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ABSTRACT

Spectral singularities are energies at which the reflection and transmission coefficients

of a complex scattering potential diverge. Therefore they can be associated with a type of

resonance states that have real energies and zero width. After theoretically determining the

location of spectral singularities, experimental observations can confirm this concept as a

new type of resonance effect and give approval to its possible application in optics and laser

physics.

In this thesis we use perturbation theory to study scattering properties of complex po-

tentials and the spectral singularities of relevant non-Hermitian Hamiltonians. We give a

theoretical descriptions of spectral singularities for a single and double Dirac delta function

potentials with complex coupling constants as the perturbation parameter and then gener-

alize this analysis for the system of many Dirac delta function potentials (Dirac comb). We

prove that the perturbation analysis for Dirac comb Model is indeed exact. At the end we

consider the scattering problem for a barrier potential of arbitrary shape using perturba-

tion method. Then we consider a set of solutions of Maxwell’s equations traveling inside an

infinite slab gain medium and convert their wave equation into the Schrödinger equation of

the barrier potential. We use this result to determine the optical spectral singularities and

then discuss an experimental set up to explore their physical aspects.
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Chapter 1

INTRODUCTION

The attempts to unify the various well-known theories of nature have a long history

in theoretical physics. Quantum Mechanics and the Theory of Relativity are the main

cornerstones of modern physics. There is a huge amount of research on the direction to unify

these two successful theories. The unification of Quantum Mechanics with Special theory of

Relativity is one of the first discoveries of this kind which succeeded by different Quantum

Field theories and Standard Model. There appear problems on the way to continue this

program when trying to unify General theory of Relativity with Quantum Mechanics. The

incompatibility of Quantum Mechanics with General Relativity is one of the main obstacles

in building a complete theory. Over the years, there appeared theories which could partially

satisfy this unification agenda, but none of these has been successful as an ultimate theory.

As a result of these efforts, some investigations have motivated the study of different

generalizations of QM and GR. A recent attempt in this direction is to adapt all the pos-

tulates of quantum mechanics except the Hermiticity of the Hamiltonian operators, [1, 2].

These theories so-called PT -Symmetric Quantum Mechanics have been proved to be the

special case of what is known as Pseudo-Hermitian Quantum Mechanics, [4, 9, 10, 11]. The

use of Non-Hermitian operators has different applications in nuclear and atomic physics, [5],

and more specifically in quantum optics and complex crystals, [6], where they are tradition-

ally employed in the effective description of physical systems displaying decay or dissipative

behavior.

The main characteristic feature of this class of operators is that a generic non-Hermitian

operator has complex eigenvalues whose imaginary part may be associated with decay rates.

This property is not however common to all non-Hermitian operators. There is a category of

non-Hermitian operators that, similar to Hermitian operators, have a real spectrum, [1, 2, 3].

The fact that some non-Hermitian operators have real spectrum leads to the conjecture that

one can use these operators to construct unitary quantum systems.
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Most of the problems that we meet in quantum mechanics are formulated in terms of so-

called eigenvalue equations. What we interpret as the solutions, to the eigenvalue equation,

are the eigenvalues and the corresponding eigenvectors of the physical observable. The

concept of the spectrum of an operator is connected to the operator’s eigenvalue problem.

Eigenvalues of an operator determine the basic characteristics of the operator. Consider

a linear operator A acting in a finite dimensional vector space V . In general, if the eigen-

value problem for a matrix (matrix representation of A) has distinct solutions (nonrepeated

eigenvalues) then the matrix is diagonalizable. It turns out that the real symmetric matri-

ces (square matrices that are equal to their transpose), and more generally normal matrices

(those that commute with their Hermitian conjugate) are always diagonalizable, [7]. Her-

mitian matrices can be understood as the complex extension of real symmetric matrices.

They are clearly normal therefore a Hermitian matrix is similar to a diagonal matrix, [4, 7].

For Hermitian operators having a discrete spectra, diagonalizability is equivalent to the

existence of an orthonormal basis consisting of the eigenvectors of the operator, [8]. This is

commonly known as completeness. For non-Hermitian operators, however, diagonalizability

of H means the existence of a basis B† consisting of the eigenvectors of the adjoint operator

H† that is biorthonormal to some basis B consisting of the eigenvectors of H, [4, 12]. The

lack of such a pair of biorthonormality may be caused by the presence of exceptional points

or spectral singularities.

Exceptional points are points on the space of parameters of the operator at which the

eigenvalues together with their eigenvectors coalesce. It turns out that the coalescing causes

loss of differentiability in the eigenvalues and loss of continuity in the eigenvectors, [13, 14].

For a Non-Hermitian operator with a continuous spectrum there is another obstruction for

non-diagonalizability, namely a spectral singularity.

Though, spectral singularities are impossible for Hermitian Hamiltonians, they are rather

typical for non-Hermitian Hamiltonians. In particular for a Schrödinger operator with a

complex scattering potential, which involves a spectral singularity, for each point of the

spectrum there corresponds two linearly independent eigenfunctions, but it is impossible to

construct a biorthonormal eigensystem for the operator. The concept of spectral singularity

was discovered by mathematicians and was studied thoroughly in mathematic literature,

[15, 16, 17, 18, 19, 20, 21, 27], since the 1950’s, but their physical meaning was understood



Chapter 1: Introduction 3

quite recently, [12, 21, 25, 26, 28, 33, 34].
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Chapter 2

SPECTRAL SINGULARITIES

Let H(= L2) be a Hilbert space with an inner product < .|. > and A : D(A) ⊂ H → H

be a linear operator with domain D(A) dense in H. The spectrum of A is related to the

equation

Lλψ = 0, Lλ := A− λI. (2.1)

where I stands for the identity operator, ψ ∈ D(A) and λ is a given complex number.

Definition 1. λ ∈ C is said to be a regular point(value) of the operator A if the inverse

operator to Lλ, [52],:

• exists,

• is a bounded1 linear operator (bounded on range of Lλ),

• is defined on a dense subspace of H (in another word the range of Lλ is dense in H).

Definition 2. The set of all regular points of the operator A is called the resolvent set of

A and denoted by ρ(A), i.e.,[52],

ρ(A) = {λ ∈ C|λ is a regular point of A}.

Definition 3. The set σ(A) = C \ ρ(A), i.e., the complement of ρ(A) in the complex

plane C, is called the spectrum of the operator A. Therefore a point λ ∈ C belongs to the

spectrum of A if and only if it is not a regular point. The spectrum of an operator can be

split into three mutually disjoint subsets of point, continuous and residual spectra where

each corresponds to the failure of one of the conditions of Definition 1, [52, 21, 23, 24]

Definition 4. Let A : D(A) ⊂ H → H be a self-adjoint operator (A = A†). Then the

spectrum of A is real and the well-known spectral theorem for self-adjoint operators states

1A linear operator is bounded if and only if it is continuous.
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that there is an orthonormal basis consisting of the eigenvectors of A and we have the

spectral decomposition of A as

A =

∫ ∞
−∞

λ dEλ, (2.2)

where Eλ is the resolution of identity associated to A, [21, 23].2

The use of self-adjoint operators in Axiomatic Quantum Mechanics can generally be

understood as follows.

Let S be a quantum mechanical system. The possible states of the system S are represented

by unit vectors ψ called state vectors. These state vectors formally reside in a complex sep-

arable Hilbert space3 H. The physical quantities (observables) are described by particular

self-adjoint operators acting on H. If, for instance, a physical quantity a is described by

means of an operator A the following holds.

(i) Suppose that the system S is in a certain state vector ψ and ψ ∈ D(A). Then 〈ψ|Aψ〉

is the expectation value for the quantity a in the state ψ.

(ii) If Eλ denotes the spectral function of operator A (Def.4) then 〈ψ|Eλψ〉 is the proba-

bility that in the state ψ the value of the quantity a lies in the interval (λ− dλ
2 , λ+ dλ

2 ).

More precisely 〈ψ|Eλψ〉 is the distribution function for the physical quantity a, so that

〈ψ|Aψ〉 =

∫ ∞
−∞

dλ〈ψ|Eλψ〉. (2.3)

In particular, if ψ0 ∈ D(A) is a unit eigenvector of the operator A with corresponding

eigenvalue λ0 , then clearly, the quantity a in state ψ0 takes the value λ0 with probability

equal to 1.

Suppose that A has a discrete spectrum consisting of its eigenvalues and there is a

complete orthonormal system consisting of the eigenvectors of A so that Aψn = λnψn.

Then λn’s are the probable values of the quantity a and a takes each of these values with

certainty only in the corresponding state vectors ψn. By writing the arbitrary state of the

system as

ψ =
∞∑
n=1

cnψn, cn = 〈ψn|ψ〉, (2.4)

2In measure theory this is known as projection-valued measure. For A being a Hermitian operator in a
Hilbert space with eigenvalues λi and corresponding eigenvectors ψi we have Eλ := |ψi〉〈ψi|, [23].

3A Hilbert space is separable if and only if admits a countable orthonormal basis, [4].
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we can write

〈ψ|Aψ〉 =

∞∑
n=1

λn|cn|2, (2.5)

where |cn|2 is the probability that in the state vector ψ the quantity a is equal to λn.

For a given self-adjoint operator A the existence of the spectral family Eλ has a significant

role in the formulation of Quantum Mechanics. In the theory of non-self-adjoint operators,

it is very natural to look for a spectral family. It turns out that the presence of spectral

singularities is a serious obstacle for constructing a reasonable spectral family for non-self-

adjoint operators [21].

For instance, we consider the eigenvalue problem, (2.1), of the Hamiltonian operator H

H = − d2

dx2
+ v~z(x), (2.6)

where x ∈ R and v~z(x) is a complex valued potential such that [v~z(x)]∗ = v~z
∗
(x) where

~z = (z1, · · · , zd). The eigenfunctions ψ~zak(x) of the operator H satisfy the

Hψ~zak(x) = k2ψ~zak(x), (2.7)

where k ∈ R+, a = 1, 2 being the degeneracy label and ~z := (z1, z2, · · · , zd).

The non-Hermitian Hamiltonian H is diagonalizable if ψ~zak(x) together with a set of

eigenfunctions of H†, φ~zbq(x), form a complete biorthonormal system {ψ~zak, φ~zbq}, [4, 12].

This means that

< ψ~zak|φ~zbq >= δabδ(k − q),
2∑

a=1

∫ ∞
0

dk|ψ~zak >< φ~zak| = 1. (2.8)

In view of (2.7) and (2.8), the spectral representation of the Hamiltonian is given by

H =
2∑

a=1

∫ ∞
0

dk k2|ψ~zak >< φ~zak|. (2.9)

The existence of such a general expression for the spectral family of Hamiltonian operator

has a great advantage in study of quantum systems. In [12] it has been shown that such an

expression does not always exist. One of the main obstacles of its existence is the presence

of a spectral singularity.

There is a rather general theory of spectral singularities for differential operators of the

form (2.6) implying that the spectral singularities are the real zeros of a certain class of

analytic functions [12, 21, 27]. For the case that the space, in which the differential operators
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act, is L2(R), this analytic function is the Wronskian of the Jost solutions, [12, 22]. Jost

solutions are solutions of the equation Hψ = k2ψ with the following asymptotical behavior

at infinity, [12, 28], 
ψk−(x)→ e−ikx for (x→ −∞),

ψk+(x)→ eikx for (x→ +∞).

(2.10)

Their Wronskian reads

W
[
ψk− , ψk+

]
(x) :=

∣∣∣∣∣∣∣∣∣
ψk−(x) ψk+(x)

ψ′k−(x) ψ′k+
(x)

∣∣∣∣∣∣∣∣∣ , (2.11)

where |A| stands for the determinant of the matrix A.

Abel’s Theorem for a second order differential equations, [46], states that if the Wron-

skian of solutions of the the homogeneous differential equation is zero then those solutions

are linearly dependent. This implies that the Jost solutions become linearly dependent for

the case that k2 gives a spectral singularity.

Since |v(x)| decays rapidly as |x| → ∞, the Schrödinger eigenvalue problem will have

solutions which are linear combinations of the plane waves as x→ ±∞.

