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ABSTRACT

Abstract

We study the interaction of quantized electromagnetic (EM) fields with an en-

semble of Delta-type three-level quantum systems driven by a classical EM field.

This system is considered to be promising for quantum information applications,

in particular for implementing quantum repeater protocols in long distance quan-

tum communications. We further develop a critical review and generalizations of

canonical (Fröhlich) Transformations, which is frequently used in the analysis of

such complicated quantum optical models in terms of simpler effective models.

Next, we construct a method to find time-evolution of the quantum fields, based

on which we demonstrate quantum information transfer between the fields. Our

results are applicable for any number of atoms in the ensemble and for large cou-

pling of atoms to classical field, relative to the quantum fields. The previous studies

assumed both the atom number and the relative classical coupling to be infinitely

large. Thus we relaxed these conditions, which is physically too restrictive. Finally,

we discuss possible further developments of this work, and suggest the other cases

for which application of this method could be fruitful.
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Chapter 1

INTRODUCTION

Quantum computers are proven to be efficient in solving many problems in

which classical computers are inefficient [16]. Furthermore, classical communi-

cation are theoretically not immune to eavesdropping, since classical information

can be clonned in the middle of the transmission line. But this is also an advantage

in long distance classical communications, since one can ’amplify’ the signal by

making several identical copies of bits. Quantum communcation, which is based

on trasnmitting quantum systems (such as photons) and performing quantum op-

erations, is proved to be ideally immune to eavasdropping for certain classes of

communication protocols such as BB84 [17]. But, on the other hand, quantum no-

cloning theorem [3], [2] makes it impossible to amplify quantum information in the

classical sense, since one cannot make a perfect copy an unknown qubit. There-

fore, another scenario is required, both to store and retrieve, and to amplify quan-

tum information that is carried on by physical systems such as photons. However,

the problem of storage and retrieval of quantum information can be addressed by

the so-called quantum memories [18], which are basically electronagnetically con-

trolled atomic ensembles interacting with photonic qubits. Although unknown

quantum states cannot be cloned, but they can be transferred between two modes

via entanglement. For applications in quantum communication, by means of such

ensembles, we can create new versions of qubits in appropriate distances before

loss or decoherence. These are called quantum repeater protocols. Since the two

photon modes must be simultaneously coupled with quantum systems in such

ensembles in a way to make the modes entangled, therefore the modes must cor-
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respond to energy level differences which have overlap with one another. This

means that one and multi-photon (two or more) transitions must coexist in such

quantum systems. But this is against electric-dipole selection rules which is valid

for quantum systems with inversion symmetry [1]. Quantum systems with inver-

sion symmetry are characterized by Hamiltonians which commute with rotation

operator. Therefore, such transitions are not allowed in systems with inversion

symmetry. We can either use prototypes that lack inversion symmetry, such as

semiconductors [20]-[25], or we can artificially break the symmetry of a symmetric

Hamiltonian. One of the simplest candidates are three-level ∆-type systems with

the so-called cyclic transitions.
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Chapter 2

FRÖLICH TRANSFORMATION OF HAMILTONIANS IN

INTERACTION PICTURE

Introduction

Different kinds of canonical transformations have been introduced and used in

quantum theory. Quantum canonical transformations were firstly introduced by

Born, Jordan and Heisenberg [9] in the context of Matrix Mechanics, as all possible

transformations that preserve the commutation relation:

[pi, qi] =
~

i
I, (2.1)

where qi and pi are pairs of conjugate variables. This can be done by a similar-

ity transformation of matrices associated with the conjugate variables. Since the

works of Weyl and Dirac much attention has been given to unitary canonical trans-

formations, which preserve the orthonormality of the basis of Hilbert Space in ad-

dition to the commutative structure. In this chapter we first review Interaction

picture in details. Then we review and develop Frölich Transformation which is

an approximate canonical transformation. Then we combine these two transfor-

mations to give a combined transformation. Next we develop an approximation

scheme and explain how to use it to find approximate dynamics imposed by a

many-body Hamiltonian.
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2.1 Interaction Picture

Introduction

Interaction Picture involves an exact canonical transformation. Consider a quan-

tum system, such as a single atom in the presence of other quantum systems and/or

fields, with Hamiltonian H. The terms in H can be grouped into two: time-dependent

(H iso) and time-independent (Ht). If individual quantum systems were not inter-

acting with external fields, the system would be isolated and time-independent

(e.g., see [13]). But note that H iso may also include time-independent external

fields. If the system was isolated and initially found to be in state | Ψiso
(0)〉, it

will evolve into U iso
(t) | Ψiso

(0)〉 after time t, where U iso
(t) = e−iHisot. Now, imag-

ine the same system being under the influence of external time-varying classical

fields. This must be treated with the extra type of terms Ht in the Hamiltonian

to get H = H iso + Ht and the atom will evolve into | Ψ(t)〉S = U(t) | Ψ(0)〉S af-

ter time t, where U(t) = e−iHt. Now, if we multiply the time-dependent state of

the new system | Ψ(t)〉S with U iso†
(t) = eiH

isot to get a new state | Ψ(t)〉I , then, that

part of time-evolution that is purely due to term Hiso is excluded from | Ψ(t)〉I . In

other words, if Ht = 0, then | Ψ(t)〉I =| Ψ(0)〉S . Moreover, if [H iso, Ht] = 0, then

| Ψ(t)〉I = e−iHtt | Ψiso
(0)〉. These observations suggest that an equation that gov-

erns time-evolution of | Ψ(t)〉I might be easier to solve. In order to find such an

equation let us find the time-derivative of | Ψ(t)〉I :

i∂t | Ψ(t)〉I = (i∂tU
iso†

(t)) | Ψ(t)〉S + U iso†
(t)(i∂t | Ψ(t)〉S)

= (i(∂tU
iso†

(t))U
iso + U iso†

(t)HU
iso
(t) )U

iso†
(t) | Ψ(t)〉I . (2.2)

Therefore, | Ψ(t)〉I obeys a new eqaution,

i∂t | Ψ(t)〉I = HI | Ψ(t)〉I , (2.3)
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where

HI = i(∂tU
iso†

(t))U
iso + U iso†

(t)HU
iso

(t)

= U iso†
(t)HtU

iso
(t) (2.4)

We made the last step by recalling that the Hamiltonian of isolated system is time-

independent, i. e., ∂tHiso = 0. The new picture is called Interaction or Dirac Picture.

Moreover, for an arbitrary operator AS in the Schrödinger picture, if we require it

to be transferred as

AI
(t) = U iso†

(t)A
S
(t)U

iso
(t), (2.5)

then, if AS
(t)|Ψ(t)〉S = |Ψ′〉S , we get AI

(t)|Ψ(t)〉I = |Ψ′
(t)〉I , where |Ψ(t)〉I and |Ψ′

(t)〉I are

|Ψ(t)〉S and |Ψ′
(t)〉S in the interaction picture, respectively. Furthermore, the matrix

elements are preserved, i. e.,

I〈ai(t)|AI
(t)|aj(t)〉I = S〈ai(t)|AS

(t)|aj (t)〉S. (2.6)

The next result is a dynamical equation for operators in this picture, the coun-

terpart of the Heisenberg equation. In order to find it, let us take the partial-

imaginary-time derivative of (2.5):

i∂tA
I
(t) = −U iso†

(t)H
isoAS

(t)U
iso

(t) +

U iso†
(t)A

S
(t)H

isoU iso
(t) + U iso†

(t)(t)i∂tA
S
(t)U

iso
(t)

= U iso†
(t)(t)[A

S
(t), H

iso]U iso
(t) + U iso†

(t)i∂tA
S
(t)U

iso
(t)

= [AI
(t), H

iso] + U iso†
(t)i∂tA

S
(t)U

iso
(t). (2.7)

When AS is time-independent, we get:

i∂tA
I
(t) = [AI

(t), H
iso] (2.8)
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In many problems of physical interest, HI is time independent. Then, solving Eq.

(2.3) becomes much easier than solving the original Schrödinger equation. How-

ever, it is very important to note that the Hamiltonian in the interaction picture,

HI , is NOT a similarity transformation of H , but of Ht. And although eigenvectors

of HI , i. e. |Ψn〉Is, are just unitary transformations of the eigenvectors of H , i. e.

|Ψn〉Ss, but H and HI are NOT isospectral. Using (2.4), this can be seen as below:

H = H0 +Ht

= H0 + U iso
(t)H

IU iso†
(t). (2.9)

Here, while the second term is isospectral with HI , however, due to the presence

of H0, [H,HI ] 6= 0 unless [H0, Ht] = 0, which is not hold in general. Therefore, they

do not pose the same set of eigenstates; neither are they isospectral. In Sec. 2.1.1

we will prove a necessary theorem that helps using HI obtained from (2.4) to find

approximate time-evolution of states.

