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ABSTRACT

In this thesis, we study existence, uniqueness and stability results for the solutions
of initial-boundary value problems for the Korteweg-de Vries equation on bounded
domains. First, we give a proof of the existence and uniqueness of weak solutions in
the case of periodic boundary conditions. We also give a proof for the existence of
an absorbing set in the Sobolev space H2. Then, we give a proof of the existence
and uniqueness of regular solutions of a non-periodic initial-boundary value problem
for the Korteweg-de Vries equation. In the non-periodic case, the exponential decay

of solutions for small enough initial data is also shown.



OZET

Bu caligmada, sinirh araliklarda Korteweg-de Vries denkleminin ¢oziimleriyle il-
gili, varlik, teklik ve stabilite sonuclarini anlamaya caligtik. Tk olarak, periyodik
sinir kogullar1 altinda, zayif ¢oztimlerin varhigini ve tekligini gosterdik. Ayrica, bu
coziimler icin H? Sobolev uzaymda bir sogurucu kiimenin varhigim da ispatladik.
Daha sonra, Korteweg-de Vries denklemi icin, periyodik olmayan bir baslangic-
sinir probleminin diizgiin ¢oziimlerinin varligini ve tekligini osterdik. Periyodik ol-
mayan durumda, ¢oziimlerin, yeterince kiiciik baslangic kogullar: altinda, exponen-

siyel olarak azaldigini da ispatladik.
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1 Introduction

Korteweg-de Vries -henceforth we will say KdV equation- equation was formulated
as a model for one-directional water waves of small amplitude in shallow water. The
equation first appeared in the paper of J. Boussinesq [2] and it was named for D.J.
Korteweg and G. de Vries after they had studied on it in [6]. KAV equation we will

consider is as follows
g, t) + u(z, t)ug(z,t) + Uge (2, 1) = 0,

where z is the space variable and ¢ is the time variable. It is an interesting non-
linear equation in some respects. Firstly, its solutions can be explicitly found using
inverse scattering method which we will not touch upon in this study. Moreover, this
equation can be formulated as a Lax equation

i _p_prL.
dt

where L is the Sturm-Liouville operator and P is another time-dependent operator.
In [8], Lax observed that any equation that can be observed as a Lax equation for
some time-dependent operators L, P shares many features of the KdV equation.
Also, from this formulation, it follows that KdV equation has infinitely many con-
servation laws only three of which we will use for our estimates.

In this thesis, we will study the existence, uniqueness and stability of solutions of
KdV equations on bounded domains. Note that, if we have periodic boundary con-

ditions, multiplying the equation by u and integrating over the domain we find

which implies that in the periodic case we have no decay of solutions. However, in

many real situations, we have dissipation and external force and we can get stability



for the solutions in that case. In this respect, in the following chapter, based on the
works of Temam [11] and Ghidaglia [5], we will study the following damped KdV

equation with periodic boundary conditions:
ut—f_uux—f—uxa:a:—}_’yu:fv ‘TatERa

u(z + L,t) = u(x,t), x,t € R, L >0,
u(z,0) = up(x), Vo € R.
Then, in the last chapter we will study the KdV equation under non-periodic bound-
ary conditions based on the work of Larkin [7] which is stated as follows:

Up + Uy + Ugze = 0, z € (0,1),t >0,

u(z,0) = ug(x), xz € (0,1),
w(0,t) = u(l,t) = u,(1,t) =0, t>0.

Some of the other results for KdV equation on bounded domains are obtained in [4]
and [12].
Before we begin, we will state some definitions and theorems that we will use in our

work.

1.1 Function spaces

Here we give the definitions of function spaces we use in the study of initial-boundary
value problems for the Korteweg-de Vries equation. In the following, €2 will denote

an open interval in R.

Definition 1.1. A Banach space is a complete normed vector space. If the norm

15 induced by an inner product then it is called a Hilbert space. The space of square
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integrable functions on Q will be denoted by L*(Y) and L*(2) is a Hilbert space with

the following inner product:

(u,v) = / u(z)v(x) de u,v € L*(Q).
Q
Lastly, || - || will denote the norm on L*(2).

Basic spaces that we use in the study of our problems are Sobolev spaces. In order
to define these spaces we first need the notion of weak derivative. Let C§°(§2) be the
space of compactly supported functions on 2. Then for u € C*(2) and for any test

function n € C§°(Q2), following equality holds:

/unwdx:—/umndx.
Q Q

If we take u € L}, (Q), i.e. if u is locally integrable, then the left hand side of the
equation is still meaningful. Also, it is possible to have another function v € L}, (Q)

loc

such that above identity holds with u, replaced by v, i.e. the following identity holds:

/unxd:v:—/vndx. Vn € C5°(92).
Q Q

Then we call v a weak derivative of u. It can be shown that weak derivative is
unique so that if u is differentiable, then the usual derivative coincides with the weak

derivative. We can generalize the above discussion as follows:

Definition 1.2. Let o be a positive integer and D* denote the o' derivative. A
function v € L}, (Q) is called the o™ weak derivative of a function u € L} (Q) if for

loc

all n € C(Q), the following equality holds:

/uDandm: (—1)o‘/vndx.
Q Q

This definition can be generalized to the case {2 C R", but since we will study only

in dimension one, this is enough for our purposes. Now we can define Sobolev spaces.

3



Definition 1.3. Let 0 < o,k < oo be integers. Then the Sobolev space H*(Q) is
the space of all functions in L, .(Q2) such that the function itself and all the a'"-weak

loc

derivatives, where 1 < o < k, belong to L*(Q). If u € H*(Q) we define its norm as

1/2
2
[ull ) = (ZHDQUHLQ(Q)) :

a<k
Moreover, H®(Q) a Hilbert space with the following inner product:
(u,v) = Z/ D%u(z)D% () dx.
a<k Q

Following theorem is true only in dimension one.

Theorem 1.4. For all u € H'(Q), there exists u € C(Q) such that u = U almost

everywhere and

ii(a) — W(b) = / w(x)de  Vabe

This theorem also implies that functions belonging to H'(f2) are bounded if € is
bounded, a fact that we will use very often.

It can be shown that C>(Q) is dense in H*(€2) from which it follows that H*(f2) is
dense in H™(Q2) for k > m. We will denote the closure of the C§°(Q) in H*(Q) with
HE(Q). Indeed, HE(Q) is the space of functions u in H*(Q) for which D%u is zero
on the boundary where 0 < a < (k — 1). We will also need the dual space of H}((2).

Definition 1.5. The space H*(Q) will denote the dual of H¥(Y). It can be identified
with the completion of L*(Y) with respect to the norm

[{w,0)]

||u||Hk(Q) = SuvaH(’f(Q) H’UHH’C(Q) )

where {-,-) is the inner product on L*().



For a complete treatment of Sobolev spaces see [3].

The equations we will consider depend on time. If, for example, u(z,t) is a solution
for an equation where t is the time variable and z is the space variable, then we can
consider the function u(z,t) as a function of ¢ with values in a Banach space. This

motivates the following definition.

Definition 1.6. Let X be a Banach space. The space LP(0,T;X) consists of all

measurable functions u: (0,T) — X such that ||ul|zeo,rx) < 00 where

1/p
() ae) ™, i1 <p<oo

ess supeqo,mllu®)lx, 4 p =00

[ullzeo.r.x) =

and the space C([0,T]; X) consists of all continuous functions u : [0,T] — X with
the norm

[ulleqorymy = maziepr |u(t)] x
All the spaces in the above definition are Banach spaces. The space L?(0,T; X) is

also an Hilbert space if X is an Hilbert space, where the inner product for u, v €

L*(0,T; X) is defined as

mmzlgmm@hﬁ

Similar to the real valued case, L4(0,T"; X) is continuously embedded into LP(0,T’; X)
for 1 < p < ¢ < oo since (0,7) is bounded. Moreover, if X is continuously embedded
inY', then L4(0, T'; X) is continuously embedded into LP(0,T;Y"). Lastly, we will need

the definition of weak derivative for vector valued functions on (0, 7).

Definition 1.7. A function v € L} (0,T;X) is said to be a weak derivative of a

loc

function v € L}, (0,T; X) if for all n € C5(0,T), the following equality holds:

loc
Au@%@ﬁ:—évwwwt



1.2 Compact embedding, weak and weak-star convergence

Definition 1.8. Let X and Y be normed vector spaces. Then a continuous operator
T:X —Y is called compact if, for every bounded set B C X, T(B) is precompact,
i.e. every sequence in T (B) has a cauchy subsequence. If X is continuously embedded
in Y, i.e. there is a continuous injection from X to Y, and the injection is compact,

then we say X is compactly embedded into Y.

