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ABSTRACT

The global phase diagram of the spinless Falicov–Kimball model in d = 3

spatial dimensions is obtained by renormalization-group theory. This global phase

diagram exhibits five distinct phases. Four of these phases are charge-ordered

phases, in which the system forms two sublattices with different electron densities.

The charge-ordered phases occur at and near half-filling of the conduction electrons

for the entire range of localized electron densities. The phase boundaries are second

order, except for the intermediate and large interaction regimes, where a first-

order phase boundary occurs in the central region of the phase diagram, resulting

in phase separation (phase coexistance) at and near half-filling of both localized

and conduction electrons. These coexistence regions are between different charge-

ordered phases, between charge-ordered and disordered phases, and between dense

and dilute disordered phases. The second-order phase boundaries terminate on the

first-order phase transitions via critical endpoints and double critical endpoints.

The first-order phase boundary is delimited by critical points. The cross-sections

of the global phase diagram with respect to the chemical potentials and densities of

the localized and conduction electrons, at all representative interactions, hopping

strengths, and temperatures, are calculated and exhibit a multitude of distinct

topologies.

PACS numbers: 71.10.Hf, 05.30.Fk, 64.60.De, 71.10.Fd
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ÖZETÇE

Spinsiz Falicov–Kimball modelinin bütünsel faz diyagramı, d = 3 boyut için,

renormalizasyon grubu kuramı kullanılarak elde edilmiştir. Bu bütünsel faz diya-

gramı beş ayrı fazı içermektedir. Bunlardan dördü yük-düzenli fazlardır ve bu fa-

zlarda sistem farklı elektron yoğunluklarına sahip iki altörgüye bölünür. Lokalize

elektron yoğunluğunun tüm değerleri için, yük-düzenli fazlar, iletim elektron-

ları için yarı dolu bölgede ve civarında gözlemlenmektedir. Faz sınırları ikinci

derecedir, ancak orta ve kuvvetli etkileşim rejimlerinde, faz diyagramının merkez

bölgesinde birinci derece bir faz sınırı ortaya çıkar. Bunun sonucunda hem lokalize

hem de iletim elektronları için yarı dolu bölge ve civarında faz ayrılığı (fazların

birarada bulunması) olgusu gözlemlenir. Bu faz ayrılığı bölgelerinde, (a) farklı

yük-düzenli fazlar, (b) yük-düzenli ve düzensiz fazlar, ve (c) farklı yoğun ve seyrek

düzensiz fazlar birarada bulunur. İkinci derece faz sınırları, birinci derece faz geçişi

üzerinde, kritik son noktalar ve çift kritik son noktalarla biter. Birinci derece faz

sınırı kritik noktalarla sonlanır. Bütünsel faz diyagramının izdüşümleri, lokalize

ve iletim elektronlarının kimyasal potansiyelleri ve yoğunlukları tabanında hesa-

planmıştır. Bu izdüşümler, tüm etkileşimler, hoplama kuvvetleri ve sıcaklıklar için

hesaplanmıştır ve pek çok farklı ilinge (topoloji) sergilemektedirler.
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1FINANCIAL SUPPORT BY THE SCIENTIFIC AND TECHNOLOGICAL RESEARCH
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Chapter 1: INTRODUCTION 2

The Falicov–Kimball model has been a long standing problem in condensed

matter physics, still lacking rigorous results particularly in finite d > 1 dimensions

for finite-temperatures. In this thesis, we calculated the global phase diagram of

the model in the spinless case for all interactions and temperature regimes. The

outline of this thesis is as follows:

In Chapter 2, we first establish briefly the central concerns of the condensed

matter physics, starting from the discovery of electron, following by various the-

oretical attempts to solve the physics of conducting electrons in a condensed

medium, which turns out to be greatly affected by the correlations between elec-

trons. We introduce the strong electron correlation induced metal-insulator tran-

sition phenomenon on experimental grounds first. Next, Mott’s theoretical expla-

nation to the metal-insulator transition is discussed and the equivalent approach

of Hubbard is introduced.

In Chapter 3, we introduce the second quantization formalism of the quantum

field theory, in which the particles are considered as fields. This discussion is

initiated with the elementary formalism of quantum mechanics (first quantization)

and wrapped up with the introduction of tight-binding approximation for the

quantum field theoretical fermionic creation and annihilation operators, that leads

to the Hubbard model.

The following Chapter 4 is devoted to the discussion on renormalization-group

theoretical methods. Practical techniques to calculate thermodynamic proper-

ties of a model system, such as densities, response functions, and phase dia-

grams associated by the model Hamiltonian, are provided. A whole discussion

on renormalization-group theory is omitted, since it would take several volumes.

In the light of these chapters, in Chapter 5, we present our results on the global

phase diagram of the spinless Falicov–Kimball model (SFKM), which is derived

from the Hubbard model as a limiting case. Connection to experimental systems

is provided as a conclusion. The charge-ordering phenomenon, that we capture

within the SFKM, is an essential feature interplaying with the high-temperature

superconductivity and colossal magnetoresistance. Therefore, understanding the

nature of the charge-ordered phases would give a better physical insight on these

types of phenomenon, that lies in the heart of condensed matter physics today.



Chapter 1: INTRODUCTION 3

As a final chapter, brief discussions on other problems, that the present author

worked during the doctoral studies, are provided in Chapter 6. These problems

include hard-spin mean-field theory of ±J spin glass model, sequence alignment

via simulated anneling, and molecular dynamics of water flow through carbon

nanotubes.
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Chapter 2: METAL-INSULATOR TRANSITION 5

2.1 Conduction in metals: a brief histocal survey

2.1.1 Prologue

Metals have been of great importance throughout the history of mankind, since

they exhibit fascinating physical properties. Their durability, ease of processing

and abundancy on the Earth’s crust led to some of the early innovations, and

the periods following the Stone Ages are named after the main metals that were

in weighted use by the prehistoric communities. Alongside these properties, their

extraordinary thermal and electrical conductivity shaped the modern technological

cloud around us. It is especially the low resistance of metals to electrical current

that made them the main elements of almost all gadgets that we use in everyday

life. The progress in semiconductor technology was the next step, that led us to

the age of electronics and computers. But what determines a material to be a

conductor (metal) or an insulator?

2.1.2 Free electron theories of metals

It was Thomson’s experiments that yielded to the discovery of the electron in

1897 [1]. Three years later, in 1900, treating the electrons as classical particles

that collide with stationary ions, and applying the kinetic theory onto this electron

gas, Drude proposed a mechanism for electrical conductivity of metals [2, 3, 4].

Thus, it was understood that the “free electrons” detached from the ions were the

source of low resistivity in metals. According to Drude model, current density and

applied electric field are parallel and the linear proportionality is given by

~J =
ne2τ

m
~E , (2.1)

where ~J is the current density, ~E is the electric field, n is the electron number

density, e andm are the electron charge and mass, and τ is an adjustable parameter

of the model, namely the mean-free-time between electron-ion collisions. We can

define the conductivity, σ, as1

1We give the definition of the linear electrical conductivity here. We omit the anisotropy
effects, which can be included by the definition of a conductivity tensor in three spatial di-
mensions.
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~J = σ ~E . (2.2)

This results in the conductivity given by the Drude model as

σ =
e2τ

m
n . (2.3)

Thus, as the main result of the Drude model, the conductivity, σ, increases linearly

with the increasing electron density, n.

Later in 1905, Lorentz rehashed the problem and treated the free electrons

in a more rigorous fashion by describing the velocity distribution of moving elec-

trons via Maxwell-Boltzmann statistics [5]. The Drude-Lorentz model essentially

explains the DC and AC electrical conductivities, thermal conductivity, and Hall

effect in metals. However, among many other phenomena, it fails to explain the

specific heat due to mobile electrons. The model was further improved with the

work of Sommerfeld [6], where the electrons are not considered as classical particles

but as quantum mechanical fermions, in accord with the Pauli exclusion princi-

ple. Basically, the velocity distribution of classical particles obey the Maxwell-

Boltzmann statistics, while one should consider the Fermi-Dirac distribution for

fermionic particles. This consideration provided an improvement over the thermal

properties of metals calculated in the Drude-Lorentz model. Furthermore, Som-

merfeld predicted a mean-free-path in the order of 1 cm at room temperature, that

is 10 times larger than the one predicted by Drude and Lorentz. These free electron

theories of metals still lacked for the physical explanation of electron scattering

mechanism and the reletively long distances travelled by free electrons between

two successive scattering incidents. As a more important problem regarding the

scope of this thesis, the free electron models are also unable to explain why some

materials are insulators.

2.1.3 Bloch electrons and the band theory of metals

The electron-ion interactions are restricted only to the incidents of collisions in the

free electron models. In fact this is the definition of the “free electron approxima-

tion”. We can relax this assumption by considering a potential created by the ions
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of the metal, and letting the electrons travel in this potential landscape instead of

in a pure vacuum space between the ions. But what will determine the shape of

this potential landscape?

It is demonstrated via X-ray diffraction by von Laue [7, 8, 9] and Bragg [10]

that the metallic ions form a periodic structure in space. This crystal structure

leads to a periodic potential created by ions given by

V (~r ) = V
(
~r + ~R

)
, (2.4)

where ~r is a position vector and ~R can be any one of the Bravais lattice vectors

corresponding to the underlying crystal structure. The electron-electron interac-

tions can be further integrated into V (~r ) to obtain an effective potential. Thus,

one needs to examine the one-electron motion in this periodic potential by solving

the Schrödinger equation

H ψ =

[
− ~2

2m
~∇2 + V (~r )

]
ψ = Eψ (2.5)

in order to obtain the metallic behavior. The periodicity of the potential V (~r )

leads to a very important theorem, which states that the eigenstates of H have

the form of a plane wave multiplied by a function with the periodicity of the

underlying Bravais lattice. This is formally given as below:

Theorem 1. The eigenstates of the Hamiltonian H given in Eq.(2.5) with a

periodic potential given in Eq.(2.4) can be chosen as ψn,~k(~r + ~R ) = ei
~k·~Rψn,~k(~r ),

for every Bravais lattice vector ~R.

This theorem is known as the “Bloch theorem” [11] and the electrons descibed

by these periodic wave functions are called “Bloch electrons” that reduce to the

free electrons in the case of V = 0, which is still periodic. The vectors ~k lie

in the momentum space that is the Fourier transformed “reciprocal lattice” of

the original Bravais lattice, and the examination can be restricted onto the “first

Brillouin zone” of the reciprocal lattice without any loss of generality. This is a

direct consequence of the periodicity in the “direct lattice”.

Furthermore, there exists many independent eigenstates for each ~k and this is

denoted by the index n of the wave functions defined in Theorem 1. This index is
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called the “band index”. The Bloch electrons in a periodic crystal yields different

“energy bands” and thus the “band theory of solids”.

Quite genarally, application of perturbation theory for a weak periodic poten-

tial, V ≪ E(~k ), suggests “band gaps” at the edges of the first Brillouin zone. A

schematic picture of the dispersion curves for the first three bands of a one dimen-

sional solid is given in Fig.2.1 below, where the striped regions denote the band

gaps. Electrons cannot assume the energy values that lie inside these band gap

regions. This yields to the definition of metals and insulators.

The number density of electrons or the energetic “density of states” deter-

mine the “Fermi energy” of the solid. When the electrons are filled into a band

structure upto the Fermi energy level there are two possibilities in the broadest

sense: (i) the electrons can exactly fill the last band, or in other words, the Fermi

energy level may lie within a band gap; and (ii) the last band may be partially

filled, i.e., the Fermi level may be within an allowed band. The last band that

Figure 2.1: A schematic representation of the first three bands of a one-dimensional

lattice in the reduced-zone scheme of the first Brillouin zone. The striped regions

denote the band gaps that are forbidden for any electron.
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Figure 2.2: A schematic illustration of the bands filled with electrons (denoted by

black filled regions) up to the Fermi energy level for an insulator on the left and

for a metal on the right.

is completely filled with electrons is called the “valence band” and the next band

is called the “conduction band”. Thus, the two possibilities above mean that the

conduction band can be either (i) comletely empty or (ii) partially filled. These

two possibilities, illustrated in Fig.2.2 above, refer to an insulator and a metal

respectively. In the metallic case there exist conduction electrons that can move

within the material, while for the insulator, electrons in the valence band that are

tightly bound to the ions must be excited to the conduction band by absorbtion of

thermal or photonic energy, or by other means. In some cases, this can be easily

achieved and those materials are called “semiconductors”, which is a subject well

outside the scope of this thesis. We will also not discuss the “semimetal” case for

which the valence and conduction bands touch each other.

2.1.4 Tight-binding approximation

Both the free-electron and the Bloch electron models described above assume a

common property. Both type of electronic models ignore the electron-electron

interactions. However, in reality, the wave functions of the localized electrons may

not vanish within the interatomic spacing and may overlap with the wave functions

of the localized electrons in the nearby lattice points. This is actually the case

especially for the electrons in the higher energy levels of nearest-neighboring atoms.
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In the “tight-binding approximation” (also known as “linear combination of atomic

orbitals” or “LCAO”) these overlaps are taken into account [11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25].

The tight-binding approximation assumes that the independent “atomic or-

bitals” are known, and constructs the “crystal orbitals” via linear combination of

atomic orbitals. Let us consider an independent one-atom Schrödinger equation

given by

Hatomφn(~r ) =

[
− ~2

2m
~∇2 + Vatom(~r )

]
φn(~r ) = Enφn(~r ) , (2.6)

where Hatom and Vatom(~r ) are the single atomic Hamiltonian and potential respec-

tively, while φn(~r ) is the single atomic orbital wave function. The crystal orbital

wave functions that are the solutions to Eq.(2.5) are then formed as the linear

combination of the localized atomic orbital wave functions as

ψn,~k(~r ) =
1√
N

N∑

ℓ=1

[
ei
~k·~Rℓ φn

(
~r − ~Rℓ

)]
, (2.7)

where the intoduction of Bloch wave vector ~k, that can assume any point in the

first Brillouin zone, allows the crystal orbital wave function to extend over the

whole lattice. Here the sum runs over the whole set of possible Bravais direct

lattice vectors. It is easy to show that this crystal orbital wave function satisfies

the Bloch theorem (Theorem 1). The basis set that is used in the tight-binding

approximation need not to be the atomic orbital wave functions set, but can

assume any functions set that have the periodicity of the lattice. The atomic

orbital set of {φn (~r )}, that actually form an orthonormal basis set, is the most

effective one to work with and is called “Wannier functions” or “Wannier states”.

2.1.5 Hartree–Fock theory

The tight-binding approximation is not the only way to deal with the electron –

electron interactions. Another method is the “Hartree–Fock theory” that is basi-

cally a self-consistent field approximation, or in other words, a “mean-field theory”.

Considering both the electron – electron and electron – nucleus interactions, the
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real answer we seek to obtain is the solution to the many-electron Schrödinger

equation given as

HNψN =

N∑

i=1

[
− ~2

2m
~∇2
i + V e-n

i +

N−1∑

j 6=i
V e-e
ij

]
ψN = EψN , (2.8)

where HN is the N -electron Hamiltonian and ψN = ψN ({~ri, si}) is the N -electron

wave function with ~ri and si being the position and spin of the ith-electron. The

ith-electron – nucleus interaction potential V e-n
i is given by 2

V e-n
i =

∑

ℓ

−Ze2
|~ri − ~Rℓ|

, (2.9)

and the ith-electron – jth-electron interaction potential V e-e
ij is given by

V e-e
ij =

1

2

e2

|~ri − ~rj |
. (2.10)

The kinetic energy for nuclei can be safely ignored in accord with the Born–

Oppenheimer approximation, for the nuclei are much heavier than the electrons [26].

As a result, the nucleus – nucleus interactions term,
∑

ℓ 6=m
Z2e2

|~Rℓ−~Rm| , can also be

treated as a constant addition to the Hamiltonian, since there exists no other nu-

clear degree of freedom left in the Hamiltonian. However, one still cannot treat

such a huge problem even with the use of modern techniques, and it is obvious

that we need some further simplifications. This is established by switching back to

the one-electron problem. The one-electron – nucleus interaction can be written

as

V e-n
1 (~r ) =

∑

ℓ

−Ze2
|~r − ~Rℓ|

, (2.11)

where we did not do any approximation in fact. The approximate nature of the

mean-field fashion comes with the electron – electron interaction part. We will

treat the interaction of a single electron with the remaining N −1-electrons as the

interaction of that single electron with an electron soup of charge density ρ(~r ).

Thus, we write the one-electron – other-electrons interaction as

2We can always choose a unit system with the vacuum permittivity ǫ0 = 1

4π
in order to

simplify the electrostatic potential, which will be the case throughout this thesis.
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V e-e
1 (~r ) =

∫
d~r ′−eρ(~r )

|~r − ~r ′| . (2.12)

But the electron charge density is in fact given by

ρ(~r ) = −e
∑

j

|ψj(~r )|2 . (2.13)

This simplificaltion together with the single-electron – nucleus interaction yields

to the set of Schrödinger equations

[
− ~

2

2m
~∇2 +

∑

ℓ

−Ze2
|~r − ~Rℓ|

+
∑

j

∫
d~r ′ e

2|ψj(~r ′)|2
|~r − ~r ′|

]
ψi(~r ) = Eiψi(~r ) , (2.14)

which is named as “Hartree equations” after the work of Hartree in 1928, and can

be solved numerically via iterative methods [27].

The method can be further improved by the consideration of the fermionic

antisymmetry and the Pauli exclusion principle, that is established by replacing

the N -electron wave function ψN with a Slater determinant of the form [28]

ψN ({~ri, si}) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(~r1, s1) ψ1(~r2, s2) · · · ψ1(~rN , sN)

ψ2(~r1, s1) ψ2(~r2, s2) · · · ψ2(~rN , sN)
...

...
. . .

...

ψN(~r1, s1) ψN(~r2, s2) · · · ψN (~rN , sN)

∣∣∣∣∣∣∣∣∣∣∣∣

. (2.15)

This procedure yields to the addition of an exchange term to the left-hand-side of

the Hartree equation, Eq.(2.14). This exchange term resulting from the repulsion

of electrons with parallel spins is given by

V X
1 (~r ) =

∑

j

∫
d~r ′ −e2
|~r − ~r ′|ψ

∗
j (~r

′)ψi(~r
′)ψj(~r )δsisj , (2.16)

and with this improvement of Fock in 1930, the method is known as Hartree–Fock

theory [29].

2.1.6 Density functional theory

Developed by Hohenberg, Kohn, and Sham in 1964 [30, 31], the “density functional

theory” (or “DFT”) can be seen as the successor of the Hartree–Fock theory.
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Basically, the exchange term V X
1 (~r ) in Hartree–Fock theory given by Eq.(2.16) is

replaced by an exchange correlation term V XC
1 [n(~r )] that is a functional derivative

of the exchange correlation energy EXC [n(~r )], which is a functional of the electron

number density n(~r ). The dynamic correlation effect results from the Coulomb

repulsion between electrons with antiparallel spins and is ignored in the Hartree-

Fock theory. The other difference between the two methods is that, in density

functional theory, the wave functions which form the Slater determinant are not

necessarily the single electron wave functions, but they can assume any functional

form that are used to obtain the electron density.

One can obtain the exchange correlation potential approximately by beginning

with the exchange correlation energy of a homogeneous electron gas, that is known

as the “local density approximation” or “LDA”. If the spin degrees of freedom are

also considered the local-density approximation is improved to a method known

as “local spin density approximation” or “LSDA”.

2.1.7 Epilogue

The models and techniques mentioned in this section provide a brief introduction

for the quest of metallic behavior, while detailed analyses, derivations, and conclu-

sions are ommited. The aforementioned subjects along with basic solid state con-

cepts (like Bravais lattices, etc.) and many other techniques to calculate the elec-

tronic structure of metals, e.g., orthogonalized plane wave method, pseudopoten-

tial method, augmented plane wave method, Korringa–Kohn–Rostoker (Green’s

function) method, linear-muffin-tin orbital (LMTO) method, linear response the-

ory, Car–Parinello method, cellular method, etc., can be found in advanced level

textbooks [32, 33, 34, 35, 36, 37, 38, 39, 40] and encyclopedic references on con-

densed matter physics [41, 42].

The methods mentioned in this section all depend on the independent-electron

approximation that is established on the conversion of the N -electron Schrödinger

equation into a one-electron problem. In the tight-binding approximation, the

atomic orbital wave functions are linearly superposed to obtain the crystal orbital

wave functions. In the Hartree–Fock approximation and the density functional
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theory, the many-electron effects are integrated into the one-electron potential

in order to obtain an effective Hamiltonian. However, the independent-electron

approximations become inadequate when the problem in consideration involves

strong correlations between electrons. In the next section we will see that it is in

fact the strongly correlated electrons that give rise to exceptional phenomena in

some metallic materials.
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2.2 Electron correlations and the exchange mechanisms

2.2.1 Prologue

The methods described in the previous section rely on the independent-electron

approximation. However, in the study of condensed matter systems we actually

work with many-electrons, while the word “many” here, means a number, N ,

that is far much larger than any other number that we can find in our physical

world to study. More precisely, N is in the order of 1023, that is the order of the

Avogadro’s number. Well, you can insist on the idea of studying with smaller

pieces of materials of the size of a cube milimeter instead of a cube centimeter,

and claim that N ∼ 1020, however, let us recall that this number is the order of

the age of the universe in miliseconds according to ΛCDM concordance model and

recent WMAP data [43]. Thus, we can rightfully justify that we work in the limit

N → ∞. In fact, this limit, among with a fixed density, describes the so called

“thermodynamic limit”:

N → ∞ ,

V → ∞ ,

N

V
= constant , (2.17)

where V denotes the volume of the system under study.

This is an essential point in condensed matter physics. It gives rise to one of the

most awesome physical phenomena, namely “phase transitions”. Phase transitions

are characterized by abrupt changes in the physical properties of matter at specific

temperatures or external fields. In a “first-order phase transition”, densities, that

are the first derivatives of the free-energy with respect to thermodynamic fields,

show singularities, e.g., discontinuities, while a “second-order phase transition” is

characterized by nonanalytic behavior, e.g., asymptotic divergence, in response

functions, that are the derivatives of densities. It is known that phase transitions

among with some other phenomena occur only in the thermodynamic limit.

Thus, we must be losing some physical reality once we assume the independent-

electron approximation. What we miss actually is the correlations between elec-

trons. “Correlation” has a specific meaning in statistics, i.e., for two correlated
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random variables, p and q,

〈pq〉 6= 〈p〉〈q〉 , (2.18)

where 〈·〉 denote averaging. The correlation function between p and q, defined as

Γ(p, q) ≡ 〈(p− 〈p〉)(q − 〈q〉)〉 = 〈pq〉 − 〈p〉〈q〉 , (2.19)

vanishes if p and q are uncorrelated, but assumes a finite value if p and q are

correlated. Thus, a correlation between p and q mathematically means whenever

p deviates from its average value 〈p〉, q also deviates from its average value 〈q〉, so

that the average of the multiplication of the deviations do not vanish.

In the independent-electron approximation, the correlations between the elec-

tron wave functions are neglected. We assume that the crystal orbital wave func-

tion that describes the material can be written as the linear combination of atomic

orbital wave functions in the tight-binding approximation. In the mean-field ap-

proximations of Hartree–Fock and density functional theories, we assume that the

Coulombic electron-electron correlations can be written as an effective one-electron

potential, namely as the interaction of a single electron with the averaged charge

density of the remaining electrons. In turn, in self-consistent field type approxi-

mations, the wave function can be factorazible in single-electron wave functions,

which contradicts with Eq.(2.18) if the electrons are correlated.

Most of the remarkable phenomena that arise for lantinates and actinides (col-

lectively referred as “heavy-fermions”), transition metals, and the compounds and

alloys of these elements are due to strong correlations between electrons. Among

these are magnetism, superconductivity, mixed valence, Wigner crystallization,

charge ordering, spin ordering, fractional quantum Hall effect, colossal magnetore-

sistance, and the metal-insulator transition [37, 44].

2.2.2 Two-electron interactions

Although phase transitions and spontaneous ordering emerge in the thermody-

namic limit, the effects of electron-electron interactions become evident even in
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the two-electron problem. Let us start by defining the hydrogen atom problem,

that can be solved exactly and taught at undergraduate level.

2.2.2.1 Hydrogen atom

The hydrogen Hamiltonian for the single electron in the electric field of a single

proton is given by

HH = − ~
2

2m
~∇2 − e2

r
, (2.20)

and have the eigenfunction solutions labeled by three quantum numbers n, l, m

as ψnlm(~r ) = Rnl(r)Y
m
l (θ, ϕ). The eigenenergy solutions depend only on n and

given as En = − e2

2a0n2 , where a0 = ~2

2me
≈ 0.529 Å is the Bohr radius. The lowest

lying state is the 1s state of ψ100 with energy E1s ≈ −13.6 eV. The spin state

of the electron has no relevance in the hydrogen atom problem, for the spin-up

and spin-down states are degenerate. For further details, one may refer to any

elementary textbook on quantum mechanics.

2.2.2.2 Hydrogen molecule and the exchange interactions

Adding one more hydrogen atom to the above mentioned hydrogen problem brings

in new phenomena. Essentially, the states with diferent total spin are split and

this is caused by the electron-electron interaction. The most crucial effects are the

so called “direct exchange” and “kinetic exchange” interactions. There also exist

the indirect exchange and the superexchange that we will not mention here, but

one can refer to [32, 40] for details on these mechanisms.

The H2 hydrogen molecule Hamiltonian can be written as

HH2
=

2∑

i=1

[
− ~2

2m
~∇2
i −

e2

|~ri − ~R1|
− e2

|~ri − ~R2|

]
+

e2

|~r1 − ~r2|
+

e2

|~R1 − ~R2|
, (2.21)

where ~ri and ~Rj are the positions of ith electron and jth proton respectively. Here

in the sum, the first term is the electron kinetic energy term, while the other two

terms are electron-proton interaction terms. The last two terms are succesively

the electron-electron and proton-proton interaction terms. We assume that the
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protons are stationary due to the Born–Oppenheimer approximation, and thus,

treat the last proton-proton term in Eq.(2.21) as a constant [26]. The low lying

states of such a system is a 6-dimensional Hilbert space that has the basis set

given by the 1s atomic orbitals, for exciting the electrons above the 1s state costs

a relatively large energy.3 This basis set is given by

{| ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉, | m ©〉, |© m〉} , (2.22)

where the first and second symbols refer to the electrons localized on the first

and the second proton. The single arrows denote the spin states of the singly

localized electrons, while a double arrow and a circle are for an H− and an H+ ion

respectively. Thus, we name the first four states as neutral and the last two as

ionized. Since there exist Coulomb repulsion between electrons, we note that the

ionized states have higher energy levels than the neutral states, for in the ionized

states both electrons are on the same proton site. Again, recall that each of the

electrons in the above set is in the 1s atomic orbital.