2.1.1 Time-evolution of states acted upon by operators

Note that at t = 0, we have

|Ψ(0)〉I = |Ψ(0)〉S (2.10)

= |Ψ(0)〉. (2.11)

A problem of practical application is finding the time-evolution of a state as it is

defined as below:

|Ψ(0)〉S = A(0)|Φ〉(0). (2.12)

With a proper choice of A(0), the state above may represent any state. We men-

tioned that solving the Schördinger equation in interaction picture (2.3)is usually

easier. Therefore, we first solve the problem in interaction picture and then move

to Schödinger picture by a unitary transformation of U iso = e−iHisot. The following

lemma shows how to find |Ψ(t)〉S by using interaction picture.
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Lemma 2.1.1. If |Ψ(0)〉I = A(0)|Φ(0)〉, then

|Ψ(t)〉S = e−iHiso

A(−t)|Φ(t)〉I , is the only solution. (2.13)

Here HI is the interaction Hamiltonian given by (2.4), |Φ(t)〉I is time-evolution of |Φ(0)〉
in the interaction picture given by (2.3) and A(−t) is determined by the following equation:

i∂tA(−t) = −[A(−t), H
I ]. (2.14)

Proof. Note that equation Ψ(t)〉I = A(−t)|Φ(t)〉I satisfies (2.3):

i∂t(A(−t) | Φ(t)〉I) = (i∂tA(−t)) | Φ(t)〉I + A(−t)i∂t | Φ(t)〉I

= (−[A(−t), H
I ] +HI) | Φ(t)〉I

= HIA(−t) | Φ(t)〉I (2.15)

Therefore, since the solution of (2.3) is unique and |Ψ(0)〉I = A(0)|Φ(0)〉I , Ψ(t)〉I is the

only solution with this initial condition. And, |Ψ(t)〉S = e−iHiso

Ψ(t)〉I .

Corollary: Let |Φ(0)〉I be an energy eigenstate of HI the Hamiltonian in interac-

tion picture, then

|Ψ(t)〉S = e−iHisotA(−t)|Φ(0)〉I . (2.16)

2.2 Fröhlich Transformation

Introduction

Flohlich Transformation is used to approximate Hamiltonians and finding approx-

imate eigenvalues. Roughly speaking, a Fröhlich Transformation is obtained by

unitarily transforming a Hamiltonian such that the first order term vanishes and

terms up to second order in λ are kept. This makes the subsequent eigenvalues

of second order in λ as well, with zeroth order equal to the respected eigenval-

ues of unperturbed Hamiltonian. Therefore, the resultant Hamiltonian, although

not isospectral with the originial perturbed Hamiltonian, but is isospectral up to



Chapter 2: Frölich Transformation of Hamiltonians in Interaction Picture 8

second order with it. Firstly introduced by Fröhlich [5] in investigating electron-

phonon interactions in metals, the method has been widely used in solid-state

physics and quantum optics and generally where Hamiltonians are perturbed by a

small perturbation (comparing to energy levels of the unperturbed Hamiltonian),

with respect to which the Hamiltonian is analytic. Fröhlich Transformation shows

its advantage in approximating operators in infinite dimensional Hilbert spaces,

where it is much harder to deal with series in second order perturbation theory. We

show that all valid Fröhlich Transformations of a Hamiltonian do not even com-

mute with each other, which means they do not have the same set of eigenvectors.

The question then arises: If they are not unique, what do they refer to? And do they

have the same set of eigenvalues? The answer to the latter question becomes cru-

cial in tensor-product and infinite-dimensional Hilbert space, wherein as we will

show, one can easily find the transformation for one body problem and generalize

it to many-body system by summing over indexes of generators of Fröhlich trans-

formations, but one may wonder if other more sophisticated transformations can

give different results (eigenvalues, etc.). We will answer to this and more questions

in terms of theorems. Then we generalize Fröhlich method and the approximate

spectral uniqueness theorem to perturbative Hamiltonians. After this section, we

will apply the results obtained here to attack our problem.

2.2.1 Formulation

Take a Hilbert space H and consider the space of linear operators L acting on it.

Let us take two arbitrary non-commutative Hermitian operators H0 and H1 ∈ L .

H := H0 + λH1, λ ∈ R (2.17)

Note that if perturbation parameter is complex, then we must have Hermitian con-

jugate of λH1 as well. Consequently, we can keep madulus and take the phase fac-

tors inside H1 by redefining it. Therefore, all the results ontained by assuming real

perturbation parameters (one or more) will be valid for the case of complex per-

turbations as well. Now, consider a unitary transformation U := exp(λS), where
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S is an anti-Hermitian operator on H . Then, applyng Baker-Campbell-Hausdorff

formula and rearranging terms of the same order gives:

H ′ = U †HU (2.18)

= H0 + λH1 +
[H0 + λH1, λS]

1!
+

[[H0 + λH1, λS], λS]

2!
+O(λ3)

= H0 + λ(H1 + [H0, S]) + λ2([H1, S] +
[[H0, S], S]

2!
) +O(λ3) (2.19)

The idea is to choose S such that the first order term in λ in H ′ vanishes. Thus this

must hold:

∃S ∈ L , such that S = −S† and H1 + [H0, S] = 0. (2.20)

We take the terms up to second order,

Heff = H0 + λ(H1 + [H0, S]) +
λ2([H1, S] + [[H0, S], S])

2!
(2.21)

Using the condition (2.20), Heff will be simplified as below:

Heff = H0 + λ2
[H1, S]

2
. (2.22)

Also note that from Eq.s (2.18) and (2.21) we have:

Heff = U †H ′U + O(λ3), (2.23)

Thereforem, if |Ψn〉 is an eigenstate of H, then

|Ψ′
n〉 = U †|Ψn〉 (2.24)

is an exact eigenvector of H’ given by (2.18) and also an approximate eigenvector

of Heff given by (2.21) up to second order in purturbative parameter.

2.2.2 On Existence and Uniqueness of Fröhlich Transformation

As we will show below, Fröhlich Transformation may not exist and when it exists

it is not unique.
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Example: For H = σ1 + λ( I2
2
− σ2) no solution S exists. Thus, Fröhlich Transforma-

tion is not even possible. In general, for finite dimentional Hilbert spaces, Tr(H1)

must be zero in order for (2.20) to have a solution S. Note that for infinite dimen-

sional spaces, the condition Tr(H1) = 0 is not necessary; but whether S exists or

not depends on the choices of H0 and H1.

S is clearly not unique. If S is a solution of (2.20), then S + Λ is also a solution

iff Λ† = −Λ and [H0,Λ] = 0.

Example: The set of generators of all Fröhlich Transformations for H = σ1 + λσ2.

Using the basis that spans M (C, 2) and consists of Pauli matrices and identity, it

follows that {S|S = αI2 + βσ2, ∀α, β ∈ C} is the set of all solutions of (2.20).

Conclusion:

Fröhlich transformation may neither exist, nor may it be unique. In fact, if S1 and

S2 each satisfies (2.20), then,

Heff1 = H0 + λ2
[H1, S1]

2
(2.25)

Heff2 = H0 + λ2
[H1, S2]

2
, (2.26)

from which it follows that

[Heff1, Heff1] =
λ2

2
[H0, [H

1, S2 − S1]] + O(λ4).

Although [H0, S2−S1] = 0, since we assumed [H0, H
1] 6= 0, and that since satisfying

(2.20) by S1, S2 imposes no further conditions on S2−S1, thus [H0, [H
1, S2−S1]] may

not be zero for two possible solutions of (2.20). In other words, if S1 is a solution

of (2.20), there exists S2 such that its corresponding effective Hamiltonian does not

commute with that of S1. One may wonder if all the possible solutions have the

same set of eigenvalues up to 2nd order. Answer to this question becomes crucial

especially in infinite dimensional composed systems where determining the set of

all F Transformations is cumbersome.
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2.2.3 Second-order Isospectrality of Fröhlich Transformations

Definition Second-order Isospectrality: Second-order isospectrality ofHeff1 andHeff2

means if we keep the series of each eigenvalue in the eigenset of each operator up

to second order, the resulting sets will be equal.

We will prove second-order isospectrality of two effective Hamiltonian resulted

from two Fröhlich Transformation of the same Hamiltonian in a theorem immedi-

ately after the following lemma.

Lemma 2.2.1. Let

O1(λ) and O2(λ) ∈ L ,

be analytic operators with respect to a parameter λ around a point λ0 and have discrete

spectrum. Then the following holds

O1(λ0) = O2(λ0)

dO1

dλ
(λ0) =

dO2

dλ
(λ0)

d2O1

dλ2
(λ0) =

d2O2

dλ2
(λ0),

where
dkOj

dλk (λ0) means k-th order derivative of Oj(λ) with respect to λ at λ = λ0, then O1(λ)

and O2(λ) are second-order isospectral.