ψ~zk(x)→ A±e
ikx +B±e

−ikx (x→ ±∞), (2.12)

where A± and B± are k dependence coefficients. The 2×2 matrix M relating the coefficients

A+, B+ to A−, B−, is called transfer matrix of the potential, [44]. This is defined byA+

B+

 = M

A−
B−

 . (2.13)

The Jost solution of the eigenvalue problem (2.7) takes the form

ψ~zk+(x) =

 eikx x→ +∞,

A+
−e

ikx +B+
−e
−ikx x→ −∞,

(2.14)

ψ~zk−(x) =

 A−+e
ikx +B−+e

−ikx x→ +∞,

e−ikx x→ −∞.
(2.15)
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In view of (2.13), (2.14) and (2.15) we obtain1

0

 = M

A+
−

B+
−

 , (2.16)

A−+
B−+

 = M

0

1

 . (2.17)

They in turn imply

A+
− =

M22

|M |
, B+

− = −M21

|M |
, A−+ = M12, B−+ = M22, (2.18)

where |M | stands for the determinant of the matrix M . Therefore the Jost solutions are

given by

ψ~zk+(x) =

 eikx x→ +∞,
M22
|M | e

ikx − M21
|M | e

−ikx x→ −∞,
(2.19)

ψ~zk−(x) =

 M12e
ikx +M22e

−ikx x→ +∞,

e−ikx x→ −∞.
(2.20)

and their Wronskian becomes

W
[
ψk− , ψk+

]
= 2ikM22(k) (x→∞), (2.21)

W
[
ψk− , ψk+

]
=

2ikM22(k)

|M |
(x→ −∞). (2.22)

Comparing (2.21) and (2.22) we directly obtain |M | = 1, [12]. Furthermore, because the

real zeros of the Wronskian of the Jost solutions are the spectral singularities, we have:

Definition 5. Spectral singularities are points, k2, of the real spectrum of the operator

(2.6) that satisfy M22(k) = 0, [12].

The solutions of the eigenvalue problem (2.7), corresponding to the scattering states,

can be obtained by imposing physically motivated asymptotic boundary conditions. We

interpret a plane wave eikx in the asymptotic region to the left of the interaction region as

an incoming (k > 0) or outgoing (k < 0) wave, whereas in the asymptotic region to the right
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of the interaction region the interpretation is the opposite one. We construct two linearly

independent eigenfunctions of the Hamiltonian H by imposing the following asymptotic

conditions, [45],

ψlk(x) −→Nl

 eikx +Rle−ikx as x→ −∞,

T leikx as x→ +∞,
(2.23)

ψrk(x) −→Nr

 T re−ikx as x→ −∞,

e−ikx +Rreikx as x→ +∞,
(2.24)

where Rl,r(k) and T l,r(k) are complex reflection and transmission amplitudes and Nl,r are

the normalization constants, [33]. The superscripts l and r refer to incidence from the

asymptotic region on the left (l) and right (r) of the interaction region. Comparing (2.23)

and (2.24) with (2.19) and (2.20), we conclude that ψlk and ψrk are respectively proportional

to the Jost solutions ψk+ and ψk− and since these solutions are linearly dependent at a

spectral singularity, ψlk and ψrk become linearly dependent. Other consequences of these

comparisons are the relations

T l = 1
M22(k) , Rl = −M21(k)

M22(k) ,

T r = 1
M22(k) , Rr = M12(k)

M22(k) .

(2.25)

As seen from (2.25), at a spectral singularity, where M22(k) vanishes, the coefficients Rl,r(k)

and T l,r(k) diverge. This condition is a characteristic property of resonance phenomena

therefore spectral singularities may be interpreted as a peculiar type of resonance, [33].

A dynamic view of resonance may be as follows: a wave packet with a distribution of

energy comes into a potential and gets captured in a quasi-bound state for a long time

before getting scattered off eventually. But in the static view, a resonance state is defined

as a solution of the stationary Schrödinger eigenvalue problem (2.7) with out-going waves

or Sigert boundary condition, (Table 2.1), [29, 30, 31, 32].

Unlike ordinary resonance, the spectral singularity is a point of spectrum such that k ∈ R

and therefore the associated eigenvalue (k2) is real and positive. Therefore these resonances

have zero width, [33, 34].
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Table 2.1: definition of resonant, anti-resonant, bound, anti-bound states and spectral sin-
gularity in k-complex plane, [31].

Solutions of Eq.(2.7) Re(k) Im(k) Re(k2) Im(k2) Riemann sheets

Resonant state positive negative any negative second

Anti-resonant state negative negative any positive second

Bound state zero positive negative zero first

Anti-bound state zero negative negative zero second

Spectral singularity any zero positive zero on the real line

In the following sections we use the Definition 5 to identify spectral singularities of

different potentials. A systematic approach to determine the spectral singularities is based

on constructing the transfer matrix M for the potential and exploring the zeros of the entry

M22 of M .

Determining the spectral singularities for complicated systems which are not analytically

solvable is a difficult task. One way out of this situation is to use numerical treatments that

in turn may lead to different type of errors. Another solution is to use some appropriate

approximation schemes. There exists a mathematical approximation scheme, known as per-

turbation theory, for describing a complicated system in terms of a simpler one. The idea

is to start with a simple system for which the solutions are known, and add an additional

weak disturbance (perturbation). If the disturbance is not too large, various physical quan-

tities associated with the perturbed system (e.g. its energy levels and eigenstates) can be

expressed as “corrections” to those of the simple system.
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Chapter 3

PERTURBATION THEORY

Consider the Hamiltonian operator

H =H0 + V0 + εV, ε ∈ C, (3.1)

where

H0 = − ~
2

2m
∂2
X , (3.2)

is the Hamiltonian of a free particle, V0 and V are functions of X, and ε ∈ C. The eigenvalue

problem for H is given by

(H0 + V0 + εV )ψ(X) = Eψ(X). (3.3)

Let us introduce the dimensionless quantities

x :=
X

`
, k2 :=

2m`2E

~2
, v(x) :=

2m`2V

~2
, v0(x) :=

2m`2V0

~2
, (3.4)

where ` is an arbitrary length scale, and suppose that v0(x) and v(x) are piecewise continu-

ous functions that vanish outside an interval [a, b]. Then the eigenvalue problem (3.3) leads

to the dimensionless Schrödinger equation

∂2
xψ(x) + [k2 − v0(x)]ψ(x) = εv(x)ψ(x). (3.5)

To solve this equation we use the ansatz

ψ(x) =
∞∑
j=0

εjψ(j)(x), (3.6)

where ψ(j)’s represent the j-th order perturbative correction. An approximate ‘perturbative

solution’ is obtained by truncating the series, usually by keeping only the first two or three

terms.

Applying perturbation ansatz (3.6) to Eq. (3.3), we obtain the non-Homogeneous equa-

tion

∂2
xψ

(j)(x) + [k2 − v0(x)]ψ(j)(x) = v(x)ψ(j−1)(x), (3.7)
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that we can solve recursively according to

ψ(j)(x) =

∫ x

−∞
G(x, x′)v(x′)ψ(j−1)(x′)dx′. (3.8)

Here G(x, x′) denotes the Green’s function of the differential equation Lψ(0)(x) = 0 where

L = ∂2
x + [k2 − v0(x)]. Let ψ(0)

1 (x) and ψ(0)

2 (x) be a pair of linearly independent solutions of

this differential equation. Then we can express G in the form

G(x, x′) =



∣∣∣∣∣∣∣∣
ψ(0)

1 (x′) ψ(0)

2 (x′)

ψ(0)

1 (x) ψ(0)

2 (x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ψ(0)

1 (x′) ψ(0)

2 (x′)

∂x′ψ
(0)

1 (x′) ∂x′ψ
(0)

2 (x′)

∣∣∣∣∣∣∣∣
for x ∈ [a, b],

sin k(x− x′)
k

for x /∈ [a, b],

(3.9)

where the symbol |A| stands for the determinant of a square matrix A.

One can use the recursion relation (3.8) to obtain a general formula for the corrections,

namely

ψ(j>2)(x) =

∫ x

−∞
G(x, xj)v(xj)

[ j−1∏
i=1

∫ xi+1

−∞
G(xi+1, xi)v(xi)ψ

(0)(x1) dxi

]
dxj . (3.10)

Here, according to the definition of v0(x), we choose the solutions of Lψ(0)(x) = 0 such that

ψ(0)

1 (x) =


eikx x < a,

R0(x) a < x < b,

A0(k)eikx + B0(k)e−ikx x > b,

(3.11)

ψ(0)

2 (x) =


e−ikx x < a,

T0(x) a < x < b,

C0(k)eikx + D0(k)e−ikx x > b,

(3.12)

where R0(x) and T0(x) are the solutions of Lψ(0)(x) = 0 for x ∈ [a, b], and A0(k), B0(k),

C0(k) and D0(k) are arbitrary k dependent coefficients. It is appropriate to define the

following mapping

∀ψ1, ψ2 ∈ H, (ψ1, ψ2) 7→ Ψ :=

ψ1

ψ2

 . (3.13)
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Using the two-component functions Ψ in our calculations helps us to easily compute the

transfer matrix. Therefore we write the perturbation ansatz as

Ψ(x) =

N∑
n=0

εjΨ(j)(x), (3.14)

where Ψ(x) satisfies

Ψ(j)(x) =

∫ x

−∞
G(x, x′)v(x′)Ψ(j−1)(x′)dx′. (3.15)

For the zeroth order correction, we write

x < a : Ψ(0)(x) =

 eikx

e−ikx

 , (3.16)

a < x < b : Ψ(0)(x) =

R0(x)

T0(x)

 , (3.17)

x > b : Ψ(0)(x) =

A0(k)eikx + B0(k)e−ikx

C0(k)eikx + D0(k)e−ikx

 . (3.18)

For the first order correction we have

x < a : Ψ(1)(x) = 0, (3.19)

a < x < b : Ψ(1)(x) =

∫ x

a
G(x, x′)v(x′)

R0(x′)

T0(x′)

 dx′

=


∫ x
a G(x, x′)v(x′)R0(x′)dx′

∫ x
a G(x, x′)v(x′)T0(x′)dx′

 =


R1(x)

T1(x)

 , (3.20)

x > b : Ψ(1)(x) =

∫ b

a
G(x, x′)v(x′)

R0(x′)

T0(x′)

 dx′

=


∫ x
a

sin k(x−x′)
k v(x′)R0(x′)dx′

∫ x
a

sin k(x−x′)
k v(x′)T0(x′)dx′



=


A1(k)eikx + B1(k)eikx

C1(k)eikx + D1(k)eikx

 . (3.21)
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Repeating this calculation we find for the j-th order correction

x < a : Ψ(j>0)(x) = 0, (3.22)

x > b : Ψ(j)(x) =

Aj(k)eikx + Bj(k)eikx

Cj(k)eikx + Dj(k)eikx

 , (3.23)

where explicit calculations yields

Aj>2(k) =
1

2ik

∫ b

a
e−ikxjv(xj)

[ j−1∏
i=1

∫ xi+1

a
G(xi+1, xi)v(xi)R0(x1) dxi

]
dxj , (3.24)

Bj>2(k) =
−1

2ik

∫ b

a
eikxjv(xj)

[ j−1∏
i=1

∫ xi+1

a
G(xi+1, xi)v(xi)R0(x1) dxi

]
dxj , (3.25)

Cj>2(k) =
1

2ik

∫ b

a
e−ikxjv(xj)

[ j−1∏
i=1

∫ xi+1

a
G(xi+1, xi)v(xi)T0(x1) dxi

]
dxj , (3.26)

Dj>2(k) =
−1

2ik

∫ b

a
eikxjv(xj)

[ j−1∏
i=1

∫ xi+1

a
G(xi+1, xi)v(xi)T0(x1) dxi

]
dxj . (3.27)

Using the perturbation ansatz (3.14) therefore we have

x < a : Ψ(x) =

 eikx

e−ikx

 , (3.28)

x > b : Ψ(x) =

A (k, ε)eikx + B(k, ε)eikx

C (k, ε)eikx + D(k, ε)eikx

 , (3.29)

where A (k, ε), B(k, ε), C (k, ε) and D(k, ε) have the form

A (k, ε) :=

N∑
n=0

εjAj(k), B(k, ε) :=

N∑
n=0

εjBj(k),

C (k, ε) :=
N∑
n=0

εjCj(k), D(k, ε) :=
N∑
n=0

εjDj(k).

(3.30)

Applying the inverse mapping (3.13) and using (3.28) and (3.29), we can write

eikx for x < a −→ A (k, ε)eikx + B(k, ε)e−ikx for x > b,

e−ikx for x < a −→ C (k, ε)eikx + D(k, ε)e−ikx for x < b.
(3.31)

In view of the definition of transfer matrix given in (2.13), we then find

M

1

0

 =

A (k, ε)

B(k, ε)

 , and M

0

1

 =

C (k, ε)

D(k, ε)

 . (3.32)
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Therefore

M11 = A (k, ε), M12 = B(k, ε), M21 = C (k, ε), M22 = D(k, ε). (3.33)

We recall that in order to identify the spectral singularities the solutions of the equation

M22 = D(k, ε) = 0 should be determined. Therefore we need to compute D(k, ε).

