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ABSTRACT

In the delivery of healthcare services, important diagnostic and therapeutic deci-

sions are often based on the results of clinical tests. Clinical testing laboratories aim

to achieve timely and error free processing of the tests by means of coordinated col-

lection, transportation, and processing of the specimens obtained from the patients.

This thesis addresses the specimen collection problem that clinical testing laborato-

ries face daily. In this problem, specimens that accumulate throughout the working

day at customer sites should be transported to a facility for subsequent processing on

equipment with limited capacity. We formalize the resulting routing and scheduling

problem as collection for processing problem (CfPP). We analyze several fundamen-

tal properties of the problem, develop a linear mixed integer programming (MIP)

model, and propose a number of heuristic approaches to identify effective collection

strategies.

For the multi-vehicle problem with the makespan objective, we develop a polynomial-

time, constant-factor approximation algorithm. We study the single vehicle problem

with two hierarchical objectives. The first-level objective is to maximize the processed

amount by a deadline, whereas the second-level objective is to minimize transporta-

tion costs. We propose two heuristic approaches to address the single vehicle prob-

lem. The first approach solves the MIP model with additional constraints to obtain

feasible solutions with specific characteristics. The second approach is a prioritized

bicriteria matheuristic that combines tabu search with linear programming. To eval-

uate the performance of these approaches, we provide an upper bounding scheme

iv



on the processed amount by a deadline, and two relaxed MIP models to generate

lower bounds on the transportation cost. The effectiveness of the proposed solution

approaches is evaluated using realistic problem instances. Insights on key problem

parameters and their effects on the solutions are extracted by further experiments.



ÖZETÇE

Sağlık hizmetlerinde, tanılayıcı ve tedavi edici önemli kararlar genellikle klinik test-

lerin sonuçlarına dayanır. Klinik laboratuvarlar, hastalardan toplanan numunelerin

eşgüdümlü olarak toplanma, taşınma, ve işlenmesi ile testlerin zamanında ve hatasız

gerçekleştirilmesini hedefler. Bu tezde, klinik laboratuvarlarda gözlenen numune

toplama problemi ele alınmıştır. Bu problemde, coğrafi olarak dağınık lokasyon-

larda zaman içerisinde biriken numunelerin sınırlı işleme kapasitesine sahip ekipmanla

işlenmek üzere merkezi bir tesise taşınması gerekmektedir. Ortaya çıkan rotalama ve

çizelgeleme problemi, işleme için toplama problemi (Collection for Processing Prob-

lem – CfPP) olarak adlandırılmıştır. Problemin başlıca özellikleri analiz edilmiş,

doğrusal karma tamsayılı programlama (KTP) modeli geliştirilmiş, ve sezgisel çözüm

yöntemleri tasarlanmıştır.

Çok araçlı problem tüm birimlerinin işlenmesinin bitiş süresinin enküçüklenmesi

(makespan) amaç fonksiyonu ile çalışılmış ve polinom zamanlı, sabit faktörlü bir

yaklaşıklama algoritması geliştirilmiştir. Tek araçlı problem iki sıradüzenli amaç

fonksiyonu ile çalışılmıştır. Bu problemde, birincil amaç, verilen zaman sınırına kadar

işlenen miktarı enbüyüklemek iken; ikincil amaç, taşıma maliyetlerini enküçüklemektir.

Problemin çözümü için iki sezgisel yöntem geliştirilmiştir. İlk yöntem, bazı belirgin

özelliklere sahip uygun çözümleri aramaya yönelik bir KTP modelinin çözülmesine

dayanmaktadır. İkincisi ise, tabu arama yöntemi ile doğrusal programlamayı birleştiren

önceliklendirilmiş iki kriterli bir sezgi ötesi yöntemdir. Önerilen sezgisel yöntemlerin

performansını ölçmek amacıyla, zaman sınırına kadar işlenen miktar için bir üst sınır
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bulma yöntemi ve taşıma maliyetleri için alt sınır bulan iki gevşetilmiş KTP modeli

geliştirilmiştir. Aynı zamanda, önerilen sezgisel yöntemlerin etkinliği gerçekçi problem

örnekleri üzerinde gösterilmiştir. Ayrıca, sayısal deneyler ile kilit problem parame-

treleri üzerinde öngörüler ve bunların çözümler üzerindeki etkileri çıkartılmıştır.
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Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

1.1 Motivation

Clinical laboratory testing is an essential element in the delivery of healthcare ser-

vices. Physicians use laboratory tests to assist in the detection, diagnosis, evaluations,

monitoring and treatment of diseases and other medical conditions. Clinical testing

is performed on bodily fluids, such as blood and urine, and is usually outsourced to a

specialized clinical testing company by hospitals and healthcare professionals. These

companies analyze the specimens on special-purpose medical testing equipment, and

compile the results for each patient in a report, which is then sent back to the patient’s

healthcare provider.

It is estimated that lab testing has an impact on over 70 percent of medical de-

cisions [Knowledge Source Inc., 2008]. With the increasing awareness about early

detection and prevention of diseases and the aging of the world population, the in-

dustry is poised for rapid growth [Koncept Analytics, 2008]. In fact, it is essential

that clinical laboratories provide error-free processing, as well as reliable service with

short turn-around times of test results.

Clinical testing companies are faced with the following daily operations. Clinical

specimens are obtained from patients at various geographically dispersed locations

referred to as collection sites, such as physician offices, hospitals, and patient service



Chapter 1: Introduction 2

centers operated by the companies. The specimens are then transferred to a central-

ized processing facility to be analyzed. The collection of the specimens from the sites

is achieved by a fleet of vehicles (and drivers) that visit each site a number of times

every day. The collection sites are grouped into a number of geographical regions,

each of which is serviced by one of the vehicles. The drivers visit the sites accord-

ing to a predetermined sequence, except for situations when an urgent requisition

requires them to expedite pick up of specimens from a specific site. Once the speci-

mens get to the processing facility, the requisition orders are logged into a database

system for tracking and billing of the orders. The specimens are then processed on

a highly-automated testing equipment that runs at a predetermined rate of process-

ing. Finally, the analysis results are compiled in a report. Figure 1.1 illustrates the

specimen collection process.

Figure 1.1: Process diagram for specimen collection

Most clinical testing companies have strict agreements on turn-around time, which

is generally required to be less than one business day, and sometimes as short as a few

hours for urgent requisitions. Customer satisfaction drops dramatically when a delay

occurs in the delivery of the test results. Achieving a high level of customer service

can be possible only if the collection and delivery of specimens to the laboratory is
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planned and executed efficiently.

Clinical testing companies are under increasing pressure to provide service at lower

cost, and hence, they constantly seek ways to reduce their operational costs, even

though their first priority is still to provide reliable and accurate results with a fast

turn-around time. An important determinant of the operational costs is the utiliza-

tion of the processing equipment and various other resources, such as labor, at the

central laboratory. The processing equipment are generally complex, and have to be

operated by highly-skilled labor. Hence, processing capacity on the equipment and

labor resources have to be considered as bottleneck resources, and therefore, need to

be effectively utilized.

An important factor in the utilization of the processing resources at the centralized

laboratory is the way that the specimens are transported from the collection sites

to the laboratory. In particular, the arrival rate of specimens to the centralized

laboratory has to match (or exceed) the processing rate so that starvation of the

processing resources can be avoided.

In this thesis, we consider the problem of transporting specimens from a number

of geographically-dispersed collection sites to the centralized processing facility of a

clinical testing company, and aim to provide generalized formulations and solution ap-

proaches for problems with similar characteristics from other domains. In particular,

problems of concern have the characteristics of (i) collection of items from a number

of geographically-dispersed nodes, where items accumulate over time, and (ii) depen-

dency between the collection/transportation decisions and processing at centralized

facilities.

There are other service systems with such challenging characteristics. One example

is collection operations of small package pick-up/delivery companies. Similar to our

problem, such operations require the collection of accumulated items at different

locations and the subsequent processing of these items. Another example may arise
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in waste management operations, in the collection of hazardous materials and other

waste that need to be processed and stored in a timely manner. In all these operations,

the collection process is critical for the overall effectiveness of the system, since the

utilization of the processing unit is a function of when and in what amounts the

collected items arrive to the facility. In this thesis, the term collection for processing

problem (CfPP) is used to describe the broad class of problems that are concerned

with designing tours to match collected workload with the processing capacity at the

processing facility.

In the context of our healthcare logistics problem, CfPP, the fundamental decisions

to be optimized can be represented by the schedule (i.e., timing) of visits to each

collection site throughout the day. Typically, this involves designing tours (sequence

of sites to visit and their timing) to be conducted by a number of vehicles throughout

the day. We note that this problem is significantly different from a traditional routing

problem where the only decision of interest is the sequence in which the sites will be

visited by each vehicle. Furthermore, collection strategies that only minimize the

transportation cost may not match the processing rate, and cause excessive idle times

at the central facility. On the other hand, keeping the processing unit busy requires

more frequent, and possibly more costly tours. Hence, transportation decisions should

be made with the consideration of the input that they will provide to the processing

system. This requires significant extensions to the existing theory in this domain.

1.2 Solution methods

The optimization problem encountered in this thesis has the property that the

set of feasible solutions might be so large even if the number of available vehicles

and the number of collection sites are small. In such problems, simple exhaustive

search methods require several days of computation even if fast computers are used.
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Three types of solution methods are typically used to solve such problems (NP-hard

problems):

• Exact methods. Exact algorithms are those that provide optimal solutions to

the given problem, however, there is no guarantee on the running time of the

algorithm [Woeginger, 2003]. We can not expect to develop exact algorithms

that solve NP-hard problems in polynomial time, unless NP = P. As we prove

that the problems studied in this thesis are NP-hard, we do not propose an

exact method in this thesis.

• Heuristics. Heuristics are algorithms that find feasible solutions, obtained

typically in polynomial time but have no guarantee on the quality of the solution

[Lin and Kernighan, 1973]. The quality of the heuristics are typically tested

empirically. Heuristics are generally used to solve real life problems because of

their speed and their ability to handle large instances.

A special class of heuristics that attracted a considerable amount of research

attention in the last two decades is metaheuristics [Glover and Kochenberger,

2003]. Metaheuristics provide general frameworks for heuristics that can be ap-

plied to many problem classes. High solution quality is often obtained using

metaheuristics for many combinatorial optimization problems, especially rout-

ing problems.

In recent years, matheuristics that incorporate exact solvers in a heuristic con-

text, both as primary solvers or as subprocedures, are an emerging field to solve

complex real-world problems [Boschetti et al., 2009].

In this thesis, we propose two matheuristic approaches to address the single

vehicle CfPP. One of them is a heuristic approach that employs an exact solution

procedure to a subproblem in a reduced solution space. The other one is a
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matheuristic that combines a metaheuristic algorithm with an exact solver to

optimize the complementary decisions in a low-dimensional space in order to

obtain candidate feasible solutions.

• Approximation algorithms. Approximation algorithms have a polynomial

running time and return a feasible solution that is a certain factor away from

the optimal solution for any instance of the problem [Dumitrescu and Mitchell,

2003]. An algorithm A for a minimization (resp. maximization) problem is said

to be a δ-approximation algorithm if for every instance of the problem, A returns

a solution with objective value at most δ (resp. at least 1/δ) times the optimal

value. The parameter δ is called approximation guarantee or approximation

ratio. The approximation ratio is always at least 1.

In this thesis, we develop a constant factor approximation algorithm for the

multi-vehicle CfPP.

1.3 Thesis contribution

This thesis introduces a new routing and scheduling problem with accumulating

workload and processing capacity limitations. The problem has been inspired from

an original practical logistics problem with significant economic impact in healthcare

services provided by clinical laboratories. The problem is formalized as collection

for processing problem (CfPP). CfPP captures the most important features of the

real-world problem and defines a relevant modeling for the problem.

In the study of the multi-vehicle problem with makespan objective, we provide

the first approximation result and show that a constant-factor polynomial time ap-

proximation exists for this strongly NP-hard problem. The proposed approximation

algorithm is based on the idea of partitioning the sites into clusters, and assigning a



Chapter 1: Introduction 7

single vehicle and a portion of the total processing capacity that is proportional to

the aggregated accumulation rate of the cluster to each one. Hence, the algorithm

solves a single vehicle problem for each cluster. Since assigning a single vehicle to

a dedicated region of sites is a practically used solution approach in the real-world

problem and the worst-case bound of the proposed algorithm seems to be promising,

we study the single vehicle problem.

In the study of the single vehicle problem with two hierarchical objectives, a far-

from-trivial MIP formulation is derived with the help of some simple but important

properties and two heuristic approaches are proposed to address the problem. The

first heuristic handles two objectives in a lexicographic approach and solves an MIP

model with additional constraints that reduce the solution space. We demonstrate

the effectiveness of the proposed solution approach using realistic problem instances,

where the problem size (the number of nodes) varies between 10 and 18. Experiments

extensively evaluate the solution approach and the impact of different parameters,

both from a computational and a practical point of view. However, since this approach

is based on solving an MIP formulation, it is not suitable for larger problem instances.

In order to address larger instances, we propose a second heuristic for the problem.

The second approach is a novel prioritized bicriteria matheuristic (BM) that com-

bines tabu search with linear programming (LP). BM determines the node sequence

of tours through a tabu search algorithm and schedules the node visit times optimally

through a linear program. The major difference of our approach from a classical tabu

search algorithm lies in: (1) how it handles two prioritized objectives in guiding the

search, and (2) how it effectively combines two methods for optimizing the routing

and scheduling decisions consecutively. The computational experiments on realistic

test instances, with number of nodes varying between 10 and 51, show that BM finds

reasonably good solutions even for relatively large instances.

Another contribution of the thesis on the single vehicle problem is providing meth-
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ods to bound the two objectives. A simple polynomial-time algorithm that calculates

a strong upper bound on the processed amount by a deadline is proposed. For the

challenging task of generating strong lower bounds on the transportation cost for a

given processed amount, we derive valid inequalities and develop two relaxed MIP

models.

Finally, although the thesis problem is described in the context of a healthcare

logistics problem, the proposed approaches are expected to find application in other

industries involved in pick up, delivery, and subsequent processing of accumulating

items, such as package pick-up/delivery companies. Hence, the research represents a

broader agenda that is likely to impact several other industries and software companies

that provide decision support systems for routing and scheduling.

1.4 Thesis outline

This thesis contains seven chapters. Chapter 2 provides a general literature review

related to the collection for processing problem (CfPP). Since the problem has not

been studied before, to the best of our knowledge, in Chapter 2, we review the studies

on specimen collection and the relevant research that possess similar characteristics

with CfPP, as well as a brief explanation of how our problem is different from the

previously considered problems in the literature.

Chapter 3 studies the multi-vehicle problem, mCfPP. We show that this problem

with the makespan objective (mCfPP(Cmax)) is NP-hard and develop a polynomial-

time, constant-factor approximation algorithm for mCfPP(Cmax). The problem with

a single site is addressed as a special case to identify the minimum number of vehicles

to achieve the lower bound on the makespan and to analyze the optimal makespan

for a single.

Chapter 4 defines the single vehicle problem with two hierarchical objectives: (i)



Chapter 1: Introduction 9

maximizing the processed amount by a deadline, such as the next morning, and (ii)

minimizing the transportation cost. We formulate a linear mixed integer program-

ming (MIP) model to solve the bicriteria problem in two levels. We provide an upper

bounding scheme on the processed amount by a deadline, and develop two relaxed

MIP models to generate lower bounds on the transportation cost. We show that the

problem is NP-hard and provide two heuristic approaches in Chapters 5 and 6. Chap-

ter 5 proposes a heuristic approach based on solving the MIP model with additional

constraints that seeks feasible solutions with specific characteristics. The effective-

ness of the proposed solution approach is evaluated using realistic problem instances.

Chapter 6 describes a prioritized bicriteria matheuristic (BM) that combines an exact

linear programming method with a tabu search metaheuristic. Computational study

on realistic problem instances (with up to 51 nodes) shows that BM is superior to the

MIP based heuristic of Chapter 5 in terms of both solution quality and computation

time.

The thesis is concluded with short summary, conclusions, and future research

directions in Chapter 7.
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Chapter 2

LITERATURE REVIEW

The core problem studied in this thesis, collection for processing problem, is a

vehicle routing problem with multiple tours, accumulation over time, and a finite

processing capacity. To the best of our knowledge, this problem has not yet been

studied in the literature. In this chapter, we, first, provide the two studies on clini-

cal specimen collection and their differences from this research in Section 2.1. Next,

we review four classes of the well-known routing problems that possess similar char-

acteristics with the collection for processing problem. These problems are traveling

salesman problem and its related variants (Section 2.2), team orienteering problem

(Section 2.3), vehicle routing problem and its related variants (Section 2.4), and in-

ventory routing problem (Section 2.5). Finally, we provide the distinctive features of

the collection for processing problem from the current literature in Section 2.6.