2.2.2.2.1 Direct exchange

Now, working in the neutral states subspace, that is called the “Heitler-London

approximation” [45], let us denote the 1s atomic orbital wave function of the ith

electron localized on the jth proton by φj(~ri), and the spin wave function of the

ith electron by χ↑i and χ↓i. Since the total wave function of the system must be

antisymmetric under the exchange of electrons due to Pauli exclusion principle,

the allowed states that we can construct with the neutral states are

3The first excitation to 2s state costs approximately 10.2 eV, which is approximately 398
kBT at 298 K room temperature.
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ψ1 =
1√

2(1− I2)

[
φ1(~r1)φ2(~r2)− φ2(~r1)φ1(~r2)

]
χ↑1χ↑2 ,

ψ2 =
1√

4(1− I2)

[
φ1(~r1)φ2(~r2)− φ2(~r1)φ1(~r2)

][
χ↑1χ↓2 + χ↓1χ↑2

]
,

ψ3 =
1√

2(1− I2)

[
φ1(~r1)φ2(~r2)− φ2(~r1)φ1(~r2)

]
χ↓1χ↓2 ,

ψ4 =
1√

4(1− I2)

[
φ1(~r1)φ2(~r2) + φ2(~r1)φ1(~r2)

][
χ↑1χ↓2 − χ↓1χ↑2

]
, (2.23)

where the first three states are the total spin-1 triplet states with Sz-eigenvalues

of 1, 0, and −1, while the last state is the total spin-0 Sz = 0 singlet state. With

the overlap integral defined as

I ≡
∫
d~ri φ

∗
1(~ri)φ2(~ri) , (2.24)

these four states are all eigenstates of the H2 Hamiltonian with energy eigenvalues

E1 = E2 = E3 = 2E1s +
C −X
1− I2 ≡ Et ,

E4 = 2E1s +
C +X

1 + I2
≡ Es , (2.25)

where C and X are Coulomb and exchange integrals respectively, given by [44]

C ≡
∫
d~r1

∫
d~r2 |φ1(~r1)|2

e2

|~r1 − ~r2|
|φ2(~r2)|2

−
∫
d~r1 |φ1(~r1)|2

e2

|~r1 − ~R2|
−
∫
d~r2 |φ2(~r2)|2

e2

|~r2 − ~R1|
,

X ≡
∫
d~r1

∫
d~r2 φ

∗
1(~r1)φ

∗
2(~r2)

e2

|~r1 − ~r2|
φ2(~r1)φ1(~r2)

− I
∫
d~r1 φ

∗
1(~r1)

e2

|~r1 − ~R2|
φ∗
2(~r1)− I

∫
d~r2 φ

∗
2(~r2)

e2

|~r2 − ~R1|
φ∗
1(~r2).(2.26)

Accordingly, the singlet-triplet splitting can be calculated as

J ≡ Et −Es = 2
I2C −X

1− I4 . (2.27)

Within the neutral wave functions subspace, using the splitting above, we can

relate the Hamiltonian operator with spin operators, noting that the act of the
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operator (~S1 + ~S2)
2 will yield eigenvalues of 2 and 0 for triplet and singlet states

respectively. In a more convenient way, we choose the operator 2~S1 · ~S2 + 1
2
, which

equals (~S1 + ~S2)
2− 1, and have eigenvalues of +1 for a triplet and −1 for a singlet

state. Thus, we can conclude that

H =
Et + Es

2
− Et − Es

2

(
2~S1 · ~S2 +

1

2

)
= J ~S1 · ~S2 + constant . (2.28)

Here, J is named as “exchange coupling” and serves as a spin-spin interaction

potential. However, one should note that it is purely an effect of Coulomb interac-

tion between electrons and the Pauli exclusion principle, and there is no primary

interaction between spins actually.

Hence, we obtained the principle form of what is called “exchange Hamiltoni-

ans”. It was Heisenberg and Dirac who first recognized the exchange mechanism

in 1926 [46, 47] and the Hamiltonian

H =
∑

ij

[
Jij ~Si · ~Sj

]
(2.29)

is called Heisenberg-Dirac Hamiltonian. In principle, three-body (and higher or-

der) Coulomb interactions also result in exchange mechanisms, however they in-

volve much more complicated derivations from the first-principles, and yet in con-

densed matter studies the two-body form of the Hamiltonian above is capable of

capturing the essential magnetic phenomenon, since we already have a parameter

(J) to fit with the experimental results. Even the nearest-neighbor Heisenberg

model gives a phase transition from a paramagnet to an (anti)ferromagnet at a

critical (Néel) Curie temperature. The sign of the exchange coupling, J , defined in

Eq.(2.27) determines whether the material is antiferromagnetic (J > 0) or ferro-

magnetic (J < 0) below the critical temperature. The exchange coupling changes

sign at I =
√

X
C

, with 0 < I <
√

X
C

corresponding to the ferromagnetic case and
√

X
C
< I < 1 to the antiferromagnetic case.

The Heitler–London approximation for the H2 molecule exchange coupling, as

derived above, have certain inadequacies for large and small interatomic distances.

For the large interatomic distances, the overlap integral, I, tends to vanish and the
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exchange coupling becomes strongly ferromagnetic, however, it is known that the

H2 molecule has a singlet, thus antiferromagnetic, ground state for all interatomic

distances [44]. The result can be improved by taking the higher lying states into

account, that in turn, leads to more complicated derivations. Hence, we see that

calculating the exchange effects is highly nontrivial even for the simplest systems.

This also illustrates the inadequacy of the density functinal theory, that relies on

calculating a general form of exchange couplings.

2.2.2.2.2 Kinetic exchange

For the small interatomic distances of H2, the problem with the Heitler–London

scheme can be lifted simply by considering the previously neglected ionized states,

namely | m ©〉 and |© m〉. Hence, we define

ψm© ≡ 1√
2
φ1(~r1)φ1(~r2)

[
χ↑1χ↓2 − χ↓1χ↑2

]
,

ψ©m ≡
1√
2
φ2(~r1)φ2(~r2)

[
χ↑1χ↓2 − χ↓1χ↑2

]
. (2.30)

But now, in the Hamiltonian, we have an on-site Coulomb integral that can be

expressed as

U ≡
∫
d~r1

∫
d~r2 |φi(~r1)|2

e2

|~r1 − ~r2|
|φi(~r2)|2 , (2.31)

which is larger than the Coulomb integral, C, given in Eq.(2.26), since the electrons

both share the same 1s atomic orbital now. The interaction U is named as “on-site

Coulomb repulsion” or as “Hubbard U ” for the reasons that will become clear in

the further sections. Having both electrons on the same atomic site costs us a

Coulombic energy of U , however, since we lifted the restriction of localization on

separate sites, that will contribute as a kinetic energy gain in return. The “tight-

binding hopping integral”, that mixes the ionized and neutral states, is given by

− t ≡ −
∫
d~ri φ

∗
1(~ri)

e2

|~ri − ~Rj |
φ2(~ri) , (2.32)

and serves as the kinetic energy associated with the nearest-neighbor single-electron

hopping processes of | ↑↓〉 ⇋ | m ©〉, | ↑↓〉 ⇋ |© m〉, | ↓↑〉 ⇋ | m ©〉, and
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| ↓↑〉 ⇋ |© m〉. Note that the triplet ferromagnetic states with | ↑↑〉 and | ↓↓〉
are not affected by the consideration of the ionized states, since no two electrons

can occupy the same quantum level due to Pauli exclusion principle. Further-

more, the triplet state ψ2 also does not mix with the doubly occupied states due

to symmetry. As a result, the mixture of the ionized states extend the triplet-

singlet splitting approximately (assuming C ≪ U and X ≪ U) by an addi-

tional amount of Jkinetic ≈ 4t2/U , and further stabilizes the antiferromagnetic

state. This energy shift in the order of O(t2/U) in favor of antiferromagnetism

can also be found by second order perturbation theory in the atomic limit of

t/U → 0 [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58].

This additional exchange interaction associated with the hopping of electrons

between nearest-neighboring sites is called “kinetic exchange”, and is again purely

an effect of electron correlations and the fermionic nature of electrons.

2.2.3 Epilogue

In the following sections, we will make use of the tight-binding hopping integral, t,

and the on-site Coulomb repulsion, U , in order to construct a model Hamiltonian

in the tight-binding scheme for the theoretical investigation of the phenomena that

were mentioned briefly in the beginning of this section and some of which will be

reviewed in more detail in experimental aspects through the next section.
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2.3 Mott–Hubbard transition

2.3.1 Prologue

As we stated above, the independent-electron approximation fails to predict some

electron correlation effects, and in this section we will emphasize on these electron

correlation effects both from experimental and theoretical points of view succe-

sively. In condensed matter physics, we are interested in the crystaline systems

mostly; and in this thesis, we omit the consideration of noncrystaline systems en-

tirely. That is why the “independent-electron approximation” is synonymous to

the “band theory of solids” for our investigation4. Besides, what we mean by the

term “electron correlation effects” is the phenomena that cannot be predicted by

the simple band theory.

The early achievement of the band theory was that, it classified almost all

solid materials as metals or insulators, which was right after its introduction.

However, it was also for the same type of materials, that the theory lacked the

true prediction. That is to say, the band theory of solids erroneously predicted a

metallic behavior for a class of insulators. Later on, more types of wrong prediction

were discovered. Categorically, for these materials, the electron correlations are

strong, and the misleading due to band theoretical approach is caused by the

ignorance of the effects of strong electron correlations. Thus, we name this class

of materials as “strongly correlated electron systems”.

2.3.2 Strongly correlated electron systems

Typical examples of strongly correlated electron systems contain compounds of

heavy-fermion systems (rare earth metals and actinides), e.g., CeCu2Si2, UBe13,

UPt3, NpBe13, U2Zn17, UCd11, NpSn3, CeAl3, YbCuAl, etc., and compounds

of transition metal elements (usually oxides), e.g., Ni, La2CuO4, V2O3, NiS2Se,

BaVS3, Fe3O4, FeSi, Ti2O3, LaCoO3, etc. [59, 60]. These materials share a common

chemical property, that is the partially filled d- and/or f -shells. The correlations

between d- or f -electrons are particularly strong, for the atomic orbital wave func-

4This approach is also commonly referred as “Bloch–Wilson band theory”.
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tions of these electrons do not extend from the nuclei as far as the atomic orbitals

of s- and p-electrons do, and in turn, d- and f -electrons feel much higher Coulomb

repulsion on average.

The s- and p-orbitals can be considered as Bloch functions in most cases.

However, for systems with small hopping- and overlap-integrals between nearest-

neighboring atoms (narrow-band systems), the d- and f -orbitals must be described

by localized Wannier states. The localization of these electrons extend due to

spatial contraction of the d- and f -atomic orbitals. Moreover, for heavy-fermion

systems, the s- and p-orbital contractions must also be considered, since a heavier

nucleus creates increased Coulomb attraction. Direct relativistic effects also imply

the contraction of s- and p-orbitals. This, in turn, creates a shielding for the d-

and f -shells, and extends their localization [40].

The above argument is supported with another point of view [61]: The hopping

integrals for Wannier localized wave functions determine the quantum mechanical

average kinetic energy of the electrons, and in turn, the band width, W , of the

electronic structure. The mean time, τ , spent by an electron on an atomic orbital

can be related to the band width by a mere application of Heisenberg energy-time

uncertainty principle [62], namely ∆E∆t & ~, where the uncertainties in energy,

∆E, and time, ∆t, can be taken as W and τ respectively, yielding the inverse

proportionality between τ and W ,

τ ∼ ~

W
. (2.33)

Thus, for narrow-band systems of partially filled d- or f - orbitals, the smaller value

of W yields a larger τ , and hence, electrons spending more time on the same atomic

orbital. As a direct consequence of a large τ , the Coulomb intearction between

d- and/or f -electrons on the same atomic site become significantly weighted, and

the system turn out to show a strongly correlated electron behavior.

One cannot expect to describe such systems by neglecting these strong correla-

tions between d- and/or f -electrons, and that is why the mean-field type approxi-

mations (Hartree–Fock and density functional theories) fail to predict the physical

properties of the real experimental strongly correlated electron systems.
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2.3.3 Experimental systems

2.3.3.1 Metals versus insulators

What is the experimental description of a metal and an insulator? How can

one measure the metallic behavior? The essential physical observable is the (DC

electrical) resistivity, ρ, measured in Ohm meter (Ω·m) in SI units and defined by5

ρ ≡ |
~E|
| ~J |

, (2.34)

where ~E and ~J are the electric field and the current density vectors respectively.

A better serving measure is the reciprocal of the resistivity, namely conductivity,

given by

σ ≡ 1

ρ
, (2.35)

measured in Siemens per meter (S·m−1) in SI units. We should note that, it is not

the conductivity itself that determines the metallic nature of a material, but it is

the rate of change in conductivity with respect to temperature.

For an insulator there is a finite gap between the valence and the conduction

bands, and since electrons can be excited into the conduction band by thermal

excitation, the conductivity of an insulator can be increased by raising the tem-

perature. This is reflected as a positive derivative of conductivity with respect

to temperature, and hence, dσ
dT

> 0 for insulators. On the contrary, in metals, as

the temperature is raised, the electron scattering mechanisms cause a decrease in

conductivity, that can be expressed as dσ
dT
< 0 for metals.

According to independent-electron approximation of band theoretical treat-

ment, for an insulator, the gap between the valence and the conduction band

asserts an even number of electrons per unit cell, since in order to obtain a com-

pletely filled valence band, one needs to fill each quantum mechanical energy level

by two electrons with spins up and down. Note that the opposite reasoning may

not work, i.e., an even number of electrons per unit cell does not necessarily imply

5Anisotropy effects, which can be included by the consideration of a resistivity tensor, are
omitted.
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a completely filled valence band, but may also lead to a partially filled conduction

band with an even number of electrons in it. However, one can still categorize any

material with an odd number of electrons per unit cell as a metal according to

band theory, since the unpaired electron must yield to a partially filled band.

2.3.3.2 Mott–Hubbard insulators

A decade after the introduction of the band theory, de Boer and Verwey were

the first to draw attention to a number of transition metal oxides, e.g., NiO,

ZnO, Cu2O, Mn3O4, Fe2O3, etc., that were expected to show metallic behavior

according to band theory, being in fact very poor conductors [63]. Yet for some

materials, e.g., CoO, the expected metallic behavior, on the very contrary, reveals

extreme insulator case at ambient conditions. As we discussed in the previous

subsection, strong correlation effects must be on stage, for these compounds all

possess partially filled d-shell electron bands. Mott and Peierls, in the same year,

were the first to indicate the significance of the neglected electron correlations [64].

Let us discuss a historical example of the kind discussed above, i.e., the transi-

tion metal monoxide CoO. This material has a slightly distorted rock salt (NaCl)

structure that has one Co and one O per unit cell (cf. Fig. 2.3 below). The

transition metal, cobalt, has the electron configuration [Ar]4s23d7, while oxygen

manifests [He]2s22p4 configuration. The already paired electrons of the inner shells

Figure 2.3: The rock salt structure of CoO with black and white spheres denoting

Co and O occupation. The unit cell, which contains one of each Co and O atoms,

is given with the red octahedron.
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may be omitted, and thus, the total number of electrons on the outer shells of the

atoms in a unit cell, being 9+6 = 15, is an odd number, which yields a metallic be-

havior within the band theoretical approach. However, this prediction contradicts

with experiments, since CoO is one of the most robust insulators [37, 44, 65, 66].

The band theory prediction mentioned above may be improved by consider-

ation of different orbitals for different spins, which will eventually yield an anti-

ferromagnetic insulating ground state as was the case with the H2 molecule that

we mentioned before. But this consideration will give a phase transition at a

critical temperature from the antiferromagnetic insulating phase to a paramag-

netic metallic phase, which also contradicts with experiments, since CoO in the

paramagnetic phase is still a strong insulator [44]. The insulators of the kind we

described here are called “Mott–Hubbard insulators”, after Mott’s and Hubbard’s

introductions of theoretical explanations for the metal-insulator transition in such

strongly correlated systems.

The condensed matter community treated the Mott–Hubbard insulators as a

marginal subject for a long period. However, among with other significant phe-

nomena, the discovery of high-Tc superconductor cuprates in 1986 [67] and the

rediscovery of colossal magnetoresistant manganites in early 1990s [68, 69] pro-

voked the attention on Mott–Hubbard insulators once again, for these exceptional

compounds were nothing but doped Mott–Hubard insulators [37]. Since then, the

phase transitions between the metallic and the Mott–Hubbard insulating phases

became a central problem for many condensed matter physicists. Next, we will

discuss the nature of this metal-insulator transition, also named as “Mott–Hubbard

transition”.

2.3.3.3 The Mott–Hubbard transition

The band theoretical approach faced a more significant failure when the Mott–

Hubbard transition was discovered. The metallic behavior predicted by the band

theory is insensitive to a change either in temperature or in lattice spacing, i.e.,

the material is a metal if it has an odd number of electrons per unit cell, regardless

of how large the lattice spacing is, for the correlations between atomic orbitals are

neglected. However, even a simple Gedanken experiment may reveal the inconsis-
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tency: As one increases the interatomic distance, the hopping-integral vanishes,

that is to say, electrons need more kinetic energy in order to become delocalized

from the atomic orbitals. And yet, in the large interatomic distance limit, it is

plausible to regard all electrons localized on single atoms, thus, the system turns

out to be an array of individual isolated atoms that do not interact with each

other, and the material becomes an insulator.

One of the most crucial experimental examples of such a transition is seen

in pure and doped vanadium sesquioxide, V2O3 [70], which led condensed mat-

ter physicists to appreciate the strong correlation effects. V2O3 still serves as a

benchmark material for the test of new theories. As can be observed from Fig.

2.4 below, the pure V2O3 is an insulator with dσ
dT

> 0 in the low temperature

regime. Density functional theory with basic local density approximation, how-

ever, predicts a metallic state for V2O3 [71]. What is more crucial in Fig. 2.4 is

that, upon increasing the temperature, the resistivity experiences a seminal drop

of approximately six orders of magnitude and the material undergoes a metal-

insulator transition at around a temperature of 150 K. This is a typical example

of a Mott–Hubbard metal-insulator transition.

Figure 2.4: The temperature dependence of the resistivity (in the direction per-

pendicular to the c-axis of the lattice) of pure V2O3. Note the huge jump of

approximately six orders of magnitude in the vicinity of 150 K (after [70]).
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Before we begin to discuss the theoretical details of this phase transition, let

us also present the pressure-temperature phase diagram for doped V2O3, given in

Fig. 2.5 below. The internal pressure of the material V2O3 can be tuned pre-

cisely by doping Ti or Cr atoms that substitute the V atoms in the crystal. The

decrease in pressure implies a phase transition from the high-temperature para-

magnetic metallic phase into a high-temperature low-pressure insulating phase.

This insulating phase is, however, different from the low-temperature insulating

phase, which is accompanied by an antiferromagnetic long-range order, while the

low-pressure high-temperature insulating phase is paramagnetic. The first-order

phase transition between the metallic phase and the paramagnetic insulating phase

terminates at a critical point at around Tc ≈ 400 K, and one can smoothly pass

from the metallic to the insulating phase above this Tc. We also note that the an-

tiferromagnetic low-temperature insulator is fairly robust and insensitive to pres-

sure, and the long-range antiferromagnetic order is only destroyed at high values

of pressure.

Figure 2.5: The experimental pressure-temperature phase diagram for the doped

V2O3 (after [70]). The V atoms are substituted by either Ti or Cr atoms by

controlled doping, which in turn, tunes the internal pressure. The jump in Fig.

2.4 for the pure case corresponds to the phase transition along the dashed line of

x = 0.
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Now, having seen how the pure band theoretical approach fails to explain

the physical nature of experimental systems for which the electron correlation

effects are strong, we need a better theoretical treatment of such systems. Mott

and Hubbard introduced the required theoretical tools, and the next subsections

are devoted to the understanding of these approaches to the strongly correlated

electron systems.

2.3.4 Mott–Hubbard theory

When de Boer and Verwey presented their strange experimental results, namely

the NiO being an insulator, at a conference in 1937, it was Peierls who, for the

first time, pointed out the significance of the correlation effects during the dis-

cussion session [64, 72]. Later, in 1949, Mott provided a more detailed picture

of the metal-insulator transition in concern [72, 73, 74, 75, 76]. Today, the theo-

retical understanding of the Mott–Hubbard transition, induced by strong electron

correlations, is based on the Hubbard model, which was introduced in 1963 by

Hubbard [77, 78, 79]. Before discussing the celebrated Mott–Hubbard theory in

further detail, we should digress into the subject of screening.

2.3.4.1 Screened Coulomb interaction

The Coulomb attraction between a valence electron and its ion for the isolated

atomic case is given by

V (r) = −Ze
2

r
. (2.36)

Here, r is the radial distance between the electron and the ion core, which includes

Z protons inside. As opposed to the isolated atomic case, in a crystal enviroment,

since the ion will also attract other freely moving delocalized conduction electrons,

the Coulomb interaction between the electron and its ion will be largely screened

by these free electrons. Bohm and Pines figured out that the form of the screened

potential can be expressed as [80, 81, 82]

V (r) = −Ze
2

r
e−r/λ , (2.37)
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where −Ze2

r
is the bare Coulomb attraction for the isolated atomic case, while the

constant λ in the exponential reflects the screening effect in the crystal enviroment,

and called the “screening radius”, whose value can be derived via Thomas–Fermi

approximation [36, 72, 83].

The Fermi energy of a free electron is given by (see, e.g., [32])

EF =
~2

2m

(
3π2nf

)2/3
, (2.38)

where m is the electron mass and nf is the free electron density in the absence of

an ion within the free electron gas. Introducing an ion into this free electron gas

changes the electron density around the ion of course, and the Poisson equation

~∇2V (r) = −4πe2 [n(r)− nf ] (2.39)

will define the electron density n(r) around the ion that creates the Coulomb

potential V (r). The Fermi energy relation is also modified into

EF + V (r) =
~2

2m

[
3π2n(r)

]2/3
, (2.40)

from which the density can be obtained as

n(r) =
1

3π2

(
2m

~2

)3/2

[EF + V (r)]3/2

=
1

3π2

(
2m

~2
EF

)3/2 [
1 +

V (r)

EF

]3/2

= nf

[
1 +

V (r)

EF

]3/2
, (2.41)

where we used Eq.(2.38) in the last line. Since V (r)≪ EF [36], we can expand the

term in the brackets in Taylor series and with a first order expansion we obtain

n(r) ≈ nf

[
1 +

3

2

V (r)

EF

]
. (2.42)

Substituting n(r) in Eq.(2.39) with the expression given above in Eq.(2.42) yields

~∇2V (r) =
1

λ2
V (r) , (2.43)
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where λ is defined as

λ ≡
√

EF
6πe2nf

=
~

2e

(
π

3m3nf

)1/6

. (2.44)

by the use of Eq.(2.38). Now, Eq.(2.43) can be reduced to a second order ordinary

differential equation in radial distance r as

1

r2
d

dr

[
r2
d

dr
V (r)

]
=

1

λ2
V (r) , (2.45)

due to the spherical symmetry. One can assure that the screened Coulomb inter-

action given in Eq.(2.37) is an immediate solution to Eq.(2.45), and hence, the

screening radius is given by Eq.(2.44).

In Fig. 2.6 below, we present a comparison between the bare and screened

Coulomb interactions. The effect of screening can be easily observed as a fair
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Figure 2.6: The bare Coulomb potential in the isolated atomic case (dotted curve)

and the screened Coulomb potential in the crystalline case (full curve) for a lo-

calized electron. Radius and potential axes are scaled accordingly with λ and

Ze2/λ.
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decrease in the electrostatic interaction between a localized electron and its ion

core. We should also note that a typical value for the screening radius is in general

well below the interatomic distance. For example, in the case of a Cu crystal,

which has a lattice spacing a ≈ 0.255 nm, Fermi energy EF ≈ 7 eV, and electron

density nf ≈ 8.5 × 1028 m−3, the screening radius is approximately λ ≈ 0.055

nm, that is almost one-fifth of the interatomic spacing, and in fact, very close to

the Bohr radius. The screening radius we derived here using the Thomas–Fermi

approximation [83] is often named as “Thomas–Fermi screening parameter”.

2.3.4.2 Mott theory of metal-insulator transition

Originally, Mott discussed a crystalline array of hydrogen-like monovalent atoms

with lattice spacing a, that could be varied. For the small interatomic distances,

like in the case of Na, the crystal will be a metal due to band theory, and it is

obvious to the commonsense that in the large a limit, the crystal must be an

insulator, since it will be reduced to an array of isolated atoms. This was actually

the case for NiO, which is insulating according to the experiments of de Boer and

Verwey. Thus, there must be a metal-insulator transition value aMIT in between

the two conducting behaviors.

This transition value can be obtained by considering the attractive screened

Coulomb potential between the valence electron and the ion, separated by a radial

distance r, given by Eq.(2.37). If the screened Coulomb potential is strong enough,

the electrons will be trapped by ions. In this case, even if an electron leaps over

this potential barrier, it will find no another atom nearby to hop, since there is also

a strong Coulomb repulsion between the electrons on the same atomic site, and

hence, the material will be in the insulating phase. However, the screened Coulomb

potential can be tuned by changing the electron density n [cf. Eq.(2.44)], which

is equivalent to varying the lattice spacing. Reducing the interatomic distance, a,

leads to the increase in the electron density, n, that in turn, decreases the screening

potential, λ, which in the end, reduces the screened Coulomb potential. We can

assert that

n ∼ a−3 , (2.46)
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since n is the number of electrons per unit volume. For the screening parameter,

from Eq.(2.44), we can conclude that

λ ∼ n−1/6 . (2.47)

Thus, substituting Eq.(2.46) into Eq.(2.47) yields

λ ∼
√
a . (2.48)

Using this relation in the screened Coulomb potential given by Eq.(2.37), we can

derive how this trapping potential decreases with decreasing lattice spacing:

V (r) ∼ e−1/
√
a . (2.49)

Below in Fig. 2.7, we present this decrease graphically for the r = 1 case,

while the situation is the same for any r value, the trapping potential decreses as

e−1/
√
a as we decrese the lattice spacing a. It is clear from the above argument

of Mott that at a transition value of a = aMIT , the trapping potential will be

weak enough for electrons to become delocalized all together at once, which will

result in a correlation-induced first-order metal-insulator transition. Since the
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Figure 2.7: The screened Coulomb potential at r = 1 as a function of lattice

spacing, a. The potential decreases as e−1/
√
a with decreasing a.
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lattice spacing and the electron density are interrelated, one can tune the electron

density, n, instead of the lattice spacing a, to obtain this transition. We can

accordingly recognize, by using Eq.(2.47) in Eq.(2.37), that

V (r) ∼ e−n
1/6

, (2.50)

which provides the functional form of the decrease in trapping potential at radius

r as the density is increased.