In the rest of our analysis we employ the perturbative method of computing the transfer

matrix that we developed in this section. In the following sections first we consider the case

v0(x) = 0 perturbed by Dirac delta potential v(x) = δ(x). We then extend this study to

double and many Dirac delta potentials. Finally we consider a barrier potential perturbed

by an arbitrary potential v(x).
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Chapter 4

SINGLE DIRAC DELTA POTENTIAL

In this section we consider the Hamiltonian of a free particle system (v0(x) = 0) per-

turbed by the potential

v(x) = δ(x). (4.1)

Here we have

Ψ(0)(x) =

 eikx

e−ikx

 , ∀x ∈ R. (4.2)

Calculating the first order correction for this system gives

Ψ(1)(x) =

∫ x

−∞
G(x, x′)δ(x′)Ψ(0)(x′) dx′

=
1

2ik

eikx − e−ikx
eikx − e−ikx

 θ(x), (4.3)

where G(x, x′) = sin k(x−x′)
k , is the Green’s function of this system and θ(x) stands for the

step function defined as

θ(x) :=

 1 x ≥ 0,

0 x < 0.
(4.4)

Similarly the second order correction has the form

Ψ(2)(x) =

∫ x

−∞
G(x, x′)δ(x′)Ψ(1)(x′) dx′

= G(x, 0)Ψ(1)(0)θ(x)

= 0, (4.5)

Therefore the general solution is

Ψ(x) = Ψ(0)(x) + εΨ(1)(x)

=

 eikx

e−ikx

+
ε

2ik

eikx − e−ikx
eikx − e−ikx

 θ(x). (4.6)
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Using the definition of the θ-function in (4.4) we can express this result as

x < 0 : Ψ(x) =

 eikx

e−ikx

 (4.7)

x > 0 : Ψ(x) =

(1− ε
2ik )eikx − ε

2ike
−ikx

ε
2ike

ikx + (1− ε
2ik )e−ikx

 . (4.8)

Therefore the transfer matrix reads

M =

 1 +
ε

2ik

ε

2ik

− ε

2ik
1− ε

2ik

 . (4.9)

By solving the equation M22 = 0, we obtain a spectral singularity at ε = 2ik. This is

consistent with the results of [36].
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Chapter 5

DOUBLE DIRAC DELTA POTENTIAL

Consider a free particle system with the following potential

v(x) = δ(x− α) + hδ(x+ α), h ∈ C, α ∈ R. (5.1)

Using

Ψ(0)(x) =

 eikx

e−ikx

 , ∀x ∈ R and G(x, x′) =
sin k(x− x′)

k
, (5.2)

we have

Ψ(1)(x) =

∫ x

−∞
G(x, x′)v(x′)Ψ(0)(x′) dx′

=

∫ x

−∞
G(x, x′)[δ(x′ − α) + hδ(x′ + α)]Ψ(0)(x′) dx′

=

∫ x

−∞
G(x, x′)Ψ(0)(x′)δ(x′ − α)dx′ + h

∫ x

−∞
G(x, x′)Ψ(0)(x′)δ(x′ + α)dx′

=G(x, α)Ψ(0)(α)θ(x− α) + hG(x,−α)Ψ(0)(−α)θ(x+ α)

=
h

2ik

eikx − (e−2ikαe−ikx)

(e2ikαeikx)− e−ikx

 θ(x+ α) +
1

2ik

 eikx − (e2ikαe−ikx)

(e−2ikαe−ikx)− e−ikx

 θ(x− α),

(5.3)

which gives

Ψ(1)(x) =



0 for x < −α,

h
2ik

eikx − e−ik(x+2α)

eik(x+2α) − e−ikx

 for |x| < α,

1
2ik

[1 + h]eikx − [he−2ikα + e2ikα]e−ikx

[he2ikα + e−2ikα]eikx − [1 + h]e−ikx

 for x > α.

(5.4)
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Next we compute the second order correction:

Ψ(2)(x) =

∫ x

−∞
G(x, x′)[δ(x′ − α) + hδ(x′ + α)]Ψ(1)(x′) dx′

=

∫ x

−∞
G(x, x′)Ψ(1)(x′)δ(x′ − α) dx′ + h

∫ x

−∞
G(x, x′)Ψ(1)(x′)δ(x′ + α) dx′

=G(x, α)Ψ(1)(α)θ(x− α) + hG(x,−α)Ψ(1)(−α)θ(x+ α)

=
sin k(x− α)

k

[
1

2ik

[1 + h]eikx − [he−2ikα + e2ikα]e−ikx

[he2ikα + e−2ikα]eikx − [1 + h]e−ikx

]
x=α

θ(x− α)

+
sin k(x+ α)

k

[
h

2ik

eikx − e−ik(x+2α)

eik(x+2α) − e−ikx

]
x=−α

θ(x+ α)

=
h sin k(x− α)

2ik2

eikα − e−3ikα

e3ikα − e−ikα

 θ(x− α), (5.5)

which gives

Ψ(2)(x) =



0 for x < −α,

0 for |x| < α,

−h
4k2

[1− e−4ikα]eikx + [e−2ikα − e2ikα]e−ikx

[e2ikα − e−2ikα]eikx + [1− e4ikα]e−ikx

 for x > α.

(5.6)

Finally we obtain the third order correction that turns out to vanish identically.

Ψ(3)(x) =

∫ x

−∞
G(x, x′)[δ(x′ − α) + hδ(x′ + α)]Ψ(2)(x′) dx′

=

∫ x

−∞
G(x, x′)Ψ(2)(x′)δ(x′ − α) dx′ + h

∫ x

−∞
G(x, x′)Ψ(2)(x′)δ(x′ + α) dx′

=G(x− α)Ψ2(α)θ(x− α) + hG(x+ α)Ψ2(−α)θ(x+ α)

=
sin k(x− α)

k

[
−h
4k2

[1− e−4ikα]eikx + [e−2ikα − e2ikα]e−ikx

[e2ikα − e−2ikα]eikx + [1− e4ikα]e−ikx

]
x=α

θ(x− α)

=0. (5.7)

Therefore for a double Dirac delta potential there is no perturbative correction of order

greater than 2. This leads us to conjecture the exactness of the perturbation theory for

potentials given by a string of delta functions. We will prove that, indeed, for a potential

consisting of n delta functions all perturbative corrections of order greater than n vanish.
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Returning to our analysis of the double Dirac delta potential, we have

x < −α : Ψ(x) = Ψ(0)(x), (5.8)

|x| < α : Ψ(x) = Ψ(0)(x) + εΨ(1)(x) + ε2Ψ(2)(x)

=

 eikx

e−ikx

+ ε
h

2ki

eikx − e−ik(x+2α)

eik(x+2α) − e−ikx


=

[1 + ε
2ki(1 + h)]eikx + [− ε

2kie
−2ikα]e−ikx

[ ε
2kie

2ikα]eikx + [1− ε
2ki(1 + h)]e−ikx

 , (5.9)

x > α : Ψ(x) =Ψ(0)(x) + εΨ(1)(x) + ε2Ψ(2)(x)

=

 eikx

e−ikx

+ ε
1

2ki

(1 + h)eikx − (he−2ikα + e2ikα)e−ikx

(he2kiα + e−2kiα)eikx − (1 + h)e−ikx


+ ε2−h

4k2

(1− e−4ikα)eikx + (e−2ikα − e2ikα)e−ikx

(e2ikα − e−2ikα)eikx + (1− e4ikα)e−ikx


=

A11e
ikx +A12e

−ikx

A21e
ikx +A22e

−ikx

 , (5.10)

where

A11 : = 1 +
ε

2ki
(1 + h)− ε2h

4k2
(1− e−4ikα)

= 1− ω+ − ω− + ω+ω−(1− e−4ikα), (5.11)

A12 : =
−ε
2ki

(he−2ikα + e2ikα)− ε2h

4k2
(e−2ikα − e2ikα)

= ω−e
−2ikα + ω+e

2ikα + ω−ω+(−2i sin 2kα), (5.12)

A21 : =
ε

2ki
(he2ikα + e−2ikα)− ε2h

4k2
(e2ikα − e−2ikα)

= −ω−e2ikα − ω+e
−2ikα + ω−ω+(2i sin 2kα)

= A∗21, (5.13)

A22 : = 1− ε

2ki
(1 + h)− ε2h

4k2
(1− e4ikα)

= 1 + ω+ + ω− + ω+ω−(1− e4ikα)

= A∗11, (5.14)
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ω± := iζ±
2k , ζ+ := ε and ζ− = εh.

For this system the transfer matrix is given by

M =

A11 A21

A12 A22

 . (5.15)

This coincides with the analytic result given in [12]. Next we set

M22 = 1 +
iζ+

2k
+
iζ−
2k
− ζ+ζ−

4k2
(1− e4ikα) = 0, (5.16)

to obtain spectral singularities. For the special case where ζ+ = 0 and ζ := ζ− or ζ− = 0

and ζ := ζ+, Eq. (5.16) gives

1 +
iζ

2k
= 0, (5.17)

and it determines a spectral singularity located at k = −iζ/2 which is the case for a single

Dirac delta potential.
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Chapter 6

DIRAC COMB

In this section we consider the potential given by a string of Dirac delta potentials and

explore the spectral singularities for such a system. Dirac comb is a distribution constructed

from δ-functions, [37], and reads

v(x) = q(x) :=

N−1∑
n=0

δ(x− nl), label of delta barrier = n+ 1. (6.1)

To study the spectral singularities of the Dirac comb we apply the method developed in

Chapter 3 to construct its transfer matrix.

By using the sampling property of Dirac comb, namely

G(x, x′)q (x′) =
N−1∑
n=0

G(x, nl)δ(x′ − nl), (6.2)

and employing (3.8) and (3.13), for the the first order correction we write

Ψ(1)(x) =

∫ x

−∞
G(x, x′)ql (x′)Ψ(0)(x′) dx′

=

N−1∑
n1=0

G(x, n1l)Ψ
(0)(n1l)θ(x− n1l), (6.3)

and the corresponding second order correction will be

Ψ(2)(x) =

∫ x

−∞
G(x, x2)ql (x2)Ψ(1)(x2)dx2

=

∫ x

−∞
G(x, x2)

N−1∑
n2=0

δ(x2 − n2l)

[ ∫ x2

−∞
G(x2, x1)

n2−1∑
n1=0

δ(x1 − n1l)Ψ
(0)(x1) dx1

]
dx2

=

∫ x

−∞

∫ x2

−∞

N−1∑
n2=0

n2−1∑
n1=0

G(x, n2l)δ(x2 − n2l)G(x2, n1l)δ(x1 − n1l)Ψ
(0)(x1) dx1 dx2

=

N−1∑
n2=0

n2−1∑
n1=0

G(x, n2l)G(n2l, n1l)Ψ
(0)(n1l)θ(x− n2l). (6.4)
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Similarly for the j-th order correction (j > 2) we get the following general recursion relation:

Ψ(j>2)(x) =

∫ x0

−∞
G(x, xj)ql (xj)

[ j−1∏
i=1

∫ xi+1

−∞
G(xi+1, xi)q (xi)Ψ

(0)(x1) dxi

]
dxj

=

∫ x0

−∞

N−1∑
nj=0

G(x, njl)δ(x− njl)×

[ j−1∏
i=1

∫ xi+1

−∞

ni+1−1∑
ni=0

G(xi+1, nil)δ(xi − nil)

 eikx1

e−ikx1

 dxi

]
dxj

=

N−1∑
nj=0

G(x, njl)

j−1∏
i=1

ni+1−1∑
ni=0

G(ni+1l, nil)

 eikx1

e−ikx1

 θ(x− njl), (6.5)

where we used, Ψ(0)(x) =

 eikx

e−ikx

 , ∀x ∈ R, and have G(x, x′) = sin k(x−x′)
k . By defining

χ := e2ikl, the first order correction takes the form

Ψ(1)(x) =
1

k

N−1∑
n1=0

sin k(x− n1l)

 eikn1l

e−ikn1l

 θ(x− n1l)

=
1

2ik

N−1∑
n1=0

 eikx − χn1e−ikx

χ−n1eikx − e−ikx

 θ(x− n1l). (6.6)

In the same manner the second order correction reads

Ψ(2)(x) =
1

k

N−1∑
n2=0

sin k(x− n2l)Ψ
(1)(n2l)θ(x− n2l)