Proof. Take an arbitrary linear operator defined on H which is analytic with re-

spect to a parameter λ around λ = λ0, in the form below:

O(λ) = O(0) + (λ− λ0)O
(1) + (λ− λ0)

2O(2) + (λ− λ0)
3F(λ),

where F(λ) is an analytic operator. Let’s symbolically denote eigenbasis and the

corresponding eigenset of O(0) by {|Ψn〉} and {εn} respectively, and similarly the

engenbasis and eigenset of O(λ) by {|Ψ′
n〉} and {ε′n}, respectively. Then, we can
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write

| Ψ′
n〉 =

∑

m

Cnm(λ) | Ψm〉 (2.27)

ε′n =
∑

k=0

εnkλ
k, and (2.28)

Cnm(λ) =
∑

k=0

Cnm
(k)λk. (2.29)

Now consider solving O(λ) | Ψ′〉 = ε′n | Ψ′
n〉. After manipulating O(λ) and ε(λ), it

gives

(O(0) + (λ− λ0)O
(1) + (λ− λ0)

2O(2) + (λ− λ0)
3F(λ)) | Ψ′

n〉 = (
∑

k=0

εnk(λ− λ0)
k) | Ψn〉,

(2.30)

By solving the above equation order by order in λ − λ0, we will get the following

results:

ε′(0)n = ε0n (2.31)

ε′(1)n = 〈Ψn | O(1) | Ψn |〉 (2.32)

ε′(2)n =
∑

m6=n

| 〈Ψn | O(1) | Ψm〉 |
2

ε0n − ε0m
+ 〈Ψn | O(2) | Ψn〉 (2.33)

This completes the proof of Lemma.

Theorem 2.2.1. Fröhlich Transformed Hamiltonians are second-order isospectral.

Proof. Consider the equations (2.22) for two Fröhlich Transformed Hamiltonians

Heff1 and Heff2. Since they are sum of the few first temrs of unitary transforma-

tions, thus they are analytic with respect to the generators of transformations, too.

So, Lemma (2.2.1) applies. Note that each of them are equal up to second order to

the respective unitary transformation of the initial HamiltonianH . Therefore, since

all the unitary transformations of a the Hamiltonian H are isospectral, H , Heff1

and Heff2 are all second-order isospectral. Since the generators of Fröhlich Trans-

formations S1 and S2, were chosen arbitrarily, all the Fröhlich Transformations of

Hamiltonian H are second-order isospectral. This completes the proof.
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In the next subsection we find a resolution for this problem by means of second-

order isospectrality.

2.3 Combination of Transformations as an Approximate Picture

In the next chapter, we will apply the mathematical tools reviewed and further

developed in this chapter to the case of atomic ensemble in interaction with exter-

nal fields. There, transforming the Hamiltonian to interaction picture is followed

by a time-independent Fröhlich Transformation, which makes the model solvable.

We would like to find the relation between time-dependent states that satisfy a

Schördinger equation with Fröhlich transformed Hamiltonian in interaction pic-

ture and the corresponding Schrödinger picture states. If HI is Hamiltonian H in

the ineraction picture, then from Eq.s (2.18) and (2.21), Fröhlich Transformation of

it gives

Heff
I = U †HIU + O(λ3), (2.34)

Trivially, for a time-independent Fröhlich Transformation defined by (2.21), U is

time-independent. Now, let |Ψ(0)〉S = A(0)|Φ(0)〉 denote the initial state in the

Schrödinger picture. Then, because of spectral theorem, one can expand every

element |Ψ〉 of the Hilbert space of interaction picture HamiltonianHI by its eigen-

vectors |Ψn〉:

|Ψ〉 =
∑

n

Cn|Ψn〉. (2.35)

Substituting |Ψn〉 from (2.24) we get:

|Ψ〉 =
∑

n

CnU |Ψ′
n〉

= U
∑

n

Cn|Ψ′
n〉, (2.36)

where |Ψ′
n〉s are exact eigenvectors of H’ and approximate eigenvectors of Heff .

Starting by classifying the terms in Hamiltonian as in Interaction Picture in the
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form H = H iso +Ht, let us define a combined unitary transformation T = U †eiH
isot

as below:

T(t) : |Ψ(t)〉S 7−→ |Ψ(t)〉C, and (2.37)

T(t) : O
S
(t) 7−→ OC = T(t)

†OST(t), t > 0, (2.38)

, (2.39)

where S and C are used to denote the same ket or operator in Schrödinger and

Combined representations, respectively. Two unitarily equivalent representations

indicate the same physics because the expectation value of operators are the same,

that is:

S〈Ψ|OS|Φ〉S = C〈Ψ|OC|Φ〉C , (2.40)

for all pairs of |Ψ〉S, |Φ〉C and |Ψ〉S, |Ψ〉C in H and connected via (2.39). Let us

see if we can find an equation similar to Schrödinger equation (first-order in time)

that governs the dynamics of |Ψ(t)〉C . Taking the time derivative of it we find the

Hamiltonian in the new representation is given as below:

i∂t|Ψ(t)〉C = HC |Ψ(t)〉C , with (2.41)

HC = U †e−iHisotHte
iHisotU. (2.42)

The following Lemma and its corollary gives exact time-evolution of kets in C Pic-

ture.

Lemma 2.3.1. Let |Ψ(0)〉C = A(0)|Φ(0)〉 ∈ H , then

|Ψ(t)〉S = e−iHisotUA(−t)|Φ(t)〉C, is the only solution, (2.43)

whereHC is given by (2.42), |Φ(t)〉C is time-evolution of |Φ(0)〉 as given by (2.41) andA(−t)

is determined by the follwing equation:

i∂tA(−t) = −[A(−t), H
C]. (2.44)



Chapter 2: Frölich Transformation of Hamiltonians in Interaction Picture 15

Proof. Since |Ψ(0)〉C = A(0)|Φ(0)〉C ∈ H , with A(0) being an operator in C represen-

tation and |Φ(0)〉C an arbitrary ray in H , then we have:

|Ψ(t)〉C = A(−t)|Φ(t)〉C (2.45)

where,

i∂tA(t) = [A(t), H
C ] (2.46)

and |Φ(t)〉C satisfies (2.41).

To get back the state in Schrödinger representation we perform inverse of the trans-

formation defined in (2.37):

|Ψ(t)〉S = T
†
(t)|Ψ(t)〉C (2.47)

⇒ |Ψ(t)〉S = e−iHisotUA(−t)U
†eiH

isot|Φ(t)〉S, (2.48)

with the initial state:

|Ψ(0)〉S = UA(0)|Φ(0)〉S (2.49)

Note that any initial state can be written as A(0)|Φ(0)〉C in the C representation,

which indicates the same physical system as UA(0)|Φ(0)〉S . Depending on the choice

of T, finding time-evolution in C representation is normally easier wherever inter-

action picture and Fröhlich Transformations are both useful.

2.3.1 Time-evolution of kets in the approximate picture

A unitary tranformation to interaction picture followed by a Fröhlich Transfor-

mation, which equals to U up to second order in the perturbative parameters, is

equivalent to affecting T up to second order in perturbative parameters. Since

all the equations above from (2.37) to (2.49) hold order by order in purturbative

parameters, it means they also hold for a transformation consisting of an interac-

tion picture followed by a Fröhlich Transformation. In other words, if we replace
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HC with Fröhlich Transformation of an Hamiltonian in interaction picture, then

(2.45), (2.46), (2.3.1) and (2.49) hold up to second order in perturbative parameters.

