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ABSTRACT

In this thesis, we study existence, uniqueness and stability results for the solutions

of initial-boundary value problems for the Korteweg-de Vries equation on bounded

domains. First, we give a proof of the existence and uniqueness of weak solutions in

the case of periodic boundary conditions. We also give a proof for the existence of

an absorbing set in the Sobolev space H2. Then, we give a proof of the existence

and uniqueness of regular solutions of a non-periodic initial-boundary value problem

for the Korteweg-de Vries equation. In the non-periodic case, the exponential decay

of solutions for small enough initial data is also shown.
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ÖZET

Bu çalışmada, sınırlı aralıklarda Korteweg-de Vries denkleminin çözümleriyle il-

gili, varlik, teklik ve stabilite sonuclarini anlamaya çalıştık. Ílk olarak, periyodik

sınır koşulları altında, zayıf çözümlerin varlığını ve tekliğini gösterdik. Ayrıca, bu

çözümler için H2 Sobolev uzayında bir soğurucu kümenin varlığını da ispatladık.

Daha sonra, Korteweg-de Vries denklemi için, periyodik olmayan bir baslangic-

sinir probleminin düzgün çözümlerinin varlığını ve tekliğini österdik. Periyodik ol-

mayan durumda, çözümlerin, yeterince küçük başlangıç koşulları altında, exponen-

siyel olarak azaldığını da ispatladık.
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support.

iii



Contents

ABSTRACT i
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1 Introduction

Korteweg-de Vries -henceforth we will say KdV equation- equation was formulated

as a model for one-directional water waves of small amplitude in shallow water. The

equation first appeared in the paper of J. Boussinesq [2] and it was named for D.J.

Korteweg and G. de Vries after they had studied on it in [6]. KdV equation we will

consider is as follows

ut(x, t) + u(x, t)ux(x, t) + uxxx(x, t) = 0,

where x is the space variable and t is the time variable. It is an interesting non-

linear equation in some respects. Firstly, its solutions can be explicitly found using

inverse scattering method which we will not touch upon in this study. Moreover, this

equation can be formulated as a Lax equation

dL

dt
= LP − PL,

where L is the Sturm-Liouville operator and P is another time-dependent operator.

In [8], Lax observed that any equation that can be observed as a Lax equation for

some time-dependent operators L, P shares many features of the KdV equation.

Also, from this formulation, it follows that KdV equation has infinitely many con-

servation laws only three of which we will use for our estimates.

In this thesis, we will study the existence, uniqueness and stability of solutions of

KdV equations on bounded domains. Note that, if we have periodic boundary con-

ditions, multiplying the equation by u and integrating over the domain we find

d

dt
‖u(t)‖2

L2 = 0,

which implies that in the periodic case we have no decay of solutions. However, in

many real situations, we have dissipation and external force and we can get stability

1



for the solutions in that case. In this respect, in the following chapter, based on the

works of Temam [11] and Ghidaglia [5], we will study the following damped KdV

equation with periodic boundary conditions:

ut + uux + uxxx + γu = f, x, t ∈ R,

u(x+ L, t) = u(x, t), x, t ∈ R, L > 0,

u(x, 0) = u0(x), ∀x ∈ R.

Then, in the last chapter we will study the KdV equation under non-periodic bound-

ary conditions based on the work of Larkin [7] which is stated as follows:

ut + uux + uxxx = 0, x ∈ (0, 1), t > 0,

u(x, 0) = u0(x), x ∈ (0, 1),

u(0, t) = u(1, t) = ux(1, t) = 0, t > 0.

Some of the other results for KdV equation on bounded domains are obtained in [4]

and [12].

Before we begin, we will state some definitions and theorems that we will use in our

work.

1.1 Function spaces

Here we give the definitions of function spaces we use in the study of initial-boundary

value problems for the Korteweg-de Vries equation. In the following, Ω will denote

an open interval in R.

Definition 1.1. A Banach space is a complete normed vector space. If the norm

is induced by an inner product then it is called a Hilbert space. The space of square
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integrable functions on Ω will be denoted by L2(Ω) and L2(Ω) is a Hilbert space with

the following inner product:

〈u, v〉 =

∫
Ω

u(x)v(x) dx u, v ∈ L2(Ω).

Lastly, ‖ · ‖ will denote the norm on L2(Ω).

Basic spaces that we use in the study of our problems are Sobolev spaces. In order

to define these spaces we first need the notion of weak derivative. Let C∞0 (Ω) be the

space of compactly supported functions on Ω. Then for u ∈ C1(Ω) and for any test

function η ∈ C∞0 (Ω), following equality holds:∫
Ω

uηx dx = −
∫

Ω

uxη dx.

If we take u ∈ L1
loc(Ω), i.e. if u is locally integrable, then the left hand side of the

equation is still meaningful. Also, it is possible to have another function v ∈ L1
loc(Ω)

such that above identity holds with ux replaced by v, i.e. the following identity holds:∫
Ω

uηx dx = −
∫

Ω

vη dx. ∀η ∈ C∞0 (Ω).

Then we call v a weak derivative of u. It can be shown that weak derivative is

unique so that if u is differentiable, then the usual derivative coincides with the weak

derivative. We can generalize the above discussion as follows:

Definition 1.2. Let α be a positive integer and Dα denote the αth derivative. A

function v ∈ L1
loc(Ω) is called the αth weak derivative of a function u ∈ L1

loc(Ω) if for

all η ∈ C∞0 (Ω), the following equality holds:∫
Ω

uDαη dx = (−1)α
∫

Ω

vη dx.

This definition can be generalized to the case Ω ⊂ Rn, but since we will study only

in dimension one, this is enough for our purposes. Now we can define Sobolev spaces.
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Definition 1.3. Let 0 ≤ α, k < ∞ be integers. Then the Sobolev space Hk(Ω) is

the space of all functions in L1
loc(Ω) such that the function itself and all the αth-weak

derivatives, where 1 ≤ α ≤ k, belong to L2(Ω). If u ∈ Hk(Ω) we define its norm as

‖u‖Hk(Ω) =

(∑
α≤k

‖Dαu‖2
L2(Ω)

)1/2

.

Moreover, Hk(Ω) a Hilbert space with the following inner product:

〈u, v〉 =
∑
α≤k

∫
Ω

Dαu(x)Dαv(x) dx.

Following theorem is true only in dimension one.

Theorem 1.4. For all u ∈ H1(Ω), there exists ũ ∈ C(Ω) such that u = ũ almost

everywhere and

ũ(a)− ũ(b) =

∫ b

a

ux(x) dx ∀a,b ∈ Ω.

This theorem also implies that functions belonging to H1(Ω) are bounded if Ω is

bounded, a fact that we will use very often.

It can be shown that C∞(Ω) is dense in Hk(Ω) from which it follows that Hk(Ω) is

dense in Hm(Ω) for k > m. We will denote the closure of the C∞0 (Ω) in Hk(Ω) with

Hk
0 (Ω). Indeed, Hk

0 (Ω) is the space of functions u in Hk(Ω) for which Dαu is zero

on the boundary where 0 ≤ α ≤ (k− 1). We will also need the dual space of Hk
0 (Ω).

Definition 1.5. The space H−k(Ω) will denote the dual of Hk
0 (Ω). It can be identified

with the completion of L2(Ω) with respect to the norm

‖u‖Hk(Ω) = supv∈Hk
0 (Ω)

|〈u,v〉|
‖v‖Hk(Ω)

,

where 〈·,·〉 is the inner product on L2(Ω).
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For a complete treatment of Sobolev spaces see [3].

The equations we will consider depend on time. If, for example, u(x, t) is a solution

for an equation where t is the time variable and x is the space variable, then we can

consider the function u(x, t) as a function of t with values in a Banach space. This

motivates the following definition.

Definition 1.6. Let X be a Banach space. The space Lp(0, T ;X) consists of all

measurable functions u : (0, T )→ X such that ‖u‖Lp(0,T ;X) <∞ where

‖u‖Lp(0,T ;X) =


(∫ T

0
‖u(t)‖pX dt

)1/p

, if 1 ≤ p <∞

ess supt∈(0,T )‖u(t)‖X , if p =∞

and the space C([0, T ];X) consists of all continuous functions u : [0, T ] → X with

the norm

‖u‖C([0,T ];H) = maxt∈[0,T ]‖u(t)‖X

All the spaces in the above definition are Banach spaces. The space L2(0, T ;X) is

also an Hilbert space if X is an Hilbert space, where the inner product for u, v ∈

L2(0, T ;X) is defined as

〈u,v〉 =

∫ T

0

〈u(t),v(t)〉X dt.

Similar to the real valued case, Lq(0, T ;X) is continuously embedded into Lp(0, T ;X)

for 1 ≤ p ≤ q ≤ ∞ since (0, T ) is bounded. Moreover, if X is continuously embedded

in Y , then Lq(0, T ;X) is continuously embedded into Lp(0, T ;Y ). Lastly, we will need

the definition of weak derivative for vector valued functions on (0, T ).

Definition 1.7. A function v ∈ L1
loc(0, T ;X) is said to be a weak derivative of a

function u ∈ L1
loc(0, T ;X) if for all η ∈ C∞0 (0, T ), the following equality holds:∫ T

0

u(t)
dη

dt
(t) dt = −

∫ T

0

v(t)η(t) dt.
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1.2 Compact embedding, weak and weak-star convergence

Definition 1.8. Let X and Y be normed vector spaces. Then a continuous operator

T : X → Y is called compact if, for every bounded set B ⊂ X, T (B) is precompact,

i.e. every sequence in T (B) has a cauchy subsequence. If X is continuously embedded

in Y, i.e. there is a continuous injection from X to Y, and the injection is compact,

then we say X is compactly embedded into Y.

In analysis, one of the ways of proving existence theorems is to create an appropriate

sequence which is bounded and then try to extract a subsequence such that its limit

works for us. However, if X is an infinite dimensional Banach space, we know that

a bounded sequence may not have a convergent subsequence. Hence, in order to use

compactness arguments when X is infinite dimensional, we need somewhat weaker

definitions of convergence. In the following, X ′ will denote the dual of X.

Definition 1.9.

1. Let X be a Banach space. Then we say that a sequence un ∈ X converges to

some u ∈ X weakly, if for all f ∈ X ′, f(un) converges to f(u). We will denote

this by un ⇀ u.

2. Let X be the dual of a Banach space Y. Then we say that a sequence un ∈ X

converges to some u ∈ X weakly star, if for all v ∈ Y , un(v) converges to u(v).

We will denote this by un
∗
⇀ u.

If un converges to u in norm, then we will say un converges to u strongly and we will

denote this by un → u. Weakly convergent and weakly star convergent sequences

are bounded and their limits are unique. Also, if X is a dual of another space, then

we have three types of convergence in X; strong convergence, weak convergence,
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and weak-star convergence. It is obvious that strong convergence implies weak con-

vergence, and weak convergence implies weak-star convergence. If X is reflexive,

for instance a Hilbert space, then weak convergence and weak-star convergence are

equivalent. Following theorem clarify the effectiveness of these definitions.

Theorem 1.10.

1. Let X be a reflexive Banach space. Then every bounded sequence in X has a

weakly convergent subsequence.

2. Let X be the dual of another separable Banach space Y. Then every bounded

sequence in X has a weakly star convergent subsequence.

For a proof, see [3].

Note also that, if T is a strongly continuous operator, then T is weakly continuous,

and if the latter is true, then T is weakly star continuous. Using the first implication,

we can show the following theorem easily.