=(
1

2ik
)2

N−1∑
n2=0

n2−1∑
n1=0

 (1− χn1−n2)[eikx − χn2e−ikx]

(1− χ−(n1−n2))[−χ−n2eikx + e−ikx]

 θ(x− n2l), (6.7)

and the third order correction becomes

Ψ(3)(x) =(
1

2ik
)3

N−1∑
n3=0

n3−1∑
n2=0

n2−1∑
n1=0 [(1− χn1−n2)(1− χn2−n3)](eikx − χn3e−ikx)

[(1− χ−(n1−n2))(1− χ−(n2−n3))](χ−n3eikx − e−ikx)

 θ(x− n3l). (6.8)

By repeating the same calculation, the j-th order correction is given by

Ψ(j)(x) =


[
(F+)j

]
eikx −

[
(F+)jχ

nj
]
e−ikx

−
[
(F−)jχ

−nj
]
eikx +

[
(F−)j

]
eikx

 θ(x− njl), (6.9)
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where

(F+)j :=
( 1

2ik

)j N−1∑
nj=0

nj−1∑
nj−1=0

· · ·
n2−1∑
n1=0

( j−1∏
i=1

[
1− χ±(ni−ni+1)

])
, (6.10)

(F−)j :=
( 1

−2ik

)j N−1∑
nj=0

nj−1∑
nj−1=0

· · ·
n2−1∑
n1=0

( j−1∏
i=1

[
1− χ±(ni−ni+1)

])
, (6.11)

or in a more compact form

(F+
− )j :=

( 1

±2ik

)j N−1∑
nj=0

nj−1∑
nj−1=0

· · ·
n2−1∑
n1=0

( j−1∏
i=1

[
1− χ±(ni−ni+1)

])
. (6.12)

Now we will examine this expression for the system of double Dirac delta potential with

the unit coupling constants

v(x) =

1∑
n1=0

δ(x− n1l) = δ(x) + δ(x− l). (6.13)

Note that
∏j<i
i = 1, and applying the definition (6.12) for the case N = 2, j = 1, we obtain

(F+
− )1 =

1

±2ik

1∑
n1=0

0∏
i=1

=
1

±2ik

1∑
n1=0

1 =
2

±2ik
, (6.14)

(F+
− )1χ

±n1 =
1

±2ik

1∑
n1=0

χ±n1 =
1

±2ik
(1 + χ±1), (6.15)

therefore

Ψ(1)(x) =
1

2ik

 2eikx − (1 + χ)e−ikx

(1 + χ−1)eikx − 2e−ikx

 . (6.16)

For the second order correction we have

(F+
− )2 = (

1

±2ik
)2

1∑
n2=0

n2−1∑
n1=0

1∏
i=1

[
1− χ±(ni−ni+1)

]

= (
1

±2ik
)2

0∑
n1=0

(1− χ±(−1))

= (
1

±2ik
)2(1− χ∓1), (6.17)

(F+
− )2χ

n2 = (
1

±2ik
)2(χ±1 − 1), (6.18)
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which results in

Ψ(2)(x) =(
1

2ik
)2

(1− χ−1)eikx + (1− χ)e−ikx

(1− χ−1)eikx + (1− χ)e−ikx

 . (6.19)

To compute the third order correction we set N = 2, j = 3. But it turns out that

(F+
− )3 = 0, (6.20)

and hence Ψ(3)(x) = 0. Therefore we generally have

Ψ(x) =Ψ(0)(x) + εΨ(1)(x) + ε2Ψ(2)(x)

=

 eikx

e−ikx

+
ε

2ik

 2eikx − (1 + χ)e−ikx

(1 + χ−1)eikx − 2e−ikx


+ (

ε

2ik
)2

(1− χ−1)eikx + (1− χ)e−ikx

(1− χ−1)eikx + (1− χ)e−ikx

 .

In view of χ = e2ikl, the Transfer matrix takes the form

M =


1 + ε

ik + ( ε
2ik )2(1− e−2ikl) ε

2ik (1 + e−2ikl) + ( ε
2ik )2(1− e−2ikl)

− ε
2ik (1 + e2ikl) + ( ε

2ik )2(1− e2ikl) 1− ε
ik + ( ε

2ik )2(1− e2ikl)

 ,

which is the transfer matrix of a system of double Dirac delta potential with delta barriers

located at x = 0 and x = l on the real line.

The following Theorem, stating the exactness of perturbation for a finite Dirac comb. It

simplifies the calculation of the wave functions and the construction of the transfer matrix.

Theorem. For a finite Dirac comb, as a finite series of N δ-function potential, perturbation

corrections of order higher than N vanish (see Appx. B for the proof).

This Theorem implies that for the potential (6.1), Ψ(j>N)(x) = 0. Using this theorem

and the perturbation ansatz the wave function is

Ψ(x) =
N∑
j=0

εjΨ(j)(x)

=

N∑
j=0

εj


[(F+)j ]e

ikx − [(F+)jχ
nj ]e−ikx

[−(F−)jχ
−nj ]eikx + [(F−)j ]e

−ikx

 , (6.21)
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and

M =
N∑
j=0

εj


(F+)j −(F−)jχ

−nj

−(F+)jχ
nj (F−)j

 . (6.22)

Consequently to identify the spectral singularities we look for the zeros of M22 given by

M22(k, ε) =
N∑
j=0

εj(F−)j

=
N∑
j=0

( ε

−2ik

)j N−1∑
nj=0

nj−1∑
nj−1=0

· · ·
n2−1∑
n1=0

j−1∏
i=1

(1− χ−(ni−ni+1)). (6.23)

Using (6.23), we see that M22 is a polynomial function in ε. For a given N (the number of

delta functions), computing this polynomial function is a trivial task. Considering the first

order perturbation we find

(F−)1 =
1

2ik

N−1∑
n1=0

1 =
N

2ik
. (6.24)

In this case for determining the spectral singularities we write

M22 = 1− Nε

2ik
= 0 =⇒ k =

Nε

2i
. (6.25)

This intriguing result, implies that up to the first order the Dirac comb with N delta function

and identical coupling constants acts as a single delta function with coupling constant Nε.

So far we have considered the Dirac comb as a chain of delta functions with identical

coupling constants. More generally, the Dirac comb for a chain of delta functions having

different coupling constants reads

v(x) =
N−1∑
n=0

εnδ(x− nl), (6.26)

where εn ∈ C. Specifying the location of spectral singularities for this potential is a difficult

problem. But, the qualitative consideration can provide some understanding of the nature

of these points. Recall that

M22 =
N∑
j=1

εj(F−)j , (6.27)

where

(F+
−)j :=

( 1

±2ik

)j N−1∑
nj=0

nj−1∑
nj−1=0

· · ·
n2−1∑
n1=0

( j∏
i=1

εni

)( j−1∏
i=1

[
1− χ±(ni−ni+1)

])
. (6.28)
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Up to the first order, the spectral singularities for this system is given by

k =
ε

2i

N−1∑
n1=0

εn1 . (6.29)

Here, our results may be extended to explore the spectral singularities of both systems (6.1)

and (6.26) up to any order of interest.

From another point of view a Dirac comb can be considered as a system of single delta

functions. Therefore the transfer matrix of the whole system is the product of the transfer

matrix of these single delta functions with identical coupling constants,

M = Mn(ε)Mn−1(ε) · · ·M1(ε)

= N(ε)M1(ε)

=

α β

γ δ

M11 M12

M21 M22

 , (6.30)

where α, β, γ, δ are all functions of the variable ε. Mij ’s are the entries of the transfer matrix

for the single delta function located at x = α with constant ε given by 1 + ε
2ik

ε
2ike

−2ikα

− ε
2ike

2ikα 1− ε
2ik

 . (6.31)

Thus

M22 = γM12 + δM22

= (γa+ δc) + (γb+ δd)ε, (6.32)

where we set M12 = a+ bε, M22 = c+ dε. M22 = 0 yields an expression, e.g., Fn(k, ε) = 0,

where Fn is a polynomial function. This describes the surfaces in the space of coupling

constants on which the spectral singularities reside.
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Chapter 7

PERTURBING THE BARRIER POTENTIAL

In this section we consider the perturbation over the barrier potential v0(x) = ξ, having

compact support in the interval [−α, α], given by v(x) defined in the same interval. The

zeroth order correction is given by the solutions of the Schrödinger equation (3.5) if ε = 0.

In view of (3.10), The Green’s function for this equation is

G(x, x′) =


sin k(x−x′)

k x < −α,
sin k′(x−x′)

k′ |x| < α,

sin k(x−x′)
k x > α,

(7.1)

where k′ :=
√
k2 − ξ. The zeroth order correction for the wave function is therefore

Ψ(0)(x) =



 eikx

e−ikx

 for (x < −α),

 A(k, ω)eik
′x +A(k,−ω)e−ik

′x

A(−k, ω)eik
′x +A(−k,−ω)e−ik

′x

 for (|x| < α),

M11e
ikx +M21e

−ikx

M12e
ikx +M22e

−ikx

 for (x > α),

(7.2)

where

A(k, ω) :=
1

2
(1 +

1

ω
)e−ik(1−ω)α, (7.3)

and Mij are the entries of the matrix

M (0) =

e−2iαk (1+ω)2e2iαkω−(1−ω)2e−2iαkω

4ω
i(ω2−1)

2ω sin(2αkω)

− i(ω2−1)
2ω sin(2αkω) e2iαk (1+ω)2e−2iαkω−(1−ω)2e2iαkω

4ω

 , (7.4)

where ω := k
k′ , (Appx. B).
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In light of (7.1) and (7.2), the first order correction has the form

x < −α:

Ψ(1)(x) =

∫ −α
−∞

G(x, x′)v(x′)Ψ(0)(x′)dx′ = 0, (7.5)

|x| < α:

Ψ(1)(x) =

∫ x

−α
G(x, x′)v(x′)Ψ(0)(x′)dx′, (7.6)

x > α:

Ψ(1)(x) =

∫ α

−α
G(x, x′)v(x′)Ψ(0)(x′)dx′

=

∫ α

−α

sin k(x− x′)
k

v(x′)

 A(k, ω)eiωkx
′
+A(k,−ω)e−iωkx

′

A(−k, ω)eiωkx
′
+A(−k,−ω)e−iωkx

′

 dx′

=

∫ α

−α

∂x′∆(−k, ω, x′)eikx + ∂x′Θ(k, ω, x′)e−ikx

∂x′Θ(−k, ω, x′)eikx + ∂x′∆(k, ω, x′)e−ikx

 dx′

=

T (−k, ω)eikx +R(k, ω)e−ikx

R(−k, ω)eikx + T (k, ω)e−ikx

 , (7.7)

where

∂x′∆(k, ω, x′) :=
−v(x′)

2ik

[
A(−k, ω)eik(1+ω)x′ +A(−k,−ω)eik(1−ω)x′

]
, (7.8)

∂x′Θ(k, ω, x′) :=
−v(x′)

2ik

[
A(k, ω)eik(1+ω)x′ +A(k,−ω)eik(1−ω)x′

]
, (7.9)

T (k, ω) :=

∫ α

−α
∂x′∆(k, ω, x′)dx′, (7.10)

R(k, ω) :=

∫ α

−α
∂x′Θ(k, ω, x′)dx′. (7.11)

Similar formulas can be written for the case when k → −k. The valid solution up to first

order in ε is given by:

For x < −α:

Ψ(x) = Ψ0(x) =

 eikx

e−ikx

 , (7.12)
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For x > α:

Ψ(x) =

M (0)

11 e
ikx +M (0)

21 e
−ikx

M (0)

12 e
ikx +M (0)

22 e
−ikx

+ ε

T (−k, ω)eikx +R(k, ω)e−ikx

R(−k, ω)eikx + T (k, ω)e−ikx



=


[
M (0)

11 + εT (−k, ω)
]
eikx +

[
M (0)

21 + εR(k, ω)
]
e−ikx

[
M (0)

12 + εR(−k, ω)
]
eikx +

[
M (0)

22 + εT (k, ω)
]
e−ikx

 . (7.13)

Therefore the transfer matrix has the form

M =

M (0)

11 + εT (−k, ω) M (0)

12 + εR(−k, ω)

M (0)

21 + εR(k, ω) M (0)

22 + εT (k, ω)


= M (0)

ξ + εM (1), (7.14)

where

M (1) :=

T (−k, ω) R(k, ω)

R(−k, ω) T (k, ω)

 . (7.15)

According to (7.14),

M22(k, ξ) = M (0)

22 (k, ξ) + εT (k, ξ), (7.16)

where k ∈ R and ξ ∈ C. M22(k, ξ) = 0 will give the locations of spectral singularities. To

continue we assume the following set of approximations

k = k(0) + εk(1), ξ = ξ(0) + εξ(1). (7.17)

ξ, ξ(0), ξ(1) ∈ C, k, k(0), k(1), ε ∈ R, and let ξ(1) = ξ(1)
r + iξ(1)

i , (7.18)

where (k, ξ) ∈ Ω and (k(0), ξ(0)) ∈ Ω0, so that

Ω0 :=
{

(k(0), ξ(0))
∣∣M (0)

22 (k(0), ξ(0)) = 0
}
, Ω :=

{
(k, ξ)

∣∣M22(k, ξ) = 0
}
, (7.19)

where Ω0 is the set of all spectral singularities for the barrier potential (ε = 0) and Ω is the

set of spectral singularities for the case (ε 6= 0).