2.1 Studies on clinical specimen collection

In the literature, to the best of our knowledge, there are only two studies that

address the specimen collection problem that arise in clinical laboratories. The first

one is the case study of McDonald [1972]. Considering a fixed number of vehicles,

the objective of this study is to minimize total traveling time to make all collections

subject to a constraint on traveling time. With this objective, the author aims to

solve a vehicle scheduling problem with an algorithm that uses the savings algorithm

in conjunction with a simultaneous route building algorithm. In McDonald [1972], the
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problem is formulated as a Vehicle Routing Problem (VRP), rather than a multi-tour

problem.

Revere [2004] also discusses a case study on a business process re-engineering

project for a laboratory courier service. The goal is to minimize both the laboratory

courier and staffing costs. The problem is divided into two sub-problems each dedi-

cated to one of the two objectives. For the problem with the objective of minimizing

laboratory courier cost, the set-partitioning traveling salesman model is used to de-

termine the courier routes that meet the customer service demands. However, since

in the case of Revere [2004] there exists a time limit of two hours for a tour, sub-tours,

which return to the processing facility without visiting all sites, should be allowed.

For this reason, the linear programming model for traveling salesman problem, with

manually created sub-tours is used as the solution approach. For the second problem

with the objective of minimizing the staffing cost, an integer programming formula-

tion is developed. The drawback of their approach is that the manual creation of

traveling salesman sub-tours can only be applied to problems where the number of

nodes are relatively few and the desired routes are constant. In addition, the integer

programming formulation for the staffing problem can be applicable for small size

problems with the assumption that employees should always be responsible for the

same route.

In contrast with our study, neither of these studies considers the accumulation of

specimens over time.

2.2 Traveling salesman problem and its related variants

One of the simplest, but still NP-hard, routing problems is the traveling salesman

problem (TSP). The aim of TSP is to determine a tour that starts from a base city,

visits all other given cities exactly once, and terminates at the base city with the
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objective of minimizing the total distance traveled. Let tij be the distance from city

i to city j. If tij = tji for all i and j, then the traveling salesman problem is referred

to as a symmetric traveling salesman problem (STSP); otherwise, it is called an

asymmetric traveling salesman problem (ATSP). The problem is said to be Euclidean

if the distance between two cities is the Euclidean distance. If the distances satisfy

the triangular inequality, i.e., if tij ≤ tik + tkj for all i, j and k, then the problem is

known as metric TSP.

The TSP is one of the most studied NP-hard problems in the literature and solu-

tion methods for this problem have reached a very high level. Very large Euclidean

instances of the TSP can be solved to optimality, the largest instance solved to opti-

mality so far contains 24,978 cities. It was solved by branch-and-cut by the research

team of Applegate, Bixby, Chvatal, Cook and Helsgaun1. Heuristic methods for the

TSP have been applied to an instance with 1,904,711 cities throughout the world and

the gap between the currently best know upper and lower bounds for this instance

has been shown to be 0.0477%2. More general routing problems like the problem

of this research turn out to be much harder to solve, both heuristically and exactly,

compared to the TSP.

Traveling salesman problem with profits and m-traveling salesman problem are two

variants of the TSP that are related with the collection for processing problem. In

the following subsections, a brief introduction of the problems with relevant literature

is provided.

1http://www.tsp.gatech.edu/sweden/index.html
2http://www.tsp.gatech.edu/world/index.html



Chapter 2: Literature review 13

2.2.1 Traveling salesman problem with profits

The traveling salesman problem with profits can be considered as a bicriteria

TSP with two different objectives, maximizing the collected profit and minimizing

the traveling cost. Solving TSPs with profits should result in finding a noninferior

solution set, i.e., a set of feasible solutions such that neither objective can be improved

without deteriorating the other [Feillet et al., 2005]. According to the way the two

objectives are addressed, the literature on the TSP with profits can be classified into

three categories: (i) Both objectives are combined in the objective function; the aim

is to find a circuit that minimizes travel costs minus collected profit. This type of

problem is defined as the profitable tour problem (PTP) by DellAmico et al. [1995]

and did not attract so much attention in the literature. (ii) The travel cost objective

is stated as a constraint, the aim is to find a circuit that maximizes collected profit

such that travel costs (time) do not exceed a preset value. This type of problem is

called the orienteering problem (OP) [Chao et al., 1996] and studied extensively in

the literature. (iii) The profit objective is stated as a constraint, the aim is to find

a circuit that minimizes travel costs and whose collected profit is not smaller than

a preset value. This type of problem is called the prize-collecting TSP (PCTSP) by

Balas [1989] and studied extensively in the literature. For an extensive survey on

TSPs with profits, the reader is referred to Feillet et al. [2005].

2.2.2 m-Traveling salesman problem

The m-traveling salesman problem (m-TSP) is a generalization of the TSP that

introduces more than one salesman. In the m-TSP, there are n cities, m salesmen and

one depot. All cities should be visited exactly once on one of m tours, starting and

ending at the depot. The tours should visit at least one city. If the distances satisfy

the triangle inequality, i.e., if tik ≤ tij + tjk for all i, j and k, then it is easy to see that
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the distance of the shortest TSP tour on the n cities plus the depot is always less than

or equal to the distance of the shortest m-TSP solution for any m. Any m-TSP with

n cities can be formulated as a TSP with m + n cities. One first creates m copies of

the depot node. The distances between depot nodes is then set to a sufficiently large

number while the distances between the depot nodes and ordinary nodes are copied

from the m-TSP. The large distance between depot nodes ensures that no salesmen

tours are empty. Notice that the resulting TSP does not obey the triangle inequality.

The m-TSP is not studied widely in the literature, probably because it is so closely

related to the TSP. The literature about heuristics and exact methods has recently

been surveyed by Bektas [2006].

An interesting variant of the problem is the MinMax m-TSP where the length of

the longest salesman tour has to be minimized. Frederickson et al. [1978] proves that

the problem is NP-complete for k ≥ 2 and provides two approximation algorithms

for metric MinMax m-TSP, i.e., MinMax m-TSP with cost matrix, C, satisfying the

triangle inequality. The first heuristic of Frederickson et al. [1978] constructs m tours

simultaneously by using a least cost insertion criterion or nearest neighbor criterion.

The authors show that the worst case performance ratio of this heuristic is equal to

two for the least cost insertion criterion, and m+(m/2) log n for the nearest neighbor

criterion. The second heuristic of Frederickson et al. [1978], first, obtains a good

TSP solution and then splits the TSP tour into m subtours of more or less equal

costs. The worst case performance ratio of this heuristic is equal to b + 1 − 1/m,

where b is a worst case bound for the single TSP algorithm. Thus, if Christofides’

algorithm [Christofides, 1976] is used to construct the TSP tour, b takes the value 3/2

and the worst case performance ratio of the second heuristic is equal to 5/2 − 1/m.

As the time complexity of Christofides’ algorithm is O(n3), this is a polynomial time

approximation algorithm. Franca et al. [1995] describes a tabu search heuristic and

two exact search schemes for MinMax m-TSP. The proposed algorithms can solve
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problems involving up to 50 nodes to optimality. Applegate et al. [2002] solved a

challenging MinMax m-TSP instance to optimality for the first time. The instance

originated from a competition from 1996 and had been unsolved since then. The

problem was solved on a network of 188 processors and required 10 days of computing,

which corresponds to roughly 79× 106 CPU seconds scaled to a 500 MHz Alpha EV6

processor.

2.3 Team orienteering problem

The team orienteering problem (TOP) aims to route a number of vehicles through

a set of nodes each of which contains a fixed reward (i.e., no accumulation by time),

in order to maximize the total collected reward while ensuring that all vehicles return

to the pre-determined nodes within a given time limit. Multiple Tour Maximum

Collection Problem (MTMCP) has the same objective but the tours are required to

start and end at same node.

Two exact algorithms have been proposed for the TOP; one that uses column

generation [Butt and Ryan, 1999] and another one that uses a branch-and-price algo-

rithm [Boussier et al., 2007], to solve small- to moderate-sized instances with up to

100 vertices, provided the number of vertices in each tour remains relatively small.

Brideau and Cavalier [1994] proposed a greedy construction procedure for the

MTMCP. Campbell et al. [1998] developed a 5-step metaheuristic to solve TOP,

whose structure was based on a deterministic variant of simulated annealing [pro-

posed in Dueck and Scheuer, 1990]. Tang and Miller-Hooks [2005] designed a tabu

search heuristic for TOP that outperformed other existing heuristic techniques based

on experiments conducted on a set of benchmark problems. A survey of heuristic

methods is provided in Vansteenwegen et al. [2009].

The first study in the field of TOP and MTMCP that considers time-dependent
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rewards is by Tang et al. [2007]. Tang et al. [2007] formulates a variant of TOP with

time-dependent rewards and proposes a tabu search heuristic to solve the problem.

2.4 Vehicle routing problem and its related variants

In the classical vehicle routing problem (VRP), a fleet of identical vehicles must

be routed to serve a known and finite set of customers with known demands and

return to a fixed depot at the end of each tour. The assumptions of the classical

VRP can be summarized as follows. In each tour at least one customer must be

visited and each customer must be served by exactly one vehicle. If the vehicle has

a capacity limit, then the total amount of demand of the customers on a tour can

not exceed the vehicle capacity, Q. If there exists a maximum tour time constraint,

then the duration of a tour should not exceed the time limit, L. Each vehicle can

be assigned at most one tour. Generally problems are defined with symmetric cost

matrix. Variants with asymmetric cost matrix are explicitly denoted (e.g., AVRP,

etc.). General objectives of extensively studied VRP are: (1) minimizing fixed costs

for used vehicles plus transportation costs (distance traveled) for a fixed fleet size, (2)

minimizing number of vehicles, (3) balancing of the tours, for travel time and vehicle

load, and (4) minimizing the penalties for partially served customers. A recent and

extensive survey on exact and heuristic methods to solve the VRP can be found in

Cordeau et al. [2007].

Many variations of VRP have been widely studied in the literature. Vehicle routing

problem with multiple tours and vehicle routing problem with time windows are two

variants of the VRP that are related with the collection for processing problem. In

the following subsections, a brief introduction of the problems with relevant literature

is provided.



Chapter 2: Literature review 17

2.4.1 Vehicle routing problem with multiple tours

In the classical VRP, each vehicle can be used at most once over the planning

period. However, the assumption that a single vehicle can perform only one tour in

VRP is very limiting, since multiple uses of a vehicle might result in significant cost

savings. In vehicle routing problem with multiple tours (VRPM), it is possible to

assign more than one tours to the same vehicle over the planning period. Specifically,

VRPM aims to determine a set of routes and an assignment of each route to one

vehicle, which minimizes the total routing costs and satisfies (i) each route starts and

ends at the depot, (ii) each customer is visited by exactly one route, (iii) the demand

of the customers in the same route does not exceed Q, and (iv) the duration of routes

assigned to the same vehicle does not exceed T .

Although in practice multiple tour assignment is common, VRPM is not studied

widely in the literature. Fleischmann [1990] is the first study that incorporates the

multi-tour idea into the VRP. Later, Taillard et al. [1996] proposes a population based

algorithm using tabu search and bin packing approaches. In this algorithm, first, a set

of VRP solutions is constructed from a population of routes generated using the tabu

search heuristic and then, bin-packing is used to allocate routes to vehicles. Golden

et al. [1996] adopts this approach to solve a similar VRPM using a minimax objective

(minimizing the length of the maximum distance covered by any vehicle at the end

of the day). Their approach is applicable to a wide range of VRP variants. Brandao

and Mercer [1997, 1998] study real life applications of VRPM, which require more

assumptions such as vehicles with heterogenous capacities, maximum legal driving

time per day for drivers, rules that restrict to access customers, and etc. They propose

a tabu search algorithm for a realistic case. Later, Petch and Salhi [2004] propose a

multi-phase construction heuristic for VRPM, and Salhi and Petch [2007] develop a

genetic algorithm for VRPM. Their objective is to minimize the maximum overtime
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restriction for a prescribed number of vehicles. Olivera and Viera [2007] develop an

adaptive memory procedure for VRPM, in which initial VRP solutions are constructed

by the sweep algorithm which are then enhanced by a tabu search. Alonso et al. [2008]

study the site-dependent multi-tour periodic vehicle routing problem and develop a

mathematical model and a tabu search procedure.

2.4.2 Vehicle routing problem with time windows

The vehicle routing problem with time windows (VRPTW) is a generalization of

the classical VRP where the service at each customer must start within an associated

time window and the vehicle must remain at the customer location during service.

The VRPTW arises in many real-world applications such as in bank deliveries, postal

deliveries, industrial refuse collection, national franchise restaurant services, school

bus routing, industrial gases delivery, furniture deliveries, and JIT (just in time)

manufacturing [Braysy and Gendreau, 2002]. According to hard time windows, the

vehicle cannot arrive at a node after the latest time to begin service and it must wait

if it arrives at customer i before time ai. However, soft time windows can be violated

at a cost. The research on VRPTW mainly focus on hard time windows. There

exists a vehicle capacity limit Q, which is the maximum amount of demand that can

be carried by a vehicle.

For recent surveys on the state of the art in VRPTW research the reader is referred

to Cordeau et al. [2002] that describes both exact and heuristic methods, the survey

of Braysy and Gendreau [2005a,b] that describes metaheuristics and the survey of

Kallehauge [2008] that provides formulations and exact algorithms.

Next, we review two real life applications of the VRPTW, which are closely related

with the collection for processing problem. The first one arises in the process of blood

collection and the second one occurs in a lean production system.
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Blood collection process

In the blood collection process, vehicles collect blood at prescheduled sites for

approximately six hours. Whole blood is picked up during the collection and brought

to the center for processing. According to the corresponding regulations, the blood

must be processed within eight hours after donation to extract platelets. Collection

for processing problem has three key common features with blood collection problems

studied before: (i) units to be collected accumulate over time, (ii) collected units

should be processed by a processing center, and (iii) there is a time concern on the

processing of collected units.

Operational efficiency in blood collection in supply centers without vehicle routing

has been studied since 70s [e.g., Dumas and Rabinowitz, 1977, Or, 1976]. Yi and

Scheller-Wolf [2003] is the first paper that incorporates the vehicle routing aspects

into this problem, through a real life application in American Red Cross (ARC).

Since a vehicle should visit a site during the collection hours according to the blood

collection time regulations, the problem is modeled in the class of VRP with time

windows (VRPTW). The difference of this problem from the VRPTW is threefold:

(i) not all sites are required to be visited, (ii) goods are continuously produced at each

site during a certain production time window, and (iii) the amount collected from a

site depends on the arrival/departure times of the vehicle. Yi and Scheller-Wolf [2003]

proposes a four-step solution procedure for the problem. In the first step, all of the

feasible routes are generated. In the second step, the arrival/departure times for each

route is optimized in order to maximize the amounts collected in each tour. In the

third step, a large proportion of inferior routes are removed from the feasible set.

Finally, an integer programming model is used to determine the best subset of routes.

Their algorithm is applied in ARC for one month and it is observed that their solution

resulted in nearly 60% (on average) reduction in the total traveling distance compared
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to the used policy in practice. In this study, only a single pickup per campaign event

is considered, therefore the interdependence between time windows is not considered.

Recently, Doerner et al. [2008] studied logistics of blood program in Austrian

Red Cross as a vehicle routing problem with multiple interdependent time windows

(VRPmiTW) for each customer. Similar to the case in Yi and Scheller-Wolf [2003],

according to the regulations of Eastern Austria, all blood needs to be processed in

one blood bank within about 5 hours after donation due to processing requirements.

The goal is to find minimum cost tours and to allocate the appropriate transport

devices to take back all the blood. The critical issue that defines the interdependency

in time windows in this problem is that the dispatching decisions made in the solution

procedure directly influence the time windows for visits at the campaign events. More

precisely, since the vehicle might not necessarily return to the blood bank after visiting

a site, the pickups at several sites should be combined on one tour in a way that each

pickup event should obey the time regulations. Since the interdependencies of the

multiple time windows at the customer locations had not been studied up to that

time, the modeling of this novel problem is stated as a contribution of the paper.