In analysis, one of the ways of proving existence theorems is to create an appropriate
sequence which is bounded and then try to extract a subsequence such that its limit
works for us. However, if X is an infinite dimensional Banach space, we know that
a bounded sequence may not have a convergent subsequence. Hence, in order to use
compactness arguments when X is infinite dimensional, we need somewhat weaker

definitions of convergence. In the following, X’ will denote the dual of X.
Definition 1.9.

1. Let X be a Banach space. Then we say that a sequence u, € X converges to
some u € X weakly, if for all f € X', f(u,) converges to f(u). We will denote

this by u,, — u.

2. Let X be the dual of a Banach space Y. Then we say that a sequence u, € X
converges to some u € X weakly star, if for allv € Y, u,(v) converges to u(v).

We will denote this by u, — u.

If u,, converges to v in norm, then we will say w,, converges to u strongly and we will
denote this by w, — u. Weakly convergent and weakly star convergent sequences
are bounded and their limits are unique. Also, if X is a dual of another space, then

we have three types of convergence in X; strong convergence, weak convergence,



and weak-star convergence. It is obvious that strong convergence implies weak con-
vergence, and weak convergence implies weak-star convergence. If X is reflexive,
for instance a Hilbert space, then weak convergence and weak-star convergence are

equivalent. Following theorem clarify the effectiveness of these definitions.
Theorem 1.10.

1. Let X be a reflexive Banach space. Then every bounded sequence in X has a

weakly convergent subsequence.

2. Let X be the dual of another separable Banach space Y. Then every bounded

sequence in X has a weakly star convergent subsequence.

For a proof, see [3].
Note also that, if T' is a strongly continuous operator, then T is weakly continuous,
and if the latter is true, then T is weakly star continuous. Using the first implication,

we can show the following theorem easily.

Theorem 1.11. Let X, Y be Banach spaces and T : X — Y be a linear compact

operator. Then u, — u in X implies that Tu, — Tu in Y.

Proof. Let T : X — Y be a compact operator and let u, — win X. Then Tu,, — Tu
in Y. If Tu, were not convergent, then, since u, is a bounded sequence and T is
a compact operator, Tu, would have two different subsequences which converge
strongly to two different limits. Since strong convergence imply weak convergence,
this would imply that T'u,, has two different subsequences converging weakly to two

different limits which is not possible. ]

We will consider our time-dependent solutions as functions in the spaces
LP(0,T; X) where X is an appropriate Banach space. In order to apply weak con-

vergence methods, we need the duality relations of these spaces.



Theorem 1.12. If 1 < p < oo and if X is reflezive or X' is separable, then
(LP(0,T; X)) ~ L¥(0,T;X"). In addition, if 1 < p < oo and if X is reflexive,
then LP(0,T; X) is also reflexive.

Lastly we give the definition of the dual paring for the spaces L?(0,T"; X).
Definition 1.13. For u € LP(0,T; X) and v € (L?(0,T; X)) ~ (L”(0,T; X"), dual
paring is given by the following formula:

o(u) = / (0(t) u(t)) o xlt,

where (-, ) x/ x 15 the dual pairing between X and X'.

1.3 Some useful inequalities and embedding theorems

1. Schwarz inequality

Let H be a Hilbert space. Then for any u, v in H we have

[ {u, )| < ulf o]

2. Young’s inequality
Let 1 < p,qg < oo be such that i + % = 1. Then for a,b > 0 we have

ab b
ab < — + —.
p q

Observe that writing ab = ea%b for € > 0, we get

We will use this inequality with p = ¢ = 2 except few cases.



3. Compactness theorem
Suppose that €2 is a bounded interval. If 0 < n < m, where n and m are
integers, then the embedding of H™(Q2) into H™(Q2) is compact. For a proof,
see [9].

4. FEhrling’s inequality
Let € be a bounded interval and u € H™(€2). Then for alle > 0 and 0 < j < m,
there exists C'(e, 7) > 0 such that

|D7ull 20y < K (el D™l 2y + Cles )lul @)
For a proof, see [1].

5. Agmon’s inequality

Let v € H'(0, L) and u be periodic. Then the following inequality holds:

1/2 1/2

sUP,e (o0, |U(®)] < llull 2o 1y (2ltallrzo,r) + L7 ullz20,1))
6. Interpolation inequality

In order to state this inequality, we need to define Sobolev spaces H® for s € R.
We will need this at one instance only so we will define it briefly. For this we will
first define the spaces [X,Y]yg. Suppose that X and Y are Hilbert spaces such
that X is dense in Y and the embedding is compact. By Riesz Representation
theorem, the inner product on X induces an onto isomorphism from X to dual
of X which we call A. Then considering A as an operator from D(A) C V
onto H, the inverse of A is a compact operator from H to H which follows
from X being compactly embedded into Y and the fact that composition of
a continuous function with a compact function is compact. Since the inner

product is symmetric, A is also self-adjoint. Then using the spectral theory for

9



compact self-adjoint operators, we can define the powers A® of A. We define
the interpolation space [X,Y]y to be the domain of A0=9/2 for 0 < § < 1

which is equipped with the following inner product
(u, v)(xy), = <A(1_9)/2U,A(1_9)/2U>y.
and the norm on [ X, Y],y satisfies

lullxyy, < lullillulls- (1)

Now let © be a bounded interval. Then, taking X = H™(Q) and Y = H°(Q2) in
the definition of [ X, Y] (which we can do due to compactness theorem above),
for 0 < s < m we can define H*(2) as an interpolation between H™(f2) and
HO(Q):

H(©) = [H"(9),H()]

5
where s = (1 — 0)m.

Let m > 0 be an integer and s > 0 be real number. Then

He(Q) < |’UH}{_£(Q)H“||§I°(Q)7

|

where s = (1 — 0)m which follows from (1). For the complete treatment of

Interpolation spaces, see [9].

7. Embedding theorem
Let s > 0 be a real number and 2 C R be an open interval. Then for s < 1/2
and 1/q =1/2 — s we have H*(Q2) C L9(Q2) and the embedding is continuous.

1.4 Auxiliary theorems
Following theorems will be used while proving existence and uniqueness theorems.

10



Theorem 1.14. Let X be a Banach space. Then for u,u* € L'(0,T;X), u* is the
weak derivative of u if and only if for all ¢ € C$(0,T) and for all v € X' following

equality holds:
T T
/ (ult), ) dt = — / (W (), v}t
0 0
For a proof, see [10].
Theorem 1.15. Let X C Y C Z be Banach spaces where X and Y are reflexive.

Assume that embeddings are continuous where the embedding X — Y is also compact.

For any 1 < pg,p1 < co. Let

W = {ulu € L*(0,T; X),u € LP(0,T;2)} .
Then the embedding W — L (0,T;Y") is compact.
For a proof, see [13].

Theorem 1.16. Let V, H, V' be three Hilbert spaces such that each space is included
and dense in the following one, where V' is the dual of V. If a function u belongs to
L2(0,T;V) and its derivative u’ belongs to L*(0,T; V"), then u belongs to C([0,T]; H)
and the following equality holds on (0,T):

d 2 /
o)y = 200 (2). u(E) v

For a proof, see [10].

Theorem 1.17. Let X be a reflexive space. If

u, —u in L*(0,T; X),
u, = in L*(0,T; X),

then
un(0) = u(0) in X.

11



For a proof, see [13].

Theorem 1.18. Let T be a self-adjoint compact operator on a separable Hilbert space

H. Then there exist eigenfunctions of T that form an orthonormal basis of H.

For a proof, see [3].

12



2 Damped KdV equation with periodic boundary

conditions

In this chapter we consider the following damped KdV equation
Up + Ul + Ugge + YU = f, (2)
under the periodic boundary conditions
w(x + L,t) = u(x,t), Vr € R,Vt € R, (3)
where L > 0 is given, and we have the initial condition
u(z,0) = ug(x), Vr € R. (4)

Here f = f(x) is a given forcing term and v € R is a given number.

Notation

In this chapter Q = (0,L) and H¥(Q) will denote the subspace of H*(Q2) which
consists of periodic functions. For u = wu(z,t) we will use u(t) as u can be seen as
a function of ¢ with values in a Banach space. Also the following notation will be
used:

i

[y = | Due. )y D= 55

In general, we will not write the ¢ argument and write only |u|; for |u(t)|;. Lastly

| - ||oe Will denote the L norm and H~*(£2) will denote the dual of H} ().

2.1 Existence and Uniqueness

Theorem 2.1. For v € R, f € H?(Q), and ug € HZ(QY), there exists a unique
solution w of (2)-(4) from the class

u € L®(0,T; H; () N C([0,T], L*(£2)), VT > 0.