Corollary: Let |Φ(0)〉 be an energy eigenstate of Heff
I the Fröhlich Transformation

of Hamiltonian in interaction picture, then

|Ψ(t)〉S = e−iHisotUA(−t)|Φ(0)〉, (2.50)

up to second order in perturbation parameters, wherein A(t) satisfies (2.46) with

HC replaced by Heff
I . In other words, (2.50) is the satisfies the Schrödinger equa-

tion with H at time t up to second order in the perturbation parameters. Proof:

Let |Ψ(0)〉C in (2.3.1) be an eigenvector of HC replaced by Heff
I in . Then |Ψ(t)〉C =

e−iγ|Ψ(0)〉C up to the phase e−iγ . Note that (2.50) is the a unique solution of Schrd̈inger

equation, since as we showed in section (2.2.2) Fröhlich transformations if exist are

not unique for each Hamiltonian. But due to theorem (2.2.1) Fröhlich transformed

Hamiltonians have unique eigenvalues up to second order and therefore, time-

evolution given in (2.50) is unique up to second order in perturbation paramters

for any chosen Fröhlich transformation.
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Chapter 3

∆-TYPE ATOMS COUPLED TO QUANTUM AND CLASSICAL

FIELDS

3.1 Constructing the Hamiltonian

Single quantum systems with ∆-type transitions have been studied in Refs. [26]-

[34]. A quantum systems with ∆-type transitions can be realized by different kinds

of physical systems, including atoms whose symmetry is broken by applying a

coherent radio frequency field [35]-[38], chiral molecules[30]-[34] and supercon-

ducting circuits[39]-[40]. It has been shown that by coupling two photon modes

to an ensemble of ∆-type atoms with an electromagnetic field in resonance with

transitions between the two excited states, one can swap the quantum information

between two modes. Therefore, it provides a general model for physical realization

of quantum repeaters and memories [18], which are the key component in imple-

menting large distance quantum communication technologies[41]. The Hamilto-

nian of a system consisting of one ∆-type atom coupled to two photon modes with

frequencies ωa and ωb and driven by a monochromatic electromagnetic field with

frequency ων , can be written as below[14]:

H = ωaa
†a+ ωbb

†b+ ωabσaa + ωcbσcc + Ω′e−iωνteiKν .rσac + gaae
iKa.rσab +

gbbe
iKb.rσcb + h.c. (3.1)

Later on, we solve the problem for one atomic and many atomic case by requiring

resonance condition, that is requiring the frequency of the classical field to be equal

to that of energy difference between the excited states, that is ων = ωa−ωb (See Fig-

ure (??)). The reason for that is we want to achieve maximum coupling between

photon fields to achieve maximum rate of state transfer between them.
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Figure 3.1: A ∆-type atom and the allowed transitions

Hamiltonian for the Atomic Ensemble

Putting an index j on Hamiltonian of jth atom and summing over j gives the Hamil-

tonian of the Atomic ensemble+photon fields driven by a classical field:

N
∑

j=1

H(j) = ωaa
†a + ωbb

†b+
N
∑

j=1

ωabσaa
(j) +

N
∑

j=1

ωcbσcc
(j) +

N
∑

j=1

Ω′e−iωνteiKν .rσac
(j)

+

N
∑

j=1

gaae
iKa.rσab

(j) +

N
∑

j=1

gbbe
iKb.rσcb

(j) + h.c. (3.2)

This operator is defined on the space made by tensor product Hilbert space of

atoms and Fock space of the two photon fields, that is

H = Fa ⊗ Fb ⊗N
j=1 Hj . And,

σxy
(j) = ⊗j

k=1Ik⊗ | xj〉〈 yj | ⊗N
l=j+1Il ⊗ Ia ⊗ Ib, (3.3)

where N is the number of atoms, Id is the Identity operator on Hilbert space Hd

of number dth atom, and Ia and Ib are Identity operators on Fock spaces of pho-

ton fields. The Hamiltonian above was approximately solved in the interaction

picture by first applying Group Contraction method and then finding the limit of

infinite Rabi frequency of the classical field, previously [14]. Here, we first give a

review of the former results and then in Sec. 3.2 we will solve it by means of a C

Transformation as defined in Sec. 3.3.
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3.2 Approach I: Group Contraction

We can get rid of time dependence by transferring (3.2) to Interaction Picture and

imposing resonance condition. The resonace condition is simply requiring the fre-

quency of classical field to be equal to that of the energy difference of excited states,

here a and c. To do so, following Sec. 2.1, we distinguish the terms in (3.1) in the

way below:

H iso = ωaa
†a+ ωbb

†b+
N
∑

j=1

ωabσaa
(j) +

N
∑

j=1

ωcbσcc
(j) (3.4)

Ht =

N
∑

j=1

Ω′e−iωνteiKν .rσac
(j) +

N
∑

j=1

gaae
iKa.rσab

(j) +

N
∑

j=1

gbbe
iKb.rσcb

(j) + h.c.. (3.5)

With this division, transforming H to Interaction Picture and requiring the reso-

nance condition ων = ωa − ωb gives the following Hamiltonian:

H =
N
∑

j=1

(Ω′σac
(j) + gaaσab

(j) + gbbσcb
(j) + h.c.) (3.6)

Note that, we assume the photon fields are homogeneously coupled to atoms, that

is coefficients ga, gb is the same for all atoms. This is for reducing decoherence. In

his section, in order to solve (3.6), we apply Group Contraction. Following [19], we

define a set of collective operators:

T =
N
∑

j=1

σac
(j), A =

1√
N

N
∑

j=1

σba
(j)

C =
1√
N

N
∑

j=1

σbc
(j), T z =

N
∑

j=1

(σaa
(j) − σcc

(j)), (3.7)

Rewriting the Hamiltonian we get

H = Ω′T † + ga
√
NaT † + gb

√
NbC† + h.c. (3.8)
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A dynamical symmetry imposed by a Lie algebra lies in the above equation. The

Lie algebra can be characterized by generators A, C, T, which in the limit of large

N and low exitations, obey the following rules [15]:

[A,C†] = [A,C] = 0, [A,A†] = I, [A, T †] = C, [A, T ] = 0

[C,C†] = I, [C, T †] = 0, [C, T ] = A, [T †, T ] = T z, (3.9)

where I = ⊗N
l=1Il is the identity operator for the Hilbert space of atoms. Low

excitations means that the ratio of atoms in the excited state to the total number

of atoms is small, which implies that < C†C >� 1 and < A†A >� 1. Note

that since A and C commute, they represent two independent bosonic collective

modes. Following [19] we consider the case where coulings of atoms to the photon

modes are different only in phase, that is ga = geiφa, gb = geiφb . Also we have

Ω′ = Ωeiζ , with ζ = |arg(Ω′)| and Ω ∈ R. By absorbing these phases in the atomic

kets involved in (3.8), and replacing g with gN√
N

, we get:

H = ΩeiϕT † + gNaT
† + gNbC

† + h.c., (3.10)

where ϕ = ζ + φc − φa. To diagonalize (3.10), we write it in terms of Polariton

Operators as below:

H =
4
∑

k=1

εkDk
†Dk, with (3.11)

D1,2 =
sin(θ)√

2
(a± beiϕ) +

cos(θ)√
2

(Ceiϕ ± A), (3.12)

D3,4 =
cos(θ)√

2
(a± beiϕ)− sin(θ)√

2
(Ceiϕ ± A), (3.13)

and

ε1 = −ε2 =
Ω +

√

Ω2 + 4g2N
2

, (3.14)

ε3 = −ε4 =
Ω +

√

Ω2 − 4g2N
2

, and (3.15)

θ = arctan
2gN

Ω +
√

Ω2 + 4g2N
(3.16)
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To obtain the above form, note that (3.10) is a bilinear in operators; thus one must

look for a linear combination of them as Polariton Operators each with 4 unknown

coefficients. By requiring the bosonic relations

[Dk, D
†
k] = I, (3.17)

[Dk, Dj] = [Dk, D
†
j] = 0, for k 6= j, (3.18)

one can obtain 4 equations by substituting (3.10) in the form below:

[Dk, H ] = Dk, k = 1, ..4. (3.19)

Then the eigenstates of (3.11) can be written as

|Ψlmnk〉 = |l, m, n, k〉D1,D2,D3,D4
=

1√
l!m!n!k!

D†l
1D

†m
2 D

†n
3D

†k
4|0〉, (3.20)

in which |0〉 = |0, 0〉a,b ⊗ |b〉 and |0, 0〉a,b is the vacuum state of photon modes and

|b〉 = ⊗N
j |b〉j the ground state of atoms. Then the eigenvalues can be readily found:

εlmnk = (l −m)ε1 + (n− k)ε3. (3.21)

3.2.1 Time-Evolution of Fock States

Using the approximate Hamiltonian written in terms of Polariton Operators (3.10),

one can find the time-evolution of Polariton Operators:

i∂tDk = [Dk, H ]

= εkDk

→ Dk = e−iεktDk(0). (3.22)

Let us say we want to find time-evolution of an initially direct product Fock state

that is given as below in the Schordinger Pictre:

|Ψ(0)〉I =
1√
na!nb!

a†nab†nb |0, 0〉 ⊗ |b〉. (3.23)

Since |0, 0〉⊗|b〉 is an eigenstate of both (3.6) and (3.11), by using Lemma (2.1.1) and

its corollary, we can write

|Ψ(t)〉 =
1√
na!nb!

a†na
(−t)b

†nb
(−t)|0, 0〉 ⊗ |b〉, (3.24)
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Here, note that the 4 equations in (3.12)-(3.13) hold at all times. So by converting

them

a =
1√
2
[(D1 +D2)Sin(θ) + (D3 +D4)Cos(θ)], (3.25)

b =
1√
2
[(D1 −D2)Sin(θ) + (D3 −D4)Cos(θ)], (3.26)

and substituting Dk(t) from (3.22), we can find, operators a(t) and b(t) in terms of

Dk(t) that are nothing but time dependent phases times Dk(0)s. The latter can be

written back in terms of a(0) and b(0) (by means of (3.12) - (3.13)) to get a(t) and b(t)

in terms of a(0), b(0), A(0) and C(0):

|Ψ(t)〉 =
1√
na!nb!