After careful calculations, Mott concluded that the metal-insulator transiton

occurs at the transition value of n = nMIT given approximately by

nMIT ≈
(

0.2

a∗0

)3
, (2.51)

where a∗0 is the effective Bohr radius for the material in concern [72, 73, 74, 75, 76].

This criterion for a metal-insulator transition was flourishingly applied to doped

semiconductors after its introduction. Yet a better theoretical insight is provided

within the Hubbard model, which will be discussed next.

2.3.4.3 The Hubbard model for metal-insulator transition

In order to illustrate the situation in a clearer fashion, let us consider the mono-

valent Na crystal in particular. In Fig. 2.8 below, a schematic picture for the

atomic orbital bands is given. They all contribute to the electronic band structure

of the Na crystal. The tight-binding approach yields decreasing atomic orbital

band widths, with increasing lattice spacing, due to the decrease in hopping and

overlap integrals [36, 37, 44]. For the Na crystal the 1s, 2s, and 2p atomic orbitals

are completely filled with paired electrons, while the 3s band is half filled, thus

the crystal shows metallic behavior. Although the band widths become narrover

with increasing lattice constant, according to band theoretical approach the half

filling of the 3s band is insensitive to the variation in a, as seen from Fig. 2.8

below. However, a large enough lattice spacing must yield very small hopping and

overlap integrals, and thus an insulating phase.

Mott’s argument, discussed in the previous subsection, can also be interpreted

within this band picture. As the band width of the system decreases, the strong
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Figure 2.8: Schematic representation of the band widths in a Na crystal. The

tight-binding approximation gives decreasing atomic orbital widths with increasing

lattice spacing a. The thin vertical line represents the equilibrium lattice spacing

in ambient conditions, while the shaded regions denote the filled atomic orbitals.

Note that the 3s band is always half filled no matter what value a assumes (after

[44]).

on-site Coulomb repulsion between the electrons on the same atomic site will cause

all electrons to avoid each other and localize on different atoms. In this case, the

condition for a metal-insulator transition, given in Eq.(2.51), can be expressed

as [74]

WMIT = 2zt , (2.52)

where WMIT is the band width value at the transition, z is the lattice coordination

number, and t is the tight-binding hopping integral.

For the Na crystal lattice structure to be electrically conducting, the valence

electrons must have the ability to hop between neighboring atoms, which will

eventually yield “charge fluctuations”. This charge fluctuating procedure can be

represented as a reaction involving two neighboring atoms of a Na crystal:
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Na + Na −→ Na+ + Na− , (2.53)

where the first and second atoms on each side of the reaction refer to two neigh-

boring atomic sites. On the left-hand side, both atoms have one 3s electron each,

while on the right-hand-side, a 3s electron is transferred from one atom (leav-

ing it as a Na+ cation) to the other (promoting it to a Na− cation), hence, a

charge fluctuation is formed. But, in order to accomplish this reaction, the trans-

ferred electron must overcome the on-site Coulomb repulsion, U , that arises due

to two electrons occupying the same atomic orbital. On-site Coulomb repulsion

(or Hubbard U) was introduced in the previous section with Eq. (2.31) for the H2

molecule. For the case of a Na crystal, the Hubbard U is given by

U =

∫
d~r1

∫
d~r2 |ψ3s(~r1)|2

e2

|~r1 − ~r2|
|ψ3s(~r2)|2 , (2.54)

where ~r1 and ~r2 are the position vectors for the two electrons that are on the same

atomic site. Thus, with the proper choice of zero-energy level as the energy of

a Na atom with one valence electron, we can write the reaction above in terms

of energy. On the left-hand side, both atomic sites have the same zero-energy

each, while on the right-hand-side, the first atom has the energy of −E3s (since an

electron with energy E3s is lost) and the second atom has the energy of E3s + U

(one extra 3s electron and the on-site Coulomb repulsion). Hence the difference

of [(−E3s) + (E3s + U)] − [(0) + (0)] = U must be compensated. This on-site

Coulomb repulsion between the electrons sharing the same atomic orbital is the

driving force for a metal-insulator transition.

In the case of isolated atoms, the Hubbard U is given by,

U = I − A , (2.55)

where I is the ionization energy and A is the electron affinity of the atom [76].

The typical range of U is 1 − 10 eV, but it is higher for insulators. In example,

the electron affinities of copper (a metal) and carbon (an insulator) are close:

ACu ≈ 1.23 eV for copper and AC ≈ 1.26 eV for carbon. However, the ionization
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energies are ICu ≈ 7.72 eV and IC ≈ 11.3 eV. Hence, UCu ≈ 6.49 eV is much

smaller (about 35%) than UC ≈ 10.0 eV.

Thus, the reaction of Eq.(2.53) needs an amount of energy U , and this on-site

Coulomb repulsion resists against the formation of charge fluctuations. But now,

within this picture, how come is the Na crystal conducting, if the electrons are

to sit one-by-one on each atomic site? One should thank to the kinetic energy

contribution associated with the delocalization of electrons in the charge transfer

process. Due to the kinetic exchange mechanism, once we lift the restriction of

localization, electrons gain a kinetic energy, which was given in the tight-binding

hopping integral form in Eq.(2.32) of the previous section for the case of an H2

molecule. In the Na crystal case, this kinetic energy gain per hopping is given by

− t = −
∫
d~r ψ∗

3s(~r )
e2

|~r − ~R|
ψ3s(~r ) , (2.56)

where ~r and ~R are position vectors for the electron and the nucleus respectively.

A connection to the Mott’s view of variable lattice spacing should be given

here. In the isolated atomic case, the crystal is obviously insulating. As the

lattice spacing is decreased, the on-site Coulomb repulsion is suppressed due to the

screening effect, and yet, the tight-binding hopping integral is enhanced as a result

of closer nuclei. These two effects of decreasing the lattice spacing, or equivalently

increasing the density, are always mutual. This yields a transition point where the

kinetic energy overcomes the on-site Coulomb repulsion, and the crystal becomes

metallic. This means that the transition is a result of the competition between the

on-site Coulomb repulsion, U , and the tight-binding hopping integral, t. Such a

metal-insulator transition induced by strong electron correlations is called Mott-

Hubbard transition, after Hubbard’s proposal of a lattice Hamiltonian that reflects

the competing interactions of t and U [77, 78, 79]:

H = −t
∑

〈ij〉

∑

σ

(
c†iσcjσ + c†jσciσ

)
+ U

∑

i

ni↑ni↓ . (2.57)

The “Hubbard model” we introduce above is in the second quantization formal-

ism of quantum mechanics. Before a detailed analysis, first we need an insight on

second quantization, that will be the subject of the next chapter.
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2.3.5 Epilogue

Now we have seen how the strong electron correlation efects become significant,

in particular, inducing antiferromagnetic insulating state and the Mott–Hubbard

transition between metallic and insulating states. There exist numerous other phe-

nomena related to the strongly correlated fermion systems in nature of condensed

matter, e.g., superconductivity, colossal magnetoresistance, Anderson localization,

Wigner crystallization, etc., as well as elementary particle physics, and yet, cos-

mology, e.g., neutron stars, that lie outside the scope of this thesis.

It should be noted that although there are much more to argue about the Mott–

Hubbard theory, like the difference between the Mott–Hubbard insulator and the

charge transfer insulator, for the sake of our purposes, it will be enough to discuss

only one more subject, that is the second quantization, which will benefit us the

better understanding of the operators appearing in the Hubbard Hamiltonian, and

that will be the subject of the next chapter.
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Chapter 3

SECOND QUANTIZATION
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3.1 Historical background

The aim of this chapter is to introduce second quantization. We will briefly derive

the quantum field theoretical second quantization representation from the first

quantization principles of the quantum mechanics. In basic quantum mechanics

we deal with particles, while in the context of quantum field theory, we switch to

dealing with fields. In many physical problems, it is reasonable to work with a

field instead of working with many-particles. The field theoretical approach, while

preserving all the symmetries/antisymmetries of the many-particles, establishes

the particle-wave duality of the quantum nature in an eloborate theoretical ground.

Formulated in 1925-1926 by Heisenberg [84], Dirac [85] and Schrödinger [86, 87,

88, 89, 90], the essential subject of quantum mechanics is the motion of particles

in space and time. Initially, it did not include the quantization of the electro-

magnetic field, and that is why the name “quantum mechanics”. This formalism,

either in matrix or in wave mechanics, is the “first quantization” representation of

the quantum nature. However, in a very short time, in 1927, Dirac invented the

“second quantization” representation and made the first attempt in quantum field

theory [91]. Also in 1927, based on the second quantization formalism of the quan-

tum field theory, he established the foundations in quantum electrodynamics [92].

In the very next year, in 1928, the theory of quantum electrodynamics (and the

quantum field theory in general) was further developed by Jordan and Wigner,

who suggested a transformation that yielded the representation of particles as

quantized fields by second quantization [93].

It should not be misunderstood from the name that one takes two steps of

quantization in order to reach the quantum field theory. In fact, there is a single

quantization step in switching from classical to quantum theory of nature, but it is

the difference of representations that we label as “first” and “second”. The reader

should not be worried at this point, since we will not dive into the deep ocean

of quantum field theory of condensed matter physics, but just derive the second

quantization formalism with a pragmatical instinct (that will usually follow the

notation of [38]), although, any interested one may be referred to the advanced

textbooks on the subject [33, 38, 94, 95, 96, 97, 98].
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3.2 First quantization

3.2.1 Prologue

We will omit the details on the first quantization formalism of single-particle sys-

tems, since the subject is taught on undergraduate level today, yet the present

author may argue that a necessity to discuss the matter during secondary school

education has arisen already. However, in order to start from a point, we will give

the time-independent one-particle Hamiltonian,

H = − ~2

2m
~∇2 + V (~r ) , (3.1)

and the accompanying time-independent Schrödinger equation,

H |φα〉 = Eα|φα〉 , (3.2)

where α denotes an either discrete or continuous quantum number, as in the case

of single particle in free space problem, or in general, a set of quantum numbers,

as in the case of hydrogen atom problem, and where the ket, |φα〉 = |φα(~r )〉,
is the corresponding quantum state of the αth quantum level, forming up an

orthonormal basis set of {|φα〉}. In the wave function formalism, the quantum

state is represented as

φα(~r ) ≡ 〈~r |φα(~r )〉 (3.3)

in the position space, while one needs a simple three-dimensional Fourier transform

in order to switch to the momentum space.

3.2.2 Many-particle case

3.2.2.1 Indistinguishability

Indistinguishability of identical particles is a key concept in quantum many-particle

physics. The N -particle wave function is given as

ψα(~r1, . . . , ~ri, . . . , ~rj, . . . , ~rN) . (3.4)
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Now, let us define a permutation operator, Pij, that exchanges the labels of the

ith and jth particles:

Pijψα(~r1, . . . , ~ri, . . . , ~rj, . . . , ~rN) ≡ ψα(~r1, . . . , ~rj, . . . , ~ri, . . . , ~rN)

≡ λPψα(~r1, . . . , ~ri, . . . , ~rj, . . . , ~rN) . (3.5)

Note the interchanged labels of i and j in the first line. Here, λP is defined as the

eigenvalue of the operator Pij . We could have defined so due to the commutation

between Pij and H , that results in mutual eigenstates ψα. Using the fact that

acting Pij on an N -particle wave function twice must yield the same wave function,

we can write

ψα(~r1, . . . , ~ri, . . . , ~rj , . . . , ~rN) = P 2
ijψα(~r1, . . . , ~ri, . . . , ~rj, . . . , ~rN)

= PijλPψα(~r1, . . . , ~ri, . . . , ~rj, . . . , ~rN)

= λ2Pψα(~r1, . . . , ~ri, . . . , ~rj , . . . , ~rN) (3.6)

and hence,

λ2P = 1 ⇒ λP = ±1 . (3.7)

This conclusion sets up two different and opposite types of quantum mechanical

particles. The ones with λP = +1 are called bosons, while others with λP = −1

are fermions, and they assume different symmetries. Bosonic wave functions must

be symmetric and fermionic wave functions must be antisymmetric under particle

exchange, since

ψα(~r1, . . . , ~ri, . . . , ~rj, . . . , ~rN) =





+ψα(~r1, . . . , ~rj, . . . , ~ri, . . . , ~rN) , for bosons

−ψα(~r1, . . . , ~rj, . . . , ~ri, . . . , ~rN) , for fermions

.

(3.8)

We will restrict our further discussion on the fermionic case, for the particles we

deal within the scope of this thesis are fermions, or to be more precise, electrons.

Finally, we should note that the indistinguishability leads to the Pauli exclusion

principle for fermions, and thus, it is experimentally verified in an exact manner.
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3.2.2.2 Many-particle states as linear combinations of single-particle states

As we mentioned in the previous subsection, the single-particle states form an

orthonormal basis set, {|φα〉}, or in the wave function formalism, {φα(~r )}. Let

us label the particles in an N -particle system with integers 1, . . . , N and define

the quantum state of ith particle in the αith quantum level as φαi
(~ri). The wave

function of the N -particle system, given by ψα(~r1, . . . , ~rN), can be projected onto

the basis state φα1
(~r1) to give an (N − 1)-particle function, C, as

Cα1
(~r2, . . . , ~rN) ≡

∫
d~r1 φ

∗
α1

(~r1) ψα(~r1, . . . , ~rN) . (3.9)

Using the orthonormality of the set {φαi
(~ri)}, namely

∑
α′
1

∫
d~r ′

1 φ
∗
α1

(~r1) φα′
1
(~r ′

1) =

δ(~r ′
1 − ~r1)δα′

1
,α

1
, and the above Eq.(3.9), we can write

ψα(~r1, ~r2, . . . , ~rN) =
∑

α1

φα1
(~r1) Cα1

(~r2, . . . , ~rN) . (3.10)

Performing the same projection operation of Cα1
(~r2, . . . , ~rN) onto φα2

(~r2) yields

Cα1,α2
(~r3, . . . , ~rN) ≡

∫
d~r2 φ

∗
α2

(~r2) Cα1
(~r2, . . . , ~rN) ,

ψα(~r1, ~r2, . . . , ~rN) =
∑

α1,α2

φα1
(~r1) φα2

(~r2) Cα1,α2
(~r3, . . . , ~rN) . (3.11)

After the Nth such step of projection we end up with

ψα(~r1, ~r2, . . . , ~rN) =
∑

α1,...,αN

Cα1,α2,...,αN
φα1

(~r1) φα2
(~r2) · · · φαN

(~rN) , (3.12)

where Cα1,α2,...,αN
is not a function of position vectors anymore, but just a complex

number. Hence, we can express the N -particle wave function as a linear combina-

tion of single-particle wave functions. Note that we have actually exploited this

property in order to develop the tight-binding approximation (also referred as liner

combination of atomic orbitals method) described in the previous chapter.

One may think that the set {∏i φαi
(~ri)} could be used as a basis set to describe

the N -particle wave function. However, this statement is merely wrong, since one

cannot choose any set of linear coefficients {Cα1,α2,...,αN
}, and the reason lies in the
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indistinguishability. The N -particle wave function must be either symmetric (for

bosons) or antisymmetric (for fermions) under the particle interchange operation.

But our efforts up to this point are not completely nonsense, and we can still use

the product of single-particle wave functions as a basis set with proper coefficients.

In case of an N -fermion system, this is achieved via the Slater determinant defined

as

S−
∏

i

φαi
(~ri) ≡

1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

φα1
(~r1) φα1

(~r2) · · · φα1
(~rN)

φα2
(~r1) φα2

(~r2) · · · φα2
(~rN)

...
...

. . .
...

φαN
(~r1) φαN

(~r2) · · · φαN
(~rN)

∣∣∣∣∣∣∣∣∣∣∣∣

. (3.13)

Now, we can use these properly antisymmetrized states, {S−
∏

i φαi
(~ri)}, as a basis

set, and express the N -fermion wave function as linear superpositions of them.

3.2.2.3 Representation of operators

3.2.2.3.1 One-particle operator: kinetic energy

Let us denote the kinetic energy operator (a one-particle operator) conjugate to

the ith particle with

Ti ≡ −
~
2

2m
~∇2
i , (3.14)

which yields a total kinetic energy operator of

T =
∑

i

Ti (3.15)

for an N -particle system, since the kinetic energy of the whole system simply

equals the sum of kinetic energies of individual particles. We can represent the

operator Ti in the {|φαi
〉} basis as

Ti =
∑

αa,αb

[∫
d~rj φ

∗
αa

(~rj) Tj φαb
(~rj)

]
|φαa(~ri)〉〈φαb

(~ri)| . (3.16)

Here, the operator Tj under the integral, as defined in Eq.(3.14), takes the Lapla-

cian of the wave function φαb
(~rj) and multiplies it by − ~2

2m
. Defining the integral
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in brackets in the above equation as Tαaαb
yields the action of the total kinetic

energy operator on a simple product state as

T |φα1
(~r1)〉|φα2

(~r2)〉 · · · |φαi
(~ri)〉 · · · |φαN

(~rN)〉

=
∑

i

∑

αa,αb

Tαaαb
|φαa(~ri)〉〈φαb

(~ri)| · |φα1
(~r1)〉|φα2

(~r2)〉 · · · |φαi
(~ri)〉 · · · |φαN

(~rN)〉

=
∑

i

∑

αa,αb

Tαaαb
δαb,αi

|φα1
(~r1)〉|φα2

(~r2)〉 · · · |φαa(~ri)〉 · · · |φαN
(~rN)〉

=
∑

i

∑

αa

Tαaαi
|φα1

(~r1)〉|φα2
(~r2)〉 · · · |φαa(~ri)〉 · · · |φαN

(~rN)〉 , (3.17)

where the Kronecker delta in the third line is due to the projection 〈φαb
(~ri)|φαi

(~ri)〉.
Thus, we can express the act of the kinetic energy operator as the total act of

changing the quantum level of all the ith particles from αi to all levels αa, with

transition amplitudes Tαaαi
(cf. Fig. 3.1). It is therefore straightforward to

extend this result to the properly antisymmetrized basis states given by the Slater

determinant formalism.

Figure 3.1: A schematic representation of the action of a single term in the kinetic

energy operator, that changes the quantum level of the ith particle form αi to αa.

The total action is found by summing over i and αa.

3.2.2.3.2 Two-particle operator: Coulomb interaction

Likewise the one-particle operator case, we can define the Coulomb interaction

operator (a two-particle operator) for the interaction between ith and jth particles
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in the form,

Vij ≡
e2

|~ri − ~rj|
, (3.18)

which yields a total Coulomb interaction operator of

V =
∑

i<j

Vij (3.19)

Again in the {|φαi
〉} base representation, this will yield

Vij =
∑

αa,αb
αc,αd

Vαaαb,αcαd
|φαa(~ri)〉|φαb

(~rj)〉〈φαc(~ri)|〈φαd
(~rj)| , (3.20)

in which Vαaαb,αcαd
is defined as

Vαaαb,αcαd
≡
∫
d~rk d~rℓ φ

∗
αa

(~rk) φ
∗
αb

(~rℓ) Vkℓ φαc(~rk) φαd
(~rℓ) , (3.21)

where Vkℓ acting on φαc(~rk) just multiplies the wave function with e2

|~rk−~rℓ| . Thus, the

total Coulomb interaction operator acts on the N -particle simple product states

as

V |φα1
(~r1)〉 · · · |φαi

(~ri)〉 · · · |φαj
(~rj)〉 · · · |φαN

(~rN)〉

=
∑

i<j

∑

αa,αb
αc,αd

Vαaαb,αcαd
|φαa(~ri)〉|φαb

(~rj)〉〈φαc(~ri)|〈φαd
(~rj)| ·

|φα1
(~r1)〉 · · · |φαi

(~ri)〉 · · · |φαj
(~rj)〉 · · · |φαN

(~rN)〉

=
∑

i<j

∑

αa,αb
αc,αd

Vαaαb,αcαd
δαc,αi

δαd,αj
|φα1

(~r1)〉 · · · |φαa(~ri)〉 · · · |φαb
(~rj)〉 · · · |φαN

(~rN)〉

=
∑

i<j

∑

αa,αb

Vαaαb,αiαj
|φα1

(~r1)〉 · · · |φαa(~ri)〉 · · · |φαb
(~rj)〉 · · · |φαN

(~rN)〉 , (3.22)

where a single term of the sum changes the quantum levels of the ith and jth

particles form αi and αj to αa and αb with a transition amplitude of Vαaαb,αiαj
(cf.

Fig. 3.2). The total action of the Coulomb interaction operator is reached with

summations over all pairs (i, j), and all αa and αb.
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Figure 3.2: A schematic representation of the action of a single term in the

Coulomb interaction operator, that changes the quantum levels of the ith and

jth particles form αi and αj to αa and αb. The total action is found by summing

over all pairs (i, j), and αa and αb.

3.2.3 Epilogue

Hence, we are now at a point to solve a quantum many-electron problem, once

we define a kinetic energy operator for single electrons and a Coulomb interaction

operator for pairs of electrons. Then, what makes the second quantization a

necessity, if all it brings on the table is just a change of representation? In fact,

we will benefit a lot, once we switch to a new representation, namely “occupation

number representation”, for which the details will be discussed in the next section.
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3.3 Second quantization

3.3.1 Prologue

In order to figure out how much we can appreciate a new formalism based on the

occupation number representation, let us first argue about the inadequacies of the

first quantization formalism, that is established on the basis states set constructed

by the states given in Eq.(3.13).

First of all, it is cumbersome to work with the states of the basis set, given

by Slater determinants of what is given in Eq.(3.13). Even in the simplest case

of calculating the overlap between two wave functions, one has to deal with (N !)2

different products of single-particle states. Since we are mathematically working

in the limit N →∞, this method will be so far from being practical.

Secondly, the first quantization formalism needs more improvement for ac-

counting the variable particle number. It does not allow us to work in the grand

canonical formulation of statistical mechanics, where a condition of constant-N is

released, letting N to fluctuate. In the second quantization formalism of many-

particle systems, these difficulties are removed in an eloborate theoretical fashion.

3.3.2 Occupation number representation and Fock space

In order to achieve a simpler formulation than the first quantization formalism of

many-particle systems, we first realize that it is in fact an unnecessary bookkeeping

of every wave function of all individual particles. The only thing that matters is to

know how many particles occupy each state. Thus, the very first thing to define is

the occupation number operator, n̂α, that has the eigenstates |nα〉 with eigenvalues

nα, thus,

n̂α|nα〉 = nα|nα〉 , (3.23)

where nα is the number of particles on the quantum level α. This immediately

requires an identity for the total number of particles, namely

N =
∑

α

nα . (3.24)
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We should also note that any quantum level can be either empty or filled by one

fermion due to Pauli exclusion principle, which is the result of the antisymmetry

of fermionic wave functions upon exchange of particles. This requirement led to

the complicated Slater determinant formalism in the first quantization picture,

however, as we shall see, it will be implicitly satisfied in the occupation number

representation of the second quantization formalism.

The occupation number states for each possible quantum level, {|nα〉}, leads

to a new representation for the N -particle system. We can represent any state of

the whole system by giving the number of particles at each state. This means the

set of all possible states in the form

|n1, n2, . . .〉 (3.25)

together with the identity given in Eq.(3.24) can be used as a basis set for the

system of N -particles. It is worth noting that, how we order the quantum states

(as 1, 2, . . .) is essential, especially for the fermionic case, and we will discuss this

ordering issue later. For now, let us state that, any wave function of the N -particle

system, |ψ〉, can be written in the form of a linear superposition of the occupation

number states, i.e.,

|ψ〉 =

′∑

n1,n2,...

cn1,n2,...|n1, n2, . . .〉 , (3.26)

where the prime on the sum indicates that it is a restricted one with the condition
∑

α nα = N .

Let us denote the space spanned by N -particle occupation number states in the

form of Eq.(3.25) as FN . The Hilbert space spanned by the occupation number

states of undetermined total particle number is called a “Fock space”, and thus,

we define it by

F =

∞⊕

N=0

FN . (3.27)

Notice the zero-particle state is also included in the Fock space, and this is of

essential importance. The space F0 is called the “vacuum space” and its only

element is the “vacuum state”, denoted by |0〉.
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If we claim that this new second quantization representation is equivaent to

the first quantization representation given in previous section, we need to establish

the connection between these two formalisms.

3.3.3 Creation–annihilation operators and CAR algebra

The definition of the occupation number representation and the Fock space was

the first step in our efforts to simplify the formalism, however, we are not done yet.

We need creation and annihilation operators in order to complete the equivalance

of the first and second quantization formalisms. As we stated earlier, we will omit

the bosonic case, and choose to work with fermions only.

Let us define the (fermionic) “creation operator”, c†α, whose act is to increase

the occupation number nα by 1:

c†α |n1, n2, . . . , nα, . . .〉 ≡ ζ+nα
|n1, n2, . . . , nα + 1, . . .〉 , (3.28)

where ζ+nα
is a normalization constant to be determined soon. It is obvious that

the only nonzero elements of the creation operator matrix are the ones in the

form 〈n1, . . . , nα + 1 . . . |c†α|n1, . . . , nα, . . .〉. Thus, from the complex conjugation,

it follows that the only nonzero matrix elements of the operator cα ≡
(
c†α
)†

are 〈n1, . . . , nα + 1 . . . |c†α|n1, . . . , nα, . . .〉∗ = 〈n1, . . . , nα . . . |cα|n1, . . . , nα + 1, . . .〉.
Hence, we name the operator cα as the “annihilation operator”, since it decreases

the occupation number nα + 1 by 1 to nα, thus, we can write

cα |n1, n2, . . . , nα, . . .〉 ≡ ζ−nα
|n1, n2, . . . , nα − 1, . . .〉 (3.29)

in a manner similar to creation operator.

The fermionic states must be antisymmetric with respect to an interchange

between two fermions, thus, it must be satisfied that

| . . . , nα = 1, . . . , nγ = 1, . . .〉 = −| . . . , nγ = 1, . . . , nα = 1, . . .〉 , (3.30)

and this requirement means that the ordering of the quantum levels matters.

Furthermore, this antisymmetry leads to the fact that c†α and c†γ must anticommute.

