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ABSTRACT 

 

Time series microarrays capture multiple gene expression levels at discrete time 

points varying from minutes to days of a continuous cellular process. Analysis of high 

through put data requires automated and computer aided solutions. We propose a 

hidden Markov model (HMM) based approach to identify regulatory relations between 

the periodic genes from the cell cycle time-series microarrays. We train and test our 

models by using distinct types of biological data present literature. In our study we use 

Pramila time series dataset. Training gene pairs include transcriptional regulation and 

protein level regulation. After identification of gene to gene regulatory relationships, we 

form a network of gene regulation relationships: Gene Regulatory Neighborhood 

Networks (GRNN). We explore potential use of sub networks (communities) in GRNN 

by comparing gene clusters found by popular clustering algorithms such as K-means 

clustering. Our results indicate we manage to identify denser and more specific 

enrichment in community structure based clusters than the clusters acquired with K-

means. 
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ÖZET 

 

Zaman serisi mikrodizi verileri devam eden hücresel aktivitelerdeki birçok gen 

ifadesi seviyesinin dakikalardan günlere uzanan farklı zaman noktalarında ölçülmesini 

sağlar. Yüksek miktarda sonuç üreten deneylerin analizi otomatik ve bilgisayar destekli 

çözümler gerektirir. Bu çalışmada saklı Markov modelleri kullanılarak, periyodik gen 

ifadesi düzenlenmelerini tahmin edebilecek bir model önerdik. Modellimizin testleri ve 

öğrenme prosedürü için literatürde bulunan transkripsiyon ve protein seviyesindeki 

düzenlemeleri bilgilerinden faydalandık. Çalışmamızda Pramilla zaman serisi mikrodizi 

verilerini kullandık. Gen düzenlemelerinin tahminleri yapıldıktan sonra „Gen 

Düzenlemeleri Komşuluk Ağlarını oluşturduk (GDKA). Oluşturduğumuz ağın altında 

topluluk yapısı gösteren alt ağların, biyolojik veri gruplarındaki potansiyelini popüler 

K-ortalama gruplama sonucu oluşan gruplarla karşılaştırarak değerlendirdik. Sonuçlar 

K-ortama gruplandırmasına göre topluluk yapısına göre oluşturulmuş alt ağların 

biyolojik terimler etrafından daha yoğun ve özgün bir gruplar oluşturduğunu gösterdi. 
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INTRODUCTION 

 

   Availability of large amount of data from high throughput gene expression 

experiments creates an opportunity to pioneer gene functions on a global scale. Genes 

participating on the same pathway or biological process often show similar gene 

expression profiles. One common approach employed by micro array analyses is 

clustering genes according to similarities in expressions. Direct comparison of 

expression profiles are often far from enlightening the complex regulations between 

genes. Another widely researched approach for data mining from the micro arrays is 

construction of gene regulatory networks by implementing linear models [1], Bayesian 

networks  [2] and Boolean networks [3]. Generally construction of gene regulatory 

networks requires a prior knowledge and well defined restrains and low gene counts 

participating in the network. On the other hand gene co-expression networks are 

undirected graphs where nodes represent genes and edges representing the degree of 

similarity in the expression profiles. Co-regulation networks (CRN) differ from 

regulatory networks by containing indirect interactions and gene relation neighborhood 

information [4, 5] . There are many studies performed to divide these large networks to 

smaller sub networks according to their role in biological processes. These studies vary 

from performing traditional clustering algorithms which employs similarity functions 

[6] and graph partition based algorithms [7-12] . According to Ruan et al [4] network 

based approaches are far from surpassing the conventional clustering approaches in the 

field of detecting functional modules partially due to inability of evaluating functional 

significance of gene neighborhoods. Pearson correlation coefficient most employed 

similarity measure for construction of co-expression networks. 

 In this study instead of CRN we propose Gene Regulatory Neighborhood 

Network (GRNN).  GRNN is an undirected graph, where the graph nodes correspond to 

genes, edges between the genes represent the regulatory relationship between the genes 
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and edge weights represent the possible regulation probability. We employ hidden 

Markov models (HMMs) to measure regulation probability between every possible gene 

pair and create fully connected GRNN. High effectives of HMM against other possible 

methods for inferring gene regulatory relations is examined by Yogurtcu et al [13]. We 

try to exploit neighborhood relations present in GRNN by employing community 

structure finding algorithm of  Clauset et al [14]. Clauset algorithm is a fast algorithm 

and has the ability required for handling large networks. Clauset algorithm relies on the 

maximization of modularity. Modularity defined by Newman and Girvan [15] as 

measure of a quality of particular division of a network to sub networks. By using 

modularity, clustering algorithms acquire optimal portioning and cluster count 

automatically without prior initialization which required by most of the conventional 

clustering approaches. After detection of community clusters we evaluate detected 

clusters effectiveness in the field of clustering genes according to biological process by 

performing gene enrichment analysis by using online tools Gorilla [16] and DAVID 

[17]. We compare community structure based clusters with K-means clusters. The flow 

of the study: 

 We first evaluate effectiveness of HMMs against Pearson correlation. We 

construct two HMMs for different training sets. Both of our training gene pair sets are 

related with S.cerevisiae cell cycle with different levels and include regulation pairs. 

We calculate all possible gene pair regulation probabilities and Pearson correlation 

scores. All scores are sorted in decreasing order. We perform Top-K evaluation of 

Pearson correlation scores and HMM derived regulation probability scores for detecting 

regulations. Top-K evaluation show that HMM surplus Pearson correlation in this field.  

 Secondly we employ Clauset algorithm to identify communities present in our 

constructed GRNNs from HMM based possible gene pair regulation scores. 

 We evaluated our clusters efficiency by performing the GO term enrichment and 

compare our approach performance with K-means clustering algorithm.  
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Chapter 1 

1. LITERATURE REVIEW 

 

Genes are DNA sequences corresponding to a unit of inheritance associated with 

regulatory regions, coding sequence and other functional sequence regions. Information 

stored in gene is used to produce protein intermediates called messenger RNA (mRNA) 

which transfer gene information to ribosome where the assembly of proteins begins. 

Microarray technologies expose the mutual and specific affinity of complementary 

strands of DNA. Microarray size can vary according to experimental setup. Microarrays 

can simultaneously measure different mRNA levels for a specific time points. Analysis 

of mRNA levels can give an insight about relation between the genes. 

Time series micro arrays have ability to capture multiple gene expression 

profiles at discrete time points of continuous cell process. Data acquired from time 

series micro arrays can identify expression patterns and regulations. There are many 

adopted approaches available to analyze differential gene expression data from variety 

of disciplines such as signal processing, dynamic system theory, machine learning and 

information theory to detect differentially expressed genes, identification of expression 

patterns and construct gene networks[2, 18]. 

Differential gene expressions analyses provide insights about how genes are 

regulated during biological processes. It is generally accepted that similar expression 

profiles potentially indicate related functions. This kind of similarities can be explored 

by clustering analyses. Clustering analyses groups genes according to their differential 

expression. Clustering techniques are heavily used in the biology field. 

Gene regulatory networks are control mechanisms of the gene expression level 

of a cell. These networks effect genes expression profiles and may or may not be 

affected by the process.  These processes can be observed with time series microarrays. 
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Correlation coefficient based methods for identification of regulatory gene pairs 

often create poor results, since these methods based over signal overlapping. The 

efficiency of these methods is nearly 20 % for detection of known regulatory gene pairs 

[13] 

Attempts on clustering differential gene expression data begins with 

implementation of some popular distance  based clustering methods, such as K-means 

clustering [19] ,hierarchical clustering [9]  and self-organizing maps (SOM) [20]. Even 

these traditional methods can give meaningful results for some datasets; none of them 

consider the dependences exist between observations belonging to subsequent time 

points. The dependence of genes differential expression profiles is the important feature 

of gene regulatory networks and use of this dependency can increase the clustering 

performance.  

 

1.1. Budding Yeast Cell Cycle 

 

Cell duplication is a highly controlled process that governs growth and 

development of living organisms. Events present in cell cycle are highly systematic and 

ordered. Cell cycle is the combination of events which a cell grows and eventually 

divides to two daughter cells each contain the information and machinery to repeat the 

process. Re-replication of DNA may lead to instabilities in cell metabolism. Because of 

that reason multiple strict control metabolisms have evolved to monitor DNA 

replications. Several specific protein complexes are employed during DNA replications 

which are only temporarily active in specific cell components[21]. 

Regulation of the cell cycle is governed with the cyclin dependent kineases 

(CDKs). The cell cycle can be divided into four specific phases: 

1.  G1 phase: Growing and preparing phase for cell cycle entry. 

2. S phase: DNA synthesis. 
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3. G2 phase: Preparations for M phase. 

4. M phase: Sister chromatin segregation and cell division. 

The cell cycle is controlled by CDKs proteins. CDKs are largely conserved during 

evolution of eukaryotes.  