13



Proof. Let € € (0,1). Also let f. and ug. be the approximations in H? () of f and
uo by smooth ( C* and L-periodic) functions. The existence of a solution for the

following regularization of (2)-(4)

du,
CZf + uDue + D3u, 4+ yu, + eD*u, = f., (5)
ue(0) = e, (6)
from the class
du,

u. € L®(0,T; L*(Q)) N L*(0,T, H; (Q)), € L*(0,T; L*(Q)),

dt

is known and we assume it here. Our aim is to get estimates for the solutions u,. which
are independent of € and then passing to a convergent subsequence in the weak sense
such that limit works for us. We will implicitly use the fact u. € L*(0,7T, H;(Q)) in
the following estimates.

Estimates for the norms |u|y, |ue|,, and |uc|, (for the notation see the beginning of
this chapter) will be obtained separately as follows:

Estimate 1

Multiplying (2) by 2u. and integrating over ) we get

(2):2/feuedx
Q

<2 ‘felo ‘ue‘o

1
< |'7| |ue|(2) + m |f5|§

d
pr \u6|(2) + 2y ’Ue’?) + 2¢ ‘D2u6

So

d 2 2 2 2 1 2

gr l1elo - 2€ [ Ducly < 3 fucly + 7 1elo- (7)
and this implies

d 2 2 1 2
< 3 fudl + — 112
ai " 0Ty el

14



=3[t

Now let T' > 0. Multiplying the inequality above by e and integrating over (0, 1)

for t € (0,T) we get
2 -8l <y 124 | £ 2
O e < oy + 251
) 3hl e3hlt )
= [ue(t)ly < |uoe e + 342 |felo <% ¢, (8)

where we have used in (a) the fact that ug. and f. are convergent in H?(£2) so that the
norms | fe|, and |ug|, are uniformly bounded with respect to € € (0,1) and t € (0, 7).
Therefore, ¢ depends on T" but does not depend on € € (0,1) and t € (0,7). Hence
inserting (8) into (7) and integrating over (0,t) again, it follows that

t
(1) + 6/0 |D2u,(s)[ ds < c. ()

for all t € (0,7) and € € (0,1) where ¢ > 0 is a generic constant which we will use
for later estimates as well.

Estimate 2

This time multiplying (2) by —2D?u, — u? and integrating over €2, the terms coming

from u.Du, and D3u, cancel and we get

d 2 U 0 U

+ 26/ ((D?’ue)2 —|—uEDuED3u€) dr = / (2Df€Du6 — feuf) dr. (10)
@ Q

Let ¢(ue) = [o(Du? — %g) dx. We first try to get the following estimate:
d 2
7 P(ue) + 2y (ue) + efucls < |yli(ue) +c. (11)

For this, we add 2 [« dz to the second term in (10) and subtract it again from the

15



equation which gives

d
—p(ue) + 2yp(ue) + 2¢luc; < / u? dr — 26/ (ueDucD?u,) da
dt 3 Q Q

—|—/ (2Df€Du6 — feuf) dx. (12)
Q
Now we will estimate the terms on the right hand side separately. Firstly

‘/ufda:
Q

2
< Hu6H00|u6|0

<a |Ue 5/2 (2 |U€’1 _|_L—1 ‘u€’ )1/2

Sb \/§|’UJ5 5/2|u6 1/2+L 1/2|U5|0

< Juli + |Ue oL (13)
where we have used Agmon’s inequality in (a), the fact that va + b < v/a + v/b in

(b), and Young’s inequality with p =4 and ¢ = 4/3 in (¢). Then using the estimate

above we get

o(ue) > |ue\1—— ’/u dx

10/3 1

3
|u€|1 __| 3L1/2 |u5|07
which implies that
3 1
2 10/3 3
ul? < Seplon) + 2 g 45 Ll (14

Inserting the above inequality into (13) and taking into account (9) it follows that

%/uf dr < %gp(uﬁ) +c. (15)

For the second term on the right hand side of (12) we have

‘2/ (ueDucD?ue) dx| < |Jucl| 4 | Duel| 14 | DPue

o

< cluell g [ Duell grja fuels (16)

16



where we have used the embedding L* — HY* in (a). Note that ||Du|| 14 <

||te| ;75,2 which is actually a generalization of the fact
[ Dull e < [Jul| grmss,
where n is an integer. Then using the interpolation inequality we get

el grasa < el o el

€lo
5/12
|Dudllgie < Nuellgars < Nuell5s® el ™
Inserting these into (16) we obtain
’ / (u.DuDuc) de| < ¢l Y2 Juc 22 [ud, (17)

Now observe that there exists ¢ > 0 such that for all u € H; (), [Jullgs < ¢ (|ulo + |uls)

which follows from the following reasoning:

2 2
|U|% = —/uD2udI’ < |u|0 |u|2 |u70 + %7
2 2
3 |u|1 |u|3
|ul = DuD*udx < |ul, Ju|y < 5 + S
= uli + |ul3 < Julg + |ul3. (18)
Hence
'2/ (UGDUED?’UE) dr| < c|u€|g |u€|3 +e |Ue 3/2 |Ue 3/2
a 2 4 6
< uels + cluely + ¢ |uelg

where we have used Young’s inequality in (a), and the inequality (9) in (b). For the

17



last term in (12) we have

\ / (2Df.Du. — fu) de| < 211, lucl, + 11£]L ]2

kel 2 3 2 2
< o el + 7 [ feli 4 [ fell oo Tuelg
el
<@ %gp(ug) + c. (20)

where we have used in (a) the inequality (14) and the fact that |f|, and |f.|  are
uniformly bounded with respect to € which follows from the convergence of f. in
H? and Agmon’s inequality. Inserting (15), (19) and (20), into (12), we obtain the
inequality (11).
Now the inequality

—27¢(ue) < 2|ylp(uc) + ¢

is obvious for v < 0 and is equivalent to the fact that ¢(u.) is bounded from below

when v > 0 which is true due to (14) and (9). Therefore, (11) can be written as

() + elucld < 3hlp(ud) +

Multiplying the inequality above by e~31"1* and integrating over (0.t) we get

e [ B < lun)e 4+ e 1)

It follows from (13) that

QD(U()E) 10/3 +

3
o + | Uoelo 312 [oe -

=3

Since uge is convergent in H?(), |uge|, and |ug|, are bounded. Hence, from the

t
e/ lucl3(s) ds < c.
0

inequality (21), it follows that



Taking (14) into account we obtain the following inequality

t
ol e [ lufio)ds < )
0

for 0 <t < T, where ¢ depends on T but does not depend on e.

Estimate 3

To estimate |uc|,, we multiply (2) with M (u.) = 2D*uc + 2Du? + LQu.D*u, + u®
For Lu.M (u.), from the third term of M (u,), there comes

odt dt dt (

5d 9 5 [ d
_—gafgue(Due) dx—g/dt ¢ (Du,)? dz.

M (ue) are obvious to calculate. Then we have

10 d 10 d 5 d
—ueuD*u, de = —— (Due) —3 / Ue— Du5)2 dx
Q

Remaining terms in %u
d
aueM (ue) = /Q ((D2u€)2 — gue (Due) 356 ) dx.

After calculating yu.M (u.) similarly, and observing that
5 9 10
M (ue) = (Du)” de + | M (ue) —ueDu. dz = 0,
Q 3 Q 3

if we take

o(ue) = /Q ((D2u6)2 — §u6 (Dug)2 + %uf) dz,

we can write the resulting identity as follows:

5 10
(D4u5)2 dx + e/ D*u, (— (Du.)® + —u.D*u, + u3) dx
Q

d
Zip(u) + 2rplu)+2e [ . X

dt 0
=/ (2D2feD2ue+§(Due) fo+ —ueD2 o+ ugﬂ)
Q

+7/Q (gu (Du,)> — %u ) da. (23)

Now we will estimate the terms in (23). Note that applying Agmon’s inequality in
(9) and (22), we infer that |luc|| is uniformly bounded with respect to t € (0,7)
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and € € (0,1). We will use this fact for the following estimates.

First using similar arguments as in (19) we have

10
/D4u6 ( Duﬁ) §u€D2u6 —|—u3) dx

2
< e (I1Duclgs + el fuely + [l Juelo) e,

2
< c (IIDucllps + Juely + 1) Juel,

11/8 5/8 1/2 1/2
< e uaely® Nuell3 fuel, + e ol ol el (24)

Using the same idea in (18) we can bound H} norm with the norms | - |2 and | - |3.