In order to see this, let us rewrite Eq.(3.30) as
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| . . . , nα = 1, . . . , nγ = 1, . . .〉 = c†αc
†
γ| . . . , nα = 0, . . . , nγ = 0, . . .〉

= −| . . . , nγ = 1, . . . , nα = 1, . . .〉 = −c†γc†α| . . . , nγ = 0, . . . , nα = 0, . . .〉 , (3.31)

which yields c†αc
†
γ = −c†γc†α, hence {c†α, c†γ} = 0, whose Hermitian adjoint yields

the fact that cα and cγ also anticommute: {cα, cγ} = 0. In order to obtain one

last anticommutation relation to complete the algebra, we need the normalization

factors appearing in the definitions of creation and annihilation operators, i.e.,

Eqs.(3.28) and (3.29).

We cannot add another fermion into an already filled quantum level, and sim-

ilarly an already empty level cannot be further emptied. These facts yield

c†α| . . . , nα = 1, . . .〉 = 0 , (3.32)

cα| . . . , nα = 0, . . .〉 = 0 , (3.33)

which means we must demand ζ+1 = 0 and ζ−0 = 0. For the two remaining

normalization constants, we have the option to choose

c†α| . . . , nα = 0, . . .〉 = | . . . , nα = 1, . . .〉 , (3.34)

hence, ζ+0 = 1. This choice yields ζ−1 = 1, since by complex conjugation, it follows

that 〈. . . , nα = 1 . . . |c†α| . . . , nα = 0, . . .〉∗ = 〈. . . , nα = 0 . . . |cα| . . . , nα = 1, . . .〉.
Now, let us demonstrate the issue for the anticommutators between cα and c†γ .

If we choose γ = α, we clearly see that cαc
†
α| . . . , nα = 0, . . .〉 = | . . . , nα = 0, . . .〉,

but c†αcα| . . . , nα = 0, . . .〉 = 0, which yields

{cα, c†α}| . . . , nα = 0, . . .〉 = | . . . , nα = 0, . . .〉 . (3.35)

Similarly, c†αcα| . . . , nα = 1, . . .〉 = | . . . , nα = 1, . . .〉 and cαc
†
α| . . . , nα = 1, . . .〉 = 0

yield

{cα, c†α}| . . . , nα = 1, . . .〉 = | . . . , nα = 1, . . .〉 (3.36)
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From Eqs.(3.35) and (3.36) we conclude that {cα, c†α} = 1. Similar arguments

yield {cα, c†γ} = 0 for the case γ 6= α.

In order to summarize, the operator algebra for the fermionic creation and

annihilation operators is given by

{c†α, c†γ}= 0 ,

{cα, cγ}= 0 ,

{cα, c†γ}= δα,γ , (3.37)

and called “CAR algebra”, for it is based on C anonical Anticommutation Relations.

The situation is very similar for bosons, for which a CCR (canonical commuta-

tion relations) algebra can be constructed for bosonic creation and annihilation

operators, b†α and bα.

3.3.4 Equivalence to first quantization

Let us remind that we have not constructed the required link between the first

and second quantization representations. For this establishment, we first need to

show that the occupation number operator n̂α can be written in terms of creation

and annihilation operators.

First of all, we notice that

(c†α)2 = 0 ,

(cα)2 = 0 (3.38)

as a result of the CAR algebra, which in fact results from the antisymmetrized

fermionic states. Note that the Pauli exclusion principle, that restricts the max-

imum occupation number to 1, is strictly interconnected to the CAR algebra,

and the antisymmetry. Thus, the requirement of antisymmetric wave functions

is implicitly satisfied within the CAR algebra, i.e., we do not need to explicitly

antisymmetrize the states given with the occupation number representation. We

had to implement this antisymmetry requirement by Slater determinant formal-
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ism in the first quantization representation. The unnecessary bookkeeping of wave

functions, that leads to cumbersome computations, is nevermore the issue.

Another immediate consequence of the CAR algebra given by Eq.(3.37) is that

it results in the commutation relations

[
c†αcα, cα

]
=−cα ,

[
c†αcα, c

†
α

]
= c†α , (3.39)

which means that, c†α (cα) increases (decreases) the eigenvalues of the operator c†αcα

by 1. Here comes the intution of whether we can write the occupation number

operator as c†αcα. We can also write

(c†αcα)2 = c†αcαc
†
αcα = c†α(cαc

†
α)cα = c†α(1− c†αcα)cα = c†αcα , (3.40)

where we used Eq.(3.38) in the last step, and Eq.(3.37) in the previous one. This

equation may also be written as

c†αcα(c†αcα − 1) = 0 , (3.41)

which means that the operator c†αcα has eigenvalues of 0 and 1, and hence, it is

noting but the occupation number operator, n̂α. Therefore, in order to summarize,

we have

c†αcα|nα〉 = nα|nα〉 with nα = 0, 1

and

c†α|0〉 = |1〉 , c†α|1〉 = 0 , cα|0〉 = 0 , cα|1〉 = |0〉 . (3.42)

This implies the connection between the Slater determinant states of the first

quantization and the occupation number states of the second quantization:

S−|φα1
(~r1)〉|φα2

(~r2)〉 · · · |φαN
(~rN)〉 = c†α1

c†α2
· · · c†αN

|0〉 , (3.43)

where totally antisymmetric N -fermions are represented on both sides via first and

second quantization formalisms, therefore, the equivalence of both representations

is established.
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3.3.5 Normal order

Since any two creation operators, c†α and c†γ , do not commute with each other,

the order of the creation operators appearing in the right-hand side of Eq.(3.43)

matters. This is equivalent to the significance of the ordering of quantum levels as

mentioned before. For our main concern in this thesis only includes the electrons

that can occupy the valence orbitals of the atoms arranged in a periodic array of

positions, we can construct a very simple and basic ordering for the creation oper-

ators. For simplicity, let us assume a one-dimensional periodic array of N atoms,

for which we can label the valence orbitals (quantum levels) as α = 1, 2, . . .N ,

starting from the atom at one end of the chain. Through out this section we

will omit the consideration of the spin degree of freedom, and simply assume that

each atom can be either empty or full in valence electrons. It is obvious that the

situation can be fairly extended to the three-dimensional case with the consider-

ation of spin. Thus, the creation operators, that create electrons at the atomic

orbitals, can be easily ordered for the crystalline case, however, another ordering

issue arises when we consider creation and annihilation operators together, since

they also do not commute with each other.

We must choose a conventional order for the products of creation and annihi-

lation operators. For example, if we are to convert a state to another one (both in

the occupation number representation), we may well need to consider the product

of operators in the form, e.g., c†αcγc
†
ηc

†
γc̺. In such cases we choose the convention

of “normal order”, also referred as “Wick order”. A product of creation and anni-

hilation operators is normal ordered if all the creation operators are to the left of

all the annihilation operators. Assuming an operator C in the form of a product

of creation and annihilation operators, :C : denotes the normal ordered operator.

The normal ordering process is performed by considering the CAR algebra given

in Eq.(3.37).

The situation is pretty simple for a single quantum level α. The operator

c†αcα is already normal ordered and we denote it by : c†αcα : = c†αcα, however, the

operator cαc
†
α is not normal ordered, in fact it is antinormal ordered, and it follows

: cαc
†
α : = −c†αcα, where we introduced a minus sign due to a single interchange
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in the order of the operators, following the CAR algebra. Any other product of

operators that contains more than two operators of the same quantum level is

simply zero due to Eq.(3.38). In example, :c†αcαc
†
α : = −c†αc†αcα = 0.

Let us consider the ordered multiple quantum levels of α = 1, 2, 3, . . . , and

begin with products of two operators. The simplest case is again : c†1c2 := c†1c2,

since the operator is already normal ordered. Next we should give :c1c
†
2 : = −c†2c1,

because of the single interchange in the order of operators. For products of more

than two operators, the situation follows the simple rules of CAR algebra. In

example, we write :c1c
†
2c

†
1 := c†2c

†
1c1 = −c†1c†2c1, where in the first step we made two

interchanges betweeen the operators (hence the positive sign), and in the second

step we further ordered the creation operators with respect to energy labels, that

yielded the negative sign.

Here, one may question the need for normal ordering. In order to emphasise the

necessity of choosing a convention for ordering, we will illustrate the point with the

following example. Every state in the occupation number representation must be

constructed from the vacuum state, |0〉, by the acts of several creation operators,

in order to form the equivalence between the first and the second quantization

formalisms. Thus, we write a state as

|n1, n2, n3〉 = (c†1)
n1(c†2)

n2(c†3)
n3 |0〉 , (3.44)

where we restricted the situation for three quantum levels, or three crystal sites,

for the sake of simplicity. As a further simplification, let us assume n1 = n2 =

n3 = 1 above. It is obvious that the order of creation operators appearing in the

above equation is of paramount significance, since for example, c†1c
†
3c

†
2 6= c†3c

†
1c

†
2

within the CAR algebra. We can overcome this issue with a proper choice of

ordering in the quantum levels, as we did when we labeled the atomic orbitals of

the lattice in the beginning of this subsection. The next problem with ordering

arises when we consider an act of, for example, c2 onto such a state given above,

i.e., c2|1, 1, 1〉 = c2c
†
1c

†
2c

†
3|0〉. Here again, since c2c

†
1c

†
3c

†
2 6= c†3c2c

†
1c

†
2, we need another

choice of ordering. The normal ordering provides a convention for this issue, and

it is in fact the commonly accepted one.
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3.3.6 Operators in second quantization representation

We have seen that the occupation number operator can be written in terms of

creation and annihilation operators as n̂α = c†αcα. This is in fact a reflection

of a more general rule, i.e., we can write any operator in terms of creation and

annihilation operators, utilizing the link between first and second quantization

representations given by Eq.(3.43). Since the two most important operators for

our concern are the kinetic energy and the Coulomb interaction operators, we will

express those in the second quantization formalism in this substection.

Let us recall that the kinetic energy operator, T , was represented in first quan-

tization formalism as given in Eq.(3.17), where we left the antisymmetrization

process, that can be implemented easily by multiplying Eq.(3.17) with S− on the

left. Note that, since S− commutes with T , this antisymmetrization operation is

a trivial one. Remembering that the total kinetic energy operator can be written

as T =
∑

i Ti, for now, let us concentrate on the kinetic energy of the ith particle,

given by Eq.(3.16), that reads

Ti =
∑

αa,αb

Tαaαb
|φαa(~ri)〉〈φαb

(~ri)| . (3.45)

Acting this operator on an antisymmetrized arbitrary state yields

Ti

[
S−|φα1

(~r1)〉 · · · |φαi
(~ri)〉 · · · |φαN

(~rN)〉
]

=
∑

αa,αb

Tαaαb
δαb,αi

[
S−|φα1

(~r1)〉 · · · |φαa(~ri)〉 · · · |φαN
(~rN)〉

]
, (3.46)

for which we can use the link between first and second quantization representations

given with Eq.(3.43) now to write

Ti

[
c†α1
· · · c†αi

· · · c†αN
|0〉
]

=
∑

αa,αb

Tαaαb
δαb,αi

[
c†α1
· · · c†αa

· · · c†αN
|0〉
]
, (3.47)

Here, c†αa
resides on the αith quantum level (or the αith lattice site) on the right-

hand side. Note that, since we are working in the fermionic case, the c†αi
cannot

appear more than once on the left-hand side, due to the Pauli exclusion principle
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expressed in Eq.(3.38). Thus, the operator c†αi
may either appear once or may

not appear on the left-hand side. If it does not appear, the above equation will

readily lead to 0 = 0, while if it does appear, we have to transform the state on

the right-hand side into the original one, that Ti acts on, in order to find the effect

of an action of Ti. Therefore, we have to insert c†αi
instead of c†αa

on the right-hand

side. In order to accomplish this, first we note that for any α,

cαc
†
α|0〉 = cα|0, . . . 0, nα = 1, 0, . . . , 0〉 = |0〉 , (3.48)

which lets us to write

c†αa
|0〉 = c†αa

(
cαi
c†αi

)
|0〉 =

(
c†αa

cαi

)
c†αi
|0〉 . (3.49)

Thus, we can write
(
c†αa

cαi

)
c†αi

instead of c†αa
in the right-hand side of Eq.(3.47),

that will read

Ti

[
c†α1
· · · c†αi

· · · c†αN
|0〉
]

=
∑

αa,αb

Tαaαb
δαb,αi

[
c†α1
· · ·
(
c†αa

cαi

)
c†αi
· · · c†αN

|0〉
]
. (3.50)

Now, we can take the operators in the paranthesis to the very left, outside the

brackets. Every interchange of one of the operators in
(
c†αa

cαi

)
with a creation

operator to the left will lead a minus sign, however, since we are doing this job

twice, in the end, the procedure will always end up with a plus sign. Therefore,

we can write

Ti

[
c†α1
· · · c†αi

· · · c†αN
|0〉
]

=
∑

αa,αb

Tαaαb

(
c†αa

cαi

)
δαb,αi

[
c†α1
· · · c†αi

· · · c†αN
|0〉
]

=
∑

αa

Tαaαi

(
c†αa

cαi

) [
c†α1
· · · c†αi

· · · c†αN
|0〉
]
, (3.51)

which, in fact, can be written as an operator identity,

Ti =
∑

αa

Tαaαi
c†αa

cαi
. (3.52)

Note that, Ti acting on a state with αi = 0 will destroy the state as expected.

Finally, using T =
∑

i Ti, for the total kinetic energy operator, we conclude
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T =
∑

αi,αj

Tαiαj
c†αi
cαj

. (3.53)

Hence, we can justly generalize the result above to an arbitrary one-particle

operator by accordingly defining the integral Tαiαj
. Furthermore, we can also

generalize the situation to any m-particle operators, that yields the result that,

any operator can be represented by linear superpositions of products of creation

and annihilation operators with linear coefficients in the form of properly defined

integrals, that are actually the matrix elements of the operator in the first quanti-

zation representation. One of these operators, a two-particle operator, namely the

Coulomb interaction operator, is particularly interesting for our purposes. One

can follow a similar procedure to the one described above in order to obtain

V =
∑

αi<αj
αk,αℓ

Vαiαj ,αkαℓ
c†αi
c†αj
cαℓ
cαk

. (3.54)

3.3.7 Epilogue

It is worth noting once again that all the required antisymmetry properties are

hidden in the creation and annihilation operators that obey the CAR algebra.

The transition matrix amplitudes that appear in Eqs.(3.53) and (3.54) are just

numbers, which do not demand any kind of symmetry to satisfy. Thus, as we

promised, the antisymmetrization procedure is greatly reduced, and all we need to

do is determining a protocol of ordering, and that requires no complicated algebra.

Therefore, we can construct a quantum mechanical Hamiltonian in the sec-

ond quantization picture for the strongly correlated electron systems, that we

mentioned in the previous chapter. Recalling that for such systems, the physical

behavior, particularly the metal-insulator transition, is induced by the competing

kinetic energy and on-site Coulomb repulsion, we propose a Hamiltonian in the

form

H = T + V , (3.55)

where T and V are in the form given above in Eqs.(3.53) and (3.54) respectively.
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Now that we are armed with all the required tools of second quantization, we

hope to understand the Hubbard model in theoretical details, however, we need

one more step ahead, that is a discussion on tight-binding approximation.
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3.4 Tight-binding approach and Hubbard model revisited

3.4.1 Prologue

The previous chapter was finalized with our discussion on the Mott–Hubbard

metal-insulator transition, presentation of the Mott theory, and introduction of

the Hubbard model, given by the quantum mechanical Hamiltonian in the second

quantization formalism in Eq.(2.57). Now, we can readily understand what it is

all about, with some further definitions, i.e., definition of the second quantization

creation and annihilation operators in the case of electrons with spin-up and

-down on atomic orbitals within a periodic lattice. This is, in fact, equivalent to

characterization of the quantum levels, denoted by {α} in previous sections, and

we will use the tight-binding approximation to accomplish this task.

3.4.2 Creation and annihilation operators

We have briefly intoduced the tight-binding approximation in the previous chapter.

Here, we will discuss the subject in more details and obtain the second quantization

operators in the tight-binding scheme, by mainly following the formulation of [98].

The tight-binding approach begins with an assumption of electron wave func-

tions being mainly localized at lattice sites, or in other words, tightly bound to

atomic nuclei. This actually arises due to a large lattice spacing, but not large

enough to consider the atoms as completely isolated, rather assuming the overlap

integrals are small.

Firstly, within this approximate scheme, it is convenient to benefit from the

symmetry properties of the underlying periodic lattice, and represent the Hamil-

tonian operators in a basis set of the so called “Wannier states”, given by

|φiα(~r )〉 ≡ 1√
N

BZ∑

~k

e−i~k·~Ri|φ~kα(~r )〉 , (3.56)

where the sum runs over all momenta, ~k, in the first Brillouin zone of the recip-

rocal lattice, Ri denotes the position of the ith lattice site, and |φ~kα(~r )〉 are the

Bloch wave functions defined according to the Bloch theorem as |φ~kα(~r + ~Rj)〉 =

ei
~k·~Rj |φ~kα(~r )〉 (cf. Theorem 1). The Bloch wave functions can be obtained by the

inverse Fourier transform of |φiα(~r )〉 in accord with the above equation.
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Secondly, we realize that the set of Wannier states, {|φiα(~r )〉}, form a complete

orthonormal basis set and can be used to represent the operators of the second

quantization formalism. This leads us to write

c†α(~r ) =
∑

i

φ∗
iα(~r ) c†iα . (3.57)

Therefore, this establishes a link between the real space and the Wannier space rep-

resentations. One may be confused with the dependence of c†α(~r ) on the position,

~r, but actually, that is a dependence which we have omitted writing explicitly up

to this point, for the sake of simplicity. It can be clearly seen from Eq.(3.43) that

the dependence of creation operator on position is a necessity in fact. By using

the orthonormality of the Wannier functions, we can write the creation operator

in the Wannier base as

c†iα =

∫
d~r φiα(~r ) c†α(~r ) , (3.58)

and by Hermitian conjugation we have

cα(~r ) =
∑

i

φiα(~r ) ciα ,

ciα =

∫
d~r φiα(~r )∗ cα(~r ) . (3.59)

Just like the transformation between Bloch and Wannier states, we can also define

creation and annihilation operators in the momentum space as

c†~kα =
1√
N

∑

i

ei
~k·~Ric†iα ,

c~kα =
1√
N

∑

i

e−i~k·~Riciα . (3.60)

3.4.3 Kinetic energy

Using the creation and annihilation operators given above in the tight-binding

scheme, a simplification comes with the fact that the Bloch electrons have the ki-

netic energy ǫ~k = ~2|~k|2
2m

, and we can diagonalize the kinetic energy operator in the
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Bloch states representation. Besides, we assume that the kinetic energy operator

does not change the quantum level α of the electron, which is a fair assumption,

especially for the charge transfer (hopping) process we defined in previous chap-

ter. In the hopping process, the quantum level, labeled by α, describes the spin

quantum number, σ, of the electron, which is preserved in the process. We denote

the possible values of the spin quantum number by σ =↑ and σ =↓. Therefore,

for the kinetic energy operator, we write

T =
BZ∑

~k

∑

σ

ǫ~k c
†
~kσ
c~kσ

=
1

N

∑

ij

BZ∑

~k

∑

σ

ei
~k ·(~Ri−~Rj)ǫ~k c

†
iσcjσ (3.61)

≡
∑

ij

∑

σ

tijc
†
iσcjσ , (3.62)

where we defined the tij in the last line as

tij ≡
1

N

BZ∑

~k

~2|~k|2
2m

ei
~k ·(~Ri−~Rj) . (3.63)

Thus, tij is the hopping matrix element associated with a Bloch electron hopping

from site i to j. It vanishes exponentially with the increasing distance between the

two sites. It actually reflects the atomic orbital overlap strength. Considering the

atomic orbital wave functions instead of Bloch states leads us to a more realistic

picture. Then, we can use the tight-binding hopping integral, −t, that results

from the kinetic exchange mechanism and defined in Eq.(2.56), in place of the tij .

In fact, as we stated in the beginning of this section, tight-binding approximation

assumes strongly localized electrons, thus, one cannot expect a long range hopping

contribute considerably within this approach. Hence, restricting ourselves justly

to the nearest-neighbor hopping only, we can write the kinetic energy operator as

T = −t
∑

〈ij〉

∑

σ

(
c†iσcjσ + c†jσciσ

)
, (3.64)

where 〈ij〉 denotes that the sum is over nearest-neighbors. The addition of the

second term in the sum is to ensure Hermiticity. We remember this operator from
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the first chapter where we introduced the Hubbard model. The kinetic energy

operator given above is in fact the first term in the Hubbard model [cf. Eq.(2.57)].

3.4.4 On-site Coulomb repulsion

Using the same arguments as in the previous subsection and the general form of

the Coulomb interaction operator given in the second quantization formalism of

Eq.(3.54), we briefly arrive

V =
∑

i,j,k,ℓ

∑

σσ′

Uijkℓc
†
iσc

†
jσ′ckσcℓσ′ , (3.65)

where Uijkℓ is defined as

Uijkℓ ≡
∫
d~r

∫
d~r ′ φ∗

i (~r ) φ∗
j(~r

′)
e2

|~r − ~r ′| φk(~r ) φℓ(~r
′) . (3.66)

Now, if we limit our consideration on the on-site Coulomb repulsions between

the electrons on the same atomic orbital and neglect any other possible Coulomb

interactions we can write

V =
∑

i

Uiiii
∑

σσ′

c†iσc
†
iσ′ciσciσ′ , (3.67)

where we immediately realize that the Uiiii must be constant due to the spatial

uniformity of the lattice, and in fact, this constant is nothing but the Hubbard U ,

defined in Eq.(2.54). Furthermore, we can assert that

∑

σσ′

c†iσc
†
iσ′ciσciσ′ = 2n̂i↑n̂i↓, (3.68)

due to the Pauli exclusion principle. Inserting the constant factor 2 inside the

Hubbard U we obtain

V = U
∑

i

n̂i↑n̂i↓ , (3.69)

which is the second term of the Hubbard model of Eq.(2.57).
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3.4.5 Epilogue

Let us now analyze what each term in the Hubbard Hamiltonian is for. The full

Hamiltonian is given by

H = −t
∑

〈ij〉

∑

σ

(
c†iσcjσ + c†jσciσ

)
+ U

∑

i

ni↑ni↓ . (3.70)

The first term is the kinetic energy contribution. It annihilates a spin-σ electron

at a lattice site j and creates it at a nearest-neighboring lattice site i (and vice

versa). Due to Pauli exclusion principle, given in Eq.(3.38), if there is no spin-σ

electron at the jth lattice site or if there is already a spin-σ electron at the ith

lattice site, the kinetic energy operator will immediately destroy the state it acts

on, and that will yield zero gain to the energy, otherwise the energy of the system

is lowered by t. The second term is the on-site Coulomb repulsion. The operator

ni↑ni↓ leads to a nonvanishing state if and only if the lattice site i contains both a

spin-↑ and a spin-↓ electron, in which case, there will be a energy cost of U .

Thus, Hubbard model implements the competition between the on-site Coulomb

repulsion and the tight-binding hopping integral. In the limit of a small t/U , which

is associated with a large lattice spacing, the electrons will usually localize on the

atomic orbitals with a marginal contribution to conductivity, since the energy cost

of finding two electrons on a single lattice site will overwhelm the energy gain due

to hopping. As the lattice spacing decreases, the tight-binding hopping integral in-

creases and this will eventually yield electrons to overcome the Coulomb repulsion

penalty by delocalizing from atomic orbitals, becoming itinerant, and contributing

to the conductivity. Hence, one expects a transition between the two regimes.

Let us note that in spite of the long history of the Hubbard model, we still

lack rigorous results, in particular for d > 1 dimensions. In the next chapter,

we will introduce the “renormalization-group theory”, which provides the utmost

efficient theoretical tools to investigate statistical physics of many-body sytems,

and in particular to analyze phase transitions. Afterwards, we will introduce a

simpler quantum electronic model, that is derived from the Hubbard Hamiltonian,

namely the “spinless Falicov-Kimball model”, which captures the essential physics

of transition metal-oxides in particular.
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Chapter 4

RENORMALIZATION-GROUP (RG) THEORY
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4.1 Partition function

The main motivation of statistical mechanics is to derive the macroscopic behavior

of a system from the microscopic interactions between the constituents which

form up that system. For one of the simplest cases, namely the ideal gas, these

microscopic interactions are the ones between the gas molecules and the reservoir

walls that occur during any collision. The thermodynamics of this system, i.e.,

the ideal gas law of PV = NkBT , is obtained by accounting these molecule–wall

collision interactions.

The name of the field “statistical mechanics” is attributed for its probabilistic

approach. Each possible microscopic state of a system, α, is associated with a

probability proportional to the exponential of that state’s energy, Eα, scaled by

thermal energy, kBT :

probα ∝ e−Eα/kBT , (4.1)

where kB is the Boltzmann constant (kB = 1.3806503×10−23 m2 kg s−2 K−1) and

T is the temperature in Kelvins. This exponential function is known as “Boltzmann

weight” or “Boltzmann factor” and in order to properly normalize this propability

function, we must divide the right-hand side by the summation of Boltzmann

weights over all possible microstates:

probα =
e−Eα/kBT

∑
α e−Eα/kBT

. (4.2)

This normalization factor, the summation in the denominator, is a key element

of statistical mechanics. This infinite summation over all possible degrees of free-

dom establishes the link between the microscopic definition and the macroscopic

behavior of a system. This summation, called the “partition function”, basicly

spans the whole phase space and adds up the Boltzmann weights of every point:

Z =
∑

α

e−Eα/kBT . (4.3)

The whole set of macroscopic properties of the system defined by the micro-

scopic interactions can be obtained by several operations on partition function.
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Thus, the main aim of statistical mechanics is writing up a microscopic definition

of a system that would be able to capture the macroscopic behavior and calculat-

ing the partition function associated with that microscopic definition. However,

calculating the result of an infinite summation (or integration) is not always trivial.