After providing a complete mixed-integer programming model formulation for the

problem, the authors proposed several variants of a constructive heuristic as well as

an exact branch-and-bound algorithm to solve the VRPmiTW. Both approaches are

based on the savings idea [Clarke and Wright, 1964]. The computational analysis

was performed on 22 realistic data sets. For each problem instance, the number

of sites varies between 6 and 15, and the number of required pickups at each site

ranges from 0 (short campaigns where the team takes all the donated blood to the

blood bank at the end of the campaign) to 4. The computational results showed that

the heuristic techniques produce solutions reasonably close to the optimal solutions in

negligible time for a basic case, where the number of pickups is fixed at the theoretical

minimum number of pickups for each site. If the number of pickups for selected sites
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is increased, high additional cost reductions are observed. In such cases, although

the computational times for the exact method are prohibitively large, the proposed

heuristics provide very good solutions within seconds.

Although the studies on blood collection consider accumulation over time in the

sites, none of them considers the impact of finite processing capacity.

Lean production systems

The inbound logistics problems arising in just-in-time or lean production systems

are concerned with coordinating the material in-flow with the production rate, similar

to the CfPP. Such studies concentrate on the coordination of routing with production.

In a recent study, Ohlmann et al. [2008] consider vehicle routing with time-windows

to collect components from suppliers in a lean production system. The objective is

to minimize the total traveling cost subject to inventory limitations. They consider

multiple vehicles and equally-spaced visits to suppliers by different vehicles. A vehicle

is allowed to perform only one tour. Because of the hardness of the problem, they

present a two-phase routing and scheduling approach based on a nested tabu search

heuristic. Our study differs from Ohlmann et al. [2008] in that CfPP allows multiple

uses of the same vehicle, which is also called route linking in the literature. As stated

in Ohlmann et al. [2008] incorporation of route linking significantly complicates the

overall problem. In addition, different from the problem of Ohlmann et al. [2008], our

problem does not require equally spaced and equal sized deliveries and does not have

capacity and volume restrictions and time-window constraints.

2.5 Inventory routing problem

A principal stream of literature that combines the considerations of inventory con-

trol and vehicle routing is the inventory routing problem (IRP). The IRP is concerned
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with the distribution of products from a single facility to a set of nodes to satisfy cus-

tomer demand over a given planning horizon. The objective of IRP is to minimize

the operating costs, which consists of transportation and inventory holding costs. An

overview of the problem and a survey of early research can be found in Moin and

Salhi [2007]. IRP constructs routes for the distribution vehicles in such a way that

shortages are avoided while unnecessary deliveries are not scheduled.

Both IRP and the collection for processing problem combine a temporal element

(the time at which deliveries are done) with a spatial element (the routing of vehicles),

but there is no consideration of processing in IRP. The IRP can be considered as a

dual counterpart of our problem: (1) the nodes of IRP consume the units brought to

them at a constant rate, as opposed to the sites of our problem which accumulate the

items at a constant rate, and (2) the shortage is defined at the nodes in IRP, whereas

in our problem a shortage may occur at the processing center. Different from the

IRP, in our problem, accumulated items do not incur holding costs. To summarize,

although these two problems share a number of key features, it is not possible to

formulate one in terms of the other.

2.6 Distinctive features of the collection for processing problem

While the problems described in the previous sections of this chapter have simi-

larities to the collection for processing problem, the basic differences of our problem

from these problems can be summarized as follows.

First, our problem has a scheduling aspect. Since the items accumulate at the

sites over time, the timing of the visits affects the collected amounts from the sites.

Therefore, different from the traditional routing problems such as VRP, TSP, and

their variants, not only the sequence of sites to be visited by each vehicle, but also

their timing should be determined in this problem.
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Second, the transferred items are input to the processor, so that the transportation

decisions also affect the idleness of the processor, which in turn affects the completion

time of the processing of all the accumulated amount. Therefore, collection strategies

that only minimize the transportation cost may result in starvation of the processing

resources and late delivery of test results. Hence, routing and scheduling decisions

should be made with the consideration of the processing capacity and the accumulated

amounts. This is significantly different from the existing literature in this domain.

Third, the vehicle tours have to be designed simultaneously due to the significant

dependency between them. In every tour, the return time of the tour to the processing

facility, as well as the collected amount affect the processed amount up to the return

time of the next tour. Furthermore, due to accumulation, the amount collected from

a node in a tour depends on the last visit time of that node.
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Chapter 3

A CONSTANT-FACTOR APPROXIMATION

ALGORITHM FOR MULTI-VEHICLE PROBLEM WITH

MAKESPAN OBJECTIVE

3.1 Introduction

This chapter studies the multi-vehicle collection for processing problem, mCfPP,

in which the items that accumulate at a number of sites during (0, τe] should be

transported by a number of uncapacitated vehicles to the processing facility with

a limited processing capacity. Multiple uses of the same vehicle is allowed. There

are three natural objectives in mCfPP: minimizing maximum completion time of

processing of all items (i.e. makespan), minimizing total idle time of the processor,

or maximizing the processed amount by a deadline. In this chapter, after proving

that minimizing makespan is equivalent to minimizing total idle time of the processor

and the solution that minimizes makespan also maximizes the processed amount by

any deadline, we focus on the problem with makespan objective. We prove that the

problem is NP-hard through an approximation preserving reduction from a two-stage,

hybrid flowshop scheduling problem. We analyze two special cases of the problem:

single site, multi-vehicle and single site, single vehicle. For the first one, we identify the

necessary number of vehicles to achieve a lower bound on the makespan, and for the

second one, we characterize the optimal makespan under different workload settings.

With insights obtained from these cases, we develop a constant-factor approximation

algorithm for the general multi-site, multi-vehicle case. The algorithm forms disjoint
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clusters of the sites and assigns a vehicle to each cluster. Each vehicle repeats the

same tour over time.

The remainder of this chapter is organized as follows. Section 3.2 describes the

problem. Section 3.3 analyzes the problem with a single site. Section 3.4 presents

the proposed approximation algorithm. Section 3.5 concludes with a summary and

contributions of this chapter.

3.2 Problem description

The problem is defined on a directed graph G = (N+, A) with node set N+ =

{0, 1, 2, . . . , n} and arc set A = {(i, j) | i, j ∈ N+}. Node 0 represents the processing

facility where m identical and uncapacitated vehicles are stationed. N = N+ \ {0}

represents the set of sites from which items should be collected for processing. Items

accumulate at each site i ∈ N at a constant and known rate of λi units per unit time

between time 0 and time τe. All the accumulated items should be processed at the

processing facility, which has a constant and known processing rate of µ items per unit

time. The items are assumed to be identical, requiring equal amount of processing

time, without loss of generality. The accumulated items should be collected and

transferred to a centralized processing facility via a set of tours performed by the m

vehicles. Each arc (i, j) ∈ A is associated with a non-negative travel time tij. The

traveling times are assumed to be metric. The collection and processing can start at

time 0, and a vehicle may perform more than one tour. Since accumulation of items

ends at time τe, a feasible solution should visit all sites at least once after time τe to

collect any accumulated items remaining. In the clinical testing context, the items

represent the specimens.

We define a measure of the total workload at the processing facility as α1 =∑
i∈N λi/µ. We let D =

∑
i∈N λiτe denote the total accumulated amount during
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(0, τe] and Q(t) the number of items at the processing facility (either waiting in the

queue or undergoing processing) at time t. We set Q(0) = q0.

We consider three different objectives for the problem:

• Minimizing the completion time of the processing of all the accumulated items

(i.e., makespan), which is denoted by Cmax.

• Minimizing the total idle time of the processor until all the accumulated items

are processed, i.e., until Cmax, which is denoted by I.

• Maximizing the processed amount by a due date τf (where τf is sufficiently large

to visit all sites after τe), which is denoted by Pτf
. (This objective is equivalent

to minimizing the total number of tardy items.)

As the items are identical, their processing order does not affect any of these

objectives. Therefore, for these objectives, the problem is to construct and schedule

a set of tours for each vehicle. Each tour starts and ends at node 0 and includes

visits to a subset of sites in N . We denote the problem with objective A, where

A ∈ {Cmax, I, Pτf
}, as mCfPP(A). Propositions 3.2.1 and 3.2.2 show that mCfPP(I)

and mCfPP(Cmax) are equivalent, and an optimal solution to mCfPP(Cmax) is also

optimal for mCfPP(Pτf
), respectively. Therefore, we focus on mCfPP(Cmax) in the

remainder of the paper.

Proposition 3.2.1. The problems mCfPP(I) and mCfPP(Cmax) are equivalent.

Proof. We first note that both problems have the same feasible set. Given a feasible

solution, we have:

Cmax = I + D/µ, (3.1)
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where D/µ is the total processing time. Since D and µ are constant parameters of

the problem, minimization of the total idle time is equivalent to minimization of the

makespan.

Proposition 3.2.2. Any optimal solution of mCfPP(Cmax) is also optimal for mCfPP(Pτf
)

but any optimal solution of mCfPP(Pτf
) is not necessarily optimal for mCfPP(Cmax).

Proof. Suppose that we have optimal solutions to mCfPP(Cmax) and mCfPP(Pτf
)

denoted by sC and sP , respectively. There are two possible cases based on whether

sC can process all the total accumulated amount within the given due date:

(i) Cmax(s
C) ≤ τf meaning that Pτf

(sC) = D, and

(ii) Cmax(s
C) > τf meaning that Pτf

(sC) < D.

In the case Cmax(s
C) ≤ τf , clearly, sC is optimal for mCfPP(Pτf

) as no items are tardy.

Let us consider the case Cmax(s
C) > τf . Assume sC is not optimal for mCfPP(Pτf

).

Then, Pτf
(sC) < Pτf

(sP ) and the amount of unprocessed items by time τf in solution

sC is strictly larger than that amount in sP . Therefore, at time τf , it requires more

time to process the remaining unprocessed items in solution sC , which contradicts

with the optimality of sC for mCfPP(Cmax).

To show that sP is not necessarily optimal for mCfPP(Cmax), let us consider the

case Cmax(s
C) ≤ τf . Then, Pτf

(sC) = Pτf
(sP ) = D. However, sP might process some

items in the time interval (Cmax(s
C), τf ] so that the makespan of sP is strictly larger

than that of sC .

3.2.1 NP-hardness of mCfPP(Cmax)

In order to prove that mCfPP(Cmax) is NP-hard, we use an approximation preserv-

ing reduction from an extended version of the two-stage, hybrid flowshop scheduling
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problem with m parallel machines (processors, the words are used interchangeably)

in the first stage and a single machine in the second stage. This scheduling problem

is referred to as FH2, (Pm(1), 1(2))||Cmax, according to the notation used by Ahmadi

et al. [1992]. In FH2, (Pm(1), 1(2))||Cmax, there are n jobs to be processed in two

stages, where each job i should be processed first in stage 1 with processing time

pi, and then in stage 2 with processing time qi. The objective is to minimize the

makespan.

We next define an extended version of FH2, (Pm(1), 1(2))||Cmax, denoted by

FH2, (Pm(1), 1(2)), (β → γ)||Cmax, where β denotes the stage with batch proces-

sors, γ denotes the stage with a single discrete processor, and → denotes the flow-

shop configuration. We will show that FH2, (Pm(1), 1(2)), (β → γ)||Cmax reduces

to mCfPP(Cmax). This problem extends FH2, (Pm(1), 1(2))||Cmax by allowing batch

availability and batch setup times in all processors of stage 1. A constant setup time,

s, is incurred whenever a batch is formed on any processor in stage 1. Transfer of

jobs to the second stage is possible only when processing of all jobs belonging to the

same batch is completed in the first stage. The problem is to determine the optimal

batch composition and to schedule the jobs in two stages so that the makespan is

minimized.

Lemma 3.2.1. FH2, (Pm(1), 1(2)), (β → γ)||Cmax is NP-hard.

Proof. Although the two machine flow shop problem with the objective of minimizing

makespan, (i.e., F2||Cmax) is polynomially solvable, its extended version with batch

availability and batch setup times in the first stage (i.e., F2(β → γ)||Cmax) was shown

to be strongly NP-hard [Cheng and Wang, 1998]. F2(β → γ)||Cmax is a special case

of FH2, (Pm(1), 1(2)), (β → γ)||Cmax since it has a single processor in the first stage.

Therefore, FH2, (Pm(1), 1(2)), (β → γ)||Cmax is strongly NP-hard.

The NP-hardness of mCfPP(Cmax) is implied by the following proposition.
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Lemma 3.2.2. There is an approximation preserving, polynomial-time reduction from

FH2, (Pm(1), 1(2)), (β → γ)||Cmax to mCfPP(Cmax).

Proof. First, note that m vehicles of an mCfPP(Cmax) instance correspond to m ma-

chines of the first stage and the processing facility of the mCfPP(Cmax) instance corre-

sponds to the single machine in the second stage in an instance of FH2, (Pm(1), 1(2)), (β →

γ)||Cmax, which we refer to as the scheduling problem, or SP, in short from here on.

Given an instance I1 of the SP with processing times pi and qi for all i ∈ {1, 2, . . . , n},

and s, we construct an instance I2 of the mCfPP(Cmax) consisting of n sites (where

N+ = {0, 1, . . . , n} and N = N+ \ {0}) as follows. For each site i ∈ N , we set

tij = pi, for all j ∈ N+, t0i = s, and λi = qi/τe. We also set µ = 1 and τe = s so that

the accumulation ends at the earliest possible visiting time of any site. Clearly, the

construction of mCfPP(Cmax) instance takes polynomial time.

Suppose that there exists a feasible SP solution to I1 with makespan C∗
max. We

construct an mCfPP(Cmax) solution to I2 as follows. As vehicles correspond to ma-

chines in the SP instance, the tours of a vehicle correspond to the batches scheduled

on the corresponding machine in the first stage. For each tour of a vehicle, the sites

are traveled in the order of jobs scheduled in the corresponding batch. Then, the

duration of a tour is equal to the processing time of the batch plus the setup time

by construction. Furthermore, the amount collected by a tour becomes available for

processing at the end of the tour. As each job is scheduled in the first stage in the

SP solution, all sites are visited by a vehicle. In addition, as τe = s and t0i = s, all

the accumulated amount at each site i, i.e., λiτe = qi, is collected by a visit. Then,

the processing time of the collected amount from a site is equal to the processing

time of the corresponding job in the second stage. Since all jobs must be processed

in the second stage, all the accumulated amount is processed. Therefore, we obtain a

feasible solution for instance I2 of the mCfPP(Cmax) with makespan C∗
max.
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Next, let us consider a feasible mCfPP(Cmax) solution to the constructed instance

I2 with makespan C∗
max. We obtain an SP solution to I1 as follows. For each vehicle,

we assign a distinct machine in stage 1. Then, we form a batch from each tour of the

vehicle. We schedule each batch in the order of the tours and schedule the jobs in

the batch according to the order of the sites visited in the tour. Processing time of

the batch will be equal to the duration of the tour. Also, note that each job must be

scheduled once since each site is visited once. As all items should be processed by the

processing facility, all jobs are processed in the second stage. Since there is no batch

processing in the second stage, the scheduling of the jobs in the second stage might

be done according to the FCFS (first-come, first-served) order. Therefore, we obtain

a feasible solution for instance I1 of the SP with makespan C∗
max.

As a result, an optimal solution to I2 with makespan C∗
max yields an optimal

solution to I1 with the same makespan value.

Lemmas 3.2.1 and 3.2.2 lead to Proposition 3.2.3.

Proposition 3.2.3. mCfPP(Cmax) (or mCfPP(I), equivalently) is strongly NP-hard.

3.2.2 Preliminaries

A simple lower bound on the optimal makespan, C∗
max, follows from Equation (3.1)

as C∗
max ≥ D/µ = α1τe. This bound shows how makespan increases with the work-

load parameter. When α1 < 1, we can tighten the bound as C∗
max ≥ τe since the

accumulation at sites ends at time τe. C∗
max ≥ τe can be further improved by using

the fact that in a feasible solution, the sites should be visited after τe to collect the re-

maining items. Then, the smallest time to transfer all items to the processing facility

is τe + maxi∈N ti0. Thus,

C∗
max ≥ max{α1τe, τe + maxi∈N ti0}. (3.2)
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The makespan may increase further by the idleness of the processor. Next, we

analyze the conditions under which the processing facility remains idle in [0, Cmax].

Suppose that we have a feasible solution with κ tours. We index the tours in the

order of their arrival time to the processing facility. Hence, tour k ∈ {1, 2, . . . , κs}

corresponds to the kth arriving tour. Rk is the return time of tour k to the processing

facility. Note that, by definition, Rk−1 ≤ Rk. Figure 3.1 illustrates the two possible

cases based on whether idleness occurs between two consecutive tour return times,

Rk and Rk+1.