Theorem 1.11. Let X, Y be Banach spaces and T : X → Y be a linear compact

operator. Then un ⇀ u in X implies that Tun → Tu in Y.

Proof. Let T : X → Y be a compact operator and let un ⇀ u in X. Then Tun ⇀ Tu

in Y . If Tun were not convergent, then, since un is a bounded sequence and T is

a compact operator, Tun would have two different subsequences which converge

strongly to two different limits. Since strong convergence imply weak convergence,

this would imply that Tun has two different subsequences converging weakly to two

different limits which is not possible.

We will consider our time-dependent solutions as functions in the spaces

Lp(0, T ;X) where X is an appropriate Banach space. In order to apply weak con-

vergence methods, we need the duality relations of these spaces.
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Theorem 1.12. If 1 ≤ p < ∞ and if X is reflexive or X ′ is separable, then

(Lp(0, T ;X))′ ≈ Lp
′
(0, T ;X ′). In addition, if 1 < p < ∞ and if X is reflexive,

then Lp(0, T ;X) is also reflexive.

Lastly we give the definition of the dual paring for the spaces Lp(0, T ;X).

Definition 1.13. For u ∈ Lp(0, T ;X) and v ∈ (Lp(0, T ;X))′ ≈ (Lp
′
(0, T ;X ′), dual

paring is given by the following formula:

v(u) =

∫ T

0

〈v(t),u(t)〉X′,Xdt,

where 〈·, ·〉X′,X is the dual pairing between X and X ′.

1.3 Some useful inequalities and embedding theorems

1. Schwarz inequality

Let H be a Hilbert space. Then for any u, v in H we have

|〈u, v〉| ≤ ‖u‖‖v‖.

2. Young’s inequality

Let 1 < p,q <∞ be such that 1
p

+ 1
q

= 1. Then for a,b > 0 we have

ab ≤ ap

p
+
bq

q
.

Observe that writing ab = εa1
ε
b for ε > 0, we get

ab ≤ εpap

p
+

bq

εqq
.

We will use this inequality with p = q = 2 except few cases.
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3. Compactness theorem

Suppose that Ω is a bounded interval. If 0 ≤ n < m, where n and m are

integers, then the embedding of Hm(Ω) into Hn(Ω) is compact. For a proof,

see [9].

4. Ehrling’s inequality

Let Ω be a bounded interval and u ∈ Hm(Ω). Then for all ε > 0 and 0 ≤ j ≤ m,

there exists C(ε, j) > 0 such that

‖Dju‖L2(Ω) ≤ K
(
ε‖Dmu‖L2(Ω) + C(ε, j)‖u‖L2(Ω)

)
.

For a proof, see [1].

5. Agmon’s inequality

Let u ∈ H1(0, L) and u be periodic. Then the following inequality holds:

supx∈(0,L)|u(x)| ≤ ‖u‖1/2

L2(0,L)

(
2‖ux‖L2(0,L) + L−1‖u‖L2(0,L)

)1/2
.

6. Interpolation inequality

In order to state this inequality, we need to define Sobolev spaces Hs for s ∈ R.

We will need this at one instance only so we will define it briefly. For this we will

first define the spaces [X, Y ]θ. Suppose that X and Y are Hilbert spaces such

that X is dense in Y and the embedding is compact. By Riesz Representation

theorem, the inner product on X induces an onto isomorphism from X to dual

of X which we call A. Then considering A as an operator from D(A) ⊂ V

onto H, the inverse of A is a compact operator from H to H which follows

from X being compactly embedded into Y and the fact that composition of

a continuous function with a compact function is compact. Since the inner

product is symmetric, A is also self-adjoint. Then using the spectral theory for
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compact self-adjoint operators, we can define the powers As of A. We define

the interpolation space [X, Y ]θ to be the domain of A(1−θ)/2 for 0 ≤ θ ≤ 1

which is equipped with the following inner product

〈u, v〉[X,Y ]θ = 〈A(1−θ)/2u,A(1−θ)/2v〉Y .

and the norm on [X, Y ]θ satisfies

‖u‖[X,Y ]θ ≤ ‖u‖
1−θ
X ‖u‖

θ
Y . (1)

Now let Ω be a bounded interval. Then, taking X = Hm(Ω) and Y = H0(Ω) in

the definition of [X, Y ]θ (which we can do due to compactness theorem above),

for 0 ≤ s ≤ m we can define Hs(Ω) as an interpolation between Hm(Ω) and

H0(Ω):

Hs(Ω) =
[
Hm(Ω),H0(Ω)

]
θ
.

where s = (1− θ)m.

Let m > 0 be an integer and s > 0 be real number. Then

‖u‖Hs(Ω) ≤ ‖u‖1−θ
Hm(Ω)‖u‖

θ
H0(Ω),

where s = (1 − θ)m which follows from (1). For the complete treatment of

Interpolation spaces, see [9].

7. Embedding theorem

Let s ≥ 0 be a real number and Ω ⊂ R be an open interval. Then for s ≤ 1/2

and 1/q = 1/2− s we have Hs(Ω) ⊂ Lq(Ω) and the embedding is continuous.

1.4 Auxiliary theorems

Following theorems will be used while proving existence and uniqueness theorems.

10



Theorem 1.14. Let X be a Banach space. Then for u, u∗ ∈ L1(0, T ;X), u∗ is the

weak derivative of u if and only if for all φ ∈ C∞0 (0, T ) and for all v ∈ X ′ following

equality holds: ∫ T

0

〈u(t), v〉φt dt = −
∫ T

0

〈u∗(t), v〉φ dt.

For a proof, see [10].

Theorem 1.15. Let X ⊂ Y ⊂ Z be Banach spaces where X and Y are reflexive.

Assume that embeddings are continuous where the embedding X ↪→ Y is also compact.

For any 1 < p0, p1 <∞. Let

W = {u|u ∈ Lp0(0, T ;X), ut ∈ Lp1(0, T ;Z)} .

Then the embedding W ↪→ Lp0(0, T ;Y ) is compact.

For a proof, see [13].

Theorem 1.16. Let V, H, V ′ be three Hilbert spaces such that each space is included

and dense in the following one, where V ′ is the dual of V. If a function u belongs to

L2(0, T ;V ) and its derivative u′ belongs to L2(0, T ;V ′), then u belongs to C([0, T ];H)

and the following equality holds on (0, T ):

d

dt
‖u(t)‖2

H = 2〈u′(t), u(t)〉V ′,V .

For a proof, see [10].

Theorem 1.17. Let X be a reflexive space. Ifun ⇀ u in L2(0, T ;X),

u′n ⇀ u′ in L2(0, T ;X),

then

un(0) ⇀ u(0) in X.
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For a proof, see [13].

Theorem 1.18. Let T be a self-adjoint compact operator on a separable Hilbert space

H. Then there exist eigenfunctions of T that form an orthonormal basis of H.

For a proof, see [3].
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2 Damped KdV equation with periodic boundary

conditions

In this chapter we consider the following damped KdV equation

ut + uux + uxxx + γu = f, (2)

under the periodic boundary conditions

u(x+ L, t) = u(x, t), ∀x ∈ R,∀t ∈ R, (3)

where L > 0 is given, and we have the initial condition

u(x, 0) = u0(x), ∀x ∈ R. (4)

Here f = f(x) is a given forcing term and γ ∈ R is a given number.

Notation

In this chapter Ω = (0, L) and Hk
L(Ω) will denote the subspace of Hk(Ω) which

consists of periodic functions. For u = u(x, t) we will use u(t) as u can be seen as

a function of t with values in a Banach space. Also the following notation will be

used:

|u(t)|j =
∥∥Dju(x, t)

∥∥2

L2(0,L)
, Dj =

∂j

∂xj
.

In general, we will not write the t argument and write only |u|j for |u(t)|j. Lastly

‖ · ‖∞ will denote the L∞ norm and H−k(Ω) will denote the dual of Hk
L(Ω).

2.1 Existence and Uniqueness

Theorem 2.1. For γ ∈ R, f ∈ H2
L(Ω), and u0 ∈ H2

L(Ω), there exists a unique

solution u of (2)-(4) from the class

u ∈ L∞(0, T ;H2
L(Ω) ∩ C([0, T ], L2(Ω)), ∀T > 0.
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Proof. Let ε ∈ (0, 1). Also let fε and u0ε be the approximations in H2
L(Ω) of f and

u0 by smooth ( C∞ and L-periodic) functions. The existence of a solution for the

following regularization of (2)-(4)

duε
dt

+ uεDuε +D3uε + γuε + εD4uε = fε, (5)

uε(0) = u0ε, (6)

from the class

uε ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T,H4
L(Ω)),

duε
dt
∈ L2(0, T ;L2(Ω)),

is known and we assume it here. Our aim is to get estimates for the solutions uε which

are independent of ε and then passing to a convergent subsequence in the weak sense

such that limit works for us. We will implicitly use the fact uε ∈ L2(0, T,H4
L(Ω)) in

the following estimates.

Estimates for the norms |uε|0, |uε|1, and |uε|2 (for the notation see the beginning of

this chapter) will be obtained separately as follows:

Estimate 1

Multiplying (2) by 2uε and integrating over Ω we get

d

dt
|uε|20 + 2γ |uε|20 + 2ε

∣∣D2uε
∣∣2
0

= 2

∫
Ω

fεuε dx

≤ 2 |fε|0 |uε|0

≤ |γ| |uε|20 +
1

|γ|
|fε|20 .

So
d

dt
|uε|20 + 2ε

∣∣D2uε
∣∣2
0
≤ 3|γ| |uε|20 +

1

|γ|
|fε|20 , (7)

and this implies
d

dt
|uε|20 ≤ 3|γ| |uε|20 +

1

|γ|
|fε|20 .

14



Now let T > 0. Multiplying the inequality above by e−3|γ|t and integrating over (0, t)

for t ∈ (0, T ) we get

|uε(t)|20 e
−3|γ|t ≤ |u0ε|20 +

1

3γ2
|fε|20

⇒ |uε(t)|20 ≤ |u0ε| e3|γ|t +
e3|γ|t

3γ2
|fε|20 ≤a c, (8)

where we have used in (a) the fact that u0ε and fε are convergent in H2(Ω) so that the

norms |fε|0 and |u0ε|0 are uniformly bounded with respect to ε ∈ (0, 1) and t ∈ (0, T ).

Therefore, c depends on T but does not depend on ε ∈ (0, 1) and t ∈ (0, T ). Hence

inserting (8) into (7) and integrating over (0, t) again, it follows that

|uε(t)|20 + ε

∫ t

0

∣∣D2uε(s)
∣∣2
0
ds ≤ c, (9)

for all t ∈ (0, T ) and ε ∈ (0, 1) where c > 0 is a generic constant which we will use

for later estimates as well.