(F a
a(t)a

†
(0) + F a

b(t)b
†
(0) + F a

A(t)A
†
(0) + F a

C (t)C
†
(0))

na

(F b
a(t)a

†
(0) + F b

b(t)b
†
(0) + F b

A(t)A
†
(0) + F b

C (t)C
†
(0))

nb |0, 0〉 ⊗ |b〉

(3.27)

with coefficients Fα found as below [19]:

F a
a(t) = F b

b(t) = cos(ε1t) sin
2(θ) + cos(ε3t) cos

2(θ), (3.28)

F a
b (t) = F b

a (t) = −i(sin(ε1t) sin2(θ) + sin(ε3t) cos
2(θ)), (3.29)

F a
A(t) = FA

a (t) = −i sin(θ) cos(θ)(sin(ε1t)− sin(ε3t)), (3.30)

F a
C (t) = FC

a (t) = sin(θ) cos(θ)(cos(ε1t)− cos(ε3t)), (3.31)

and

F b
A(t) = FA

b (t) = (cos(ε1t)− cos(ε3)) sin(θ) cos(θ), (3.32)

F b
C (t) = FC

b (t) = −i sin(θ) cos(θ)(sin(ε1t)− sin(ε3t)), (3.33)

FA
A (t) = FC

C (t) = cos(ε1t) cos
2(θ) + cos(ε3) sin

2(θ), (3.34)

FA
C (t) = FC

A (t) = −i(sin(ε1t) cos2(θ) + sin(ε3t) sin
2(θ)). (3.35)

Note that (3.27) shows that in general photon fields are entangled with all atoms.

But we are interested in cases, if any, in which the state of photon fields is separeble
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from that of atoms. This in fact can be realized in (3.27) by taking the limit of

|Ω| −→ ∞. Taking the limit Ω −→ +∞ we get θ = 0 from (3.16) and

|Ψ(t)〉 =
1√
na!nb!

(a†(0) cos(ε1t)− ib†(0) sin(ε1t))
na(−ia†(0) sin(ε1t)b†(0) cos(ε1t))nb |0, 0〉 ⊗ |b〉.

(3.36)

Taking the limit Ω −→ −∞ we get θ = π
2

from (3.16) and

|Ψ(t)〉 =
1√
na!nb!

(a†(0) cos(ε3t)− ib†(0) sin(ε3t))
na(−ia†(0) sin(ε3t)b†(0) cos(ε3t))nb |0, 0〉 ⊗ |b〉.

(3.37)

The results above give the time-evolution of intially direct product state of photon

fields and atoms. Note that the condition of infinitely large Rabi frequency made

in deriving (3.36) and (3.37) is not physically realizable. Increasing it beyond some

point can destroy the sample. In the next part we introduce our approach in tack-

ling this problem, with which we confirm the result found here but without the

physically unrealizable assumption.

3.3 Approach II: C Transformation

In order to find the Fröhlich Transformation involved in the C Transformation of

the Hamiltonian for the atomic ensemble, it is much easier to first find it for one

atomic Hamiltonian and then ’guess’ the Fröhlich Transformation for many-body

Hamiltonian of the atomic ensemble. Then, theorem (2.2.1) assures the uniqueness.

3.3.1 Solving the Hamiltonian for One Atom

As it was previously defined, a C Transformation consists of Tranformation to In-

teraction Picture followed by a Fröhlich Transformation. The transformation to

Interaction Picture was done for Approach I. Transforming H to Interaction Pic-

ture and requiring the resonance condition ων = ωa − ωb led to (3.6). Setting N=1
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in (3.6), gives the following Hamiltonian:

H = Ω′σac + gaaσab + gbbσcb + h.c. (3.38)

This operator is defined on the space made by tensor product Hilbert space of atom

and Fock space of the two photon fields, that is

H = Fa ⊗ Fb ⊗ H . And,

σxy = Ia ⊗ Ib⊗ | x〉〈 y |, (3.39)

where N is the number of atoms, I is the Identity operator on Hilbert space H , and

Ia and Ib are Identity operators on Fock spaces of photon fields. Using a Fröhlich

Transformation we can approximate the Hamiltonian for

|Ω′| � |gb|, | ga |. Thus, by distinguishing terms in the following way:

H1 = gaaσab + gbbσcb + h.c., and

H0 = Ω′σac + h.c..

we can write Eq. (2.20) to find S:

gaaσab + gbbσcb + h.c.+ [Ω′σac + h.c., S] = 0.

Here the perturbative parameters are absorbed in S. Considering the equation

above as zero operator Θ, each box in the following table is obtained from

〈x | Θ | y〉 as projections of Θ onto the Fock space of photons:

From Right

| a〉 | b〉 | c〉

From Left

〈a | Sac = eiξSca Scb = − ga
Ω′a Scc = Saa

〈b | Sbc =
g∗a
Ω′∗a

† 0 = 0 Sba =
g∗
b

Ω′ b
†

〈c | Scc = Saa Sab = − gb
Ω′∗ b Sac = eiξSca

Ω′ = Ωeiζ , ζ = |arg(Ω′)| and Ω ∈ R
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Note that in the table above Ω can take both positve and negative values. Since

S must be anti-Hermitian, there was no need to derive the off-diagonal entries in

the table. However, note that these are all the necessary restrictions on operator S.

Therefore, we can choose Saa = 0, Sca = 0 to get:

S = −ga
Ω′aσcb −

gb

Ω′∗ bσab − h.c.. (3.40)

It satisfies (2.20) and from Theorem 2.2.1, we know that all the other effective

Hamiltonians that can be derived from other possible choices are second-order

isospectral with the effective Hamiltonian obtained by inserting S into (2.22):

Heff = H0 +
1

2
[H1, S]

= Ω′σac + h.c.+
1

2
[gaaσab + gbbσcb + h.c.,−ga

Ω′aσcb −
gb

Ω′∗ bσab − h.c.]

= Ω′σac + Ω′∗σca +
1

2
{[gaaσab + gbbσcb + ga

∗a†σba + gb
∗b†σbc,−

ga

Ω′aσcb

− gb

Ω′∗ bσab] + h.c.} (3.41)

Avoiding irritation of calculations, in the last step above we exploited the identity
[

A+ A†, B − B†] =
[

A+ A†, B
]

+ h.c.. The result is:

Heff = Ω′σac + Ω′∗σca + {| ga |
2

2Ω′ aa
†σca +

| gb |2
2Ω′∗ bb

†σac +
gbg

∗
a

2Ω′∗a
†b(σaa − σbb)

+
gag

∗
b

2Ω′ ab
†(σcc − σbb) + h.c.}. (3.42)

After rearranging terms we get:

Heff = Ω′σac + Ω′∗σca + aa†(
| ga |2
2Ω′∗ σac +

| ga |2
2Ω′ σca) + bb†(

| gb |2
2Ω′∗ σac +

| gb |2
2Ω′ σca)

+
(

r′a†b+ r′∗ab†
)

(σaa + σcc − 2σbb) ,

(3.43)
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where r′ = gbg
∗
a

2Ω′∗ . The Hamiltonian is invariant under the change of operators a↔ b

together with change of the their coupling constants to the atoms ga ↔ gb. To make

it more clear one can rewrite it in the following form:

Heff = (Ω′σac + Ω′∗σca) +
(

aa† + bb†
)

(s′σac + s′∗σca)

+
(

r′a†b+ r′∗ab†
)

(σaa + σcc − 2σbb) +
(

aa† − bb†
)

(s′′σac + s′′∗σca)

(3.44)

where s′ = g2

2Ω′∗ , g2 = |ga|2+|gb|2
2

, s′′ = ∆2

2Ω′∗ , ∆ = |ga|2−|gb|2
2

. In fact there are several

ways to factorizing common operator factors, but in the above form all the terms

commute except the last two. As far as applications in quantum communication

are concerned, we are interested in making the two photon modes a and b entan-

gled. And as we will show this can be done by a Hamiltonian without the last

term, too. This is equivalent to requiring amplitude of the couplings to be equal,

that is | ga |=| gb |= g, which is equivalent to set ∆ = 0. This simplifying condition

is physically achievable. After setting ∆ = 0 we get:

Heff = (Ω′σac + Ω′∗σca) +
(

aa† + bb†
)

(s′σac + s′∗σca) +
(

r′a†b+ r′∗ab†
)

(I − 3σbb) ,

(3.45)

where I = σaa + σcc + σbb is identity operator of the Hilbert space of atom. Since

all the terms in Heff are commuting, therefore they are simultaneously diagonal-

izable. Thus, we shall proceed by finding a common basis and the corresponding

eigenset for each operator and then adding up the eigenvalues for each state to get

the eigenvalues of Heff .

