. The main idea of this thesis is to study these two functions.

In analytic number theory, we estimate the summatory function F (x)

of arithmetic functions because they are expected to behave more regularly

whereas an arithmetic function may behave very irregularly even on consec-

utive integers. So we are interested in tools for evaluating the averages. One

of them is Abel’s summation formula which is sometimes called the partial

summation. We use Abel’s summation frequently throughout the text.

Theorem 1.5 (Abel’s Summation Formula-The Partial Summation For-

mula). Let x and y be real numbers with 0 < y < x. Let a(n) be an arith-

metic function with summatory function A(x) and f(t) be a function with

a continuous derivative on [y, x]. Suppose also that A(x) = 0 when x < 1.

Then,

∑
y<n≤x

a(n)f(n) = A(x)f(x)−A(y)f(y)−
∫ x

y
A(t)f ′(t)dt. (1.1)

In particular, if x > 1 and f(t) is continuously differentiable on [1, x], then

∑
n≤x

a(n)f(n) = A(x)f(x)−
∫ x

1
A(t)f ′(t)dt. (1.2)

This theorem, applied to the functions a(n) = 1 and f(t) = 1/t gives

∑
n≤x

1

n
= log x+ γ + r(x) where |r(x)| < 1

x
. (1.3)

The number γ in (1.3) is called the Euler-Gamma constant.

1.2 Elementary Results in the Distribution of Primes

Let us first introduce Chebyshev’s functions ψ(x) and ϑ(x) which have a

key role in the study of distribution of primes.

Definition 1.6. We define Chebyshev’s ψ(x) function to be the summatory

function of Λ(n) by

ψ(x) =
∑
n≤x

Λ(n).

3



Definition 1.7. We define Chebyshev’s ϑ(x) function by

ϑ(x) =
∑
p≤x

log p,

where p runs over primes ≤ x.

Chebyshev has showed that the functions ψ(x) and ϑ(x) are of order

O(x) and their relation gives equivalent forms of the PNT. More precesiley,

he has proved the following two theorems:

Theorem 1.8. There exists x0 ∈ R such that, for all x ≥ x0 we have

(0.92)x ≤ ϑ(x) ≤ ψ(x) ≤ (1.06)x. (1.4)

The following theorem states three equivalent forms of PNT (without

error term) and its proof is simply based on Abel’s summation.

Theorem 1.9. The following relations are equivalent:

π(x) ∼ x

log x
. (1.5)

ϑ(x) ∼ x. (1.6)

ψ(x) ∼ x. (1.7)

1.3 Dirichlet Series

Given an arithmetic function f(n), we define the Dirichlet series associated

by f as

F (s) =
∞∑
n=1

f(n)

ns
.

A Dirichlet series can be regarded as a function of the complex variable

s, defined in the region in which the series converges. We write the variable

s as

s = σ + it, where σ = <s, t = =s,

and we will use this notation throughout the text. Every Dirichlet series has

an absciss of convergence σc, which means there is a half-plane that the series

converges for σ > σc. Also for every Dirichlet series there is a number σa such

that, for σ > σa the series converges absolutely. Moreover, a Dirichlet series
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constitutes an analytic function in its half-plane of convergence. There is

a close relation between the summatory function and the Dirichlet series of

an arithmetic function; and we will be considering this in the next chapter.

Another important result about Dirichlet series is the Euler Product

Identity when applied to the Dirichlet series.

Theorem 1.10 (Euler Product Identity). Let f be a multiplicative arith-

metic function with Dirichlet series F (s) =
∞∑
n=1

f(n)

ns
. Assume F (s) con-

verges absolutely for σ > σa, then we have

F (s) =
∏
p

(
1 +

f(p)

ps
+
f(p2)

p2s
+ . . .

)
for σ > σa. (1.8)

If f is completely multiplicative, then

F (s) =
∏
p

(
1− f(p)

ps

)−1

for σ > σa. (1.9)

The most famous Dirichlet series is the one associated with the function

u(n), so-called the Riemann zeta function,

ζ(s) =
∞∑
n=1

1

ns
. (σ > 1)

By the Euler product identity (1.9), we have

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1

(σ > 1). (1.10)

Logarithmic derivative of the identity (1.10) gives that

−ζ
′(s)

ζ(s)
=
∑
p

∞∑
n=1

log p

pms
=

∞∑
n=1

Λ(n)

ns
(σ > 1). (1.11)

It can be shown that if F (s) and G(s) are the Dirichlet series of the

arithmetic functions f(n) and g(n) respectively and if F (s) and G(s) con-

verge absolutely in σ > σa then the Dirichlet series of (f ∗ g)(n) is F (s)G(s)

which is absolutely convergent in σ > σa.

5



Using the above fact, we can show that

∞∑
n=1

µ(n)

ns
=

1

ζ(s)

when σ > 1. This and (1.10) both imply that ζ(s) has no zero in σ > 1.

1.4 Dirichlet Characters and L-functions

Definition 1.11. An arithmetic function χ(n) is called a Dirichlet character

modulo q if it satisfies

(i) χ(n) = 0 for (n, q) > 1,

(ii) χ(1) = 1,

(iii) χ(n)χ(m) = χ(nm) for all integers m,n,

(iv) χ(n) = χ(m) whenever n ≡ m (mod q), i.e. χ(n) is q-periodic.

Since χ(1) = 1 and nϕ(q) ≡ 1 (mod q) when (n, q) = 1, χ(n) must be a

(ϕ(q))-th root of unity for (n, q) = 1. Also, there are ϕ(q) characters to the

modulus q. One of them takes the value 1 for all integers relatively prime

to q and 0 otherwise, this is called the principal character and denoted by

χ0(n).

A character χ(n) modulo q satisfies the following relations:

1

ϕ(q)

∑
n(mod q)

χ(n) =

{
1 if χ = χ0,

0 otherwise.
(1.12)

and
1

ϕ(q)

∑
χ(mod q)

χ(n) =

{
1 if n ≡ 1 (mod q),

0 otherwise.
(1.13)

From the relation (1.13), it is possible to deduce a relation which will be

useful when we aim at working on integers belonging to a certain residue

class modulo q. If (a, q) = 1, then for any n we have

1

ϕ(q)

∑
χ(mod q)

χ̄(a)χ(n) =

{
1 if n ≡ a (mod q),

0 otherwise.
(1.14)

This enables us how to catch numbers belonging to a certain residue

class modulo q.
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Dirichlet also defined L-functions denoted by L(s, χ) to be the Dirichlet

series of χ(n) for σ > 1,

L(s, χ) =
∞∑
n=1

χ(n)

ns
.

All L(s, χ) converges absolutely in σ > 1. Moreover if χ is a non-principal

character modulo q, then L(s, χ) converges conditionally in σ > 0.

By the Euler product identity we have

L(s, χ) =
∏
p

(
1− χ(p)

ps

)−1

(σ > 1). (1.15)

As for the function ζ(s), logarithmic differentiation gives that

−L
′(s, χ)

L(s, χ)
=
∑
p

∞∑
n=1

χ(p) log p

pms
=

∞∑
n=1

Λ(n)χ(n)

ns
(σ > 1). (1.16)

1.5 Results from Fourier Analysis

In this subsection, we state some results from Fourier Analysis without proof.

The details can be found in [27], [30] or [32].

Theorem 1.12. Suppose that T ≥ 1. Let

∆T (x) = T

(
sinπTx

πTx

)2

and JT (x) =
3T

4

(
sinπTx/2

πTx/2

)4

be the Fejer and Jackson kernels respectively. Then these functions have a

peak of height � T and width � 1/T at 0, and have a total mass 1.

Definition 1.13. Suppose f ∈ L1 = L1(R). Then the function f̂(x) =∫ ∞
−∞

f(t)e(−tx)dt is called the Fourier transform of f where e(x) = e2πix.

Theorem 1.14 (Fourier Inversion Theorem). If f ∈ L1 and f̂ ∈ L1, and if

g(x) =

∫ ∞
−∞

f̂(t)e(tx)dt, then f(x) = g(x) almost everywhere.

Theorem 1.15 (Riemann-Lebesgue Lemma). Suppose f ∈ L1(R). Then

the Fourier transform of f vanishes at infinity, in other words

lim
|x|→∞

f̂(x) = 0.

7



2 The Prime Number Theorem

Recall that π(x) = number of primes p ≤ x = |{2 ≤ p ≤ x : p is prime}|.
The infinitude of primes was first proved by Euclid. Then Euler also gives

another proof of this by showing that the series

∑
p≤x

1

p

diverges. In the proof, Euler used some analysis and thus this result can

be seen as the birth of Analytic Number Theory. Around 1792, Gauss

conjectured that a good approximation to π(x) is the logarithmic integral

Li(x) =

∫ x

2

dt

log t
.

Gauss made this observation by finding all primes up to 3.000.000. Almost

at the same time, Legendre conjectured that π(x) is approximately

x

log x−A

where A = 1.08... is some constant. Later it was proved that if

π(x) =
x

log x−A(x)

then lim
x→∞

A(x) = 1. After about 100 years later in 1896, PNT was proved by

Jacques Hadamard and de la Vallée Poussin independently. In this chapter,

our aim is to prove so-called the Prime Number Theorem that is

π(x) ∼ x

log x

i.e.

lim
x→∞

π(x)

x/ log x
= 1.

In fact we will prove an equivalent form of this:

ψ(x) =
∑
n≤x

Λ(n) ∼ x i.e. lim
x→∞

ψ(x)

x
= 1.

8



There is a close relation between the summatory function of Λ(n)

ψ(x) =
∑
n≤x

Λ(n) and its Dirichlet series
∞∑
n=1

Λ(n)

ns
= −ζ

′(s)

ζ(s)
, which will be

given in the Fundamental Formula (2.7). So the Dirichlet series of Λ(n) is

related to ζ(s). This is why we prefer ψ(x) and not π(x), in other words

the Dirichlet series of Λ(n) is more familiar than the Dirichlet series of the

characteristic function of prime numbers.

Thus the idea is to study the function

∞∑
n=1

Λ(n)

ns
= −ζ

′(s)

ζ(s)

where σ > 1. ζ(s) occurs in the denominator, so we have to be careful about

its zeros! Therefore we have to analyse ζ(s) and its zeros as best we can.

By Abel’s summation, we have

n∑
k=1

Λ(k)

ks
=
ψ(n)

ns
+ s

∫ n

1

ψ(x)

xs+1
dx.

Since
ψ(n)

ns
→ 0 as n→∞ for σ > 1, we get

∞∑
n=1

Λ(n)

ns
= s

∫ ∞
1

ψ(x)

xs+1
dx i.e. − ζ ′(s)

ζ(s)
= s

∫ ∞
1

ψ(x)

xs+1
dx (2.1)

and this is called the Mellin transform of ψ(x).

Our goal is to express ψ1(x) =

∫ x

0
ψ(u)du in terms of −ζ

′(s)

ζ(s)
and then

we pass to ψ(x) from ψ1(x) so as to understand the distribution of primes.

2.1 Riemann Zeta Function

Now we study ζ(s) further since this function is deeply connected with the

distribution of primes.

Theorem 2.1 (Analytic continuation of ζ(s) ). ζ(s) =

∞∑
n=1

1

ns
defined for

σ > 1 has an analytic continuation to a function defined on the half plane

σ > 0, and that is analytic in this plane exception of a simple pole at s = 1

9



with residue 1, given by

ζ(s) =
s

s− 1
− s

∫ ∞
1

{x}
xs+1

dx.

Proof. By Abel’s Summation formula ,

∑
n≤x

1

ns
=

[x]

xs
+ s

∫ x

1

[t]

ts+1
dt.

Therefore, for σ > 1, we have

ζ(s) = s

∫ ∞
1

[x]

xs+1
dx = s

∫ ∞
1

x− {x}
xs+1

dx

= s

∫ ∞
1

x−sdx− s
∫ ∞

1

{x}
xs+1

dx

=
s

s− 1
− s

∫ ∞
1

{x}
xs+1

dx.

Given ε > 0,∣∣∣∣∣
∫ ∞

1

{x}
xs+1

dx

∣∣∣∣∣ ≤
∫ ∞

1

1

xσ+1
dx ≤

∫ ∞
1

1

xε+1
dx =

1

ε
when σ ≥ ε.

Therefore the integral converges absolutely and uniformly in the half plane

σ ≥ ε, and represents an analytic function of s for σ ≥ ε. Since σ > 0 is

arbitrary, this function is analytic in σ > 0. Also, s
s−1 = 1 + 1

s−1 gives a

simple pole at s = 1 with residue 1.

Riemann Hypothesis(RH): We know that ζ(s) 6= 0 for σ > 1. RH says

that if ζ(s) = 0 in σ > 0 then <(s) = 1
2 .

Note that

ζ(s) = 0⇔
∫ ∞

1

{x}
xs+1

dx =
1

s− 1
.

Next we bound on the functions ζ(s) and ζ ′(s) at infinity This will be useful

in the proof on the PNT.

Theorem 2.2. We have

(i) |ζ(s)| ≤ A log t (σ ≥ 1, t ≥ 2),

(ii) |ζ ′(s)| ≤ A log2 t (σ ≥ 1, t ≥ 2),

(iii) |ζ(s)| ≤ B(δ)t1−δ (σ ≥ δ, t ≥ 2, 0 < δ < 1)

10



where A is an absolute constant and B(δ) is a constant that may de-

pend on δ.

Proof. By Abel’s summation, we obtain

∑
n≤x

1

ns
= s

∫ x

1

[t]

ts+1
dt+

[x]

xs
=

s

s− 1
− s

(s− 1)xs−1
−s
∫ x

1

{t}
ts+1

dt+
1

xs−1
−{x}
xs

.

Since

ζ(s) =
s

s− 1
− s

∫ ∞
1

{x}
xs+1

dx

for σ > 0, we get:

ζ(s)−
∑
n≤x

1

ns
=

s

(s− 1)xs−1
− {x}

xs
− s

∫ ∞
1

{t}
ts+1

dt.

Hence for σ > 0, t ≥ 1, x ≥ 1 we have

|ζ(s)| ≤
∑
n≤x

1

nσ
+

1

txσ−1
+

1

xσ
+|s|

∫ ∞
x

dt

tσ+1
≤
∑
n≤x

1

nσ
+

1

txσ−1
+

1

xσ
+

(
1+

t

σ

)
1

xσ

since |s| < σ + t.

If σ ≥ 1,

|ζ(s)| ≤
∑
n≤x

1

n
+

1

t
+

1

x
+

1 + t

x
≤ (log x+ 1) + 3 +

t

x
,

since t ≥ 1, x ≥ 1. Taking x = t we obtain (i).

If σ ≥ δ where 0 < δ < 1,

|ζ(s)| ≤
∑
n≤x

1

nδ
+

1

txδ−1
+

(
2 +

t

δ

)
1

xδ
<
x1−δ

1− δ
+ x1−δ +

3t

δxδ
,

since
∑
n≤x

1

nδ
≤ x1−δ

1− δ
. Taking x = t as before we get

|ζ(s)| ≤ t1−δ
(

1

1− δ
+ 1 +

3

δ

)
︸ ︷︷ ︸

B(δ)

(2.2)

and this proves (iii).