Estimate 2

This time multiplying (2) by −2D2uε−u2
ε and integrating over Ω, the terms coming

from uεDuε and D3uε cancel and we get

d

dt

∫
Ω

(
(Duε)

2 − u3
ε

3

)
dx+ 2γ

∫
Ω

(
(Duε)

2 − u3
ε

2

)
dx

+ 2ε

∫
Ω

((
D3uε

)2
+ uεDuεD

3uε

)
dx =

∫
Ω

(
2DfεDuε − fεu2

ε

)
dx. (10)

Let ϕ(uε) =
∫

Ω
(Du2

ε −
u3ε
3

) dx. We first try to get the following estimate:

d

dt
ϕ(uε) + 2γϕ(uε) + ε|uε|23 ≤ |γ|ϕ(uε) + c. (11)

For this, we add γ
3

∫
u3 dx to the second term in (10) and subtract it again from the
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equation which gives

d

dt
ϕ(uε) + 2γϕ(uε) + 2ε|uε|23 ≤

γ

3

∫
Ω

u3
ε dx− 2ε

∫
Ω

(
uεDuεD

3uε
)
dx

+

∫
Ω

(
2DfεDuε − fεu2

ε

)
dx. (12)

Now we will estimate the terms on the right hand side separately. Firstly∣∣∣∣∫
Ω

u3
ε dx

∣∣∣∣ ≤ ‖uε‖∞ |uε|20
≤a |uε|5/20

(
2 |uε|1 +L−1 |uε|0

)1/2

≤b
√

2 |uε|5/20 |uε|
1/2
1 +L−1/2 |uε|30

≤c |uε|21 +
3

4
|uε|10/3

0 +L−1/2 |uε|30, (13)

where we have used Agmon’s inequality in (a), the fact that
√
a+ b ≤

√
a +
√
b in

(b), and Young’s inequality with p = 4 and q = 4/3 in (c). Then using the estimate

above we get

ϕ(uε) ≥ |uε|21−
1

3

∣∣∣∣∫ u3
ε dx

∣∣∣∣
≥ 2

3
|uε|21−

1

4
|uε|10/3

0 − 1

3L1/2
|uε|30,

which implies that

|uε|21 ≤
3

2
ϕ(uε) +

3

8
|uε|10/3

0 +
1

2L1/2
|uε|30 . (14)

Inserting the above inequality into (13) and taking into account (9) it follows that

γ

3

∫
u3
ε dx ≤

|γ|
2
ϕ(uε) + c. (15)

For the second term on the right hand side of (12) we have∣∣∣∣2 ∫ (uεDuεD3uε
)
dx

∣∣∣∣ ≤ ‖uε‖L4 ‖Duε‖L4

∣∣D3uε
∣∣
0

≤a c ‖uε‖H1/4 ‖Duε‖H1/4 |uε|3 , (16)
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where we have used the embedding L4 ↪→ H1/4 in (a). Note that ‖Duε‖H1/4 ≤

‖uε‖H5/4 which is actually a generalization of the fact

‖Du‖Hn ≤ ‖u‖Hn+1 ,

where n is an integer. Then using the interpolation inequality we get

‖uε‖H1/4 ≤ ‖uε‖1/12

H3 |uε|11/12
0

‖Duε‖H1/4 ≤ ‖uε‖H5/4 ≤ ‖uε‖5/12

H3 |uε|7/12
0 .

Inserting these into (16) we obtain∣∣∣∣2 ∫ (uεDuεD3uε
)
dx

∣∣∣∣ ≤ c ‖uε‖1/2

H3 |uε|3/20 |uε|3 . (17)

Now observe that there exists c > 0 such that for all u ∈ H3
L(Ω), ‖u‖H3 ≤ c (|u|0 + |u|3)

which follows from the following reasoning:

|u|21 = −
∫
uD2u dx ≤ |u|0 |u|2 ≤

|u|20
2

+
|u|22
2
,

|u|22 = −
∫
DuD3u dx ≤ |u|1 |u|3 ≤

|u|21
2

+
|u|23
2
,

⇒ |u|21 + |u|22 ≤ |u|20 + |u|23. (18)

Hence ∣∣∣∣2 ∫ (uεDuεD3uε
)
dx

∣∣∣∣ ≤ c |uε|20 |uε|3 + c |uε|3/20 |uε|
3/2
3

≤a |uε|23 + c |uε|40 + c |uε|60

≤b |uε|23 + c, (19)

where we have used Young’s inequality in (a), and the inequality (9) in (b). For the

17



last term in (12) we have∣∣∣∣∫ (2DfεDuε − fεu2
ε

)
dx

∣∣∣∣ ≤ 2 |fε|1 |uε|1 + ||fε||∞ |uε|
2
0

≤ |γ|
3
|uε|21 +

3

|γ|
|fε|21 + ‖fε‖∞ |uε|

2
0

≤a |γ|
2
ϕ(uε) + c. (20)

where we have used in (a) the inequality (14) and the fact that |fε|1 and |fε|∞ are

uniformly bounded with respect to ε which follows from the convergence of fε in

H2
L and Agmon’s inequality. Inserting (15), (19) and (20), into (12), we obtain the

inequality (11).

Now the inequality

−2γϕ(uε) ≤ 2|γ|ϕ(uε) + c

is obvious for γ ≤ 0 and is equivalent to the fact that ϕ(uε) is bounded from below

when γ ≥ 0 which is true due to (14) and (9). Therefore, (11) can be written as

d

dt
ϕ(uε) + ε|uε|23 ≤ 3|γ|ϕ(uε) + c.

Multiplying the inequality above by e−3|γ|t and integrating over (0.t) we get

ϕ(uε(t)) + ε

∫ t

0

|uε(s)|23 ds ≤ ϕ(u0ε)e
3|γ|t +

c

3|γ|
e3|γ|t. (21)

It follows from (13) that

ϕ(u0ε) ≤
4

3
|u0ε|21 +

1

4
|u0ε|10/3

0 +
1

3L1/2
|u0ε|30 .

Since u0ε is convergent in H2(Ω), |u0ε|0 and |u0ε|1 are bounded. Hence, from the

inequality (21), it follows that

ϕ(uε(t)) + ε

∫ t

0

|uε|23(s) ds ≤ c.

18



Taking (14) into account we obtain the following inequality

|uε(t)|21 + ε

∫ t

0

|uε|23(s) ds ≤ c, (22)

for 0 ≤ t ≤ T , where c depends on T but does not depend on ε.

Estimate 3

To estimate |uε|2, we multiply (2) with M (uε) = 2D4uε + 5
3
Du2

ε + 10
3
uεD

2uε + u3.

For d
dt
uεM (uε), from the third term of M (uε), there comes

10

3

∫
Ω

d

dt
uεuεD

2uε dx = −10

3

∫
Ω

d

dt
uε (Duε)

2 − 5

3

∫
Ω

uε
d

dt
(Duε)

2 dx

= −5

3

d

dt

∫
Ω

uε (Duε)
2 dx− 5

3

∫
Ω

d

dt
uε (Duε)

2 dx.

Remaining terms in d
dt
uεM (uε) are obvious to calculate. Then we have

d

dt
uεM (uε) =

∫
Ω

((
D2uε

)2 − 5

3
uε (Duε)

2 +
5

36
u4
ε

)
dx.

After calculating γuεM (uε) similarly, and observing that∫
Ω

M (uε)
5

3
(Duε)

2 dx+

∫
Ω

M (uε)
10

3
uεD

2uε dx = 0,

if we take

ϕ(uε) =

∫
Ω

((
D2uε

)2 − 5

3
uε (Duε)

2 +
5

36
u4
ε

)
dx,

we can write the resulting identity as follows:

d

dt
ϕ(uε) + 2γϕ(uε)+2ε

∫
Ω

(
D4uε

)2
dx+ ε

∫
Ω

D4uε

(
5

3
(Duε)

2 +
10

3
uεD

2uε + u3

)
dx

=

∫
Ω

(
2D2fεD

2uε +
5

3
(Duε)

2 fε +
10

3
uεD

2uεfε +
5

9
u3
εfε

)
dx

+ γ

∫
Ω

(
5

3
uε (Duε)

2 − 5

18
u4
ε

)
dx. (23)

Now we will estimate the terms in (23). Note that applying Agmon’s inequality in

(9) and (22), we infer that ‖uε‖∞ is uniformly bounded with respect to t ∈ (0, T )
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and ε ∈ (0, 1). We will use this fact for the following estimates.

First using similar arguments as in (19) we have∣∣∣∣∫
Ω

D4uε

(
5

3
(Duε)

2 +
10

3
uεD

2uε + u3

)
dx

∣∣∣∣
≤ c

(
‖Duε‖2

L4 + ‖uε‖∞ |uε|2 + ‖uε‖2
∞ |uε|0

)
|uε|4

≤ c
(
‖Duε‖2

H1/4 + |uε|2 + 1
)
|uε|4

≤ c |uε|11/8
0 ‖uε‖5/8

4 |uε|4 + c |uε|1/20 ‖uε‖
1/2
4 |uε|4 . (24)

Using the same idea in (18) we can bound H4
L norm with the norms | · |20 and | · |24.

Hence using this and Young’s inequality we can deduce from (24) that∣∣∣∣∫
Ω

D4uε

(
5

3
(Duε)

2 +
10

3
uεD

2uε + u3

)
dx

∣∣∣∣ ≤ |uε|24 + c. (25)

Also ∣∣∣∣γ ∫
Ω

(
5

3
uε (Duε)

2 − 5

18
u4
ε

)
dx

∣∣∣∣ ≤ c ‖uε‖∞ |uε|
2
1 + c ‖uε‖2

∞ |uε|
2
0 ≤ c. (26)

Lastly ∣∣∣∣∫
Ω

(
2D2fεD

2uε +
5

3
(Duε)

2 fε +
10

3
uεD

2uεfε +
5

9
u3
εfε

)
dx

∣∣∣∣
≤ |fε|2 |uε|2 + c ‖fε‖∞ |uε|

2
1 + c |fε|1 ‖uε‖∞ |uε|1 + c |fε|0 |uε|0 ‖uε‖

2
∞

≤ |γ| |uε|22 +
1

|γ|
|fε|22 + c ≤ |γ| |uε|22 + c. (27)

Inserting (25), (26), and (27) into (23) we get

d

dt
ϕ(uε) + 2γϕ(uε) + ε |uε|24 dx ≤ |γ| |uε|

2
2 + c. (28)

Observe that

|ϕ(uε)| ≤
∣∣D2uε

∣∣2
2

+ c |uε|21 + c ‖uε‖2
∞ |uε|

2
0 ≤ |uε|

2
2 + c ≤ ϕ(uε) + c.
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So, using (28), it follows that

d

dt
ϕ(uε) + 3ε |uε|24 ≤ 3|γ|ϕ(uε) + c,

from which we conclude as in Estimate 1 and Estimate 2 that

|uε(t)|22 + ε

∫ t

0

|uε|24(s) ds ≤ c, (29)

for 0 ≤ t ≤ T where c does not depend on ε but depends on T .

Passing to the limit

First we will show that duε
dt

remains bounded in L2(0, T ;H−1(Ω)). By (5)

duε
dt

= −uεDuε −D3uε + γuε − εD4uε + fε. (30)

Then the result follows from the following implications:

1. uεDuε remains bounded in L∞(0, T ;H−1(Ω)): First note that

‖uεDuε‖H−1(Ω) ≤
a ‖uεDuε‖L2(Ω)

≤ ‖uε‖∞ ‖Duε‖∞ ,

where we have used in (a) the definition of H−1 norm. Also using (9), (22),

(29) and Agmon’s inequality, we can bound ‖uε‖∞ and ‖Duε‖∞ with respect

to t ∈ (0, T ) and ε from which the result follows.