Let us define R0 = 0 and Rκ+1 = Cmax for ease of notation, and Ik as the idle

time in the time interval (Rk, Rk+1] for k = 0, 1, . . . , κ. Then, Ik depends on (i) the

queue level at Rk, i.e., Q(Rk), and (ii) Rk+1 − Rk. If Q(Rk) ≥ µ(Rk+1 − Rk), then

the processor does not remain idle during (Rk, Rk+1] as in Figure 3.1a. Otherwise, as

in Figure 3.1b, the processor idles for Ik = (Rk+1 −Rk)−Q(Rk)/µ time units.

If Q(0) = 0, then the processor is idle during (0, R1]. That is, I0 = R1. Since all

items should be delivered by time Rκ, the processor does not idle in (Rκ, Cmax], i.e.,

Iκ = 0. Therefore, minimizing the idleness of the processor in (0, Rκ] is sufficient to

minimize the total idle time.

3.3 Special case: mCfPP with a single site

In this section, we analyze the simple case with a single collection site. In Sec-

tion 3.3.1, we determine the necessary and sufficient number of vehicles to achieve the

lower bound on C∗
max and in Section 3.3.2, allowing only a single vehicle, we character-

ize C∗
max. As Cmax = I + α1τe, we minimize either Cmax or I during the analysis. The

impact of using a single vehicle on the makespan in a single-site system is analyzed

in Section 3.3.3.

Let us consider the case where the set N consists of a single site with accumulation
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(a) Ik = 0 (b) Ik = (Rk+1 −Rk)−Q(Rk)/µ

Figure 3.1: Idle time between return times of two consecutive tours. The figures (a)

and (b) show cases without idleness and with idleness, respectively.

rate λ and traveling time t to and from the processing facility. We assume that

τe > 2t; that is, at least one tour can be completed by time τe, and the processor

queue is initially empty, i.e., Q(0) = 0. In addition, we assume that at least one item

accumulates and can be processed in t time units, i.e., λ ≥ 1/t and µ ≥ 1/t, where

t ≥ 1. In this setting, α1 = λ/µ.

For this setting, first, the bound of C∗
max ≥ α1τe can be improved based on the

assumption that the processor queue is initially empty. Since the processor is certainly

idle in the time interval (0, R1] and duration of a trip to the site is 2t, we can write

C∗
max ≥ 2t + α1τe. Second, the bound of C∗

max ≥ τe + t can be improved if we assume

that there is at least one time unit between consecutive visits to the site. Then, since

the processing of the items transferred the last requires at least λ/µ = α1 time units,

C∗
max ≥ τe + t + α1. As a result, we get

C∗
max ≥ max{2t + α1τe, τe + t + α1}. (3.3)
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3.3.1 Multiple vehicles

In this section, we determine the necessary and sufficient number of vehicles,

denoted by m∗, to achieve the lower bound on C∗
max given in Equation (3.3). For this

purpose, we differentiate between two cases depending on the workload parameter,

α1 < 1 and α1 ≥ 1. In each case, we will construct the tours consecutively, starting

from the first tour, and identify the required number of vehicles for each case.

Case 1 (α1 ≥ 1): When α1 ≥ 1, Equation (3.3) gives 2t + α1τe ≥ τe + t + α1,

so that C∗
max = 2t + α1τe. In a solution that achieves C∗

max = 2t + α1τe, the first

tour should be completed at time R1 = 2t and the processor should not idle after R1.

Now, setting R1 = 2t, let us construct the consecutive tours to avoid idleness. Then,

tour k = 2, . . . , κ is completed at time Rk = Rk−1 + αk−1
1 t. We set the number of

tours, i.e., κ, to the minimum integer that satisfies 2t +
∑κ

k=1 αk
1t ≥ τe + t in order

to guarantee that there are no unnecessary tours and tour κ visits the site after τe.

Let Ak be the collected amount in tour k. Since A1 = λt, and Ak = λ(Rk−Rk−1) for

k = 2, . . . , κ− 1, the processor never idles after R1, i.e., C∗
max = 2t + α1τe is achieved,

in this solution. Figure 3.2 shows the timeline representation of the constructed tours.

Note that, as α1 ≥ 1, Rk −Rk−1 gets larger with k.

Figure 3.2: Timeline representation of tours constructed for Case 1 (α1 ≥ 1)

Now let us determine the number of vehicles required in this solution. When α1 ≥

2, Rk−Rk−1 = αk−1
1 t is greater than or equal to a tour duration, i.e., Rk−Rk−1 ≥ 2t
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for all k so that a single vehicle is sufficient to perform all tours in order to achieve

C∗
max = 2t + α1τe, i.e., m∗ = 1. Note that the vehicle waits to match the required Rk

values.

When 1 ≤ α1 < 2, a single vehicle is not sufficient to prevent idleness after R1 = 2t

since the earliest return time of the second tour is R1 + 2t = 4t in any solution, and

the collected amount by the first tour, which is equal to λt, is completely depleted at

R1 + λt/µ = 2t + α1t, which is strictly smaller than 4t. We now demonstrate that

two vehicles are sufficient. As R3 −R1 = α1t + α2
1t ≥ 2t and Rk −Rk−1 gets larger as

k gets larger, the odd tours in Figure 3.2 can be performed by one vehicle and even

tours can be performed by another vehicle. Therefore, when 1 ≤ α1 < 2, two vehicles

are necessary and sufficient (that is, m∗ = 2) to achieve C∗
max = 2t + α1τe.

Case 2 (α1 < 1): When α1 < 1, we set C∗
max to the larger of 2t+α1τe and τe+t+α1

based on the values of α1, τe, and t. Then, I∗ = C∗
max − α1τe. Similar to Case 1, we

can construct a solution with R1 = I∗ and prevent idleness after R1. Now, contrary

to Case 1, as α1 < 1, Rk−Rk−1 gets smaller as k gets larger. Therefore, the required

number of vehicles, m, in this solution, is equal to the number of tours performed

during (Rκ − 2t, Rκ] as a vehicle tour requires 2t time units. Before analyzing the

value of m, we should note that m gives only an upper bound on m∗. (Note that in

Case 1 we calculate the exact value of m∗.) The reason is that there might be another

optimal solution with a smaller number of vehicles, which has R1 < I∗ and allows a

total idle time of I∗ −R1 after R1.

Let us find an upper bound on the number of tours performed in interval (Rκ −

2t, Rκ], denoted by m, which is also an upper bound on m∗. As we assume that

there is at least one time unit between consecutive visits of the site, the first tour

of (Rκ − 2t, Rκ], say tour k′, collects at least λ items. It requires λ/µ = α1 time

units to process this amount. Therefore, tour k′ + 1, must return before Rk′ + α1.

It collects at most α1λ items, which requires a processing time of α1λ/µ = α2
1 time
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units. Therefore, tour k′ + 2, must return before Rk′+1 + α2
1. In a similar fashion, we

find that m is the largest integer that satisfies
∑m

k=1 αk
1 ≤ 2t.

We summarize the results of this section in the next proposition.

Proposition 3.3.1. If m∗ is the number of vehicles necessary and sufficient to achieve

C∗
max = max{2t + α1τe, τe + t + α1}, then,

m∗ =



1, if α1 ≥ 2;

2, if 1 ≤ α1 < 2;

≤ m, where m is the largest

integer that satisfies
∑m

k=1 αk
1 < 2t, if 0 < α1 < 1.

3.3.2 Single vehicle

Now let us analyze C∗
max when there is only one vehicle.

Case 1 (α1 ≥ 2): According to Proposition 3.3.1, if α1 ≥ 2, a single vehicle is

sufficient to achieve the lower bound, i.e., C∗
max = 2t + α1τe.

Case 2 (1 ≤ α1 < 2): If 1 ≤ α1 < 2, we can construct a feasible solution in

which the vehicle performs κ tours where tour k = 1, . . . , κ is completed at time

Rk = 2tk+w, where w ≥ 0 is the waiting time of the vehicle at the processing facility

before starting the first tour. We will determine the optimal level of w in order to

minimize the idleness. In this solution, the first tour collects A1 = λ(t + w) items

and each tour k = 2, . . . , κ − 1 collects Ak = 2λt items, where Rk − Rk−1 = 2t, for

k = 1, . . . , κ. Since α1 ≥ 1 and Q(Rk) ≥ Ak = 2λt ≥ µ(Rk+1 − Rk) = 2µt, the

processor never stays idle after R2 as in the case of Figure 3.1a. Now let us analyze

the amount of idle time in (0, R2], which is equal to I1 + I2. Since I1 = R1 = 2t + w
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and

I2 = max{0, R2 −R1 − A1/µ}

= max{0, 2t− λ(t + w)/µ}

= max{0, 2t− α1(t + w)},

we have I1 + I2 = max{2t + w, t(4− α1) + w(1− α1)}.

I1 + I2 is minimized when w = t(2/α1 − 1). Setting w = t(2/α1 − 1) gives a

makespan of C∗
max = α1τe + (1 + 2/α1)t.

Case 3 (α1 < 1): When α1 < 1, let us construct a feasible CfPP solution, in which

the vehicle performs κ = b(τe + t)/(2t)c tours, where tour k = 1, . . . , κ is completed

at time 2tk + w and tour κ visits the site exactly at time τe. That is, Rκ = τe + t and

w = τe + t − 2tκ is the waiting time of the vehicle at the processing facility before

starting the first tour. Note that, w < 2t since κ = b(τe + t)/(2t)c. In this solution,

the first tour collects A1 = λ(t+w) items and each tour k = 2, . . . , κ collects Ak = 2λt

items and satisfies Rk+1 −Rk = 2t.

In order to calculate the makespan of this solution, let us analyze whether all

items collected by the first κ− 1 tours have been processed by the end of tour κ, i.e.,

Rκ = τe + t. Let us assume that in case of an arrival of new items, these items are

processed first, that is, newly arriving items have higher priority than the items in the

processor queue, if any. Note that this does not affect the makespan but simplifies

the following analysis. For the first tour, A1 = λ(t+w) = λ(τe +2t(1−κ)). Then, all

items collected in the first tour can be processed by the time R2, if A1 ≤ 2µt, which

requires α1 ≤ 1/(τe/2t + 1 − κ). Otherwise, we have A1 − 2µt items waiting in the

queue at R2. For tours k = 2, . . . , κ−1, as Ak/µ < Rk+1−Rk, all items collected in a

tour are processed by the end of the next tour by our assumption. In addition, there

is an excess processing capacity of µ(Rk+1−Rk)−Ak = 2t(µ−λ), which can be used

to process some of the items collected by the first tour. Therefore, the amount that
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is waiting in the queue at R2 can be processed by Rκ, if A1− 2µt ≤ 2t(κ− 2)(µ− λ),

which requires α1 ≤ (κ − 1)/(τe/2t − 1). Then, if α1 ≤ (κ − 1)/(τe/2t − 1), this

solution has a makespan of Cmax = Rκ + Aκ/µ = τe + (1 + 2α1)t. In order to see

the optimality of this solution, let us compare it with a solution that visits the site

at τe + x, where x > 0. In this solution, the last tour is completed at τe + x + t and

collects at least max{1, λ(2t−x)} items. It takes at least max{1/µ, α1(2t−x)} time

units to process that amount. Therefore, this solution has a makespan of τe + x + t +

max{1/µ, α1(2t− x)}, which is strictly larger. Therefore, the constructed solution is

optimal for the case α1 ≤ (κ− 1)/(τe/2t− 1) where α1 < 1.

For (κ − 1)/(τe/2t − 1) < α1 < 1, we provide an upper bound on C∗
max since

finding C∗
max is cumbersome. Let us analyze the solution constructed in the previous

paragraphs for this case. Note that, A1 < λ3t since w < 2t. As µ2t of A1 is processed

during (R1, R2] and some of the remaining unprocessed items collected in the first

tour can be processed up to Rκ, the amount waiting in the queue at Rκ is strictly less

than Aκ +(A1−µ2t) = 5λt−2µt. As Rκ = τe +t, we get C∗
max < Rκ +(5λt−2µt)/µ =

τe +(5α1−1)t. Same as the case with α1 ≤ (κ−1)/(τe/2t−1), a solution cannot have

a makespan smaller than Rκ +Aκ/µ, which is greater than or equal to τe +(1+2α1)t.

Thus, τe + (1 + 2α1)t ≤ C∗
max < τe + (5α1 − 1)t.

Proposition 3.3.2 summarizes the analysis.

Proposition 3.3.2. When there is a single vehicle, if

(i) α1 ≥ 2, then C∗
max = 2t + α1τe;

(ii) 1 ≤ α1 < 2, then C∗
max = α1τe + (1 + 2/α1)t;

(iii) α1 < 1 with α1 ≤ (κ− 1)/(τe/2t− 1), C∗
max = τe + (1 + 2α1)t;

(iv) α1 < 1 with α1 > (κ− 1)/(τe/2t− 1), τe + (1 + 2α1)t ≤ C∗
max < τe + (5α1 − 1)t.
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3.3.3 Analysis of the results

We now analyze the impact of using a single vehicle on the makespan in a single-

site system by comparing the results in Propositions 3.3.1 and 3.3.2.

According to Proposition 3.3.1, for α1 ≥ 2, a single vehicle is sufficient to obtain

the optimal makespan. For α1 < 2, let us compare the optimal makespans given

in Propositions 3.3.1 and 3.3.2. The difference between the optimal makespans of

single and multi-vehicle cases is at most t, when 1 ≤ α1 < 2, and at most 3t, when

α1 < 1. Therefore, using a single vehicle increases the optimal makespan by at most

3t time units. This shows the importance of the distance of the site to the processing

facility. When t is relatively small, utilizing a single vehicle does not worsen the

makespan significantly. Depending on the operating cost of the vehicle, this may

even be preferable to using more vehicles.

We can utilize the results of Propositions 3.3.1 and 3.3.2 in developing a heuristic

solution approach for the general case with multiple sites as follows. First, let us

consider the case with a single vehicle to serve multiple sites and obtain a solution

for this case by transforming the problem to a single site problem. Note that in the

corresponding single site problem, the collection rate of the site should be the sum

of the collection rates of all sites. Then, according to the workload of the problem,

we can construct a solution as in Section 3.3.2 for this single site problem. When we

implement this solution with multiple sites, we schedule the vehicle to make identical

tours that visit all sites in a short time, by solving a Traveling Salesman Problem

(TSP) to near-optimality. Next, let us consider the case with multiple vehicles. Now

we can partition the sites into clusters, and assign a single vehicle to each one. If

the clusters are formed such that the sites within a cluster can be toured in a short

time, then we expect the makespan to be reasonably low. This idea leads to the

approximation algorithm provided in Section 3.4.
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3.4 Solution approach

In this section, we develop a polynomial time algorithm for mCfPP(Cmax) that

produces provably good solutions for every instance. The algorithm is composed of

two phases. In the first phase, called Clustering, the set of sites is partitioned into

m disjoint subsets where m is the number of vehicles. In the second phase, called

Scheduling, the touring schedule of each vehicle is determined. Each vehicle is assigned

to exactly one subset, and performs tours to transfer the accumulated workload of the

sites in the subset to the processing facility. We benefit from the tour construction of

Section 3.3.2 in this phase. A description of each phase is provided in Sections 3.4.1

and 3.4.2, respectively.

An algorithm is said to be a δ−approximation algorithm (or have a δ approxima-

tion ratio) for a minimization problem P , if for any instance of P , it yields a feasible

solution whose objective function value is at most δ times the optimum value. For

NP-hard problems, developing polynomial time approximation algorithms is a widely

accepted approach to cope with computational difficulty while providing worst-case

performance guarantees [Williamson and Shmoys, 2010]. In Section 3.4.3, we prove

that our proposed algorithm has a constant approximation ratio.

3.4.1 Clustering

The aim of the clustering phase is to form m disjoint clusters of sites such that

the maximum traveling time within the clusters is minimized. We define the traveling

time of a cluster as the shortest traveling time of a tour that starts and ends at node

0 and visits each site in the cluster exactly once.

The clustering problem we want to solve is equivalent to the k-Traveling Salesman

Problem (k-TSP, k ≥ 2) defined by Frederickson et al. [1978], and also referred to as

Minmax m-TSP by Franca et al. [1995]. In Minmax m-TSP, an undirected complete
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graph G = (N, A) is given with a distinguished initial node 0 and a symmetric matrix

of nonnegative integer costs (distances or travel times) C = (cij) associated with A.