 

Figure 1 Regulation of the cell cycle by CDKs [21] 

A single CDK Cdk1 (Alias CDC 28) is the main controller of cell cycle in S. 

cerevisae [22].  9 different cyclins form complexes with Cdk 1 in the process of cell 

cycle for efficient cell cycle progression. 

Due to low cyclin levels CDKs are inactive during G1 phase [23]. As cell cycle 

process continues cyclin levels begins to increase and interaction of cyclin with CDK 

increases activity of the kinease [24]. In inactive CDKs, catalytic cleft of the protein is 

blocked by T loop structure and phosphates from ATP molecule are unaligned [25]. 

Cyclin binding push the T loop from the catalytic cleft and ATP molecule realign in a 

position where it can phosphorylate substrate proteins. Phosporylation of T loop 

increase CDK affinity for cyclin proteins by exploiting the catalytic cleft [24].  Cyclin 

dependent kinease inhibitors (CDKIs) negatively regulates CDK activity. CDKIs bind 

cyclin – CDK complexes and reduce the activity of the complex by inhibiting binding 

of ATP to kinease protein or inhibiting binding of the cyclin to kinease [25]. N terminus 

residues of CDKs can be phosporylated by Wee1 kineases also cause the inhibition of 

CDK activity. Swe1 phosphorylate the Cdk1 to prevent entry in to M phase of cell cycle 
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[26].  Continuation to M phase done by Cdc25 family phosphates (Mih1 in S.cerevisiae) 

by dephosphorylating N- terminal residues of Cdk1 to switch on  Cdk1 activity [27].  

The cell cycle continuation is controlled with switch like fashion [28].  Initially 

in the G1 phase CDKs are inactive because of low cyclin levels and activity of CDKs 

are low. Later on Cln3 cyclin levels begin to rise and Cln3- CDK complexes 

phosphorylate Whi5 which is the transcriptional suppressor that interact with SBF 

transcription factor complex [29, 30]. SBF is essential for transcription of genes 

involved triggering cell cycle entry and DNA replication. Phosphorylation of Whi5 

separates Whi5 from SBF [30]  SBF activates transcription of the genes related to cell 

cycle entry and DNA replication. Several cyclins participates in this progressions and 

newly synthesized cyclins increase CDK activity and gradually more Whi5 are 

phosphorylated and increased SBF activity further [31]. Sic1 protein the inhibitor of 

Clb5-Cdk1 and Clb6-Cdk1 is also phosphorylated by Cln-Cdk1 complexes and 

degraded by SCF [32, 33]. 

 

Figure 2  Regulation of cell cycle entry in S. cerevisiae [21]. 
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After initiation of the cell cycle, cell abandons and shuts down the G1 specific 

transcriptional program to make directional progression among the cell cycle. Nrm1is 

one of the important mechanisms to shut down G1 transcriptional program [34]. Shut 

down mechanisms also include Cln1 and Cln2 G1 specific cyclins degradation which 

results dephosphorylation of Whi5 which as mentioned before inhibits the G1 specific 

transcription. Further control acquired by Clb-Cdk1 complexes which phosphorylate 

and inhibit SBF transcription factor complex [35]. For successful cell division 2 

essential features are required: Successful replication of DNA and chromosome 

segregation to daughter cells. DNA replication starts with origin licensing. Origin 

licensing occurs by formation of pre replicative complex (pre-RC) at origins in G1 

phase when Cdk1 protein is inactive. These origins have the capability of autonomously 

replication and referred as “Autonomously Replicating Sequences” (ARSs) [36].Origin 

of Replication Complex (ORC) consists of Orc1, Orc2, Orc3, Orc4, Orc5, Orc6 and 

recognize the ARS consensus sequence [37]. During the cell cycle ORC are 

constitutively bound the ARS. ORC works with the ATPase Cdc6, Cdt1 and Mcm2-7 

helicase complex [38]. DNA replication starts with pre-RC formation and Mcm2-7 

activation. 

 

Figure 3  Licensing of origins of replication[21] 
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Licensing of origins f replication can happen only during the G1 phase when Cdk1 is 

inactive. ORC activation only happens in S phase when Cdk1. This specificity is 

required to ensure successful DNA replication and segregation of chromosomes. 

 

Figure 4 Regulation of DNA replication by the cell cycle:  Origin licensing.[21] 

Clb5-Cdk1 and Clb6-Cdk complexes initiates the DNA replication [39]. The expression 

of Clb5 and Clb6 cycles peaks at G1-S transition but their activity are suppressed by 

Sic1 until progression occurs [32]. Cln1,2 – Cdk1 complexes phosphorylates the Sic1 

and phosphorylated  Sic1 then ubiquitinated by Skp1- Cullin – F-box (SCF) complex 

and  degraded by protesome. Degradation of Sic1 leads to activation of Clb5 and Clb6 –

Cdk1 complexes [33]. Clb5,6 – Cdk1 phosphorylate Sld2 and Sld3 and initiates DNA 

replication [38]. Phosphorylated Sld2 and Sld3 increase affinity for Dpb11[38] which is 

essential for sufficient initiation of DNA replication. 
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Figure 5 Regulation of DNA replication by the cell cycle:  Origin firing.[21]. 

 

Expression of most genes which participate in the DNA replication process, peak at the 

specific phases of the cell cycle. Generally genes participating in early stages of the 

DNA replication process are transcribed in G2 and M phases. Genes participate in later 

stages are peak during late G1 and their levels are peak in S phase when the DNA 

replication takes place. The staged expression of DNA replication factors to specific 

time phases of the cell cycle restricts DNA replication to S phase [21, 22].  To ensure 

the DNA only replicated once. In the S phase several mechanisms inhibit firing of 

origins in other phases. Cdc6 transcription only happens in G1 and S phases [21, 40] 

and phosphorylation of Cdc6 by Cdk1 results its degradation [21, 41] . Another 

mechanism which inhibits the firing of origin is the inhibition of MCM2-7 complex 

associated with Cdt1 by a Cdk1 dependent progress [21, 42]. Cdk1 also phosphorylates 

and inhibits ORC complex[43]. 



Chapter 1: Literature Review  10 

 

 

Figure 6  Mechanisms that prevent re-replication [21] 

 

The DNA damage checkpoints act as switches between G1/S and G2/M 

transitions. There are other two types of checkpoints in S phase. First of them is the 

DNA replication checkpoint, which arrest the cell cycle and inhibits work of late 

replication origins in response to replication stress. Intra S checkpoint reduces the DNA 

replication pace due to DNA damage [21, 44].  

Mad2 prevents chromosome segregation by inhibiting degradation of the securin 

Pds1. Pds1 is phosphorylated and stabilized in response to DNA damage in a Chk1-

dependent manner. The spindle checkpoint is also involved in the Cdc14 release from 

the nucleolus. Cdc14 dephosphorylates Swi5, Sic1, and Cdh1, leading to inhibition of 

Cdc28 and degradation of cyclin required for mitotic exit [45]. 
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Figure 7 Kegg Cell Cycle   [50] 

1.2. Modular Framework of Gene Regulatory Networks 

 

The process of gene regulations performed by collection of regulatory proteins 

and their interactions with specific sequences in promoter regions of targeted genes. 

This process defined as “Transcriptional Regulatory Networks”. High-throughput 

genome-wide techniques show that the molecular interaction network of a cell consists 

of modular units.  Gifford et al [18] define the modules as group of genes that shows a 

unique common behavior across a significant set of experiments and that share a 

common cellular function. Present data indicates that co expressed gene modules are 

regulated by common transcriptional regulator or regulatory networks. A standard 

approach to analyze time series micro array data is clustering expression profiles while 

considering the promoter sequence alignment to analyze probability to share common 
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transcription factors [46] However many co-expressed genes does not have to be co-

regulated [47]. Co expression can be response to indirect factor rather than direct 

initialization by same transcription factors and does not have to share common 

transcription binding motifs in the promoter region and also combinatorial role of 

transcription factors clearly allows for the occurrence of a single transcription factor 

binding motif in genes that are not co regulated [48].  

 

 

. 
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Chapter 2 

METHODS 

1.3. DATA SETS 

1.3.1. Time Series Micro Arrays 

Microarray technologies create an opportunity for exploration of gene 

expressions in a global and parallel fashion [49]. Time series micro arrays 

simultaneously capture multiple gene expression profiles for discrete time points. As a 

result it creates differential gene expression as a function of time. By using differential 

gene expression we can pioneer the regulatory relations between the genes because 

regulated gene pairs are expected to carry temporal correlations or patterns in their 

differential gene expressions[13]. 