The eigenvectors and corresponding eigenvalues of operator P = α′σac + α′∗σca
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with α′ = αeiζ , α ∈ R, ζ ∈ [0, π) are:

| ψ−1〉 =
1√
2
(| c〉 − eiζ | a〉), λ−1 = −α,

| ψ0〉 = | b〉, λ0 = 0,

| ψ1〉 =
1√
2
(| c〉+ eiζ | a〉), λ1 = α, (3.46)

Symbol α′ may denote s′, or Ω′. Note that ζ = |arg(α′)| and arg(s′) = arg(Ω′), with

arg(z) giving the principle value of z. The corresponding eigevalues of operator

(I − 3σbb) are λ±1 = 1, λ0 = −2.

In order to find a mutual basis in which both
(

aa† + bb†
)

=
(

a†a + b†b
)

+ 2 and
(

r′a†b+ r′∗ab†
)

are diagonal, we have to first find the basis in which the latter is

diagonal, since it is not diagonal in the number basis in which the number operator

is diagonal. We start by writing it in the following way:

(

a† b†
)





0 r′

r′∗ 0









a

b





By choosing a unitary transformation T = 1√
2





1 1

−e−iϕ e−iϕ



,

T †





0 r′

r′∗ 0



T =





−r 0

0 r



 is diagonal, and





q1

q2



 = T †





a

b





=
1√
2





a− beiϕ

a+ beiϕ



 , (3.47)

where r = g2

2Ω
and ϕ = arg(r) = arg( gbg

∗
a

2Ω′∗ ) (Note that r = s). Rewriting our opera-

tors in terms of q1 and q2, we get:

(

r′a†b+ r′∗ab†
)

= r
(

−q1†q1 + q2
†q2
)

(3.48)
(

aa† + bb†
)

=
(

q1
†q1 + q2

†q2 + 2
)

. (3.49)
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And hence from (3.45) we get:

Heff = (Ω′σac + Ω′∗σca) +
(

q1
†q1 + q2

†q2 + 2
)

(s′σac + s′∗σca)

+r
(

−q1†q1 + q2
†q2
)

(I − 3σbb) ,

(3.50)

Here, notice that the following identities hold:

[q1, q2] = 0,

[

q1, q2
†] = 0,

[

q1, q1
†] = 1,

[

q2, q2
†] = 1,

[

qk, qk
†n] = nqk

†n−1
, k = 1, 2 (3.51)

Therefore,
(

q1
†q1 + q2

†q2
)

is the number operator for the state

| Ψlm〉 = q1
†lq2

†m

√
l!m!

| 0, 0〉, where | 0, 0〉 is the vacuum state of tensor product of Fock

spaces Fa ⊗ Fb and 1√
l!m!

is a normalization factor. In other words:

(

aa† + bb†
)

| Ψlm〉 =
(

q1
†q1 + q2

†q2 + 2
)

| Ψlm〉

= (l +m+ 2) | Ψlm〉 (3.52)

And by using the identities (3.51) we get the desired result:

(

ra†b+ r∗ab†
)

| Ψlm〉 =
g2

2Ω

(

−q1†q1 + q2
†q2
)

| Ψlm〉

=
g2

2Ω
(m− l) | Ψlm〉 (3.53)

Consequently, summarizing the results:

B = {| Ψnlm〉 | | Ψnlm〉 =| ψn〉⊗ | Ψlm〉, n = −1, 0, 1 and l, m ∈ N} (3.54)

is the basis in which Heff is diagonal and,

E = {εnlm | Heff | Ψnlm〉 = εnlm | Ψnlm〉, n = −1, 0, 1 and l, m ∈ N},

with εnlm = n|Ω′|+ g2

2Ω
[n(l +m+ 2) + (m− l)(3|n| − 2)], (3.55)
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is, according to theorem 2.2.1, the eigenset of the effective Hamiltonian in Inter-

action Picture up to second order in the perturbative parameter g. However, as

it was concluded in Sec. 2.1, these are NOT the approximate eigenset of original

Hamiltonian that we started with. But we can apply them to find time-evolution

of states.

3.3.2 Solving the Hamiltonian for Atomic Ensemble

Here we complete a C Transformation on the Hamiltonian of an atomic ensemble

in resonance condition by applying a Fröhlich Transformation on the Hamiltonian

in Interaction Picture (3.6). Note that in (3.6), [H(j), H(k)] 6= 0, j 6= k. So it is an

interacting Hamiltonian and we need to approximate the Hamiltonian.

To find the effective Hamiltonian, we can distinguish two terns in each Hamilto-

nian as before:

H0
(j) =

N
∑

j=1

(Ω′σac
(j) + h.c.) (3.56)

H1
(j) =

N
∑

j=1

(gaaσab
(j) + gbbσcb

(j) + h.c.) (3.57)

It can be readily seen that

[σxy
(j), σuv

(k)] = (δjk) (δuyσxv − δxvσuy) , (3.58)

Note that:

[H(j), H(k)] = O(λ2) 6= 0, j 6= k, where λ = ga, gb. (3.59)

This result means that the Hamiltonian is not invariant under interchange of atoms.

But, since the non-commutativity is of second order in perturbative parameter, the

first candidate for S is the sum over individual generators S(j), that is:

S =

N
∑

j=1

S(j) = −
N
∑

j=1

(
ga

Ω′aσcb
(j) +

gb

Ω′∗ bσab
(j))− h.c.. (3.60)
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Interestingly, the sum above satisfies the Froclich condition (2.20) for (3.6):

N
∑

l=1

H1
(l) + [

N
∑

j=1

H0
(j),

N
∑

k=1

S(k)] = 0. (3.61)

This is valid because

H1
(j) + [H0

(j), S(k)] = 0, if j = k, (3.62)

and the following identity holds:

[H0
(j), S(k)] = 0, j 6= k. (3.63)

Then the effective Hamiltonian is:

Heff =
N
∑

j=1

H0
(j) +

1

2
[

N
∑

l=1

H1
(l),

N
∑

k=1

S(k)]

=
N
∑

j=1

H0
(j) +

1

2

N
∑

j=1

[H1
(j), S(j)] +

1

2

N
∑

l 6=k

[H1
(l), S(k)]

=

N
∑

j=1

H
(j)
eff +

1

2

N
∑

l 6=k

[H1
(l), S(k)], (3.64)

where H(j)
eff is effective Hamiltonian for one atom given by Eq. (3.50). The last term

can be written as below:

∑

j 6=k

[H1
(j), S(k)] =

∑

j 6=k

[gaaσab
(j) + gbbσcb

(j) + ga
∗a†σba

(j) + gb
∗b†σbc

(j),−ga
Ω′aσcb

(k)

− gb

Ω′∗ bσab
(k)] + h.c.

=
∑

j 6=k

(
|ga|2
Ω′ σba

(j)σcb
(k) +

|gb|2
Ω′∗ σbc

(j)σab
(k) + h.c.), (3.65)

which gives:
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Heff =

N
∑

j=1

(Ω′σac
(j) + Ω′∗σca

(j)) +
(

q1
†q1 + q2

†q2 + 2
)

N
∑

j=1

(s′σac
(j) + s′∗σca

(j))

+r
(

−q1†q1 + q2
†q2
)

(

NI − 3
N
∑

j=1

σbb
(j)

)

+
1

2

∑

l 6=k

( |ga|2
Ω′ σba

(l)σcb
(k) +

|gb|2
Ω′∗ σbc

(l)σab
(k) + h.c.

)

=
N
∑

j=1

(Ω′σac
(j) + Ω′∗σca

(j)) +
(

q1
†q1 + q2

†q2 + 2
)

N
∑

j=1

(s′σac
(j) + s′∗σca

(j))

+r
(

−q1†q1 + q2
†q2
)

(

NI − 3

N
∑

j=1

σbb
(j)

)

+
1

2

∑

l 6=k

( |ga|2
Ω′ σba

(l)σcb
(k) +

|ga|2
Ω′∗ σab

(l)σbc
(k)

)

+
1

2

∑

l 6=k

( |gb|2
Ω′ σba

(l)σcb
(k) +

|gb|2
Ω′∗ σab

(l)σbc
(k)

)

, (3.66)

where I = ⊗N
j=1Ij is the identity operator of the atomic ensemble Hilbert space. We

used H(j) with ∆ = 0. Therefore, by substituting |ga| = |gb| = g and s′ = g2

2Ω′∗ as

before, we get:

Heff =

N
∑

j=1

(

Ω′σac
(j) + Ω′∗σca

(j)
)

+
(

q1
†q1 + q2

†q2 + 2
)

N
∑

j=1

(

s′σac
(j) + s′∗σca

(j)
)

+r
(

−q1†q1 + q2
†q2
)

(

NI − 3

N
∑

j=1

σbb
(j)

)

+ 2
∑

l 6=k

(

s′σab
(l)σbc

(k) + s′∗σba
(l)σcb

(k)
)

.