The celebrated renormalization-group (RG) theory established by K. G. Wilson

in 1971 [99] opens up a genuine viewpoint in calculating the macroscopic behavior

from the microscopic definition. The main idea of RG theory is to eliminate a

portion of the degrees of freedom by summing over those and obtaining a new

(“renormalized”) partition function in the same form as the original (“unrenor-

malized”) one. This ensures an identical partition function with new renormalized

interaction strengths. In this way, the problem is reduced to finding these renor-

malized interactions in terms of the unrenormalized ones, which can be solved

easily and exactly, especially for 1-dimensional classical systems. Approximation

techniques come into play in order to deal with higher dimensions or with non-

classical quantum systems.
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4.2 RG theory for 1-dimensional classical systems

As an examplar system, let us apply the RG theory onto the spin-1
2

Ising model,

which is a well-known classical model defined by the dimensionless Hamiltonian

− βH =
∑

〈ij〉

[
Jsisj +G

]
≡
∑

〈ij〉

[
− βHi,j

]
, (4.4)

where β = 1/kBT is the inverse thermal energy, 〈ij〉 denotes summation over

nearest-neighbor pairs of sites and si, for every site i, can take values ±1
2
. The

additive constant G is generated by the RG transformation and is used in the

calculation of thermodynamic functions. Its inclusion into the Hamiltonian does

not affect the physics defined by the model, since its only effect is to shift the

zero of the dimensionless energy levels by NG, that is a constant. We define

−βHi,j ≡ Jsisj +G as the Hamiltonian involving the bond between sites i and j.

Note that, the Ising model Hamiltonian is, in fact, a classical approximation

to the Heisenberg–Dirac Hamiltonian (referred commonly as “Heisenberg model”)

introduced in Eq.(2.29). If one assumes that the exchange coupling is nonzero

only for the spin-z components of the nearest-neighbors, the quantum mechanical

Heisenberg model reduces to the classical Ising model given above. Further, note

that the inverse temperature, β, is annexed into the exchange coupling, so that

the interaction constant J is dimensionless.

The partition function for the system is given by

Z =
∑

{s}
e−βH ({s})

=
∑

s1

∑

s2

∑

s3

· · ·
∑

si

∑

sj

∑

sk

· · ·
∑

sN

e−βH1,2−βH2,3···−βHi,j−βHj,k ···−βHN,1 , (4.5)

where i, j, k are three successive lattice sites. Performing this infinite series of

sums and obtaining Z (and thus obtaining the thermodynamics) may be seen as

impossible, however RG transformation opens up the possibility. First of all, we

will perform the summation over one variable, i.e., sj . The only part of the

exponentiated Hamiltonian including sj is exp[−βHij − βHjk], and the rest is

constant with respect to sj . Therefore, performing the sum over sj yields
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∑

sj=±1/2

e−βHi,j−βHj,k =
∑

sj=±1/2

eJsisj+G+Jsjsk+G

=
∑

sj=±1/2

eJsj(si+sk)+2G

= e2G
[
e

J
2
(si+sk) + e−

J
2
(si+sk)

]

≡ eJ
′sisk+G

′

= e−β
′H ′

j,k , (4.6)

where we have redefined the result of the sum as a transformed dimensionless

Hamiltonian. Here, and for the rest of this dissertation, the primes are used

for the renormalized system. From the third and fourth lines of Eq.(4.6), one

can derive the renormalized interaction constants with respect to unrenormalized

ones. First we must consider that the definition must hold for all possible si and

sk values.

si = +1
2
, sk = +1

2
: e2G

[
e

J
2 + e−

J
2

]
= eG

′+J′

4 , (4.7)

si = −1
2
, sk = +1

2
: 2e2G = eG

′−J′

4 , (4.8)

si = −1
2
, sk = −1

2
: e2G

[
e−

J
2 + e

J
2

]
= eG

′+J′

4 , (4.9)

si = +1
2
, sk = −1

2
: 2e2G = eG

′−J′

4 . (4.10)

Now we see that Eqs.(4.7, 4.8) are identical to Eqs.(4.9, 4.10). Thus, we have a set

of two equations and two unknowns, i.e., G′ and J ′, to solve. Multiplication and

division of these equations [either Eqs.(4.7, 4.8) or Eqs.(4.9, 4.10)] respectively

gives the equations set of

4e4G cosh
(
J
2

)
= e2G

′
,

2 cosh
(
J
2

)
= e

J′

2 , (4.11)

which can be easily solved by taking logarithms to find

G′ = 2G+ 1
2

ln
[
4 cosh

(
J
2

)]
,

J ′ = 2 ln
[
2 cosh

(
J
2

)]
. (4.12)
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After applying the same procedure for every even lattice site, the partition

function from Eq.(4.5) takes the renormalized form

Z =
∑

s1

∑

s3

· · ·
∑

si

∑

sk

∑

sN−1

e−β
′H ′

1,3···−β′H ′
i,k−β′H ′

N−1,1 ≡ Z ′ . (4.13)

In the thermodynamic limit of N → ∞, this form of the partition function is

identical with the unrenormalized one, although we have eliminated half of the

degrees of freedom. One can fairly exploit this identity in order to derive the

thermodynamics as will be seen in a section below, when we discuss the calculation

of densities.

What we actually did here is that, we rescaled the system by a factor of 2 by

integrating over half of the spins, and redefined the interactions in this new system

in order to make the new Hamiltonian in the same form as the original one, thus

keep the partition function invariant. This choice of the rescaling is arbitrary.

We would have chosen the rescaling factor as 3 as well. In general this “rescaling

factor” is denoted by b (cf. Fig. 4.1).

Figure 4.1: Rescaling of a 1-dimensional sytem under RG transformation. Every

other degree of freedom (denoted by open circles) is traced out in the partition

function and the system is rescaled with a factor of b = 2. The nearest neighboring

spins interact with ~K = [G, J ]T (denoted by full lines) in the original system and

with ~K ′ = [G′, J ′]T (denoted by dotted lines) in the renormalized rescaled system.

This procedure preserves the partition function while decreasing the number of

degrees of freedom — to be integrated over — by a factor of b = 2. The choice of

the rescaling factor, b, is arbitrary. One could have equivalently solve the problem

with any b.
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The solutions for the renormalized interactions in terms of the unrenormalized

ones given above in Eq.(4.12) are called “recursion relations” in general. One can

start with a renormalized system and obtain a second renormalized one with inter-

actions G′′ and J ′′. This procedure can continue ad infinitum, but the form of the

recursion relations is invariant at each step. Thus, for the second renormalization,

the recursion relations read

G′′ = 2G′ + 1
2

ln
[
4 cosh

(
J ′

2

)]
,

J ′′ = 2 ln
[
2 cosh

(
J ′

2

)]
, (4.14)

where G′ and J ′ are already given in Eq.(4.12) in terms of G and J . In general,

for the nth renormalization step we write

G(n) = 2G(n−1) + 1
2

ln
[
4 cosh

(
1
2
J (n−1)

)]
,

J (n) = 2 ln
[
2 cosh

(
1
2
J (n−1)

)]
. (4.15)

Here, let us discuss the significance of the interaction constant G. In fact, we

added the G term into the ordinary Ising Hamiltonian, given by Eq.(4.4), in order

to be able to solve the problem. Unless we added this G term, we would have two

independent equations but only one unknown to solve, which is mathematically

impossible to yield a result. However, the only effect of the addition of a constant

term for every bond is to shift the dimensionless energy spectrum of the system

by a constant (number of bonds times G), which in the end, do not alter the

thermodynamics of the system. This constant addition to the Hamiltonian is

necessary for all systems, even for the simplest ones like the spin-1
2

Ising model we

consider here. This interaction constant G is called “additive constant” or “captive

variable” and is important particularly in calculating the Helmholtz free energy

of the system.

The addition of the captive variable can be better regarded as follows: The

RG transformation is indeed a mapping in the Hamiltonan interactions space, that

is one-dimensional in the case of the original Ising model, with J being the only
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interaction parameter. However, the RG transformation maps a point in this J-

space onto a point in a higher-dimensional interactions space, i.e., (G, J)-space.

Thus, in order to ensure the RG transformation to be a closed one, we must redifine

the Hamiltonian with a captive variable.

In cases of more complicated system Hamiltonians, e.g., quantum systems, ad-

dition of many other dimensions may be necessary. The number of independent

equations for recursion relations determines the necessary number of variables to

solve, thus the dimensionality of the Hamiltonian interactions space (thermody-

namic field space) in which the RG transformation is closed.

Lastly, we should mention that the two of the properties of the recursion re-

lations above are quite general for all RG transformations: Firstly, the partial

derivative ∂GG
′ = 2. In general,

∂GG
′ = bd , (4.16)

where b is the rescaling factor and d is the dimensionality of the lattice. (The

case we considered above implements b = 2 in d = 1, hence bd = 2.) The relation

∂GG
′ = bd holds for every system, since G is just an additive constant acting

uniformly on all bonds, i.e., it does not involve any microscopic state of the system,

unlike the J-term, which comes with the multiplication of nearest-neighbor degrees

of freedom for example. Secondly, the partial derivative ∂GJ
′ = 0. In general all

recursion relations other than the one for G′ are independent of G. Thus,

∂GK
′ = 0 for K 6= G , (4.17)

which reflects the fact that the addition of a captive variable does not affect the

physics of the modelled system in general. The derivatives of renormalized inter-

action variables with respect to unrenormalized ones form the “recursion matrix”

which has a key role in calculating thermodynamic densities as will be discussed

in a following section.
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4.3 RG theory for 1-dimensional quantum systems

Performing the sum over a single degree of freedom in Eq.(4.6) and entering the

result back into the partition function of Eq.(4.5) is impossible in quantum sytems,

since the degrees of freedom are not represented by simple numbers anymore,

but by operators that usually do not commute with each other over neighboring

lattice sites. In fact, it is this non-commutativity of the operators that makes the

difference between classical and quantum systems.

For a model system to be non-trivial, some interaction must be present between

different constituents that form up the system including the external fields. As an

example, let us consider the spin-1
2

quantum Heisenberg model, one of the simplest

yet non-trivial quantum models, resulting from the direct exchange mechanism and

defined by the dimensionless Hamiltonian operator [cf. Eq.(2.29)],

− β̂H =
∑

〈ij〉

[
Jŝi · ŝj +GÎ

]

=
∑

〈ij〉

[
J
(
ŝxi ŝ

x
j + ŝyi ŝ

y
j + ŝzi ŝ

z
j

)
+GÎ

]

≡
∑

i

[
− β̂H i,i+1

]
, (4.18)

which acts on the spin-configuration-space,
⊗N

i=1C
2, in which a ket is denoted by

|mz
1, m

z
2, · · · , mz

N 〉 ≡ |{mz
i }〉, with mz

i = ±1
2

being an eigenvalue of ŝzi , unlike the

scalar spin values of the classical Ising model. We use the hat notation for the

quantum mechanical operators in order to avoid a confusion with the scalar vari-

ables. Here, Î is the identity operator and −β̂H i,i+1 is the two-site Hamiltonian

operator, both acting on a bond configuration ket |mz
i , m

z
i+1〉, and the operators

ŝui for u = x, y, z are the usual quantum mechanical Pauli spin operators at site i.

These Pauli spin operators obey the well-known commutation rules of

[
ŝui , ŝ

v
j

]
= 2iδijǫuvw ŝ

w
i , (4.19)

where δij is the Kronecker delta and ǫuvw denotes the usual cyclic Levi-Civita

symbol.
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The partition function is again given by a trace over the whole configuration

space as

Z =
∑

{mz
i }
〈{mz

i }|e−β̂H |{mz
i }〉 =

∑

mz
1

· · ·
∑

mz
i

∑

mz
i+1

∑

mz
i+2

· · ·
∑

mz
N

(4.20)

〈mz
1, · · · , mz

N |e−β̂H 1,2···−β̂H i,i+1−β̂H i+1,i+2···−β̂H N,1 |mz
1, · · · , mz

N〉 .

For a moment, for the sake of simplicity, let us forget about the act of exponen-

tiation on operators and assume that we could write the exponential of a sum

of operators as a product of exponentiated operators, as we could do in classical

limit. If we are to single out a sum, e.g., over mz
i+1, as we did in the previous

subsection, we have to take the exponentiated −βHi,i+1− βHi+1,i+2 operator out

of the grand sum to the very left. In the very first step of this procedure, we have

to switch the position of this operator with the position of the previous one, i.e.,

the one containing −βHi−1,i. This operation involves commutators between the

operators ŝxi , ŝ
y
i and ŝzi , since these operators also appear in the −βHi−1,i term.

After this step, we do not need to consider the non-commutativity anymore, since

−βHi,i+1 − βHi+1,i+2 always commutes with −βHj,j+1 for j < i − 1. A similar

symmetric operation of moving the concerned operator to the very right also in-

volves commutators at the first step. Thus, in calculating single traces over every

other lattice site i we have to consider the non-commutativity of the Pauli spin

operators at the neighboring sites. The situation is the same but everted when

we are to put the result of the single sum back into its original position in the

partition function.

To summarize, for a quantum system, in order to perform an absolutely straight-

forward RG transformation in a fashion as described in the previous section, we

have to ignore the non-commutativity of the operators in the Hamiltonian in two

steps:

(i) while singling out a sum over a degree of freedom that is involved in some

part of the exponentiated Hamiltonian,

(ii) while putting the result of the single sum (in an exponentiated renormalized

Hamiltonian form) back into its original position in the partition function.
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The effects of the ignorance of the non-commutativity in the two opposite

steps described above may however mutually compensate each other. Indeed,

ignoring this non-commutativity in both steps (i) and (ii) yields an approximate

method, which was first introduced by Suzuki and Takano for anisotropic XY and

Heisenberg systems [100, 101]. For a 1-dimensional quantum system Hamiltonian

that can be given by

− βH =
∑

i

[
− βHi,i+1

]
, (4.21)

the RG procedure, which eliminates half of the degrees of freedom and keeps the

partition function unchanged, is done approximately as

Trodde
−βH = Trodde

∑
i[−βHi,i+1]

= Trodde
∑odd

i [−βHi−1,i−βHi,i+1]

≃
odd∏

i

Trie
[−βHi−1,i−βHi,i+1]

=
odd∏

i

e−β
′H ′

i−1,i+1

≃ e
∑odd

i −β′H ′
i−1,i+1 = e−β

′H ′
. (4.22)

In this more direct mathematical form, the steps (i) and (ii) described above

are much clearer. In step (i), which corresponds to the first ≃ in Eq.(4.22), we

write an exponential of a sum as a product of exponentials; and in step (ii),

corresponding to the second ≃ in Eq.(4.22), we convert a product of exponentials

into an exponential of a sum. Thus, at each successive length scale, we ignore

the non-commutativity of the operators beyond three consecutive sites, in the two

steps indicated by ≃ in the above equation. Since the approximations are applied

in opposite directions, one can expect some mutual compensation. Earlier studies

[100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111] have been successful in

obtaining finite-temperature behavior on a variety of quantum systems, including

both spin and electronic systems. For the approximation of fractal decomposition

of exponentiated quantum mechanical operators in general and for the application

of this approximation on Monte Carlo simulations, one should be referred to [112].
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4.4 Generalization to higher dimensions

Recursion relations of 1-dimensional models, either classical or quantum mechan-

ical, are in the form

−→
K ′ = R1(

−→
K ) , (4.23)

where
−→
K and

−→
K ′ are the original and renormalized interaction parameters of the

model, e.g.,
−→
K = [G, J ]T and

−→
K ′ = [G′, J ′]T for the Ising or the Heisenberg model.

The Migdal–Kadanoff procedure [113, 114] for generalization of the recursion

relations in 1-dimension, R1(
−→
K ), to Rd(

−→
K ) for any d > 1 dimensions is described

in two forms: (i) bond moving followed by 1-dimenional decimation, and (ii) vice

versa. The first form is implemented by

−→
K ′ = Rd(

−→
K) ≃ R1(b

d−1−→K ) , (4.24)

and the second form by

−→
K ′ = Rd(

−→
K) ≃ bd−1R1(

−→
K) . (4.25)

The procedure can be best understood graphically. In Fig.4.2 below, we show a

presentation of how the approximation described by Eq.(4.24), i.e., bond moving

followed by 1-dimensional decimation, proceeds for a hypercubic lattice of d =

3 and a rescaling factor of b = 2. Starting from the original system of plain

simple cubic lattice of top left, at each step the bonds indicated by red are moved

accordingly to obtain the next system. This corresponds to deleting the red bonds

and, in order to obtain an effectively same system, doubling the strength of the

bonds parallel to the deleted ones. Consider that the system size is in fact infinite,

and only a portion of it is represented here. Double-strength bonds are indicated by

double lines while quadruple-strength bonds are indicated by full green lines for the

sake of graphical simplicity. In the last step, the mid-degrees of freedom are traced

out in all 3-independent orthogonal directions, yielding the renormalized system

rescaled by a factor of b = 2. Thus, in the end, the rescaled system must have

renormalized interactions shown by dashed green lines of strength
−→
K ′ ≃ R1(4

−→
K)

which is in accord with Eq.(4.24).
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Figure 4.2: A graphical representation of the Migdal–Kadanoff procedure of bond

moving followed by 1-dimensional decimation for a simple cubic lattice and a

rescaling factor of b = 2. Moved bonds at each step are indicated by red lines

while double- and quadruple-strength bonds are indicated by double lines and full

green lines respectively. Renormalized quadruple-strength bonds are shown by

dashed green lines.

Practical implementation of the second form of the Migdal–Kadanoff procedure

given by Eq.(4.25) is simpler in computational aspects, hence we choose to use the

second form. This second procedure is equivalent to the first one with the only

difference being in the order of operations: in the second procedure, 1-dimenional

decimation is followed by bond moving.

When we implement one of the formulations, either given by Eq.(4.24) or

Eq.(4.25), the dimensionality, d, becomes just a parameter which is not neces-

sarily to be an integer anymore. This means that one can work with any fractal

dimensional lattice by using the Migdal–Kadanoff procedure. The best applica-

tion would be in studying lower-critical dimensions, since one can approach the

lower-critical dimension arbitrarily closely from both sides by assigning d = 1.999,

etc.
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Lastly, we should mention that the Migdal–Kadanoff technique is exact for

d-dimensional hierarchical lattices [115, 116, 117] and a very good approximation

for hypercubic lattices.
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4.5 Calculation of densities

A non-trivial model Hamiltonian is defined by different interactions that are as-

sociated with interaction constants for every different type of interaction. Let us

consider a representative Hamiltonian given by

− βH ≡
∑

i

[−βHi] , (4.26)

where −βHi is the local Hamiltonian involving only the degrees of freedom at

site i. For simplicity, let us consider the case when there exists only one type

of degree of freedom associated with each site i that is denoted by si. (The

situation can be well generalized to the case of more than one degree of freedom

per site.) In general, the system involves different types of interactions and the

local Hamiltonian is given by

− βHi ≡
∑

α

(Kαpiα) , (4.27)

where piα reflects the local α-type interactions for site i. In example, in the case

of 1-dimensional Ising model, there are two types of interactions: (i) additive

interaction with K1 = G and pi1 = 1; and (ii) nearest-neighbor spin-spin inter-

action with K2 = J and pi2 = sisi+1. We can introduce several different types of

interactions into the model in order to capture the thermodynamic properties of

the modelled system, e.g., next-nearest-neighbor interactions, on-site interactions,

etc. Since we must always consider an additive interaction for RG formulation,

pi1 is always taken as 1 with K1 = G. For the rest of the interactions (α > 1), in

general, the local α-type interactions for site i are given by

piα = si
∏

j∈α
sj . (4.28)

with si denoting the local microscopic degree of freedom at site i, and the product

being over the sites interacting with this site.

For every α-type interaction in the Hamiltonian, Kα, we can define a conjugate

density as
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Mα ≡
1

N

∑

i

〈piα〉

=
1

N

∑

i

[
1

Z

∑

{sj}

(
piαe−βH

)
]

=
1

N

1

Z

∑

{sj}

[(∑

i

piα

)
e
∑

i

∑
γ Kγpiγ

]

=
1

Z

∑

{sj}

[
piαe

∑
i

∑
γ Kγpiγ

]

=
1

Nα

∂ lnZ

∂Kα
= Mα , (4.29)

where, in writing the fourth line, we used the spatial uniformity of the system,

namely the assuption of Mα being the same for each lattice site. Here, N is the

total number of sites and Nα is the number of α-type interactions. For Nα, in

general, one can write

Nα ≡ Nqα . (4.30)

Here, the factor N reflects the number of translations in obtaining Nα, while

qα involves other operations, e.g., rotations, reflections, etc. In a proper RG

transformation operation, the symmetries of the system is conserved with the

only change being in the number of degrees of freedom, that is decimated by the

relation

N ′ =
N

bd
, (4.31)

since every length scale is rescaled by a factor of b in all d dimensions. Thus,

qα must stay invariant after an RG transformation, e.g., nearest-neighbor interac-

tions must stay as nearest-neighbor interactions but with neighboring bond length

increasing from a to ba, like all other length scales defined for the system.

Just as the interaction constants vector,
−→
K , of two consecutive points along

the RG trajectory are related by the recursion relations, the densities vector,
←−
M = [{Mα}], are connected by a “recursion matrix”,

←→
T , which is composed of

derivatives of the recursion relations given by
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Tγα =
Nγ

Nα

∂K ′
γ

∂Kα
. (4.32)

We can obtain [118] this connection between
←−
M ′ and

←−
M starting by Eq.(4.29):

Mα =
1

Nα

∂ lnZ

∂Kα

=
1

Nqα

∂ lnZ

∂Kα

=
1

bdN ′qα

∂ lnZ

∂Kα

= b−d
N

N

qγ
qα

1

N ′qγ

∂ lnZ

∂Kα

= b−d
Nγ

Nα

(
1

N ′
γ

∂ lnZ ′

∂K ′
γ

)
∂K ′

γ

∂Kα

= b−d M ′
γTγα = Mα , (4.33)

where Tγα is the recursion matrix element defined in Eq.(4.32) and the parenthetic

term equals to M ′
γ in accord with the definition of Eq.(4.29). Here, in the fifth

line, we used a chain rule to change the derivation operation being with respect to

Kα into the one with respect to K ′
γ . Also in this step, we used the equivalance of

the original and renormalized partition functions, i.e., Z = Z ′. As mentioned pre-

viously [cf. Eq.(4.13)], the partition function for the system can be expressed both

by the unrenormalized interaction constants as Z = Z
(−→
K
)

or by the renormalized

interaction constants as Z ′ = Z
(−→
K ′
)

in the thermodynamic limit of N →∞. By

using these two equivalent forms, one can formulate the density recursion relations

as

Mα = b−d
∑

γ

M ′
γTγα (4.34)

or in the simpler vector notation as [118]

bd
←−
M =

←−
M ′ · ←→T . (4.35)

In example, for the 1-dimensional Ising Hamiltonian, the interaction constants

vector, the density vector, and the recursion matrix are
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−→
K = [G, J ]T ,

←−
M = [1, 〈sisi+1〉] ,

←→
T =


∂GG

′ = bd ∂JG
′

∂GJ
′ = 0 ∂JJ

′


 . (4.36)

Note that, since both interactions are defined on nearest-neighboring bonds, NG/NJ =

NJ/NG = 1, allowing us to drop the ratio of interaction numbers terms in the re-

cursion matrix. This is particularly important in practice. Indeed, we defined the

additive interaction over the bonds, as opposed to the widely studied version of

defining the additive term over the sites, in order to be able to drop the Nγ/Nα

terms in Tγα. We give a generalization of the situation as follows.

For any clasical or quantum mechanical Hamiltonian involving both bond and

on-site interactions given by

− βH = Kbond

∑

〈ij〉
sij + K̊site

∑

i

si , (4.37)

where sij and si represent bond and site degrees of freedom respectively, we can

redefine the Hamiltonian as

− βH ≡ Kbond

∑

〈ij〉
sij +Ksite

∑

〈ij〉
(si + sj)

=
∑

〈ij〉

[
Kbond sij +Ksite (si + sj)

]

≡
∑

〈ij〉
[−βHi,j] . (4.38)

Here, for a d-dimensional hypercubic lattice, since every site has 2d nearest-

neighbors, the redefined on-site interaction is related to the original one by

Ksite =
K̊site

2d
. (4.39)

With this new definition of the on-site interaction constant, which leads to the

new Hamiltonian purely equivalent to the original one, we can drop the Nsite/Nbond

and Nbond/Nsite terms in the off-diagonal elements of the recursion matrix. It is
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obvious that, in general, for interactions that involve beyond the nearest-neighbor

interactions, we can reform a given model Hamiltonian into an appropriate form,

for which the interaction number ratios in the recursion matrix can be omitted.

Now, let us continue our discussion on calculating the densities.

The space of whose dimensions are assigned to the interaction constants ap-

pearing in the Hamiltonian is called the “Hamiltonian space” or “thermodynamic

field space”. An RG transformation over a Hamiltonian maps a
−→
K point to an-

other
−→
K ′ in the Hamiltonian space. These mappings form “RG flows” in the

thermodynamic field space; and the relations between the properties of these RG

flows and physical behavior of the system will be examined in the next section.

For now, in order to complete our discussion on calculation of densities, we will

mention about some special points in the Hamiltonian space.

The special points in the thermodynamic field space, where interaction con-

stants stay the same under RG transformations, are called “fixed points”. These

particular points refer to either sinks — that are points of attractions for phase

basins — or to critical, first-order or null fixed points that govern the properties

of the phase boundaries.

Thus, at a fixed point of the thermodynamic field space, recursion relations for

the interaction constants take a very simple form of

−→
K ′ =

−→
K ≡ −→K ∗ , (4.40)

and as a result, the conjugate densities vector also posesses the same simple re-

cursion relation at a fixed point, namely1

←−
M ′ =

←−
M ≡ ←−M ∗ . (4.41)

The invariance of interaction constants and densities at a fixed point makes the

calculation of densities feasible at these special points. Using the fixed densities

vector
←−
M ∗ in the recursion relation of Eq.(4.35) yields [118]

1The asterisk introduced here must not be confused with the complex conjugation. Here, we
are working with the physically measurable interactions and densities that assume real values,
and the asterisk is merely used to indicate fixed points.
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←−
M ∗ · ←→T =

←−
M ∗ · bd . (4.42)

This means that the fixed point densities are simply the components of the left

eigenvector of the recursion matrix at the fixed point with left eigenvalue bd. For a

DH-dimensional Hamiltonian space, the number of left eigenvectors of the recursion

matrix is DH , but at least one of them is associated with the left eigenvalue bd, and

the components of this eigenvector are the physical densities at the fixed point.

For ordinary points, that are not fixed points themselves but lie in the basin

of attraction of some sink, Eq.(4.35) is iterated until an attractive fixed point is

reached under successive RG transformations in order to obtain the densities at the

ordinary point. We can derive the algebraic form of this method in the direction

of RG flows. Starting from the original ordinary point, at each successive RG step

we can use Eq.(4.35) to obtain

←−
M (0) = b−d

←−
M (1) · ←→T (1) ,

←−
M (1) = b−d

←−
M (2) · ←→T (2) ,

...