 

Figure 8  Differential Expression of three gene pairs (activation, inhibition and 

unknown regulations) from Spellman‟s α–synchronized cell-cycle experimental 

data[13].  
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In this study, we use Pramila micro arrays [50]. The three microarray 

experiments performed over cell cycle of S.Cerevisiae by using spotted cDNA arrays 

and alpha factor to induce synchrony. The two data sets (alpha30 and alpha38) are dye 

swap technical replicates with 5 minutes sampling interval and consist of total 25 time 

points. The third data set, (alpha26), sampled in 10 minutes intervals and consists of 13 

time points. Data sets were processed with Rosetta Resolver version 3.2 error models. 

All values are log10. W303a yeast strain was used in experiments growth on YEP 

glucose medium  

In this study both processed and raw micro array data sets are used to train and 

test our HMM models. The expression-level measurements of a gene in a given 

situation have a roughly Gaussian distribution according to [51]. Because of this fact 

normalization of the data done according to formula: 

 

 

                     (Eq. 1) 

where    is the raw expression data of gene at time point j and   is the average 

expression data of gene . The above formula makes the mean of expression data, µ to 

be 0, and the standard deviation, σ , to be 1. The data normalization is to project all data  

into the same area. The following equation is used to make the gene expression data fall 

into the particular interval : 

 

 

                                 (Eq. 2) 

where    is minimum  and    is the maximum values  in  a  single  gene  

expression time-series  data sequence. 
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1.3.2. YEASTRACT 

 

YEASTRACT is a curated database consists of more than 48333 regulatory associations 

between transcription factors and the target genes in S.cerevisae. It includes 298 

specific DNA binding sites for transcription factors. The yeast gene information derived 

from Saccharomyces Genome Database (SGD) and Gene Ontologies (GO) for each 

gene derived from GO consortium. YEASTRACT includes set of tools 

(DISCOVERER) which can identify complex motifs found to be represented in the 

promoter regions of co-regulated genes. Tools generally take an input list of genes and 

identify over-represented motifs. YEASTRACT identify documented or potential 

transcription regulators of a gene and documented or potential regulators for each 

transcription factor. DISCOVERER can group a list of genes according to regulatory 

associations with known transcription factors. YEASTRACT also provides tools to 

retrieve important biological information from the gathered data and to predict 

transcription regulation networks for yeast [52, 53]. We use YEASTRACT to retrieve 

18327 TF regulated gene pairs which are experimentally validated with strong evidence. 

1.3.3. CYCLEBASE 

 

Cyclebase is an online resource of the cell-cycle-related experiments. Cyclebase has a 

simple interface that facilitates visualization and download of genome wide cell cycle 

data and analysis results. Data base processes raw information from different cell cycle 

experiments and normalize data to a common timescale and data is presented with key 

cell cycle information and derived analysis results. In this study we use „Cyclebase ver. 

2.0’ [54, 55]. to extract cell cycle related S.Ceravisiae genes. Data base 599 genes as 

periodic genes and in training data set creation for HMM we use data to extract cycle 

related gene pair information from KEGG and YEASTRACT. 
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Cyclebase evaluate periodicity of a gene by comparing Fourier score of original time 

points and random shuffled time points of each gene profile and calculates a P-value.  

The Fourier score is defined as 

 

 

                       (Eq.3) 

where  is the interdivision time. 

 

After calculation of Fourier scores 1,000,000 artificial gene profiles are generated from 

shuffling of the data within the original profile by Cyclebase.  The profiles with equal or 

greater Fourier scores are normalized to create the final P-value for periodicity 

 

1.4. PREDICTION OF GENE TO GENE REGULATIONS 

 

HMM is widely accepted approach for characterizing temporal or sequential 

behaviors of a pattern. HMMs used in computational biology area for pioneering 

protein sequence aliment problems. HMMs are popular for exploiting the time 

dependences. HMMs can be described as a stochastic generalization of finite-state 

automata and it provides a probabilistic description of temporal dependences.  HMM 

approach is widely used statistical method of characterizing temporal or sequential 

behaviors of a pattern.   

In this thesis HMM is used to model time-series expression data of regulated 

gene pairs present in time series micro arrays.  HMMs are well-known and applied 

extension of Markov chains.  For each state HMM can infer unknown underlying 

stochastic process which can be inferred through the observations it generates. 
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Temporal patterns of regulated gene pairs are modeled with HMM. Temporal 

expression data of a gene pair is a 2 dimensional (gene expression versus time) 

observations for a certain non-deterministic processes. This 2D observation array is 

used to model known and unknown regulations with different HMM structures after a 

learning phase. 

 

Figure 9: Five state left-to-right HMM model (Observation vector includes expression 

levels of the gene pair (gn ,gm) [13]. 

HMM structure consists of states, state transitions and input observation probabilities.  

We can represent HMM as λ = (A, B , П)  with the parameters 

  = is the states  

  =  is the matrix of the state transition probabilities. Here  denotes the 

probability of making a transition from state  to  such that 

,  , 

where is the state at time . 

   is the vector of observation probabilities associated with each 

emitting state , where  . Since we modeled  observation 

symbol probabilities with Gaussian mixture densities: 



Chapter 2: Methods  18 

 

 

where is Gaussian mixture densities for state ,  is the weight, 

 is covariance matrix,  is the mean vector at state  for mixture L, such that 

 and   

  is the vector with initial state probabilities of entering the model at 

state  such that  . 

In this HMM structure, states represent statistically correlated time series segments 

and state transitions represents segment to segment transitions. The probability density 

functions of expression levels in each segment are representing observation 

probabilities which are derived by Gaussian density functions. If  represents the n-th 

gene in time series micro array data, and the expression level of the   at time t is 

represented by . Then we can represent the observation vector at time t as 

 for the genes  and . The probability of observing gene-pair 

time series expressions,  for HMM λ defined as, 

 

                                                                                      (Eq. 4) 

 

Scoring of the regulatory probability calculated by  

 

                                    ,                          (Eq. 5)          

                                  (Eq. 6) 

where  

 is known regulations HMM  and  is unknown regulations HMM. For creation and 

testing of HMM we use „The Hidden Markov Model Toolkit (HTK) ver. 3.4.1‟ [56]. 
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1.5. CONSTRUCTION OF GENE REGULARTORY NEIGHBOURHOOD 

NETWORKS  (GRNNs) AND COMMUNITY STRUCTURES IN GRNNs 

1.5.1. CONSTRUCTION OF GRNNs 

A GRNN is an undirected graph, where the graph nodes correspond to genes and 

edges between the genes represented the regulatory relationship between the genes and 

edge weights represented the possible regulation probability. GRNN differs from 

regulatory networks because GRNN does not attempt to distinguish direct gene to gene 

regulations from the indirect ones, but GRNN network contains regulatory gene 

neighborhood relations that are generally overlook in cluster analysis [4, 57]. GRNN 

differs from the gene co-expression networks because it is only constructed from 

regulatory relation probabilities and does not include co-regulations. 

 

Figure 10  Sample Gene Regulatory Neighbourhood Network (GRNN). All genes are 

connected to each other by the probability of potential regulations. GRNN is an 

undirected graph. (Arrow thicknesses indicate strong regulation probability.) 
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1.6. DETECTION OF COMMUNITY STRUCTURES 

 

Girvan and Newman define community structure as the division of network 

nodes into groups within which the network connections are dense, but between which 

they are sparser [15]. Detection of community structures are related with previous 

studies present in the literature like graph partitioning in graph theory and hierarchical 

clustering in sociology. However the solution of the graph partitioning assumes the size 

of the clusters are about the same size and requires size minimization of edge cuts and 

cluster count initialization which does not correlate with many applications.  

Community structure detection algorithms are more closely related with the hierarchical 

clustering approaches. Community structure detection algorithms focuses on the 

betweenness of the edges. Betweenness of edges means the edge in some sense 

responsible for connecting many pairs of others. 

We use Clauset algorithm [14] for detection of community structures because of 

its ability to deal with large networks and short running time. This algorithm detects 

community structures based on greedy optimization of modularity. Modularity defined 

by Newman and Girvan [15] as measure of a quality of particular division of a network 

to sub networks. 

If we consider a particular division of a network into  communities we can 

define a  symmetric matrix  consist of elements  which is the fraction of all 

edges in the given network that connects the vertices in community  to vertices in 

community  [15]. The trace of a matrix  presents the fraction of edges which connect 

the vertices in the same community. The high scores in trace of  indicate a good 

quality division into the community networks. For row sums   represent the 

fraction of edges that connect to vertices in community . Edges fall between any 

vertices without considering the community structure defined as  . Girvan 

and Newman define the modularity measure as follows. 