Hence using this and Young’s inequality we can deduce from (24) that

< |u€|121 +c. (25)

10
/D‘lu6 ( Dug) + gueDQuE +u3) dx

7/ §ue (Du,)? — Euﬁ dx
o \3 18

Also

2 2 2
< cluell fuely + ¢ flucll fuelg < e (26)

Lastly

/<2D2f6D2u5+§(Due) fo+ —u€D2u6f5+ u?’fe)
Q

2 2
< [Sel luely + el fello Tuely + ¢ [fely [Juellog uely + ¢l felg Tuelg luells

1
< Willuely + 1y e < Il fudy +-c. (27)
Inserting (25), (26), and (27) into (23) we get

d
T o) + 27p(ue) + efuci do < |y fucl; +c. (28)

Observe that

2
o (ue)| < |D2UE

2 2 2 2
|+ e lueli + e lluells fuely < Juely + ¢ < (ue) +e.
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So, using (28), it follows that

d
agp(ue) + 3¢ \ue\i < 3|ylp(ue) + ¢,

from which we conclude as in Estimate 1 and Estimate 2 that

t
(B + ¢ / 2 (s)ds < c. (20)
0

for 0 <t < T where ¢ does not depend on € but depends on T.
Passing to the limit
First we will show that 2% remains bounded in L*(0,T; H~'(2)). By (5)

du,
dt

= —u.Du, — D3u, + yu — eDu, + f.. (30)
Then the result follows from the following implications:

1. u.Du, remains bounded in L>(0,T; H'(Q)): First note that

HUGDUEHH—l(Q) <* HUeDUEHLQ(Q)

< el o ([P ue] o

where we have used in (a) the definition of H~* norm. Also using (9), (22),
(29) and Agmon’s inequality, we can bound |[Juc|, and || Duc|| with respect

tot € (0,7) and € from which the result follows.

2. D3u, remains bounded in L>(0,T; H*(€2)): Since

3 _ (D ue,v)]
HD UEHH,l(Q) = SUPven} () H’UHHI(Q) )

and
[(D3u,v) B |(D*u¢,Dv)| < |{D?*u,,Dv)

Il lvlme  — [1Dvllze

| Sa HD2ue

L2(Q)”
where we have used in (a) the fact that D?u. can be seen as a functional on

L*(2). Hence from (29) the result follows.
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3. yu, is bounded in L>*(0,T; H'(Q)): It follows from (9).

4. Lastly, by (29), we have

H6D4UEHL2(Q) =€ ||D4UEHL2(Q) <* \/E||D4UEHL2(Q) s

where we have used in (a) the fact that ¢ € (0,1). Hence eD"u. remains

bounded in L*(0,T; H~(Q)).

Now we have that u, is bounded in L>(0, T; H%(€2)) and %% is bounded in L2(0, T; H*(12)).
Then by Theorem 1.10 there exists u € L>(0,T; H*(Q)), u* € L*(0,T; H~'(Q2)) and

a subsequence of u, which we denote also by u., such that

uc = u in L0, T; H*(Q)), (31)
and

du, - 2 —1

g W in L7(0,T; H(Q2)). (32)

We now show that u* = % ~the derivative is to be understood in the weak sense- in
L*(0,T; H'(2)). According to Theorem 1.14 this is equivalent to the fact that for
all p € C5°(0,T) and v € H}(Q2) the following equality holds:

/O (0o () u(t)) y -1 dt = — /0 (vo(t),u"(t)) my 1 dt. (33)

Since
T

T
/0 (wu(0) (0 sy s = i | (000 (0) ()1

T du,

= —lim ; <U¢(t)7ﬁ

o /O (0o ()" (1) 1 g,

() g
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where we have used the definition of (31) with the fact that vg, € L>(0,T; H'(Q)) —
LY0,T; H 2 in (a) and (32) in (b), the equality (33) is proved.

Considering the term u,Du,, we will first show that u, goes to u strongly in L(0,T; H}(Q)).
Using the embedding L>(0,T; H3(Q)) — L*(0,T; H3(f2)) it follows from (31) that

uc —u in L*(0,T; H; (). (34)

Now take X = H?(Q), Y = H}(Q), Z = H'(Q) and py = p; = 2 in Theorem 1.15.
Then from W being continuously embedded in L*(0,7; H?(S2)) ~where W is de-
fined as in Theorem 1.15- and (34), it follows that v, — u alsoin W. Hence
from Theorem 1.15 and Theorem 1.11, we conclude that u. goes to w strongly in
L*(0,T; H} (). Now using this, we will show that u.Du. converges weakly to uDu
in L2(0,T; H1(Q)), i.e. for all v € L*(0,T; H}(f2)) the following holds:

/0 (1 (1) Dt (1), 0(t)) 1.1y lt — /O (w(t)Du(t), o(t)) s dt - as € — 0. (35)
We have

A WMQDW@V‘MWDMﬂwﬁ»Ha% dt

T
g/ ol o lte Dtc — wDull g+
0
T T
< / ||| 1 (@) [weDue — uDue|, dt +/ ]| 1 (@) [uDue — uDul, dt
0 0

T T
< /0 [Due(t)l o Jue = uly dt +/0 [u()]l [Due = Dul, dt, (36)

where we have used in (a) the fact that || - | z-1(q) < |- |o and the triangle inequality.

Note that ||Duc(t)|,, is bounded. Also, since u € L*>(0,T; H?(2)), by Agmon

loc

inequality [|u(t)||,, is bounded. Hence it follows from (36) and u. being convergent

to u strongly in L*(0,T; H}(€2)) that (35) holds. Also D3u, being weakly convergent
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to Dsu follows easily from the definitions. Now it remains to prove that eD%u,

converges weakly to 0 weakly in L*(0,T; H*(2)). So let v € L*(0,T; H}(2)). Then
T T
/ <6D4u€(t),v(t))H71,H% dt :/ (eDu (t), Du(t)) 2 dt
0 o
< Ve [ Velu bl oo at
0
<® \ec (37)

where we have used the inequality (22) in (a). Note that here ¢ depends on v and T
but not on e. Then y/ec tends to 0 as € — 0 from which the result follows. Hence,

we can pass to the limit in L2(0,T; H~1(Q) as € goes to 0, to get

d
d—?#—uDu—l—D?’u%—fyu:f, (38)

where the equality is understood to be hold in H~1(Q) for ¢ € (0,T). Note that since
the term D*u, disappeared we have

W e 120,117 ()

Now taking V = H}(Q2) and H = L*(Q2) in Theorem 1.16, we get
u e C(0. T} L7(9)

Lastly, it follows from Theorem 1.17 that u.(0) converges weakly to u(0) in H ().
Since u, converges to ug strongly, we have u(0) = uy.

Uniqueness

Let u,v € L>(0,T; H2(Q) satisfy (38) with u(0) = v(0) = ug . If w =u — v, then w
satisfies

d
d_lf + D3w + yw = —uDu + vDwv, (39)

w(0) = 0. (40)
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Note that by Theorem 1.16 we have

ld, o, dw
2di wly = <E7w>H—1,H£7

which implies the following identity.

Ld

w2+'yw2:—/uDu—vawdx.
5 gl s ==/ )

Note that

1
/(uDu —vDv)wdr = /(wa — D(vw)wdzx = / —w?Dv dx.
Q Q Q2

So
2 g 1 2
—|wlg = —2v|w|§ — = | w"Dvdx
2 Ja
1
< 5 IDulloolw]g + 2|7 |wlg
< clwl3.

* and integrating over (0,t), we get

Hence, multiplying this by e~
w(t)5 < [w(0)]e.

Using the fact that w(0) = 0, uniqueness follows. O

2.2 Existence of an absorbing set

In this section we will assume that v > 0.
Using the existence and uniqueness result in the previous section we can define for

each ¢t € R™ the nonlinear mapping S(t) : H*(2) — H?*(Q) which is defined as

o = u(t) = S(t)uo.
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We will prove the existence of a bounded absorbing set for {S(t)},i.e. there exists a

closed ball C' such that for every bounded set B in H3, there exists T'(B) such that
S(t)B cC C, vVt > T(B).
In other words we will prove the following theorem.

Theorem 2.2. Let v > 0 and f € H: be given. There exists a constant p =
p(L,v,|fl,) such that for every R > 0, there exists T(R) such that

|S(t)uol, < pa2, Yuo € Hj, luol, < RVt = T(R).