2. D3uε remains bounded in L∞(0, T ;H−1(Ω)): Since∥∥D3uε
∥∥
H−1(Ω)

= supv∈H1
L(Ω)

|〈D3uε,v〉|
‖v‖H1(Ω)

,

and
|〈D3uε,v〉|
‖v‖H1(Ω)

=
|〈D2uε,Dv〉|
‖v‖H1(Ω)

≤ |〈D
2uε,Dv〉|

‖Dv‖L2(Ω)

≤a
∥∥D2uε

∥∥
L2(Ω)

,

where we have used in (a) the fact that D2uε can be seen as a functional on

L2(Ω). Hence from (29) the result follows.
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3. γuε is bounded in L∞(0, T ;H−1(Ω)): It follows from (9).

4. Lastly, by (29), we have

∥∥εD4uε
∥∥
L2(Ω)

= ε
∥∥D4uε

∥∥
L2(Ω)

≤a
√
ε
∥∥D4uε

∥∥
L2(Ω)

≤ c,

where we have used in (a) the fact that ε ∈ (0, 1). Hence εD4uε remains

bounded in L2(0, T ;H−1(Ω)).

Now we have that uε is bounded in L∞(0, T ;H2(Ω)) and duε
dt

is bounded in L2(0, T ;H−1(Ω)).

Then by Theorem 1.10 there exists u ∈ L∞(0, T ;H2(Ω)), u∗ ∈ L2(0, T ;H−1(Ω)) and

a subsequence of uε which we denote also by uε, such that

uε
∗
⇀ u in L∞(0, T ;H2(Ω)), (31)

and
duε
dt

⇀ u∗ in L2(0, T ;H−1(Ω)). (32)

We now show that u∗ = du
dt

–the derivative is to be understood in the weak sense– in

L2(0, T ;H−1(Ω)). According to Theorem 1.14 this is equivalent to the fact that for

all φ ∈ C∞0 (0, T ) and v ∈ H1
L(Ω) the following equality holds:∫ T

0

〈vφt(t),u(t)〉H1
L,H

−1 dt = −
∫ T

0

〈vφ(t),u∗(t)〉H1
L,H

−1 dt. (33)

Since ∫ T

0

〈vφt(t),u(t)〉H1
L,H

−1 dt =a lim
ε→0

∫ T

0

〈vφt(t),uε(t)〉H1
L,H

−1 dt

= − lim
ε→0

∫ T

0

〈vφ(t),
duε
dt

(t)〉H1
L,H

−1

=b −
∫ T

0

〈vφ(t),u∗(t)〉H1
L,H

−1 dt,
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where we have used the definition of (31) with the fact that vφt ∈ L∞(0, T ;H1(Ω))→

L1(0, T ;H−2 in (a) and (32) in (b), the equality (33) is proved.

Considering the term uεDuε, we will first show that uε goes to u strongly in L2(0, T ;H1
L(Ω)).

Using the embedding L∞(0, T ;H2
L(Ω)) ↪→ L2(0, T ;H2

L(Ω)) it follows from (31) that

uε ⇀ u in L2(0, T ;H2
L(Ω)). (34)

Now take X = H2
L(Ω), Y = H1

L(Ω), Z = H−1(Ω) and p0 = p1 = 2 in Theorem 1.15.

Then from W being continuously embedded in L2(0, T ;H2
L(Ω)) –where W is de-

fined as in Theorem 1.15– and (34), it follows that uε ⇀ u also in W . Hence

from Theorem 1.15 and Theorem 1.11, we conclude that uε goes to u strongly in

L2(0, T ;H1
L(Ω)). Now using this, we will show that uεDuε converges weakly to uDu

in L2(0, T ;H−1(Ω)), i.e. for all v ∈ L2(0, T ;H1
L(Ω)) the following holds:∫ T

0

〈uε(t)Duε(t), v(t)〉H−1,H1
L
dt→

∫ T

0

〈u(t)Du(t), v(t)〉H−1,H1
L
dt as ε→ 0. (35)

We have∫ T

0

∣∣∣〈uε(t)Duε(t)− u(t)Du(t), v(t)〉H−1,H1
L

∣∣∣ dt
≤
∫ T

0

‖v‖H1(Ω) ‖uεDuε − uDu‖H−1(Ω) dt

≤a
∫ T

0

‖v‖H1(Ω) |uεDuε − uDuε|0 dt+

∫ T

0

‖v‖H1(Ω) |uDuε − uDu|0 dt

≤
∫ T

0

‖Duε(t)‖∞ |uε − u|0 dt+

∫ T

0

‖u(t)‖∞ |Duε −Du|0 dt, (36)

where we have used in (a) the fact that ‖ · ‖H−1(Ω) ≤ | · |0 and the triangle inequality.

Note that ‖Duε(t)‖∞ is bounded. Also, since u ∈ L∞(0, T ;H2
L(Ω)), by Agmon

inequality ‖u(t)‖∞ is bounded. Hence it follows from (36) and uε being convergent

to u strongly in L2(0, T ;H1
L(Ω)) that (35) holds. Also D3uε being weakly convergent
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to D3u follows easily from the definitions. Now it remains to prove that εD4uε

converges weakly to 0 weakly in L2(0, T ;H−1(Ω)). So let v ∈ L2(0, T ;H1
L(Ω)). Then∫ T

0

〈εD4uε(t), v(t)〉H−1,H1
L
dt =

∫ T

0

〈εD3uε(t), Dv(t)〉L2 dt

≤
√
ε

∫ T

0

√
ε |uε(t)|3 |v(t)|1 dt

≤a
√
εc (37)

where we have used the inequality (22) in (a). Note that here c depends on v and T

but not on ε. Then
√
εc tends to 0 as ε → 0 from which the result follows. Hence,

we can pass to the limit in L2(0, T ;H−1(Ω) as ε goes to 0, to get

du

dt
+ uDu+D3u+ γu = f, (38)

where the equality is understood to be hold in H−1(Ω) for t ∈ (0, T ). Note that since

the term D4uε disappeared we have

du

dt
∈ L∞(0, T ;H−1(Ω))

Now taking V = H1
L(Ω) and H = L2(Ω) in Theorem 1.16, we get

u ∈ C([0, T ];L2(Ω))

Lastly, it follows from Theorem 1.17 that uε(0) converges weakly to u(0) in H−1(Ω).

Since uε converges to u0 strongly, we have u(0) = u0.

Uniqueness

Let u, v ∈ L∞(0, T ;H2
L(Ω) satisfy (38) with u(0) = v(0) = u0 . If w = u− v, then w

satisfies

dw

dt
+D3w + γw = −uDu+ vDv, (39)

w(0) = 0. (40)
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Note that by Theorem 1.16 we have

1

2

d

dt
|w|20 = 〈dw

dt
, w〉H−1,H1

L
,

which implies the following identity.

1

2

d

dt
|w|20 + γ|w|20 = −

∫
Ω

(uDu− vDv)w dx.

Note that∫
Ω

(uDu− vDv)w dx =

∫
Ω

(wDw −D(vw)w dx =

∫
Ω

1

2
w2Dv dx.

So

d

dt
|w|20 = −2γ|w|20 −

1

2

∫
Ω

w2Dv dx

≤ 1

2
‖Du‖∞|w|20 + 2|γ||w|20

≤ c|w|20.

Hence, multiplying this by e−ct and integrating over (0, t), we get

|w(t)|20 ≤ |w(0)|ect.

Using the fact that w(0) = 0, uniqueness follows.

2.2 Existence of an absorbing set

In this section we will assume that γ > 0.

Using the existence and uniqueness result in the previous section we can define for

each t ∈ R+ the nonlinear mapping S(t) : H2(Ω)→ H2(Ω) which is defined as

u0 ⇒ u(t) ≡ S(t)u0.
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We will prove the existence of a bounded absorbing set for {S(t)},i.e. there exists a

closed ball C such that for every bounded set B in H2
L, there exists T (B) such that

S(t)B ⊂ C, ∀t ≥ T (B).

In other words we will prove the following theorem.

Theorem 2.2. Let γ > 0 and f ∈ H2
L be given. There exists a constant ρ =

ρ (L, γ, |f |0) such that for every R > 0, there exists T (R) such that

|S(t)u0|0 6 ρ2,∀u0 ∈ H2
L, |u0|0 6 R, ∀t > T (R).

For the proof we will use the same multipliers as in Section 1. We will recall them

for easy referencing. Multiplying (2) by 2u and integrating over Ω we get

d

dt

∫
Ω

u2 dx+

∫
Ω

(
2γu2 − 2fu

)
dx = 0. (41)

Now multiplying (2) by −2uxx − u2 and integrating over Ω again, the terms coming

from uux and uxxx cancel and we get

d

dt

∫
Ω

(
u2
x −

u3

3

)
dx+

∫
Ω

(
2γ

(
u2
x −

u3

2

)
+ fu2 − 2fxux

)
dx = 0. (42)

Lastly we multiply (2) by M(u) = 18
5
uxxxx + 6uuxx + 3u2

x + u3. Note that this is the

same multiplier in the previous section but it is multiplied by 9/5 here. Doing the

same calculations as we did before we get

d

dt

∫ {
9

5
u2
xx − 3uu2

x +
u4

4

}
dx

+

∫ {
γ

(
18

5
u2
xx − 9uu2

x + u4

)
+

18

5
fxxuxx − 3u2

xf − ufxux + fu3

}
dx = 0. (43)

Proof. (Proof of Theorem 2.2) From (41) we get

d

dt
|u|20 + 2γ |u|20 6 2 |f |20 |u|

2
0 6 γ |u|20 +

1

γ
|f |20 ,
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which implies
d

dt
|u|20 + γ |u|20 6

1

γ
|f |20 .

Multiplying the above inequality by eγt and integrating over (0, t) we get

|u|20 e
γt 6 |u0|20 +

eγt − 1

γ2
|f |20 ,

and so

|S(t)u0|20 6 |u0|20 e
−γt + |f |20

(
1− e−γt

)
/γ2. (44)

Hence

|S(t)u0|20 6 2 |f |20 /γ, t > T0(u0),

where

T0(u0) =
1

γ
Log

γ |u0|20
|f |20

.

For the H1 estimate taking

ϕ(u) =

∫ (
u2
x −

u3

3

)
dx,

and

ξ(u) = γ|u|21 −
2

3
γ

∫
u3 dx+

∫ (
fu2 − 2fxux

)
dx,

we can write (42) in the form

dϕ(u(t))

dt
+ γϕ(u(t)) = −ξ(u(t)).

Now we will estimate
∣∣∫ u3 dx

∣∣ as follows:∣∣∣∣∫ u3 dx

∣∣∣∣ 6 |u|∞|u|20 (45)

6a |u|5/20

(
2|u|1 + L−1|u|0

)1/2

6b
√

2|u|5/20 |u|
1/2
1 + L−1/2|u|30

6c 1

2
|u|21 +

21/3

4
|u|10/3

0 + L−1/2|u|30.
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where we have used Agmon’s inequality in (a), the fact that
√
a+ b 6

√
a +
√
b in

(b), and Young’s inequality with p = 4 and q = 4/3 in (c). Using this we estimate

−ξ(u) as follows:

−ξ(u) 6 −γ|u|21 +
2

3
γ

∣∣∣∣∫ u3 dx

∣∣∣∣− ∫ (fu2 − 2fxux
)
dx (46)

6 −2γ

3
|u|21 +

24/3γ

12
|u|10/3

0 +
2γL−1/2

3
|u|30 + |f |∞|u|20 + 2|f |1|u|1

6a 3

2γ
|f |21 + |f |∞|u|20 +

24/3γ

12
|u|10/3

0 +
2γL−1/2

3
|u|30,

where we have used 2|f |1|u|1 6 2γ
3
|u|21 + 3

2γ
|f |21 in (a). Now replacing |u|20 with

|u|20e−γt + |f |2
γ2

in the last inequlaity according to (44) and using the inequality (a +

b)α 6 2α (aα + bα) we get

dϕ(u(t))

dt
+ γϕ(u(t)) 6 K1(u0)e−γt +K2, (47)

where

K1(u0) = |f |∞|u0|20 +
23γ

12
|u0|10/3

0 +
25/2γL−1/2

3
|u0|30,

and

K2 =
3

2γ
|f |21 + |f |∞|f |20γ−2 +

23

12
|f |10/3γ−7/3 +

25/2L−1/2

3
|f |30γ−2.