                                     (Eq 7) 
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 is the measure of the fraction of the edges in the network that connect the vertices of 

the same type minus the expected value of the same quantity in a network with the same 

community divisions but random connections between the vertices [15]. 

Clauset algorithm connects nodes in a way that greedily maximizing the modularity 

scores starting from each individual node. Algorithm designed in a way to approach 

constantly to higher modularity if the next modularity is smaller than the modularity 

calculated from the previous step algorithm terminates itself and maximum modularity 

acquired. It is claimed that the algorithm essentially run in linear time [14]. 

Detection of the community structures is performed with igraph [58]. Igraph is a 

collection of software packages for graph theory and network analysis. In study we 

employed community fast and greedy method which is an implementation of method 

presented by  Clauset [14]   for detection of community structures. 

Our experiments indicate that fully connected GRNN are too dense for finding 

community structures. Because of this fact we scale all HMM based potential regulation 

scores as way to fall in the interval of [-1, 1] by using Eq. [2]. And we gradually start to 

eliminate edges starting from smaller than selected threshold. We change the threshold 

between 0.1 to 1.0 and we detected 0.5 is optimal for keeping large portions for nodes 

(genes) and detection of community structures. 

After detection of community structures we perform K-means clustering. Since K-

means require initialization of cluster count we use simply 3 clusters to directly 

compare results. K-means similarity measure for this experiment was Euclidian 

distance. We use Cluster 3.0 [59] implementation of K-means clustering. 

We evaluate the performance of each approach by GO Biological Process (GO BP) 

term enrichment analysis. The enriched GO terms analysis  for different clusters 

performed by „Gene Ontology Enrichment Analysis and VisuaLizAtion Tool’ 

(GORILLA) [16] and „The Database for Annotation, Visualization and Integrated 

Discovery’ (DAVID) v6.7.[17]. Detection of overlapping GO categories detected and 

reduced by REVIGO tool [60] which uses semantic interrelations. All the enrichment 
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analysis performed by GORRILLA with the setting P value as 0.001 to ensure GO 

enrichments are valid. Enrichment score of specific GO term is calculated by Gorilla as: 

 

where                                 (Eq. 8) 

  is the total number of gene ,  is the total number of genes associated with a specific 

GO term ('target' set and 'background set'), is the number of genes in the 'target set' 

and    is the number of genes in the 'target set' associated with a specific GO term. 

 

 



Chapter 3: Results and Discussion  23 

 

Chapter 3: 

RESULTS AND DISCUSSION 

 

HMM evaluation for gene pair detection with comparison to Pearson Correlation 

scores and selection of appropriate state count and Gaussian Mixtures counts presented 

in the first part. In the second part we present GRNN derived community structure 

clustering GO BP Term enrichment results. All the HMMs are trained with Pramila 26 

micro array and tested over Pramila 30 micro array.  

We use two sets of known regulation pairs as training pairs. First set (RT1) 

consist of regulation pairs which are experimentally validated and ordered regulation 

pairs. Pairs present in regulation set 1 derived from YEASTRACT [53] and Kegg [45] 

databases and consist of genes reported as periodic by Cyclebase [54]. RT1 contains 

541 genes and 2159 pairs. Second regulation pair set (RT2) consist of gene regulation 

pairs derived from YEASTRACT only. At least one element of the gene pair used in 

this training set reported as periodic and ranked below 200 by Cyclebase. We trained 

this additional model to increase the gene count present in our GRNN. Since we use cell 

cycle micro array data we try to ensure that training gene pairs related with cell cycle in 

some extend. Training set 2 contains 861 genes and 1565 pairs. 

 

 

1.7. HMM Pair Likelihood Score Comparisons 

 

In Table 1, we present the best fitting HMMs for detection of regulations. Our 

data for this experiment is normalized micro array samples. Data points of used micro 

array data also arranged in a way to fall in to interval [-1,1] by Eq 8. We perform this 

experiment because HMM based clustering approaches often parameterize time micro 

array into 3 letter alphabet. They assign time points below the mean of expression as 
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down regulation, points above the mean as up regulation and points close to mean as 

unchanged expression [61].  Since Top-K analysis are shows the accumulation of ranks 

for specific search components, average of Top-K plot (Average Pair Count (APC)) can 

be used as metric to evaluate goodness of model for detecting regulations.  

In Table 3 and Table 4, we present best fitting HMMs for detection of regulations. 

We use raw micro arrays without further normalization and without projecting the data 

points. Our results indicate that HMMs have higher performance with unprocessed 

micro arrays. If we directly compare average detected gene counts of HMMs trained 

with RT1, HMM performs 7.1 % APC higher for unprocessed arrays. HMM performs 

more regularly with unprocessed micro arrays if we consider the state counts. Because 

of this reasons we continued our study with unprocessed arrays. 

 Our results indicate RT1 trained best fitting HMM with raw micro array 

(hmmTR1) produce 19.2 % higher APC score against Pearson correlation and for RT2 

trained best fitting HMM (hmmTR2) 29.6 % APC against Pearson correlation. The gaps 

between hmmTR1 and hmmTR2 performances against Pearson correlation are due to 

genes presents in the RT sets. RT1 only consist highly periodic genes which favors 

Pearson correlation and RT2 consist of periodic and non periodic genes but all 

regulations pairs present in RT2 consist at least one periodic gene. Even with the 

favoring conditions Pearson correlation performed poorly than hmmTR1. 

 

Table 1 HMM TopK Results Raw Data 

Rank State 
 GMM 

 count 

GMM 

count 
Average Pair Count 

1 3 1 1 1231.854 

2 5 5 3 1225.626 

3 7 1 6 1218.848 
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4 8 6 3 1215.169 

5 7 1 4 1215.114 

107 P26 Correlation - - 1070.843 

 

 

 

Figure 11 Top-K of Known Regulations for RT1 trained HMMs and Pearson 

correlation over processed time series data.  

Result in Fig 11 shows superiority of HMM against Pearson correlation in the field of 

detecting regulations. 

 

1.7.1. Unprocessed Micro Array Data Trained and Tested HMM models with 

RT1 

 

In this part we presented performance analysis for HMMs which trained and 

tested over unprocessed micro array data. We use RT1 pairs for HMM training. We 
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successfully created 217 models for these experiments and sorted our results according 

to APC values. 

Table 2  HMM TopK Results Raw Data 

Rank State 
 GMM 

count 

GMM 

count 

Average Pair  

Count 

1 8 6 5 1325.130 

2 8 6 4 1318.435 

3 8 6 2 1310.427 

4 8 6 3 1309.972 

5 8 1 4 1298.451 

199 P26 Correlation - - 1070.843 

 

 

Figure 12 Top-K of Known Regulations present RT1  

Result in Fig 12 shows superiority of HMM against Pearson correlation in the field of 

detecting regulations. 
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1.7.2. Unprocessed Micro Array Data Trained and Tested HMM models with 

RT2  

In this part we presented performance analysis for HMMs which trained and 

tested over unprocessed micro array data. We use RT2 pairs for HMM training. We 

successfully created 150 models for these experiments and sorted our results according 

to APC values. 

Table 3 HMM Top-K Results Raw Data 

Rank State  GMM count 
 GMM 

count 

Average Pair 

Count 

1 5 2 3 1182.341 

2 4 2 1 1168.115 

3 4 3 1 1166.896 

4 5 3 2 1166.068 

5 5 2 2 1160.529 

148 P26 Correlation   833.094 

 

 

 

Figure 13 Top-K of Known Regulations present RT2 
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Result in Fig 13 shows superiority of HMM against Pearson correlation in the field of 

detecting regulations. 

1.8. Community Structure Detections 

 

In the first part of the study we use HMM to extract potential regulation 

probabilities between gene pairs and we constructed GRNNs.  GRNN is constructed 

from best regulation finder HMM (8 state HMM) that trained with RT1. As mentioned 

previously in Methods Chapter density of GRNN is reduced. We examined community 

structures in the resulting GRNN and evaluate the functional difference between 

communities by comparing functional GO BP term enrichment analysis. Since not all 

genes are significantly enriched in clusters, we need to consider how many of the genes 

present in clusters share the enriched GO terms. We define what percentage of genes 

share the enriched GO terms as cluster density. 

 

 

1.8.1. GORILLA BASED ANALYSIS OF ENRICHED GO TERMS 

1.8.1.1. K-means Derived Cluster Analysis for Genes Present in Training set 1 

We clustered genes present in RT1 with K means clustering. And performed GO BP 

term enrichment with GOrrilla. Results presented in Tables 4-8. . 