For the proof we will use the same multipliers as in Section 1. We will recall them

for easy referencing. Multiplying (2) by 2u and integrating over {) we get

d
— [ vPdx + / (27w — 2fu) dx = 0. (41)
Now multiplying (2) by —2u,, — u? and integrating over €2 again, the terms coming

from uu, and u,,, cancel and we get

d (2 dﬁ/ o (12— N pu—2f, ) dr =0, (42)

Lastly we multiply (2) by M (u) = Btgues + 6tttz + 3u2 + u?. Note that this is the
same multiplier in the previous section but it is multiplied by 9/5 here. Doing the

same calculations as we did before we get

d 4
{9 2 —3uui—|—uz} dx

% 5uxx
18 5 2 4 18 a2 3 _
+ y F ur, — uuy +u’ | + E foatee — 3usf — ufpu, + fu’ p de =0. (43)

Proof. (Proof of Theorem 2.2) From (41) we get
d o 2 21,12 < 2 1 0
% |u|0 + 2’)/|U|0 X 2 |f|0 |u|0 X ’7|u|0 + ; |f|0a
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which implies
d 2 L2
£|u|o+’7|u’0 X ;|f|0

Multiplying the above inequality by € and integrating over (0,t) we get

et —1
Julg € < Juoly + e £l

and so
S (t)uolg < Juoloe™™ + [ flg (1 =) /4%
Hence
[S(t)uoly < 21f15 /7, t = To(uo),
where
To(ug) = 1Log7 |u0|g'
AT

For the H! estimate taking

and
2
) =il = 3 [t do [ (12 = 2h) o
we can write (42) in the form

dip(u(t))

S yplult) = —€(u(t))

Now we will estimate ‘ Ju? dx‘ as follows:

‘/u?’dx

< Juloclulg

_ 2
< July? (2luly + L ulo)

< V2ulgPluly® + LY uf}

el 2/% 10/3 -1/2),,13
< §|U|1+T|U|o + L |ulp-
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where we have used Agmon’s inequality in (a), the fact that va + b < v/a + Vb in
(b), and Young’s inequality with p = 4 and ¢ = 4/3 in (¢). Using this we estimate
—&(u) as follows:

2
—&(u) < —'y|u|%+—7‘/u3 dx —/(fu2 — 2fuy) dx (46)
~1/2
v 10/3 |
——|U\§+ \ o 3 Julg + [ floolulg + 21 fI1]uly
24/ 10/3 2yL'?
—|f|1+!fIOOIUIo+—! o + = luls

where we have used 2|f|i|ul; < Z|ul} + ﬂ|f|1 in (a). Now replacing |ul? with
|ulZe™t + |’;—|22 in the last inequlaity according to (44) and using the inequality (a +
b)* < 2% (a™ 4 b*) we get

dip(u(t))

dt + yp(u(t) < Ki(ug)e™ + K, (47)
where
Ka(u) = |fleliold + 2ol + 22 g,
e 23 5/27—-1/2
Ko = I+ el 307+ 1170+ T

Now multiplying (47) by e’ and integrating the resulting 1dent1ty over (0,t) we get
p(u(t)) < (p(ug) + Ki(ug)t) e + Ky (1 —e ) 47
Hence from (7) it follows that
3 21/3 10/3 ~1/2 3 —t
(1)) < 4 2 ol + 2 ol 4+ L7 oy 4 B (o)t e 4 Koy, (48)

Let C(Juoly, luol;) = {3 uol? + 2- 21/3 ol e 4 L2 Jugld + Ky (uo)t } Then we have

from the last inequality
2 < —’yt ‘u’?)
uy dx < C(lugly , |uoly)e™ " + 3 + Ky/y. (49)
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Hence using (46) and applying (44) again we can write (49) in the form

1
5 [ e < Culfual ol e 7 + Ko, (50)

from which it follows similarly as in (44) the existence of an absorbing ball for the
H'-norm.

For the H?-norm we write (43) in the following form:

%lp(u(t)) +7(u(t) = —n(u(t)),

where ¢ (u) and n(u) are defined as

(u) = §|ulg + / {(u4/4) — 3uu§} dx,
n(u) :27/\u|%dx—67/uuidx+%/u‘ldx

1
+;/fmumdx—i—Z/fuidx—/ufxuxd:p—k/fu‘gdm.
Then

n(u) > 27/|u@ dx — 67/\u|ui dx + %%/u‘*dx
18 9 3
Ty | fral [tze| d = 2 [ | flug do — [ ull follue| dw — [ | fllu]”dz. (51)

We should estimate —n(u(t)) with terms depending only on f, |u|y and |u|; but not
onto |uly. Then we can apply similar arguments as we used for the H'-norm taking
into account (44) and (50) to get

% +yP(u(t)) < Ri(ug)e ™ + Ry, (52)

where R; and R, are determined as K; and K5 and Ry contains only terms containing
f and its derivatives. So first note that we can get rid of |ul, at the right hand side
of (51) by using Young’s inequality as follows:

18 9y 9 .
L e T
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Also

n/qhnuidx < Jutul? (53)
< July (2luls + L ul)

< V20l [uly? + L2 |ulo|uf?

lwlf  L7Muld o Jult
< .
S lubo+ 57+ 2

The remaining terms can be bounded with |u|o and |u|; similarly. For example, we

have

[t do < Julfuf
and applying Agmon’s inequality to |u|% the estimate follows. Now multiplying (52)
by €7 and integrating over (0,¢) we get as in (48)

P(u(t)) < Colluoly . [uoly , [uol2)e™ + Ra /7.
From the last inequality it follows that
9 o -t 2
= lul2 < Ca(uoly, [uoly , luolel)e™ + Ra/y +3 [ |ulug do.
Hence using (17) and applying (44) and (50) we conclude that
9 2 —t
5 lulz < Cofluoly , fuoly , [uol2l)e™ + Ra /v,

from which it follows the existence of absorbing ball for H2-norm. O

As a final remark, since the constants Ky, Re and the constant in (44) only contains
terms involving f and its derivatives, when we take f = 0 we get the exponential

decay for the H2-norm of the solution.
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3 A non-periodic initial-boundary value problem

for the KdV equation

In this chapter we will prove existence, uniqueness and stability for the solutions of

the following problem:

Up + Uy + Ugze = 0, z € (0,1),t>0, (54)
u(z,0) = up(x), z € (0,1), (55)
u(0,t) = u(l,t) = u,(1,t) =0, t>0. (56)

For this, in the first section, using Galerkin method, we first prove the existence of

the solutions for the following regularized problem:

U + Uy + Uggy + V(“a:ac + uxwa:ac) - 07 MRS (07 ]-)at > 07 (57)
U(.’L’, 0) = Uo(fﬂ), S (Oa 1)7 (58)
u(0,t) = u(1,t) = v, (0,t) = u(l,t) + vug(1,t) =0, t>0. (59)

Then, in the second section, we prove the existence result for (54)-(56) passing to
limit as v tends to zero as we have done in the previous chapter. In this chapter || - ||
will denote the usual L? norm, (-,-) will denote the inner product in L? and D; will

o7
denote B

3.1 Solvability of the regularized problem

Theorem 3.1. Let v > 0 and uy € H*0,1) N H}(0,1); vupee(0) = up.(1) +

Vuge (1) = 0. Then there exists a unique solution to (57)-(59) from the class
ue C(0,T; H*(0,1) N Hy(0,1)) N L>® (0,T; H*(0,1) N Hy(0,1)),
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and

ug € L= (0,T; L*(0,1)) N L*(0,T; H*(0,1)N Hy(0,1)).
First we need the following lemma.

Lemma 3.2. Let V be the closure of the space of functions satisfying (59) in H*(0,1).

Then for every v > 0 there exists eigenfunctions for the following problem
vDyw = pw,

w(0) = w(l) = vw,(0) = w, (1) + vw,, (1) = 0,
that forms an orthogonal basis in V which is orthonormal in L*(0,1).

Proof. Let u and v be functions in H*(0,1) and satisfy the boundary conditions in
the lemma. Then using integration by parts and boundary conditions we can show
that
v(Dyu,v) = v(u, D) and v(Dyu, u) = v||Doul]* + uZ(1).

Observe that, if v(Dgu,u) = 0, then Dyu = 0. In this case, u is of the form ax + b
but since u € V we have u = 0. Then A is strictly positive and so invertible.