Now multiplying (47) by eγtand integrating the resulting identity over (0, t) we get

ϕ(u(t)) 6 (ϕ(u0) +K1(u0)t) e−γt +K2

(
1− e−γt

)
γ−1.

Hence from (7) it follows that

ϕ(u(t)) 6

{
3

2
|u0|21 +

21/3

4
|u0|10/3

0 + L−1/2 |u0|30 +K1(u0)t

}
e−γt +K2/γ. (48)

Let C(|u0|0 , |u0|1) =
{

3
2
|u0|21 + 21/3

4
|u0|10/3

0 + L−1/2 |u0|30 +K1(u0)t
}

. Then we have

from the last inequality∫
u2
x dx 6 C(|u0|0 , |u0|1)e−γt +

∫
|u|3

3
+K2/γ. (49)
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Hence using (46) and applying (44) again we can write (49) in the form

1

2

∫
u2
x dx 6 C1(|u0|0 , |u0|1)e−γt +K2/γ, (50)

from which it follows similarly as in (44) the existence of an absorbing ball for the

H1-norm.

For the H2-norm we write (43) in the following form:

d

dt
ψ(u(t)) + γψ(u(t)) = −η(u(t)),

where ψ(u) and η(u) are defined as

ψ(u) =
9

5
|u|22 +

∫ {(
u4/4

)
− 3uu2

x

}
dx,

η(u) =
9

5
γ

∫
|u|22 dx− 6γ

∫
uu2

x dx+
3γ

4

∫
u4 dx

+
18

5

∫
fxxuxx dx+ 2

∫
fu2

x dx−
∫
ufxux dx+

∫
fu3 dx.

Then

η(u) >
9

5
γ

∫
|u|22 dx− 6γ

∫
|u|u2

x dx+
3γ

4

∫
u4 dx

− 18

5

∫
|fxx||uxx| dx− 2

∫
|f |u2

x dx−
∫
|u||fx||ux| dx−

∫
|f ||u|3 dx. (51)

We should estimate −η(u(t)) with terms depending only on f , |u|0 and |u|1 but not

onto |u|2. Then we can apply similar arguments as we used for the H1-norm taking

into account (44) and (50) to get

dψ(u(t))

dt
+ γψ(u(t)) 6 R1(u0)e−γt +R2, (52)

where R1 and R2 are determined as K1 and K2 and R2 contains only terms containing

f and its derivatives. So first note that we can get rid of |u|2 at the right hand side

of (51) by using Young’s inequality as follows:

18

5

∫
|fxx||uxx| 6

9γ

5
|uxx|+

9

5γ
|fxx|2.
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Also ∫
|u|u2

x dx 6 |u|∞|u|21 (53)

6 |u|1/20

(
2|u|1 + L−1|u|0

)1/2

6
√

2|u|1/20 |u|
3/2
1 + L−1/2|u|0|u|21

6 |u|0 +
|u|31
2

+
L−1|u|20

2
+
|u|41
2
.

The remaining terms can be bounded with |u|0 and |u|1 similarly. For example, we

have ∫
u4 dx 6 |u|2∞|u|20,

and applying Agmon’s inequality to |u|2∞ the estimate follows. Now multiplying (52)

by eγt and integrating over (0, t) we get as in (48)

ψ(u(t)) 6 C2(|u0|0 , |u0|1 , |u0|2|)e−γt +R2/γ.

From the last inequality it follows that

9

5
|u|22 6 C2(|u0|0 , |u0|1 , |u0|2|)e−γt +R2/γ + 3

∫
|u|u2

x dx.

Hence using (17) and applying (44) and (50) we conclude that

9

5
|u|22 6 C2(|u0|0 , |u0|1 , |u0|2|)e−γt +R2/γ,

from which it follows the existence of absorbing ball for H2-norm.

As a final remark, since the constants K2, R2 and the constant in (44) only contains

terms involving f and its derivatives, when we take f = 0 we get the exponential

decay for the H2-norm of the solution.
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3 A non-periodic initial-boundary value problem

for the KdV equation

In this chapter we will prove existence, uniqueness and stability for the solutions of

the following problem:

ut + uux + uxxx = 0, x ∈ (0, 1), t > 0, (54)

u(x, 0) = u0(x), x ∈ (0, 1), (55)

u(0, t) = u(1, t) = ux(1, t) = 0, t > 0. (56)

For this, in the first section, using Galerkin method, we first prove the existence of

the solutions for the following regularized problem:

ut + uux + uxxx + ν(uxx + uxxxx) = 0, x ∈ (0, 1), t > 0, (57)

u(x, 0) = u0(x), x ∈ (0, 1), (58)

u(0, t) = u(1, t) = νuxx(0, t) = u(1, t) + νuxx(1, t) = 0, t > 0. (59)

Then, in the second section, we prove the existence result for (54)-(56) passing to

limit as ν tends to zero as we have done in the previous chapter. In this chapter ‖ · ‖

will denote the usual L2 norm, (·, ·) will denote the inner product in L2 and Dj will

denote ∂j

∂xj
.

3.1 Solvability of the regularized problem

Theorem 3.1. Let ν > 0 and u0 ∈ H4(0, 1) ∩ H1
0 (0, 1); νu0xx(0) = u0x(1) +

νu0xx(1) = 0. Then there exists a unique solution to (57)-(59) from the class

u ∈ C
(
0, T ; H2(0, 1) ∩H1

0 (0, 1)
)
∩ L∞

(
0, T ; H4(0, 1) ∩H1

0 (0, 1)
)
,

31



and

ut ∈ L∞
(
0, T ; L2(0, 1)

)
∩ L2

(
0, T ; H2(0, 1) ∩H1

0 (0, 1)
)
.

First we need the following lemma.

Lemma 3.2. Let V be the closure of the space of functions satisfying (59) in H4(0, 1).

Then for every ν > 0 there exists eigenfunctions for the following problem

νD4w = µw,

w(0) = w(1) = νwxx(0) = wx(1) + νwxx(1) = 0,

that forms an orthogonal basis in V which is orthonormal in L2(0, 1).

Proof. Let u and v be functions in H4(0, 1) and satisfy the boundary conditions in

the lemma. Then using integration by parts and boundary conditions we can show

that

ν(D4u, v) = ν(u,D4v) and ν(D4u, u) = ν‖D2u‖2 + u2
x(1).

Observe that, if ν(D4u, u) = 0, then D2u = 0. In this case, u is of the form ax + b

but since u ∈ V we have u = 0. Then A is strictly positive and so invertible.

Note that since A is self-adjoint, its range is closed. Now taking the composition of

A−1 with the injection of H4(0, 1) into L2(0, 1) which is compact, we can see A−1 as

a compact operator from the range of A to L2(0, 1). Then, by spectral theory, we

know that there exist eigenfunctions of A−1 which form an orthonormal basis in the

range of A and orthogonal basis in V .

Let wj denote the eigenfunctions in the above theorem. We construct approximate

solutions to (57) -(59) in the form

uN(x, t) =
n∑
i=1

gNj (t)wj(x),
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where
(
gN1 (t), gN2 (t), . . . , gNN (t)

)
is a solution of the following system of ordinary dif-

ferential equations:

(uNt , wj)(t) + (uNDuN , wj)(t) + (D3u
N , wj)(t)

+ ν(D2u
N , wj)(t) + ν(D4u

N , wj)(t) = 0, (60)

gNj (0) = (u0, wj) j = 1, . . . , N. (61)

We know from the theory of first order ordinary differential equations that for each

N , there exists a solution
(
gN1 (t), gN2 (t), . . . , gNN (t)

)
on some interval (0, TN). In order

to extend uN to an arbitrary interval (0, T ) and pass to the limit as N →∞, we will

estimate uN(t) with respect to N and t ∈ (0, T ).

Estimate 1

Since our aim is to pass to the limit as ν goes to 0 we will assume that ν ∈ (0, 1).

Multiplying (60) by 2gNj and summing over j we get

(uNt , 2u
N)(t) + (uNDuN , 2uN)(t) + (D3u

N , 2uN)(t) + ν(D2u
N , 2uN)(t)

+ ν(D4u
N , 2uN)(t) = 0. (62)

Considering the boundary conditions for wj and applying integration by parts we

have

(uNDuN , 2uN)(t) = 0

(D3u
N , 2uN)(t) = (DuN(0, t))2 − (DuN(1, t))2

(D4u
N , 2uN)(t) = 2

∣∣∣∣D2u
N(t)

∣∣∣∣2 − 2D2u
N(1, t)DuN(1, t).

Inserting the above identities into (62) and adding (−DuN)2(1, t) to both sides we

get

d

dt

∣∣∣∣uN(t)
∣∣∣∣2 + (DuN)2(0, t)− 2DuN(1, t)

(
DuN(1, t) + νD2u

N(1, t)
)

+ 2ν
∣∣∣∣D2u

N(t)
∣∣∣∣2

= −2ν(D2u
N , uN)(t)− (DuN(1, t))2. (63)
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Observe that DuN(1, t)+νDuN(1, t) is zero. Also using Schwarz and Young inequal-

ities we get

−2ν(D2u
N , uN)(t) 6 ν

∣∣∣∣D2u
N(t)

∣∣∣∣2 + ν
∣∣∣∣uN(t)

∣∣∣∣2 .
Hence we have

d

dt

∣∣∣∣uN(t)
∣∣∣∣2 + (DuN(0, t))2 + ν

∣∣∣∣D2u
N(t)

∣∣∣∣2 6 ν
∣∣∣∣uN(t)

∣∣∣∣2 6 ∣∣∣∣uN(t)
∣∣∣∣2 , (64)

from which it follows that

d

dt

∣∣∣∣uN(t)
∣∣∣∣2 6 ∣∣∣∣uN(t)

∣∣∣∣2 .
Multiplying this inequality by e−t and integrating over (0, t) we obtain∣∣∣∣uN(t)

∣∣∣∣2 6 et
∣∣∣∣uN(0)

∣∣∣∣2 ,
for t ∈ (0, T ). Inserting this into (64)and integrating over (0, t) again, it follows that

∣∣∣∣uN(t)
∣∣∣∣2 +

T∫
0

(DuN)2(0, s) ds+ ν

T∫
0

∣∣∣∣D2u
N(s)

∣∣∣∣2 ds
6 (et + 1)

∣∣∣∣uN(0)
∣∣∣∣2 + 6a C ||u0||2 , (65)

where we used in (a) the fact that wj are orthogonal in L2(0, 1). Also C > 0 does

not depend on ν, N , and t ∈ (0, T ). C will be a generic constant which will be used

for later estimates also. If it depends on ν, we will write C(ν).