11



Lastly we prove (ii). Let s0 = σ0 + it0 be any point in the region σ ≥ 1,

t ≥ 2 and C a circle with center s0 and radius ρ < 1
2 . Then by Cauchy’s

integral formula for ζ ′(s0), we have

|ζ ′(s0)| =
∣∣∣∣ 1

2πi

∫
C

ζ(s)ds

(s− s0)2

∣∣∣∣ ≤ M

ρ

where M is the maximum of |ζ(s)| on C. Now, for all points s on C, we

have σ ≥ σ0 − ρ ≥ 1− ρ and 1 < t < 2t0, and hence by (2.2), (ρ = 1− δ)

M ≤ (2t0)ρ
(

1

ρ
+ 1 +

3

1− ρ

)
<

10to
ρ

ρ

since ρ < 1− ρ < 1 and 2ρ < 2. Hence

|ζ ′(s0)| < 10to
ρ

ρ2
.

Now take

ρ =
1

2 + log t0

i.e. t0
ρ = eρ log t0 < e and |ζ ′(s0)| < 10e(2 + log t0)2. This implies (ii).

2.2 Zeros of ζ(s)

Zeros of ζ(s) play an important role for the distribution of primes. The

following result is the most significant result for the PNT.

Theorem 2.3. ζ(s) has no zeros on the line σ = 1. Furthermore, there is

an absolute constant A > 0 such that 1
ζ(s) = O((log t)A) uniformly for σ ≥ 1,

as t→∞.

Proof. First observe that

3 + 4 cos θ + cos 2θ = 2(1 + cos θ)2 ≥ 0. (2.3)

For σ > 1,

log |ζ(s)| = <(log(s)) = <
(∑

p

∞∑
m=1

1

mpms

)

= <
( ∞∑
n=2

cn
nσ+it

)
=

∞∑
n=2

cnn
−σ cos(t log n)

12



where cn = 1
m if n = pm for some p prime and 0 otherwise. Hence by (2.3)

log |ζ3(σ)ζ4(σ+it)ζ(σ+2it)| =
∑

cnn
−σ(3+4 cos(t log n)+cos(2t log n)) ≥ 0

since cn ≥ 0. Therefore we have

((σ − 1)ζ(σ))3

∣∣∣∣ζ(σ + it)

σ − 1

∣∣∣∣4|ζ(σ + 2it)| ≥ 1

σ − 1
, σ ≥ 1. (2.4)

This shows that 1 + it (t 6= 0) cannot be a zero of ζ(s). Otherwise the left

hand side tends to |ζ ′(1 + it)|4|ζ(1 + 2it)| but the right hand side tends to

infinity as σ → 1+.

For the second part we may assume 1 ≤ σ ≤ 2 since for σ ≥ 2,∣∣∣∣ 1

ζ(s)

∣∣∣∣ =

∣∣∣∣ ∞∑
n=1

µ(n)

ns

∣∣∣∣ ≤ ∞∑
n=1

1

nσ
≤
∞∑
n=1

1

n2
= ζ(2) =

π2

6
.

If 1 < σ ≤ 2 and t ≥ 2 then by (2.4) and Theorem 2.2 (i) we have

(σ − 1)3 ≤ ((σ − 1)ζ(σ))3|ζ(σ + it)|4|ζ(σ + 2it)|

≤ A3
1|ζ(σ + it)|4A2 log 2t

≤ A3
1|ζ(σ + it)|4A22 log t.

for some constants A1 and A2. Thus

|ζ(σ + it)| ≥ (σ − 1)3/4

A3(log t)1/4
(2.5)

(1 ≤ σ ≤ 2, t ≥ 2) for some constant A3. Now let 1 < δ < 2. For 1 ≤ σ ≤ 2,

t ≥ 2, by Theorem 2.2 (ii) we see that

|ζ(σ + it)− ζ(δ + it)| =
∣∣∣∣ ∫ δ

σ
ζ ′(u+ it)du

∣∣∣∣ ≤ A4 log2 t(δ − 1) (2.6)

for some constant A4. Hence combining (2.5) and (2.6) we get

|ζ(σ + it)| ≥ |ζ(δ + it)| −A4(δ − 1) log2 t

≥ (δ − 1)3/4

A3(log t)1/4
−A4(δ − 1)(log t)2.

13



Now, let δ = 1 + (2A3A4)−4(log t)−9 i.e. (δ−1)3/4

A3(log t)1/4
= 2A4(δ − 1)(log t)2

(when t is large enough) to obtain

|ζ(σ + it)| ≥ A4(δ − 1) log2 t = A5(log t)−7,

if 1 ≤ σ ≤ 2 and t > t0 (i.e. when t is large enough) and A5 is some absolute

constant. So we can take A = 7.

2.3 Fundamental Formula

Working with ψ(x) =
∑
n≤x

Λ(n) has some convergence problems. So we will

work with ψ1(x) =

∫ x

0
ψ(u)du instead of ψ(x). This is called the smoothing

argument. By Abel’s summation, we have

ψ1(x) =

∫ x

0
ψ(u)du =

∑
n≤x

Λ(n)(x− n).

Since we will prove ψ(x) ∼ x, we expect ψ1(x) ∼ x2

2 . Transition from ψ1(x)

to ψ(x) will be easy. Our aim is to show that the fundamental formula:

ψ1(x) =
1

2πi

∫ c+i∞

c−i∞

xs+1

s(s+ 1)

(
− ζ ′(s)

ζ(s)

)
ds when x > 0, c > 1

where the path of integration is the straight line σ = c.

This formula is significant since it enables us to pass from discrete sum

to a continuous sum. Therefore we can use the tools of analysis to determine

the asymptotic behavior of a discrete sum. This is the philosophy of Analytic

Number Theory.

First we require a lemma in order to obtain the Fundamental Formula.

Lemma 2.4. For c > 0 and y > 0, we have

1

2πi

∫ c+i∞

c−i∞

ys

s(s+ 1)
=

{
0 if y ≤ 1,

1− 1
y if y ≥ 1.

Proof. Note that the integral is absolutely convergent since the integrand

has modulus less than yc|t|−2 on the line of integration. Denote by J the

infinite integral and JT the integral from c−iT to c+iT (with the factor 1
2πi).
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We apply Cauchy’s Residue theorem. We replace the line of integration JT

by an arc of the circle c having its centre at s = 0 and passing the points

c ± iT . If y ≥ 1, we use the arc c1 which lies to the left of the line σ = c,

assuming T is large, R > 2 where R is the radius of the centre. This gives

JT = S + J(c1) where S is the sum of residues at s = 0,−1 and J(c1) is the

integral along c1. Now, on c1 we have σ ≤ c and thus |ys| ≤ yc since y ≥ 1.

Moreover |s| and |s+ 1| ≥ R− 1 > R
2 . This gives

|J(c1)| < 1

2π

yc

(R2 )2
2πR =

4yc

R
<

4yc

T
.

Thus JT → S as T →∞. i.e. J = S. But

S = Res

[
ys

s(s+ 1)
, 0

]
+Res

[
ys

s(s+ 1)
,−1

]
= 1 +

−1

y
= 1− 1

y
.

The proof in the case y ≤ 1 is similar: take c2 right-hand arc of c and no

poles are passed over.

Fundamental Formula: For x > 0, c > 1, we have

ψ1(x) =
1

2πi

∫ c+i∞

c−i∞

xs+1

s(s+ 1)

(
− ζ ′(s)

ζ(s)

)
ds. (2.7)

Proof. For x > 0, by Lemma 15 taking y = x/n we have

ψ1(x)

x
=
∑
n≤x

(
1− n

x

)
Λ(n) =

∞∑
n=1

Λ(n)

2πi

∫ c+i∞

c−i∞

(x/n)s

s(s+ 1)
ds.

If c > 1, the order of summation and integration can be interchanged since

∞∑
n=1

∫ c+i∞

c−i∞

∣∣∣∣Λ(n)(x/n)s

s(s+ 1)

∣∣∣∣ds < xc
∞∑
n=1

Λ(n)

nc

∫ ∞
−∞

dt

c2 + t2
<∞.

Hence

ψ1(x) =
1

2πi

∫ c+i∞

c−i∞

xs+1

s(s+ 1)

( ∞∑
n=1

Λ(n)

ns

)
ds,

i.e.

ψ1(x) =
1

2πi

∫ c+i∞

c−i∞

xs+1

s(s+ 1)

(
− ζ ′(s)

ζ(s)

)
ds.
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2.4 Prime Number Theorem

Now we have all tools so as to prove the PNT. Philosophy of the proof is:

We will shift the path of integration to the left side of the line σ = 1 in the

Fundamental Formula. This is useful because when shifting the integral we

catch the residue at s = 1 which contributes to the main term and the power

xs will be small in the left side of the line σ = 1. Also we need bounds on

the function ζ(s) at infinity and since we deal with ζ(s), the Theorem 2.3

will be vital.

Theorem 2.5. We have ψ1(x) ∼ x2

2 when x→∞.

Proof. From now on, we assume x > 1. Note that the function −ζ
′(s)

ζ(s)
has

a simple pole at s = 1 with residue 1. We will take c = 1 + 1
log x > 1 in the

Fundamental Formula (2.7) . From (2.7) we know that

ψ1(x)

x2
=

∫ c+i∞

c−i∞
g(s)xs−1ds

where

g(s) =
1

2πi

1

s(s+ 1)

(
− ζ ′(s)

ζ(s)

)
.

Moreover g(s) is analytic in σ ≥ 1 except s = 1 with residue
1

4πi
. Also by

Theorem 2.2, we have

|g(s)| < A1|t|−2A2(log |t|)2A3(log |t|)7 < |t|−3/2

(σ ≥ 1, |t| ≥ t0).

Let ε > 0 be given.

Now we replace the path of integration in (2.7) which is a vertical line

by L =

5⋃
i=1

Li where

L1 = (c− i∞, c− iT ],

L2 = [c− iT, α− iT ],

L3 = [α− iT, α+ iT ],

L4 = [α− iT, c+ iT ],

L5 = [c+ iT, c+ i∞).
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Choose T = T (ε) and α = α(ε) (0 < α < 1) such that∫ ∞
T
|g(c+ it)|dt < ε

2e
(|xs−1| = |xc−1| = x

1
log x = e)

and the rectangle α ≤ σ ≤ 1, −T ≤ t ≤ T contains no zeros of ζ(s). This

is possible since ζ(s) has no zero on the line σ = 1 and such a rectangle

can contain at most finitely many zeros of ζ(s) because otherwise, zeros of

ζ(s) accumulate and ζ(s) would be zero. By Cauchy’s Residue theorem we

obtain that
ψ1(x)

x2
=

1

2
+

∫
L
g(s)xs−1ds =

1

2
+ J.

(1/2 arises from the pole at σ = 1).

Note that the integral

∫
L
g(s)xs−1ds is absolutely convergent.

Write ∫
L
g(s)xs−1ds = J1 + J2 + J3 + J4 + J5,

where J1, . . . , J5 are the integrals along L1, . . . , L5, respectively.

Since g(s̄)xs̄−1 = g(s)xs−1, we have

|J1| = |J5| <
ε

2e
e =

ε

2
.

Also, if we let M be the maximum of |g(s)| on the finite segments

L2, L3, L4 then (since x > 1)

|J2| = |J4| =
∣∣∣∣ ∫ c

α
g(σ + it)xσ+it−1

∣∣∣∣dσ ≤M ∫ c

α
xσ−1dσ

= M
xσ − 1

log x

∣∣∣∣c
σ=α

=
Me

log x
− Mxα−1

log x

=

∣∣∣∣ ∫ α+iT

α−iT
g(s)xs−1ds

∣∣∣∣ ≤Mxα−12T.

Therefore∣∣∣∣ψ1(x)

x2
− 1

2

∣∣∣∣ < ε+ 2

(
Me

log x
− M

(log x)x1−α

)
+Mxα−12T.

Now choose x0 = x0(ε, T, α,M) = x0(ε) such that if x ≥ x0 then∣∣∣∣ψ1(x)

x2
− 1

2

∣∣∣∣ < 3ε.

17



This proves the theorem.

Transition from ψ1(x) to ψ(x)

Let 0 < α < 1 < β. Since ψ(x) is monotone increasing, we obtain that

ψ(x) ≤ 1

βx− x

∫ βx

x
ψ(t)dt =

ψ1(βx)− ψ1(x)

(β − 1)x
.

Therefore
ψ(x)

x
≤ 1

β − 1

(
ψ1(βx)

(βx)2
β2 − ψ1(x)

x2

)
.

Letting x→∞ and keeping β fixed we have, since
ψ1(y)

y2
→ 1

2
as y →∞,

lim sup
x→∞

ψ(x)

x
≤ 1

2

β2 − 1

β − 1
=
β + 1

2
.

Similarly, lim inf
x→∞

ψ(x)

x
≥ α+ 1

2
. Since α, β are arbitrary, we get

ψ(x)

x
→ 1 as x →∞.

So we obtain (ultimately!)

Prime Number Theorem (PNT): π(x) ∼ x

log x
.

Proof. We know that ψ1(x) ∼ x2

2 and so ψ(x) ∼ x. Now by Theorem 1.9,

we get π(x) ∼ x
log x as desired.

2.5 PNT and ζ(s) on the line σ = 1

The proof of the PNT is based on the fact that ζ(s) has no zeros on the line

σ = 1. Now, we will show the converse. Suppose we have the PNT. Then

by (2.1) we have∫ ∞
1

ψ(x)− x
xs+1

dx = −1

s

ζ ′(s)

ζ(s)
− 1

s− 1
= α(s).
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Let ε > 0 be given. Then by PNT |ψ(x) − x| < εx for x ≥ x0 = x0(ε). So

for σ > 1,

|α(s)| <
∫ x0

1

|ψ(x)− x|
x2

dx+

∫ ∞
x0

ε

xσ
dx < K +

ε

σ − 1
.

Thus |(σ−1)α(σ+it)| < K(σ−1)+ε < 2ε for 1 < σ ≤ σ0 = σ0(ε,K) = σ0(ε).

Hence for any fixed t, (σ − 1)α(σ + it) → 0 as σ → 1+. This shows that

the point 1 + it cannot be a zero of ζ(s) because otherwise, (σ− 1)α(σ+ it)

would tend to a limit different from 0, namely the residue of α(s) at the

simple pole 1 + it.

NOTE: In the next section we will show PNT⇔ ζ(1 + it) 6= 0 for all t ∈ R.

We already showed ⇐. For the converse, we need some Fourier Analysis

and the Tauberian Theorem of Wiener and Ikehara.

2.6 Further Works in PNT and Riemann’s Memoir

Now we will state some results without proof. All the details can be found

in [12] or [26] .

The functional equation of ζ(s):

Riemann made the greatest contribution to the study of distribution of

primes with his memoir in 1859. In his paper he showed that

• The function ζ(s) satisfies the functional equation

π−
s
2 Γ
(s

2

)
ζ(s) = π−

1−s
2 Γ

(
1− s

2

)
ζ(1− s), (2.8)

where Γ(s) is the so-called Gamma function which is analytic in the

half plane σ > 0 with the integal representation Γ(s) =

∫ ∞
0

e−xxs−1dx.