Note that since A is self-adjoint, its range is closed. Now taking the composition of
A~ with the injection of H*(0,1) into L?(0,1) which is compact, we can see A™! as
a compact operator from the range of A to L?(0,1). Then, by spectral theory, we
know that there exist eigenfunctions of A=! which form an orthonormal basis in the

range of A and orthogonal basis in V. ]

Let w; denote the eigenfunctions in the above theorem. We construct approximate

solutions to (57) -(59) in the form
uNa,t) =Y g (Hws(),
i=1
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where (g1 (t), 93’ (t), ..., gN(t)) is a solution of the following system of ordinary dif-
ferential equations:
(ur,w;) () + (u” Du™ wy) (1) + (Dyu™, wy)(t)
+ v(Dou® ,w;)(t) + v(Dyu™ ,w;)(t) = 0, (60)
gjv(()) = (ug, w;) j=1,...,N. (61)
We know from the theory of first order ordinary differential equations that for each
N, there exists a solution (g7 (t), g3'(t), ..., gN(t)) on some interval (0, Ty). In order
to extend u” to an arbitrary interval (0,7") and pass to the limit as N — oo, we will
estimate u” (¢) with respect to N and t € (0,7).
Estimate 1
Since our aim is to pass to the limit as v goes to 0 we will assume that v € (0,1).
Multiplying (60) by 2g§v and summing over j we get
(ul, 2u™) (t) + (N Du, 2u™) () + (Dsu®, 2u™)(t) + v(Dyu™, 2u™)(t)
+ v(Dyu™, 2u™)(t) = 0. (62)
Considering the boundary conditions for w; and applying integration by parts we
have
(u™¥ Du™, 2u™) (t) = 0
(Dsu™, 2u%)() = (Du™(0,1))" — (Du (1, 1))°
(Dyu™, 2u™)(t) = 2|| D™ (1)||* — 2D5u™ (1, ) Du (1, ).
Inserting the above identities into (62) and adding (—Du®)?(1,t) to both sides we

get

% HuN(t)‘ ’2 + (Du™)?(0,t) — 2Du™ (1, 1) (DuN(l, t) + VDQUN(l,t)) +2v HDQUN<t)‘ ’2

= —20(Dou™ M) () — (DuN (1, 1)) (63)
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Observe that Du™(1,t) +vDu® (1,t) is zero. Also using Schwarz and Young inequal-
ities we get

—2v(Dyu® ,u™)(t) < v HDguN(t)H2 +v HuN(t)H2

Hence we have
NI + (D 0,0 + v ][ P < v [ O < [ DI (69

from which it follows that

d N 2 N 2
7O < [[l«" O]
Multiplying this inequality by e™* and integrating over (0,¢) we obtain

¥ @] < e [[u )],

for t € (0,7"). Inserting this into (64)and integrating over (0, t) again, it follows that

T T

HUN(t)HQ+/(DUN)2(O,S>dS+V/HDQUN(S>H2 ds

0

< (@ + D [[uO)]] + < Clluol, (65)

where we used in (a) the fact that w; are orthogonal in L?*(0,1). Also C' > 0 does
not depend on v, N, and ¢t € (0,7"). C will be a generic constant which will be used
for later estimates also. If it depends on v, we will write C'(v).

Estimate 2

Substituting w; by I/D4,uj_1wj according to Lemma 3.2, multiplying with gJN (t) and

summing over j in (60) we get

(ul, D™ (t) + (u™ Du, Dyu™)(t) + (Dsu®, Dyu™)(t)

+ v(Doyu™, Dyu™)(t) + v(Dyu®™, Dyu)(t) = 0. (66)
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We will estimate terms in (66) separately:
I = (u)", Dyu™)(t)

—(Du’, Dyu™)(t)

= (Doul, Dou™)(t) — DulN (1,t) Dou™ (1, 1)

T odt HDWN(??)‘ ’2 + vDoul (1,t)Dyu® (1,1)
1d
= 54 1P O+ [Da 0,0}

For the second term in (66) we have

I = (¥ Du™ |, Dyu™)(2),
> — || Dgu® (t)]] | |u™ () Du™ ()

V

> —maxeeo |u” (1)] |[Du” ()| || Dau™ (0]
E

where we have used in (a) the fact that max,e (o) |u ()| < ||Du® (t)|| which follows

from the fact that u™(0,¢) = 0. Indeed, if u(0) = 0
/ Du(y dy‘

|| Du™( H __/ (z,t) Dayu® (x,t) dx < ||[u™ @)|] || D™ (®)]] (67)

> — || DN @) || D (1)

/ Du(y dy‘ < |[Dul].

Now observe that

from which it follows that

I

WV
|
=

YO D2 @[ D™ @]

2
> —5 1D @I = Z{ D20 [ @)
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where we have used Young’s inequality with ¢ = v/4 in (a). Taking into account
(65) we obtain
v 2 2

For the third term

> 35 [[Da )] = || D 1)
4
>~ 55 1D @I = 5 {elIPa ]+ (@) [u* @]}

where we have used Young’s inequality with ¢ = /8 in (a) and Ehrling’s inequality

in (b). Finally, taking € = g—i and taking into account (65) , we find

Iy > — 2 [[Da O] - C).

Lastly
I = v(Dou™, D) (t) > < || D 0)[|* = 20| | Do ()]
Substituting I; — I4 into (65), we obtain
d
D @ + v D@0} + 2o || D )|
< OW) <HD2uN(t)H2 + 1) . (68)

from which it follows that

LD O] + v Do (1,0]} < 00) LD D + v Do (1,0} 100,

C(v)t

Multiplying the above inequality by e~ and integrating over (0,t) we have

{12 I + [P (1.0 } < 0N {|| P O + v | Do (1.0 + 1}
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Inserting this into (68) and integrating over (0,¢) again, it follows that
2 2

|1 Dau® (1)||* + v [ Do (1) < Cw (\ O] 1) , (69)
where C'(v) does not depend on N and ¢ € (0,7).
Estimate 3
Differentiating (60) with respect to ¢, multiplying by 29]]-\{ and summing over j we get

(i, 2u) () + (u uD™, 20" ) (1) + (u” Dy, 20" ) (8) + (Dsu™, 20" ) ()
+ v(Dou®, 2ul) () + v(Dgu® , 2uN)(t) = 0. (70)

Observe that boundary conditions are invariant under taking derivative with respect

to t. So we have the following identities:

(uN Du® , 2uM) (t) = —=2(u™ Dul , ul¥) (1)
(Dsug', 20" )(t) = (D" (0,1))* — (Dug (1,1))*
(Dyu™, 2u™)(t) = 2| | Do (1)||” = 2Dou (1, ) Du (1, 1),
Inserting these into (70), adding (—u2,(1,t))? to both sides and using the boundary
condition (Du}¥(1,t) + vDsuf (1,1)) = 0 we get
N O + (Du(0,0)) + 20 || Do 0+ 2D )0
= 2(u" Duy,uY)(t) — (Duy (1,1))>. (71)

Continuing with the same reasoning as in I3 of FEstimate 2:

we have

(u™ Dy, ") (2) < [[u™ ()| || D’ () (1)

N

< max,e(o,1) \ugv (t)| HDu{V (t)H HuN(t)H
SAGIRITG

<* C'Juol| | (uy", Dai’)

I
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where we have used (65) and (67) in (a), and C' > 0. Inserting the above inequality
into (71) we get

d
2 1 O + 20 [P O < (C ol + 20) | (¥, Do)

Applying the Young’s inequality to the right hand side with an appropriate € we find

X O[] + v [P O < Csw) [ @] (72)
Then from
d N 2 N 2
EHUt (t)H < Cs(v) Hut (t)| )

it follows that, for ¢t € (0, 7))

2

| @) < @@ [u ()] (73)

In order to conclude Estimate 3, we need to estimate ||u}¥ (0)] |2. So multiplying (60)

by gjy and summing over j we get
(ug’ up ) () + (™ Du™, ) (8)+(Dau™, ul ) () +v(Dou™, up ) (#)+v(Dau®  upd) (t) = 0.

Putting t = 0 gives

[ @ < [l O] (|| @)D O)]| + || 2™ (©) | + [ D5 (0)]| + || D™ 0)])

[« (0) DN (0)]] < maxoe [ (O] [[DuN(0)]] < [[DuN(O)]]” < |[u"(0)]| || Du
applying Young’s inequality to the last term we obtain

HUiV((DH S CHUN(O)l‘H‘l(o,l) <0 HUOHH4(0,1)'

38

M),




Integrating (72) over (0,t) and taking into account (73) with the above inequality

we get
¥ O +v [ 1D )| ds < €0 ol (7
0

where C'(v) does not depend on N and ¢ € (0,7).

Passing to the limit

By (65) and (69) we have [[u”| and || Du| is bounded with respect to N and
t € (0,T). Then by (67) ||Du”|| is also bounded. We now show that ||Dsu™|| and

| Dyl || are also bounded. From (66) we get

IDaun < [ [ D] + [ D] D1

{1 D™ [ || Dau™[| + v || Do || | Dau™ ][

We will estimate the terms on right hand side as follows:

L 1P| < Ce) ' ||*+ e[ Das®]"

2 JuDuM ||| Da|| < C(e) [u¥ D |[*e | Da¥ | < C(o) [ DU | e | Do,
3. | DsuM | | Das| < e | Da|[ e || D] + Ce

4. v || Dou|| [ sV | < C(e) || Do || + €| Daw| [,

where we have used in (2) the fact that max |u"| < ||ul’|| and Ehrling’s inequality
in (3). Now taking ¢ = v/8 it follows that (v/2) HD4UNH2 < C since the remaining
terms in (1)-(4) are bounded. Hence we have that vV is bounded in L>(0, T’; H4(0, 1).
Also by (74) we have ul¥ € L> (0,T; L*(0,1))NL?(0,T; H?(0,1) N HZ(0,1)). Then
we can pass to the limit as N tends to infinity following similar arguments as we did

in the previous chapter.
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3.2 Existence and Uniqueness

Let u, denote the solution of regularized problem for each v. Then for all v € L?(0,1)

we have
(U, ) (t) + (uyDuy,, v) (t) + (D, v) (t) +v (Dauy, v) (t) +v (Dguy, v) (t) = 0. (75)
Existence theorem for the KdV equation is the following.