There are m identical vehicles based at node 0. A solution consists of m vehicle tours

starting and ending at node 0 such that every node N\{0} is visited by one vehicle.

The objective is to minimize the maximum cost of the m tours. Frederickson et al.

[1978] prove that the problem is NP-hard for k ≥ 2 and provide two approximation

algorithms for metric Minmax m-TSP (i.e., the cost matrix, C, satisfies the triangle

inequality). The first algorithm constructs m tours simultaneously. The authors

show that the worst-case performance ratio of this heuristic is δ = 2, if the least cost

insertion criterion is used for tour construction. The second algorithm of Frederickson

et al. [1978] first obtains a good TSP solution and then splits the TSP tour into m

subtours of more or less equal costs. The approximation ratio of this algorithm is

equal to δ = b + 1 − 1/m, where b is the worst-case ratio for the TSP algorithm.

Thus, if Christofides’ algorithm [Christofides, 1976] is used to construct the TSP

tour, b = 3/2 and δ = 5/2−1/m. Franca et al. [1995] describe a tabu search heuristic

and two exact search schemes for Minmax m-TSP that can solve problems involving

up to 50 nodes to optimality.

In the clustering phase, we use the first heuristic of Frederickson et al. [1978],

which runs in polynomial time and is the best approximation algorithm proposed

so far having an approximation ratio of two. In general, any other approximation

algorithm for Minmax m-TSP, with performance ratio δmTSP , can be utilized.

Given a solution by this algorithm, let N (v) ⊆ N represent the set of sites in

cluster v ∈ {1, . . . ,m}, and let A(v) ⊆ A represent the set of edges between the nodes

in N (v)∪{0}. For this approximate Minmax m-TSP solution, let D(v) represent the

traveling time of the tour that starts and ends at node 0, and visits each site in

N (v), and let Λ(v) represent the total accumulation rate of the sites in N (v), that

is, Λ(v) =
∑

j∈N (v) λj. Then, maxv=1,...,mD(v) ≤ δmTSP D∗
m, where D∗

m is the optimal
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value of the Minmax m-TSP problem.

3.4.2 Scheduling

In the scheduling phase, we assign a single vehicle to each cluster and then con-

struct and schedule the tours of each vehicle, independently of each other. Con-

struction of the tours of each vehicle is inspired by the single vehicle, single site case

provided in Section 3.3.2. In Section 3.3.2, we showed that a single vehicle perform-

ing subsequent tours without waiting in between them prevents the idleness of the

processor after the second tour when α1 ≥ 1, and minimizes the unprocessed amount

at time τe when α1 < 1. Based on this observation, the scheduling phase makes each

vehicle perform tours without waiting. Each tour of a vehicle is the same as the tour

of the corresponding vehicle in the Minmax m−TSP solution. Then, for each cluster

v ∈ {1, . . . ,m}, starting with time 0, the vehicle performs κ(v) identical tours, each

with traveling time D(v). Clearly, tour k = 1, . . . , κ(v) of cluster v is completed at

time Rk = D(v)k, that is, Rk+1−Rk = D(v). Note that the starting time of tour κ(v)

is Rκ(v)−1 = D(v)(κ(v) − 1). In order to prevent unnecessary tours, we set κ(v) to

be the minimum integer that satisfies D(v)(κ(v)− 1) ≥ τe so that all sites are visited

after τe. Then, for cluster v,

• the first tour collects less than Λ(v)D(v),

• each tour k = 2, . . . , κ(v)− 2 collects exactly Λ(v)D(v) items,

• tour κ(v)− 1 collects less than or equal to Λ(v)D(v) items as some of the sites

might be visited after time τe, and

• tour κ(v) collects an amount strictly less than Λ(v)D(v) as all sites are visited

after time τe.
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3.4.3 Performance analysis

We will derive an upper bound on the makespan of solutions generated by our

algorithm. In order to facilitate the analysis, let us assume that each cluster has a

dedicated processor with processing rate µ(v) = µΛ(v)/
∑

i∈N λi = Λ(v)/α1 so that∑
v=1,...,m µ(v) = µ. As Λ(v)/µ(v) = α1, the workload level of the whole system is

preserved in each one of the clusters.

Let us consider a solution output by the algorithm. For each cluster v, in order to

find the total idle time of its dedicated processor, I(v), and the makespan, Cmax(v),

we can perform an analysis based on the workload level, α1.

• Case 1 (α1 ≥ 1): The processor never stays idle in (R2, Rκ−1], since Q(Rk) ≥

Λ(v)D(v) ≥ µ(v)(Rk+1 −Rk) for k = 2, . . . , κ(v)− 2. However, the processor is

idle during the first tour and idleness might occur during tours two and κ(v).

As a result, the total idle time of this processor is at most three times the tour

length, that is, I(v) ≤ 3D(v). Therefore, Cmax(v) ≤ Λ(v)τe/µ(v) + 3D(v) =

α1τe + 3D(v).

• Case 2 (α1 < 1): Idleness occurs during every tour, since Q(Rk) = Λ(v)D(v) ≤

µ(v)(Rk+1 − Rk). This means that all the items delivered so far are processed

by the end of each tour. As the last tour collects an amount strictly less than

Λ(v)D(v), Cmax(v) < Rκ + Λ(v)D(v)/µ(v) = Rκ + α1D(v) < Rκ +D(v). Since

Rκ ≤ τe + 2D(v), Cmax(v) ≤ τe + 3D(v).

Let Cmax be the makespan of the solution found by the algorithm. If α1 ≥ 1,

then Cmax ≤ α1τe + 3 maxv=1,...,mD(v) = α1τe + 3δmTSP D∗
m. Otherwise, Cmax ≤

τe + 3 maxv=1,...,mD(v) = τe + 3δmTSP D∗
m. That is,

Cmax ≤ max{1, α1}τe + 3δmTSP D∗
m. (3.4)
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In order to find the approximation ratio of our algorithm, we may compare this up-

per bound with the lower bound of C∗
max ≥ max{α1τe, τe} provided in Equation (3.2).

However, when α1 < 1, C∗
max ≥ τe provides a loose bound since it does not consider

the necessity to visit all sites after τe. Therefore, we can improve this bound by adding

the minimum time to visit all sites using m vehicles to τe. If the problem of finding

this time is referred to as problem P , and T ∗ denotes the optimal objective value of

P , then C∗
max ≥ τe +T ∗. In problem P , a vehicle may not be at node 0 at time τe, that

is, it may be on a tour that started earlier. Therefore, problem P resembles Minmax

m-TSP, except that all vehicles are at node 0 at time 0 in Minmax m-TSP, whereas

vehicles are not required to be at node 0 at τe in P . Accordingly, the optimal value

of the Minmax m-TSP, D∗
m, can be used to find a lower bound for P .

Let us first obtain a Minmax m-TSP solution from a P solution with objective

value T . A P solution is composed of paths for m vehicles, where a path starts at a

node in N (v)∪ {0} or at a point on an edge in A(v), visits a subset of sites in N (v),

and returns to node 0. The paths that start at node 0 are, in fact, tours and we keep

them in the Minmax m-TSP solution. The remaining paths are converted to a tour

as follows. We delete the part of the path up to its first node (say, node i), if any, and

add edge (0, i) to this path. By this procedure we obtain a Minmax m-TSP solution

with objective value of at most T + maxi∈N t0i. Since D∗
m is the optimal value of the

Minmax m-TSP, T + maxi∈N t0i ≥ D∗
m. Then, T ≥ D∗

m −maxi∈N t0i.

Since we have metric tij, maxi∈N t0i ≤ D∗
m/2. Therefore, T ≥ D∗

m/2. Then,

C∗
max ≥ max{α1τe, τe + D∗

m/2}. (3.5)

Having this stronger bound, we can show that our algorithm has a constant ap-

proximation factor.

Theorem 3.4.1. Our clustering-based algorithm is a (6δmTSP + c)-approximation

algorithm for mCfPP(Cmax), where δmTSP is the approximation ratio for Minmax
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m-TSP and

c =

1, if α1 > 6δmTSP

0, otherwise.

Proof. Let us analyze the two cases of α1 < 1 and α1 ≥ 1. If α1 < 1, Equation (3.4)

gives Cmax ≤ τe + 3δmTSP D∗
m ≤ 6δmTSP (τe + D∗

m/2). Since D∗
m ≤ 2(C∗

max− τe) due to

Equation (3.5), Cmax ≤ 6δmTSP C∗
max− (6δmTSP −1)τe. As δmTSP ≥ 1, 6δmTSP −1 ≥ 1

giving that Cmax ≤ 6δmTSP C∗
max.

If 1 ≤ α1 ≤ 6δmTSP , Equation (3.4) gives Cmax ≤ α1τe + 3δmTSP D∗
m. Since

D∗
m ≤ 2(C∗

max − τe) due to Equation (3.5), Cmax ≤ 6δmTSP C∗
max − (6δmTSP − α1)τe.

As 6δmTSP − α1 ≥ 0, Cmax ≤ 6δmTSP C∗
max.

If α1 > 6δmTSP , Equation (3.4) gives Cmax ≤ α1τe + 3δmTSP D∗
m. Since α1τe ≤

C∗
max and 3δmTSP D∗

m ≤ 6δmTSP C∗
max due to Equation (3.5), we get Cmax ≤ (1 +

6δmTSP )C∗
max.

Note that in real life systems, it is unusual to have problems with α1 larger than

6δmTSP since such a system would be extremely overloaded. Note also that if we

use the 2-approximation algorithm of Frederickson et al. [1978] for Minmax m-TSP

and set δmTSP = 2, we obtain a 13-approximation algorithm. Hence, mCfPP(Cmax)

admits a constant-factor approximation algorithm.

Since we have an approximation preserving reduction in the proof of Lemma 3.2.2,

we also note that the approximation ratio in Theorem 3.4.1 is also valid for the

scheduling problem of Section 3.2.1. From Lemma 3.2.2 and Theorem 3.4.1, we deduce

the following corollary as a side result.

Corollary 3.4.1. The scheduling problem, FH2, (Pm(1), 1(2)), (β → γ)||Cmax, is

(6δmTSP + 1)-approximable, where δmTSP is the approximation ratio for Minmax m-

TSP.
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The approximation ratio of (6δmTSP + c) where c ∈ {0, 1} can be strengthened

through an assumption of τe ≥ D∗
m. Note that this assumption is realistic since it

requires that all sites can be visited at least once by m vehicles before τe. Then,

for α1 < 1, Cmax ≤ τe + 3δmTSP D∗
m ≤ τe(1 + 3δmTSP ). Since C∗

max ≥ τe due to

Equation(5), Cmax ≤ (1 + 3δmTSP )C∗
max .

For α1 ≥ 1, Cmax ≤ α1τe + 3δmTSP D∗
m ≤ τe(α1 + 3δmTSP ). Since C∗

max ≥ α1τe due

to Equation(5), Cmax ≤ (1 + 3δmTSP /α1)C
∗
max .

Therefore, Cmax ≤ C∗
max(1 + 3δmTSP )/ max{1, α1}.

Corollary 3.4.2. When τe ≥ D∗
m, our clustering-based algorithm is a (1+3δmTSP / max{1, α1})-

approximation algorithm for mCfPP(Cmax), where δmTSP is the approximation ratio

for Minmax m-TSP.

If the 2-approximation algorithm of Frederickson et al. [1978] is used for Minmax

m-TSP, then, in case of τe ≥ D∗
m, the approximation ratio of our algorithm reduces

to 7 when α1 ≤ 1, and gets even smaller when α1 > 1.

3.5 Conclusions and summary of contributions

In this chapter, we define the collection for processing problem with multiple

vehicles and the makespan objective (mCfPP(Cmax)). We prove that the problem is

NP-hard by a reduction from a two-stage, hybrid flowshop scheduling problem. We

analyze the special case with a single site to find the number of vehicles necessary to

achieve the minimum makespan and identify the minimum makespan with a single

vehicle. Using the insights obtained from these results, we develop a clustering-based

heuristic. We provide the first approximation result for mCfPP(Cmax) and show that

a constant-factor approximation exists for this strongly NP-hard problem.
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Chapter 4

SINGLE VEHICLE PROBLEM WITH TWO

PRIORITIZED OBJECTIVES (CFPP)

4.1 Introduction

This chapter studies the single vehicle collection for processing problem, in which

the items that accumulate at a number of sites during (0, τe] should be transported by

a single uncapacitated vehicle to the processing facility, which has a limited processing

capacity. As in the multiple vehicles case, there are a number of alternative objectives

in the single vehicle CfPP such as minimizing maximum completion time of processing

of all items (i.e. makespan), minimizing total idle time of the processor, or maximizing

the processed amount by a deadline. In this chapter, we study the CfPP with two

hierarchical objectives. The first level objective is to maximize the processed amount

by a deadline, such as the end time of processing at the processing facility, whereas the

second level objective is the minimization of transportation costs, which are assumed

to be directly proportional to the distance traveled by the vehicle. In particular, in this

chapter, we seek a solution that minimizes the transportation costs while maintaining

the maximized total processed amount obtained by optimizing only with respect to

the first level objective.

The major difference of this problem from the vehicle routing problems with cost

objectives is that the processed amount by a deadline is considered as a prioritized

objective, in addition to the transportation cost, since collection strategies that only

minimize transportation cost may result in excessive idle times at the processing
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facility. On the other hand, keeping the processing unit busy requires more frequent,

and possibly more costly trips. Furthermore, some distant customers may accumulate

specimens at a higher rate, while some close ones may have light patient traffic. The

choice of which customer to collect from at what time further complicates the problem.

In this chapter, we prove that the CfPP with two hierarchical objectives is NP-

hard, and introduce a Mixed Integer Programming (MIP) formulation for the problem.

We characterize properties of optimal solutions and provide methods to bound the

two objectives. For the challenging task of generating strong lower bounds on the

transportation cost for a given processed amount, we derive valid inequalities and

develop two relaxed MIP models that rely on these inequalities and an alternative

flow formulation.

The remainder of this chapter is organized as follows. Section 4.2 overviews the

previous work on multi-objective optimization and relevant heuristic approaches. In

Section 4.3, we provide the problem definition and some propositions. Section 4.4

derives an upper bound on the processed amount by a deadline. In Section 4.5, we

provide an MIP formulation and describe two relaxations of the MIP to generate

lower bounds on the transportation cost for a given processed amount. Section 4.6

concludes with a summary and contributions of this chapter.

4.2 Previous work on multi-objective optimization and relevant heuris-

tic approaches

In Chapter 2, we provide the previous work on the routing problems that possess

similar characteristics with the collection for processing problem. In this section, we

focus on the related literature on the single vehicle collection for processing problem

with two hierarchical objectives. Since the problem falls into the more general field

of multi-objective optimization, also known as multi-criteria decision making, we first
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provide the previous work on multi-criteria decision making in Section 4.2.1. Next,

Section 4.2.2 overviews the possible heuristic approaches to solve the CfPP.

4.2.1 Studies on multi-objective combinatorial optimization problems

In recent years, there has been growing interest in multi-objective optimization

due to their potential application to real world problems. In multi-objective optimiza-

tion problems (MOOPs), a solution is said to dominate another only if it has superior

performance in all criteria. Thus, MOOP, first, aims to identify non-dominated solu-

tions by means of optimization algorithms, then, selects the final solution alternative

from a set of non-dominated solutions depending on the information coming from

the so-called decision maker. Depending on the timing of this information, three ap-

proaches to multi-criteria decision making can be classified: a priori, interactive, and

a posteriori decision making.

In CfPP, the objectives have a priori priorities. For the corresponding class of

MOOPs, there are a number of alternative approaches in the literature. One com-

monly used approach [e.g. Kim and de Weck, 2005] is generating a composite single

objective function from the multiple objectives, generally, by taking a weighted sum of

the objectives. The main drawback of this approach is that a search algorithm based

on this approach might not identify a non-dominated solution as its composite single

objective value might be worse than that of another solution. Another approach is

the ε-constraint method [e.g. Haimes et al., 1971], where the decision maker gives

constraints for all objectives except the one that remains to be optimized. However,

in this approach the solution to the problem largely depends on the selection of the

ε vector. Goal programming, where the decision maker gives a goal vector of desired

objective values and the distance to this vector is to be minimized, is another ap-

proach for the MOOPs. However, without a priori knowledge, the goal vector may
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be unattainable or trivial [Streichert and Tanaka-Yamawaki, 2006]. An emerging ap-

proach in multi-objective optimization with a priori priorities is the lexicographic ap-

proach. In this approach, the objective with the first priority is optimized first, then,

among all alternative optimal solutions the objective with the second priority is opti-

mized next, and so on, until the final objective is optimized [e.g. Weber et al., 2002].