• ζ(s) can be continued analytically over the whole plane and ζ(s) is

meromorphic with the simple pole at s = 1 with residue 1.

The second can be deduced from the functional equation regarding the

properties of the Γ(s) function.

To use the functional equation effectively, we define the function

ξ(s) =
1

2
s(s− 1)π−

s
2 Γ
(s

2

)
ζ(s). (2.9)
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The function ξ(s) is an entire function since it has no poles for σ ≥ 1
2 and

satisfies ξ(s) = ξ(1− s). Moreover ξ(s) has the product representation

ξ(s) = eA+Bs
∏
ρ

(
1− s

ρ

)
es/ρ (2.10)

where A and B are constants and ρ runs through the zeros of ζ(s) in the

critical strip 0 < σ < 1. This was proved by Hadamard and lead to im-

provements in enlarging the zero-free region of ζ(s)

σ ≥ 1− c

log t
, (2.11)

|t| ≥ 2, which was previosly shown as σ ≥ 1.

Improved zero-free region: For |t| ≥ 2 there exists a positive number

c such that ζ(s) has no zeros in the region

σ > 1− c

log t
.

Best zero-free region: For |t| > ee we have ζ(s) 6= 0 for

σ > 1− A

(log |t|)2/3(log log |t|)1/3

where A > 1/100 is an absolute constant. This result was proved indepen-

dently by Vinogradov [33] and Korobov [23] in 1958.

Explicit Formulas: Explicit formulas give the relation between the

summatory functions related to primes and the zeros of ζ(s).

By the Fundamental Formula, we know that

ψ1(x) =
1

2πi

∫ c+i∞

c−i∞

xs+1

s(s+ 1)

(
− ζ ′(s)

ζ(s)

)
ds

when x > 0, c > 1. In fact a similar formula exists for ψ(x), for x 6∈ Z and

c > 1,

ψ(x) =
1

2πi

∫ c+i∞

c−i∞

xs

s

(
− ζ ′(s)

ζ(s)

)
ds.

But working with ψ(x) has some convergence problems since the denom-

inator in the integrand is 1/s and the integrand is not absolutely convergent

in the vertical line of integration.
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If we define ψ0(x) =
1

2

(∑
n≤x

Λ(n) +
∑
n<x

Λ(n)

)
, then we have the two

explicit formulas :

ψ0(x) = x−
∑

ρ: nontrival
zero of ζ

xρ

ρ
− ζ ′(0)

ζ(0)
− 1

2
log(1− x−2)

ψ1(x) =
x2

2
−
∑
ρ

xρ+1

ρ(ρ+ 1)
− xζ

′(0)

ζ(0)
+
ζ ′(−1)

ζ(−1)
−
∞∑
r=1

x1−2r

2r(2r − 1)
.

Moreover, it is known that ∑
ρ

1

|ρ|

diverges but for any ε > 0

∑
ρ

1

|ρ|1+ε
<∞

where the summations are taken over non-trivial zeros of ζ(s).

Improved PNT (de la Vallée Poussin) If we use the improved zero-

free region in the proof of PNT, we can obtain

ψ(x) = x+O(xe−c
√

log x).

and

π(x) = Li(x) +O(xe−c1
√

log x).

Riemann Hypothesis (RH):

After the PNT had been proved, the main problem has become obtaining

the PNT with an error term as good as possible. Riemann, in his paper in

1859 has conjectured the Riemann Hypothesis which states that all non-

trivial zeros of the Riemann zeta-function have real part 1/2. As the error

term is related to the zero-free region of ζ(s), the Riemann hypothesis is

equivalent to the both following two form of PNT: ψ(x) = x+O(
√
x log2 x)

and π(x) = Li(x) +O(
√
x log x).

Moreover, O(
√
x) is the best possible error term since it is known that

ζ(s) has a zero on the critical line σ = 1/2. Unfortunately this prob-

lem is still wide open and we are very far from getting what is conjec-

tured. The last progress about the error term has been made by Vino-
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gradov and Korobov in 1958. They have enlarged the zero-free region to

σ > 1− A

(log |t|)2/3(log log |t|)1/3
which resulted in the error term

ψ(x) = x+O

(
x exp

(
− C (log x)3/5

(log log x)1/5

))
.

Another important property of Dirichlet series is that we can relate them

to the summatory functions of arithmetic functions. Now let f(n) be an

arithmetic function with summatory function F (x). Let α(s) be the Dirichlet

series of f(n) with finite abscissa of convergence σc. Then we have two

versatile theorems that allow us to pass from discrete to continuous and from

continuous to discrete. These theorems generalize the Mellin transform of

ψ(x) and the Fundamental Formula.

Theorem 2.6 (Mellin Transform Representation of Dirichlet Series).

α(s) = s

∫ ∞
1

F (x)x−s−1dx σ > max(0, σc). (2.12)

Theorem 2.7 (Perron’s Formula). For any c > max(0, σa), we have

∑′

n≤x
f(n) =

1

2πi

∫ c+i∞

c−i∞
α(s)

xs

s
ds (2.13)

and

F1(x) =

∫ x

0
F (u)du =

1

2πi

∫ c+i∞

c−i∞
α(s)

xs+1

s(s+ 1)
ds . (2.14)

Here,
∑′

indicates that we take the term f(x) to be halved in the case when

x is an integer and the improper integral

∫ c+i∞

c−i∞
is to be interpreted as the

symmetric limit lim
T→∞

∫ c+iT

c−iT
.

Now we state the more generalized version of Mellin transform and Per-

ron’s formula.

Theorem 2.8 (Cesàro Weights). For a positive integer k, put

Ck(x) =
1

k!

∑
n≤x

f(n)(x− n)k.
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Then Ck(x) =

∫ x

0
Ck−1(u)du for k ≥ 1 and C0(x) = F (x). Moreover, for

σ > max(0, σc), we have

α(s) = s(s+ 1)...(s+ k)

∫ ∞
1

Ck(x)x−s−k−1dx

and for c > max(0, σa) and x > 0, we have

Ck(x) =

∫ c+∞

c−∞
α(s)

xs+k

s(s+ 1)...(s+ k)
ds.

Now we state Plancherel Identity which concerns the space

L1(R) ∩ L2(R). This theorem will be useful in Chapter 4.

Theorem 2.9 (Plancherel Identity). Suppose that

∫ ∞
0
|ω(x)|x−σ−1dx <∞,

and also that

∫ ∞
0
|ω(x)|2x−2σ−1dx < ∞. Put K(s) =

∫ ∞
0

ω(x)x−s−1dx.

Then we have

2π

∫ ∞
0
|ω(x)|2x−2σ−1dx =

∫ ∞
−∞
|K(σ + it)|2dt. (2.15)

One of the significiant application of this identiy is the following. Sup-

pose f(n) is an arithmetic function with the summatory function F (x). Let

α(s) be the Dirichlet series of f(n) with a finite abscissa of convergence σc.

Then we have

2π

∫ ∞
0
|F (x)|2x−2σ−1dx =

∫ ∞
−∞

∣∣∣∣α(σ + it)

σ + it

∣∣∣∣2dt
for σ > max(0, σc).

Perron’s formula itself is not enough to satisfy an error term for the sum-

matory functions. To estimate the error term for the summatory function

of f(n), we need the following result.

Theorem 2.10 (Truncated Perron’s Formula). For any c > max(0, σa),

T > 0 and non-integral x, we have

∑
n≤x

f(n) =
1

2πi

∫ c+iT

c−iT
α(s)

xs

s
ds+R(T ), (2.16)
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where R(T ) ≤ xc

T

∞∑
n=1

|f(n)|
nc| log(x/n)|

.

PNT for Arithmetic Progression: For a and q positive integers

with (a, q) = 1, define

ψ(x, q, a) =
∑
n≤x

n≡a (mod q)

Λ(n)

and

π(x, q, a) = #{p ≤ x : p is prime and p ≡ a (mod q)}.

PNT for arithmetic progression states that for a fixed modulus q,

ψ(x, q, a) ∼ x

ϕ(q)

and

π(x, q, a) ∼ x

ϕ(q) log x
.

This is expected if we assume that all primes are well distributed to the

all residue classes that are coprime to the modulus q. These two estimates

comes from tha fact that∏
χ

L(s, χ) 6= 0, for σ ≥ 1. (2.17)

Moreover, it is known that

ψ(x, q, a) =
1

ϕ(q)
x+O(xe−c

√
log x). (2.18)

In fact we are allowed to make q grow with x. The following theorem is

called the PNT for arithmetic progression with large moduli.

Siegel-Walfisz Theorem: Given A > 0 and for q ≤ (log x)A, (2.18)

holds uniformly with a constant c = c(A) that may depend on A.

This is the best known range for the modulus q for PNT on arithmetic

progression. This theorem will be significiant in Chapter 5.
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3 Wiener-Ikehara Tauberian Theorem

3.1 Tauberian Theory and an Approximation Lemma

In the previous chapter we derived the Prime Number Theorem ψ(x) ∼ x

without the error term. For this it is crucial that we have to use

ζ(1 + it) 6= 0

for all t 6= 0 real numbers. But we also need to bound on ζ(s), 1
ζ(s) and ζ ′(s)

at infinity because we use the Fundamental formula. The natural question is:

what is the least information concerning ζ(s) that would suffice to establish

PNT? In this section we only use ζ(1 + it) 6= 0 for all real t and the functions

ζ(s)− 1

s− 1
, ζ ′(s) +

1

(s− 1)2
are continous in the closed half plane σ ≥ 1.

Then we prove a general Tauberian theorem of Wiener and Ikehara and as a

result we deduce the PNT. Let us make a few words on Tauberian theorems.

A Tauberian theorem is one in which the asymptotic behavior of a function

is deduced from the behavior of some of its averages or its some generating

functions. Generally Tauberian theorems are converses of fairly obvious re-

sults, but usually these converses depend on some additional assumptions

that are called Tauberian condition. The name Tauberian comes from the

Tauber who proved that :

Let (an)n be a sequence of complex numbers and put sn = a0 + ...+ an.

Suppose also that

(i) f(r) =
∞∑
n=0

anr
n, 0 < r < 1 and lim

r→1−
f(r) = s.

(ii) lim
n→∞

nan = 0.

Then we have lim
n→∞

sn = s.

It can be easily shown that lim
n→∞

sn = s implies the condition (i). But

the condition (i) only is not enough to prove that lim
n→∞

sn = s. We need

the condition (ii) also. The condition (ii) is called the Tauberian condition.

Later the Tauberian condition (ii) replaced by (nan)n is bounded by Little-

wood and that makes the proof much more difficult.
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First we require a two sided approximation lemma which is the heart of the

Wiener-Ikehara Tauberian Theorem.

Lemma 3.1. Let E(x) = ex for x ≤ 0 and E(x) = 0 for x > 0. For any

given ε > 0 there is a T and continuous functions f+, f− with f± ∈ L1(R)

such that

(i) f− ≤ E(x) ≤ f+ for all x ∈ R ,

(ii) f̂±(t) = 0 for all |t| ≥ T ,

(iii)

∫ +∞

−∞
f+(x)dx < 1 + ε,

∫ +∞

−∞
f−(x)dx > 1− ε .

Remark 3.2. Some remarks are in order. Since f± ∈ L1(R), we have that

the Fourier transform

f̂±(t) =

∫ +∞

−∞
f±(w)e(−tw)dw

are uniformly continuous. Therefore from (ii) above it follows that f̂±(±T ) =

0 so that f̂±(t) = 0 for all |t| ≥ T . Since f±(t) are also continuous , by the

Fourier integral theorem we have

lim
w→∞

∫ w

−w

(
1− |t|

w

)
f̂±(t)e(tx)dt = f±(x)

for all x. But the functions f̂± are supported on the fixed interval [−T, T ].

From this observation we see that the limit above is

∫ T

−T
f̂±(t)e(tx)dt, hence

we get

f±(x) =

∫ T

−T
f̂±(t)e(tx)dt

for all x. Moreover the function

∫ T

−T
f̂±(t)e2πitzdt is an entire function of

z. Therefore f± is the restriction to the real axis of an entire function.

Proof. We may suppose that T ≥ 1. Let

∆T (x) = T

(
sinπTx

πTx

)2

and JT (x) =
3T

4

(
sinπTx/2

πTx/2

)4

be the Fejer and Jackson kernels respectively. These functions have a peak

of height � T and width � 1/T at 0, and have a total mass 1 by Theorem
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1.12.

Now put

f(x) = (E ∗ JT )(x) =

∫ +∞

−∞
E(u)JT (x− u)du.

This is a weighted average of the values of E(u) with special emphasis on

those u near x.

Next we show that

f(x) = E(x) +O(min(1, 1/(Tx)2)). (∗∗)

To see this we consider several cases.

If |x| ≤ 1/T , we observe that 0 ≤ f(x) ≤
∫ +∞

−∞
JT (u)du = 1.

If x ≥ 1/T ,

0 ≤ f(x)� 1

T 3

∫ 0

−∞
(x− u)−4du� 1/(Tx)3.

Note that

f(x)− E(x) =

∫ +∞

−∞
(E(u)− E(x))JT (x− u)du,

since

∫ +∞

−∞
JT (u)du = 1.

Now, suppose that −1 ≤ x ≤ −1/T . If 2x ≤ u ≤ 0 then

E(u)− E(x) = ex(eu−x − 1) = ex(u− x+O((u− x)2)).

Therefore∫ 0

2x
(E(u)−E(x))JT (x−u)du = −ex

∫ −x
x

uJT (u)du+O

(∫ −x
x

u2JT (u)du

)
.

Note that the first integral on the right above vanishes since the integrand

is an odd function, furthermore the second integral is� 1/T 2. On the other

hand ∫ ∞
0

(E(u)− E(x))JT (x− u)du� 1

T 3

∫ ∞
−x

1

u4
du� 1/|Tx|3

27



and similarly

∫ 2x

−∞
(E(u)−E(x))JT (x− u)du� 1/|Tx|3, so we have (∗∗) in

this case.

Finally, suppose that x ≤ −1. Then

E(u)− E(x) = ex(u− x+O((u− x)2))

for x− 1 ≤ u ≤ x+ 1, so that∫ x+1

x−1
(E(u)− E(x))JT (x− u)du = −ex

∫ 1

−1
uJT (u)du+O

(
ex
∫ 1

−1
u2JT (u)du

)
� exT−2 � 1/(Tx)2.

Also,∫ x−1

−∞
(E(u)− E(x))JT (x− u)du� exT−3

∫ ∞
1

u−4du� 1/(Tx)2

and ∫ ∞
x+1

(E(u)− E(x))JT (x− u)du� T−3x−4,

hence we have (∗∗) again.

Now observe that ∆T (x) � T min(1, 1/(Tx)2), but there is no inequality

in the reverse direction since ∆T (x) = 0 at integral multiples of 1/T . To

overcome this problem we consider a translate of the Fejer kernel. Since

∆T (x) + ∆T (x+ 1/(2T ))� T min(1, 1/(Tx)2)

we take f±(x) = f(x)± c

T

(
∆T (x) + ∆

(
x+

1

2T

))
.