←−
M (n−1) = b−d

←−
M (n) · ←→T (n) , (4.43)

where
←−
M (i) and

←→
T (i) denote the densities vector and the recursion matrix at the

ith RG transformation step, with
←−
M (0) being the densities vector at the original

ordinary point and
←−
M (n) ≈ ←−M ∗ at the sink, for which the value is known via

Eq.(4.42). Now, staring from the last RG step of Eq.(4.43) and inserting the

expression for
←−
M (i) into the relation for

←−
M (i−1) at each step in the opposite direction

of the RG flow yields [118]

←−
M (0) = b−nd · ←−M (n) · ←→T (n) · ←→T (n−1) · · · · · ←→T (1) . (4.44)

In practice, we use this algebraic form and perform an iteration over the number

of successive RG transformations, n. We calculate the matrix product of recursion

matrices,
←→
T (n) ·←→T (n−1) · · · · ·←→T (1), and the densities vector saturate to a point

as we increase n, thus the densities at the original point are found.
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Densities are the basic thermodynamic functions associated with the model

Hamiltonian. More complicated thermodynamic functions such as internal energy,

free energy, entropy, enthalpy, specific heat, etc. can all be calculated globally at

each point of the thermodynamic field space by using densities. As an example, let

us once again consider the 1-dimensional Ising model defined by the Hamiltonian

of Eq.(4.4). The dimensionless internal energy per bond (or equivalently per site)

is given by

− βU = J〈sisi+1〉 , (4.45)

since the nearest-neighbor interaction is the only contribution to the Hamiltonian.

We can ignore the additive G contribution per bond, since its only effect is to shift

the zero of the energy levels that does not change the thermodynamics. We can

as well set G = 0 for the original system but allow the points in the Hamiltonian

space to flow in (G, J)-plane.

Remember that we added the G term to ensure the Hamiltonian to be closed

under RG transformations. This means that even if we start at a point
−→
K =

[G = 0, J ]T , the RG transformation maps this point to
−→
K ′ = [G′ 6= 0, J ′]T . How-

ever, we can always restrict the RG analysis for G = 0, calculating the thermo-

dynamic properties only on this subspace. This is a conventional method in all

RG theory calculations. Especially for more sophisticated quantum particulate

systems, for which the dimensions of the thermodynamic field space of closed RG

transformations may triple the original dimensions, or may extend even beyond.

But the restriction on the number possible microstates that a site can assume also

guarantees a minimum dimensions for the Hamiltonian space on which the RG

transformations are closed. In example, the set of Eqs.(4.7-4.10) can consist at

most 4-independent equations, since a pair (si, sk) can assume one of 4-different

configurations, {(+1
2
,+1

2
), (+1

2
,−1

2
), (−1

2
,+1

2
), (−1

2
,−1

2
)}. Thus, a model Hamil-

tonian, that consists n-body interactions and spin-m
2

degrees of freedom at each

site, can be closed under RG transformations in an (m+ 1)n-dimensional thermo-

dynamic field space.
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Calculation of response functions, that are experimentally more feasible to

measure, involves derivatives of the basic densities with respect to thermodynamic

fields. In general, all thermodynamic fields, e.g., external magnetic field, chemical

potential, etc., are explicity defined in the dimensionless Hamiltonian, except the

temperature. Conventionally, the model Hamiltonian is defined in a dimensionless

style by absorbing the thermal energy kBT in all RG theory calculations. In

example, the Ising model Hamiltoninan of Eq.(4.4) is actually derived from

H = −
∑

〈ij〉

[
J̃sisj + G̃

]
, (4.46)

where G̃ and J̃ are the interaction constants in energy units. The dimensionless

interaction constants are defined as

J ≡ J̃

kBT
,

G ≡ G̃

kBT
. (4.47)

Hence, we can define the temperature for the system as

T ≡ J̃

kBJ
, (4.48)

which is a satisfactory and yet physically expressive temperature definition for

RG theory calculations: as the temperature increases the dimensionless nearest-

neighbor interactions become weaker, and vice versa. However, the definition can

be further simplified. Since J̃ is constant for a particular material in concern and

can be taken as unity, in the unit system of kB = 1, the temperature can be defined

as

T ≡ 1

J
. (4.49)

For the calculation of response functions, let us consider the specific heat per

site for the 1-dimensional Ising model, for which the internal energy per site was

given with Eq.(4.45). The specific heat per site is the derivative of internal energy

per site with respect to temperature. Thus,
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C =
∂U

∂T

=
∂

∂T
(−kBTJ〈sisi+1〉)

=
∂J

∂T

∂

∂J

(
−J̃〈sisi+1〉

)

= −J̃ ∂

∂T

(
J̃

kBT

)
∂〈sisi+1〉

∂J

=
J̃2

kBT 2

∂〈sisi+1〉
∂J

= kBJ
2 ∂〈sisi+1〉

∂J
= C . (4.50)

We can use this expression in RG calculations in order to calculate the specific

heat per site globally at every tempreture.

The derivation of other response functions follow the same routine in genaral,

making the RG theory a very powerful tool to obtain global thermodynamics over

the whole Hamiltonian space of almost all systems. This is a major advantage of

RG theory over many other methods that usually work best for some limits of the

thermodynamical field space, or even worse, only at the ground states.
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4.6 Calculation of phase diagrams

Each phase in the phase diagram has its own fixed point, which is called phase

sink. All points within a phase flow to the sink of that phase under successive

RG transformations. Interactions, and more importantly densities, calculated at

a sink determine the properties of the corresponding phase. There might be more

than one phase sink corresponding to a single phase.

Phase boundaries also have their own fixed points, where the relevant exponent

analysis give the order of the phase transition. The largest eigenvalue of recursion

matrix is always bd at a phase boundary fixed point, which corresponds to the

additive constant term ∂GG
′. The rest of the eigenvalues are by1 , by2 , . . . , bym−1 ,

where m is the number of interactions (e.g., m = 2 in the Ising model) and y1 > 0,

the relevant exponent, is the only positive one among the exponents {y}. We

have three cases at a phase boundary fixed point: (i) In the case y1 = d − 1

the phase boundary is a null one, indicating that a continuous evolution between

the phases it separates occurs while crossing the boundary. A typical example

of null boundary is the up-magnetized – down-magnetized phase boundary in

Ising model above the critical temperature T > Tc at zero external magnetic field

(H = 0). Another example is the liquid-gas phase boundary above the critical

point for water. In these examples, systems cross from one phase to another

continuously without any occurance of phase transition. (ii) In the case y1 = d

we have two exponents being equal to d, indicating two-phase coexistance, thus

a first-order phase transition. Discontinuous jumps occur in relevant densities

while crossing a first-order phase transition boundary. The T < Tc, H = 0 phase

boundary for Ising model is a typical example, where up-magnetized and down-

magnetized phases coexist and a jump in magnetization exists. (iii) The case

0 < y1 < d corresponds to a second-order phase transition, in which the densities

themselves are continuous, but the response functions (derivatives of densities

with respect to interactions) are discontinuous or infinite. The transition from

ferromagnetic to paramagnetic phase at T = Tc for Ising model is a second-order

phase transition, where magnetization continuously vanishes, however specific heat

and susceptibility asymptotically diverge to infinity.
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Thus, using a renormalization-group theoretical approach mentioned above we

can calculate the thermodynamic functions and the phase diagram for a given

model Hamiltonian for the whole range of thermodynamic fields, including tem-

perature and external fields. This globally valid set of techniques makes the RG

theory the utmost tool in the study of model Hamiltonians.
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4.7 Overview

We discussed a great deal of exact and approximate techniques based on renormal-

ization-group theoretical approach. However, our discussion given in this chapter

should not be understood as covering all the concepts related to the renormalization-

group theory, and the reader should not have the illusion that this is the end of

the story. For example, we did not mention even a word about the momentum

space renormalization group, which sets a large field of study by itself, or about

the “universality”, that is one of the most fascinating phenomena of the nature

that can be fully understood only by renormalization-group theory. In fact, our

main aim in this chapter was not to cover the renormalization-group theory in all

Figure 4.3: A schematic illustration of the RG theory. The physical Hamiltonians

(a), (b), and (c), shown by manifolds, lie in a space of Hamiltonians denoted by

H with infinitely many other Hamiltonians. RG flows are shown for a rescaling

factor of b. Critical trajectories are shown in bold. The different critical points

of physically different systems ending up at the same fixed point denoted by H
∗

under successive RG transformations is the best theoretical explanation to the

universality phenomena, namely diverse physical systems having the same critical

exponents (from [122]).
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aspects, but rather to introduce the general idea of renormalization-group theory,

and the set of tools based on it, to use for the investigation of the phase diagram

of a quantum mechanical model Hamiltonian, which is derived from the Hubbard

model and will be introduced in the next chapter.

Nonetheless, an interested reader on the subject may be referred to exhaustive

books and reviews on renormalization-group theory, e.g., [119, 120, 121] and ref-

erences therein. We would like to conclude this chapter with a frequently cited

figure [122], that depicts the renormalization-group idea in general, given above in

Fig. 4.3.
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Chapter 5

SPINLESS FALICOV–KIMBALL MODEL
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5.1 Introduction

The Fermi-Fermi Falicov–Kimball model (FKM)1, was first proposed by L. M.

Falicov and Kimball [123] to analyze the thermodynamics of semiconductor-metal

transitions in SmB6 and transition-metal oxides [124, 125, 126, 127]. The model

incorporates two types of electrons: one type can undergo hopping between sites

and the other type cannot hop, thereby being localized at the sites. Thus, in

its introduction, FKM described the Coulomb interaction between mobile d band

electrons and localized f band electrons. There have been a multitude of subse-

quent physical interpretations based on this interaction, including that of localized

ions attractively interacting with mobile electrons that yields crystalline formation

[128, 129]. Yet another physical interpretation of the model is as a binary alloy, in

which the localized degree of freedom reflects A or B atom occupation [130, 131].

In this thesis, we employ the original language, with d and f electrons as “con-

duction” and “localized” electrons with a repulsive interaction between them.

For no interacting spin degrees of freedom exists in the Hamiltonian, the model

is traditionally studied in the spinless case, commonly referred as the spinless FKM

(SFKM) and which is in fact a limiting case of the Hubbard model when one type

of spin (e.g., spin-↓) cannot hop [77, 78, 79]. In spite of the model’s simplicity, it

is able to describe many physical phenomena in rare-earth and transition metal

compounds such as metal transitions, charge-ordering, etc. This non-trivial nature

of SFKM motivated us to capture the first global phase diagram of the model.

Beyond the introduction of spin degree of freedom for both electrons [132,

133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148],

there also exist many extensions of the original model. The most widely studied

extensions include multiband hybridization [149, 150, 151, 152, 153, 154, 155, 156],

f -f hopping [157, 158, 159, 160, 161], correlated hopping [162, 163, 164, 165,

166], non-bipartite lattices [167, 168], hard-core bosonic particles [168], magnetic

fields [140, 145, 146, 147, 148, 168, 169], next-nearest-neighbor hopping [170], etc.

Exhaustive reviews are available in Refs. [171, 172, 173, 174].

1For the sake of simplicity, in the case of no bosonic particles, the Fermi-Fermi Falicov–
Kimball model will be referred simply as Falicov–Kimball model (FKM)
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Since its invention, the wider physical application of both the basic FKM

and its extended versions have aimed to explain a collection of physical phe-

nomena including valence transitions [133, 139, 140, 141], metal-insulator transi-

tions [133, 142, 143, 144, 175], mixed valence phenomena [176], Raman scattering

[177], colossal magnetoresistance [145, 146, 147, 148], electronic ferroelectricity

[155, 158, 159, 160], phase separation [133, 161, 162, 178, 179, 180], etc.

After the initial works on the FKM [123, 124, 125, 126, 127], literature had to

wait 14 years for the celebrated first rigorous results. Two independent studies,

by Kennedy and Lieb [128, 129], and by Brandt and Schmidt [181, 182] suggested

that, at low temperatures, FKM has long-range order. Various methods have been

used in the study of the FKM. In most of these studies, either the d→∞ infinite-

dimensional limit or d = 1, 2 low-dimensional cases have been investigated. Studies

include limiting cases such as ground-state analysis, or the large interaction limit.

RG theory, as described in the previous chapter, offers fully physical and fairly easy

techniques to yield global phase diagrams and other thermodynamic properties.

We use the general method for arbitrary dimensional quantum systems developed

by A. Falicov and Berker [102] to obtain the global phase diagram of the SFKM

in d = 3.
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5.2 The model

5.2.1 Derivation of SFKM Hamiltonian

In this section we will modify the Hubbard model in order to obtain the simpler but

yet physically rich enough SFKM, and investigate the symmetries of the model.

First of all, let us recall the Hubbard model defined in Eq.(3.70):

H = −t̃0
∑

〈ij〉

∑

σ

(
c†iσcjσ + c†jσciσ

)
− Ũ0

∑

i

ni↑ni↓ , (5.1)

where we switched our notation from t and U to t̃0 and Ũ0 in order to emphasise

that these constants are in units of energy, in accord with our discussion on RG

theory.2 We have omited the tildes previously for the sake of simplicity. Further-

more, as might be already noticed, we changed the sign of the Hubbard U , so

that a negative (positive) value of Ũ0 corresponds to a Coulomb repulsion (attrac-

tion). As we mentioned before, the competing interactions of t̃0 and Ũ0 induces a

metal-insulator transition.

Now, let us assume that the two types of electrons, i.e., spin-↑ and spin-↓, do

not contribute equivalently to the conductivity. We will simply assume that one

type of spins (say spin-↓) is always localized on the atomic orbitals, while the other

one (spin-↑) can hop between nearest-neighboring sites. Accordingly, we can write

the Hamiltonian as

H = −t̃0
∑

〈ij〉

(
c†icj + c†jci

)
− Ũ0

∑

i

niwi , (5.2)

where we dropped the spin indices, which are unnecessary anymore, and thus, the

electrons can be called as “spinless”. Although being spinless, defined particles are

still fermions, i.e., the Pauli exclusion principle forbids the occupation of a given

site by more than one localized electron or by more than one hopping (conduction)

electron. The creation and annihilation operators for the conduction electrons at

lattice site i, c†i and ci, obey the CAR algebra defined by anticommutation rules

of {ci, cj} = {c†i , c†j} = 0 and {c†i , cj} = δij [cf. Eq.(3.37)]. Here, ni = c†ici is

2The 0-subscripts will be dropped soon in another transformation.
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the number operator for conduction electrons, while wi is the number of localized

electrons, both at site i. The operator wi takes the values 1 or 0, for site i being

respectively occupied or unoccupied by a localized electron. Hence, the localized

electrons are in fact, classical particles, since they enter the model Hamiltonian

only through the classical variable wi.
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Figure 5.1: Radial wave functions, Rnl, (upper panel) and radial probability dis-

tribution functions, r2R2
nl, (lower panel) plotted with respect to radial distance

from nucleus, r. Curves correspond to hydrogen-like atomic orbitals of 4f (n = 4,

l = 3, full line) and 5d (n = 5, l = 2, dotted line). Note the extension for the 5d

atomic orbital compared to the 4f orbital.
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The assumption we made above to simplify the Hubbard model is actually

based on relevant physically expressive grounds. Although the phenomena de-

scribed by the SFKM, like charge-ordering, occur generally in complicated com-

pounds of rare-earth and transition-metals, e.g., La1−xCaxMnO3 [183, 184, 185,

186, 187, 188, 189], we will give the simple example of a cerium crystal in order to

illustrate the point. The lanthanide rare-earth metal Ce has the electron configura-

tion of [Xe]6s24f 5d, and the unit cell of the face-centered cubic Ce crystal contains

two unpaired electrons: a 4f electron and a 5d electron. Above in Fig. 5.1, we

present the radial wave functions and probability distributions for the hydrogen-

like 4f and 5d atomic orbitals. Although the real corresponding atomic orbitals of

Ce will be more complicated, from this simplistic picture we can fairly assert that

the 4f orbital is more localized on the ion than the 5d atomic orbital. Thus, it is

a fair assumption to treat the 4f electrons as localized. Therefore, it is only the

5d electrons that can hop between nearest-neighboring sites and contribute to the

conductivity of the crystal. Besides, since there will be no interacting spin degrees

of freedom, we can justly work within the spinless case.

In the previous chapters, we discussed that the strongly correlated electron

systems are drived to a metal-insulator transition by the competing effects of the

tight-binding hopping and the on-site Coulomb repulsion. We equivalently de-

rived the same expected phase transition by considering a variable lattice spacing,

that in turn, tunes the overlap and tight-binding hopping integrals. Mott formu-

lates this variation in lattice spacing as a change in the electron density, which is

more convenient, and gives a transition criterion in terms of charge carrier den-

sity [c.f. Eq.(2.51)]. Thus, we should include the chemical potential terms into

the Hamiltonian given in Eq.(5.2), in order to introduce the control on localized

and conduction electron densities, or equivalently on pressure. This leads to the

Hamiltonian,

H = −t̃0
∑

〈ij〉

(
c†icj + c†jci

)
− Ũ0

∑

i

niwi − µ̃0

∑

i

ni − ν̃0
∑

i

wi , (5.3)

or equivalently, to the dimensionless Hamiltonian,
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− βH = t0
∑

〈ij〉

(
c†icj + c†jci

)
+ U0

∑

i

niwi + µ0

∑

i

ni + ν0
∑

i

wi , (5.4)

where β = 1/kBT , and the dimensionless interaction constants are defined as K0 ≡
βK̃0, in short. Furthermore, in order to carry out an RG transformation easily, we

trivially rearrange the above Hamiltonian into a convenient and equivalent form

of

− βH =
∑

〈ij〉

[
t
(
c†icj + c†jci

)
+ U (niwi + njwj) + µ (ni + nj) + ν (wi + wj)

]

≡
∑

〈ij〉
[−βHi,j] . (5.5)

Here, we defined t ≡ t0, U ≡ U0/z, µ ≡ µ0/z, and ν ≡ ν0/z, where the dividing

factor z is the lattice coordination number, and z = 2d for a d-dimensional hy-

percubic lattice. Our calculation of the global phase diagram will be for a simple

cubic lattice, hence, we will assume z = 6. The Hamiltonian given above defines

the “spinless Falicov–Kimball model” (SFKM ).

5.2.2 Symmetries of SFKM Hamiltonian

The first term of the SFKM Hamiltonian given in Eq.(5.5) is the kinetic energy

term, responsible for the quantum nature of the model. The Hamiltonian reduces

to a classical model (indeed a trivial one) for t = 0, since all other operators,

namely ni and wi commute with the Hamiltonian. The system being invariant un-

der sign change of t (via a phase change of the local basis states in one sublattice),

only positive t values will be considered throughout this thesis.

The second term of the SFKM Hamiltonian is the screened on-site Coulomb

interaction between localized and conduction electrons, with positive and negative

U values corresponding to attractive and repulsive interactions. We will consider

only the repulsive case, since the attractive case can be connected to the repulsive

one by the particle-hole symmetry possessed by either type of electrons. Particle-

hole symmetries are achieved by the transformations of

wi → 1− wi (5.6)
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for the localized electrons and

c†i → κici and ci → κic
†
i (5.7)

for the conduction electrons, where, for a bipartite lattice, κi = 1 for one sublattice

and κi = −1 for the other [130, 174].

The last two terms of the SFKM Hamiltonian are the chemical potential terms

with zν and zµ being the dimensionless chemical potential for a localized and con-

duction electron for a lattice with coordination number z. As a direct consequence

of the particle-hole symmetries given above, the physics of the SFKM is invariant

under the transformation

ν/U → 1− ν/U and µ/U → 1− µ/U . (5.8)

This leads to the invariance under the density transformation of

〈wi〉 → 1− 〈wi〉 and 〈ni〉 → 1− 〈ni〉 , (5.9)

where 〈wi〉 and 〈ni〉 are the densities corresponding to the operators wi and ni

respectively. We will omit the hat notation for the operators anymore, since we

will not work with the eigenvalues of the operators, but with the expectation values

denoted by 〈a〉 for the corresponding operator a. Therefore, no confusion will arise

due to our notation.

The particle-hole symmetries for SFKM are depicted in Fig. 5.2 below. A

physical picture of “itinerant electrons hopping in the background of localized

electrons” changes into a converse picture of “conduction holes interacting with

localized holes” under the particle-hole transformations for both types of parti-

cles. However, it is obvious that, all the thermodynamic properties (apart from

densities) of the system remain invariant under this particle-hole symmetry trans-

formation.
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Figure 5.2: Particle-hole symmetries induced in the SFKM in chemical potential

space (upper panel) and density space (lower panel). Examplar points connected

under particle-hole symmetry transformations of both localized and conduction

electrons are shown by various open and full symbols connected by arrows. The

particle-hole symmetric point is achieved by two succesive mirror reflection op-

erations through the symmetry axes denoted by dashed lines [cf. Eqs.(5.8,5.9)].

Thus, any two adjacent triangles contain all the physical information in both views

of grand canonical (upper panel) and of canonical (lower panel) ensembles.
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5.3 RG details

This section is devoted to the renormalization-group theoretical details associated

with the SFKM problem. We will perform practical applications of the techniques

mentioned in the previous chapter, and derive the recursion relations in a closed

form to be calculated numerically in the study of the global phase diagram of the

SFKM.

5.3.1 Suzuki–Takano method in d = 1

The Suzuki–Takano RG transformation given in Eq.(4.22) of the previous chapter

is algebraically summarized in [100, 101]

e−β
′H ′

i,k = Trj e−βHi,j−βHj,k , (5.10)

where i, j, k are three successive sites, and the form of −βHi,j is given in Eq.(5.5)

for the SFKM. Here, the operator −β ′H ′
i,k acts on two-site states, while the oper-

ator −βHi,j − βHj,k acts on three-site states. Thus, we can rewrite Eq.(5.10) in

matrix form as

〈uivk|e−β
′H′

i,k |ūiv̄k〉 =
∑

sj

〈ui sj vk|e−βHi,j−βHj,k |ūi sj v̄k〉 , (5.11)

where state variables uℓ, vℓ, sℓ, ūℓ, and v̄ℓ can be one of the four possible single-site

|wℓ nℓ〉 states at each site ℓ, namely one of |00〉, |01〉, |10〉, and |11〉. Eq.(5.11) indi-

cates that the unrenormalized 64× 64 matrix on the right-hand side is contracted

into the renormalized 16× 16 matrix on the left-hand side. We use two-site basis

states, {|φp〉}, and three-site basis states, {|ψq〉}, in order to block-diagonalize the

matrices in Eq.(5.11). These basis states are the eigenstates of total conduction

and localized electron numbers. The set of {|φp〉} and {|ψq〉} are given in Tables

5.1 and 5.2 respectively.

With these basis states, Eq.(5.11) can be rewritten as

〈φp|e−β
′H ′

i,k |φp̄〉 =
∑

u,v,
ū,v̄,s

∑

q,q̄

〈φp|uivk〉〈uisjvk|ψq〉〈ψq|e−βHi,j−βHj,k |ψq̄〉〈ψq̄|ūisj v̄k〉〈ūiv̄k|φp̄〉 . (5.12)
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w n u2 Two-site basis states

0 0 + |φ1〉 = |00, 00〉
0 1 + |φ2〉 = 1√

2
{|00, 01〉+ |01, 00〉}

0 1 − |φ3〉 = 1√
2
{|00, 01〉 − |01, 00〉}

0 2 − |φ4〉 = |01, 01〉
1 0 + |φ5〉 = |00, 10〉
1 1 + |φ6〉 = 1√

2
{|00, 11〉+ |01, 10〉}

1 1 − |φ7〉 = 1√
2
{|00, 11〉 − |01, 10〉}

1 2 − |φ8〉 = |01, 11〉
2 0 + |φ13〉 = |10, 10〉
2 1 + |φ14〉 = 1√

2
{|10, 11〉+ |11, 10〉}

2 1 − |φ15〉 = 1√
2
{|10, 11〉 − |11, 10〉}

2 2 − |φ16〉 = |11, 11〉

Table 5.1: The two-site basis states that appear in Eq.(5.12) in the form

|wini, wjnj〉. The total localized and conduction electron numbers w and n, the

eigenvalue u2 of the operator Tij defined after Eq.(5.13) are indicated. |φ9−12〉
are respectively obtained from |φ5−8〉 by the act of Tij , while the corresponding

Hamiltonian matrix elements are multiplied by the u2 values of the states.