In this thesis, we provide both a lexicographic approach (in Chapter 5) and a novel

approach (in Chapter 6) to address our problem that have hierarchical objectives.

The novel approach provided in Chapter 6 embeds bicriteria decision making inside

a single step tabu search framework by means of classification of the neighborhood

solutions according to a dominance relation at each iteration. We note that the adap-

tation of metaheuristic techniques for the solution of the general field of MOOPs has

increased over the last years, giving birth to multi-objective metaheuristics [Ehrgott

and Gandibleux, 2004]. For example, there are successful applications of tabu search

and hybrid tabu search-based methods on MOOPs, in the literature. As examples,

Ben Abdelaziz et al. [1999] presents a multi-objective hybrid heuristic, which is a mix

of a tabu search and a genetic algorithm, for the knapsack problem, Gandibleux and

Freville [2000] solves 0-1 knapsack problems with multiple linear objectives by a tabu

search approach, and Caballero et al. [2007] presents a multi-objective location rout-

ing problem and solves it by a multi-objective tabu search procedure. For extensive

review of metaheuristics designed for MOOPs, see Ehrgott and Gandibleux [2004].

4.2.2 Possible heuristic approaches for CfPP

The CfPP can be considered as a variant of vehicle routing problem (VRP) with

additional features. A general solution approach used in many VRP variants with time

considerations is performing routing first and then scheduling the resulting routes, see

e.g., Taillard et al. [1996] for VRP with multiple tours, Russell and Gribbin [1991] for
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periodic VRP, and Koskosidis et al. [1992], Ibaraki et al. [2005] for VRP with time

windows. This general framework cannot be used in the case of CfPP since routes

should be determined according to the time-varying queue sizes at the processing

facility as well as at sites. Routing and scheduling without considering the processing

rate and the accumulated amounts might lead to idle times in the processing unit,

which may result in unprocessed items by given deadline.

In the literature, tabu search algorithms has been used effectively to solve vari-

ants of VRP with single objective, e.g., VRP with time windows [Taillard et al., 1997,

Chiang and Russell, 1997, Cordeau et al., 2001], VRP with split delivery [Archetti

et al., 2006], the pick up and delivery problem [Bianchessi and Righini, 2006], and the

stochastic VRP [Gendreau et al., 1996]. It has been shown that tabu search generally

yields very good results on a set of benchmark problems and some larger instances

[Gendreau et al., 2002]. Tang and Miller-Hooks [2005] applied tabu search to the

team orienteering problem (TOP) and Tang et al. [2007] utilized a tabu search-based

approach to solve a variant of TOP with time-dependent rewards. Both of these

tabu search applications provide near optimal solutions for actual large-size prob-

lems within reasonable computation time. However, the complexity of the problem

we studied, which has both routing and scheduling aspects and multiple prioritized

objectives, requires a more sophisticated heuristic search of the solution space to get

high quality solutions.

For solving complex real world problems, using matheuristics that incorporate

MIP solvers or customized MIP codes in a heuristic context, both as primary solvers

or as subprocedures, is an emerging field. In this thesis, in Chapter 6 we propose

a bicriteria matheuristic that combines a tabu search scheme with an exact linear

programming (LP) method to solve the CfPP. The effectiveness of the heuristic is

proved over a set of benchmark instances. The major difference of the proposed

matheuristic from a classical tabu search application is due to the multiple hierarchical
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objectives and the hybridization method.

4.3 Problem description

The CfPP is formally defined as follows. We assume that items accumulate be-

tween time 0 and time τe, and processing can be performed at the processing facility

between time 0 and time τf . The problem is defined on a directed graph G = (N+, A),

where N+ = {0, 1, 2, . . . , n} is the node set and A = {(i, j) | i, j ∈ N+} is the arc set.

Each arc (i, j) is associated with non-negative travel time tij and distance dij. We

assume that both the distances and the travel times are metric. Node 0 represents

the processing facility, and N = N+ \ {0} is the set of sites. Items accumulate at

each site i ∈ N at a constant and known rate of λi units per unit time. Without loss

of generality, we label the sites so that λ1 ≤ λ2 ≤ · · · ≤ λn. Items are processed at

the processing facility at a constant and known rate of µ units per unit time. Q(t)

represents the amount of items waiting in the queue or undergoing processing at the

processing facility at time t. We assume Q(0) = 0. Note that, in the clinical testing

context, the items represent the specimens, τe stands for the end of working day at

sites, and τf corresponds to the time of day that the processing ends at the processing

facility.

The CfPP considers the decisions regarding a single vehicle dedicated to serve the

node set, N+. The vehicle is assumed to have sufficiently large capacity to transfer the

total accumulation of all sites, which is a realistic assumption for clinical laboratory

logistics. We assume that the vehicle is positioned at the processing facility at time

0.

The set of feasible scheduled giant-tours for a CfPP instance is denoted by G.

For a solution g ∈ G, P g(τf ) represents the processed amount by time τf and Cg(τf )

represents the transportation cost, which is directly proportional with the distance
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traveled. The objective is to maximize the processed amount by time τf , first, over

the set G, and then to select a feasible solution with minimum transportation cost

among the ones with maximum processed amount. Such solutions are called optimal.

For a CfPP instance, the total processing capacity of the processing unit, i.e., the

maximum amount of items that can be processed between times 0 and τf , is equal to

τfµ. The total accumulated amount, i.e., the amount of items accumulated at all sites

between time 0 and time τe, is equal to τe

∑
i∈N λi, all of which must be transported

to the processing facility.

Definition 4.3.1. The workload level, α2, for a CfPP instance is defined as the ratio

of the total accumulated amount to the processing capacity. That is,

α2 =

τe

∑
i∈N

λi

τfµ
. (4.1)

Note that, α2 = α1τe/τf .

In systems with heavy workload (i.e., large α2), it may not be possible to process

all of the accumulated amount by τf . On the other hand, when the workload is

relatively low (i.e., small α2), there may be many solutions that can process all of the

accumulated amount on time, in which case minimization of the transportation cost

gains importance.

Let us consider a small illustrative example provided in Figure 4.1. Suppose that

τe = 540 and τf = 1200 minutes, the processing rate is µ = 100 items per hour and

there are four sites with accumulation rates of λ1 = 50, λ2 = 106, λ3 = 30, and λ4 = 7

items per hour. Symmetric distances are given as d01 = 15, d02 = 25, d03 = 24, d04 =

36, d12 = 11, d13 = 18, d14 = 22, d23 = 10, d24 = 15, and d34 = 15 kilometers. For

simplicity, we take tij = dij assuming that the speed of the vehicle is one kilometer

per minute.
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Figure 4.1: A CfPP instance

In this CfPP instance, the total accumulated amount is τe

∑
i∈N λi = 1737, whereas

the processing capacity is τfµ = 2000. Therefore, α2 = 1737/2000 = 0.869. This

workload level indicates that it may be possible to process all items depending on the

transportation decisions.

A solution for a CfPP instance has two components. The first component is the

sequence of nodes to be visited between 0 and τf . This component is also referred to

as a giant-tour, where a giant-tour is a series of tours, each of which starts and ends

at the processing facility, and visits a subset of sites in N . Since the vehicle can wait

at a node, the second component of a CfPP solution provides the waiting times at

the visited nodes. Hence, the travel times between nodes and waiting times at the

nodes determine the node visit times. Accordingly, a CfPP solution is referred to as a

scheduled giant-tour. The number of tours that the vehicle can perform between times

0 and τf is, naturally, bounded. Accordingly, we assume that the vehicle performs at

most κ1 tours during [0, τe) and at most κ2 tours during [τe, τf ]. The former ones are

referred to as D-tours since they start during the day time and the latter ones are

referred to as A-tours to indicate that they start after the day time office hours. In

order for a solution to be feasible, it should visit all sites after time τe to collect all

the remaining accumulated items, and should be completed by time τf . Note that

it is sufficient to visit a site just once after τe, since accumulation at the sites stop



Chapter 4: Single vehicle problem with two prioritized objectives (CfPP) 54

at this time. Since there are a total of n sites, the vehicle performs at most n tours

after time τe, i.e., 1 ≤ κ2 ≤ n. We note that the vehicle is allowed to be touring at

time τe. Therefore, the last D-tour of a scheduled giant-tour might visit a number of

sites after τe. Figure 4.2 illustrates a general time line representation of a scheduled

giant-tour as well as the queue size at the processing facility in the time line.

Figure 4.2: Graphical time representation for a CfPP solution

For our previous example, if the tours performed by the vehicle throughout the

day are 0-1-2-4-0, 0-2-3-0, 0-1-0, and 0-2-4-3-0, then the corresponding giant-tour

is 0-1-2-4-0-2-3-0-1-0-2-4-3-0. There might be more than one feasible solution, i.e.,

scheduled giant-tour, for this sequence of nodes. One such solution is 0-1-2-4-0(153)-

2-3-0(251)-1-0-2-4-3-0, where the numbers in parentheses denote the waiting times in
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minutes at the corresponding nodes. The vehicle waits only at the processing facility

in this solution.

An optimal solution for our example is 0(74.7)-2-1-0(142.1)-2-1-0(221.2)-1-2-4-3-0,

with P (τf ) = 1737 and C(τf ) = 182. In this solution, all the accumulated amount

is processed. The graphical time representation of the solution and the amount of

unprocessed items at the processing facility (i.e., Q(t)) in time interval [0, τf ] are

illustrated in Figure 4.3. We see that the processor remains idle during the first tour

and for a short interval during the second tour.

Figure 4.3: The graphical time representation of an optimal solution for the example

Keeping the processing unit utilized by replenishing its queue of units to be

processed serves to maximize the processed amount by time τf . Frequent deliver-

ies as well as deliveries with large specimen amounts increase the utilization of the

processing unit. However, visiting an additional site increases both the collected spec-

imen amount and the tour duration. Hence, having tours with long durations, which

might cause idle time at the processing unit, becomes critical when the work load is

heavy, although it can be tolerated in lightly loaded systems.

We next investigate the problem difficulty and certain properties of optimal solu-

tions.
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4.3.1 NP-hardness of CfPP

Proposition 4.3.1. CfPP is NP-hard.

Proof. The proof is by reduction from TSP, which is shown to be NP-hard [Golden

et al., 1987]. In TSP, a graph G = (N+, E), where N+ = {0, 1, . . . , n} denotes the

set of cities and E denotes the set of edges, (i, j), with associated travel times, dij, is

given. The problem is to find the cheapest path visiting all of the cities and returning

to the starting point. Let the traveling time of the optimal TSP solution be L.

Given an instance of TSP, we define an instance of CfPP on the same graph

G = (N+, E), where N = N+ \ {0} denotes the set of n sites and node 0 denotes

the processing facility with processing rate µ and E denotes the set of edges, (i, j),

with associated travel times and distances equal to dij. Set τe = mini∈N t0i so that

the accumulation will have ended at the earliest visiting time of any site. Set total

accumulation to µL. Assign each site i ∈ N an accumulation rate of (µL)/(nτe)). Set

τf = 2L. Clearly, the construction of CfPP instance takes polynomial time.

Suppose that there exists an optimal TSP solution with traveling time L. We

construct a CfPP solution with a single tour that starts at time 0, follows the optimal

TSP tour, and ends at time L. At the end of the tour, µL units will be available at

the processing facility. The processing ends at time 2L. Note that this is an optimal

solution for the corresponding CfPP instance, because all of the accumulated items

are processed and, furthermore, this can be achieved at minimum transportation cost

since the TSP tour provides the minimum travel cost visiting every site.

Now let us consider an optimal CfPP solution, g∗, with a total processed amount

of P ∗(τf ). If the solution performs more than one tour, then its transportation cost

is strictly greater than L. Now let us consider another CfPP solution, g, with a

single tour that starts at time 0, follows the optimal TSP tour, and ends at time L.

Clearly, the processed amount for this solution is P ∗(τf ) since it can process all the
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accumulated amount. However, g has a smaller transportation cost than that of g∗,

which leads to contradiction. Hence, the optimal CfPP solution is optimal for the

given TSP instance.

4.3.2 Properties of some optimal solutions of a CfPP instance

The set of feasible solutions, G, may be extremely large even for problems with

limited number of nodes (e.g., n ≥ 10). In order to simplify the search for optimal

solutions in a large feasible solution space, we investigate the structure of optimal

solutions. The following two propositions allow us to concentrate on certain types of

solutions.

Proposition 4.3.2. There exists an optimal solution in which the vehicle does not

wait at any site.

Proof. Assume for contradiction that in all optimal solutions the vehicle waits at some

site in some tour. Consider an optimal solution, g∗, which dictates a vehicle to start

a tour k specified by the sequence of nodes 0 i1 i2 · · · ip 0 at time tk0 . In this tour, the

vehicle waits for w > 0 time units at the site ij for some j ∈ {1, 2, . . . , p}. Now, let

solution g perform the same giant tour as g∗, but it starts tour k at time tk0 + w and

does not let the vehicle wait at site ij.

Case 1: k = 1, 2, . . . , κ1

The vehicle will arrive at the sites ij, ij+1, · · · , ip at the same time under both so-

lutions, so the amount collected from these sites in tour k are equal for both solu-

tions. However, solution g collects an extra amount of w
∑j−1

l=1 λil items from the sites

i1, i2, . . . , ij−1 in tour k, since a vehicle following solution g arrives to each of these

sites w time units later than a vehicle following g∗. As all the accumulation rates λi

and w are strictly positive, solution g collects more than solution g∗ in tour k. In
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the tours before tour k, both solutions collect the same amount of items, since the

node visit times are the same. In the tours after tour k, which visits any site il where

l ∈ {1, 2, · · · , j−1} at the first time after tour k, solution g collects less than solution

g∗ from site il, where the difference is wλil . Since the return time to the processing

facility for each tour is the same for both solutions, in solution g, w
∑j−1

l=1 λil items

arrive to the processing facility earlier. Therefore, solution g is at least as good as

solution g∗, which is a contradiction.

Case 2: k = κ1 + 1, . . . , κ1 + κ2

As tour k starts when there is no accumulation, the collected amounts in tour k and in

the tours after tour k are equal in solutions g and g∗. In the tours before tour k, both

solutions collect the same amount, since the node visit times are the same. There-

fore, similar to Case 1, in solution g, δ
∑m−1

l=1 λil items arrive to the processing facility

earlier.Thus, solution g is at least as good as solution g∗, which is a contradiction.

Proposition 4.3.3. There exists an optimal solution in which sites are not visited

more than once in any tour.

Proof. Assume for contradiction that in all optimal solutions there exits some site

that is visited more than once in some tour. Consider an optimal solution, g∗, in

which tour k starts at time tk0 and follows the sequence 0 i1 · · · im · · · im′ · · · ip 0,

where im = im′ = j. Now let solution g start tour k at time tk0 + δ, where δ =

dim−1im +dimim+1−dim−1im+1 to follow the route 0 i1 · · · im−1 im+1 · · · (im′ = j) · · · ip 0.

Note that, δ > 0 due to the assumed triangle inequality for time and distance.

Case 1: k = 1, 2, . . . , κ1

The vehicle will arrive at the nodes im+1, im+2, . . . , ip at the same time under both

solutions, so the total amount collected from these nodes in tour k are equal for both

solutions. Note that, the total amount collected from site j in tour k under solution

g∗ and solution g are also the same, since the last time that the vehicle visits site
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j is the same under both solutions. However, solution g collects an extra amount

of δ
∑m−1

l=1 λil items from the nodes i1, i2 · · · im−1 in tour k, since a vehicle following

solution g arrives to each of these nodes δ time units later than a vehicle following g∗.

As all the accumulation rates λi and δ are strictly positive, solution g collects more

than solution g∗ in tour k. In the tours after tour k, which visits any site il where

l ∈ {1, 2, · · · , m−1} at the first time after tour k, solution g collects less than solution

g∗ from site il, where the difference is δλil . Since the return time to the processing

facility for each tour is the same for both solutions, in solution g, δ
∑m−1

l=1 λil items

arrive to the processing facility earlier.Therefore, solution g is at least as good as

solution g∗, which is a contradiction.