 

Table 4 K-means Clusters for RT1 genes 

Community 

ID 

Number of 

Genes 

Overlapping GO Categories 

(REVIGO) 
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1 237 

1- Protein Folding 

2- DNA Metabolism and Repair 

3- Sister Chromatin Cohesion 

4-  

5-  

6-  

2 48 

1- Cytokinetic Process 

2- Regulation of Multi –Organism Process 

 3- Regulation Of Nucleotide Metabolism / 

Regulation of GTPase activity 

 

3 270 

1- Cellular Processes / RNA Metabolism 

/Transcription,DNA dependendent / 

Regulation of  Transcription from 

RNAse II promoter /Regulation of 

Cellular processes /Membrane 

Organization / Biological Regulation   

 

As we can see K-means clusters are not dense according to GO BP terms. Overlapping 

GO terms indicate that the enriched GO terms are not closely related. Overlapping GO 

Terms for cluster 3 are highly related because is constructed from high level  GO terms 

which are common for many genes. 

 

Table 5 Enriched GO TERMS GENE COUNTS 

COMMUNITY 
TOTAL GENE 

COUNT 

ASSOCIATED 

GENE COUNT 

CLUSTER 

DENSITY 

Community 1 237 48 20.3 % 

Community 2 48 14 29.2 % 

Community 3 270 214 79.3 % 
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Enriched GO terms percentage indicates low gene participation in more specified 

clusters except cluster 3. After we eliminate GO terms in low levels which are common 

for large portion of genes (GO Cellular Processes and GO Biological Processes). This 

clusters density falls to 46.3 %. 

 

Table 6 K-means Cluster 1 Biological Process Enrichment Results    (GORRILLA) 

GO Term Description P value Enrichment  (N, B, n, b) 

GO:0006281 DNA repair 2.17E-06 1.78(543,47,227,35) 

GO:0006259 DNA metabolic process 2.69E-05 1.51(543,81, 227,51) 

GO:0007062 sister chromatid cohesion 3.67E-05 2.23(543,15, 227,14) 

GO:0006974 response to DNA damage 

stimulus 

5.69E-05 1.59(543,57, 227,38) 

GO:0007064 mitotic sister chromatid 

cohesion 

8.49E-05 2.22(543,14, 227,13) 

GO:0006273 lagging strand elongation 3.55E-04 2.39(543,9, 227,9) 

GO:0033554 cellular response to stress 7.43E-04 1.41(543,78, 227,46) 

GO:0006457 protein folding 8.67E-04 2.39(543,8, 227,8) 

GO:0006298 mismatch repair 8.67E-04 2.39(543,8, 227,8) 

 

 

 

 

http://cbl-gorilla.cs.technion.ac.il/GOrilla/gol8yikz/GOResultsPROCESS.html#p_value_info
http://cbl-gorilla.cs.technion.ac.il/GOrilla/gol8yikz/GOResultsPROCESS.html#enrich_info
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Table 7 K-means Cluster 2 Biological Process Enrichment Results    (GORRILLA) 

GO Term Description P value 
Enrichment 

(N, B, n, b) 

GO:0032506 cytokinetic process 1.17E-04 4.52(543,20,48,8) 

GO:0043900 regulation of multi-organism process 2.02E-04 7.07(543,8,48,5) 

GO:0031137 regulation of conjugation with 

cellular fusion 

2.02E-04 7.07(543,8,48,5) 

GO:0046999 regulation of conjugation 2.02E-04 7.07(543,8,48,5) 

GO:0070783 growth of unicellular organism as a 

thread of attached cells 

6.11E-04 4.85(543,14,48,6) 

GO:0044182 filamentous growth of a population of 

unicellular organisms 

6.11E-04 4.85(543,14, 48,6) 

GO:0030811 regulation of nucleotide catabolic 

process 

7.12E-04 7.54(543,6, 48,4) 

GO:0043087 regulation of GTPase activity 7.12E-04 7.54(543,6, 48,4) 

GO:0006140 regulation of nucleotide metabolic 

process 

7.12E-04 7.54(543,6, 48,4) 

GO:0033121 regulation of purine nucleotide 

catabolic process 

7.12E-04 7.54(543,6, 48,4) 

GO:0033124 regulation of GTP catabolic process 7.12E-04 7.54(543,6, 48,4) 

 

 

Table 8 K-means Cluster 3 Biological Process Enrichment Results    (GORRILLA) 

GO Term Description PValue Enrichment (N B n B) 

GO:0006351 transcription, DNA- 9.47E-08 1.47 543 101 270 74 

http://cbl-gorilla.cs.technion.ac.il/GOrilla/gol8yikz/GOResultsPROCESS.html#p_value_info
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dependent 

GO:0032774 RNA biosynthetic 

process 

9.47E-08 1.47 543 101 270 74 

GO:0006357 regulation of 

transcription from 

RNA polymerase II 

promoter 

4.46E-07 1.52 543 78 270 59 

GO:0045944 positive regulation of 

transcription from 

RNA polymerase II 

promoter 

4.52E-07 1.75 543 39 270 34 

GO:0051252 regulation of RNA 

metabolic process 

2.19E-06 1.37 543 125 270 85 

GO:0010468 regulation of gene 

expression 

2.48E-06 1.36 543 127 270 86 

GO:0051254 positive regulation of 

RNA metabolic 

process 

4.03E-06 1.61 543 50 270 40 

GO:0016070 RNA metabolic 

process 

4.08E-06 1.37 543 119 270 81 

GO:0048518 positive regulation of 

biological process 

4.95E-06 1.53 543 63 270 48 

GO:0048522 positive regulation of 

cellular process 

4.95E-06 1.53 543 63 270 48 

GO:0006355 regulation of 

transcription, DNA-

dependent 

5.21E-06 1.36 543 123 270 83 

GO:0010628 positive regulation of 6.95E-06 1.6 543 49 270 39 
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gene expression 

GO:0045893 positive regulation of 

transcription, DNA-

dependent 

6.95E-06 1.6 543 49 270 39 

GO:0045935 positive regulation of 

nucleobase 

1.02E-05 1.58 543 51 270 40 

GO:0051173 positive regulation of 

nitrogen compound 

metabolic process 

1.02E-05 1.58 543 51 270 40 

GO:0010604 positive regulation of 

macromolecule 

metabolic process 

1.46E-05 1.56 543 53 270 41 

GO:0010557 positive regulation of 

macromolecule 

biosynthetic process 

1.73E-05 1.57 543 50 270 39 

GO:0060255 regulation of 

macromolecule 

metabolic process 

1.75E-05 1.3 543 149 270 96 

GO:0010556 regulation of 

macromolecule 

biosynthetic process 

1.99E-05 1.32 543 131 270 86 

GO:2000112 regulation of cellular 

macromolecule 

biosynthetic process 

1.99E-05 1.32 543 131 270 86 

GO:0009889 regulation of 

biosynthetic process 

1.99E-05 1.32 543 131 270 86 

GO:0031326 regulation of cellular 

biosynthetic process 

1.99E-05 1.32 543 131 270 86 
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GO:0080090 regulation of primary 

metabolic process 

2.16E-05 1.28 543 155 270 99 

GO:0031323 regulation of cellular 

metabolic process 

2.16E-05 1.28 543 155 270 99 

GO:0050794 regulation of cellular 

process 

3.08E-05 1.23 543 205 270 125 

GO:0019222 regulation of 

metabolic process 

3.56E-05 1.27 543 158 270 100 

GO:0009891 positive regulation of 

biosynthetic process 

4.02E-05 1.54 543 51 270 39 

GO:0031328 positive regulation of 

cellular biosynthetic 

process 

4.02E-05 1.54 543 51 270 39 

GO:0019219 regulation of 

nucleobase, 

nucleoside, 

nucleotide and 

nucleic acid 

metabolic process 

4.10E-05 1.3 543 138 270 89 

GO:0051171 regulation of nitrogen 

compound metabolic 

process 

4.10E-05 1.3 543 138 270 89 

GO:0050789 regulation of 

biological process 

4.66E-05 1.22 543 208 270 126 

GO:0009893 positive regulation of 

metabolic process 

7.13E-05 1.5 543 55 270 41 

GO:0031325 positive regulation of 

cellular metabolic 

7.13E-05 1.5 543 55 270 41 
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process 

GO:0016044 cellular membrane 

organization 

9.79E-05 2.01 543 13 270 13 

GO:0061024 membrane 

organization 

9.79E-05 2.01 543 13 270 13 

GO:0065007 biological regulation 4.31E-04 1.17 543 228 270 133 

GO:0009987 cellular process 9.69E-04 1.06 543 462 270 243 
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1.8.1.2. GRNN Derived Graph Analysis 

 

 

Figure 14 Community Structures in GRNN 

For GRNN we identify 3 community clusters.  
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Table 9 Community Structures Detected in GRNN 

Community 

ID 

Number of 

Genes 

 

Overlapping GO Categories 

(REVIGO) 

 

1 299 

1- DNA Metabolism, Cell Cycle Process, DNA Repair, 

Cellular Component Organization at Cellular Level, 

2- Cellular Component Organization or Biogenesis. 