By (∗∗), we see that if c is large enough, then f− ≤ E(x) ≤ f+ for all

x. Next we show these functions satisfy the conditions (i), (ii), (iii). By

Fubini’s theorem, if f1, f2 ∈ L1(R) then so is f1 ∗ f2 and f̂1 ∗ f2 = f̂1f̂2.

Hence, in particular, f ∈ L1(R) and f̂(t) = Ê(t)ĴT (t). But ĴT (t) = 0 for

|t| ≥ T , thus f̂(t) = 0 for |t| ≥ T . Similarly ∆̂T (t) = 0 for |t| ≥ T , thus we

have (i) and (ii).

Lastly, by Fubini’s theorem again, we obtain that∫ +∞

−∞
f(x)dx =

(∫ ∞
−∞

E(x)dx

)(∫ ∞
−∞

JT (u)du

)
= 1,
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hence

∫ ∞
−∞

f±(x)dx = 1± 2c

T
. Now, to satisfy the (iii), we take T ≥ c/ε.

3.2 The Theorem of Wiener-Ikehara and Its Corollaries

Now we are ready to prove Wiener-Ikehara Tauberian Theorem.

Theorem 3.3. Suppose that the function a(u) is non-negative and incresing

on [0,∞), that α(s) =

∫ ∞
0

e−usda(u) converges for all s with σ > 1, and

that r(s) = α(s) − c
s−1 extends to a continuous function in the closed half-

plane σ ≥ 1.

Then

∫ x

0
1da(u) = cex + o(ex).

First we prove the theorem and then we deduce its corollaries which

consists of the Prime Number Theorem. The theorem was first proved by

Ikehara in 1931 who assumed that α(s)− c
s−1 is analytic in the closed half-

plane σ ≥ 1. Wiener(1932) showed that mere continuity is enough.

Proof. Take δ > 0 and let E(u) be the same function in the Lemma 3.1.

Then we can write

∫ ∞
0

e−usda(u) = ex
∫ ∞

0
E(u − x)e−(1+δ)uda(u) and by

the previous Lemma this is ≤ ex
∫ ∞

0
f+(u − x)e−(1+δ)uda(u). Now by the

Remark 3.2, this is equal to

ex
∫ ∞

0

(∫ T

−T
f̂+(t)e(tu− tx)dt

)
e−(1+δ)uda(u).

By Fubini’s theorem we are allowed to interchange the order of integration.

This will enable us to work with the function e(x) = e2πix in the inner

integral. Thus by interchanging the order of integration the above integral

becomes

ex
∫ T

−T
f̂+(t)e(−tx)

∫ ∞
0

e−(1+δ−2πit)uda(u)dt

= ex
∫ T

−T
f̂+(t)e(−tx)α(1 + δ − 2πit)dt.

Now we make an important observation. If a(u) = eu then α(s) = 1
s−1 and
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from the calculation above we reach that∫ ∞
0

f+(u− x)e−δudu =

∫ T

−T
f̂+(t)e(−tx)

1

δ − 2πit
dt.

Therefore from the previous observation we obtain that∫ ∞
0

e−uδda(u) ≤ ex
∫ T

−T
f̂+(t)e(−tx)r(1+δ−2πit)dt+cex

∫ ∞
0

f+(u−x)e−δudu.

Now since the function r(s) is uniformly continuous in the closed rectangle

1 ≤ σ ≤ 1 + δ, |t| ≤ 2πT , each of the three terms above tends to a limit as

δ → 0+. Thus we obtain∫ ∞
0

1da(u) ≤ ex
∫ T

−T
f̂+(t)e(−tx)r(1− 2πit)dt+ cex

∫ ∞
0

f+(u− x)du.

Now we divide both sides with ex and let x → ∞. By Riemann-Lebesgue

lemma, the first integral on the right tends to 0 as x→∞, and the second

integral on the right tends to c

∫ ∞
−∞

f+(u)du which is less than c(1 + ε) by

the Lemma 3.1. Thus we obtain that

lim sup
x→∞

e−x
∫ ∞

0
1da(u) ≤ c

∫ ∞
−∞

f+(u)du ≤ c(1 + ε).

Similarly by using the function f−, we can also show that

lim inf
x→∞

e−x
∫ ∞

0
1da(u) ≥ c(1− ε).

Since ε > 0 is arbitrary we have the Theorem.

By making the change of variable a(u) = A(eu) we obtain the following

equivalent formulation of the theorem.

Corollary 3.4. Suppose A(v) is non-negative and increasing function on

[0,∞), that α(s) =

∫ ∞
1

v−sdA(v) converges for all σ > 1 and that

r(s) = α(s) − c
s−1 extends to a continuous function in the closed half-

plane σ ≥ 1. Then ∫ ∞
1

1dA(v) = cx+ o(x).
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By setting A(v) =
∑
n≤v

an, we get a useful Tauberian Theorem for Dirich-

let series.

Corollary 3.5. (Wiener-Ikehara) Suppose that an ≥ 0 for all n, that α(s) =
∞∑
n=1

an
ns

converges for all s with σ > 1 and that r(s) = α(s)− c
s−1 extends to

a continuous function in the closed half-plane σ ≥ 1. Then∑
n≤x

an = cx+ o(x).

Corollary 3.6. (Prime Number Theorem) We have ψ(x) ∼ x.

Proof. Taking an = Λ(n), we have∑
n≤x

Λ(n) = x+ o(x)

since
∞∑
n=1

Λ(n)

ns
= −ζ

′(s)

ζ(s)
satisfies the conditions of the Corollary 3.5 with

c = 1 via Theorem 2.3.

Now first we show directly that M(x) =
∑
n≤x

µ(n) = o(x), then we show

M(x) = o(x) iff Prime Number Theorem.

Corollary 3.7. M(x) = o(x).

Proof. We take an = 1 + µ(n). Then an ≥ 0 for all n ≥ 1 and

α(s) =
∞∑
n=1

an
ns

= ζ(s) +
1

ζ(s)
converges for all s with σ > 1 and α(s) −

1
s−1 extends to a continuous function in σ ≥ 1 by Theorem 2.3. Thus by

Corollary 3.5, we get
∑
n≤x

an = [x] + M(x) ∼ x. Hence we obtain that

M(x) = o(x).

Corollary 3.8. Prime Number Theorem iff M(x) = o(x).

Proof. We take an = 1 + µ(n) + Λ(n). Then an ≥ 0 for all n ≥ 1 and

α(s) =
∞∑
n=1

an
ns

= ζ(s) +
1

ζ(s)
− ζ ′(s)

ζ(s)
converges for all s with σ > 1 and

α(s)− 2

s− 1
extends to a continuous function in σ ≥ 1 by Theorem 2.3.
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Thus by Corollary 3.5, we get
∑
n≤x

an = [x] +M(x) + ψ(x) ∼ 2x. Hence we

obtain that M(x) = o(x) iff ψ(x) ∼ x.

Now we can prove the Prime Number Theorem for arithmetic progres-

sions by applying Wiener-Ikehara Tauberian Theorem. Similar to the classi-

cal Prime Number Theorem , we require that for a given character χ modulo

q, L(s, χ) does not vanish on the line σ = 1.

Corollary 3.9. Let q ≥ 1 be a fixed modulus and a be a positive integer

with (a, q) = 1. Then we have

ψ(x; q, a) =
∑
n≤x

n≡a (mod q)

Λ(n) =
x

ϕ(q)
+ o(x).

Proof. Consider the Dirichlet Series α(s) =
∑
n≤x

n≡a (mod q)

Λ(n)

ns
where σ > 1.

Thus α(s) is analytic in σ > 1. By using the orthogonality relation of

characters we obtain that

α(s) =

∞∑
n=1

Λ(n)

ns

(
1

ϕ(q)

∑
χ

χ(a)χ(n)

)

=
1

ϕ(q)

∑
χ

χ(a)

∞∑
n=1

χ(n)Λ(n)

ns

=
1

ϕ(q)

∑
χ

χ(a)

(
− L′(s, χ)

L(s, χ)

)
=

1

ϕ(q)

(
− L′(s, χ0)

L(s, χ0)

)
+

1

ϕ(q)

∑
χ 6=χ0

χ(a)

(
− L′(s, χ)

L(s, χ)

)
.

Since

(
− L′(s, χ0)

L(s, χ0)

)
− 1

s− 1
and for any non-principal character χ,

(
− L′(s, χ)

L(s, χ)

)
can be continuously extended to the half-plane σ ≥ 1 by (2.17), we see that

α(s)− c

s− 1
can be continuously extended to the half-plane σ ≥ 1 where

c =
1

ϕ(q)
. Hence by Corollary 3.5 we get that ψ(x; q, a) ∼ x

ϕ(q) .

Using Abel’s summation, we have the Prime Number Theorem for arith-

metic progressions.
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Corollary 3.10. Let q ≥ 1 be a fixed modulus and a be a positive integer

with (a, q) = 1. Then we have

π(x; q, a) =
∑
p≤x

p≡a (mod q)

1 ∼ x

ϕ(q) log x
.
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4 Beurling’s Prime Number Theorem

In this section we prove a generalized version of the Prime Number Theorem.

First we define Beurling type of integers that is sometimes called the semi-

group on integers. Now let P be a set of primes and B be its complementary

set in the set of all primes. Let 〈P 〉 = NP be the integers that are coprime

to all primes in B, thus

NP = 〈P 〉 =


k∏
j=1

p
aj
j : k ≥ 1, aj ≥ 0, pj ∈ P


= {n ≥ 1 : (n, p) = 1 ∀p ∈ B}.

Also we define NP (x) and P (x) be the counting functions of NP and P

respectively.

For example if P is the set of all primes then NP (x) = [x] = x + O(1) and

if P is the set of all odd primes then NP (x) = x
2 +O(1).

The question is knowing the asmyptotic behavior of NP (x), can we deter-

mine the asymptotic behavior of P (x)? What growth condition must NP (x)

have in order to prove

P (x) ∼ x

log x
?

In this chapter we answer this question. Similar to Chapter 2, we study the

function ΛP (n) which is defined by ΛP (n) = Λ(n) if n ∈ NP and ΛP (n) = 0

otherwise.

One can easily show that P (x) ∼ x
log x iff ψP (x) =

∑
n≤x

ΛP (n) ∼ x by apply-

ing Abel’s summation (partial summation) formula.

Now we define the generating function of NP , namely

ζP (s) =
∑
n∈NP

1

ns

for σ > 1. This function is called the Beurling-Zeta function.

By Euler product formula, for σ > 1 we have

ζP (s) =
∏
p∈P

(1− 1

ps
)−1.

Therefore ζP (s) does not have a zero in σ > 1.
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Note also that, for σ > 1 we have

∞∑
n=1

ΛP (n)

ns
= −

ζ ′P (s)

ζP (s)
.

First we obtain an analytic continuation of this function under some

conditions that depend on the asymptotic behavior of NP (x). Then we

show ζP (s) cannot have a zero on the line σ = 1 under the same conditions.

(Because this is significiant so as to prove P (x) ∼ x
log x .) Our main tool will

be the Wiener-Ikehara Tauberian theorem because otherwise, in order to

apply Perron’s formula, we have to put bounds on the functions ζP (s) and

its derivative at infinity. Moreover we have to pass to the left of the line

σ = 1. But this can be difficult or sometimes impossible since the function

depends on the set P.

Lemma 4.1. Suppose

NP (x) = cx+O

(
x

(log x)λ

)
(4.1)

where c is some positive constant and λ > 3
2 . Then we can extend the defi-

nition of ζP (s) to the half-plane σ ≥ 1 so that

ζP (s) =
c

s− 1
+ r0(s)

and r0(s) is continuous in σ ≥ 1. Furthermore ζP (s) does not vanish on the

line σ = 1.

Proof. Note that ζP (s) is a Dirichlet Series with σa = 1. For σ > 1 by Abel’s

summation we have ∑
n≤x
n∈〈P 〉

1

ns
=
NP (x)

xs
+ s

∫ x

1

NP (u)

us+1
du.

Therefore

ζP (s) = s

∫ ∞
1

NP (u)

us+1
du =

cs

s− 1
+ s

∫ ∞
1

(NP (u)− cu)

us+1
du.

From (4.1) we know that

∫ ∞
1

(NP (u)− cu)

u2
du < ∞. Hence the integral is
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uniformly convergent in σ ≥ 1 and therefore the integral is continuous in

σ ≥ 1. So we can extend the definition of ζP (s) so that

ζP (s) =
c

s− 1
+ r0(s)

and r0(s) is continuous in σ ≥ 1.

Also for σ > 1, ζ ′P (s) = − c
(s−1)2

+ r1(s) where

r1(s) = r′0(s) =

∫ ∞
1

(NP (u)− cu)

us+1
du−

∫ ∞
1

(NP (u)− cu) log u

us+1
du.

Next we show that ζP (1+ it) 6= 0 when t is real and non-zero. Now we make

a crucial observation which is not true if λ ≤ 3
2 .

First note that∫ ∞
2

(log u)1−λ

uσ
du =

∫ ∞
log 2

v1−λe−(σ−1)vdv

= (σ − 1)λ−2

∫ ∞
(σ−1) log 2

u1−λe−udu

� (σ − 1)−
1
2

+δ

where δ = δ(λ) > 0.

Now combining (4.1) and the observation above we get

r1(s)� (σ − 1)−
1
2

+δ.

Consequently if t is fixed and non-zero, then

ζP (σ + it)− ζP (1 + it) =

∫ σ

1
ζ ′P (α+ it)dα� (σ − 1)

1
2

+δ

for σ > 1 and σ near 1. By Euler product formula for σ > 1 we have

ζP (s) =
∏
p∈P

(
1− 1

ps

)−1

.

Taking logarithm of both sides, we obtain that log ζP (s) =
∑
p∈P

∞∑
r=1

1

rprs
.

(As in the proof of Theorem 2.3, the trigonometric polynomial 3 + 4 cos θ+

cos 2θ may not work. So instead of this trigonometric polynomial, we work
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with another non-negative trigonometric polynomial a0 +
∑K

k=1 ak cos kθ for

which the ratio a1/a0 is larger.)

Note that ∆K(θ) = 1 + 2
K∑
k=1

(
1− k

K

)
=

1

K

(
sinπKθ

sinπθ

)2

≥ 0.

Thus if σ > 1 then ,

K∏
k=−K

(
ζP (σ + ikt)

)1−|k|/K
= exp

(∑
p∈P

∞∑
r=1

1

rprs
∆K(rt(log p)/(2π))

)
.

Now since ζP (σ − it) = ζP (σ + it), we have |ζP (σ − it)| = |ζP (σ + it)|.
From the observation above we see that

ζP (σ)
K∏
k=1

∣∣∣∣(ζP (σ + ikt))2(1−|k|/K)

∣∣∣∣ ≥ 1.

Assume t 6= 0 is a fixed real number. As σ → 1+, |ζP (σ + ikt)| tends to

a finite limit for k = 1, ..,K. Moreover since ζP (σ) � 1
σ−1 , we get that

|ζP (σ + it)| � (σ − 1)K/2(K−1)

as σ → 1+.

Now suppose that ζP (1+ it) = 0. We know that ζP (σ+ it)� (σ−1)
1
2

+δ.

Therefore as σ → 1+ we have

(σ − 1)
1
2

+δ � (σ − 1)
K

2(K−1) .