Estimate 2

Substituting wj by νD4µ
−1
j wj according to Lemma 3.2, multiplying with gNj (t) and

summing over j in (60) we get

(uNt , D4u
N)(t) + (uNDuN , D4u

N)(t) + (D3u
N , D4u

N)(t)

+ ν(D2u
N , D4u

N)(t) + ν(D4u
N , D4u

N)(t) = 0. (66)
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We will estimate terms in (66) separately:

I1 = (uNt , D4u
N)(t)

= −(DuNt , D3u
N)(t)

= (D2u
N
t , D2u

N)(t)−DuNt (1, t)D2u
N(1, t)

=
1

2

d

dt

∣∣∣∣D2u
N(t)

∣∣∣∣2 + νD2u
N
t (1, t)D2u

N(1, t)

=
1

2

d

dt

{∣∣∣∣D2u
N(t)

∣∣∣∣2 + ν
∣∣D2u

N(1, t)
∣∣2} .

For the second term in (66) we have

I2 = (uNDuN , D4u
N)(t),

> −
∣∣∣∣D4u

N(t)
∣∣∣∣ ∣∣∣∣uN(t)DuN(t)

∣∣∣∣ ,
> −maxx∈(0,1)

∣∣uN(t)
∣∣ ∣∣∣∣DuN(t)

∣∣∣∣ ∣∣∣∣D4u
N(t)

∣∣∣∣ ,
>a −

∣∣∣∣DuN(t)
∣∣∣∣2 ∣∣∣∣D4u

N(t)
∣∣∣∣ ,

where we have used in (a) the fact that maxx∈(0,1)

∣∣uN(t)
∣∣ 6 ∣∣∣∣DuN(t)

∣∣∣∣ which follows

from the fact that uN(0, t) = 0. Indeed, if u(0) = 0

|u(x)| =
∣∣∣∣∫ x

0

Du(y) dy

∣∣∣∣ ≤ ∣∣∣∣∫ 1

0

Du(y) dy

∣∣∣∣ ≤ ‖Du‖.
Now observe that

∣∣∣∣DuN(t)
∣∣∣∣2 = −

1∫
0

uN(x, t)D2u
N(x, t) dx 6

∣∣∣∣uN(t)
∣∣∣∣ ∣∣∣∣D2u

N(t)
∣∣∣∣ , (67)

from which it follows that

I2 > −
∣∣∣∣uN(t)

∣∣∣∣ ∣∣∣∣D2u
N(t)

∣∣∣∣ ∣∣∣∣D4u
N(t)

∣∣∣∣ ,
>a −ν

8

∣∣∣∣D4u
N(t)

∣∣∣∣2 − 2

ν

∣∣∣∣D2u
N(t)

∣∣∣∣2 ∣∣∣∣uN(t)
∣∣∣∣2 ,
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where we have used Young’s inequality with ε = ν/4 in (a). Taking into account

(65) we obtain

I2 > −
ν

8

∣∣∣∣D4u
N(t)

∣∣∣∣2 − C(ν)
∣∣∣∣D2u

N(t)
∣∣∣∣2 .

For the third term

I3 = (D3u
N , D4u

N)(t),

>a − ν

16

∣∣∣∣D4u
N(t)

∣∣∣∣2 − 4

ν

∣∣∣∣D3u
N(t)

∣∣∣∣2 ,
>b − ν

16

∣∣∣∣D4u
N(t)

∣∣∣∣2 − 4

ν

{
ε
∣∣∣∣D4u

N(t)
∣∣∣∣2 + C(ε)

∣∣∣∣uN(t)
∣∣∣∣2} ,

where we have used Young’s inequality with ε = ν/8 in (a) and Ehrling’s inequality

in (b). Finally, taking ε = ν2

64
and taking into account (65) , we find

I3 > −
ν

8

∣∣∣∣D4u
N(t)

∣∣∣∣2 − C(ν).

Lastly

I4 = ν(D2u
N , D4u

N)(t) > −ν
8

∣∣∣∣D4u
N(t)

∣∣∣∣2 − 2ν
∣∣∣∣D2u

N(t)
∣∣∣∣2 .

Substituting I1 − I4 into (65), we obtain

d

dt

{∣∣∣∣D2u
N(t)

∣∣∣∣2 + ν
∣∣D2u

N(1, t)
∣∣2}+

5

8
ν
∣∣∣∣D4u

N(t)
∣∣∣∣2

6 C(ν)
(∣∣∣∣D2u

N(t)
∣∣∣∣2 + 1

)
, (68)

from which it follows that

d

dt

{∣∣∣∣D2u
N(t)

∣∣∣∣2 + ν
∣∣D2u

N(1, t)
∣∣2} 6 C(ν)

{∣∣∣∣D2u
N(t)

∣∣∣∣2 + ν
∣∣D2u

N(1, t)
∣∣2}+C(ν).

Multiplying the above inequality by e−C(ν)t and integrating over (0, t) we have{∣∣∣∣D2u
N(t)

∣∣∣∣2 + ν
∣∣D2u

N(1, t)
∣∣2} 6 C(ν)

{∣∣∣∣D2u
N(0)

∣∣∣∣2 + ν
∣∣D2u

N(1, 0)
∣∣2 + 1

}
.
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Inserting this into (68) and integrating over (0, t) again, it follows that∣∣∣∣D2u
N(t)

∣∣∣∣2 + ν
∣∣D2u

N(1, t)
∣∣2 ≤ C(ν)

(∣∣∣∣uN(0)
∣∣∣∣2
H4(0,1)

+ 1
)
, (69)

where C(ν) does not depend on N and t ∈ (0, T ).

Estimate 3

Differentiating (60) with respect to t, multiplying by 2gNjt and summing over j we get

(uNtt , 2u
N
t )(t) + (uNt uD

N , 2uNt )(t) + (uNDuNt , 2u
N
t )(t) + (D3u

N , 2uNt )(t)

+ ν(D2u
N , 2uNt )(t) + ν(D4u

N , 2uNt )(t) = 0. (70)

Observe that boundary conditions are invariant under taking derivative with respect

to t. So we have the following identities:

(uNt Du
N , 2uNt )(t) = −2(uNDuNt , u

N
t )(t)

(D3u
N
t , 2u

N
t )(t) = (DuNt (0, t))2 − (DuNt (1, t))2

(D4u
N , 2uN)(t) = 2

∣∣∣∣D2u
N
t (t)

∣∣∣∣2 − 2D2u
N
t (1, t)DuNt (1, t).

Inserting these into (70), adding (−uNxt(1, t))2 to both sides and using the boundary

condition
(
DuNt (1, t) + νD2u

N
t (1, t)

)
= 0 we get

d

dt

∣∣∣∣uNt (t)
∣∣∣∣2 + (DuNt (0, t))2 + 2ν

∣∣∣∣D2u
N
t (t)

∣∣∣∣2 + 2ν(D2u
N
t , u

N
t )(t)

= 2(uNDuNt , u
N
t )(t)− (DuNt (1, t))2. (71)

Continuing with the same reasoning as in I3 of Estimate 2:

we have

(uNDuNt , u
N
t )(t) 6

∣∣∣∣uN(t)
∣∣∣∣ ∣∣∣∣DuNt (t)uNt (t)

∣∣∣∣
6 maxx∈(0,1)

∣∣uNt (t)
∣∣ ∣∣∣∣DuNt (t)

∣∣∣∣ ∣∣∣∣uN(t)
∣∣∣∣

6
∣∣∣∣DuNt (t)

∣∣∣∣2 ∣∣∣∣uN(t)
∣∣∣∣

≤a C ||u0||
∣∣(uNt , D2u

N
t

)∣∣ ,
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where we have used (65) and (67) in (a), and C > 0. Inserting the above inequality

into (71) we get

d

dt

∣∣∣∣uNt (t)
∣∣∣∣2 + 2ν

∣∣∣∣D2u
N
t (t)

∣∣∣∣2 6 (C ||u0||+ 2ν)
∣∣(uNt , D2u

N
t )
∣∣ .

Applying the Young’s inequality to the right hand side with an appropriate ε we find

d

dt

∣∣∣∣uNt (t)
∣∣∣∣2 + ν

∣∣∣∣D2u
N
t (t)

∣∣∣∣2 6 C3(ν)
∣∣∣∣uNt (t)

∣∣∣∣2 . (72)

Then from
d

dt

∣∣∣∣uNt (t)
∣∣∣∣2 6 C3(ν)

∣∣∣∣uNt (t)
∣∣∣∣2 ,

it follows that, for t ∈ (0, T )

∣∣∣∣uNt (t)
∣∣∣∣2 6 eC3(ν)t

∣∣∣∣uNt (0)
∣∣∣∣2 . (73)

In order to conclude Estimate 3, we need to estimate
∣∣∣∣uNt (0)

∣∣∣∣2. So multiplying (60)

by gNjt and summing over j we get

(uNt , u
N
t )(t)+(uNDuN , uNt )(t)+(D3u

N , uNt )(t)+ν(D2u
N , uNt )(t)+ν(D4u

N , uNt )(t) = 0.

Putting t = 0 gives

∣∣∣∣uNt (0)
∣∣∣∣2 6 ∣∣∣∣uNt (0)

∣∣∣∣ (∣∣∣∣uN(0)DuN(0)
∣∣∣∣+

∣∣∣∣D2u
N(0)

∣∣∣∣+
∣∣∣∣D3u

N(0)
∣∣∣∣+

∣∣∣∣D4u
N(0)

∣∣∣∣) .
Since

∣∣∣∣uN(0)DuN(0)
∣∣∣∣ 6 maxx∈(0,1)

∣∣uN(0)
∣∣ ∣∣∣∣DuN(0)

∣∣∣∣ 6 ∣∣∣∣DuN(0)
∣∣∣∣2 6 ∣∣∣∣uN(0)

∣∣∣∣ ∣∣∣∣D2u
N(0)

∣∣∣∣ ,
applying Young’s inequality to the last term we obtain

∣∣∣∣uNt (0)
∣∣∣∣ 6 C

∣∣∣∣uN(0)
∣∣∣∣
H4(0,1)

6 C ||u0||H4(0,1) .
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Integrating (72) over (0, t) and taking into account (73) with the above inequality

we get ∣∣∣∣uNt (t)
∣∣∣∣2 + ν

t∫
0

∣∣∣∣D2u
N
s (s)

∣∣∣∣2 ds 6 C(ν) ||u0||H4(0,1) , (74)

where C(ν) does not depend on N and t ∈ (0, T ).

Passing to the limit

By (65) and (69) we have ‖uN‖ and
∥∥D2u

N
∥∥ is bounded with respect to N and

t ∈ (0, T ). Then by (67)
∥∥DuN∥∥ is also bounded. We now show that

∥∥D3u
N
∥∥ and∥∥D4u

N
∥∥ are also bounded. From (66) we get

ν ‖D4uN‖2 ≤
∥∥uNt ∥∥∥∥D4u

N
∥∥+

∥∥uNDuN∥∥∥∥D4u
N
∥∥

+
∥∥D3u

N
∥∥∥∥D4u

N
∥∥+ ν

∥∥D2u
N
∥∥∥∥D4u

N
∥∥ .