2 152 

1-Transcription DNA-dependent, RNA metabolism, 

Positive Regulation of Gene Expression,  

2-Regulation of Transcription from RNA polymerase II 

promoter 

 

Transport 3 90 1-Aspartate Family Amino Acid Metabolic Process 

 

Results indicate that community structures detected from GRNN reflects Biological 

Processes. In overlapping GO BP categories column of the Table 9 indicates identified 

communities participate in related biological processes. Community 1 and Community 

2 consist of closely related GO annotations. Results show the genes are grouped by 

participation in different biological process by our approach. Since the community 

structure detection algorithm calculates community structure count from GRNN with a 

more successful potential regulation probabilities improved distinction of GO terms can 

be acquired. Community Cluster 3 GO terms enrichment depends on 5 genes out 90 

genes present in structure the GO term enrichment is failed and less dependable 

according to GOrilla.  
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Table 10 Enriched GO Terms Gene Counts 

Community 
TOTAL GENE 

COUNT 

ASSOCIATED 

GENE COUNT 

CLUSTER 

DENSITY 

Community 1 299 134 
44.8 % 

Community 2 152 72 
47.4 % 

Community 3 90 5 
5.5 % 

 

Table 11 Community 1 Biological Process Enrichment Results    (GORRILLA) 

GO Term Description P value 
Enrichment                 

(N, B, n, b) 

GO:0071842 
cellular component organization at 

cellular level 
2.79E-5 1.24 (543,169,299,115) 

GO:0016043 cellular component organization 1.01E-4 1.18 (543,217,299,141) 

GO:0071841 
cellular component organization or 

biogenesis at cellular level 
1.67E-4 1.18 (543,213,299,138) 

GO:0006281 DNA repair 3.93E-4 1.43 (543,47,299,37) 

GO:0006996 organelle organization 4.67E-4 1.22 (543,143,299,96) 

GO:0006259 DNA metabolic process 6.12E-4 1.31 (543,79,299,57) 

GO:0006974 response to DNA damage stimulus 6.88E-4 1.37 (543,57,299,43) 

GO:0022402 cell cycle process 6.97E-4 1.25 (543,112,299,77) 

GO:0071840 
cellular component organization or 

biogenesis 
7.64E-4 1.15 (543,226,299,143) 

 

http://cbl-gorilla.cs.technion.ac.il/GOrilla/gol8yikz/GOResultsPROCESS.html#p_value_info
http://cbl-gorilla.cs.technion.ac.il/GOrilla/gol8yikz/GOResultsPROCESS.html#enrich_info
http://cbl-gorilla.cs.technion.ac.il/GOrilla/gol8yikz/GOResultsPROCESS.html#enrich_info
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0071842&view=details
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0016043&view=details
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0071841&view=details
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0006281&view=details
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0006996&view=details
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0006259&view=details
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0006974&view=details
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0022402&view=details
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0071840&view=details
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We find that 44.8 % of the genes present in community cluster 1 is associated with the 

enriched GO terms presented in Table 11. 

 

 

Table 12 Community 2 Biological Process Enrichment Results    (GORILLA) 

GO Term Description P value 
Enrichment                 

(N, B, n, b) 

GO:0006357 
regulation of transcription from 

RNA polymerase II promoter 
2.18E-4 1.65 (543,76,152,35) 

GO:0045944 
positive regulation of transcription 

from RNA polymerase II promoter 
2.22E-4 1.97 (543,38,152,21) 

GO:0006810 transport 2.92E-4 1.64 (543,74,152,34) 

GO:0016070 RNA metabolic process 3.03E-4 1.47 (543,119,152,49) 

GO:0006351 transcription, DNA-dependent 3.36E-4 1.52 (543,101,152,43) 

GO:0032774 RNA biosynthetic process 3.36E-4 1.52 (543,101,152,43) 

GO:0010628 
positive regulation of gene 

expression 
5.85E-4 1.79 (543,48,152,24) 

GO:0045893 
positive regulation of 

transcription, DNA-dependent 
5.85E-4 1.79 (543,48,152,24) 

GO:0051234 establishment of localization 7.6E-4 1.58 (543,77,152,34) 

GO:0010557 
positive regulation of 

macromolecule biosynthetic 

process 

8.67E-4 1.75 (543,49,152,24) 

GO:0051254 
positive regulation of RNA 

metabolic process 
8.67E-4 1.75 (543,49,152,24) 

 

 

http://cbl-gorilla.cs.technion.ac.il/GOrilla/gol8yikz/GOResultsPROCESS.html#p_value_info
http://cbl-gorilla.cs.technion.ac.il/GOrilla/gol8yikz/GOResultsPROCESS.html#enrich_info
http://cbl-gorilla.cs.technion.ac.il/GOrilla/gol8yikz/GOResultsPROCESS.html#enrich_info
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0006357&view=details
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0045944&view=details
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0006810&view=details
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0016070&view=details
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0006351&view=details
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0032774&view=details
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0010628&view=details
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0045893&view=details
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0051234&view=details
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0010557&view=details
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0051254&view=details
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We find that 47.4 % of the genes present in community cluster 2 is associated with the 

enriched GO terms presented in Table 12. 

 

Table 13 Community 3 Biological Process Enrichment Results 

GO Term Description P value 
Enrichment                 

(N, B, n, b) 

GO:0009066 
aspartate family amino acid 

metabolic process 
5.93E-4 5.03 (543,6,90,5) 

 

Density of community cluster 3 is low. GO term enrichment is significant for only 5 

genes so we cannot conclude members of community 3 participate in similar kind of 

biological processes with using GOrilla. To further analyze community cluster 3 we use 

DAVID for detailed GO term enrichment analysis with high classification stringency. 

We identify 4 annotational clusters with enrichment scores higher than 1. Enriched GO 

terms have P values bigger than 0.001 which we are used with GORILLA. 

 

Table 14 Community 3 Annotational Clusters Enrichment  (DAVID) 

Annotation Cluster (AC) Enrichment 

AC 1 1.736 

AC 2 1.337 

AC 3 1.134 

AC 4 1.025 

 

GO BP term enrichments are presented in Table 14 for detected annotational clusters 

(AC) with DAVID. Enriched GO BP terms indicate a portion of community cluster 3 

members highly associated with Cellular Amino Acid Biosynthesis, Organic Acid 

Metabolism and Cellular Nitrogen Compound Biosynthesis. The count of genes 

associated with those terms is 13. Participation of genes to ACs is 27.8%. 

http://cbl-gorilla.cs.technion.ac.il/GOrilla/gol8yikz/GOResultsPROCESS.html#p_value_info
http://cbl-gorilla.cs.technion.ac.il/GOrilla/gol8yikz/GOResultsPROCESS.html#enrich_info
http://cbl-gorilla.cs.technion.ac.il/GOrilla/gol8yikz/GOResultsPROCESS.html#enrich_info
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0009066&view=details
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Table 15 Community 3 Annotation Cluster 1 

Annotation Cluster 1 
     

GO Term Description P value Enrichment 
 

GO:0009309 
amine biosynthetic 

process 
0.008826 

3.321569 
 

GO:0008652 
cellular amino acid 

biosynthetic process 0.008826 
3.321569 

 

GO:0046394 
carboxylic acid 

biosynthetic process 0.023071 
2.530719 

 

GO:0016053 
organic acid 

biosynthetic process 0.023071 
2.530719 

 

GO:0044271 
nitrogen compound 

biosynthetic process 0.050284 
2.049882 

 

 

As can be observed from individual AC (Tables 10 to 12) even if overall total 

enrichment scores are low, fold enrichment of individual GO BP terms are high. 