Once written in the basis states {|φp〉}, the block-diagonal renormalized matrix has

13 independent elements, which means that RG transformation of the Hamiltonian

generates 9 more interaction constants apart from t, U , µ, and ν. In this 13-

dimensional interaction space, the form of the Hamiltonian stays closed under RG

transformations. This Hamiltonian is

− βHi,j = t
(
c†icj + c†jci

)
+ U (niwi + njwj) + µ (ni + nj) + ν (wi + wj)

+ Jninj +Kwiwj + Lninjwiwj + P (niwj + njwi) + Vnninj(wi + wj)

+Vw(ni + nj)wiwj +Q Ti,jwiwj +R Ti,j(wi + wj) +G , (5.13)

where Ti,j is a local operator that switches the conduction electron states of sites

i and j, namely, Ti,j|wini, wjnj〉 = u2|winj , wjni〉 with u2 = 1 for ni + nj < 2 and

u2 = −1 otherwise. When Tik is applied, further below, to three consecutive sites
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w n u3 Three-site basis states w n u3 Three-site basis states

0 0 + |ψ1〉 = |00, 00, 00〉 3 0 + |ψ57〉 = |10, 10, 10〉
0 1 + |ψ2〉 = 1√

2
{|00, 00, 01〉 + |01, 00, 00〉} 3 1 + |ψ58〉 = 1√

2
{|10, 10, 11〉 + |11, 10, 10〉}

0 1 + |ψ3〉 = |00, 01, 00〉 3 1 + |ψ59〉 = |10, 11, 10〉
0 1 − |ψ4〉 = 1√

2
{|00, 00, 01〉 − |01, 00, 00〉} 3 1 − |ψ60〉 = 1√

2
{|10, 10, 11〉 − |11, 10, 10〉}

0 2 + |ψ5〉 = 1√
2
{|00, 01, 01〉 − |01, 01, 00〉} 3 2 + |ψ61〉 = 1√

2
{|10, 11, 11〉 − |11, 11, 10〉}

0 2 − |ψ6〉 = |01, 00, 01〉 3 2 − |ψ62〉 = |11, 10, 11〉
0 2 − |ψ7〉 = 1√

2
{|00, 01, 01〉 + |01, 01, 00〉} 3 2 − |ψ63〉 = 1√

2
{|10, 11, 11〉 + |11, 11, 10〉}

0 3 − |ψ8〉 = |01, 01, 01〉 3 3 − |ψ64〉 = |11, 11, 11〉
1 0 + |ψ9〉 = |00, 00, 10〉 2 0 + |ψ33〉 = |00, 10, 10〉
1 0 + |ψ10〉 = |00, 10, 00〉 2 0 + |ψ34〉 = |10, 00, 10〉
1 1 + |ψ12〉 = 1√

2
{|00, 00, 11〉 + |01, 00, 10〉} 2 1 + |ψ36〉 = 1√

2
{|00, 10, 11〉 + |01, 10, 10〉}

1 1 + |ψ13〉 = 1√
2
{|00, 10, 01〉 + |01, 10, 00〉} 2 1 + |ψ37〉 = 1√

2
{|10, 00, 11〉 + |11, 00, 10〉}

1 1 + |ψ15〉 = |00, 01, 10〉 2 1 + |ψ39〉 = |00, 11, 10〉
1 1 + |ψ16〉 = |00, 11, 00〉 2 1 + |ψ40〉 = |10, 01, 10〉
1 1 − |ψ18〉 = 1√

2
{|00, 00, 11〉 − |01, 00, 10〉} 2 1 − |ψ42〉 = 1√

2
{|00, 10, 11〉 − |01, 10, 10〉}

1 1 − |ψ19〉 = 1√
2
{|00, 10, 01〉 − |01, 10, 00〉} 2 1 − |ψ43〉 = 1√

2
{|10, 00, 11〉 − |11, 00, 10〉}

1 2 + |ψ21〉 = 1√
2
{|00, 01, 11〉 − |01, 01, 10〉} 2 2 + |ψ45〉 = 1√

2
{|00, 11, 11〉 − |01, 11, 10〉}

1 2 + |ψ22〉 = 1√
2
{|00, 11, 01〉 − |01, 11, 00〉} 2 2 + |ψ46〉 = 1√

2
{|10, 01, 11〉 − |11, 01, 10〉}

1 2 − |ψ24〉 = |01, 00, 11〉 2 2 − |ψ48〉 = |01, 10, 11〉
1 2 − |ψ25〉 = |01, 10, 01〉 2 2 − |ψ49〉 = |11, 00, 11〉
1 2 − |ψ27〉 = 1√

2
{|00, 01, 11〉 + |01, 01, 10〉} 2 2 − |ψ51〉 = 1√

2
{|00, 11, 11〉 + |01, 11, 10〉}

1 2 − |ψ28〉 = 1√
2
{|00, 11, 01〉 + |01, 11, 00〉} 2 2 − |ψ52〉 = 1√

2
{|10, 01, 11〉 + |11, 01, 10〉}

1 3 − |ψ30〉 = |01, 01, 11〉 2 3 − |ψ54〉 = |01, 11, 11〉
1 3 − |ψ31〉 = |01, 11, 01〉 2 3 − |ψ55〉 = |11, 01, 11〉

Table 5.2: The three-site basis states that appear in Eq.(5.12) in the form

|wini, wjnj, wknk〉. The total localized and conduction electron numbers w and

n, the eigenvalue u3 of the operator Tik defined after Eq.(5.13) are indicated.

{|ψ11+3x〉}, x = 0, 1, . . . , 15, are respectively obtained from {|ψ9+3x〉} by the act of

Tik, while the corresponding Hamiltonian matrix elements are multiplied by the

u3 values of the states.

i, j, k, Tik|wini, wjnj , wknk〉 = u3|wink, wjnj , wkni〉 with u3 = 1 for ni+nj+nk < 2

and u3 = −1 otherwise. These operators are defined according to the normal order

and the CAR algebra, discussed in a previous chapter.

The matrix elements of the block-diagonal renormalized 2-site Hamiltonian in

the {|φp〉} basis are given below in Eq.(5.14), where 〈φp| − β ′H ′
i,k|φp〉 = ǫp + G′

for the 12 independent diagonal elements and 〈φ6| − β ′H ′
i,k|φ7〉 = ǫ0 for the only

independent off-diagonal element.
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ǫ0 = (U ′ − P ′)/2, ǫ1 = 0, ǫ2 = t′ + µ′, ǫ3 = −t′ + µ′, ǫ4 = 2µ′ + J ′, ǫ5 = ν ′ +R′,

ǫ6 = t′ + U ′/2 + µ′ + ν ′ + P ′/2 +R′, ǫ7 = −t′ + U ′/2 + µ′ + ν ′ + P ′/2−R′,

ǫ8 = U ′ + 2µ′ + ν ′ + J ′ + P ′ + V ′
n −R′, ǫ13 = 2ν ′ +K ′ +Q′ + 2R′,

ǫ14 = t′ + U ′ + µ′ + 2ν ′ +K ′ + P ′ + V ′
w +Q′ + 2R′,

ǫ15 = −t′ + U ′ + µ′ + 2ν ′ +K ′ + P ′ + V ′
w −Q′ − 2R′,

ǫ16 = 2(U ′ + µ′ + ν ′) + J ′ +K ′ + L′ + 2(P ′ + V ′
n + V ′

w)−Q′ − 2R′. (5.14)

———————————————————————————————————

ε1 = 0, ε2 = ε3 = ε4 = ε6/2 = µ, ε5 = ε7 = 2µ+ J, ε8 = 3µ+ 2J,

ε9 = ε34/2 = ν +R, ε10 = ν + 2R, ε12 = ε18 = U/2 + µ+ ν +R/2,

ε13 = ε19 = µ+ ν + P +R, ε15 = µ+ ν + P, ε16 = ε49/2 = U + µ+ ν,

ε21 = U/2+2µ+ν/2+J+P+(Vn−R)/2, ε22 = ε28 = U+2µ+ν+J+P+Vn−R,

ε24 = U + 2µ+ ν, ε25 = 2µ+ ν+ 2P, ε27 = U/2 + 2µ+ ν+J +P + (Vn−R)/2,

ε30 = U + 3µ+ ν + 2J + P + Vn − R, ε31 = U + 3µ+ ν + 2(J + P + Vn − R),

ε33 = 2ν +K +Q+ 3R, ε36 = ε42 = U/2 + µ+ 2ν +K + P + (Vw +Q+ 3R)/2,

ε37 = ε43 = U +µ+2ν+R, ε39 = U +µ+2ν+K+P +Vw, ε40 = µ+2(ν+P ),

ε45 = ε51 = 3U/2 + 2(µ+ ν) + J +K + L/2 + 2P + 3(Vn + Vw)/2− (Q+ 3R)/2,

ε46 = ε52 = U + 2(µ+ ν) + J + 2P + Vn−R, ε48 = U + 2(µ+ ν) +K + 2P + Vw,

ε54 = 2U + 3µ+ 2(ν + J) +K + L+ 3(P + Vn) + 2Vw −Q− 3R,

ε55 = 2U + 3µ+ 2(ν + J + P + Vn −R), ε57 = 3ν + 2(K +Q) + 4R,

ε58 = ε60 = U+µ+3ν+2K+P +Vw+Q+2R, ε59 = U+µ+3ν+2(K+P +Vw),

ε61 = ε63 = 2(U + µ) + 3ν + J + 2K + L + 3P + 2Vn + 3Vw −Q− 2R,

ε62 = 2(U + µ) + 3ν + 2(K + P + Vw),

ε64 = 3(U +µ+ ν) + 2(J +K +L) + 4(P + Vn + Vw −Q−R), ε2,3 = ε6,7 =
√

2t,

ε12,15 = ε24,27 = (2t+R)/
√

2, ε12,18 = (U −R)/2,

ε13,16 = ε25,28 = ε37,40 = ε49,52 =
√

2(t+R), ε15,18 = −ε21,24 = R/
√

2,

ε21,27 = (U + Vn − R)/2, ε36,39 = ε48,51 = (2t+Q+ 3R)/
√

2,

ε39,42 = −ε45,48 = (Q+R)/
√

2, ε45,51 = (U + L + Vn + Vw −Q−R)/2,

ε58,59 = ε62,63 =
√

2(t+Q+ 2R). (5.15)
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The matrix elements of the block-diagonal unrenormalized 3-site Hamiltonian

in the {|ψq〉} basis are given above in Eq.(5.15), where 〈ψq|−βHi,j−βHj,k|ψq〉 =

εq + 2G for the diagonal elements and 〈ψq| − βHi,j − βHj,k|ψq̄〉 = εq,q̄ for the

off-diagonal elements. Here, the matrix elements for the states connected by the

exchange of the outer conduction electrons are obtained by multiplication with the

eigenvalues u3 of Tik. The matrix elements ηq,q̄ that enter the recursion relations via

Eq.(5.17) below are obtained by exponentiating the block-diagonal Hamiltonian

given here.

To extract the RG recursion relations, we consider the matrix elements γp,p̄ ≡
〈φp|e−β

′H′
i,k |φp̄〉. With γ9,9 = γ5,5, γ10,10 = γ6,6, γ11,11 = γ7,7, and γ12,12 = γ8,8, 12

out of 16 diagonal elements are independent, and with γ10,11 = γ11,10 = −γ7,6 =

−γ6,7, only one of the 4 off-diagonal elements is independent, summing up to

13 independent matrix elements. Thus we obtain the renormalized interaction

constants in terms of {γ}, defining γp ≡ γp,p for the diagonal elements and γ0 ≡ γ6,7

for the only independent off-diagonal element:

t′ =
1

2
ln
γ2
γ3

, U ′ = ln
γ1γ6γ0
γ2γ5

, µ′ =
1

2
ln
γ2γ3
γ21

, ν ′ =
1

2
ln
γ2γ

2
5γ7

γ21γ3γ6
,

J ′ = ln
γ1γ4
γ2γ3

, K ′ =
1

2
ln
γ21γ3γ

2
6γ

2
13γ15

γ2γ45γ
2
7γ14

, L′ = ln
γ1γ4γ

2
6γ

2
7γ13γ16

γ2γ3γ25γ
2
8γ14γ15

,

P ′ = ln
γ1γ6
γ2γ5γ0

, V ′
n = ln

γ2γ3γ5γ8
γ1γ4γ6γ7

, V ′
w = ln

γ2γ
2
5γ14

γ1γ
2
6γ13

,

Q′ =
1

2
ln
γ2γ

2
7γ14

γ3γ26γ15
, R′ =

1

2
ln
γ3γ6
γ2γ7

, G′ = ln γ1 . (5.16)

The matrix elements {γ} of the exponentiated renormalized Hamiltonian are con-

nected to the matrix elements, ηq,q̄ ≡ 〈ψq|e−βHi,j−βHj,k |ψq̄〉, of the exponentiated

unrenormalized Hamiltonian by Eq.(5.12). The matrix elements ηq,q̄ can be ob-

tained in terms of the unrenormalized interactions via exponentiating the unrenor-

malized Hamiltonian matrix whose elements are given in Eq.(5.15) above. Hence,

the connection between {γ} and {η}, that sets up the recursion relations between

renormalized and unrenormalized interaction constants, reads
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γ0 = η12,18 + η21,27 + η36,42 + η45,51 ,

γ1 = η1 + η3 + η10 + η16 ,

γ2 = η3 + η7 + η13 + η28 ,

γ3 = η4 + η5 + η19 + η22 ,

γ4 = η6 + η8 + η25 + η31 ,

γ5 = η9 + η15 + η33 + η39 ,

γ6 = η12 + η27 + η36 + η51 ,

γ7 = η18 + η21 + η42 + η45 ,

γ8 = η24 + η30 + η48 + η54 ,

γ13 = η34 + η40 + η57 + η59 ,

γ14 = η37 + η52 + η58 + η63 ,

γ15 = η43 + η46 + η60 + η61 ,

γ16 = η49 + η55 + η62 + η64 . (5.17)

5.3.2 Migdal–Kadanoff RG transformation in d > 1

Eqs.(5.15–5.17), constitute the RG recursion relations for d = 1, in the form ~K ′ =

R( ~K), where ~K = (t, U, µ, ν, J,K, L, P, Vn, Vw, Q,R,G). In order to generalize to

a higher dimension d > 1, we use the Migdal-Kadanoff procedure [113, 114],

~K ′ = bd−1R( ~K) , (5.18)

where b = 2 is the rescaling factor and R is the RG transformation in d = 1

for the interaction constants vector ~K. This procedure is exact for d-dimensional

hierarchical lattices [115, 116, 117] and a very good approximation for hypercubic

lattices for obtaining complex phase diagrams.

Thus, the procedure described above, namely Eqs.(5.15–5.18) yields the recur-

sion relations that will be determined numerically at each RG transformation step.

Now, we use this procedure to obtain the global phase diagram of the SFKM, for

which the results are presented in the next section.
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We will follow the general rules described in the previous chapter. Each phase

in the phase diagram has its own stable fixed point(s), which is called a phase

sink (Table 5.3). All points within a phase flow to the sink(s) of that phase

under successive RG transformations. Phase boundaries also have their own un-

stable fixed points (Table 5.4), where the relevant exponent analysis gives the

order of the phase transition. Thus, the repartition of the RG flows determine

the phase diagram in thermodynamic-field space. Matrix multiplications, along

the renormalization-group trajectory, with the derivative matrix of the recursion

relations relate the expectation values at the starting point of the trajectory to the

expectations values at the phase sink [cf. Eq.(4.44)]. The latter are determined

(Table 5.3) by the left eigenvector, with eigenvalue bd, of the recursion matrix

at the sink [cf. Eq.(4.42)], where b = 2 is the length-rescaling factor of the RG

transformation. When the expectation values are thus calculated for the points of

the phase boundary, the phase diagram in density space is determined [118].
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5.4 Global phase diagram

The global phase diagram of SFKM is calculated, as described above, for the

whole range of the interactions (t, U , µ, ν). The global phase diagram is thus 4-

Phase The interaction constants Kα at the phase sinks

sink t U µ ν J K L P Vn Vw Q R

δdd 0 0 −∞ −∞ 0 0 0 0 0 0 0 0

δdD 0 ∞ ∞ −∞ 0 0 0 0 0 0 0 0

δDd 0 ∞ −∞ ∞ 0 0 0 0 0 0 0 0

δDD 0 0 ∞ ∞ 0 0 0 0 0 0 0 0

COdd ∞ ∞ −∞ −∞ ∞ −∞ ∞ −∞ −∞ ∞ ∞ −∞
COdD ∞ ∞ ∞ −∞ ∞ −∞ ∞ ∞ −∞ ∞ ∞ ∞
CODd ∞ ∞ −∞ ∞ ∼ 50 −∞ ∞ −∞ ∼ −20 ∞ ∞ −∞
CODD ∞ ∞ ∞ ∞ ∼ 140 −∞ ∞ ∞ ∼ −40 ∞ ∞ ∞

Phase The runaway coefficients K ′
α/Kα at the phase sinks

sink t′/t U ′/U µ′/µ ν′/ν J ′/J K ′/K L′/L P ′/P V ′
n/Vn V ′

w/Vw Q′/Q R′/R

δdd, δDD − − 4 4 − − − − − − − −
δdD, δDd − 4 4 4 − − − − − − − −

COdd, COdD 2 2 2 4 4/3 2 4/3 2 4/3 2 2 2

CODd, CODD 2 2 2 4 1 2 4/3 2 1 2 2 2

Phase The expectation values Mα at the phase sinks Character

sink 〈t̂〉 〈Û 〉 〈µ̂〉 〈ν̂〉 〈Ĵ〉 〈K̂〉 〈L̂〉 〈P̂ 〉 〈V̂n〉 〈V̂w〉 〈Q̂〉 〈R̂〉
δdd 0 0 0 0 0 0 0 0 0 0 0 0 dilute - dilute

δdD 0 0 2 0 1 0 0 0 0 0 0 0 dilute - dense

δDd 0 0 0 2 0 1 0 0 0 0 1 2 dense - dilute

δDD 0 2 2 2 1 1 1 2 2 2 −1 −2 dense - dense

COdd −a 0 a 0 0 0 0 0 0 0 0 0 dilute - CO dilute

COdD −a 0 b 0 c 0 0 0 0 0 0 0 dilute - CO dense

CODd −a a a 2 0 1 0 a 0 a 1 2 dense - CO dilute

CODD −a b b 2 c 1 c b 2c b d 2d dense - CO dense

Table 5.3: Interaction constants Kα, runaway coefficients K ′
α/Kα, and expectation

values Mα = 〈K̂α〉, at the phase sinks. Here, K̂α are used as abbreviations for the

conjugate operators for interaction constants Kα, e.g., 〈t̂〉 = 〈c†icj + c†jci〉, 〈Û〉 =

〈niwi + njwj〉, etc. The non-zero hopping expectation value is −a = −0.629050

(Other abbreviations used are b = 2−a, c = 1−a, d = −1+2a). In the subscripts

in the first columns and at each side of the hyphen in the last column of the last

table, the left and right entries refer to the localized and conduction electrons,

respectively, as dilute (d) or dense (D), while CO refers to charge-ordered.
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dimensional, and 1/t is taken as the temperature variable. We present constant-U -

constant-t/|U | cross sections of the global phase diagram in terms of the localized

and conduction electron chemical potentials, ν/|U | and µ/|U |, and densities, 〈wi〉
and 〈ni〉. Our presentation will be in five subsections: The first subsection gives

the t = 0 classical submodel, while the next three subsections are devoted to small,

intermediate, and large values of |U |. We will present the general evolution of the

phase diagram with increasing t in a final subsection. But, before we present the

global phase diagram, here we would like to provide the properties of the phase

sinks and phase boundaries in Tables 5.3 and 5.4 respectively.

Phase Boundary Interaction constants Kα at the boundary fixed points

boundary type t U µ ν J K L P Vn Vw Q R

COdD/CODd 1st order ∞ −∞ ∞ −∞ ∞ ∞ ∞ −∞ −∞ ∞ ∞ −∞
COdd/δdd 2nd order ∞ ∞ −∞ −∞ ∞ −∞ ∞ −∞ −∞ ∞ ∞ −∞
COdD/δdD 2nd order ∞ ∞ ∞ −∞ ∞ −∞ ∞ −∞ ∞ ∞ ∞ −∞
CODd/δDd 2nd order ∞ ∞ −∞ ∞ ∞ −∞ ∞ −∞ −∞ ∞ ∞ −∞
CODD/δDD 2nd order ∞ ∞ ∞ ∞ ∞ −∞ ∞ ∞ −∞ ∞ ∞ ∞
COdd/COdD 2nd order ∞ ∞ −∞ −∞ ∞ −∞ ∞ −∞ −∞ ∞ ∞ −∞
CODd/CODD 2nd order ∞ ∞ −∞ ∞ ∞ −∞ ∞ −∞ ∞ ∞ ∞ −∞

Relevant

Phase Boundary eigenvalue

boundary type Additional property exponent y1

COdD/CODd 1st order 2µ − 2ν + J −K −Q− 2R = 0 3

COdd/δdd 2nd order t+ µ = 1.744253 0.273873

COdD/δdD 2nd order t− µ− J = 1.744253 0.273873

CODd/δDd 2nd order t+ U + µ+ P + Vw = 1.744253 0.273873

CODD/δDD 2nd order t− U − µ − J − L− P − 2Vn − Vw + 2Q+ 4R = 0 0.273873

COdd/COdD 2nd order 2µ + J = 0 1.420396

CODd/CODD 2nd order 2U + 2µ + J + L+ 2P + 2Vn + 2Vw − 2Q − 4R = 0 1.420396

Table 5.4: Interaction constants Kα, additional properties, and relevant eigenvalue

exponents y1 at the phase boundary fixed points. For first-order phase transitions,

y1 = d = 3, while for second-order phase transitions, 0 < y1 < d− 1 = 2.

5.4.1 The classical submodel t = 0

Setting the quantum effect to zero, t = 0, yields the classical submodel, closed

under the RG flows. We do not need to extend the Hamiltonian with extra pa-
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Figure 5.3: RG flow basins of the t = 0 classical submodel, in the chemical po-

tentials (upper panel) and densities (lower panel) of the localized and conduction

electrons. The dashed lines are not phase transitions, but smooth changes between

the four different density regions of the disordered δ phase.

rameters, rather only an introduction of additive interaction assures a closed RG

transformation. The global flow basins in ν/|U | and µ/|U | are the same for all U ,

given in Fig.5.3 above. There exist four regions within this submodel, which are

localized-dilute-conduction-dilute, localized-dilute-conduction-dense, localized-

dense-conduction-dilute, and localized-dense-conduction-dense regions, denoted
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by δdd, δdD, δDd, and δDD.3 In the RG flows, each δ region is the basin of at-

traction of its own sink. The dashed lines between the different regions are not

phase boundaries, but smooth transitions (such as the supercritical liquid – gas

or up-magnetized – down-magnetized transitions), which are controlled by zero-

coupling null fixed points.

It should be noted that the Suzuki–Takano and Migdal–Kadanoff methods are

actually exact for this classical submodel, and yield exactly the same picture as

obtained in [190].

5.4.2 The small |U | regime

In this subsection, we present our results for |U | = 0.1, representative of the

weak-interaction regime. The t = 0 phase diagram of Fig.5.3 evolves under the

introduction of quantum effects via a non-zero hopping strength t. It should be

noted that increasing the dimensionless Hamiltonian parameter t is equivalent to

reducing temperature, as in all RG studies. The first effect is the decrease and

elimination (Fig.5.4, left panels) of the (smooth) passage between the δDd and δdD

regions. With this elimination, all four regions meet at ν/|U | = µ/|U | = 0.5 and

〈wi〉 = 〈ni〉 = 0.5, the half-filling of both localized and conduction electrons. Fur-

ther increasing t, (reducing temperature) four new, charge-ordered (CO) phases

emerge at t ≃ 0.6. The CO phases occur at and near half-filling of conduction elec-

trons for the entire range of localized electron densities. The CO phases grow with

increasing t until saturation at high t (low temperature) (Fig.5.4, right panels).

All of the new CO phases have non-zero hopping density 〈c†icj + c†jci〉 = −a ≡
−0.629050 at their phase sinks. Recall that the expectation values at the sinks

are evaluated according to Eq.(4.42). In the CO phases, the hopping strength t

diverges to infinity under repeated RG transformations (whereas in the δ phases,

t vanishes under repeated RG transformations). The localized electron density is

〈wi + wj〉 = 0 at the sinks of COdd and COdD, while 〈wi + wj〉 = 2 at the sinks

of CODd and CODD, which throughout the corresponding phases calculationally

translates [118] as low (d) and high (D) localized electron densities, respectively.

3In phase subscripts throughout this thesis, the first and second subscripts respectively de-
scribe localized and conduction electron densities, as dilute (d) or dense (D).
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Figure 5.4: Constant t/|U | cross-sections of the phase diagram for interaction

|U | = 0.1, in the chemical potentials (upper panels) and in the densities (lower

panels) of the localized and conduction electrons. In phase subscripts through-

out this paper, the first and second subscripts respectively describe localized and

conduction electron densities, as dilute (d) or dense (D). The full lines are second-

order phase transitions. The dashed lines are not phase transitions, but smooth

changes between the different density regions of the disordered δ phase. The

charge-ordered phases are denoted by CO. Details are shown in Fig.5.5. Thus, for

low values of the interaction, all phase boundaries are second order and there is

no phase coexistence (phase separation).
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Figure 5.5: Zoomed portion of Fig.5.4, i.e., of the |U | = 0.1, t/|U | = 10 phase

diagram.

Recall that on phase labels, CO and δ, the first (second) subscripts describe local-

ized (conduction) electron densities.

The conduction electron density is 〈ni + nj〉 = a = 0.629050 at the sinks of

COdd and CODd, while 〈ni + nj〉 = 2 − a = 1.370950 at the sinks of COdD and

CODD. The nearest-neighbor conduction electron number correlation is 〈ninj〉 = 0

at the sinks of COdd and CODd, while 〈ninj〉 = 1 − a = 0.370950 at the sinks of

COdD and CODD. Consequently, for conduction electrons, if a given site is occu-

pied, its nearest-neighbor site is empty at the sinks of COdd and CODd. The COdD

and CODD phases are connected to the COdd and CODd phases by particle-hole

symmetry. Thus, in the CO phases, the lattice can be divided into two sublattices

with different electron desities. The behavior at the CO sinks therefore indicates

charge-ordering phases at finite temperatures, as also previously seen in ground-

state studies [182, 191, 192]. Note that this charge-ordering is a purely quantum

mechanical effect caused by hopping, since the SFKM Hamiltonian [Eq.(5.4)] stud-

ied here does not contain an interaction between electrons at different sites.

In the small |U | regime, all phase boundaries of the CO phases are second order.

As seen in the expanded Fig.5.5, all four CO phases and all four regions of the δ

phase (as narrow slivers) meet at at ν/|U | = µ/|U | = 0.5 and 〈wi〉 = 〈ni〉 = 0.5,

the half-filling point of both localized and conduction electrons. All characteristics

of the sinks and boundary fixed points are given in Tables 5.3 and 5.4.
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5.4.3 The intermediate |U | regime

-1 0 1

-1

0

1

2

L
o
ca
li
ze
d
el
ec
tr
o
n
ch
em

.
p
o
t.

ν
/
|U

|

δDd

δdd

δDD

δdD

t/|U | = 0.1

C

C

C

C

Q

-1 0 1 2

COdd COdD

CODd CODDδDd

δdd

δDD

δdD

t/|U | = 10

0.00 0.25 0.50 0.75
0.00

0.25

0.50

0.75

L
o
ca
li
ze
d
el
ec
tr
o
n
d
en
si
ty

〈w
〉 δDd

δdd

δDD

δdD

t/|U | = 0.1

C

C

C

C

Q

δDd

+
δdd

δDD

+
δdD

δDd

+
δDD

δdd
+
δdD

0.00 0.25 0.50 0.75 1.00

δDd

δdd

δDD

δdD

COdd COdD

CODd CODD

t/|U | = 10

Conduction electron chem. pot. µ/|U |

Conduction electron density 〈n〉

Figure 5.6: Constant t/|U | cross-sections of the phase diagram for |U | = 1, in the

chemical potentials (upper panels) and densities (lower panels) of the localized

and conduction electrons. The dotted lines are first-order phase transitions. Phase

separation, i.e., phase coexistence occurs inside the dotted boundaries, as identified

in the figure. The details of the coexistence region in the lower-right panel are

given in Fig.5.7. The thick full lines are second-order phase transitions. The

quadruple point Q tie line is shown as the thin straight line. The dashed lines are

not phase transitions, but smooth changes between the different density regions

of the disordered δ phase.
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In this subsection, phase diagram for |U | = 1, representative of the intermediate-

interaction regime, is presented. In Fig.5.6 above, we give constant t/|U | cross-

sections. First-order phase boundaries appear in the central region of the phase

diagram, at and near the half-filling of both localized and conduction electrons.