Theorem 3.3. Let ug € H3(0,1) N HY(0,1) with ue,(1) = 0. Then there exists a

unique solution to the problem

Up + Uy + Uggy = 0 z € (0,1),t >0, (76)
u(x,0) = ug(x), (77)
u(0,t) = u(l,t) = u,(1,t) =0 t >0, (78)

from the class
ue L>*(0,T;H*(0,1) N Hy(0,1)),
up € L (0,75 L%(0,1)) N L* (0,T; Hy(0,1)) .
Note that when v = 0 in the regularized problem, we have the KdV equation with the
corresponding boundary values. What we will do is trying to pass to a subsequence
of u, so that the limit is a solution for KdV. Indeed, this procedure will give us a
weak solution and then we will show the regularity. For this we need to estimate u,

where the constants of the estimate should not depend on v. Following two lemmas

will handle this problem.

Lemma 3.4. For all v € (0,1/4) solutions of (57)—(59) satisfy the following in-

equality:

t
Huu(t)|!2+/HDu£V<s)HQ ds < C |Jugl 2,
0
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where the constant C' does not depend on v.

Proof. Omitting the label v, it follows from (65) that
t
2
[lu(®)I* + V/ || Do (s)]|” ds < Clluol|” (79)
0

where C' does not depend on v > 0; t € (0,T). Taking in (75) v = 2e*u for A > 0,

and omitting the index v we obtain

d Ar 2 2/\ Az .3
%(e ,u)(t)—g(e ,u)(t)

+ 2 (eMDyu, u) (t) + 2v (M Dyu, u) (t) + 2v (€ Dy, u) (t) = 0, (80)

where we have used the equality 2 (e)‘”“uDu, u) (t) = —% (e’\“ﬁ, u3) (t). We will esti-

mate the terms in (80) separately:

2\

L = -3 (eMu?) (1),
2\e?
> ——gmaxee(o) |u(z, )] Ju(t)]”
2\e?
> ——5— [1Du(t)]] [Ju(t)]”

a_lu’_)\ A 2 _62)\>\
>t L2 () () -

lu(®)I*,

where, in (a), we have used Young’s inequality with € = % and the fact that M >1

for z € (0,1).

I, = 2v (e* Dau, u) (t)

> _zy‘ e%IDgu(t)“ ‘ e%fu(t)H
A 2 A 2
> —v eingu(t)H —v eixu(t)H
= —v (e, Do) (t) — v (e, u?) (V). (81)
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Also
I3 = 2 (M Dyu, u) (t)
=* (Du(0,t))* — eX(Du(1,1))* + 3X (e, (Du)?) (t) — X* (e, u) ()
> (Du(0,1))* — 2e*(Du(1,t))? 4 3 (e, (Du)?) (t) — A (eM,u?) (1),  (82)
where, in (a), we have used series of integration by parts and added —e*(Du)?(1,1t)
n (b). Lastly
Iy = 2v (¥ Dyu, u) (t),
= —2vetu, (1, ) Dou(1,t) + 2v (e, (Dau)?) (t) 4+ 2vA(Du)*(1,1),
— 20A(Du)?(0,t) — 4wA* (e, (Du)?) (t) + vA* (e, u?) (t).

Substituting I; — I, into (80) we obtain

% (e’\x,uQ) (t) + (1 — 2vA)(Du(0,1))* + A(3 — u/3 — 4v)) (e’\x, (Du)Q) (1)
+ v (e, (Dyu)?) (1) + (WA* = N — ) (2, u) (t) — %zm llu()]|* < 0.

Taking =3, A =1 and v € (0,1/4), we reduce it to the inequality

D@ 02) () + (. (Du)?) (1) + v (e, (D)) (1)
< (€,42) () + O Jlu()]]*
< C (I + eIl
<@ C () + Il (83)

where we have used (65) in (a). Since the inequality (65) does not depend on v, C
does not depend on v € (0,1/4) either. Integrating (83) over (0,t), we obtain

t t

(e, u?) () + / (e, (Du)?) (s)ds + 1// (X, (Dyu)?) (s)ds < C |Jugl|*.

0 0
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Hence
t t
adoI + [l ds-+v [ 1D () ds < € fual
0 0
for t € (0,T) where C' depends on T', but does not depend on v € (0,1/4). O

Lemma 3.5. For all v € (0,1/4) w, satisfy the following inequality:

t t
a4 [ 11D ds+ [ Dl ds
0 0

2 2
<C <Hu0||H3(0,1)ﬁH01(0,1) + v || Dyuo|| ) ,
where the constant Cdoes not depend on v.

Proof. Differentiating (54) and taking inner product with 2e*u,; for X > 0 and

omitting the index v we obtain

d

pr (e,47) (t) + 2 (X (uDu), ,uz) () + 2 (€™ Dauy, wy) (t)

+ 2 (e Daug, ) (t) + 2v (€M Dywy, uy) (t) = 0. (84)

We will estimate the terms in (84) separately. Since the boundary conditions are

invariant under taking derivative replacing u with u; in (82) we get
I, > (eMDgut,ut) (t) = (Dut(O,t))2—26’\(Dut(1, £))?+3X (e’\x, (Dut)z) (t)—\? (e’\”‘", u?) (1).
As we did in (81)
I, = 2v (e’\””Dgut, ut) (t) = —v (e)‘x, (Dgut)2> (t) —v (e’\x, u?) (1).
Also

I3 =2v (GAxDALUt, Ut) (t),
= —2ve* Duy(1, t) Douy(1, ) + 2v (e, (Dowy)?) () + 20A(Duy(1,¢))?,

— 20N\ (Dug(0,1))* — 4vA? (e, (Duy)?) (t) + vA* (e, 47) (t).
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Lastly

Iy =2 (e™ (uDu), ,u;) (t) = 2 (eMuj, Du) (t) + (eMu, D (u7)) (¢).

Since
2 (eMuy, Du) (t) = —2X (eMu,v}) — (eMu, D (7)),
we have
Iy, = -2\ (e’\”u, uf) -2 (emu, utDut) .
Note that

2
A
e2%uuy

2 1
e%xDut(t) ‘

-2 (e’\xu,utDut) > —5‘

> —4 (e, (Dwy)?) — %maxxe(o,l)UQ(x,t) (e, u?)

1
>0 =5 (™, (Dw?) — 5 |IDu(t)|[* (. u2)

where we have used, in (a) the fact that max,c1) |u(z,t)] < [|Du(t)|| for v €

H(0,1). Also with the same reasoning above
—2X (eMu,uf) = —2Xt || Du(t)|] (e, 4) (t).
Hence
1> 2 |Du(t)]| () (1) — 6 (¢, (Due?) — S 1Du(o)F ()

> -5 (@ (Duf) - (20+ 3 ) (L4 IDUOIP) (.2) 0,

where § > 0 is an arbitrary constant. Substituting I; — I, into (84) we get

d
dt

— (v (T +X) X+ 20+ ﬂ (L+ [|[Du(t)|?) (e, u?) (). < 0.

(6)@, uf) (1) + [A(3 — 4vA) — ] (e’\z, (Dut)z) (t) +v (e)‘r, (Dgut)2) (t)

44



Since v € (0,1/4), taking 6 = 1/2 and A = 1 we obtain

d

pr (e’\’”, uf) (t)—i—(e’\w, (Dut)Q) (t)+v (e’\””, (Dgut)2) (t)y<C (1 + ||Du(t)|]2) (e’\x, uf) (t)

Note that u,:(0) < C <||ul,0||H3(0’1) +v ||D4u,,0||>, so the result follows from the last

inequality. ]
Lemmas 3.4 and 3.5 imply that

u,, is bounded in L?(0,T; H}(0,1)),
u,; is bounded in L*(0,T; H)(0,1)),
),
)

( (0,1)
( (0,1)
v'/%u,, is bounded in L*(0,T; H*(0,1)
v%u,, is bounded in L?(0,T; H*(0,1)).