Ref. [40], gives a complete analysis of the set Ω0. If we define ξ(0)

k(0)2 := ρ(0) + iσ(0), then

ρ(0) and σ(0) satisfy

sinh2

{
[nπ − g1(ρ(0), σ(0))]

√
1− 2(1− ρ(0))

g2(ρ(0), σ(0))

}
=

2g2(ρ(0), σ(0))

ρ(0)2 + σ(0)2
, (7.20)
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g1(ρ(0), σ(0)) := cos−1

[
1−

√
(1− ρ(0))2 + σ(0)2√
ρ(0)2 + σ(0)2

]
,

g2(ρ(0), σ(0)) := 1− ρ(0) +

√
ρ(0)2 + σ(0)2.

These define an infinite set of curves in the ρ− σ plane. Each value of (ρ(0), σ(0)) on one of

these curves gives a spectral singularity with the corresponding wave number

k(0) =
nπ − g1(ρ(0), σ(0))

α
√

2g2(ρ(0), σ(0))
. (7.21)

Substituting (7.17) in (7.16) and neglecting terms of order ε2 and higher, we set

M22(k, ξ) =M (0)

22 (k, ξ) + εT (k, ξ)

=M (0)

22 (k(0) + εk(1), ξ(0) + εξ(1)) + εT (k(0) + εk(1), ξ(0) + εξ(1))

=M (0)

22 (k(0), ξ(0)) + ε
[
k(1)∂kM

(0)

22 (k, ξ) + ξ(1)∂ξM
(0)

22 (k, ξ) + T (k(0), ξ(0))

+ εk(1)∂kT (k, ξ) + εξ(1)∂ξT (k, ξ)
]

(k(0),ξ(0))

=ε
[
k(1)∂kM

(0)

22 (k, ξ)
∣∣
(k(0),ξ(0))

+ ξ(1)∂ξM
(0)

22 (k, ξ)
∣∣
(k(0),ξ(0))

+ T (k(0), ξ(0))
]

+M (0)

22 (k(0), ξ(0)).

Since M (0)

22 (k(0), ξ(0)) = 0, M22(k, ξ) = 0 requires

k(1)∂kM
(0)

22 (k, ξ)
∣∣
(k(0),ξ(0))

+ ξ(1)∂ξM
(0)

22 (k, ξ)
∣∣
(k(0),ξ(0))

+ T (k(0), ξ(0)) = 0. (7.22)

In view of (7.4) and (7.18) and introducing

P̊r + iP̊i :=∂kM
(0)

22 (k, ξ)
∣∣
(k(0),ξ(0))

, (7.23)

Q̊r + iQ̊i :=∂ξM
(0)

22 (k, ξ)
∣∣
(k(0),ξ(0))

, (7.24)

T̊r + iT̊i :=T (k(0), ξ(0)), (7.25)

we can express Eq.(7.22) as the following system of linear equations in three unknowns k(1),

ξ(1)
r and ξ(1)

i .  k(1)P̊r + ξ(1)
r Q̊r − ξ(1)

i Q̊i = −T̊r,

k(1)P̊i + ξ(1)
r Q̊i + ξ(1)

i Q̊r = −T̊i,
(7.26)
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where the mathring on T , P and Q shows that these quantities have been evaluated at the

point (k(0), ξ(0)). The system of equations, written above, can be put in the following form

[
P̊iQ̊r − P̊rQ̊i

]
ξ(1)
r +

[
P̊iQ̊i + P̊rQ̊r

]
ξ(1)

i =
[
− P̊iT̊r + P̊rT̊i

]
,

k(1) = −
T̊i + Q̊iξ(1)

r + Q̊rξ(1)

i

P̊i
.

(7.27)

Next we define ρ+ iσ := ξ
k and employ (7.17) and (7.18) to write

ρ+ iσ =
ξ(0) + εξ(1)

[k(0) + εk(1)]2

=
ξ(0) + εξ(1)

k(0)2

[
1 + ε

k(1)

k(0)

]−2

=
[
(ρ(0) + iσ(0)) + ε

ξ(1)

k(0)2

][
1− 2ε

k(1)

k(0)

]
=
[(

1− 2ε
k(1)

k(0)

)
ρ(0) + ε

ξ(1)
r

k(0)2

]
+ i
[(

1− 2ε
k(1)

k(0)

)
σ(0) + ε

ξ(1)

i

k(0)2

]
, (7.28)

therefore 
ρ =

(
1− 2ε

k(1)

k(0)

)
ρ(0) + ε

ξ(1)
r

k(0)2
,

σ =
(
1− 2ε

k(1)

k(0)

)
σ(0) + ε

ξ(1)

i

k(0)2
.

(7.29)

The system (7.29) gives the spectral singularities of the perturbed barrier potential based

on the spectral singularities of the unperturbed system, namely, ρ(0) and σ(0). For instance,

we compute the spectral singularities in case k = k(0) meaning that k(1) = 0. This choice

helps us compare the shifts in the spectral singularity curves of the barrier potential due to

the perturbation in different values of k = k(0). In the following (Table.7.1, Fig.7.1) we give

the numerical values of these points for the barrier potential perturbed by the potential

v(x) = coshx having compact support in interval [−1/2, 1/2] for perturbation strength

ε = 0(unperturbed barrier potential), 0.1, 0.01, and 0.001.
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Ε = 10-1

Ε = 10-2

Ε = 10-3

Ε = 0

Ρ
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Figure 7.1: The shift in the curve of the spectral singularities of the unperturbed barrier poten-
tial. These shifts are due to the perturbation potential v(x) = coshx with different values of the
perturbation strength ε.
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ε = 0 ε = 10−3 ε = 10−2 ε = 10−1

ρ=0.99999 0.99998 0.99996 0.99984

σ=0.00299 0.00290 0.00219 0.00018

k=25.75943

0.76992 0.76943 0.76509 0.72169

0.81192 0.80993 0.70209 0.51366

1.33227

0.50513 0.50261 0.47995 0.25335

1.16609 1.16165 1.12170 0.72218

1.01173

0.27778 0.26949 0.19496 -0.55036

1.38606 1.37545 1.27942 1.09987

0.86662

-2.13748 -2.13742 -2.13691 -2.13178

2.57002 2.56656 2.53543 2.22237

0.37871

-2.37650 -2.37505 -2.36202 -2.23172

2.64863 2.64431 2.60584 2.22062

0.35885

-3.13771 -2.32129 -3.35344 -3.67601

2.88151 2.87914 2.85711 2.63724

0.30723

Table 7.1: Spectral singularities of barrier potential perturbed by v(x) = coshx for the
different values of the perturbation parameter. ε = 0 corresponds to the case of unperturbed
barrier potential.
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Chapter 8

OPTICAL SPECTRAL SINGULARITIES OF AN INFINITE SLAB

GAIN MEDIUM

For optical realization of spectral singularities of the complex barrier potential (8.5), we

use a special set up consisting of two infinite planar slab aligned along the Y -axis and the

region between the planes confined to |X| < a is filled with a material with reflective index n

acting as a gain medium(Fig. 8.1). We propose that this set up can be applied to generate

lasers provided that we tune the parameters of the system to admit a spectral singularities.

Interestingly, our set up does not include any mirror which are important part of typical

optical systems generating lasers.

Practically, a laser consists of a gain medium inside a highly reflective optical cavity

(an arrangement of mirrors surrounding the gain medium). The gain medium should be

pumped5 to achieve population inversion. Due to stimulated emission of excited states and

by locating two highly refractive mirrors to bounce the emitted light back and forth to reach

high amplification, one can obtain a highly amplified beam, known as a laser, [47, 48, 49].

Generally, optical cavities acts as a Fabry-Perot interferometer and adds a phase (path)

difference δ = 2n~k · ~l to each reflected beam inside the gain medium, where ~k and ~l stand

for the wave number and the length of the gain medium, respectively. Since the refractive

index of the gain medium is a complex number n = η + iκ, the phase shift is

eiδ = e−2kκle2ikηl. (8.1)

Hence, while traveling through the gain medium, the beam is amplified by a factor of e−2kκl.

In this manner by continuous reflections of the beam inside the gain medium one can gain

a much larger amplification of the incident wave, [48]. This is how the ordinary lasers work.

The spectral singularities, however suggest an alternative way to obtain this amplification

effect without using mirrors.

5The act of energy transfer from an external source into the gain medium of a laser is called laser pumping.
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 z

x

y

Figure 8.1: Scheme of an infinite planar slab filled with a dielectric acting as a gain medium (blue
part).

In Appendix C we show that the study of the dynamics of electromagnetic beams inside

an infinite planar slab is related to the problem of scattering for the complex barrier poten-

tials. Consider the following set of solutions of Maxwell’s equations which are EM fields in

a medium with a complex refractive index n,

~E(X, t) = Ee−iωtψ(X)êY ,

~B(X, t) = −iω−1Ee−iωtψ′(X)êZ ,

(8.2)

where êY and êZ are unit vectors in Y and Z direction, respectively. The electromagnetic

wave equation reads

∇2 ~E =
n2

c2
∂2
t
~E, ∇2 ~B =

n2

c2
∂2
t
~B. (8.3)

Substituting (8.2) in (8.3) produces the following equation which is analogous to the dimen-

sionless time-independent Schrödinger equation:

−ψ′′(x) + v0(x)ψ(x) = k2ψ(x), (8.4)

where

x :=
X

`
, k2 = `2

ω2

c2
, v0(x) =

 k2(1− n2) |x| < α,

0 |x| > α,
(8.5)

where v0(x) is a complex barrier potential. The solutions of Schrödinger equation for this

potential have the form

ψ(x) =


A1e

ikx +B1e
−ikx for (x < −α),

A2e
inkx +B2e

−inkx for (|x| < α),

A3e
ikx +B3e

−ikx for (x < −α),

(8.6)
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where Aν , Bν ∈ C and ν ∈ {1, 2, 3}.

The mathematical meaning of spectral singularities associates them with a zero-width

resonance phenomena, [33, 34]. This fact indicates that if the frequency of an incoming

electromagnetic wave is tuned so that ω −→ ω? = k2
?c

2, where k2
? is a spectral singularity,

the amplitude of the outgoing waves will diverge. Therefore

sending waves of frequency ω ≈ ω? will induce outgoing (transmitted

and reflected) waves of considerably enhanced amplitude (Fig.8.2).

x

y

Incident wave

Reflected wave

2Α

2Β

Transmited wave

Figure 8.2: Cross-section of the gain medium in X − Y plane and the interaction of the incident
wave with the medium.

The refractive index of the gain medium, that is constructed by doping a host medium

of refractive index n0, has the form (Appx. C)

n2 = n2
0 +

ω̂2
p

1 + ω̂2 − iγ̂ω̂
, (8.7)

where ω̂ = ω
ω0

, ω̂p =
ωp
ω0

, γ̂ = γ
ω0

, [43, 50, 51]. Since n = η + iκ, n2 = (η2 − κ2) + 2iκη. In
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ω̂ = 1 we have 
η2 − κ2 = n2

0,

2κη = − ω̂p
γ̂ω̂

.
(8.8)

Solving this system for η yields

ω̂2
p = 2κγ̂ω̂

√
n2

0 + κ2

= − γ̂n0λ0g

2πω̂

√
1 +

( λ0g

4πn0

)2
. (8.9)

where g = −2κk is the gain coefficient of the gain medium at resonance frequency and

λ0 = 2πc
ω0

, (Appx C). In terms of dimensionless quantities we have

ω̂2
p = − γ̂n0g

k0ω̂

√
1 +

(gk0

2n0

)2
, where g = g`, k0 =

2π`

λ0
. (8.10)

The gain coefficient depends on the material that we use as gain medium. To continue

we consider the following two cases of gain medium:

(i) Uniform Gain Medium

In this case we suppose that the gain coefficient g maintains a constant value throughout

the gain medium. Ref. [38] gives the complete discussion for this special type of gain medium

where the spectral singularities of the complex barrier potential and their associated zero-

width resonance appear at lasing threshold gt. In other words, g = gt is only the necessary

condition for observing a spectral singularity, [38].