 

Table 16 Community 3 Annotation Cluster 2 

Annotation Cluster 2 

GO Term Description P  value Enrichment 

GO:0009309 amine biosynthetic process 0.008826 3.321569 

GO:0008652 cellular amino acid biosynthetic process 0.008826 3.321569 

GO:0006520 cellular amino acid metabolic process 0.050284 2.049882 

GO:0044106 cellular amine metabolic process 0.050284 2.049882 

http://cbl-gorilla.cs.technion.ac.il/GOrilla/gol8yikz/GOResultsPROCESS.html#p_value_info
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GO:0006519 
cellular amino acid and derivative metabolic 

process 
0.06248 1.971041 

GO:0019752 carboxylic acid metabolic process 0.086639 1.692846 

GO:0043436 oxoacid metabolic process 0.086639 1.692846 

GO:0006082 organic acid metabolic process 0.086639 1.692846 

 

Table 17 Community 3 Annotation Clusters 

Annotation Cluster 3 

GO Term Description Pvalue Enrichment 

GO:0009066 aspartate family amino acid metabolic process 0.009633 4.745098 

GO:0006555 methionine metabolic process 0.038776 4.555294 

GO:0000097 sulfur amino acid biosynthetic process 0.038776 4.555294 

GO:0000096 sulfur amino acid metabolic process 0.067918 3.796078 

GO:0009086 methionine biosynthetic process 0.140917 4.270588 

GO:0009067 aspartate family amino acid biosynthetic process 0.140917 4.270588 

GO:0044272 sulfur compound biosynthetic process 0.146422 2.847059 

GO:0006790 sulfur metabolic process 0.294507 2.070588 

 

 

By comparing the Tables 4-5 with Tables 9-10 we can conclude that community 

structures are enriched more specific GO terms than K-means. As can be seen from 
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Table 8 most enriched GO terms present in K-means cluster 3 are: GO Cellular 

Processes and GO Biological Processes These terms are broad terms and very high 

portions of genes shares these terms. After elimination of these terms K-means cluster 3 

associated gene count drops significantly (46.3 %). If we more closely look to 

community cluster 3 with DAVID (Tables 9 to 12). For lower P values but with good 

enrichment levels 27.8 % of genes participate in annotation clusters. Our results indicate 

Communities present in GRNN are better correlated with biological data than K means 

clusters because it enriches more similar GO terms does not require cluster count 

initiation and often creates more dense cluster regarding to genes participating same GO 

terms. 
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2. CONCLUSION 

 

By the increase of publicly available time series micro array experiments, large 

amount of data about differential gene expressions are accumulated. Since expression 

levels are directly related with activity of genes, we can identify the regulation process 

between the genes in to some extent since pre and post modification over mRNA and 

TFs can alter the activity of the genes.  

In this study we modeled gene regulations with HMM models. In the first part of 

this study we try to optimize our HMM models for our training sets which are related to 

the cell cycle. We compared our HMMs effectiveness with the Pearson Correlation 

which is common approach to detect regulations between the genes. HMM surpass the 

Pearson Correlation significantly in our experiments between 19.2 % to 29.6 % in terms 

of average detected gene counts present in Top-K analysis of data. 

In the second part we use the community structure property of the networks to 

cluster genes according to GO biological process terms. In theory since the gene 

regulatory networks have modular framework, we aim to identify these modular 

frameworks with community structure property. Results indicate that even for less 

dependable networks made up from crude estimation of gene regulatory relations with 

HMM, we can produce biologically meaningful clusters. We show that communities 

present in HMM derived GRNNs are better correlated with biological data than 

conventional K-means clustering by generating more specific clusters and often higher 

numbers of genes have similar GO terms for equal number of clusters for highly cell 

cycle regulated genes.  

For future work since many co expressed genes does not have to be co-regulated 

because of different promoter sequences and also even the genes with common 

promoter sequences does not have to be co-regulated because of suppressors and 

enhancers activities and histone modifications. HMM can detect this features and 

performance can be increased with integration promoter sequence alignments. 
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APPENDIX 

 

Appendix 1 K-means Clusters for RT1 GRNN genes (Systematic Name) 

 

Cluster 1 

 

YAL005C YCR005C YDR343C YFL064C YHR154W YKL042W YLR256W YMR076C YNL300W 

YAL053W YCR065W YDR481C YFL065C YHR218W YKL045W YLR270W YMR078C YNL309W 

YAR007C YCR089W YDR488C YFL067W YHR219W YKL066W YLR273C YMR14W YNL310C 

YAR008W YDL003W YDR501W YFR053C YIL026C YKL067W YLR274W YMR163C YNL312W 

YAR071W YDL018C YDR507C YGL032C YIL066C YKL101W YLR303W YMR17W YNL334C 

YBL005W YDL020C YDR516C YGL037C YIL101C YKL104C YLR304C YMR18W YNL339C 

YBL005W YDL095W YDR518W YGL038C YIL140W YKL113C YLR313C YMR19W YNR001C 

YBL031W YDL101C YDR528W YGL061C YIL177C YKL127W YLR326W YMR25W YNR044W 

YBL035C YDL102W YDR545W YGL163C YJL073W YKL163W YLR342W YMR25W YOL007C 

YBL109W YDL105W YEL047C YGL200C YJL074C YKR013W YLR382C YMR253C YOL017W 

YBL111C YDL124W YEL071W YGL207W YJL079C YKR090W YLR437C YMR261C YOL147C 

YBL112C YDL127W YEL075C YGL253W YJL089W YLL002W YLR462W YMR305C YOR027W 

YBL113C YDL164C YEL076C YGR014W YJL115W YLL022C YLR463C YNL037C YOR028C 

YBR070C YDL248W YEL076C YGR109C YJL116C YLL066C YLR464W YNL088W YOR033C 

YBR071W YDR077W YEL077C YGR140W YJL155C YLL067C YLR465C YNL102W   

YBR072W YDR085C YER001W YGR142W YJL164C YLR032W YLR466W YNL134C   

YBR073W YDR097C YER053C YGR152C YJL173C YLR049C YLR467W YNL165W   

YBR087W YDR113C YER070W YGR189C YJL187C YLR050C YML01W YNL166C   

YBR088C YDR144C YER095W YGR221C YJL225C YLR103C YML02W YNL192W   

YBR161W YDR216W YER111C YGR286C YJR006W YLR121C YML10W YNL206C   

YBR275C YDR222W YER118C YGR296W YJR010W YLR151C YML110C YNL231C   

YBR296C YDR253C YER150W YHL021C YJR030C YLR183C YML133C YNL262W   

YCL024W YDR279W YER189W YHL049C YJR043C YLR212C YMR008C YNL263C   

YCL040W YDR307W YER190W YHL050C YJR060W YLR217W YMR01W YNL273W   

YCL061C YDR342C YFL008W YHR092C YKL035W YLR234W YMR04W YNL289W   
 

 

Cluster 2 

YAL059W YJL078C YEL032W YLR079W YDL039C YKL185W YGL028C YNL141W YIL009W 

YBR067C YJL157C YEL040W YLR194C YDL227C YKL209C YGL055W YNL327W YJL044C 

YBR158W YJL159W YER124C YLR413W YDR033W YKR042W YGL255W YNR067C YHR005C 

YBR267W YKL009W YFL026W YLR452C YDR309C YKR099W YGR041W YOL124C YOR342C 

YCL064C YKL172W YFL027C YNL078W YDR379W YLR074C YGR044C YOR315W YHR143W 
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YIL127C YHR08W YPL158C 
      

 

 

Cluster  3 

 
 