Then by Theorem 1.16

u, € C([0,T); Hy(0,1)) = L>(0,T; Hy(0,1)), (85)
v %u, € C([0,T]; H*(0,1)) < L=(0,T; H*(0,1)). (86)

Proof. (Theorem 3.3) From (85) and (86), it follows that there exists a subsequence
of u,, which we denote also by u, and a function u such that

u, — u strongly in C'(Q),

u,, — u weakly-star in L>°(0,T; Hy(0,1)),
u,; — uy weakly-star in L°°(0,T; L*(0, 1)),
u,; — u; weakly in L?(0,T; Hy(0,1)),

v, — 0 weakly-star in L>(0,T; L*(0,1)),

where @ = (0,1) x (0,7).

As a preliminary result we prove first the following theorem:
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Theorem 3.6. Let uy € H*(0,1) N HY(0,1) with up,(1) = 0. Then there erists u
such that v € C([0,T]; H}(0,1)), uy € L>=(0,T; L*(0,1))NL*(0,T; H}(0,1)) and that

satisfies the following:
(ur, 0)(t) + (utse, V)(£) + (te, V) (£) = 0, u(1) =0,
where v(x,t) € L°(0,T; H*(0,1)) N L*(0,T; HL(0,1));v,(0,¢) = 0;¢ € (0,T).

Proof. Due to the boundary conditions of u, and v, we can conclude from (75) that

for all v € W, the following identity holds:

(thyr, 0) (0)+ (e, 0) () + (U, Vi) (8) 1 (Do, 0) () v (Do, Dyv) (£) = 0. (87)
Passing to the limit as v — 0, we obtain

(g, V) (8) + (wtte, V)(£) + (Uar, Vo) (£) = O
Also a function ug € H*(0,1) in Theorem 3.1 satisfies
u(0) = uo(1) = vugsz(0) = uo(1) = uox(1) + vz (1) = 0.
When v tends to zero we have
uo(0) = ug(1) = uox(1) =0

and this completes the proof. O

Now let u be a function satisfying the properties in Theorem 3.6 and let, for a fixed

t € (0,T), F € L*(0,1) be defined as
F(z) = —u(x,t) — u(z, t)ug(z, t) x € (0,1). (88)
Then for each v € W, u satisfies the following conditions
(U, Vaa) (8) = (F,0)(2), (89)

46



u(0,t) = u(l,t) = ug.(1,¢). (90)
where t € (0,7).
Lemma 3.7. Problem (89) and (90) has a unique solution in H}(0,1).
Proof. 1t is enough to show that the only solution for the following equation is zero:
(Ug, Ve ) () = 0,
where u satisfies the conditions in Theorem 3.6 and v € W. Let
v(:c,t):(l—:c)/om/osu(y,t)dy z e (0,1).

Then, omitting ¢ in the arguments we have
ww) == [ [Cutgdy+ (1-a) [ ut)dy
o Jo 0

o) = =2 [ ulyhdy + (1= 2)ulo),

from which it follows that v € W. Substituting v into (89) (and taking F' = 0) we

and

have

0 = (up,vm) = 2 (u /xu( Yy ) + (1, (1 — 2)) = 201, 0) — = (2, L2 = 2 u?
- xy Yxx) — X 0 y y X - ) 2 ’dl’ _2 .
Thus v = 0. O

Now we will show that u is actually in H3(0,1). For this, let for any F' € L*(0, 1),

w = w(z) be defined as follows:

X

1 T T 2 T
w@) = Kio+ Ko+ 5 [ PP dy—o [ wPw)dy+ 7 [ F)dy
0 0 0

When we take derivatives of w, the terms appearing with F'(without the integral

of F) cancel, so w € H?(0,1). Also w clearly satisfies that w(0) = 0 and, lastly,
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given F' € L*(0,1) it is obvious that there exists K; and K3 such that w(1) = 0 and
w,(1) = 0. Since wy,, = F(z) and w satisfy the boundary conditions of the problem
(90), we have w = wu, where u is the solution in Theorem 3.6. Hence, we proved the
existence of regular solutions for (76)—(78) when uy € H*(0,1) N HJ(0,1).

Note that in Theorem 3.3 we need uy € H?(0,1) N H;(0,1) . For this, we observe

that in Lemma 3.4 we need uy € L?*(0,1) and in Lemma 3.5, as v — 0 we get

t
P+ [ Wsels)P ds < CllunlBisy
0

Hence, approximating functions vy € H3(0,1) N Hj(0,1) with ug,(1) = 0 by func-
tions v € H*(0,1) N H}(0,1) with vy, (1) = 0, we prove the existence part of the
Theorem 3.3.

Uniqueness

Now let u, v be two solutions. Then for w = u — v, we have

1d 1d 1d
U2 - __UQ + Wege = Wy + 5%(21)('“ + U)) + Wyge = 07
with w(0) = w(1l) = w,(1) = 0 and w(z,0) = 0. Multiplying the above identity by

e w, integrating over (0,1) and using the boundary conditions for w we get

d
p (e, w?) () — (eMwy, (w1 + uz)w) (£) — A (e, (ug + uz)w?) ()

+2 (eMDyw,w) (t) = 0. (91)
Now we will estimate the terms separately as follows: First note that u € C(Q).

Then
I = |(eMwy, (u+v)w)| < M (e, [ww,|) (¢)
€ (e’\x, wi) (t) + C(e) (e)‘z,w2) (1),
I =\ ’ (e’\x, (u+ v)w2) (t)‘ < \M (e)‘x,wQ) (1),

I3 =2 (e’\xD?’w, w) (t) = 22(0,1) 4 3 (ekx, w?) (t) — N° (e’\ﬂc,w2) ().

T
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Substituting I;-I3 into (91) we get

d
dt
Taking A = 1 and € = 2 and integrating over (0,t) we get
t

(e’\z,wz) (t) < c/ (e, w?) (s) ds,

0

from which it follows that ||z(¢)|| = 0 for ¢ € (0,7)

3.3 Stability

— (M w?) (1) + (B —€) (e, w2) (t) < Cle) (e, w?) (t).

Theorem 3.8. There ezists positive constants \g € (0,1) and K such that if ||ug|| <

3/e, then strong solutions to (2) - (4) satisfy the following inequality:

[lu()]]* < e [Juol[* e,
where xo = \o/(2e).

Proof. Multiplying (2) by u and integrating over (0, 1) we get

1

1

d

%Hu(t)H2+2/u2uxds+2/uumxds—O,
0 0

which gives, using (4)

d
)+ 202(0,1) = 0.

Hence for all t > 0 we have
[u(@)I] < [Juoll -
This time multiplying (2) by e*u for A € (0,1), we get

a
dt
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Since

and

2 (eMDsu,u) (t) = ul(0,t) — eMu(1,t) + 3N (X, u2) (1), =2 (e, u?) (t)

»

from (93) we get the following equality:

% (e, u?) (¢)+3X (e, u2) (t)—? (eM,u?) (1) =A% (e, u?) () +u2(0,t) = 0. (94)

Now taking into account (92) we estimate

|(e)\x7u3) (t>‘ < mawi€(0,1)|u('x7t>|2 (6/\337 |U’) (t)a

2 2 T
< Mlu I [uol” < e [uol| (€, u3) (1)

Substituting the above inequality into (94) we get

% (e, u?) (t) + A (3 — 2% ||u0||) (eM,u2) (1) — N* (e, u?) (t) < 0.

Since 0 < A < 1 and taking ||ug|| < 3/e, above inequality reduces to the following

one:

4
dt

Observe that since u € H3(0,1) and we are in one dimension u is bounded. Hence,

(e, u?) (t) + A (eM,ul) (1) — X* (e, ) (t) < 0. (95)

»

maxqeon|u(e, t)] > ||u(t)|| which gives
x 1 X
(X, u2) (8) > [ua(0)|* > mazacon ule, ) > [Ju®]]* > = (¥, u?) ().

Then (95) becomes

d e 2 A 2\2) (Az L2
%(6 Ju?) (8) + A (e =A%) (e, ) (1) < 0.

We now need the following lemma:
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Lemma 3.9. There exists Ao € (0,1) that

for all X € [0, Ao].

Proof. The inequality we want to prove is equivalent to the following one:
fA) =1-2e*2 >0, A €10, Ag].

Since f is continuous and f(0) = 1 there exists such Ay € (0,1).

Then by this lemma, from the last inequality we get for all A € [0, \]

d X A X
7 (e’\ ,u2) (t) + 20x (eA ,u2) (t) <0.

Since x()\) = A\/(2¢*) is an increasing function of A on (0, 1), we have

~ 2¢M

m@fﬂ,\e[o,,\o]x()\) = Xo-

Now multiplying the last inequality by eX°? and taking A = \g, we get

(e m() <o,

where E(t) = (e, u?) (t). Hence we have

E(t) < E(0)e .

which completes the proof.
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