(ii) Non-Uniform Gain Medium

In general the gain coefficient g is a function of the space. Generally, when an electro-

magnetic wave travels through a medium it undergoes exponential decay as described by

Beer-Lambert law, [41]. Therefore the intensity of the EM beam entering to a medium in

X direction is given by

I(X) = I0e
−aX , (8.11)

where a is the attenuation coefficient of the medium. This is a natural property of any gain

medium to somehow attenuate any beam entering and passing through it. For our setup,

the energy (pumping) intensity inside the gain medium will have an exponentially decaying
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behavior. Therefore some part of the energy gets absorbed by the medium and thus the

effective gain will be geff(X) = g(X)− a, where g(X) is the gain inside the gain medium. For

instance, having single pumping gives the following effective gain

geff(X) = βe−µae−µX − a

= (g0 + a)e−µXe−µa − a for |X| < a, (8.12)

where µ is the gain decay, [39]. We used the boundary condition geff(−a) =: g0 to obtain

β = (g0 + a), and g0 is the initial gain. Using double pumping one obtains a cosh like

pattern for the gain inside the medium therefore, [39], we have

geff(X) = β coshµX − a for |X| < a. (8.13)

The maximum g0 happens in the boundary of the gain medium. Therefore geff(±a) = g0

which gives β =
g0 + a

coshµa
. Thus

geff(X) =

[
g0 + a

coshµa

]
coshµX − a for |X| < a. (8.14)

Using this gain coefficient and noting that λ0g
4π � n0, the refractive index (8.7) can be

written as

n2(geff) = n2
0 +

(
− γ̂n0λ0geff

2πω̂

)
ω̂2 − 1 + iγ̂ω̂

√
1 +

(λ0geff

4πn0

)2
= n2

0 +

(
− γ̂n0λ0g0

2πω̂

)
ω̂2 − 1 + iγ̂ω̂

+

(
− γ̂n0λ0(g0 + a)

2πω̂

)
ω̂2 − 1 + iγ̂ω̂

(
coshµX

coshµa
− 1

)
= n2(g0) + εt

(
1 +

g0

a

)
f(x), (8.15)

where we have introduced

n2(g0) := n2
0 −

γ̂n0λ0g0

2πω̂(ω̂2 − 1 + iγ̂ω̂)
, (8.16)

ε :=
n2

0µ̂
2

2
, (8.17)

t :=
γ̂λ0a

2πn0(1− ω̂2 − iγ̂ω̂)
, (8.18)

f(x) :=
2

µ̂2

(
cosh µ̂x

cosh µ̂α
− 1

)
, (8.19)

µ̂ = µ`, α = a
` and x = X

` and ` is an arbitrary length scale.



Chapter 8: Optical Spectral Singularities of an infinite slab gain medium 40

Combining all these results and using (8.4) and (8.5), we relate the dynamics of EM waves

inside a gain medium with non-uniform gain coefficient (8.14) to a Schrödinger equation

given by the

H = H0 + v0(x) + εv(x), (8.20)

where H0 is the Hamiltonian of the free particle and we define

v0(x) : =

 ζ = k2[1− n2(g0)] |x| < α,

0 |x| > α,
(8.21)

v(x) : =

 k2t
(

1 + g0

a

)
f(x) |x| < α,

0 |x| > α.
(8.22)

The Hamiltonian (8.20) describes the perturbation of the barrier potential v0(x). At the

end of Chapter 7, we gave a graphical result showing how the spectral singularities of the

barrier potential shift due to this perturbation. Therefore an infinite slab non-uniform gain

medium with the gain coefficient (8.14), is an ideal model to observe the spectral singularities

resonance effects of the perturbed barrier potential. Next, we use (8.21) to define

ζ

k2
= 1− n2(g0) := ρe + iσe. (8.23)

we then find

ρe := 1− n2
0 −

ω̂2
p(1− ω̂2)

(1− ω̂2) + γ̂2ω̂2
, σe := −

ω̂2
p γ̂ω̂

(1− ω̂2) + γ̂2ω̂2
. (8.24)

Using the definition of the plasma frequency near resonance frequency, (8.10), namely ω̂2
p :=

− γ̂n0g
k0ω̂

and since ω̂ = k/k0, we obtain an expression for ρe(k, g) and σe(k, g) in terms of the

dimensionless quantities:

ρe(k, g) := 1− n2
0 −

γ̂n0g(k2 − k2
0)k2

0

[(k2 − k2
0)2 + γ̂2k2k2

0]k
,

σe(k, g) :=
γ̂2n0gk

3
0

(k2 − k2
0)2 + γ̂2k2k2

0

.

(8.25)

Since k = k(0) + εk(1) and assuming g = g(0) + εg(1) we get

ρe(k, g) := ρ(0)
e + ε(Λ1k

(1) + Λ2g
(1)) +O(ε2),

σe(k, g) := σ(0)
e + ε(Λ3k

(1) + Λ4g
(1)) +O(ε2),

(8.26)
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where

ρ(0)
e := 1− n2

0 −
γ̂n0g

(0)(k(0)2 − k2
0)k2

0

[(k(0)2 − k2
0)2 + γ̂2k(0)2k2

0]k(0)
,

σ(0)
e :=

γ̂2n0g
(0)k3

0

(k(0)2 − k2
0)2 + γ̂2k(0)2k2

0

,

(8.27)

and

Λ1 :=
γ̂n0k

2
0g

(0)

[
3k(0)6 − k6

0 + k(0)2k2
0

[
(−7 + γ̂2)k(0)2 + (5 + 3γ̂2)k2

0

]]
−k(0)2

[
(k(0)2 − k2

0)2 + k(0)2k2
0γ̂

2
]2 , (8.28)

Λ2 :=
γ̂n0k

2
0

[
k(0)6 − k6

0 + 3k(0)2k2
0(γ̂2 − 1)(k2

0 − k(0)2)
]

k(0)
[
(k(0)2 − k2

0)2 + k(0)2k2
0γ̂

2
]2 , (8.29)

Λ3 := −
γ̂2n0g

(0)k3
0k

(0)
[
4k(0)2 − 2k2

0γ̂
2 − 4k2

0

][
(k(0)2 − k2

0)2 + k(0)2k2
0γ̂

2
]2 , (8.30)

Λ4 :=
γ̂2n0k

3
0

(k(0)2 − k2
0)2 + k(0)2k2

0γ̂
2
. (8.31)

Next, we use the result of the calculation of spectral singularities of the perturbed barrier

potential that we obtained in the end of Chapter 7 . If we solve (7.29) for ξ(1)
r and ξ(1)

i we

get

ξ(1)
r =

k(0)2

ε

[
ρ−

(
1− 2ε

k(1)

k(0)

)
ρ(0)

]
, ξ(1)

i =
k(0)2

ε

[
σ −

(
1− 2ε

k(1)

k(0)

)
σ(0)

]
. (8.32)

To observe the optical spectral singularity we require ρe = ρ, σe = σ, ρ(0)
e = ρ(0) and

σ(0)
e = σ(0), substituting (8.26) in (8.32) gives

ξ(1)
r = k(0)2

[
(Λ1 − 2ρ(0)

k(0) )k(1) + Λ2g
(1)

]
,

ξ(1)

i = k(0)2
[
(Λ3 − 2σ(0)

k(0) )k(1) + Λ4g
(1)

]
.

(8.33)

Combining (8.33) with (7.27) results in a system of two linear equations with k(1) and g(1)

as unknowns. By solving this system we obtain

k(1) =
Γ4 − Γ2

Γ1Γ4 − Γ2Γ3
, g(1) =

Γ1 − Γ3

Γ1Γ4 − Γ2Γ3
, (8.34)
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where we have defined

Γ1 :=

[
P̊iQ̊r − P̊rQ̊i

]
(Λ1 − 2ρ(0)

k(0) ) +
[
P̊iQ̊i + P̊rQ̊r

]
(Λ3 − 2σ(0)

k(0) )

P̊iT̊r − P̊rT̊i
k(0)2, (8.35)

Γ2 :=

[
P̊iQ̊r − P̊rQ̊i

]
Λ2 +

[
P̊iQ̊i + P̊rQ̊r

]
Λ4

P̊iT̊r − P̊rT̊i
k(0)2, (8.36)

Γ3 :=
Q̊i(Λ1 − 2ρ(0)

k(0) ) + Q̊r(Λ3 − 2σ(0)

k(0) )

T̊i
k(0)2, (8.37)

Γ4 :=
Q̊iΛ2 + Q̊rΛ4

T̊i
k(0)2. (8.38)

In the remaining of this section we locate the optical spectral singularities of the non-

uniform gain medium corresponding to (8.14). First, we obtain the optical spectral singu-

larities of the uniform gain medium, [26, 38, 39], then use the result of (8.34) to compute

the shifts in the values of these spectral singularities due to the perturbations (decay of the

gain coefficient as the beam enters the gain region). Comparing the result of similar calcula-

tion done by semi-classical analysis, [39], with the one that we obtained using perturbation

theory, we find a very good agreement in the results of both approaches.

To continue we consider the following typical semiconductor gain medium, [38, 39],

n0 = 3.4, λ0 = 1500nm, γ̂ = 0.02, a = 200cm−1,

µ ≈ 0.1, g0 ≈ 50cm−1, ` = 2a ≈ 300µm.
(8.39)

For this gain medium the perturbation parameter (8.17) is given by ε ≈ 0.0578. Near

resonance frequency ω0 we have λ = λ0 ± δ therefore ω̂ = 1 ∓ n|δ|
λ0

. Here |δ| will stay fixed

during the experiment and it shows the distance between the wavelengths that we consider

in the experiment and n is an integer number. For instance we pick |δ| = 10 nm.

From (8.18) We can write t = |t|eiθ where

|t| ≈ <(t), θ = tan−1 =(t)

<(t)
, where

=(t)

<(t)
=

γ̂

ω̂ − 1
ω̂

≈ ∓ γ̂λ0

2n|δ|
. (8.40)

At resonance frequencies, k = k0 := 2π`
λ0

, we find that |t| ≈ |k−1| ≈ 10−3. These numerical

bounds make our perturbative calculation simpler since k|t| ≈ 1, therefore from (8.19),

(8.22) and (8.40) we have

v(x) =
2keiθ

µ̂2
(1 +

g

a
)
(cosh µ̂x

cosh µ̂
2

− 1
)
, (8.41)
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where θ = tan−1
(
∓ γ̂λ0

2n|δ|
)
. If λ = λ0, then n = 0 and eiθ = 1.

For instance, we wish to investigate the effect of perturbation on the spectral singularities

of the barrier potential with height ζ, given in (8.21). For the barrier potential, near

resonance frequency we have the spectral singularity with λ0 = 1500 nm and g = 40.43 cm−1

and therefore we will get k(0) = 0.4π× 103 and g(0) = 1.212 as the zeroth order perturbative

solutions. For this case we have ζ = k2
0(ρ + iσ) = k2

0[1 − n2
0] + i[k0n0g

(0)] = −1.66757 ×

107 + i5178.35 where ρ = −10.56 and σ = 0.00327923 and therefore n =
√

(1− ρ)− iσ =

3.4 − i0.000482239. Using λ0 = 1500 nm we compute the Reflection and Transmission

coefficients |T |2 and |R|2, where T = 1
M22

and R = M12
M22

. These give the amplification factor

for the emitted electromagnetic energy density and we obtain 1.99575×107 and 3.68948×109,

respectively. In other words we obtain an amplification of the background electromagnetic

energy density at these wavelengths by a factor of |T |2 + |R|2 ≈ 3.70944×109. For the Non-

Uniform Gain Medium we obtain small deviations in the values of k and g and therefore

respectively we can calculate the wavelength for which we can observe a spectral singularity

with attained gain coefficient. For example for the background (unperturbed) wavelength

λ(0) = λ0 = 1500 nm with the corresponding gain coefficient g(0) = 40.4 cm−1 perturbative

calculation shows that we have the following spectral singularity at resonance frequency

λ? = 1499.9987128 nm, g? = 40.43852 cm−1. (8.42)

By controlling the intensity of the pumping beam we can adjust g? in order to produce

laser at any of different wavelengths shown in Table 8.1. This turns out to be almost spaced

in the range 1478.558-1527.686 nm, (Table 8.1).