This gives a contradiction if K > 1 + 1
2δ .

Hence ζP (1 + it) 6= 0 as desired.

4.1 Generalized Prime Number Theorem

Now we are ready to prove a generalized version of the prime number theo-

rem. The following theorem was first proved by Beurling in 1937.

Theorem 4.2. Suppose (4.1) where c is some positive constant and λ > 3
2 .

Then we have P (x) ∼ x
log x .
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Before proving this heorem, note that this Theorem is really general-

ization of the classical Prime Number Theorem since if P is the set of all

primes then NP (x) = [x] = x+O(1).

Proof. We define ΛP (n) = Λ(n) if n ∈ NP and ΛP (n) = 0 otherwise.

One can easily show that P (x) ∼ x
log x iff ψP (x) =

∑
n≤x

ΛP (n) ∼ x by apply-

ing Abel’s summation (partial summation) formula.

Moreover note that for σ > 1,

∞∑
n=1

ΛP (n)

ns
= −

ζ ′P (s)

ζP (s)

and

−
ζ ′P (s)

ζP (s)
=

1

s− 1
+ r(s)

where

r(s) =
−r0(s) + (s− 1)r1(s))

(s− 1)ζP (s)

and r0(s) ,r1(s) are same as in the Theorem 15.

If λ > 2 then the functions r0(s) and r1(s) are continuous in σ ≥ 1

since from (2) the integral∫ ∞
1

(NP (u)− cu) log u

u2
du <∞.

Therefore r(s) is continuous in σ ≥ 1 by Theorem 4.1. Hence by Wiener-

Ikehara Tauberian theorem, we obtain that ψP (x) ∼ x and so P (x) ∼ x
log x .

From now on we assume 3
2 < λ ≤ 2.

Under this condition we cannot ensure that r1(s) is continuous thus we

cannot guarantee that r(s) is continuous. Thus we benefit from the fact

that r1(s) is bounded in mean-square by Plancherel’s identity (2.15). So we

follow a similar proof of Wiener-Ikehara theorem and we apply Plancherel’s

identity.

Suppose that δ > 0, that T is a large positive number, and that E(u) is

defined as in Lemma 3.1. Then∑
n≤x
n∈NP

Λ(n)n−δ = x
∑
n∈

Λ(n)n−1−δE(log n− log x)
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which by Lemma 3.1 is

≤ x
∑
n∈NP

Λ(n)n−1−δf+(log n− log x)

≤ x
∑
n∈NP

Λ(n)n−1−δ
∫ T

−T
f̂+(t)

(
x

n

)−2πit

dt

= −x
∫ T

−T
f̂+(t)x−2πit ζ

′
P

ζP
(1 + δ − 2πit)dt. (4.2)

Note that, similarly∫ ∞
1

u−1−δf+(log u− log x)du =

∫ ∞
1

u−1−δ
∫ T

−T
f̂+(t)

(
x

n

)−2πit

dudt

=

∫ T

−T
f̂+(t)x−2πit

∫ ∞
1

u−1−δ+2πitdudt

=

∫ T

−T
f̂+(t)x−2πit 1

δ − 2πit
dt.

We multiply both sides of this by x and combine with (4.2) to see that

∑
n≤x
n∈NP

Λ(n)n−δ ≤ x
∫ ∞

1
u−1−δf+(log u− log x)du (4.3)

+ x

∫ T

−T
f̂+(t)x−2πit

(
−
ζ ′P
ζP

(1 + δ − 2πit)− 1

δ − 2πit

)
dt.

By using our formula for ri(s) in terms of integrals we see that we may write

r1(s) = r′0(s) = −sJ(s+
r0(s)− c

s
)

where

J(s) =

∫ ∞
1

(NP (u)− cu)(log u)u−s−1du,

and

−ζ ′P (s) =
c

(s− 1)2
− r0(s)− c

s
+ sJ(s).

Thus

−
ζ ′P
ζP

(s)− 1

s− 1
=
c(s− 1) + (1− 2s)r0(s)

s(s− 1)ζP (s)
+

s

ζP (s)
J(s)
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and by splitting the integral at Ω, where Ω is a large parameter , we have

−
ζ ′P
ζP

(s)− 1

s− 1
= C(s) +R(s)

where

R(s) =

∫ ∞
Ω

(NP (u)− cu)(log u)u−s−1du

and C(u) is continuous for σ ≥ 1. We consider first contribution of the

remainder R(s) to (4.3). By the Cauchy-Schwartz inequality, we see that

∣∣∣∣ ∫ T

−T
f̂+(t)x−2πitR(1 + δ − 2πit)dt

∣∣∣∣2
≤
(∫ T

−T

∣∣∣∣f̂+(t)
1 + δ − 2πit

ζP (1 + δ − 2πit)
x−2πit

∣∣∣∣2dt)(∫ T

−T

∣∣∣∣ ∫ ∞
Ω

(NP (u)− cu)(log u)

u−2+δ−2πit
du

∣∣∣∣2dt).
(4.4)

In Plancherel’s identity (2.15), we take σ = 1 + δ and w(u) = (NP (u)−
cu) log u for u ≥ Ω, w(u) = 0 otherwise. Thus we see that∫ ∞
−∞

∣∣∣∣ ∫ ∞
Ω

(NP (u)−cu)(log u)u−2+δ−2πitdu

∣∣∣∣2dt =

∫ ∞
Ω

(NP (u)−cu)2(log u)2u−3−2δdu,

which by (4.1) is

�
∫ ∞

Ω
u−1(log u)2−2λdu�λ (log Ω)3−2λ

uniformly for δ > 0. The first integral on the right-hand side of (4.4) is also

uniformly bounded as δ → 0, because ζP (1 + it) 6= 0. Thus the contribution

of R(s) to (4.3) is �λ (log Ω)3/2−λ, uniformly for δ > 0. Therefore if we let

δ → 0 in (4.2) and divide both sides by x, we obtain that

ψP (x)

x
≤
∫ ∞

1
u−1f+(log u−log x)du+

∫ T

−T
f̂+(t)x−2πitC(1−2πit)dt+Oλ((log Ω)3/2−λ).

Thus as x→∞, the first integral on the right of the above inequality tends

to

∫ ∞
−∞

f+(v)dv. Also since f̂+(t)C(1 − 2πit) is continuous, by Riemann-

Lebesgue lemma the second integral on the right of the above inequality
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tends to 0 as x→∞. Hence

lim sup
x→∞

ψP (x)

x
≤
∫ ∞
−∞

f+(v)dv +Oλ((log Ω)3/2−λ).

So by Lemma 3.1, we know that the integral on the right is < 1 + ε if T is

sufficiently large. Since Ω might also be taken arbitrarily large, we conclude

that

lim sup
x→∞

ψP (x)

x
≤ 1.

Similarly using the function f−, we can show that

lim inf
x→∞

ψP (x)

x
≥ 1.

Thus we have

ψP (x) ∼ x.

Hence we have the generalized Prime Number Theorem

P (x) ∼ x

log x
.

So far we have discussed generalized Prime Number Theorem without

an error term. This results from two the following two reasons. The first

reason is that we apply Wiener-Ikehara Tauberian theorem and this theorem

gives just an asymptotic result. The second reason is that, in order to get

an error term in the Prime Number Theorem we need to apply Perron’s

formula, thus we have to work with the function ζP (s) in the left side of

the line σ = 1. However if we assume (4.1) with some λ > 0 we cannot

ensure that ζP (s) has an analytic continuation to the left of σ = 1. Thus we

require better error term in (4.1). If we have NP (x) = cx+O(xθ) for some

c > 0 and θ < 1 then we can guarantee at least that ζP (s) has an analytic

continuation to σ > θ. Applying the same method in the proof of the Prime

Number Theorem with classical error term O(xe−c
′√log x), we can prove the

following Theorem.

Theorem 4.3. Suppose we have

NP (x) = cx+O(xθ)
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for some c > 0 and θ < 1. Then we have P (x) = Li(x) +O(xe−c
′√log x) for

some constant c′ > 0.

4.2 Möbius Function over Semi-Groups

Now we define the Mobius function over a semi-group on integers and we

discuss when the partial sums of the Mobius function over a semi-group has

a cancelation.

Define MP (x) =
∑
n≤x
n∈NP

µ(n) =
∑
n≤x

µP (n), where µP (n) = µ(n) if n ∈ NP

and µP (n) = 0 otherwise. Then observe that, for σ > 1 we have

∞∑
n=1

µP (n)

ns
=

1

ζP (s)
.

Since the Dirichlet series of µP (n) only depends on ζP (s) and not on ζ ′P (s),

we expect that it is easier to work with MP (x). Indeed this is the case and

compared to the Theorem 4.2 , proving MP (x) = o(x) under the condition

(4.1) is much easier.

Theorem 4.4. Suppose (4.1) with λ > 3/2. Then we have MP (x) = o(x).

Proof. Since we have (4.1) with λ > 3/2, by Theorem 4.1 the function ζP (s)

does not vanish on the line σ = 1. Thus the Dirichlet series

α(s) =

∞∑
n=1
n∈NP

1 + µ(n)

ns
= ζP (s) +

1

ζP (s)

is analytic in σ > 1 and α(s)− c
s−1 extends to a continuous function in the

closed half-plane σ ≥ 1. Hence by Wiener-Ikehara Tauberian theorem we

obtain that NP (x) +MP (x) ∼ cx and so MP (x) = o(x).

In the previous chapter we showed that Prime Number Theorem is equiv-

alent to M(x) = o(x). In fact by mimicking the proof of the Theorem 4.2,

we can prove the following Theorem.

Theorem 4.5. Suppose we have (4.1) with λ > 3/2. Then P (x) ∼ x
log x iff

MP (x) = o(x).
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Remarks: Zhang show that (see [34]) if (4.1) holds with λ > 1 then it is

still true that MP (x) = o(x). This is a bit surprising compared to the classi-

cal case π(x) ∼ x/ log x iff M(x) = o(x), because when 1 < λ ≤ 3/2, Prime

Number Theorem may fail (see [13]) but we can still have MP (x) = o(x).

Thus it seems that partial sums of the Mobius function have a tendency

to make a cancelation on semi-groups that even have not very much prime

numbers. Based on this observation in the next chapter we discuss the Mo-

bius function supported on a semi-group of integers and we give quantiative

upper bounds for partial sums of the Mobius function supported on a semi-

group. The next chapter is the main part of my thesis and it is a joint work

with Emre Alkan.
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5 Sums over the Möbius function and discrepancy

of fractions

In this chapter we obtain quantitative upper bounds on partial sums of the

Möbius function over semigroups of integers in an arithmetic progression.

Exploiting the cancelation of such sums, we deduce upper bounds for the

discrepancy of fractions in the unit interval [0, 1] whose denominators satisfy

the same restrictions. In particular, the uniform distribution and approxi-

mation of discrete weighted averages of such fractions are established as a

consequence.

5.1 Introduction

Let µ(n) be the Möbius function. Estimating the size of the partial sum

M(x) =
∑
n≤x

µ(n)

received continuous attention for a long time in the literature since for any

fixed but arbitrary ε > 0, the collection of estimates M(x) �ε x
1
2

+ε is

known to be equivalent to the Riemann hypothesis. Current unconditional

estimates on M(x) are far from being as satisfactory as the conditional ones,

and the best such result is of form

M(x)� x exp

(
− C (log x)

3
5

(log log x)
1
5

)

for some constant C > 0. This estimate is deduced from the strongest zero-

free region for the Riemann zeta function due to Vinogradov and Korobov

[23], [33]. Even the weaker estimate M(x) = o(x) is equivalent to the prime

number theorem and this equivalence is proved in any introductory course

of analytic number theory. For detailed accounts of deeper connections

between M(x) and the distribution of zeros of the Riemann zeta function,

we refer the reader to [12], [31]. Our main concern in this section is to obtain

cancelation for partial sums of the Möbius function when n ≤ x ranges over

certain semigroups of integers. Precisely, if P is a set of primes, then the

44



semigroup generated by all primes in P is the set

〈P 〉 =


k∏
j=1

p
aj
j : k ≥ 1, aj ≥ 0, pj ∈ P

 .

Alternatively, if B is the set of all primes not in P , then 〈P 〉 can be viewed

as the set of all remaining integers after sieving by the primes in B. The

asymptotic theory of such semigroups were first investigated by Beurling [8]

(although the original motivation can be traced back to the work of Landau

[24] on the number of prime ideals in algebraic number fields whose norms are

≤ x) who proved a vast generalization of the prime number theorem valid

for such semigroups (see also [22] for a nice exposition of many different

aspects of the theory). In particular, if NP (x) and P (x) are the counting

functions of 〈P 〉 and P respectively, then Beurling proved that

NP (x) = cx+O

(
x

(log x)λ

)
with constants c > 0 and λ > 3

2 implies the asymptotic P (x) ∼ x
log x . In

connection with this paper, disproving a conjecture of Hall [19] and devel-

oping a variant of the Halász-Wirsing method, Zhang [34] has particularly

shown, among other things, that if

NP (x) = cx+O

(
x

(log x)λ

)
holds with constants c > 0 and λ > 1, then∑

n≤x
n∈〈P 〉

µ(n) = o(x).

This is a surprising phenomenon for such Möbius sums since, unlike the

classical case, the corresponding prime number theorem is not in general

true when 1 < λ ≤ 3
2 . Motivated by Zhang’s result, we give quantitative

cancelations for partial sums of the Möbius function over integers in 〈P 〉
that are in a given arithmetic progression.
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Theorem 5.1. Let B be a set of primes such that

B(x) = #{p ≤ x : p ∈ B} � x

(log x)λ

with 1 < λ < 2. Let P be the set of all primes that are not in B and denote

by 〈P 〉, the set of integers all of whose prime factors are in P . Then for any

fixed k ≥ 1, (b, k) = 1 and x ≥ 2, we have

MP,b,k(x) =
∑
n≤x
n∈〈P 〉

n≡b (mod k)

µ(n) = Ok,B

(
x

(log x)λ−1

)
,

where the implied constant depends only on k and B. Moreover, if B(x)�
x

log2 x
, then for (b, k) = 1 and x ≥ 3

MP,b,k(x) =
∑
n≤x
n∈〈P 〉

n≡b (mod k)

µ(n) = Ok,B

(
x log log x

log x

)
.

Finally, if B(x)� x
(log x)λ

with λ > 2, then for (b, k) = 1 and x ≥ 2

MP,b,k(x) =
∑
n≤x
n∈〈P 〉

n≡b (mod k)

µ(n) = Ok,B

(
x

log x

)
.

Some remarks are now in order. First of all, the trivial estimate gives

|MP,b,k(x)| ≤ #{n ≤ x : n ∈ 〈P 〉 , n ≡ b (mod k)},

and it is possible to show by a similar reasoning as in the proof of Lemma

5.6 below that the set of all n ∈ 〈P 〉 with n ≡ b (mod k) has positive lower

density. This justifies the cancelation obtained for MP,b,k(x) in Theorem

5.1. Moreover, by the result of Beurling [8], the estimate

NP (x) = cx+O

(
x

(log x)λ

)
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with c > 0 and λ > 3
2 implies that

P (x) = π(x) + o

(
x

log x

)
,

and

B(x) = o

(
x

log x

)
follows. Therefore, the sieve conditions B(x)� x

(log x)λ
with λ > 1, used in

Theorem 5.1 are compatible with this consequence. Our method for proving

Theorem 5.1 is indeed flexible and in addition we can even obtain similar

cancelation for MP,b,k(x) over arithmetic progressions with large moduli,

namely when k is allowed to grow with x.