Case 2: k = κ1 + 1, . . . , κ1 + κ2

As tour k starts when there is no accumulation, the collected amounts in tour k and

in the tours after tour k are equal in solutions g and g∗. In the tours before tour

k, both solutions collect the same amount of items, since the site visit times are the

same. Therefore, similar to Case 1, in solution g, δ
∑m−1

l=1 λil items arrive to the

processing facility earlier.Thus, solution g is at least as good as solution g∗, which is

a contradiction.

Since any solution that does not satisfy these properties can be converted to

one with these properties without any loss of performance, we search only for such

solutions.

4.4 An upper bound on the processed amount by a deadline

We next provide a strong upper bound for the processed amount by a deadline.

We use this upper bound to analyze the performance of our solution approaches with

respect to the first level objective of maximizing the processed amount by time τf .

The processed amount by time τf , P (τf ), cannot exceed the total accumulated
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amount or the total processing capacity. Therefore, min{τe

∑
i∈N λi, τfµ} provides

an upper bound for P (τf ). However, this bound may be quite loose, since it does

not consider the time required for the transportation of items from the sites to the

processing facility. In order to obtain a tighter bound, we relax the resource constraint

on the number of vehicles. That is, we assume that infinitely many vehicles are

available.

It takes at least ti0 time units to transfer any item from site i to the processing

facility in a tour. If there is no limit on the number of vehicles available at the

processing facility, a vehicle can be dispatched to each site every minute. Then,

the first delivery of items to the processing facility occurs at time mini∈N{t0i + ti0}.

If Q(0) = 0, then the processing facility is idle until time mini∈N{t0i + ti0}. The

accumulation of items at the sites ends at time τe. Therefore, the latest arrival of

items to the processing facility will occur at time t = τe + maxi∈N{ti0} from the

farthest site. We define UBP (τf ) as the processed amount until τf , and calculate

UBP (τf ) using the pseudocode provided in Algorithm 1.

Let us calculate UBP (τf ) for the previously discussed example where α2 = 0.869.

We also analyze the same system for α2 values of 1 and 1.2 by changing µ accordingly.

Figure 4.4 illustrates the amount of unprocessed items in the processing facility dur-

ing the time interval [0, τf ] for α2 = 0.869, 1 and α2 = 1.2. When α2 = 0.869,

Q(τf ) = 0, meaning that all the accumulated amount can be processed, that is

UBP (τf ) = τe

∑
i∈N λi. When α2 ≥ 1, however, we have Q(τf ) = 45, meaning that the

accumulated amount cannot be processed completely. When α2 = 1.2, the amount of

unprocessed items by time τf increases to 327.
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Algorithm 1 UBP (τf ) Algorithm

Input: N+, tij, λi

Output: UBP (τf )

1: Set Q(0), P (0)← 0.

2: for t ∈ {1, 2, . . . , τf} do

3: Set γ ← 0. // γ denotes the amount of items that arrive at time t.

4: for i ∈ N do

5: if t = t0i + ti0 then

6: Set γ ← γ + t0i ∗ λi. // The first item arrival from node i.

7: else if t0i + ti0 < t < τe + ti0 then

8: Set γ ← γ + λi.

9: else

10: // Do nothing: no item arrival from node i.

11: end if

12: end for

13: Set P (t)← P (t−1)+min{Q(t−1), µ}. // Calculate the amount of processed

items during time t.

14: Set Q(t) ← Q(t − 1) + γ − min{Q(t − 1), µ}. // Update the amount of

unprocessed items in the processing facility.

15: end for

16: Set UBP (τf ) ← P (τf ).

4.5 The mathematical model

In this section, we develop a mixed integer programming model that determines

the number of tours to be performed by the vehicle until time τf , as well as the start
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Figure 4.4: The amount of unprocessed items in the processing facility for the example

when there is no limit on the number of vehicles

and end times of the tours throughout the planning horizon. It also selects the sites

to be visited and their sequence in each tour. We do not have a fixed number of tours.

Hence, the model puts an upper bound on the tour number and allows empty tours.

To calculate the accumulated amount at each node, we keep track of the last visit

time of each node. Moreover, we need to know whether a node is visited before time

τe or not since accumulation stops at τe. The model ensures that all accumulated

items are collected by the vehicle. The model allows the vehicle to wait only at the

processing facility before τe due to Proposition 4.3.2, and does not allow visiting a site

more than once in a tour due to Proposition 4.3.3. We define the decision variables

and constraints as follows.

Decision variables

Xijk binary variable indicating if node j is visited immediately after node i in tour

k ((i, j) ∈ A, k = 1, 2, . . . , κ1 + κ2). If tour k is an empty tour, then X00k = 1

and X0ik = 0, Xi0k = 0, Xijk = 0, ∀i, j ∈ N .

Yik binary variable indicating if node i is visited in tour k (i ∈ N, k = 1, 2, . . . , κ1+

κ2).
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Tik visit time of node i at tour k (i ∈ N+, k = 1, 2, . . . , κ1 + κ2). If node i is not

visited in tour k, it denotes the last visit time of node i before tour k (i.e.,

Tik = Ti,k−1). T0k denotes the starting time of tour k.

Rk return time of the vehicle from tour k to processing facility (k = 1, . . . , κ1+κ2);

R0 = 0.

Eik collected amount from site i in tour k (i ∈ N, k = 1, 2, . . . , κ1 + κ2).

Sk total collected amount in tour k (k = 1, 2, . . . , κ1 + κ2).

Lik auxiliary variable used to calculate Eik (i ∈ N , k = 1, 2, . . . , κ1 + κ2).

Wk waiting time of the vehicle at the processing facility at the beginning of tour

k (k = 1, 2, . . . , κ1 + κ2) .

Qk amount of unprocessed items at the processing facility at the end of tour k

(k = 0, 1, 2, . . . , κ1 + κ2). Q0 is a parameter which represents the number of

unprocessed items at the beginning of the day.

Uk amount of processed items between Rk and Rk+1(k = 0, 1, 2, . . . , κ1 + κ2 − 1).

Uκ1+κ2 amount of processed items between Rκ1+κ2 and τf .

Constraints∑
j∈N+

X0jk = 1, ∀k = 1, 2, . . . , κ1 + κ2, (4.2a)

∑
j∈N+

Xj0k = 1, ∀k = 1, 2, . . . , κ1 + κ2, (4.2b)

∑
j∈N+,j 6=i

Xijk = Yik, ∀i ∈ N, k = 1, 2, . . . , κ1 + κ2, (4.2c)

∑
j∈N+,j 6=i

Xijk −
∑

j∈N+,j 6=i

Xjik = 0, ∀i ∈ N, k = 1, 2, . . . , κ1 + κ2, (4.2d)
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Rk = Rk−1 + Wk +
∑

(i,j)∈A

tijXijk, ∀k = 1, 2, . . . , κ1 + κ2, (4.3a)

T0k = Rk−1 + Wk, ∀k = 1, 2, . . . , κ1 + κ2, (4.3b)

Rκ1+κ2 ≤ τf , (4.3c)

T0,κ1 ≤ τe, (4.3d)

T0,κ1+1 ≥ τe, (4.3e)

Tik + tij − Tjk ≤M(1−Xijk), ∀(i, j) ∈ A, k = 1, 2, . . . , κ1 + κ2, (4.4a)

Tik + tij − Tjk ≥ −M(1−Xijk), ∀(i, j) ∈ A, k = 1, 2, . . . , κ1 + κ2, (4.4b)

Ti,k+1 − Tik ≤MYi,k+1, ∀i ∈ N+, k = 1, 2, . . . , κ1 + κ2 − 1, (4.4c)

Ti,k+1 ≥ Tik, ∀i ∈ N+, k = 1, 2, . . . , κ1 + κ2 − 1, (4.4d)

Lik ≤ Tik, ∀i ∈ N, k = 1, 2, . . . , κ1 + κ2, (4.5a)

Lik ≤ τe, ∀i ∈ N, k = 1, 2, . . . , κ1 + κ2, (4.5b)

Eik = λi(Lik − Li,k−1), ∀i ∈ N, k = 1, 2, . . . , κ1 + κ2, (4.5c)

Li0 = 0, ∀i ∈ N, (4.5d)

Sk =
∑
i∈N

Eik, ∀k = 1, 2, . . . , κ1 + κ2, (4.5e)

κ1+κ2∑
k=1

Eik = λiτe, ∀i ∈ N, (4.5f)

Uk ≤ µ(Rk+1 −Rk), ∀k = 0, 1, . . . , κ1 + κ2 − 1, (4.6a)

Uκ1+κ2 ≤ µ(τf −Rκ1+κ2), (4.6b)

Uk ≤ Qk, ∀k = 0, 1, . . . , κ1 + κ2, (4.6c)

Qk = Qk−1 − Uk−1 + Sk, ∀k = 1, 2, . . . , κ1 + κ2, (4.7)

Xijk, Yik ∈ {0, 1}, ∀i, j ∈ N+, k = 1, 2, . . . , κ1 + κ2, (4.8)

Tik, Rk, Eik, Sk, Lik, Wk, Qk, Uk ≥ 0, ∀i ∈ N+, k = 1, 2, . . . , κ1 + κ2. (4.9)

Using these constraints, we define two models. Since the first level objective is to
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maximize the processed amount by time τf , model M1 is solved first:

M1 : Maximize P (τf ) =
κ1+κ2∑
k=1

Uk

subject to Constraints (4.2a)− (4.9).

The solution of M1 provides the optimal value of P (τf ), denoted by P ∗(τf ), which is

then used as a lower bound for the processed amount in model M2. Hence, model M2

minimizes the transportation cost subject to this additional constraint:

M2 : Minimize C(τf ) =
κ1+κ2∑
k=1

∑
(i,j)∈A

dijXijk

subject to Constraints (4.2a)− (4.9)
κ1+κ2∑
k=1

Uk ≥ P ∗(τf ). (4.10)

Constraints (4.2a) and (4.2b) require that each tour begins and ends at the process-

ing facility. The outgoing degree of a node i must be equal to Yik through Con-

straint (4.2c). Constraint (4.2d) implies that the flow is balanced at each node.

Constraints (4.3a)-(4.3e) define the relation between tour return times, waiting

times, and tour start times. Constraints (4.3a) and (4.3b) calculate the return time

and the starting time of a tour, respectively. Constraint (4.3c) guarantees that the

last tour should be completed by τf and Constraints (4.3d)-(4.3e) limit the number

of tours before τe by κ1.

Constraints (4.4a)-(4.4d) define the node visit times. If the vehicle visits node j

immediately after node i in tour k, Constraints (4.4a) and (4.4b) together restrict the

vehicle to be at node j at time Tik + tij. These constraints also eliminate subtours.

Constraints (4.4c) and (4.4d) ensure that if node i is not visited in tour k, Tik equals

the last visit time before that tour.

Next, we define Constraints (4.5a)-(4.5f) to calculate the collected amounts from

the visited nodes. Since the accumulation at the sites ends at time τe,

λi(min{Tik, τe} −min{Ti,k−1, τe})
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gives the collected amount from node i in tour k. Note that, if node i is not visited in

tour k, then Tik = Ti,k−1 and hence λi(min{Tik, τe} −min{Ti,k−1, τe}) is zero. We lin-

earize this quantity by defining the auxiliary variables, Lik’s, as min{Tik, τe} through

Constraints (4.5a)-(4.5b). By this way, we do not exactly calculate the collected

amount from a visited node. However, we guarantee that the vehicle cannot collect

an amount that is greater than the accumulated amount by the visit time of the node.

Constraints (4.5c)-(4.5e) calculate the collected amount in tour k. Constraint (4.5f)

ensures that all of the items accumulated at the nodes are collected.

The amount of processed items between the return times of two consecutive tours,

Uk, cannot exceed the amount of unprocessed items, Qk, and processing capacity,

µ(Rk+1 −Rk). This condition is satisfied via Constraints (4.6a)-(4.6c).

Constraint (4.7) balances the queue size at the processing facility. Constraint (4.8)

defines the binary variables in a tour, while Constraint (4.9) dictates nonnegativity

of all variables.

Our computational experiments showed that both M1 and M2 can be solved to

optimality only for problems with low workload levels (e.g., α2 ≤ 0.8) and limited

number of nodes (e.g., n ≤ 10), but verifying optimality takes extensive computation

time. In particular, M2 is significantly more difficult than M1.

4.5.1 Valid inequalities

The following valid inequalities are used to strengthen the MIP models M1 and

M2. The formulation with the valid inequalities are computationally tested and the

results are provided in Section 5.2.

We first add a valid inequality that relate the binary variables Xijk and Yik to

both of the models, M1 and M2. If a node i is not visited in tour k, i.e., Yik = 0, the
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corresponding routing variables, Xijk and Xjik, should also be 0.

Xijk ≤ Yik, ∀i ∈ N, ∀j ∈ N+, i 6= j, k = 1, 2, . . . , κ1 + κ2, (4.10a)

Xjik ≤ Yik, ∀i ∈ N, ∀j ∈ N+, i 6= j, k = 1, 2, . . . , κ1 + κ2, (4.10b)

Xijk + Xjik ≤ Yik, ∀i ∈ N, ∀j ∈ N, i 6= j, k = 1, 2, . . . , κ1 + κ2. (4.10c)

Next, to strengthen model M2, we generate a valid inequality using a lower bound

for the processed amount by time τf , P ∗(τf ). In order to process at least P ∗(τf )

items, the vehicle should complete the first tour by time τf − P ∗(τf )/µ. That is,

R1 ≤ τf − P ∗(τf )/µ. As the vehicle transports S1 items to the processing facility at

the end of tour 1, the processor can process at most S1 items up to R2. Therefore,

the second tour cannot be completed later than τf − (P ∗(τf ) − S1)/µ so that the

remaining P ∗(τf ) − S1 items can be processed in (P ∗(τf ) − S1)/µ time units. That

is, R2 ≤ τf − P ∗(τf )/µ + S1/µ. Continuing like this, we obtain the following valid

inequalities.

Proposition 4.5.1. The following inequalities are valid for model M2:

Rk ≤ τf − P ∗(τf )/µ +
∑k−1

p=1 Sp/µ, ∀k = 1, 2, . . . , κ1 + κ2. (4.11)

Proof. Assume that for a feasible solution of M2, for some tour k = 1, 2, . . . , κ1 + κ2,

inequality (4.11) is not satisfied, that is, Rk > τf − P ∗(τf )/µ +
∑k−1

p=1 Sp/µ. Note

that during the time interval [0, Rk],
∑k−1

p=1 Sp items are transferred to the processing

facility. Therefore, at most
∑k−1

p=1 Sp items can be processed in this time interval.

Then, the processing capacity during time interval [Rk, τf ] is µ(τf−Rk) < µ(τf−(τf−

P ∗(τf )/µ+
∑k−1

p=1 Sp/µ)). The right hand side simplifies to P ∗(τf )−
∑k−1

p=1 Sp, implying

that this solution cannot process P ∗(τf ) items by time τf and violates Constraint

(4.10) of M2, which is a contradiction.

Proposition 4.5.1 is used in relaxations of model M2 to generate lower bounds.

In addition, we tested the inequalities on a set of instances provided in Section 5.2
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and observed that it provides a slight improvement (around 1-2 %) on the best found

objective value of M2 at the end of a six-hour (i.e., 21600 s) run time limit. Hence,

we included these inequalities in all of our computational tests.

We performed computational experiments with some of the problem instances

provided in Section 5.2.1 on a 3.40 GHz Intel(R) Xeon(TM) processing unit with 8

GB of RAM. GAMS 23.3 with CPLEX solver was used to solve the model. Because

of the complexity of the problem, the computational experiments showed that this

model can solve problems with only limited size (n=10 with only certain parameter

settings). This led us to the heuristic approaches provided in Chapters 5 and 6 to

address this problem.

4.5.2 Lower bounds on the transportation cost

In this section, we bound the transportation cost, C(τf ), under the condition that

at least P ∗(τf ) items should be processed by time τf . We present two relaxations of

model M2. The corresponding MIP formulations are solved with a run time limit and

the best found lower bound is kept. The bound is used to evaluate the performance

of the heuristic solution approaches provided in Chapters 5 and 6 in terms of the

transportation cost.