YAL007C YMR006C YGL012W YKL164C YDR207C YOR246C YJL051W YML064C 

YAL022C YMR021C YGL013C YKL165C YDR213W YOR247W YJL056C YML065W 

YAL023C YMR031C YGL021W YKR010C YDR219C YOR248W YJL084C YML085C 

YAL039C YMR032W YGL035C YKR098C YDR224C YOR307C YJL092W YML099C 

YAL040C YMR037C YGL073W YLL028W YDR225W YOR313C YJL110C YML119W 

YAR018C YMR042W YGL101W YLL032C YDR261C YOR326W YJL118W YML125C 

YBL002W YMR043W YGL116W YLR014C YDR276C YOR372C YJL134W YMR001C 

YBL003C YMR058W YGL201C YLR045C YDR297W YPL032C YJL158C YMR003W 

YBL004W YMR070W YGL209W YLR056W YDR310C YPL075W YJL183W YKL043W 

YBL005W YMR075W YGL216W YLR131C YDR325W YPL089C YJL194W YKL052C 

YBL009W YMR145C YGL237C YLR154C YDR423C YPL116W YJR003C YKL062W 

YBL023C YMR164C YGL254W YLR176C YDR451C YPL127C YJR053W YKL069W 

YBL032W YMR183C YGR035C YLR180W YDR463W YPL128C YJR054W YKL096W 

YBL061C YMR190C YGR086C YLR190W YEL017W YPL141C YJR092W YKL109W 

YBL063W YMR198W YGR092W YLR210W YEL042W YPL202C YJR132W YKL112W 

YBL064C YMR215W YGR098C YLR228C YEL061C YPL209C YKL004W YPL255W 

YBR008C YMR307W YGR099W YLR254C YER003C YPL242C YKL008C YPR019W 

YBR009C YNL015W YGR108W YLR297W YER028C YPL248C YKL015W YPR034W 

YBR010W YNL030W YGR113W YLR300W YER032W YPL253C YKL038W YPR065W 

YBR015C YNL031C YGR143W YLR373C YHL028W YOL091W YER040W YPR106W 

YBR038W YNL056W YGR151C YLR380W YHR023W YOL158C YER109C YPR119W 

YBR049C YNL057W YGR176W YLR451W YHR061C YOR018W YFL007W YPR149W 

YBR054W YNL058C YGR177C YLR455W YHR086W YOR025W YFL021W YER037W 

YBR078W YNL068C YGR188C YML007W YHR127W YOR058C YFL031W YDL055C 

YBR083W YNL103W YGR230W YML034W YHR135C YOR073W YGL008C YDL056W 

YBR086C YNL111C YGR279C YML052W YHR136C YOR084W YIL129C YDL138W 

YBR092C YNL126W YHL026C YML058W YHR137W YOR099W YIL131C YDL155W 

YBR093C YNL145W YCR024C YDR133C YHR143W YOR113W YIL132C YDR055W 

YBR133C YNL160W YCR039C YDR146C YHR146W YOR127W YIL141W YDR089W 

YBR138C YNL176C YCR041W YDR150W YHR151C YOR140W YIL158W YDR123C 

YBR139W YNL216W YCR042C YDR179C YHR152W YOR153W YIL159W YIL050W 

YBR157C YNL238W YCR096C YDR191W YHR178W YOR162C YIR010W YIL106W 

YBR200W YNL283C YOL014W YCL014W YHR206W YOR188W YIR023W YIL119C 

YBR202W YNR009W YOL019W YCL055W YIL047C YOR229W YJL034W YIL122W 

YBR243C YOL012C YOL030W YCL063W YOL067C YOR230W YOR233W YIL123W 
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Appendix 2 GRNN Community Clusters (Systematic Name) 

Community Cluster 1 
 

YKL069W YER118C YFL031W YHR154W YDR033W YPL209C YBL003C YJL116C 

YFL064C YGR221C YOR114W YMR078C YFR053C YDR307W YHL028W YBL009W 

YDR113C YHR218W YHR023W YDR077W YGR140W YNL160W YLL032C YBR139W 

YML052W YDR518W YIL158W YPL124W YLR032W YJL187C YJL079C YJL194W 

YNL058C YPL127C YLR270W YNL283C YLL002W YHR152W YGR188C YDR146C 

YMR305C YLR342W YNL057W YGL116W YOR247W YFL065C YBL002W YIL132C 

YML119W YOR315W YNL273W YMR215W YFL027C YML027W YGR092W YPR135W 

YBL111C YMR032W YPR119W YER001W YDR297W YFL008W YOR058C YJL115W 

YEL075C YBL112C YNL300W YNL262W YOR373W YCL061C YKL066W YOL091W 

YLR313C YCR065W YNL166C YDR528W YKL113C YMR307W YML085C YIL123W 

YER189W YBR092C YGR099W YLR217W YOL030W YDR488C YML058W YML064C 

YBR093C YEL076C YIL026C YOL014W YMR076C YHR178W YMR189W YLR462W 

YNL031C YLR190W YBR072W YBL031W YLR212C YKL165C YOL017W YJL225C 

YOR127W YLR121C YKL008C YLR467W YDR150W YER003C YPL153C YMR251W 

YCL063W YKL101W YLR131C YKL096W YGR041W YBR078W YKL127W YGR152C 

YML065W YGR189C YOR347C YGL061C YGL073W YEL061C YKR010C YOR066W 

YLR079W YLR273C YMR058W YNL037C YOR113W YDR501W YER150W YCL067C 

YPR019W YDR222W YGL101W YMR164C YOR374W YNL206C YEL071W YEL017W 

YMR179W YNL015W YOR027W YDR342C YEL032W YGR098C YNL309W YNL289W 

YDR309C YNL339C YDR219C YNL088W YBR083W YBL035C YLR463C YMR031C 

YHR086W YDR545W YLR183C YDL101C YDR133C YDL102W YLR194C YLL066C 

YLR466W YPR141C YER070W YLR154C YDL003W YPL256C YPL253C YPL255W 

YKL209C YGR109C YLR050C YBR049C YMR144W YJL164C YDR089W YIL106W 

YDL127W YBR071W YKL045W YNR044W YLR049C YDR343C YBR070C YJL073W 

YDR097C YLL022C YIL177C YER032W YML133C YNL165W YJR006W YLR326W 

YHR092C YNL068C YDR253C YKL042W YGL013C YBR202W YBL109W YGL038C 

YPL267W YHL049C YGR296W YCL014W YCR042C YPL283C YPL163C YIL119C 

YLR210W YNL145W YHR005C YGR286C YOR188W YAR071W YBR275C YMR163C 

YDL124W YHL050C YJL155C YBR073W YOR073W YMR190C YIL159W YDR507C 

YAL007C YLR103C YEL077C YOL007C YCR005C YBR010W YOR028C YMR070W 

YJL159W YGL200C YER111C YLR151C YOL147C YIL131C YGL253W YML034W 

YIL140W YLR056W YMR011W YML102W YGL032C YGL201C YNL192W YAR008W 

YHR219W YHR137W YBR067C YIL141W YKL067W YMR003W YBR009C YGL037C 

YBR088C YNL111C YLR045C YBR015C YCL040W YKL163W YPL116W YNL263C 

YDL155W YMR199W YLL067C YBL113C YCL055W YNL176C YDL164C YNL126W 

YOR248W YKL112W YLR274W YKL104C YCL024W YLR300W YJL051W YGL216W 
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YNL312W YDL018C YDR279W YER190W YJR030C YDR055W YNL030W YAR007C 

YHL021C YKR042W YOR033C YKR013W YKR090W YMR048W YMR250W YNL078W 

YJL158C YER095W YOR074C YFL067W YMR008C YNL310C YLR437C YNL102W 

YLR464W 

       
 

Community Cluster 2 

YDL039C YOR153W YHL026C YBR200W YJL118W YEL042W YOR246C YMR043W 

YGR035C YDR463W YOR233W YML012W YGR113W YPR035W YLR234W YHR127W 

YOR313C YEL047C YDL055C YDL105W YGL008C YBL032W YKL172W YLR455W 

YGL163C YJL034W YOR099W YER040W YBR008C YLR465C YML125C YGR143W 

YOR229W YGL012W YML099C YIR010W YPL075W YLR380W YNL231C YKL052C 

YGR086C YPR106W YOL019W YOR342C YLR382C YHR146W YOL067C YBR086C 

YKL009W YKL043W YAL039C YDL095W YGR176W YNL216W YOR273C YDR207C 

YMR075W YAL059W YPL014W YIL050W YDR379W YJR003C YCR096C YPL057C 

YDR261C YLR297W YER037W YAL005C YJL134W YOR162C YDR144C YHR151C 

YFL007W YPL032C YNL334C YER109C YIL122W YML110C YDR325W YDR481C 

YMR006C YJR053W YGR177C YDR213W YMR261C YPL061W YMR253C YKL015W 

YAL023C YOR230W YJL183W YBR161W YMR021C YDL056W YPL265W YKR098C 

YGR230W YCR041W YOR372C YJR132W YLR254C YGR151C YNL134C YOR307C 

YMR037C YKL062W YPL128C YJR043C YNR009W YGL207W YLR413W YGR279C 

YOR140W YLR176C YGL209W YBR087W YOL158C YAL022C YHR206W YLR074C 

YOR326W YHR136C YIL009W YMR042W YDR516C YJL084C YGL035C YGL237C 

YAL040C YDR451C YLR451W YCR039C YJL044C YDR179C YLR014C YBL023C 

YDR276C YNL103W YDL138W YBR243C YAL053W YDR423C YDR191W YPL221W 

YBR054W YPR034W YBR157C YOR084W YIR023W YOL012C YPL202C YKL109W 

YMR183C YNL238W YLL028W YKL004W 
    

 

Community Cluster 3 

YBR038W YER053C YIL101C YBL063W YPL158C YHR135C YKL164C YGL028C 

YER028C YIL129C YMR198W YJL157C YPR075C YNL141W YJL173C YDL248W 

YAR018C YKR099W YLR304C YCL064C YHR084W YOR018W YPL141C YKL185W 

YBR267W YJR092W YDR225W YKL038W YOR025W YEL040W YLR228C YCR024C 

YNR001C YBL004W YGL254W YBR158W YDR085C YLR303W YIL047C YNL056W 

YDR123C YPL242C YJL074C YGR014W YPL248C YBL005W YGR044C YML007W 

YPR149W YLR256W YLR180W YJL089W YOL124C YJR060W YBR133C YNR067C 

YGL255W YIL127C YJR010W YDR310C YDR216W YFL026W YER124C YNL327W 

YJL110C YPR065W YMR001C YBL061C YGR142W YJL092W YCR089W YBL064C 

YHR061C YIL066C YDR224C YDL227C YLR452C YLR373C YGR108W YGL021W 

YBR138C YJL056C YDL020C YJL078C YPL089C YMR145C YBR296C YKL035W 
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YGL055W YJR054W 
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