Theorem 5.2. Let B and P be complementary sets of primes as in Theorem

5.1. Assuming B(x) � x
(log x)λ

with 1 < λ < 2 and 1 ≤ k ≤ log x, we have

for (b, k) = 1 and x ≥ e that

MP,b,k(x) =
∑
n≤x
n∈〈P 〉

n≡b (mod k)

µ(n) = OB

(
x

(log x)λ−1

)
.

Here the implied constant depends only on B. Moreover, assuming B(x)�
x

log2 x
and 1 ≤ k ≤ log x, we have for (b, k) = 1 and x ≥ 3 that

MP,b,k(x) =
∑
n≤x
n∈〈P 〉

n≡b (mod k)

µ(n) = OB

(
x log log x

log x

)
.

Finally, assuming B(x) � x
(log x)λ

with λ > 2 and 1 ≤ k ≤ log x, we have

for (b, k) = 1 and x ≥ e that

MP,b,k(x) =
∑
n≤x
n∈〈P 〉

n≡b (mod k)

µ(n) = OB

(
x

log x

)
.

Note that, because of the trivial estimate MP,b,k(x) = O
(
x
k

)
, only under the

conditions k = o
(
(log x)λ−1

)
, o
(

log x
log log x

)
, o(log x), nontrivial cancelation

is obtained in Theorem 5.2. It is possible to make interesting choices for
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the set B above. As a consequence of Selberg’s Λ2 sieve [28], the number of

twin primes that are ≤ x is � x
log2 x

. Therefore, one could possibly take B

as the set of twin primes in Theorems 5.1 and 5.2.

For Q ≥ 1, let FQ denote the Farey fractions of order Q in the unit

interval [0, 1]. It is well known that

|FQ| = N(Q) =
3Q2

π2
+O(Q logQ).

For 0 ≤ α ≤ 1, let M(α,Q) be the number of Farey fractions of order Q

that are ≤ α. Then the local discrepancy of FQ at α is defined by

RN(Q)(α) =

∣∣∣∣M(α,Q)

N(Q)
− α

∣∣∣∣ .
The average behavior of the moments of the local discrepancy is a central

problem since Franel [18] and Landau [25] showed that the Riemann hy-

pothesis is equivalent to both of the estimates

N(Q)∑
j=1

R2
N(Q)(γj) = Oε

(
Q−1+ε

)
and

N(Q)∑
j=1

RN(Q)(γj) = Oε

(
Q

1
2

+ε
)

for every ε > 0, where 1
Q = γ1 < γ2 < ... < γN(Q) = 1 are the Farey

fractions of order Q in increasing order. In another direction, Erdös, Kac,

Van Kampen and Wintner [16] proved that FQ is uniformly distributed as

Q → ∞, namely that RN(Q)(α) → 0 as Q → ∞ for all 0 ≤ α ≤ 1. This

shows that the absolute discrepancy of FQ which is defined as

DN(Q)(FQ) = sup
0≤α≤1

RN(Q)(α)

tends to 0 as Q→∞. In [5] anf [6], the authors focused on the effect of ad-

dition of Farey fractions and addition of torsion points on elliptic curves to

pair correlation measures. In recent years there has been increasing interest

for the distribution of subsets of FQ that are defined by certain sieve condi-

tions on the denominators of the fractions. Boca, Cobeli and Zaharescu [9]

and Haynes [20] studied the distribution of fractions with odd denominators.

Then Haynes [21] extended his results to fractions whose denominators are
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not divisible by a fixed prime p. Let B be a set of primes such that

∑
p∈B

1

pσ
<∞

for some σ < 1. For a given modulus k, let FQ,b,k,B be the set of all Farey

fractions a
q of order Q such that q ≡ b (mod k), (b, k) = 1 and q is not

divisible by any prime in B. Let

DNQ,b,k,B (FQ,b,k,B) = sup
0≤α≤1

RNQ,b,k,B (α)

be the absolute discrepancy, where similarly as above

RNQ,b,k,B (α) =

∣∣∣∣M(α,Q, b, k,B)

NQ,b,k,B
− α

∣∣∣∣
is the local discrepancy with NQ,b,k,B = |FQ,b,k,B| and M(α,Q, b, k,B) =

|FQ,b,k,B ∩ [0, α]|. It is proved in [4] that

DNQ,b,k,B (FQ,b,k,B) � 1

Q
,

where the implied constants depend only on k and B. The condition

∑
p∈B

1

pσ
<∞

with σ < 1 was essential in [4] since the required estimates for MP,b,k(x)

depended on an application of Perron’s formula and a contour integral type

argument. Our approach here differs from that of [4] in the respect that

we give upper bounds on the absolute discrepancy of FQ,b,k,B even for large

modulus k assuming weaker sieve conditions such as B(x) � x
(log x)λ

with

λ > 1. Note that under such an assumption one can only deduce

∑
p∈B

1

p
<∞, (5.1)

and therefore one can not use the approach of [4] to handle such conditions.

We remark that the distribution of integers subject to (5.1) was first studied

by Erdös [15]. Applications of (5.1) to the non-vanishing of Fourier coeffi-

cients of modular forms are given in [1]-[3]. Armed with Theorem 5.1 and
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Theorem 5.2 above, we are able to deduce the following consequences for

the absolute discrepancy.

Corollary 5.3. If B(x) � x
(log x)λ

with 1 < λ < 2, then for all Q ≥ 2 with

NQ,b,k,B ≥ 1 and (b, k) = 1, we have

DNQ,b,k,B (FQ,b,k,B) = Ok,B

(
(logQ)2−λ

Q

)
,

where the implied constant depends only on k and B. If B(x)� x
log2 x

, then

for all Q ≥ 3 with NQ,b,k,B ≥ 1 and (b, k) = 1, we have

DNQ,b,k,B (FQ,b,k,B) = Ok,B

(
(log logQ)2

Q

)
.

If B(x) � x
(log x)λ

with λ > 2, then for all Q ≥ 3 with NQ,b,k,B ≥ 1 and

(b, k) = 1, we have

DNQ,b,k,B (FQ,b,k,B) = Ok,B

(
log logQ

Q

)
.

Corollary 5.4. If B(x) � x
(log x)λ

with 1 < λ < 2, then for all 1 ≤ k ≤
(logQ)2−λ, Q ≥ 3 with NQ,b,k,B ≥ 1 and (b, k) = 1, we have

DNQ,b,k,B (FQ,b,k,B) = OB

(
k(logQ)2−λ

Q

)
,

where the implied constant depends only on B. If B(x)� x
log2 x

, then for all

1 ≤ k ≤ (log logQ)2, Q ≥ 16 > ee with NQ,b,k,B ≥ 1 and (b, k) = 1, we have

DNQ,b,k,B (FQ,b,k,B) = OB

(
k(log logQ)2

Q

)
.

If B(x) � x
(log x)λ

with λ > 2, then for all 1 ≤ k ≤ log logQ, Q ≥ 16 > ee

with NQ,b,k,B ≥ 1 and (b, k) = 1, we have

DNQ,b,k,B (FQ,b,k,B) = OB

(
k log logQ

Q

)
.

Note that as an immediate consequence of the discrepancy estimates in

the above results, we see that the sets of fractions FQ,b,k,B are uniformly

distributed. Indeed, even under the condition (5.1), using Lemma 5.6 below
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and the trivial estimate on Möbius sums, one can again deduce the uniform

distribution of FQ,b,k,B but the corresponding discrepancy estimate would

not be as good as above. To mention a further application, let f be a

function of bounded variation V (f) on [0, 1]. Then by Koksma’s inequality,

we see that∣∣∣∣∣∣ 1

NQ,b,k,B

∑
xj∈FQ,b,k,B

f(xj)−
∫ 1

0
f(t) dt

∣∣∣∣∣∣ ≤ V (f)DNQ,b,k,B (FQ,b,k,B) .

Consequently, using our estimates on DNQ,b,k,B (FQ,b,k,B), it is possible to ap-

proximate discrete weighted averages over FQ,b,k,B by the Riemann-Stieltjes

integral on [0, 1] of the weight function f with error tending to zero as a

function of Q, k and B as Q tends to infinity.

5.2 Preliminaries

We will need the following lemmas for the proof of our results.

Lemma 5.5. For any nonnegative real number λ and x ≥ 2, define

Sλ(x) =
∑
n≤x

Λ(n)

n(1 + log(xn))λ
,

where Λ(n) is the Von-Mangoldt function. If λ > 1, then for x ≥ 2, Sλ(x) =

Oλ(1), where the implied constant depends only on λ. If λ = 1, then for

x ≥ 3, S1(x) = O(log log x). If 0 ≤ λ < 1, then for x ≥ 2, Sλ(x) =

Oλ((log x)1−λ).

Proof. First of all note that

Sλ(x) =
∑
n≤x

Λ(n)

n(1 + log(xn))λ

=
∑
p≤x

log p

p(1 + log(xp ))λ
+
∑
pm≤x
m≥2

log p

pm(1 + log( x
pm ))λ

. (5.2)

Clearly, we have

∑
pm≤x
m≥2

log p

pm(1 + log( x
pm ))λ

≤
∑
p

log p

p(p− 1)
<∞. (5.3)
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Combining (5.2) and (5.3), we see that

Sλ(x) =
∑
p≤x

log p

p(1 + log(xp ))λ
+O(1). (5.4)

Next for x ≥ 2, consider an e-adic division of the interval (1, x] into intervals

of form ( xes ,
x

es−1 ] with 1 ≤ s ≤ [log x]+1. Using Mertens’ estimate, we obtain

∑
x
es
<p≤ x

es−1

log p

p
=
(

log
( x

es−1

)
+O(1)

)
−
(

log
( x
es

)
+O(1)

)
= O(1).

(5.5)

Also assuming x
es < p ≤ x

es−1 , one has

sλ ≤
(

1 + log

(
x

p

))λ
(5.6)

for any λ ≥ 0. From (5.5) and (5.6), we may deduce that

∑
x
es
<p≤ x

es−1

log p

p(1 + log(xp ))λ
≤ 1

sλ

∑
x
es
<p≤ x

es−1

log p

p
� 1

sλ
, (5.7)

where the implied constant is absolute. It follows from (5.7) that

∑
p≤x

log p

p(1 + log(xp ))λ
=

∑
s≤[log x]+1

∑
x
es
<p≤ x

es−1

log p

p(1 + log(xp ))λ
�

∑
s≤[log x]+1

1

sλ
.

(5.8)

Note that if λ > 1, then for x ≥ 2,

∑
s≤[log x]+1

1

sλ
= Oλ(1).

Therefore, combining (5.4) and (5.8), Sλ(x) = Oλ(1) follows in this case,

where the implied constant depends only on λ. If λ = 1, then

∑
s≤[log x]+1

1

s
= O(log log x)

and S1(x) = O(log log x) follows from (5.4) and (5.8), when x ≥ 3 (so that
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log log x > 0). Finally, if 0 ≤ λ < 1, then

∑
s≤[log x]+1

1

sλ
≤ 1 +

∫ 1+log x

1

1

tλ
dt = 1 +

1

1− λ
((1 + log x)1−λ − 1) = Oλ((log x)1−λ).

Consequently, Sλ(x) = Oλ
(
(log x)1−λ) follows again from (5.4) and (5.8)

when x ≥ 2. This completes the proof of Lemma 5.5.

Lemma 5.6. Assume that B is a set of primes satisfying

∑
p∈B

1

p
<∞.

Let FQ,b,k,B be the set of all Farey fractions a
q of order Q such that q ≡ b

(mod k), (b, k) = 1 and q is not divisible by any prime in B. Let f(Q) be a

monotonically increasing function such that f(Q) = O(logQ) for all Q ≥ 2.

If 1 ≤ k ≤ f(Q) and NQ,b,k,B = |FQ,b,k,B|, then

1

NQ,b,k,B
= OB

(
k

Q2

)
for all Q ≥ 2 with NQ,b,k,B ≥ 1, where the implied constant depends only on

B.

Proof. Let P be the set of primes not in B. Clearly, we have

NQ,b,k,B = #

{
a

q
∈ FQ,b,k,B : q ∈ 〈P 〉, q ≡ b (mod k)

}
=

∑
q≤Q

q≡b (mod k)
q∈〈P 〉

ϕ(q).

We remark that since B has density zero in the set of primes, the conditions

q ≡ b (mod k) and q ∈ 〈P 〉 are not degenerate. In fact, there are infinitely

many primes q ∈ 〈P 〉 such that q ≡ b (mod k) (their density being 1
ϕ(k) in

the set of primes by the Siegel-Walfisz theorem (see [12]) when 1 ≤ k ≤ f(Q)

and f(Q) = O(logQ)). Let p1, p2, . . . , ps be the first s primes in B. Then

we have∑
q≤Q

q≡b (mod k)
q∈〈P 〉

ϕ(q) ≥
∑
q≤Q

q≡b (mod k)
(q,pj)=1 for all j≤s

ϕ(q)−
∑
q≤Q

q≡b (mod k)
q≡0 (mod pj) for some j>s

ϕ(q).

(5.9)
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Using the Inclusion-Exclusion principle, the main term on the right side of

(5.9) can be written as ∑
κ

(−1)|κ|
∑
q≤Q

q≡b (mod k)
q≡0 (mod dκ)

ϕ(q), (5.10)

where κ runs over all subsets of {1, 2, . . . , s} and dκ =
∏
j∈κ pj (empty prod-

ucts are assumed to be 1). We may assume that (k, dκ) = 1, since otherwise

there are no integers q satisfying q ≡ b (mod k) and q ≡ 0 (mod dκ). There-

fore, by the Chinese Remainder theorem, the congruences q ≡ b (mod k)

and q ≡ 0 (mod dκ) reduce to q ≡ u (mod kdκ) for a suitable u. Using

these observations, one obtains∑
q≤Q

q≡b (mod k)
q≡0 (mod dκ)

ϕ(q) =
∑
q≤Q

q≡u (mod kdκ)

ϕ(q) =
∑
d≤Q

µ(d)
∑
r≤Q

d
dr≡u (mod kdκ)

r. (5.11)

Define

N(u, d, k, dκ) := #{1 ≤ r ≤ kdκ : dr ≡ u (mod kdκ)}.