(3.67)

The above Hamiltonian consists of 4 Hermitian terms. And the good news is that

with the condition they do commute with each other and thus they are simulta-

neously diagonalizable!! Proof is straightforward but we would like to clarify the

physical picture behind it. First let us understand the meaning of each term. The

first three terms involve equivalent first order atomic processes between states |a〉
and |c〉 of each atom, while the last term involves second order processes between

|a〉 and |c〉 of different atoms. Note that the very reason that atomic part of the

first two terms and the last term in (3.66) do commute is that they invovle pro-

cesses between the same two states |a〉 and |c〉, and second, the phase difference
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between the "Go" processes σca(j) and σba
(l)σcb

(k) and the "Return" processes σac(j)

and σab
(l)σbc

(k) that are involved in them are the same. An important consequence

of simultaneously diagonalizability of the terms in (3.67) is that all the eigenstates

are direct product of appropriate bases of Fa ⊗ Fb with those of ⊗N
j=1Hj . As we

will see this disentangles the time-evolution of the subsystem consisting of pho-

ton fields from evolution of the atomic ensemble, when the latter is initially in an

energy eigenstate.

3.3.3 Time-Evolution of Fock States

Consider the subsystem of photon modes to be initially in Fock state, i.e., the num-

ber state and the state of atomic part be in one of the energy eigenstates of (3.66) as

given below:

| Ψ(0)〉 =
a†

na
b†

nb

√
na!nb!

| Ψ−→n 00〉, (3.68)

for some na, nb ∈ N. In order to find |Ψ(t)〉S , the evolved state in the Schrödinger

picture, we first find |Ψ(t)〉I , the evolved state in the Interaction Picture, and then

transform it by an inverse-Fröhlich Transformation to the state prior to Fröhlich

Transformation and then by another unitary transformation to the Schrödinger pic-

ture if necessary. According to Lemma 2.3.1,

|Ψ(t)〉I =
(a†nab†nb)(−t)√

na!nb!
| Ψ−→n 00(t)〉I . (3.69)

Here since | Ψ−→n 00(0)〉I is an eigenvector of Heff (3.45), therefore, | Ψ−→n 00(t)〉I indi-

cates the same ray as | Ψ−→n 00(0)〉. From (3.47) we get:

a† =
q2

† + q1
†

√
2

(3.70)

b† = e−iϕ q2
† − q1

†
√
2

, (3.71)

which hold at all times. We will need two more results:
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Lemma 3.3.1. Let A and B be two operators defined on the same Hilbert space, then

(AB)(t) = A(t)B(t).

Proof. A(t) = e−iHtAeiHt and B(t) = e−iHtBeiHt, implies:

(AB)(t) = e−iHtABeiHt

= A(t)B(t). (3.72)

Lemma 3.3.2. If A(t) satisfies a Heisenberg Eq. (??) with A(t) = A, then (An)(t) = (A(t))
n

satisfies the same Heisenberg equation.

Proof. The proof is trivial. A(t) = e−iHtAeiHt implies A(t)
n = e−iHtAneiHt.

Therefore, the following holds:

(a†nab†nb)(−t) = a†na
(−t)b

†nb
(−t) (3.73)

Now, we need to find reverse-time-evolution of q1,2, by applying Lemma 2.3.1:

I ⊗ i∂tqj = −[I ⊗ qj , Heff ], j = 1, 2, (3.74)

where I is the identity operator for atomic Hilbert space andHeff is given by (3.66).

Also, the following identities can be derived by using (3.51):

[qj , (q1
†q1 + q2

†q2)] = qj (3.75)

[qj , (−q1†q1 + q2
†q2)] = (−1)jqj , j = 1, 2 (3.76)

Using Heff in the form given by (3.66) and the identities above, the right side of

(3.74) can be found:

−[I ⊗ qj
†, Heff ] =

N
∑

j=1

(s′σac
(j) + s′∗σca

(j))qj
† +

(

NI − 3
N
∑

j=1

σbb
(j)

)

r(−1)jqj
†.

(3.77)
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Tracing out the atomic part we get:

∂tqj
† = i((−1)jφ− β)qj (t)

†, j = 1, 2,

φ = Nr =
Ng2

2Ω

=
g2N

2Ω
, and β =

Nr

3N−1

⇒ qj
†
(t) = qj(0)

†ei((−1)jφ−β)t

Putting these back to (3.70) and replacing q†j (0) from (3.47) in terms of a†(0) and b†(0)

we will have:

a
†
(t) =

q2(0)
†ei(φ−β)t + q1(0)

†ei(−φ−β)t

√
2

= e−iβt(a†(0)Cos(φt) + ie−iϕb†(0)Sin(φt)) (3.78)

b†(t) = e−iϕ q2(0)
†ei(φ−β)t − q1(0)

†ei(−φ−β)t

√
2

= e−iβt(ie−iϕa†(0)Sin(φt) + e−2iϕb†(0)Cos(φt)) (3.79)

It is important to note that the lemma is also valid for time-evolution of any state

resulting by a time-independent transformation, including the time-independent

Fröchlich Transformation we performed. Inserting these above in (3.69) gives us

what we are after (irrespective to phase):

|Ψ(t)〉 =
(a†(0)Cos(φt) + ie−iϕb

†
(0)Sin(φt))

na(ia†(0)Sin(φt) + e−iϕb†(0)Cos(φt))
nb

√
na!nb!

|Ψn00(0)〉.

(3.80)

In fact, the Lie algebra associated with b and its commutation with a remains un-

changed if we multiply it with a phase such as −eiϕ. Therefore, we can rewrite

(3.80) in the following form:

|Ψ(t)〉 =
(a†(0)Cos(φt)− ib†(0)Sin(φt))

na(ia†(0)Sin(φt)− b†(0)Cos(φt))
nb

√
na!nb!

|Ψn00(0)〉.

(3.81)
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Note that in order to get the state in Schrödinger picture, we have to unitrarily

transform |Ψ(t)〉I back, which means affecting the reverse of two affected subse-

quent unitary transformations or inverse C Transformation as defined in (2.37), in

the following way:

|Ψ(t)〉S = eSe−iHisotA(−t)|Φ(0)〉I (3.82)

The equation above is the same form of time-evolution found in [19] for the case
Ω
g2

−→ +∞ with φ up to second order in perturbative parameter g (In the paper g is

defined as g0√
N

, which gives φ = g0
2

2Ω
). As we showed in the previous section, in their

paper, Li, et. al. [19], have imposed the condition Ω
g02

−→ ∞ on the atomic part of

the operators acting upon the ground state, and by doing so they have disetangled

the photonic state vector from the atomic state vector. But first of all this is invalid

since then φ becomes infinite too. Also, as we have shown, the condition Ω
g02

−→
∞ is not necessary to get the same time-evolution. The only requirement here is

that Ω
g2

must be larger than one, in order for the approximate time-evolution to

be identical to the exact time-evolution up to first order in Ω
g2

(e.i, second order in

perturbation parameter g). In fact, the infinite coupling constant required by [19]

is physically unachievable too, since the laser beam may destroy the sample if Ω

becomes large enough.

3.3.4 Evolution of Entanglement between Initially Direct Product Fock States

We found that if the atomic ensemble is initially in an energy eigenstate, then the

future state is given by (3.80). However, although in the interaction picture the

photon states remain disentagled from the atomic ensemble up to second order in

the perturbative parameter, but after t=0, the initially separable Fock states become

non-separable and thus entangled. Since (3.80) is a pure state, we can quantify its

entanglement by von Neumann entropy of either photonic modes [10], [11], [12] as

below:
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E = −Tr(ρaLog2(ρa)), (3.83)

where with ρ(t) = |Ψ(t)〉〈Ψ(t)| denoting the density matrix, ρa is the density matrix

of photon field a and is obtained by taking partial trace over basis of Hb :

ρa(t) = Trb(|Ψ(t)〉〈Ψ(t)|). (3.84)
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A note on periodicity of Entanglement

qj(t)s are periodic operators with period of 2π|Ω|
g2

, therefore, independent from the

number of initial photons in each mode, it seems that at times tν = 2πν |Ω|
g2

(ν ∈ N)

entanglement becomes zero, that is the state becomes equal to the initial seperable

one, and the dynamics starts over. But in fact the period is shorter! To see this, let

us take the phase i inside b† by redefining b as −ib in (3.81). Then we get:

|Ψ(t)〉 =
(a†(0)Cos(φt)− b†(0)Sin(φt))

na(a†(0)Sin(φt) + b†(0)Cos(φt))
nb

√
na!nb!

|Ψn00(0)〉.