Chapter 8: Optical Spectral Singularities of an infinite slab gain medium 44

µ̂ = 0

λ (nm) g? (cm−1)

1478.5584532 124.17655

1481.7366532 101.10027

1484.9276537 81.72387

1489.2034578 61.54675

1494.5824861 45.73409

1495.6624982 43.83658

1500.000000 40.43827

1504.3632897 43.82109

1507.6512094 50.93261

1510.9539613 61.80307

1512.0582176 60.32103

1515.3802631 82.51231

1519.8322983 110.20124

1527.6859891 175.59110

µ̂ = 0.1

λ (nm) g? (cm−1)

1478.5583396 124.17684

1481.7362614 101.10219

1484.9274626 81.72396

1489.2034076 61.54698

1494.5823078 45.73437

1495.6624393 43.83688

1499.9987128 40.43852

1504.3632721 43.82159

1507.6515230 50.93283

1510.9539204 61.80377

1512.0582039 60.32129

1515.3802308 82.51247

1519.8321630 110.20215

1527.6833077 175.59871

Table 8.1: Wave length λ of spectral singularities for g with µ̂ = 0.1.
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Figure 8.3: Logaritmic Graph of (|T |2 + |R|2) as a function of wavelength λ with for ` = 300 µm
and g = 40.43852 cm−1. |T |2 and |R|2 are Transmission and Reflection coefficients. The horizontal
axis gives the frequencies and the vertical ax is the log (|T |2 + |R|2).
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Figure 8.4: The highest peak in Logaritm Plot of (|T |2 + |R|2) represents the spectral singularity
(8.42) that occurs near λ = 1500 nm for a gain medium with ` = 300 µm and g = 40.43852 cm−1

and µ̂ = 0.1.
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Chapter 9

CONCLUSION

Non-Hermitian Hamiltonians (with real spectrum) have provided insight in our under-

standing Quantum Mechanics. The non-Hermitian Hamiltonians with real energies first

appeared in physics literature in the works of C. Bender involved replacing the condition

of self-adjointness (Hermiticity) of the Hamiltonian with the, supposedly, weaker condition

as PT -symmetry. This gives rise to a class of complex non-Hermitian Hamiltonians having

real and positive energies, [1]. This study brings forth the concept of PT -symmetric Quan-

tum Mechanics, [2]. A. Mostafazadeh, [9, 10, 11], by introducing the concept of Pseudo-

Hermiticity proved that these non-Hermitian operators become Hermitian upon the redefi-

nition of the inner product of the Hilbert space. The concept of Pseudo-Hermitian Quantum

Mechanics broadens the formulation of Quantum Mechanics in the sense that it includes

the PT -symmetry Hamiltonians, [4].

Unfortunately, the spectral representation of non-Hermitian operators (with real spec-

trum) does not always exist and this is related to some deep properties of non-self adjoint

operators, [15]. The spectral singularities appearing in the continuous spectrum of non-

Hermitian Hamiltonians obstructs the spectral representation of the related Hamiltonian,

[12]. These turn out to be related to a specific type of resonance phenomena, [33, 34, 40].

In this thesis we establish a perturbative method of identifying the spectral singularities.

We first derive a general formula for the perturbative corrections of the eigenfunctions of the

perturbed Hamiltonian. We assume that the potentials have compact support, i.e,vanish

outside of an interval. Then we apply this method for a free particle perturbed by single

and double Dirac delta potentials and determine the location of spectral singularities for

these systems. Next, we use the exactness of the perturbation for the chain of Dirac delta

potentials (Appx A) to locate the spectral singularities of this system. We then consider

the problem of perturbing the barrier potential. We locate the spectral singularities of the

perturbed system as a small shifts of the spectral singularities of the unperturbed barrier
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potential.

In the last section we discuss an experimental setup, [26, 33, 38, 40], which suggests that

the spectral singularities of a barrier potential can be observed and verified experimentally

using an appropriate infinite planar slab gain medium. Since the gain coefficient depends

on the coordinates and decays inside the gain medium we consider a non-uniform gain

medium that corresponds to a perturbed barrier potential where the perturbation is due to

the decay of the gain coefficient. The spectral singularities of the non-uniform gain medium

are determined as small shifts in the location of spectral singularities of the uniform gain

medium. By the help of this sample we show how the amplification of electromagnetic

beams can be achieved by just adjusting the parameters of the system, specially the gain

coefficient g, so that it ensures a spectral singularity.



Appendix : Conclusion 48

APPENDIX
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Appendix A

EXACTNESS OF PERTURBATION FOR DIRAC-COMB

Theorem. For a Dirac Comb, consisting of N Dirac delta potential, perturbative corrections

of order higher than N vanish.

Proof. Consider the potential given in (6.1)(a finite series of N Dirac delta barriers). Since

the correction from each order is in a recursive relation with the correction of the previous

order , we claim that

Ψ(N+1)(x) = 0. (A.1)

By this claim the orders higher than N + 1 will not be generated therefore the Theorem

will be proved. In lights of (6.9) and (6.12), this claim implies

(F+
− )(j=N+1) = 0, (A.2)

and correspondingly we need to prove that

N∏
i=1

[
1− χ±(ni−ni+1)

]
= 0, =⇒ ∃ i ∈ N ; ni = ni+1, (A.3)

and

N := {1, · · · , N}. (A.4)

In another words we have to show that the set {i ∈ N;ni = ni+1} is not empty. This

implies that if different labels of series in (6.12) have the same value, then the product (A.2)

is zero. To simplify the form of the series (6.12), we start from the last series with label nj

whose values are elements of the following set

Nj = {0, 1, 2, 3, · · · , N − 1}, nj ∈ Nj . (A.5)

By assigning a value for nj (with the condition n1 < n2 < · · · < nj ≤ N − 1) the next series

labels nj−1, nj−2, · · · , n1 should be chosen from the sets Nj−1,Nj−2, · · · ,N1, respectively,
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given by definitions:

Nj−1 = {0, 1, 2, 3, · · · , nj − 1}, nj−1 ∈ Nj−1, (A.6)

Nj−2 = {0, 1, 2, 3, · · · , n(j−1) − 1}, nj−2 ∈ Nj−2, (A.7)

...

N2 = {0, 1, 2, · · · , n3 − 1}, n2 ∈ N2, (A.8)

N1 = {0, 1, 2, 3, · · · , n2 − 1}, n1 ∈ N1, (A.9)

and we have Nj ⊂ Nj−1 ⊂ · · · ⊂ N1. In exact terms, to calculate sums appeared in

expression of j-th correction (6.12), their labels need to be selected from the set Nj . More

precisely we need j different and nonrepeated selection from the set Nj in order to guarantee

n1 � n2 · · · � nj−1 � nj , and this implies a non-zero value for that correction. For

calculating Ψ(N+1)(x), N + 1 different labels must be selected form the set Nj but since the

cardinality of Nj is less than N + 1 therefore this selection will result in at least two similar

values for different labels of the series

|Nj | = N < N + 1, =⇒ {i ∈ N;ni = ni+1} 6= ∅, (A.10)

and consequently this leads to
∏N
i=1(1−χ±(ni−ni+1)) = 0 and as a result (F+

− )(N+1) = 0 and

finally Ψ(N+1)(x) = 0. Because of the recursive nature of the perturbative corrections, the

corrections from orders higher than N + 1 will not be generated, Ψ(j
N)(x) = 0,(Fig. A.1)
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Figure A.1: Calculating the N-th correction for a Dirac-Comb with N delta barriers. ni’s are the
labels of the series appearing in (6.12). Clearly for (N + 1)-th correction one of the labels will be
repeated ni = ni+1 and this will make the product (A.2)to vanish.
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Appendix B

TRANSFER MATRIX FOR THE COMPLEX BARRIER POTENTIAL

Consider a particle in a barrier potential given by the Hamiltonian H = H0 + ε, where

H0 is the Hamiltonian of the free particle and ε is the height of the barrier potential. If the

height of the barrier potential is small then we can use the formalism of Chapter 3 to solve

this problem. For this purpose we consider the case where v0(x) = 0 and v(x) = 1 having

compact support in interval [−α, α]. Using (3.9) for the Green’s function of this system we

have: G(x, x′) = sin k(x−x′)
k . The zeroth order correction is

Ψ(0)(x) =

 eikx

e−ikx

 , ∀x ∈ R. (B.1)

For the first order correction we obtain

x < −α:

Ψ(1)(x) = 0, (B.2)

−α < x < α:

Ψ(1)(x) =

∫ x

−∞
G(x, x′)v̂(x′)Ψ(0)(x′)dx′

=
1

2ik

∫ x

−∞
(eik(x−x′) − e−ik(x−x′))

 eikx
′

e−ikx
′

 dx′

=
1

2ik

∫ x

−α

 eikx − e−ikxe2ikx′

eikxe−2ikx′ − e−ikx

 dx′

=
1

2ik

(x+ α− 1
2ik )eikx + 1

2ike
−2ikαe−ikx

1
2ike

2ikαeikx − (x+ α+ 1
2ik )e−ikx

 , (B.3)
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x > α:

Ψ(1)(x) =
1

2ik

∫ α

−∞
(eik(x−x′) − e−ik(x−x′))

 eikx
′

e−ikx
′

 dx′

=
1

2ik

∫ α

−α

 eikx − e−ikxe2ikx′

eikxe−2ikx′ − e−ikx

 dx′

=
1

2ik

2αeikx − sin(2kα)
k e−ikx

sin(2kα)
k eikx − 2αe−ikx

 . (B.4)

Similarly the second order corrections gives

x < −α:

Ψ(2)(x) = 0, (B.5)

x > α:

Ψ(2)(x) =

∫ α

−α
G(x, x′)v̂(x′)Ψ(1)(x′)dx′

=

∫ α

−α

sin k(x− x′)
k

1

2ik

(x+ α− 1
2ik )eikx + 1

2ike
−2ikαe−ikx

1
2ike

2ikαeikx − (x+ α+ 1
2ik )e−ikx

 dx′

=
−1

4k2

∫ α

−α

 Ak(x′)eikx + Bk(x′)e−ikx

B−k(x′)eikx +A−k(x′)e−ikx

 dx′, (B.6)

where Ak(x′) and Bk(x′) is given by

Ak(x′) : = (x′ + α− 1

2ik
) +

e−2ikα

2ik
e−2ikx′ , (B.7)

Bk(x′) : = −(x′ + α− 1

2ik
)e2ikx′ − e−2ikα

2ik
. (B.8)

Using the relation ∫ α

−α
(x′ + α− 1

2ik
)e2ikx′ dx′ = 2α

e2ikα

2ik
− sin(2kα)

ik2
, (B.9)

the second order correction will result in

Ψ(2)(x) = (
1

2ik
)2

 Ckeikx +Dke−ikx

D−keikx + C−ke−ikx

 , (B.10)

where

Ck : = 2α2 − α

ik
+ e−2ikα sin(2kα)

2ik2
, (B.11)

Dk : =
sin(2kα)

ik2
− 2α

cos(2kα)

ik
. (B.12)
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Now for constructing the transfer matrix we need the scattering states in both sides of the

interval where barrier potential has compact support. From (B.2) and (B.5) we have

x < −a:

Ψ(x) = 0, (B.13)

and (B.4) and (B.10) result in:

x > a:

Ψ(x) =

 eikx

e−ikx

+
ε

2ik

2αeikx − sin(2kα)
k e−ikx

sin(2kα)
k eikx − 2αe−ikx


+ (

ε

2ik
)2

 Ckeikx +Dke−ikx

D−keikx + C−ke−ikx


=

 (1 + εα
ik −

ε2

4k2Ck)eikx + (−ε sin(2kα)
2ik2 − ε2

4k2Dk)e−ikx

(ε sin(2kα)
2ik2 − ε2

4k2D−k)eikx + (1− εα
ik −

ε2

4k2C−k)e−ikx

 . (B.14)

Therefore the transfer matrix is given by

M =

 1 + εα
ik −

ε2

4k2Ck ε sin(2kα)
2ik2 − ε2

4k2D−k
−ε sin(2kα)

2ik2 − ε2

4k2Dk 1− εα
ik −

ε2

4k2C−k

 (B.15)

Ck and Dk are given by (B.11) and (B.20). Furthermore we can write

M22(k) : = 1− εα

ik
− ε2

4k2
(2α2 +

α

ik
− e2ikα sin(2kα)

2ik2
) (B.16)

=M11(−k),

M12(k) : = ε
sin(2kα)

2ik2
− ε2

4k2
(−sin(2kα)

ik2
+ 2a

cos(2kα)

ik
) (B.17)

=M21(−k) = −M21(k).