Assume that r ≡ rj (mod kdκ), 1 ≤ j ≤ N(u, d, k, dκ) are all solutions of

the congruence dr ≡ u (mod kdκ). It follows that∑
r≤Q

d
dr≡u (mod kdκ)

r =
∑

1≤j≤N(u,d,k,dκ)

∑
r≤Q

d
r≡rj (mod kdκ)

r. (5.12)

It is elementary to estimate the inner sum on the right side of (5.12) and we

obtain ∑
r≤Q

d
r≡rj (mod kdκ)

r =
Q2

2d2kdκ
+O

(
Q

d

)
+O(kdκ), (5.13)

where the implied constants in (5.13) are absolute. Therefore, (5.12) and
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(5.13) give

∑
r≤Q

d
dr≡u (mod kdκ)

r =
∑

1≤j≤N(u,d,k,dκ)

(
Q2

2d2kdκ
+O

(
Q

d

)
+O(kdκ)

)
(5.14)

=
N(u, d, k, dκ)Q2

2d2kdκ
+O

(
kdκQ

d

)
+O(k2d2

κ),

where the trivial bound N(u, d, k, dκ) ≤ kdκ is used. Using (5.14) on the

right side of (5.11), we see that

∑
q≤Q

q≡b (mod k)
q≡0 (mod dκ)

ϕ(q) =
∑
d≤Q

µ(d)

(
N(u, d, k, dκ)Q2

2d2kdκ
+O

(
kdκQ

d

)
+O(k2d2

κ)

)

(5.15)

=
Q2

2kdκ

∑
d≤Q

µ(d)N(u, d, k, dκ)

d2
+O(kdκQ logQ) +O(k2d2

κQ)

=
Q2

2kdκ

∞∑
d=1

µ(d)N(u, d, k, dκ)

d2
+O(kdκQ logQ) +O(k2d2

κQ),

since
∞∑
d=1

µ(d)N(u, d, k, dκ)

d2
<∞

and ∑
d>Q

µ(d)N(u, d, k, dκ)

d2
= O

(
kdκ
Q

)
.

Finally, gathering (5.10) and (5.15), we may rewrite the main term as

∑
κ

(−1)|κ|
(
M(u, k, dκ)Q2

2kdκ
+O(kdκQ logQ) +O(k2d2

κQ)

)
(5.16)

=
Q2

2k

∑
κ

(−1)|κ|
M(u, k, dκ)

dκ
+O(2sPsk Q logQ) +O(2sP 2

s k
2Q),

where

M(u, k, dκ) :=
∞∑
d=1

µ(d)N(u, d, k, dκ)

d2
and Ps =

s∏
j=1

pj .
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Next we show that ∑
κ

(−1)|κ|
M(u, k, dκ)

dκ

is bounded below by a positive constant depending only on B. Recall that

N(u, d, k, dκ) counts the number of solutions of the congruence dr ≡ u

(mod kdκ) or equivalently the number of solutions of the system dr ≡ b

(mod k) and dr ≡ 0 (mod dκ). If (d, k) > 1, then (b, k) > 1 so that there

are no solutions and N(u, d, k, dκ) = 0 in this case. If (d, k) = 1, then

r ≡ bd−1 (mod k) and r ≡ 0 (mod dκ
(d,dκ)) give that N(u, d, k, dκ) = (d, dκ)

(again assuming (k, dκ) = 1). Clearly, N(u, d, k, dκ) is a multiplicative func-

tion of d and one can write M(u, k, dκ) as an Euler product. Precisely, we

have

M(u, k, dκ) =

∞∑
d=1

µ(d)N(u, d, k, dκ)

d2
=
∏
p

(
1− N(u, p, k, dκ)

p2

)
(5.17)

=
∏
p

(p,k)=1

(
1− (p, dκ)

p2

)
=

6

π2

∏
p|dκ

p

p+ 1

∏
p|k

(
1− 1

p2

)−1


when (k, dκ) = 1. Note that if (k, dκ) > 1, then N(u, d, k, dκ) = 0 for all

d ≥ 1 and M(u, k, dκ) = 0. Consequently, using (5.17), we see that

∑
κ

(−1)|κ|
M(u, k, dκ)

dκ
=

∑
κ

(k,dκ)=1

(−1)|κ|
M(u, k, dκ)

dκ
(5.18)

=
6

π2

∏
p|k

(
1− 1

p2

)−1 ∑
κ

(k,dκ)=1

(−1)|κ|

dκ

∏
p|dκ

p

∏
p|dκ

1

p+ 1


=

6

π2

∏
p|k

(
1− 1

p2

)−1 ∑
κ

(k,dκ)=1

(−1)|κ|

∏
p|dκ

1

p+ 1


=

6

π2

∏
p|k

(
1− 1

p2

)−1 ∏
1≤j≤s

(pj ,k)=1

(
1− 1

pj + 1

)

≥ 6

π2

∏
1≤j≤s

(pj ,k)=1

(
1− 1

pj + 1

)
.
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Note that since ∑
pj∈B

1

pj
<∞,

we have ∏
pj∈B

(
1− 1

pj + 1

)
> 0.

As a result of (5.18), one can deduce that

∑
κ

(−1)|κ|
M(u, k, dκ)

dκ
≥ CB :=

6

π2

∏
p∈B

(
1− 1

p+ 1

)
> 0, (5.19)

where the positive constant on the right side of (5.19) depends only on B.

Combining (5.10), (5.16) and (5.19), we obtain that the main term on the

right side of (5.9) is

≥ CBQ
2

2k
+O(2sPsk Q logQ) +O(2sP 2

s k
2Q). (5.20)

It remains to treat the error term on the right side of (5.9). Again we may

assume that (k, pj) = 1, since otherwise there are no integers q satisfying

q ≡ b (mod k) and q ≡ 0 (mod pj) for some j > s. If (k, pj) = 1, then these

congruences reduce to q ≡ vj (mod kpj) for a suitable vj . We also assume

that pj ≤ Q, since otherwise there are no integers q with q ≤ Q and q ≡ 0

(mod pj). In this way one obtains∑
q≤Q

q≡b (mod k)
q≡0 (mod pj) for some j>s

and pj≤Q

ϕ(q) ≤
∑
q≤Q

q≡vj (mod kpj) for some j>s
and pj≤Q

q (5.21)

≤ Q
∑
j>s
pj≤Q

(
Q

kpj
+O(1)

)
≤ Q2

k

∑
j>s

1

pj
+O

Q∑
pj≤Q

1

 .

Since ∑
p∈B

1

p
<∞,

57



B has density zero in the set of primes and consequently

∑
pj≤Q

1 = o

(
Q

logQ

)

follows. Choose s large enough to satisfy

∑
j>s

1

pj
≤ CB

4
.

Therefore, the right side of (5.21) is

≤ CBQ
2

4k
+ o

(
Q2

logQ

)
. (5.22)

Putting the estimates (5.20) and (5.22) into (5.9), we deduce that

NQ,b,k,B =
∑
q≤Q

q≡b (mod k)
q∈〈P 〉

ϕ(q) ≥ CBQ
2

4k
+o

(
Q2

logQ

)
+O(2sPsk Q logQ)+O(2sP 2

s k
2Q).

(5.23)

Finally, using the fact that 1 ≤ k ≤ f(Q) = O(logQ), we obtain from (5.23)

that
1

NQ,b,k,B
= OB

(
k

Q2

)
for all Q ≥ 2 with NQ,b,k,B ≥ 1, where implied constant depends only on B.

This completes the proof of Lemma 5.6.

As was remarked above, replacing ϕ(q) by 1 and repeating the proof of

Lemma 5.6, one can show that ∑
n≤x
n∈〈P 〉

n≡b (mod k)

1�B
x

k
.

5.3 Proof of Theorem 5.1

Proof. For k ≥ 1, let

Λk(n) =
∑
d|n

µ(d) logk
(n
d

)
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be the generalized Von-Mangoldt function of order k. Λk is supported on in-

tegers having at most k prime factors. In particular, the connection between

the classical Von-Mangoldt function Λ1 = Λ and Λ2 via Selberg’s formula

Λ2(n) = Λ(n) log n+
∑
d|n

Λ(d)Λ
(n
d

)
served as the starting point of the first elementary proofs of the Prime

Number Theorem by Erdös [14] and Selberg [29]. The importance of the

class of functions Λk for k ≥ 2 was fully realized later by the work of Bombieri

[11] who obtained, among other things, the asymptotic behavior of sums of

the form ∑
n≤x

anΛk(n)

under an average assumption on the remainders arising from the distribu-

tion of the sequence {an} for all xν , ν ≤ 1. Bombieri [10] then deduced

strong estimates for the number of twin almost-primes. Extreme examples

pertaining to the limitations of such asymptotics were constructed by Ford

[17]. The basic idea behind the proof of Theorem 5.1 is to exploit a simi-

lar connection between Λ and Λ2 supported on Beurling type integers. To

this end, let B and P be complementary sets of primes and let µP be the

Möbius function supported on 〈P 〉, so that µP (n) = µ(n) when n ∈ 〈P 〉
and µP (n) = 0 otherwise. It is easy to see that

∑
d|n

µP (d) = 0 when n has

a prime divisor in P and
∑
d|n

µP (d) = 1 when n has no prime divisors in

P . Similarly, let ΛP (n) be the Von-Mangoldt function supported on 〈P 〉, so

that ΛP (n) = log p if n = pm, m ≥ 1 with p ∈ P and ΛP (n) = 0 otherwise.

Then we have the identity ∑
d|n

ΛP (d) = log s(n), (5.24)

where s(n) ∈ 〈P 〉 is the largest such divisor of n. It follows from (5.24) that

ΛP (n) =
∑
d|n

µ(d) log s
(n
d

)
= log s(n)

∑
d|n

µ(d)−
∑
d|n

µ(d) log s(d) (5.25)

59



= −
∑
d|n

µ(d) log s(d).

Next we introduce the generalized Von-Mangoldt function of order 2 on P

as

Λ2,P (n) :=
∑
d|n

µ(d) log2 s
(n
d

)
. (5.26)

Expanding the right side of (5.26) and using (5.25), we arrive at the identity

Λ2,P (n) = log2 s(n)
∑
d|n

µ(d)− 2 log s(n)
∑
d|n

µ(d) log s(d) +
∑
d|n

µ(d) log2 s(d)

(5.27)

= 2ΛP (n) log s(n) +
∑
d|n

µ(d) log2 s(d).

Consequently, rewriting (5.27), we have∑
d|n

µ(d) log2 s(d) = Λ2,P (n)− 2ΛP (n) log s(n). (5.28)

Thus one obtains

µ(n) log2 s(n) =
∑
d|n

µ(d)FP

(n
d

)
, (5.29)

where

FP (n) := Λ2,P (n)− 2ΛP (n) log s(n). (5.30)

In particular, if n ∈ 〈P 〉, then s(n) = n so that

µ(n) log2 n =
∑
d|n

µ(d)FP

(n
d

)

follows from (5.29) with

FP

(n
d

)
= Λ2,P

(n
d

)
− 2ΛP

(n
d

)
log
(n
d

)
.
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Let χ be a Dirichlet character modulo k. Multiplying both sides of (5.29)

by χ(n) and summing over all n ≤ x with n ∈ 〈P 〉, we deduce that∑
n≤x

χ(n)µP (n) log2 n =
∑
n≤x
n∈〈P 〉

χ(n)
∑
d|n

µ(d)FP

(n
d

)
(5.31)

=
∑
d≤x
d∈〈P 〉

χ(d)µ(d)
∑
m≤x

d
m∈〈P 〉

χ(m)FP (m)

=
∑
n≤x

χ(n)µP (n)SP,χ

(x
n

)
,

where

SP,χ(x) :=
∑
n≤x
n∈〈P 〉

χ(n) (Λ2,P (n)− 2ΛP (n) log n). (5.32)

Moreover, if n ∈ 〈P 〉, then

Λ2,P (n) =
∑
d|n

µ(d) log2 s
(n
d

)
=
∑
d|n

µ(d) log2
(n
d

)
= Λ2(n) (5.33)

and ΛP (n) = Λ(n). Therefore, (5.32) can be written as

SP,χ(x) =
∑
n≤x
n∈〈P 〉

χ(n) (Λ2(n)− 2Λ(n) log n). (5.34)

Using Selberg’s formula, (5.34) reduces to

SP,χ(x) =
∑
n≤x
n∈〈P 〉

χ(n)(Λ ∗ Λ)(n)−
∑
n≤x
n∈〈P 〉

χ(n)Λ(n) log n, (5.35)

where

(Λ ∗ Λ)(n) =
∑
d|n

Λ(d)Λ
(n
d

)
is the convolution of Λ with itself. We estimate both sums on the right side

of (5.35). Assume that

B(x)� x

(log x)λ
(5.36)
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with 1 < λ < 2. Note that∑
n≤x
n∈〈P 〉

χ(n)Λ(n) =
∑
n≤x

χ(n)Λ(n)−
∑
n≤x
n 6∈〈P 〉

χ(n)Λ(n). (5.37)

Since Λ(n) is supported only at prime powers, we see that if n 6∈ 〈P 〉 and

Λ(n) 6= 0, then n = pm for some p ∈ B and m ≥ 1. Consequently,∑
n≤x
n6∈〈P 〉

χ(n)Λ(n) =
∑
p≤x
p∈B

χ(p) log p+
∑
pm≤x
m≥2
p∈B

χ(p) log p. (5.38)

It is easy to see that ∑
pm≤x
m≥2
p∈B

χ(p) log p = O(
√
x), (5.39)

with an absolute implied constant. Moreover, using (5.36), one obtains

∑
p≤x
p∈B

χ(p) log p = O

∑
p≤x
p∈B

log p

 = OB

(
x

(log x)λ−1

)
, (5.40)

where the implied constant depends only on B. Combining (5.38), (5.39)

and (5.40), we have

∑
n≤x
n6∈〈P 〉

χ(n)Λ(n) = OB

(
x

(log x)λ−1

)
= OB

(
x

(1 + log x)λ−1

)
(5.41)

for all x ≥ 2. It follows from (5.37) and (5.41) that

∑
n≤x
n∈〈P 〉

χ(n)Λ(n) = ψ(x, χ) +OB

(
x

(1 + log x)λ−1

)
(5.42)

for x ≥ 2, where

ψ(x, χ) :=
∑
n≤x

χ(n)Λ(n). (5.43)

Such sums as in (5.43) are naturally encountered in the proof of the prime

number theorem over arithmetic progressions. We need to distinguish two
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cases here. If χ is non-principal and the modulus k is fixed, then it is known

that (see [12])

ψ(x, χ) = O
(
xe−c1

√
log x

)
(5.44)

for some constant c1 > 0 and all large x in terms of k, where the implied

constant is absolute (it turns out that a much weaker estimate such as

ψ(x, χ) = O

(
x

log x

)
would also suffice for our purposes). Combining (5.42) and (5.44), we deduce

that ∑
n≤x
n∈〈P 〉

χ(n)Λ(n) = Ok,B

(
x

(1 + log x)λ−1

)
(5.45)

for x ≥ 2. It follows from (5.45) that∑
n≤x
n∈〈P 〉

χ(n)Λ(n) log n = Ok,B(x(log x)2−λ) (5.46)

for x ≥ 2. Moreover, we have∑
n≤x
n∈〈P 〉

χ(n)(Λ ∗ Λ)(n) =
∑
n≤x
n∈〈P 〉

χ(n)
∑
d|n

Λ(d)Λ
(n
d

)
=
∑
d≤x
d∈〈P 〉

χ(d)Λ(d)
∑
m≤x

d
m∈〈P 〉

χ(m)Λ(m).