We will estimate the terms on right hand side as follows:

1.
∥∥uNt ∥∥∥∥D4u

N
∥∥ ≤ C(ε)

∥∥uNt ∥∥2
+ ε
∥∥D4u

N
∥∥2

,

2.
∥∥uNDuN∥∥∥∥D4u

N
∥∥ ≤ C(ε)

∥∥uNDuN∥∥2
+ε
∥∥D4u

N
∥∥2 ≤ C(ε)

∥∥DuN∥∥4
+ε
∥∥D4u

N
∥∥2

,

3.
∥∥D3u

N
∥∥∥∥D4u

N
∥∥ ≤ ε

∥∥D4u
N
∥∥2
ε
∥∥D4u

N
∥∥+ C(ε)

∥∥uN∥∥,

4. ν
∥∥D2u

N
∥∥∥∥D4u

N
∥∥ ≤ C(ε)

∥∥D2u
N
∥∥2

+ ε
∥∥D4u

N
∥∥2

,

where we have used in (2) the fact that max
∣∣uN ∣∣ ≤ ∥∥uNx ∥∥ and Ehrling’s inequality

in (3). Now taking ε = ν/8 it follows that (ν/2)
∥∥D4u

N
∥∥2 ≤ C since the remaining

terms in (1)-(4) are bounded. Hence we have that uN is bounded in L∞(0, T ;H4(0, 1).

Also by (74) we have uNt ∈ L∞ (0, T ; L2(0, 1))∩L2 (0, T ; H2(0, 1) ∩H1
0 (0, 1)). Then

we can pass to the limit as N tends to infinity following similar arguments as we did

in the previous chapter.
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3.2 Existence and Uniqueness

Let uν denote the solution of regularized problem for each ν. Then for all v ∈ L2(0, 1)

we have

(uνt, v) (t)+(uνDuν , v) (t)+(D3uν , v) (t)+ν (D2uν , v) (t)+ν (D4uν , v) (t) = 0. (75)

Existence theorem for the KdV equation is the following.

Theorem 3.3. Let u0 ∈ H3(0, 1) ∩ H1
0 (0, 1) with u0x(1) = 0. Then there exists a

unique solution to the problem

ut + uux + uxxx = 0 x ∈ (0, 1), t > 0, (76)

u(x, 0) = u0(x), (77)

u(0, t) = u(1, t) = ux(1, t) = 0 t > 0, (78)

from the class

u ∈ L∞
(
0, T ;H3(0, 1) ∩H1

0 (0, 1)
)
,

ut ∈ L∞
(
0, T ;L2(0, 1)

)
∩ L2

(
0, T ;H1

0 (0, 1)
)
.

Note that when ν = 0 in the regularized problem, we have the KdV equation with the

corresponding boundary values. What we will do is trying to pass to a subsequence

of uν so that the limit is a solution for KdV. Indeed, this procedure will give us a

weak solution and then we will show the regularity. For this we need to estimate uν

where the constants of the estimate should not depend on ν. Following two lemmas

will handle this problem.

Lemma 3.4. For all ν ∈ (0, 1/4) solutions of (57)–(59) satisfy the following in-

equality:

||uν(t)||2 +

t∫
0

∣∣∣∣DuNν (s)
∣∣∣∣2 ds 6 C ||u0||2 ,
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where the constant C does not depend on ν.

Proof. Omitting the label ν, it follows from (65) that

||u(t)||2 + ν

t∫
0

∣∣∣∣D2u
N(s)

∣∣∣∣2 ds 6 C ||u0||2 , (79)

where C does not depend on ν > 0; t ∈ (0, T ). Taking in (75) v = 2eλxu for λ > 0,

and omitting the index ν we obtain

d

dt

(
eλx, u2

)
(t)− 2λ

3

(
eλx, u3

)
(t)

+ 2
(
eλxD3u, u

)
(t) + 2ν

(
eλxD2u, u

)
(t) + 2ν

(
eλxD4, u

)
(t) = 0, (80)

where we have used the equality 2
(
eλxuDu, u

)
(t) = −2λ

3

(
eλx, u3

)
(t). We will esti-

mate the terms in (80) separately:

I1 = −2λ

3

(
eλxu3

)
(t),

> −2λeλ

3
maxx∈(0,1) |u(x, t)| ||u(t)||2

> −2λeλ

3
||Du(t)|| ||u(t)||2

>a −µλ
3

(
eλx, u2

)
(t)− e2λλ

3µ
||u(t)||4 ,

where, in (a), we have used Young’s inequality with ε = µ
eλ

and the fact that eλx > 1

for x ∈ (0, 1).

I2 = 2ν
(
eλxD2u, u

)
(t)

> −2ν
∣∣∣∣∣∣eλ2 xD2u(t)

∣∣∣∣∣∣ ∣∣∣∣∣∣eλ2 xu(t)
∣∣∣∣∣∣

> −ν
∣∣∣∣∣∣eλ2 xD2u(t)

∣∣∣∣∣∣2 − ν ∣∣∣∣∣∣eλ2 xu(t)
∣∣∣∣∣∣2

= −ν
(
eλx, D2u

2
)

(t)− ν
(
eλx, u2

)
(t). (81)
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Also

I3 = 2
(
eλxD3u, u

)
(t)

=a (Du(0, t))2 − eλ(Du(1, t))2 + 3λ
(
eλx, (Du)2

)
(t)− λ3

(
eλx, u2

)
(t)

>b (Du(0, t))2 − 2eλ(Du(1, t))2 + 3λ
(
eλx, (Du)2

)
(t)− λ3

(
eλx, u2

)
(t), (82)

where, in (a), we have used series of integration by parts and added −eλ(Du)2(1, t)

in (b). Lastly

I4 = 2ν
(
eλxD4u, u

)
(t),

= −2νeλux(1, t)D2u(1, t) + 2ν
(
eλx, (D2u)2

)
(t) + 2νλ(Du)2(1, t),

− 2νλ(Du)2(0, t)− 4νλ2
(
eλx, (Du)2

)
(t) + νλ4

(
eλx, u2

)
(t).

Substituting I1 − I4 into (80) we obtain

d

dt

(
eλx, u2

)
(t) + (1− 2νλ)(Du(0, t))2 + λ(3− µ/3− 4νλ)

(
eλx, (Du)2

)
(t)

+ ν
(
eλx, (D2u)2

)
(t) + (νλ4 − λ3 − ν)

(
eλx, u2

)
(t)− e2λ

λ
3µ ||u(t)||4 6 0.

Taking µ = 3, λ = 1 and ν ∈ (0, 1/4), we reduce it to the inequality

d

dt

(
eλx, u2

)
(t) +

(
eλx, (Du)2

)
(t) + ν

(
eλx, (D2u)2

)
(t)

6
(
eλx, u2

)
(t) + C ||u(t))||4

6 C
(
||u(t))||2 + ||u(t))||4

)
6a C

(
||u(0)||2 + ||u(0)||4

)
, (83)

where we have used (65) in (a). Since the inequality (65) does not depend on ν, C

does not depend on ν ∈ (0, 1/4) either. Integrating (83) over (0, t), we obtain

(
eλx, u2

)
(t) +

t∫
0

(
eλx, (Du)2

)
(s) ds+ ν

t∫
0

(
eλx, (D2u)2

)
(s) ds 6 C ||u0||2 .
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Hence

||uν(t)||2 +

t∫
0

||uν(s)||2 ds+ ν

t∫
0

||D2uν(s)||2 ds 6 C ||u0||2 ,

for t ∈ (0, T ) where C depends on T , but does not depend on ν ∈ (0, 1/4).

Lemma 3.5. For all ν ∈ (0, 1/4) uν satisfy the following inequality:

||uνt(t)||2 +

t∫
0

||Duνs(s)||2 ds+

t∫
0

||D2uνs(s)||2 ds

6 C
(
||u0||2H3(0,1)∩H1

0 (0,1) + ν ||D4u0||2
)
,

where the constant Cdoes not depend on ν.

Proof. Differentiating (54) and taking inner product with 2eλxuνt for λ > 0 and

omitting the index ν we obtain

d

dt

(
eλx, u2

t

)
(t) + 2

(
eλx (uDu)t , ut

)
(t) + 2

(
eλxD3ut, ut

)
(t)

+ 2ν
(
eλxD2ut, ut

)
(t) + 2ν

(
eλxD4ut, ut

)
(t) = 0. (84)

We will estimate the terms in (84) separately. Since the boundary conditions are

invariant under taking derivative replacing u with ut in (82) we get

I1 >
(
eλxD3ut, ut

)
(t) = (Dut(0, t))

2−2eλ(Dut(1, t))
2+3λ

(
eλx, (Dut)

2
)

(t)−λ3
(
eλx, u2

t

)
(t).

As we did in (81)

I2 = 2ν
(
eλxD2ut, ut

)
(t) > −ν

(
eλx, (D2ut)

2
)

(t)− ν
(
eλx, u2

t

)
(t).

Also

I3 = 2ν
(
eλxD4ut, ut

)
(t),

= −2νeλDut(1, t)D2ut(1, t) + 2ν
(
eλx, (D2ut)

2
)

(t) + 2νλ(Dut(1, t))
2,

− 2νλ(Dut(0, t))
2 − 4νλ2

(
eλx, (Dut)

2
)

(t) + νλ4
(
eλx, u2

t

)
(t).
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Lastly

I4 = 2
(
eλx (uDu)t , ut

)
(t) = 2

(
eλxu2

t , Du
)

(t) +
(
eλxu,D

(
u2
t

))
(t).

Since

2
(
eλxu2

t , Du
)

(t) = −2λ
(
eλxu, u2

t

)
−
(
eλxu,D

(
u2
t

))
,

we have

I4 = −2λ
(
eλxu, u2

t

)
− 2

(
eλxu, utDut

)
.

Note that

−2
(
eλxu, utDut

)
> −δ

∣∣∣∣∣∣eλ2 xDut(t)∣∣∣∣∣∣2 − 1

δ

∣∣∣∣∣∣eλ2 xuut∣∣∣∣∣∣2
> −δ

(
eλx, (Dut)

2
)
− 1

δ
maxx∈(0,1)u

2(x, t)
(
eλx, u2

t

)
>a −δ

(
eλx, (Dut)

2
)
− 1

δ
||Du(t)||2

(
eλx, u2

t

)
,

where we have used, in (a) the fact that maxx∈(0,1) |u(x, t)| 6 ||Du(t)|| for u ∈

H1
0 (0, 1). Also with the same reasoning above

−2λ
(
eλxu, u2

t

)
> −2λt ||Du(t)||

(
eλx, u2

t

)
(t).

Hence

I4 > −2λ ||Du(t)||
(
eλx, u2

t

)
(t)− δ

(
eλx, (Dut)

2
)
− 1

δ
||Du(t)||2

(
eλx, u2

t

)
,

> −δ
(
eλx, (Dut)

2
)
−
(

2λ+
1

δ

)(
1 + ||Du(t)||2

) (
eλx, u2

t

)
(t),

where δ > 0 is an arbitrary constant. Substituting I1 − I4 into (84) we get

d

dt

(
eλx, u2

t

)
(t) + [λ(3− 4νλ)− δ]

(
eλx, (Dut)

2
)

(t) + ν
(
eλx, (D2ut)

2
)

(t)

−
[
ν
(
1 + λ4

)
+ λ3 + 2λ+

1

δ

] (
1 + ||Du(t)||2

) (
eλx, u2

t

)
(t). 6 0.
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Since ν ∈ (0, 1/4), taking δ = 1/2 and λ = 1 we obtain

d

dt

(
eλx, u2

t

)
(t)+

(
eλx, (Dut)

2
)

(t)+ν
(
eλx, (D2ut)

2
)

(t) 6 C
(
1 + ||Du(t)||2

) (
eλx, u2

t

)
(t)

Note that uνt(0) ≤ C
(
‖uν0‖H3(0,1) + ν ‖D4uν0‖

)
, so the result follows from the last

inequality.