So far we have derived the transfer matrix using perturbation theory. This matrix can

be analytically evaluated using the solution of the dimensionless Schrödinger equation for

the barrier potential on the real line. Solving the equation results in the following form of

the solutions

ψI(x) = A1e
ikx +B1e

−ikx, for x < −α, (B.18)

ψII(x) = A2e
ik′x +B2e

−ik′x, for |x| < α, (B.19)

ψIII(x) = A3e
ikx +B3e

−ikx, for x > α, (B.20)
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where k′2 = k2 − ε. The following boundary conditions

ψI(x)
∣∣
x=−α = ψII(x)

∣∣
x=−α,

ψ′I(x)
∣∣
x=−α = ψ′II(x)

∣∣
x=−α,

ψII(x)
∣∣
x=α

= ψIII(x)
∣∣
x=α

,

ψ′II(x)
∣∣
x=α

= ψ′III(x)
∣∣
x=α

,

(B.21)

lead to the expressions A1e
−ikα +B1e

ikα = A2e
−ik′α +B2e

ik′α,

ikA1e
−ikα − ikB1e

ikα = ik′A2e
−ik′α − ik′B2e

ik′α,
(B.22)

 A2e
ik′α +B2e

−ik′α = A1e
ikα +B1e

−ikα,

ik′A2e
ik′α − ik′B2e

−ik′α = ikA2e
ikα − ikB2e

−ikα.
(B.23)

More precisely we have 1
2(1 + k

k′ )A1e
−i(k−k′)α + 1

2(1− k
k′ )B1e

i(k+k′)α = A2,

1
2(1− k

k′ )A1e
−i(k+k′)α + 1

2(1 + k
k′ )B1e

i(k−k′)α = B2,
(B.24)

 1
2(1 + k

k′ )A3e
i(k−k′)α + 1

2(1− k
k′ )B3e

−i(k+k′)α = A2,

1
2(1− k

k′ )A3e
i(k+k′)α + 1

2(1 + k
k′ )B3e

−i(k−k′)α = B2.
(B.25)

In matrix language we can write1
2(1 + k

k′ )e
−i(k−k′)α 1

2(1− k
k′ )e

i(k+k′)α

1
2(1− k

k′ )e
−i(k+k′)α 1

2(1 + k
k′ )e

i(k−k′)α

A1

B1

 =

A2

B2

 , (B.26)

1
2(1 + k

k′ )e
i(k−k′)α 1

2(1− k
k′ )e

−i(k+k′)α

1
2(1− k

k′ )e
i(k+k′)α 1

2(1 + k
k′ )e

−i(k−k′)α

A3

B3

 =

A2

B2

 . (B.27)

Thus we have A3

B3

 = M1M
−1
2

A1

B1

 , (B.28)
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where

M1 :=

1
2(1 + k

k′ )e
−i(k−k′)α 1

2(1− k
k′ )e

i(k+k′)α

1
2(1− k

k′ )e
−i(k+k′)α 1

2(1 + k
k′ )e

i(k−k′)α

 , (B.29)

M2 :=

1
2(1 + k

k′ )e
i(k−k′)α 1

2(1− k
k′ )e

−i(k+k′)α

1
2(1− k

k′ )e
i(k+k′)α 1

2(1 + k
k′ )e

−i(k−k′)α

 . (B.30)

Therefore the transfer matrix is

M := M1M
−1
2 =

 =(k, k′) ℘(k, k′)

℘(−k, k′) =(−k, k′)

 , (B.31)

where

=(k, k′) : =
k′

k

(1

4
(1 +

k

k′
)2e−2i(k−k′)α − 1

4
(1− k

k′
)2e−2i(k+k′)α

)
, (B.32)

℘(k, k′) : = ik′(1− k2

k′2
)
sin 2k′α

2k
. (B.33)

Introducing

ω :=
k′

k
, (B.34)

k′ :=
√
k2 − ε, (B.35)

the matrix M can be written as

M =

e−2iαk (1+ω)2e2iαkω−(1−ω)2e−2iαkω

4ω
i(ω2−1)

2ω sin(2αkω)

− i(ω2−1)
2ω sin(2αkω) e2iαk (1+ω)2e−2iαkω−(1−ω)2e2iαkω

4ω

 . (B.36)

Using the following approximations

ω :=
k′

k
=

√
1− ε

k2

= 1− ε

2k2
− ε2

8k4
+O(ε3), (B.37)

1

ω
= (1− ε

k2
)−

1
2

= 1 +
ε

2k2
+

3ε2

8k4
+O(ε3), (B.38)

k′ =
√
k2 − ε

= k − ε

2k
− ε2

8k3
−O(ε3), (B.39)
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the entries of matrix M can be expanded in powers of ε, i.e.,

M22(k, k′) =M11(−k, k′)

=e2iαk (1 + ω)2e−2iαkω − (1− ω)2e2iαkω

4ω

=
e2iαk

4
(1 +

ε

2k2
+

3ε2

8k4
)

{
(2− ε

2k2
− ε2

8k4
)2e−2iαk(1− ε

2k2−
ε2

8k4 )

− (
ε

2k2
− ε2

8k4
)2e2iαk(1− ε

2k2−
ε2

8k4 )

}
=
e2iαk

4
(1 +

ε

2k2
+

3ε2

8k4
)

{
(4− 2ε

k2
− ε2

4k4
)e−2iαk(1− ε

2k2−
ε2

8k4 )

− ε2

4k4
e2iαk(1− ε

2k2−
ε2

8k4 )

}

=
e2iαk

4

{
(4 +

ε2

4k4
)e−2iαk(1− ε

2k2−
ε2

8k4 ) − ε2

4k4
e2iαk(1− ε

2k2−
ε2

8k4 )

}
=
e2iαk

4

{
e−2iαke2iαk( ε

2k2 + ε2

8k4 ) − iε2

2k4
sin(2αk(1− ε

2k2
− ε2

8k4
))

}
= (1 +

iαε

k
+
iαε2

4k3
− α2ε2

2k2
)− iε2

8k4
sin(2αk)e2iαk

= 1− αε

ik
− ε2

4k2
(2α2 +

α

ik
− e2iαk sin(2αk)

2k2
)

=M22(k) =M11(−k), (B.40)

and

M12(k, k′) = M21(−k, k′)

=
i(ω2 − 1)

2ω
sin(2αkω)

=
i

2
(1 +

ε

2k2
)(− ε

k2
) sin(2α(k − ε

2k
− ε3

8k3
))

=
i

2
(− ε

k2
− ε2

2k4
)[sin(2αk) cos(−αε

k
) + sin(−αε

2k
) cos(2αk)]

=
i

2
(− ε

k2
− ε2

2k4
)[sin(2αk)− αε

k
cos(2αk)]

= ε(
sin(2αk)

2ik2
)− ε2

4k2
(−sin(2α)k

ik2
+ 2α

cos(2αk)

ik
)

=M12(k) =M21(−k) = −M21(k). (B.41)

Therefore

M =M+O(ε3), (B.42)
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which shows that the transfer matrix, we derived for the barrier potential with negligible

height ε using perturbation method of Chapter 3, is the same as the one we obtain using

analytic method at least up to second order.
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Appendix C

SCHRÖDINGER-LIKE EQUATION FOR THE DYNAMICS OF EM

WAVES INSIDE DIELECTRIC WAVEGUIDES

Typically, laser gain media are made from various types of dielectric materials and

these materials essentially have no significant conductivity under normal conditions. These

materials, when effected by electric fields, conduct the field in a special manner. The electric

charges do not follow through the material, instead, they shift slightly from their average

equilibrium position causing dielectric polarization and accordingly generate internal fields.

This as a result partially compensates the external fields. This is the general scheme of the

response of dielectric materials to the applied electromagnetic fields, [43, 50, 51]. Here we

will carry out a simple wave analysis which will lead to the explanation of optical properties

of the laser media.

The polarization phenomena, happening in dielectric media due to the presence of ex-

ternal fields, is proportional to the distance of disposition of localized electric charges of

each atoms. If we call P the macroscopic polarization then:

P = −NeX, (C.1)

where X being the disposition and −e is the charge of an electron and N is the number of

charge density in a volume. Suppose that this disposition (polarization) is due to an non-

static external electric filed E, [50, 51]. On the other hand, by assuming a simple Lorentz

Oscillator Model of atoms [43], for balancing the interaction of external electric field with an

electron and the restoring force (acting on the electron to return it back to its equilibrium

position), we have

−eE = m
d2X

dt2
+mγ

dX

dt
+ kX. (C.2)

k is the restoring-force constant and γ the damping coefficient7. If we assume that non-

7mγ dX
dt

is the fractional damping term which is assumed to be proportional to the instantaneous velocity
of the charge and γ is specific damping coefficient represents the rate at which the polarization decays
after removing of the applied field.
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static external field is harmonically varying by the form E = E0e
−iwt, where ω is the

angular frequency, the disposition is also varying harmonically X = X0e
−iwt. By applying

these assumptions into (C.2) and using the result in (C.1) we get

P =

(
Ne2/m

ω2
0 − ω2 − iγω

)
E,

= ε0χE, and χ =
ω2
p

ω2
0 − ω2 − iγω

, ω0 =
( k
m

) 1
2

(resonance frequency). (C.3)

where ω2
p = Ne2

mε0
is the plasma frequency. The source-free Maxwell’s equations for an

isotropic dielectric medium are

~∇ · ~D = 0, ~∇∧ ~E = −∂t ~B,
~∇ · ~B = 0, ~∇∧

(
~B
µ

)
= −∂t ~D,

(C.4)

where µ and ε are magnetic8 and electric permittivity of the medium, respectively, [50]. The

electric displacement vector reads ~D = ε ~E = ε0 ~E+ ~P and in view of (C.3) the permittivity of

the dielectric media is ε = ε0(1+χ). If we assume that the dielectric media (gain medium) is

obtained by doping a host medium with permittivity εH then the permittivity of the whole

setup will be ε = εH + ε0χ. It is appropriate to use the concept of refractive index instead

of permittivity, formally, ε = ε0n
2. For the permittivity of the mentioned dielectric medium

ε = ε0(n2
H+χ) where nH is the reflective index of the host medium. By following some easy

steps of vector analysis and using Maxwell’s equations above we can construct differential

equations describing the vector functions ~E or ~B, namely as a wave equation. For instance,

if A is either of the vectors ~E or ~B, we obtain (using c−2 = µ0ε0), [50, 51]

∇2 ~A =
n2

c2
∂2
t
~A, n2 = n2

H + χ = n2
H +

ω2
p

ω2
0 − ω2 − iγω

. (C.5)

This homogeneous wave equation can be solved by the method of separation of variables or

Fourier Transform method due to a particular boundary conditions. The solution have the

form ~A = ~A0e
i(KZZ−wt) (a planar wave traveling in Z direction) where the complex constant

KZ is the wave vector (radians per meter). For a valid solution of the wave equation (C.5)

the wave vector KZ and angular frequency must related to each other by the dispersion

8Since µ = µ0(1 + χm), in a free-Magnetization media (χm = 0) we have µ = µ0.
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relation KZ = ω
c n, thus

K2
Z =

ω2

c2
(n2
H + χ)

=
ω2

c2

(
n2
H +

ω2
p

ω2
0 − ω2 − iγω

)
. (C.6)

The form of the differential equation which describes the behavior of electromagnetic

field as a wave equation might suggest an analogy with the concept of wave equation in

Quantum Mechanics, [42]. Assume the following set of solutions of (C.5), [26, 38],

~E(X, t) = Ee−iωtψ(X)êY ,

~B(X, t) = −iω−1Ee−iωtψ′(X)êZ .

(C.7)

This set clearly satisfies Maxwell’s equations. For instance, the electric field should be the

solutions of the differential equation ∇2 ~E = n2

c2
∂2
t
~E. The vector Laplacian of the field simply

has the form: ∇2 ~E =
(
∇2EX ,∇2EY ,∇2EZ

)
. Therefore

Ee−iωt
d2ψ(X)

dX2
êY =

n2

c2
(−ω2)Ee−iωtψ(X)êY ,

or
d2ψ(X)

dX2
= −ω

2

c2
n2ψ(X),

or

−d
2ψ(x)

dx2
+ v(x)ψ(x) = k2ψ(x). (C.8)

This is the time-independent dimensionless Shrödinger equation9 where we have defined the

new variables:

x :=
X

`
, k2 = `2

ω2

c2
, v(x) = k2(1− n2). (C.9)

9The same analysis can be repeated for the magnetic field ~B.
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