(5.47)

To estimate the inner sum on the right of (5.47), we obtain, using (5.45),

that ∑
m≤x

d
m∈〈P 〉

χ(m)Λ(m) = Ok,B

(
x

d(1 + log
(
x
d

)
)λ−1

)
(5.48)

when d ≤ x
2 . Clearly,∑

x
2
<d≤x
d∈〈P 〉

χ(d)Λ(d)
∑
m≤x

d
m∈〈P 〉

χ(m)Λ(m) = 0 (5.49)
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holds for any character χ modulo k. Using (5.48) and (5.49) on the right

side of (5.47), we see that

∑
n≤x
n∈〈P 〉

χ(n)(Λ ∗ Λ)(n) = Ok,B

x∑
d≤x

2

Λ(d)

d(1 + log
(
x
d

)
)λ−1

 . (5.50)

Since 0 < λ− 1 < 1, one can apply Lemma 5.5 to get

∑
d≤x

2

Λ(d)

d(1 + log
(
x
d

)
)λ−1

= Oλ

(
(log x)2−λ

)
= OB

(
(log x)2−λ

)
, (5.51)

since dependence of the implied constant on λ can be viewed as dependence

on B. Combining (5.50) and (5.51), we deduce that∑
n≤x
n∈〈P 〉

χ(n)(Λ ∗ Λ)(n) = Ok,B

(
x(log x)2−λ

)
(5.52)

for x ≥ 2. Gathering (5.35), (5.46) and (5.52), one has

SP,χ(x) = Ok,B

(
x(log x)2−λ

)
(5.53)

for x ≥ 2. Using now (5.31), (5.53) and the fact

SP,χ

(x
n

)
= 0

when x
2 < n ≤ x, one obtains that∑

n≤x
χ(n)µP (n) log2 n =

∑
n≤x

2

χ(n)µP (n)SP,χ

(x
n

)
(5.54)

= Ok,B

x(log x)2−λ
∑
n≤x

2

1

n


= Ok,B

(
x(log x)3−λ

)
.

Applying Abel’s summation to (5.54), we have

∑
n≤x

χ(n)µP (n) = Ok,B

(
x

(log x)λ−1

)
+Ok,B

(∫ x

2

1

(log t)λ
dt

)
= Ok,B

(
x

(log x)λ−1

)
(5.55)
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since ∫ x

2

1

(log t)λ
dt = O

(
x

(log x)λ

)
with an absolute implied constant. Let us now assume that χ is the principal

character modulo k. Then

ψ(x, χ) = x+O
(
xe−c1

√
log x

)
(5.56)

for all large x in terms of k, where the implied constant is absolute. Conse-

quently, one obtains

∑
n≤x
n∈〈P 〉

χ(n)Λ(n) = x+Ok,B

(
x

(1 + log x)λ−1

)
(5.57)

for x ≥ 2. By Abel’s summation on (5.57), we see that

∑
n≤x
n∈〈P 〉

χ(n)Λ(n) log n = x log x+Ok,B

(
x(log x)2−λ

)
−
∫ x

2

t+R(t)

t
dt, (5.58)

where

R(t) = Ok,B

(
t

(log t)λ−1

)
for t ≥ 2. It is now easy to see that∫ x

2

t+R(t)

t
dt = Ok,B(x). (5.59)

Combining (5.58) and (5.59), we deduce that∑
n≤x
n∈〈P 〉

χ(n)Λ(n) log n = x log x+Ok,B

(
x(log x)2−λ

)
(5.60)
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for x ≥ 2. Using (5.49), (5.57) and Lemma 5.5, we have∑
n≤x
n∈〈P 〉

χ(n)(Λ ∗ Λ)(n) =
∑
d≤x

2
d∈〈P 〉

χ(d)Λ(d)
∑
m≤x

d
m∈〈P 〉

χ(m)Λ(m) (5.61)

= x
∑
d≤x

2
d∈〈P 〉

χ(d)Λ(d)

d
+Ok,B

x∑
d≤x

2

Λ(d)

d
(
1 + log

(
x
d

))λ−1


= x

∑
d≤x

2
d∈〈P 〉

χ(d)Λ(d)

d
+Ok,B

(
x(log x)2−λ

)
.

It follows, by Abel’s summation on (5.57), that

∑
d≤x
d∈〈P 〉

χ(d)Λ(d)

d
= Ok,B(1) +

∫ x

2

t+R(t)

t2
dt, (5.62)

where

R(t) = Ok,B

(
t

(log t)λ−1

)
for t ≥ 2. Therefore, we have∫ x

2

R(t)

t2
dt = Ok,B

(∫ x

2

1

t(log t)λ−1
dt

)
= Ok,B

(
(log x)2−λ

)
(5.63)

for x ≥ 2. Combining (5.62) and (5.63), one obtains

∑
d≤x
d∈〈P 〉

χ(d)Λ(d)

d
= log x+Ok,B

(
(log x)2−λ

)
. (5.64)

Replacing x by x
2 and gathering (5.61) and (5.64), we see that∑

n≤x
n∈〈P 〉

χ(n)(Λ ∗ Λ)(n) = x log x+Ok,B

(
x(log x)2−λ

)
. (5.65)

From (5.35), (5.60) and (5.64), we again have

SP,χ(x) = Ok,B

(
x(log x)2−λ

)
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for x ≥ 2, when χ is the principal character modulo k. Consequently as

above, we obtain

∑
n≤x

χ(n)µP (n) = Ok,B

(
x

(log x)λ−1

)
(5.66)

for x ≥ 2. Lastly, using (5.55) and (5.66), we deduce that

∑
n≤x
n∈〈P 〉

n≡b (mod k)

µ(n) =
1

ϕ(k)

∑
χ

χ(b−1)
∑
n≤x

χ(n)µP (n) = Ok,B

(
x

(log x)λ−1

)

for x ≥ 2. If B(x) � x
log2 x

, then by a similar argument as above, using

Lemma 5.5 with λ = 1 to get S1(x) = O(log log x), we see for any Dirichlet

character χ modulo k that

SP,χ(x) = Ok,B(x log log x)

with x ≥ 3. Noting that SP,χ(xn) = O(1), when x
3 < n ≤ x, one may deduce

that ∑
n≤x

χ(n)µP (n) = Ok,B

(
x log log x

log x

)
(5.67)

for x ≥ 3. It follows from (5.67) that

∑
n≤x
n∈〈P 〉

n≡b (mod k)

µ(n) = Ok,B

(
x log log x

log x

)

for x ≥ 3. Finally, if B(x) � x
(log x)λ

with λ > 2, then using Lemma 5.5

with λ− 1 > 1 and Sλ(x) = Oλ(1), we obtain for any Dirichlet character χ

modulo k that SP,χ(x) = OB(x) with x ≥ 2. It follows as above that

∑
n≤x
n∈〈P 〉

n≡b (mod k)

µ(n) = Ok,B

(
x

log x

)

for x ≥ 2. This completes the proof of Theorem 5.1.
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5.4 Proof of Theorem 5.2

Proof of Theorem 5.2 is similar to the proof of Theorem 5.1, the only sig-

nificant modification is needed for obtaining the required uniformity for the

modulus k of the arithmetic progression and this is accomplished easily as

a consequence of the Siegel-Walfisz theorem (see [12]). Precisely, if χ is a

Dirichlet character modulo k and 1 ≤ k ≤ (log x)A, where A is a positive

constant, then there exists a constant c1 > 0 such that

ψ(x, χ) =
∑
n≤x

χ(n)Λ(n) = O(xe−c1
√

log x) (5.68)

holds with an absolute implied constant when χ is non-principal and x ≥
x0(A). If χ is principal, then

ψ(x, χ) = x+O(xe−c1
√

log x) (5.69)

holds when x ≥ x0(A). Taking A = 1 and using our assumption 1 ≤ k ≤
log x (note that this forces x ≥ e), we can see that (5.68) and (5.69) hold

for x ≥ x0(1), where x0(1) is an absolute constant. Therefore, the required

estimates for MP,b,k(x) can be obtained similarly as in the proof of Theorem

5.1 for x ≥ x0(1), where the implied constants depend only on B. But

obviously, by adjusting the constants depending on B, these estimates also

hold for smaller values of x as well.

5.5 Proof of Corollary 5.3

First of all, observing that

M(α,Q, b, k,B) =
∑
q≤Q
q∈〈P 〉

q≡b (mod k)

#{1 ≤ a ≤ αq : (a, q) = 1},

we have

M(α,Q, b, k,B)−αNQ,b,k,B =
∑
q≤Q
q∈〈P 〉

q≡b (mod k)

(
#{1 ≤ a ≤ αq : (a, q) = 1}−αϕ(q)

)
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=
∑
q≤Q
q∈〈P 〉

q≡b (mod k)

 ∑
1≤a≤αq

∑
m|a
m|q

µ(m)− α
∑
m|q

qµ(m)

m

 =
∑
q≤Q
q∈〈P 〉

q≡b (mod k)

∑
m|q

µ(m)
([αq

m

]
− αq

m

)

= −
∑
q≤Q
q∈〈P 〉

q≡b (mod k)

∑
m|q

µ
( q
m

)
{αm} = −

∑
m≤Q
m∈〈P 〉

(m,k)=1

{αm}
∑
n≤Q

m
n∈〈P 〉

n≡m−1b (mod k)

µ(n),

where mm−1 ≡ 1 (mod k) and {x} = x − [x] is the fractional part of x. It

follows that

|M(α,Q, b, k,B)− αNQ,b,k,B| ≤
∑
m≤Q
m∈〈P 〉

(m,k)=1

∣∣∣ ∑
n≤Q

m
n∈〈P 〉

n≡m−1b (mod k)

µ(n)
∣∣∣ =

∑
m≤Q
m∈〈P 〉

(m,k)=1

∣∣∣∣MP,m−1b,k

(
Q

m

)∣∣∣∣ .

Assuming B(x)� x
(log x)λ

with 1 < λ < 2 and using Theorem 5.1, it is easy

to see that

MP,m−1b,k(x) = Ok,B

∑
d≤x

1

(1 + log d)λ−1


for x ≥ 1. Therefore, we obtain

|M(α,Q, b, k,B)− αNQ,b,k,B| ≤ Ck,B
∑
m≤Q

∑
d≤Q

m

1

(1 + log d)λ−1

= Ck,B
∑
d≤Q

1

(1 + log d)λ−1

∑
m≤Q

d

1 ≤ Ck,B Q
∑
d≤Q

1

d(1 + log d)λ−1
= Ok,B

(
Q(logQ)2−λ

)
for any Q ≥ 2, where Ck,B > 0 is a constant depending only on k and B. If

NQ,b,k,B ≥ 1, then using Lemma 5.6, we see that

RNQ,b,k,B (α) =

∣∣∣∣M(α,Q, b, k,B)

NQ,b,k,B
− α

∣∣∣∣ = Ok,B

(
(logQ)2−λ

Q

)
holds uniformly in α. Taking supremum over all α ∈ [0, 1],

DNQ,b,k,B (FQ,b,k,B) = Ok,B

(
(logQ)2−λ

Q

)
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follows for any Q ≥ 2 with NQ,b,k,B ≥ 1. The proofs of the other statements

in Corollary 5.3 are entirely similar. Therefore, we omit the details.

5.6 Proof of Corollary 5.4

Assume that B(x) � x
(log x)λ

with 1 < λ < 2 and 1 ≤ k ≤ (logQ)2−λ. We

again have, for any α ∈ [0, 1], that

|M(α,Q, b, k,B)− αNQ,b,k,B| ≤
∑
m≤Q
m∈〈P 〉

(m,k)=1

∣∣∣∣MP,m−1b,k

(
Q

m

)∣∣∣∣ . (5.70)

Split the range of the sum on the right side of (5.70) taking into account the

m’s that are close to Q. Note that if

m ≤ Q

e(logQ)2−λ
,

then 1 ≤ k ≤ (logQ)2−λ ≤ log
(
Q
m

)
. Therefore, we may apply Theorem 5.2

to get

MP,m−1b,k

(
Q

m

)
= OB

 Q

m
(

log
(
Q
m

))λ−1

 = OB

∑
d≤Q

m

1

(1 + log d)λ−1

 .

(5.71)

It follows from (5.71) that

∑
m≤ Q

exp((logQ)2−λ)
m∈〈P 〉

(m,k)=1

∣∣∣∣MP,m−1b,k

(
Q

m

)∣∣∣∣ ≤ CB ∑
m≤ Q

exp((logQ)2−λ)

∑
d≤Q

m

1

(1 + log d)λ−1

(5.72)

≤ CB Q(logQ)2−λ = OB

(
Q(logQ)2−λ

)
for any Q ≥ 3, where CB > 0 is a constant depending only on B. If

Q

e(logQ)2−λ
< m ≤ Q,
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then we estimate trivially to get∣∣∣∣MP,m−1b,k

(
Q

m

)∣∣∣∣ ≤ Q

m
.

In this way one obtains

∑
Q

exp((logQ)2−λ)
<m≤Q

m∈〈P 〉
(m,k)=1

∣∣∣∣MP,m−1b,k

(
Q

m

)∣∣∣∣ ≤ Q ∑
Q

exp((logQ)2−λ)
<m≤Q

1

m
. (5.73)

Using the well known asymptotics of the harmonic series, we have

∑
Q

exp((logQ)2−λ)
<m≤Q

1

m
=
∑
m≤Q

1

m
−

∑
m≤ Q

exp((logQ)2−λ)

1

m
(5.74)

= logQ− log

(
Q

e(logQ)2−λ

)
+O

(
e(logQ)2−λ

Q

)
= O

(
(logQ)2−λ

)
.

Combining (5.73) and (5.74), we see that

∑
Q

exp((logQ)2−λ)
<m≤Q

m∈〈P 〉
(m,k)=1

∣∣∣∣MP,m−1b,k

(
Q

m

)∣∣∣∣ = O
(
Q(logQ)2−λ

)
, (5.75)

where the implied constant in (5.75) is absolute. As a result of (5.70), (5.72)

and (5.75), we deduce that

|M(α,Q, b, k,B)− αNQ,b,k,B| = OB

(
Q(logQ)2−λ

)
for Q ≥ 3. Therefore, if Q ≥ 3 and NQ,b,k,B ≥ 1, then since 1 < λ < 2 and

1 ≤ k ≤ (logQ)2−λ = O(logQ), we may apply Lemma 5.6 to obtain

RNQ,b,k,B (α) =

∣∣∣∣M(α,Q, b, k,B)

NQ,b,k,B
− α

∣∣∣∣ = OB

(
k(logQ)2−λ

Q

)
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uniformly in α. Taking supremum over all α ∈ [0, 1], one finally arrives at

the desired estimate

DNQ,b,k,B (FQ,b,k,B) = OB

(
k(logQ)2−λ

Q

)
for the absolute discrepancy. The proofs of the other statements in Corollary

5.4 are similar. In the case when B(x) � x
log2 x

and 1 ≤ k ≤ (log logQ)2,

we split the range m ≤ Q as m ≤ Q

e(log logQ)2
and Q

e(log logQ)2
< m ≤ Q. When

B(x)� x
(log x)λ

with λ > 2 and 1 ≤ k ≤ log logQ, we split as m ≤ Q
logQ and

Q
logQ < m ≤ Q. This completes the proof of Corollary 5.4.
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