Lemmas 3.4 and 3.5 imply that

uν is bounded in L2(0, T ;H1
0 (0, 1)),

uνt is bounded in L2(0, T ;H1
0 (0, 1)),

ν1/2uν is bounded in L2(0, T ;H2(0, 1)),

ν1/2uνt is bounded in L2(0, T ;H2(0, 1)).

Then by Theorem 1.16

uν ∈ C([0, T ];H1
0 (0, 1)) ↪→ L∞(0, T ;H1

0 (0, 1)), (85)

ν1/2uν ∈ C([0, T ];H2(0, 1)) ↪→ L∞(0, T ;H2(0, 1)). (86)

Proof. (Theorem 3.3) From (85) and (86), it follows that there exists a subsequence

of uν which we denote also by uν and a function u such that

uν → u strongly in C(Q),

uν → u weakly-star in L∞(0, T ;H1
0 (0, 1)),

uνt → ut weakly-star in L∞(0, T ;L2(0, 1)),

uνt → ut weakly in L2(0, T ;H1
0 (0, 1)),

νuνt → 0 weakly-star in L∞(0, T ;L2(0, 1)),

where Q = (0, 1)× (0, T ).

As a preliminary result we prove first the following theorem:
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Theorem 3.6. Let u0 ∈ H4(0, 1) ∩ H1
0 (0, 1) with u0x(1) = 0. Then there exists u

such that u ∈ C([0, T ];H1
0 (0, 1)), ut ∈ L∞(0, T ;L2(0, 1))∩L2(0, T ;H1

0 (0, 1)) and that

satisfies the following:

(ut, v)(t) + (uux, v)(t) + (ux, vxx)(t) = 0, ux(1) = 0,

where v(x, t) ∈ L∞(0, T ;H2(0, 1)) ∩ L2(0, T ;H1
0 (0, 1)); vx(0, t) = 0; t ∈ (0, T ).

Proof. Due to the boundary conditions of uν and v, we can conclude from (75) that

for all v ∈ W , the following identity holds:

(uνt, v) (t)+(uνuνx, v) (t)+(uνx, vxx) (t)+ν (D2uν , v) (t)+ν (D2uν , D2v) (t) = 0. (87)

Passing to the limit as ν → 0, we obtain

(ut, v)(t) + (uux, v)(t) + (ux, vxx)(t) = 0

Also a function u0 ∈ H4(0, 1) in Theorem 3.1 satisfies

u0(0) = u0(1) = νu0xx(0) = u0(1) = u0x(1) + νu0xx(1) = 0.

When ν tends to zero we have

u0(0) = u0(1) = u0x(1) = 0

and this completes the proof.

Now let u be a function satisfying the properties in Theorem 3.6 and let, for a fixed

t ∈ (0, T ), F ∈ L2(0, 1) be defined as

F (x) = −ut(x, t)− u(x, t)ux(x, t) x ∈ (0, 1). (88)

Then for each v ∈ W , u satisfies the following conditions

(ux, vxx)(t) = (F, v)(t), (89)
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u(0, t) = u(1, t) = ux(1, t). (90)

where t ∈ (0, T ).

Lemma 3.7. Problem (89) and (90) has a unique solution in H1
0 (0, 1).

Proof. It is enough to show that the only solution for the following equation is zero:

(ux, vxx)(t) = 0,

where u satisfies the conditions in Theorem 3.6 and v ∈ W . Let

v(x, t) = (1− x)

∫ x

0

∫ s

0

u(y, t) dy x ∈ (0, 1).

Then, omitting t in the arguments we have

vx(x) = −
∫ x

0

∫ s

0

u(y) dy + (1− x)

∫ x

0

u(y) dy,

and

vxx(x) = −2

∫ x

0

u(y)dy + (1− x)u(x),

from which it follows that v ∈ W . Substituting v into (89) (and taking F = 0) we

have

0 = (ux, vxx) = −2

(
ux,

∫ x

0

u(y) dy

)
+(ux, (1− x)u) = 2(u, u)− 1

2
(x,

d

dx
u2 =

5

2
‖u‖2.

Thus u = 0.

Now we will show that u is actually in H3(0, 1). For this, let for any F ∈ L2(0, 1),

w = w(x) be defined as follows:

w(x) = K1x+K2x
2 +

1

2

∫ x

0

y2F (y) dy − x
∫ x

0

yF (y) dy +
x2

2

∫ x

0

F (y) dy.

When we take derivatives of w, the terms appearing with F (without the integral

of F) cancel, so w ∈ H3(0, 1). Also w clearly satisfies that w(0) = 0 and, lastly,

47



given F ∈ L2(0, 1) it is obvious that there exists K1 and K2 such that w(1) = 0 and

wx(1) = 0. Since wxxx = F (x) and w satisfy the boundary conditions of the problem

(90), we have w = u, where u is the solution in Theorem 3.6. Hence, we proved the

existence of regular solutions for (76)–(78) when u0 ∈ H4(0, 1) ∩H1
0 (0, 1).

Note that in Theorem 3.3 we need u0 ∈ H3(0, 1) ∩ H1
0 (0, 1) . For this, we observe

that in Lemma 3.4 we need u0 ∈ L2(0, 1) and in Lemma 3.5, as ν → 0 we get

‖ut‖2 +

∫ t

0

‖uxs(s)‖2 ds ≤ C‖u0‖2
H3(0,1).

Hence, approximating functions u0 ∈ H3(0, 1) ∩ H1
0 (0, 1) with u0x(1) = 0 by func-

tions v ∈ H4(0, 1) ∩ H1
0 (0, 1) with v0x(1) = 0, we prove the existence part of the

Theorem 3.3.

Uniqueness

Now let u, v be two solutions. Then for w = u− v, we have

wt +
1

2

d

dx
u2 − 1

2

d

dx
v2 + wxxx = wt +

1

2

d

dx
(w(u+ v)) + wxxx = 0,

with w(0) = w(1) = wx(1) = 0 and w(x, 0) = 0. Multiplying the above identity by

eλxw, integrating over (0, 1) and using the boundary conditions for w we get

d

dt

(
eλx, w2

)
(t)−

(
eλxwx, (u1 + u2)w

)
(t)− λ

(
eλx, (u1 + u2)w2

)
(t)

+ 2
(
eλxD3w,w

)
(t) = 0. (91)

Now we will estimate the terms separately as follows: First note that u ∈ C(Q).

Then

I1 =
∣∣(eλxwx, (u+ v)w

)∣∣ ≤M
(
eλx, |wwx|

)
(t)

ε
(
eλx, w2

x

)
(t) + C(ε)

(
eλx, w2

)
(t),

I2 = λ
∣∣(eλx, (u+ v)w2

)
(t)
∣∣ ≤ λM

(
eλx, w2

)
(t),

I3 = 2
(
eλxD3w,w

)
(t) = z2

x(0, t) + 3λ
(
eλx, w2

x

)
(t)− λ3

(
eλx, w2

)
(t).
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Substituting I1-I3 into (91) we get

d

dt

(
eλx, w2

)
(t) + (3λ− ε)

(
eλx, w2

x

)
(t) ≤ C(ε)

(
eλx, w2

)
(t).

Taking λ = 1 and ε = 2 and integrating over (0, t) we get

(
eλx, w2

)
(t) ≤ c

∫ t

0

(
eλx, w2

)
(s) ds,

from which it follows that ‖z(t)‖ = 0 for t ∈ (0, T )

3.3 Stability

Theorem 3.8. There exists positive constants λ0 ∈ (0, 1) and K such that if ||u0|| 6

3/e, then strong solutions to (2) - (4) satisfy the following inequality:

||u(t)||2 6 eλ0 ||u0||2 e−χ0t,

where χ0 = λ0/(2e
λ0).

Proof. Multiplying (2) by u and integrating over (0, 1) we get

d

dt
||u(t)||2 + 2

1∫
0

u2ux ds+ 2

1∫
0

uuxxx ds = 0,

which gives, using (4)
d

dt
||u(t)||2 + 2u2

x(0, t) = 0.

Hence for all t > 0 we have

||u(t)|| 6 ||u0|| . (92)

This time multiplying (2) by eλxu for λ ∈ (0, 1), we get

d

dt

(
eλx, u2

)
(t) + 2

(
eλx, u2ux

)
(t) + 2

(
eλx, uuxxx

)
(t). (93)
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Since

2
(
eλx, u2ux

)
(t) = −2λ

3

(
eλx, u3

)
(t),

and

2
(
eλxD3u, u

)
(t) = u2

x(0, t)− eλu2
x(1, t) + 3λ

(
eλx, u2

x

)
(t),−λ3

(
eλx, u2

)
(t)

from (93) we get the following equality:

d

dt

(
eλx, u2

)
(t)+3λ

(
eλx, u2

x

)
(t)−2λ

3

(
eλx, u3

)
(t)−λ3

(
eλx, u2

)
(t)+u2

x(0, t) = 0. (94)

Now taking into account (92) we estimate∣∣(eλx, u3
)

(t)
∣∣ 6 maxx∈(0,1)|u(x, t)|2

(
eλx, |u|

)
(t),

6 eλ ||ux(t)||2 ||u0||2 6 eλ ||u0||
(
eλx, u2

x

)
(t).

Substituting the above inequality into (94) we get

d

dt

(
eλx, u2

)
(t) + λ

(
3− 2eλ

3
||u0||

)(
eλx, u2

x

)
(t)− λ3

(
eλx, u2

)
(t) 6 0.

Since 0 < λ < 1 and taking ||u0|| < 3/e, above inequality reduces to the following

one:
d

dt

(
eλx, u2

)
(t) + λ

(
eλx, u2

x

)
(t)− λ3

(
eλx, u2

)
(t) 6 0. (95)

Observe that since u ∈ H3(0, 1) and we are in one dimension u is bounded. Hence,

maxx∈(0,1)|u(x, t)| > ||u(t)|| which gives(
eλx, u2

x

)
(t) > ||ux(t)||2 > maxx∈(0,1)|u(x, t)|2 > ||u(t)||2 > 1

eλ
(
eλx, u2

)
(t).

Then (95) becomes

d

dt

(
eλx, u2

)
(t) + λ

(
e−λ − λ2

) (
eλx, u2

)
(t) 6 0.

We now need the following lemma:
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Lemma 3.9. There exists λ0 ∈ (0, 1) that

1

eλ
− λ2 >

1

2eλ
,

for all λ ∈ [0, λ0].

Proof. The inequality we want to prove is equivalent to the following one:

f(λ) = 1− 2eλλ2 > 0, λ ∈ [0, λ0].

Since f is continuous and f(0) = 1 there exists such λ0 ∈ (0, 1).

Then by this lemma, from the last inequality we get for all λ ∈ [0, λ0]

d

dt

(
eλx, u2

)
(t) +

λ

2eλ
(
eλx, u2

)
(t) 6 0.

Since χ(λ) = λ/(2eλ) is an increasing function of λ on (0, 1), we have

maxλ∈[0,λ0]χ(λ) =
λ0

2eλ0
= χ0.

Now multiplying the last inequality by eχ0t and taking λ = λ0, we get

d

dt

(
eχ0tE(t)

)
6 0,

where E(t) =
(
eλ0x, u2

)
(t). Hence we have

E(t) 6 E(0)e−χ0t.

which completes the proof.
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