(3.85)

The form above suggests that ρ(t+τ) = ρ(t), where τ = π
|Ω|
g2

. During this time, we

observe that state of field a is swapped with state of field b. Note that in contrast to

[19], N is a variable in the final result we found here. The periodicity is inversely

proportional to N and might be adjusted depending on the application.

Time-Evolution of entanglement - Initial state |1, 1〉:
Substituting |Ψ(t)〉 from (3.80) we will get:

ρa(t) = Cos2(2φt)|1〉〈1|+ 1

2
Sin2(2φt) (|0〉〈0|+ |2〉〈2|) . (3.86)

Substituting the above in (3.83), one can find time-evolution of entropy for initial

state |1, 1〉:

E = −Cos2(2φt)Log2(Cos2(2φt))− Sin2(2φt)Log2(
1

2
Sin2(2φt)) (3.87)

Figure 3.2 shows the function above, and Figures 3.3, 3.4 and 3.5 show it for other

initial states.

Time-Evolution of entanglement - Other initial state states:

In order to find the exact time-evolutions for initial states |1, 2〉 and |2, 2〉, since

the equations get very long we have used symbolic computations in Matlab that

can be found in Appendix A.
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Figure 3.2: Time-Evolution of Entanglement (von Neumann Entropy) for initial
state|1, 1〉
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Figure 3.3: Time-Evolution of Entanglement (von Neumann Entropy) for initial
state|0, 1〉
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Figure 3.4: Time-Evolution of Entanglement (von Neumann Entropy) for initial
state|1, 2〉
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Figure 3.5: Time-Evolution of Entanglement (von Neumann Entropy) for initial
state|2, 2〉
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Chapter 4

CONCLUSION

We introduced the notion of second-order isospectrality and developed the the-

ory of Fröhlich transformations. So that in general case and especially for approx-

imating many-body Hamiltonians, where there are many possible Fröhlich trans-

formations, one can choose the simplest generator of transformation (S) and be

sure that the eigenvalues would be the same with any other more complicated

choice. Then we studied Fröhlich transformation as a combined transformation.

We reviewed the previous studies done on interaction of quantized optical fields

with ensemble of ∆-type quantum systems with the aim of group contraction.

Finally, we applied our method developed based on the approximation scheme

introduced. Note that Eq. (3.80) is equivalent to the time-evolution found with

prevous approach (3.36) and (3.37) when the condition Ω � g is fully taken into

consideration in time-evolution found in [19]. For positive Ω, ε1 −→ φ and for

negative Ω, ε3 −→ φ. But on the other hand, in our method we never assumed
Ω
g

to be infinitely large. We derived a decoupled time-evolution of the quantized

fields from the atoms (3.80) with only assuming that Ω � g. Moreover, note that

in our method that lead to (3.80) we never assumed that N, the number of atoms

in the ensemble, is infinitely large comparing to the number of excitations. So our

method gave a result which is valid for any number of ∆-type quantum systems

in the ensemble. N is a variable in our result, which means that it can be adjusted

depending on the application. In fact, by increasing N periodicity decreases (3.85),

thus using our result we can design an ensemble with enough big N such that the

state will be transferred from one field to the other before an effective time after

which decoherence happens. This work is finished on its own, but leaves practical
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questions which depends on the particular system being considered. For exam-

ple calculating the decoherence time. The latter depends on the properties of the

ensemble being used and the type of environment. Moreover, one can apply our

method to defferent kinds of systems. As we saw group contraction method is re-

lied on the assumption that N is huge comparing to the number of atoms in the

axcited state. In fact, the group contraction method is previously applied to other

physical systems including ensemble of Λ-type quantum systems [42] in interac-

tion with external fields, many-spin ensemble excitations [43], and other situations

such as [44] and [45]. Their results is limited to the cases where N is huge. While

we propose that applying out method, one can relax this condition and find results

that are valid for any number of atoms per excitations.
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Appendix A

CODES FOR SYMBOLIC COMPUTATIONS

The computations that lead to time-evolutions for initial conditions |1, 2〉 in Fig-

ure 3.4 and |2, 2〉 in Figure 3.2 were done by means of sybolic computations in Mat-

lab. We supply the code as it can be used for further work. We partially used QOT

package (quantum optics toolbox) that can be downloaded for free and must be

added to the path in the begining of the code instead of ’qot address’. The code

is not made for one-run and must be run step by step, according to the guidlines

added below.

% This c o d e i s i n t e n d e d t o f i n d e x a c t t im e e v o l u t i o n o f two photon

% f i e l d s c o u p l e d t o a c y c l i c a t o m i c e n s e m b l e . Then t h e von Neumann

% e n t r o p y o f one f i e l d i s found as a measure o f e n t a n g l e m e n t

% n_a i s Number o f p h o t o n s in f i e l d a

% n_b i s Number o f p h o t o n s in f i e l d b

c l e a r ;

%S e t t h e pa th f o r q o t f o l d e r be l ow

addpath ( ’ qot address ’ ) ;

% S e t n_a , n_b t h e number o f i n i t i a l p h o t o n s

n_a =1;
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n_b =2;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

l =0 ;

k =0;

N=m+n+1;

aob= c r e a t e (N) ;

id=eye (N) ;

a= f u l l ( aob ( : , : ) ) ;

am=kron ( a , id ) ;

bm=kron ( id , a ) ;

ps i1=id ( l + 1 , 1 :N) . ’ ;

ps i2=id ( k + 1 , 1 :N) . ’ ;

rhoi=kron ( psi1 , ps i2 )∗kron ( psi1 , ps i2 ) ’ ;

syms s ;

u=( cos ( s ) . ∗am−1 i ∗ sin ( s ) . ∗bm)^m ∗ (−1 i ∗ sin ( s ) . ∗am+cos ( s ) . ∗bm)^n

/ sqr t ( f a c t o r i a l (m)∗ f a c t o r i a l ( n ) ) ;

rhof=u∗ rhoi ∗u ’ ;

rhof1 =0∗ id (N^ 2 ) ;

for r =1:N

for p=1:N

for t =1 :N

rhof1=rhof1 +( kron ( id ( r , 1 :N) , id ( t , 1 :N) ) ∗ rhof ∗kron ( id ( p , 1 :N) ,

id ( t , 1 :N) ) ’ ) ∗ ( id ( r , 1 :N) ’∗ id ( p , 1 :N) ) ;

end

end

end
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%IN ORDER TO CANCELL OUT ANY REMAINED EXPRESSIONS WTIH i ,

%or NEGATIVE SIGNS THAT MAY BE INTERPRETED WRONGLY BY MATLAB:

diagvec1 =diag ( s i m p l i f y ( rhof1 ) ) ;

%At t h i s p o i n t , by t h e i n p u t be l ow Matlab w i l l g i v e a s y m b o l i c

%e x p r e s s i o n f o r e n t :

ent=−diagvec1 ’∗ log2 ( diagvec1 )

%Copy t h i s and p a s t e i t i n s i d e o f e n t in t h e l i n e be l ow and c o n t i n u e

%t h e r e s t . By do ing t h i s , s t a r s and s l a s h e s w i l l b e r e p l a c e d by

%. ∗ and . / , which a r e r e q u i r e d by f o r drawing in Matlab .

s t = ’ ent ’ ;

z =0;

for j =1 : length ( s t )

i f ( s t ( j )== ’^ ’ )

s t f ( j +z : j +z+1)= ’ .^ ’ ;

z=z +1;

e l s e i f ( s t ( j )== ’ ∗ ’ )

s t f ( j +z : j +z+1)= ’ . ∗ ’ ;

z=z +1;

e l s e i f ( s t ( j )== ’/ ’ )

s t f ( j +z : j +z+1)= ’ ./ ’ ;

z=z +1;

else

s t f ( j +z )= s t ( j ) ;

end ;
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end

s t f

%At t h i s p o i n t , Matlab w i l l g i v e a m o d i f i e d output . Copy and p a s t e i t

% in f r o n t o f @( s ) in t h e l i n e be l ow and end i t wi th a s e m i c o l o n .

Entropy = @( s ) ;

% And f i n a l l y in o r d e r t o draw t h e p l o t :

x = 0 : . 0 1 : 3 . 5 ;

plot ( x , Entropy ( x ) )
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