For low t values (left panels of Fig.5.6), equivalent to high temperatures, two

first-order phase boundaries, bounded by four critical points C, pinch at a quadru-

ple point Q. In the (left-lower) density-density phase diagram, four phase sepa-

ration (coexistence) regions mark the first-order phase transitions. Inside these

regions, coexistence (phase separation) occurs between the phases on each side of

these regions, as indicated on the figure. The tie line of the quadruple point is

shown as the straight line. All four δ phases coexist (phase separate) on this line.
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Figure 5.7: Zoomed portion of Fig.5.6, for the |U | = 1, t/|U | = 10 phase diagram.

The coexistence tie lines of the critical endpoints E and of the double critical

endpoints E2 are shown. Inside each region delimited by dotted lines and the

endpoint tie lines, phase separation, i.e., phase coexistence occurs between phases

as identified on this figure.
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As t increases (temperature decreases), the four charge-ordered CO phases

appear again at t ≃ 0.6. The CO phases again occur at and near half-filling

of conduction electrons for the entire range of localized electron densities. The

second-order transition lines bounding the CO phases terminate at two critical

endpoints E [193] and two double critical endpoints E2 on the first-order line in

the central region (Fig.5.7). Thus, first-order transitions and phase separation

occur between the pairs of δDd and δdd, δDd and COdd, CODd and COdD, CODD

and δdD, δDD and δdD phases, as indicated on Fig.5.7, at and near the half-filling

of both localized and conduction electrons.

5.4.4 The large |U | regime

The evolution of the global phase diagram, as the interaction strength is increased,

is seen in the phase diagrams in Fig.5.8. The CO phases emerge again at t ≃ 0.6.

With increasing t (decreasing temperature), the CO phases grow, until saturation

seen in Fig.5.8. The topology of the phase diagram with five phases stays the same

for all t & 0.6.

The constant t/|U | cross-sections of the phase diagram are given in Fig.5.8. For

U = 1.5, the double critical endpoints E2 have split into pairs of simple critical

endpoints E, resulting in six separate critical endpoints. For U = 1.845628, the

inner two critical endpoints have merged into a double critical endpoint. For

U = 10, the double critical endpoint has split into two critical endpoints and the

critical lines in the low-density and high-density localized electrons regions have

disconnected from each other. In this strong interaction limit, the homogenous

(non-phase-separated) charge-ordered phase occur again at and near half-filling of

conduction electrons, but at the low- or high-density limit of the localized electrons.

Away from these limits, the charge-ordered phases occur in coexistence (phase-

separated from) the disordered phases. At and near the half-filling of both localized

and conduction electrons, the coexistence of the disordered phases δDd and δdD

occurs. Two sets of three critical lines terminate in separate endpoints, as seen

in the zoomed Fig.5.10. In this case, a characteristic shape of the density phase

diagrams, which we dub “chimaera” coexistence, emerges. In the chimaera phase
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diagram, coexistence can be found for essentially the entire range of conduction

electrons densities or for most of the range of localized electron densities.
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Figure 5.8: Constant t/|U | cross-sections of the phase diagram for interactions

|U | = 1.5, 1.845628, 10 (left to right), in the chemical potentials (upper panels)

and densities (lower panels) of the localized and conduction electrons. The dotted

and thick full lines are respectively first- and second-order phase transitions. The

tie lines of the critical endpoints E and of the double critical endpoints E2 are

shown by thin straight lines. Phase separation, i.e., phase coexistence occurs

within the regions bounded by the dotted lines and the tie lines, this coexistence

being between the phases seen on each side of the dotted lines. The dashed lines

are not phase transitions, but smooth changes between the different density regions

of the δ phase.
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Figure 5.9: Zoomed portions of Fig.5.8, for the |U | = 1.845628, t/|U | = 5.41821

phase diagram.
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Figure 5.10: Two zoomed portions of Fig.5.8, for the |U | = 10, t/|U | = 1 phase

diagram.

5.4.5 Evolution of phase diagrams with varying t

Finally, we present the evolution of the global phase diagram, as the hopping

strength is increased, for the |U | = 1 case. In Fig.5.11 we begin with t = 0.6,

where the CO phases emerge. The topology of this phase diagram stays the same

with increasing t (decreasing temperature) until t = 1. Here, the four δ phases

meet at the half-filling point for both localized and conduction electrons. Phase

separations occur between different δ phases as seen in the figure. Two-phase

coexistence regions are obvious. The triangles of tie lines in the density phase

diagrams denote three-phase coexistence regions for t/|U | = 0.6 and 1. Inside the

upper-right triangles δdd, δDd, and δDD coexist, while inside the lower-left triangles

δdd, δdD, and δDD coexist. In these two figures (t/|U | = 0.6, 1), δdd and δDD coexist

on the common tie line of the two triangles. Note that the two phase separation

regions that the CO phases touch (one between δDd and δDD, the other between

δdd and δdD) shrink with increasing t, while, in the meantime, the CO phases grow.
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As one further increases t (decreases temperature), at some point between

t/|U | = 1 and t/|U | = 1.3 a first order phase transition between δdd and δDD

ruptures the phase diagram. This first-order phase boundary is seen in the t/|U | =
1.3 phase diagram and in the inset showing the zoomed half-filling region. As a

result, the two-phase coexistence tie line opens up and a phase separation (between

δdd and δDD) region intervenes between the three-phase triangular coexistence

regions.

As the hopping strength further increases, CO phases grow enough to com-

pletely capture the two shrinking phase separation regions (one between δDd and

δDD, the other between δdd and δdD). As seen from the t/|U | = 1.4 phase diagrams,

these two coexistence regions are completely vanished and instead, various phase

separation regions between the CO and δ phases take place.

After this point, increasing t (decreasing temperature) results in CO phases

moving towards and passing through the half-filling point for conduction electrons

until a saturation (see phase diagrams for t/|U | = 1.5 and 2). Along the way,

various critical endpoints and double critical endpoints emerge and vanish. The

saturated picture depends on the strength of the on-site Coulomb repulsion, and

a higher value of |U | results in more detached CO phases, as was discussed in the

previous subsections.
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5.5 Conclusion

Therefore, we have obtained the global phase diagram of the d = 3 SFKM, which

exhibits a fairly rich collection of phase diagram topologies:

For the t = 0 classical submodel, we have obtained disordered (δ) regions,

dilute and dense separately for localized and conduction electrons, but no phase

transition between them. The repartition of these regions, delimited by RG flows,

quantitatively stays the same for the whole |U | range and is exactly as obtained in

Ref. [190]. For the whole |U | range and 0 < t . 0.6, the classical submodel phase

diagram is perturbed in such a way that regions δdd and δDD intercede between

regions δdD and δDd, resulting in the δdD to δDd passage to shrink and disappear.

All δ regions have vanishing hopping density at their corresponding sinks. For

the whole |U | range, upon increasing t (lowering temperature), at t ≃ 0.6 four

new phases (CO) emerge with non-zero hopping density of −a = −0.629050 at

their sinks. These CO phases are also either dilute or dense, separately, in the

localized and conduction electrons (COdd, COdD, CODd, and CODD) and are all

charge ordered in the conduction electrons, a wholly quantum mechanical effect. In

these CO phases the bipartite lattice is divided into two sublattices of alternating

electron density. The CO phases occur at or near the half-filling of conduction

electrons. The phase diagrams with all five phases for t & 0.6 exhibit several

different topologies, for the small, intermediate, and large |U | regimes:

For the small |U | (weak-interaction) regime, all phase boundaries are second

order. All five phases meet at ν/|U | = µ/|U | = 0.5 and 〈wi〉 = 〈ni〉 = 0.5, the

half-filling point of both localized and conduction electrons.

For the intermediate |U | (intermediate-interaction) regime, a first-order phase

boundary emerges in the central region of the phase diagram. This first-order

boundary is centered at ν/|U | = µ/|U | = 0.5 and is bounded by two critical

points C. The second-order lines bounding the CO phases terminate at critical

endpoints E and double critical endpoints E2 on the first-order boundary. Due to

this first-order phase transition at and near the half-filling of both localized and

conduction electrons, a rich variety of phase separation (phase coexistence) occurs,

as indicated on Figs. 5.6, 5.7, 5.8.
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For the large |U | (strong-interaction) regime, as |U | is increased, the critical

endpoints pass through each other by merging and unmerging as double critical

endpoints. For large |U |, the CODd and CODD phases are detached from the COdd

and COdD phases, forming two separate bundles, at high- and low-densities of

localized electrons respectively. First-order transitions occur between the variously

dense and dilute δ. The global phase diagram underpinning all of these cross-

sections is decidedly quite complex.

This compexity further levels up once we consider the evolution of the phase

diagram with varying the hopping strength. We investigated the intermediate-

interaction, |U | = 1, case in particular (cf. Fig. 5.11). Here, in the interval of

0.6 . t/|U | . 1.3 three-phase coexistence regions emerge between two separate

δ phase sets. The three-phase coexistence regions are divided by a two-phase

coexistence line in the density phase diagram for 0.6 . t/|U | . 1, and by a

two-phase coexistence region for 1 . t/|U | . 1.3.

Note that these phase diagram cross-sections in chemical potentials for t & 0.6

are very similar to the ones reported in Refs. [174, 191, 192], while the classical

submodel phase diagram is exactly the same as in [190]. Furthermore, the calcu-

lated phase diagrams exactly reflect the symmetries of the SFKM Hamiltonian.

Therefore, we can assure that the RG method we used to calculate the global phase

diagram implements a good approximation for the whole range of parameters.

As a future study, we can also calculate other related measurable physical quan-

tities, such as specific heat, internal energy, etc., in the RG framework [106, 107,

108], which will require only a minor effort over the one we accomplished already,

and consequently, can relate theoretical work to experiments more tightly. Here,

we should note that the charge ordered phases we obtained within the SFKM

are experimentally verified for strongly correlated electron systems. The close

interplay between the charge ordering (occuring around half-filling) and the high-

temperature superconductivity or colossal magnetoresistance has been the sub-

ject of condensed matter experimental research, particularly in the last decade4

[183, 184, 185, 186, 187, 188, 189, 194, 195]. Therefore, a better physical un-

4High-temperature superconductivity and colossal magnetoresistance do not only manifest
charge ordering, but also orbital and magnetic ordering.
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derstanding of the charge ordered phases would yield a theoretical insight on

high-temperature superconductors or colossal magnetoresistors. We would like

to provide the experimental pictures of charge ordering in La1−xCaxMnO3 and

Ca2−xNaxCuO2Cl2 systems in Fig. 5.12.

Figure 5.12: Charge ordering (CO) experimentally observed in La1−xCaxMnO3

(x = 0.67, left, after [183]), where CO is seen as superlattice spots at 200 K (top)

in addition to the main spots seen at 300 K (bottom); and in Ca2−xNaxCuO2Cl2

(x = 0.10, right, after [195]), where the STM dI/dV conductance map taken at

24 meV and 100 mK exhibiting the 4× 4 CO.

We can also consider bosonic cases seperately for each conduction and localized

particles that can be experimentally realized by ultra-cold atomic systems [196].

These considerations as well as other extensions can be the subject of future stud-

ies.

Another model of our interest is the widely studied bosonic Hubbard model

(Bose–Hubbard model). This model incorporates only one type of particle, which

makes it easier to study compared to bosonic cases of the FKM. However, prac-

tically we should limit the model with a finite number of bosons at a lattice site,

since calculation of the renormalized and unrenormalized Hamiltonian matrices

are impossible for an unlimited number of bosons at a site. Our prediction is
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that limiting the maximum value of bosons at a site to three (or even to two) will

be enough to capture the first two cascades of the phase diagram of the model.

A comparison with the well-known phase diagram of the model, that is widely

studied in the literature, will provide further reliability of our method.
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Chapter 6

OTHER DIRECTIONS
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This chapter will mention briefly about other work of the present author dur-

ing doctoral studies. These include hard-spin mean-field theory of ±J spin glass

model, sequence alignment by simulated annealing, and molecular dynamics of

water flow through carbon nanotubes. Each study will be discussed in a separate

section below.
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6.1 Hard-spin mean-field theory of ±J spin-glass model

The dimensionless Hamiltonian of the ±J spin glass model is given by

− βH =
∑

〈ij〉
Jijsisj +H

∑

i

si , (6.1)

where si = ±1 is a classical spin-1
2

variable for the local magnetic degree of freedom,

Jij is a local exchange interaction between lattice sites i and j, and H is the

uniform external magnetic field. In order to reflect the frustation nature of spin-

glasses, Jij is definded to be antiferromagnetic for some bonds, with probability

p, and ferromagnetic for the rest, with probability 1− p. Thus, for the probabilty

distribution of the ineraction, we write

P (Jij) = pδ(Jij + J) + (1− p)δ(Jij − J) (6.2)

with 0 ≤ p ≤ 1 and J ∼ 1/T .

We use the hard-spin mean-field theory [197, 198, 199, 200, 201, 202, 203,

204, 205, 206, 207, 208, 209, 210, 211], to obtain the thermodynamic behavior of

the model. The self-consistent equation for local magnetizations, mi in hard-spin

mean-field theory is given by

mi =
∑

{sj}

[∏

j

P (mj, sj)

]
tanh

[∑

j

Jijsj +H

]
, (6.3)

where the sum-j and product-j are over the nearest-neighboring sites to i, and the

single-site probability distribution is given by

P (mj, sj) =
1 +mjsj

2
. (6.4)

Using a 3-dimensional simple cubic lattice of L × L × L sites with periodic

boundary conditions, the problem is reduced to solve L3-coupled equations of the

type Eq.(6.3), and the solutions are obtained numerically by iteration up to a

desired saturation error.

The hysteresis curves for the system above mark paramagnetic, ferromagnetic

and spin-glass behavior. In the paramagnetic phase, the hysteresis area vanishes.
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In ferromagnetic phase a jump occurs at the coercive field, Hc, while a continuous

hysteresis curve denotes a spin-glass phase. We obtain these features and an

expected phase diagram in J-p plane for the model, via the hard-spin mean-field

theoretical approach. In Fig. 6.1 below, we present these three distinct hysteretic

behavior, for representative values of J and p.
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Figure 6.1: Diverse hysteretic behavior of the ±J model for representative ferro-

magnetic (J = 0.50, p = 0.16), spin-glass (J = 0.50, p = 0.28), and paramagnetic

(J = 0.20, p = 0.22) cases, denoted by full, dashed, and dotted lines respectively.

Hysteresis curves are obtained for a saturation error of ǫ(〈mi〉) = 10−6.

The saturation error mentioned above, in fact, determines the sweep rate of the

external magnetic field: a higher saturation error corresponds to a faster sweep

rate, and vice versa. During the time this thesis was being written, we were

performing calculations for investigating the dependence of the hysteresis area

on the magnetic field sweep rate. Another calculation concerns the properties of

dynamical scaling with both J and p in the spin glass phase.
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6.2 Sequence alignment using simulated annealing

Collaborating with Can Güven (University of Maryland), we applied simulated

annealing to amino acid sequence alignment, a fundamental problem in bioinfor-

matics, particularly relevant to evolution [212]. The Metropolis algorithm intro-

duced in Ref. [213] was developed by Kirkpatrick et al. in Ref. [214], which

reveals connections between statistical mechanics and combinatorial optimization

by introducing a temperature-like variable that gives rise to efficient search for

global optimum. There exist numerous reviews about simulated annealing that

argue the algorithm in deep detail [215, 216, 217, 218, 219].

Some main problems of bioinformatics, onto which the simulated annealing

methods have been applied during the last two decades, include phylogenetic

tree search [220], homology modeling [221], improvement of threading-based pro-

tein models [222], secondary structure alignment [223, 224], tertiary structure

prediction [225, 226, 227], RNA/DNA/protein multiple/pair sequence alignments

[223, 228, 229, 230, 231, 232, 233].

We investigated if and how simulated annealing can be applied onto sequence

alignment problem, for which the widely accepted method of solution is an appli-

cation of dynamic programming, namely the Needleman–Wunsch algorithm [234]

of time complexity O(N2) for aligning two sequences both of length N . We stud-

ied the case of equal sequence lengths for simplicity, while the procedure can be

well generalized to different sequence lengths. Our time complexity analysis sug-

gests simulated annealing being better than the Needleman–Wunsch algorithm

for sequences of lengths longer than median protein lengths, for which the opti-

mal alignment cost deviation saturates to a fair value. It should be noted that

the Needleman–Wunsch algorithm yields the exact optimal alignment, but cannot

be extended to multiple sequence alignment, while this extension can be easily

implemented for simulated annealing.

Briefly, the problem is how to match given amino acid sequences of different

protein chains (or nucleotide sequences of DNA/RNA chains). A huge collection

of experimental data on sequences has been obtained in the life sciences in recent

decades that needs to be analysed. By performing sequence alignment analysis,
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one can have an idea of how species evolved, which regions of sequences were

conserved during evolution, and answer to other related questions.

BLOSUM (BLOcks of amino acid SUbstitution Matrix) [235] and PAM (Point

Accepted Mutation) [236] matrices have been developed in order to compare the

matching (or mismatching) between different residues of a protein chain. Basi-

cally, these 20 × 20 matrices constitute the scores (energy benefit or negative of

energy cost in simulated annealing jargon) of exchanging two type of amino acids,

with the diagonal (off-diagonal) elements corresponding to matching (mismatch-

ing) scores. In our calculations, we used the BLOSUM80 matrix, B, with each

element multiplied by −1, and a gap opening penalty of g = +8, in order to make

the optimization procedure a cost minimization one for conventionality. In gen-

eral, given two sequences X and Y , having elements {xi} and {yj}, the objective

of sequence alignment is minimizing the cost function C given with the relation,

C =
∑

all path

cij , cij =




B(xi, yj) , for a mis/match between xi and yj

g , for a gap in either sequence

.

(6.5)

Our careful calculations led the results summarized in Fig.6.2, in which we

present a time complexity comparison of simulated annealing and Needleman–

Wunsch algorithms. From this analysis, we observe that the simulated annealing

provides faster implementations than the Needleman–Wunsch algorithm for se-

quences of length greater than 325, the number which is close to the median lengths

of proteins (361 for Eukaryotes, 267 for Bacteria, and 247 for Archaea) [237]. In

example, considering the fact that length of proteins can extend to several thou-

sands, for aligning two sequences both of length 1000, simulated annealing offers

34% improvement in computational time over the Needleman–Wunsch algorithm.

Computation time improvement scales up with increasing sequence length as

seen in Fig. 6.2. However, the complementary price for this improvement is that,

simulated annealing does not provide the exact global optimum alignment, but

a probabilistic one. We compared the results obtained by simulated annealing

with the exact results for different lengths of aligned sequences. The deviation in
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Figure 6.2: Complexity behavior of the simulated annealing (circles and solid line)

and Needleman–Wunsch (crosses and dotted line) algorithms. Data points are

obtained by averaging over 20 distinct runs of the implemented algorithms, and

error bars are smaller than the markers. Lines denote fit results of t = uN + vN2

for simulated annealing and t = wN2 for the Needleman–Wunsch algorithm, with

u = (4.58865 ± 0.19897)× 103 s/r, v = (1.27525 ± 0.02488)× 105 s/r2, and w =

(2.67972± 0.01143)× 105 s/r2.

optimal cost is calculated by ∆Co = Co − C∗
o , where Co is the cost of the optimal

solution obtained by simulated annealing and C∗
o is the exact minimal cost. The

costs are calculated using BLOSUM80 multiplied by −1, for which the elements

range in 24 units of cost, and for two different gap penalty values, namely, for g = 8,

which is a standard value for BLOSUM80, and for a smaller gap penalty of g = 3.

It is observed that the deviation in optimal cost per residue ∆Co/N , saturates to

an approximate value of 3.3 units of cost in a large N limit for g = 8, while this

saturation value becomes even smaller for decreasing gap penalty (approximately

2.0 units of cost for g = 3), as can be seen in Fig. 6.3 below, in which we present

∆Co/N for N 6 1000 by circles and squares for g = 8 and g = 3 respectively.

Therefore, we conclude that the increase in computation time improvement does

not yield worse results in the optimal alignment path.
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Figure 6.3: Deviations in optimal cost per residue plotted versus aligned sequence

length for two different gap penalties of g = 8 and g = 3. The data and error bars

are obtained by the means and standard deviations of 20 distinct runs for each N

and g represented. It can be observed that for the standard gap penalty of g = 8

for BLOSUM80, the deviation in optimal cost per residue saturates to 3.3 units

of cost for large N limit.
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6.3 Molecular dynamics of water flow through CNTs

The very basic idea underlying molecular dynamics (MD) simulations is perform-

ing a work in the interplay of theory and experiment. It can be considered as the

test of known theory. Essentially, the input is the theoretically known force fields,

and the output is the dynamical evolution of the system. The MD scheme can

be shortly summarized in four steps: (i) initializing the system of interest, thus

assigning initial positions and velocities to the constituents of the system; (ii)

calculating the forces acting on each constituent; (iii) moving each constituent

under these forces for a very short period of time, thus updating their positions

and velocities; and (iv) repeating the last two steps above as long as needed. This

scheme yields the positions and velocities of each constituent at each time step,

thus a microscopic evolution of the system. Experimentally observable macro-

scopic quantities can be in general related to the averages of microscopic quatities.

A fairly basic example is the temperature of a dilute gas in a container, which

actually is related to the average of velocities of the gas molecules.

In practice, there are several issues one has to consider while, or better before,

performing MD simulations on a computer. The most common issue is the compu-

tation time problem. Since we want to simulate systems in thermodynamic limit,

we deal with large number of particles. Practically achievable numbers are in the

order of 103, which is much more smaller than the Avogadro’s number, but large

enough to cause huge computation times. Thus, the first problem one encounters

is finding an effective way to perform steps (ii) and (iii) above. Moreover, the

integration of forces is another issue, since computers are digital machines. Ba-

sically, the art of MD is finding an optimum trade-off between computation time

and accuracy. We will not go into the details of practical MD simulations, but

we must mention that the optimization problem in MD is solved by using several

different methods. Among these, the principal ones are using peridiodic bound-

ary conditions, truncating the short-range Lennard–Jones interactions by simple

or shifted truncation, Ewald summing the long-range Coulomb interactions, and

integrating the forces with higher order Taylor expansion algorithms.
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Using each of the principle and widely accepted techniques mentioned above,

one is performing an approximate work. In example, in the simple truncation

scheme of Lennard–Jones potential, one assumes that the interactions vanish at

a certain cut-off distance, rc. This would yield artificial results for a system in

which the typical interatomic distance is around rc. Here, rc is only one of the

many defined simulation parameters, and one has to find the optimum simulation

parameters for a particular system to simulate.

Figure 6.4: A typical system of ion solution flowing through a CNT that we use in

our MD simulations. The simulation box contains ∼ 103 water molecules, denoted

by white H and red O atoms. The ions shown by spheres are Na+ (blue) and Cl−

(cyan). The solution reservoir is formed from frozen graphene (two in yz-plane on

left and right and one in xz-plane bottom), and together with the frozen CNT, they

are shown in dark gray. The periodic boundary condition in x-direction assures an

atom leaving the CNT from one end entering it through the opposite. Thus the

CNTs at both ends are actually two parts of a single CNT. The single graphene

sheet on top, shown in green, is used as a piston. We apply constant force onto this

piston in −y-direction for pressure coupling, since we figured out that the standard

pressure coupling algorithms cannot handle this type of systems properly due to

large vacuum regions. Once we fill those irrelevant regions with water, we have to

pay for the extra computational cost, that will double the required memory space

and computation time.
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We obtained a working scheme for studying the water flow through carbon

nanotubes (CNTs). Using this set of simulation parameters we are investigating

the ionic solutions, e.g., a NaCl solution in water, flowing through CNTs (cf. Fig.

6.4). Our aim is to develop a nanoscale filter for anion-cation separation, thus, an

electromechnanical power generator.
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theory of±J spin-glass model, and from Prof. Dr. Roland R. Netz (Technical Uni-

versity Munich) on molecular dynamics simulations of water flow through carbon

nanotubes.

He has accepted a post-doctoral researcher position from Prof. Dr. Michael

Rubinstein of the University of North Carolina at Chapel Hill (UNC), and expected

to continue his studies on polymeric soft matter physics at UNC until 2013.


	List of Tables
	List of Figures
	Nomenclature
	INTRODUCTION
	METAL-INSULATOR TRANSITION
	Conduction in metals: a brief histocal survey
	Prologue
	Free electron theories of metals
	Bloch electrons and the band theory of metals
	Tight-binding approximation
	Hartree–Fock theory
	Density functional theory
	Epilogue

	Electron correlations and the exchange mechanisms
	Prologue
	Two-electron interactions
	Hydrogen atom
	Hydrogen molecule and the exchange interactions
	Direct exchange
	Kinetic exchange


	Epilogue

	Mott–Hubbard transition
	Prologue
	Strongly correlated electron systems
	Experimental systems
	Metals versus insulators
	Mott–Hubbard insulators
	The Mott–Hubbard transition

	Mott–Hubbard theory
	Screened Coulomb interaction
	Mott theory of metal-insulator transition
	The Hubbard model for metal-insulator transition

	Epilogue


	SECOND QUANTIZATION
	Historical background
	First quantization
	Prologue
	Many-particle case
	Indistinguishability
	Many-particle states as linear combinations of single-particle states
	Representation of operators
	One-particle operator: kinetic energy
	Two-particle operator: Coulomb interaction


	Epilogue

	Second quantization
	Prologue
	Occupation number representation and Fock space
	Creation–annihilation operators and CAR algebra
	Equivalence to first quantization
	Normal order
	Operators in second quantization representation
	Epilogue

	Tight-binding approach and Hubbard model revisited
	Prologue
	Creation and annihilation operators
	Kinetic energy
	On-site Coulomb repulsion
	Epilogue


	RENORMALIZATION-GROUP (RG) THEORY
	Partition function
	RG theory for 1-dimensional classical systems
	RG theory for 1-dimensional quantum systems
	Generalization to higher dimensions
	Calculation of densities
	Calculation of phase diagrams
	Overview

	SPINLESS FALICOV–KIMBALL MODEL
	Introduction
	The model
	Derivation of SFKM Hamiltonian
	Symmetries of SFKM Hamiltonian

	RG details
	Suzuki–Takano method in d=1
	Migdal–Kadanoff RG transformation in d>1

	Global phase diagram
	The classical submodel t=0
	The small |U| regime
	The intermediate |U| regime
	The large |U| regime
	Evolution of phase diagrams with varying t

	Conclusion

	OTHER DIRECTIONS
	Hard-spin mean-field theory of J spin-glass model
	Sequence alignment using simulated annealing
	Molecular dynamics of water flow through CNTs

	Bibliography
	Vita