In model M2, having Constraint (4.10) narrows the set of feasible solutions dra-

matically. Especially when the workload level is high, there may be few solutions

that achieve P ∗(τf ). Thus, the branch and bound algorithm has difficulty in finding

a candidate feasible solution. To overcome this, we relax Constraint (4.10) and re-

place it by the valid inequalities given in Constraint (4.11). As a result, the relaxed

model cannot guarantee that P ∗(τf ) items are processed by time τf . Another reason

for the difficulty of solving M2 is due to Constraints (4.4a) and (4.4b) that contain

big-M. We eliminate Constraints (4.4a) and (4.4b), which calculate the exact values
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of Tik variables and prevent subtours. Instead, we utilize a single commodity flow

formulation and add the following constraints to the MIP:

Tik ≤ Rk − ti0, ∀i ∈ N, k = 1, 2, . . . , κ1 + κ2, (4.12)∑
j∈N+,j 6=i

Gijk −
∑

j∈N+,j 6=i

Gjik = λi(Lik − Li,k−1), ∀i ∈ N, k = 1, 2, . . . , κ1 + κ2,(4.13a)

Gijk ≤ Xijk

∑
i′∈N

λi′τe, ∀(i, j) ∈ E, k = 1, 2, . . . , κ1 + κ2, (4.13b)

Gijk ≤ Sk, ∀i ∈ N, ∀j ∈ N+, k = 1, 2, . . . , κ1 + κ2, (4.13c)

Gijk ≥ 0, ∀(i, j) ∈ E, k = 1, 2, . . . , κ1 + κ2, (4.13d)

where Gijk denotes the amount of items carried by the vehicle while traveling from

node i to node j in tour k (i, j ∈ N+ and k = 1, 2, . . . , κ1 + κ2).

Constraint (4.12) puts a bound on node visit time variables Tik. We utilize Con-

straints (4.13a)-(4.13d) for subtour elimination. For this purpose, single commod-

ity flow variables Gijk are defined akin to the Gavish-Graves formulation for the

TSP [Gavish and Graves, 1978]. Constraint (4.13a) balances the flow at each node

i ∈ N . Note that these constraints do not calculate the collected amount exactly.

The flow between two nodes in a tour can be positive only if the arc between these

nodes is traveled in the corresponding tour by Constraint (4.13b), and the amount

of the flow is bounded by the amount collected in that tour by Constraint (4.13c).

Constraint (4.13d) is the nonnegativity constraint for the flow variables. This MIP

constitutes our first relaxation of M2.

We obtain a second relaxation by excluding the calculations related to the processed

amount between consecutive tours from the first relaxation. We eliminate the decision

variables Uk and Qk, as well as the related Constraints (4.6a)-(4.6c) and (4.7).

Our experiments show that despite significant improvements in the progress of the

branch and bound algorithm, even these relaxations are difficult to solve to optimality
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in reasonable time. Hence, we put a time limit for their solution and record the best

found lower bound. These bounds bring 74% improvement on the average over the

best lower bound obtained by solving M2 within its run time limit.

4.6 Conclusions and summary of contributions

In this chapter, we define the single vehicle clinical specimen collection problem

under the objectives of maximizing the processed amount by a deadline as a first

priority and minimizing the transportation costs as a second priority. We show that

this problem is NP-hard and provide an MIP formulation for its solution. We present

a procedure to calculate an upper bound on the processed amount by a deadline and

two relaxed MIP models to generate lower bounds on the transportation cost.

Through a preliminary computational analysis, we conclude that since the solution

space is extremely large even for small problem sizes, even the MIP model strength-

ened with valid inequalities cannot find good solutions within reasonable time. This

result leads us to the heuristic solution approaches provided in Chapters 5 and 6.
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Chapter 5

AN MIP-BASED HEURISTIC SOLUTION APPROACH

FOR THE SINGLE VEHICLE PROBLEM

Like most of the NP-hard problems, it is hard to solve the single vehicle collection

for processing problem with two prioritized objectives to optimality for the instances

that have realistic-size. In Chapter 4, we observed through preliminary tests that

the computation time required to solve the problem to optimality is prohibitive even

for small-sized instances. With this motivation, this chapter proposes a heuristic

approach that incorporates additional constraints to the MIP model with the goal of

reducing the solution space.

In this chapter, we, first, identify rules to eliminate feasible solutions that are

likely to be suboptimal. Based on these results, we develop a heuristic approach that

solves the MIP model provided in Section 4.5 with additional constraints that reduce

the solution space. To evaluate the performance of this approach, we use the bounds

on the two objectives provided in Chapter 4. We conduct computational experiments

on realistic test instances to demonstrate the effectiveness of our approach. We also

extract insights on key problem parameters and their effects on the solutions by

further experiments.

The remainder of this chapter is organized as follows. Section 5.1 presents our

approach to find a good feasible solution from the MIP formulation. Results from our

computational analysis on realistic data are given in Section 5.2. Finally, Section 5.3

concludes and summarizes the main contributions of the chapter.
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5.1 Solution approach

The proposed solution approach is based on two approaches that eliminate fea-

sible solutions that are likely to be inferior without significantly compromising from

optimality. Both approaches utilize the proposed models in Section 4.5 with some

modifications. The first approach is based on restricting the vehicle to perform only

one tour after τe (Section 5.1.1), whereas the second one identifies, for each tour, a

set of sites with low accumulation rates and does not allow the vehicle to visit these

sites in the corresponding tour (Section 5.1.2). Although these approaches can be

used individually, their joint use has generated better results for specified run time

limits in our experiments (Section 5.2.2).

5.1.1 Searching for solutions with a final TSP tour

To cope with the computational difficulty of the proposed models, we first restrict

the vehicle to perform only one tour that visits all nodes after τe with duration τ and

cost θ. Since items do not accumulate after τe, the node sequence of the final tour

does not affect the collected amount, and so, it is independent of the accumulated

amounts at sites. Therefore, routing and scheduling decisions before and after time

τe become independent. Hence, we first solve a TSP with the objective of minimizing

the total traveling time (not distances) to visit all nodes. This constitutes the last

tour. We exclude the visiting variables of the last tour from models M1 and M2, but

in order to calculate the collected and processed amounts we still keep the remaining

variables corresponding to the last tour. We generate models MT
1 and MT

2 from M1

and M2, correspondingly, according to the following.

• κ2 = 1.

• Constraints (4.2a)-(4.2d), (4.3a)-(4.3b), (4.4a)-(4.4b), and (4.8) are defined for
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k = 1, 2, . . . , κ1 rather than k = 1, 2, . . . , κ1 + κ2.

• Constraints (4.3c)-(4.3e) are replaced with:

Rκ1+1 = τe + τ, (5.1a)

Rκ1 ≤ τe, (5.1b)

Ti,κ1+1 = τe, ∀i ∈ N. (5.1c)

• Variables Lik, ∀i ∈ N, k = 1, 2, . . . , κ1 + 1, are removed so that Constraints

(4.5a)-(4.5b) are deleted and Constraints (4.5c) and (4.5d) are replaced with

Eik = λi(Tik − Ti,k−1), ∀i ∈ N, k = 1, 2, . . . , κ1 + 1, (5.2a)

Ti0 = 0, ∀i ∈ N. (5.2b)

After solving MT
2 , the cost of the final TSP tour, θ, is added to the traveling cost.

5.1.2 Node filtering heuristic

In this section, we propose a node filtering heuristic by adding constraints to

models M1 and M2. These constraints ensure that nodes with low accumulation rates

are not allowed to be visited in each tour. By filtering a node, we defer collecting

its accumulated amount to a subsequent tour. In order to identify the nodes to be

filtered in a tour, we consider the remaining processing capacity and workload. We

adjust the remaining processing capacity by assuming that the deferred amount will

be processed by τf . If this remaining capacity is sufficient to achieve the upper bound

on P (τf ), we allow filtering this node.

Specifically, to decide on which nodes to filter in tour k, we consider the follow-

ing quantities. At the return time of tour k − 1 (i.e., Rk−1), the total amount of

items processed is
∑k−2

r=1 Ur. Therefore, UBP (τf ) −
∑k−2

r=1 Ur is an upper bound on



Chapter 5: An MIP-based heuristic for CfPP 74

the processed amount in the time interval (Rk−1, τf ], for any k ≤ κ1. Moreover, the

remaining processing capacity is (τf − Rk−1)µ, while the total accumulation amount

in site i is λiτe. Then, the adjusted remaining capacity is (τf −Rk−1)µ− τeλi. If the

following inequality holds,

(τf −Rk−1)µ− τeλi ≥ UBP (τf ) −
∑k−2

r=1 Ur, (5.3)

then we still have enough capacity to attain the upper bound even if site i is not

visited in tour k. Hence, site i can be filtered out in tour k.

Recall that the sites are indexed in non-decreasing order of the accumulation rate.

We can generalize the above inequality to a Node Filtering Rule in order to find a

threshold value, m∗, such that the first m∗ nodes are filtered out in tour k.

Definition 5.1.1. (Node Filtering Rule) : The vehicle is not allowed to visit sites

i1, i2, . . . , im∗ in tour k, where m∗ is the largest index such that

(τf −Rk−1)µ− τe

∑m∗

l=1 λil ≥ UBP (τf ) −
∑k−2

r=1 Ur. (5.4)

We incorporate the node filtering approach to models M1 and M2, and obtain

models MF
1 and MF

2 by modifying them as follows. We define Λm =
∑m

i=1 λi and a

new decision variable, Zmk.

Zmk : binary variable indicating if every node i with i ≤ m is filtered out in tour k

(1 ≤ m ≤ n, k = 1, 2, . . . , κ1).

Next, we add two additional constraints to the formulation:

Yik ≤ 1− Zmk, ∀i ∈ N, 1 ≤ m ≤ n, i ≤ m, k = 1, 2, . . . , κ1, (5.5a)

MZmk ≥ (τf −Rk−1)µ− UBP (τf ) +
∑k−2

r=1 Ur − τeΛm, 1 ≤ m ≤ n, k = 1, 2, . . . , κ1.(5.5b)
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Constraint (5.5a) guarantees that if Zmk = 1, then a site i, where i ≤ m, is filtered

out in tour k = 1, 2, . . . , κ1. Constraint (5.5b) determines the value of m∗ for tour

k = 1, 2, . . . , κ1 as defined in the Node Filtering Rule.

For the illustrative example provided in Section 4.3, the node filtering approach

generates an optimal solution of 0(74.7)-2-1-0(142.1)-2-1-0(221.2)-1-2-4-3-0, with P (τf ) =

1, 737 and C(τf ) = 182. According to the Constraints (5.5a) and (5.5b), node 4 is

filtered out in the tours before τe. Although node 3 is not filtered out, the models

decide not to visit node 3 before τe.

Although the node filtering approach generates practically good results as demon-

strated in Section 5.2, it might yield suboptimal solutions as in the case of the two-

node CfPP instance illustrated in Figure 5.1. For this instance, suppose that τe = 60,

τf = 120 minutes, and µ = 2.6, λ1 = 1, λ2 = 1.5 items per minute. The solution found

by the node filtering approach is 0(58)-2-0-1-2 with P (τf ) = 111.9 and C(τf ) = 53,

where node 1 is filtered out in the first tour. On the other hand, an optimal solution

for this instance is 0(9)-1-2-0-1-2 with P ∗(τf ) = 145.9 and C∗(τf ) = 102.

Figure 5.1: A two-node CfPP instance

5.2 Computational experiments

In this section, we analyze the characteristics and performance of the solutions

obtained by the proposed solution approach using numerical experiments with real-

istic data instances. This section starts with a description of the CfPP instances,
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which are defined based on the data of a clinical laboratory. General results on the

performance of our solution approach and detailed analysis on solution characteristics

follow. Finally, managerial insights are provided.

5.2.1 Description of the test instances

Using a real-life data set that we have obtained from a clinical testing laboratory

that we have been collaborating with, we constructed 12 problem instance sets. Each

instance set is defined on a different complete graph, G = (N+, E), with nodes that

correspond to the clients of the clinical laboratory served by a single vehicle in a spec-

ified region. The number of nodes in N+ varies between 10 and 18. The accumulation

rate λi for each node i ∈ N is determined according to empirical data such that the

majority of the volume comes from a small portion of the clients. The distance dij for

each arc (i, j) ∈ E is the shortest path distance on the roads obtained from Google

Maps. The traveling time, tij, for each arc (i, j) ∈ E is taken as tij = dij/υ + sj,

where υ denotes the constant speed of the vehicle (miles per min) and sj denotes the

service time at node j (in minutes). The service time, sj, represents the amount of

time that the driver spends at node j to pick up the accumulated items. We randomly

generated the sj values from a uniform distribution defined on the interval [2, 5] if

λj ≤ 20 (items per hour), and on the interval [6, 9] otherwise, based on empirical

data.

For each problem instance set, we generated three workload levels (α2 = 0.8, 1.0, 1.2)

by varying µ. The value of µ for the corresponding instance is defined using the equal-

ity τe

∑
i λi = α2µτf . As a result, there are 36 data instances in total.

Typically, the sites open at 8 a.m. and close at 7 p.m. Processing at the facility

generally ends at 5 a.m. Thus, τe is set to 660 minutes, and τf is to 1, 260 minutes,

considering minutes as the time unit. The initial queue level at the processing facility
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is set to zero for each instance.

The data sets can be accessed at http://home.ku.edu.tr/eyucel/Research/Dataset

CfPP.zip.

The computational experiments were performed on a Xeon E5520 @ 2.27 GHz

processing unit with 48GB of memory. GAMS 23.3 was used to create the mod-

els. CPLEX 12.2 was employed to solve them with the following options turned on:

threads 0; parallelmode 1. This setting enables CPLEX to run as a multi-threaded

application and to distribute the computing load to as many as eight logical cores of

the Core i7 Quad-core processor. The run time limit for each M1 model was set to

two hours (7200 s), while each M2 model was run for four hours (14400 s). A run time

limit of four hours (14400 s) was set for each relaxation proposed in Section 4.5.2. In

all models, κ1 was set to 10 as it was observed to be large enough.

5.2.2 Experimental results

In this section, we first compare the solutions found by the proposed models in

terms of the processed amount by time τf and the transportation cost for a set of

instances with different workload levels. Next, we report the solutions of the best

performing model with respect to the deviations from the upper bound presented in

Section 4.4 on the processed amount and the best lower bound obtained from the

two relaxations given in Section 4.5.2 on the transportation cost. In addition, we

investigate the effect of the workload level and different accumulation rate patterns

on the solutions and the problem difficulty. Finally, we analyze the properties of the

best found solutions to derive some managerial insights.

http://home.ku.edu.tr/eyucel/Research/Dataset CfPP.zip
http://home.ku.edu.tr/eyucel/Research/Dataset CfPP.zip
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Comparison of the proposed models

By determining the appropriate sites to be filtered out in each tour, the node

filtering approach and the assumption of a final TSP tour narrow the search space,

and thus, improve the best found solution by the branch-and-bound process within

the given time limit. In order to demonstrate its effectiveness, we pick an instance set

with 15 nodes and solve the models that seek four different types of solutions: (i) with

a final TSP tour and the node filtering constraints (referred to as MTF
1 and MTF

2 ),

(ii) without a final TSP tour and with node filtering constraints (MF
1 and MF

2 ), (iii)

with a final TSP tour and without node filtering constraints (MT
1 and MT

2 ), and (iv)

without a final TSP tour and node filtering constraints (M1 and M2). The best found

solution values at the end of a given computation time limit (two hours for model M1

and six hours for model M2) are provided in Table 5.1 for varying workload levels of

the instance set.

Table 5.1: Best found solution values of the models for the selected instance set

α2

MTF
1 MTF

2 MT
1 MT

2 MF
1 MF

2 M1 M2

P (τf ) C(τf ) P (τf ) C(τf ) P (τf ) C(τf ) P (τf ) C(τf )

0.8 10,493 171 10,493 286 10,493 242 10,493 291

0.9 10,493 212 10,493 260 10,493 270 10,493 292

1.0 10,185 321 10,185 524 10,177 382 10,147 426

1.1 9,269 304 9,269 689 9,269 400 9,247 359

1.2 8,507 284 8,507 582 8,507 330 8,450 296

1.3 7,862 265 7,862 595 7,858 328 7,767 283

1.4 7,307 254 7,307 360 7,307 322 7,281 259
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Table 5.1 shows that all models, except M1, are equally effective in finding the

maximal processed amount, P (τf ). However, in terms of the transportation cost,

C(τf ), MTF
2 performs the best by far. Based on these observations demonstrating

the effectiveness of the node filtering approach with a final TSP tour, the remaining

experiments are performed using models MTF
1 and MTF

2 . We refer to the heuristic

approach based on solving these two models within the given time limit as the TF

heuristic hereafter.

Test results and performance of the TF heuristic

We now evaluate the performance of solutions obtained by the TF heuristic using

the upper bound on the processed amount generated by the procedure in Section 4.4

and the lower bound on the transportation cost generated from the MIP relaxations

in Section 4.5.2. For each instance, we report the following results.

P (τf ) processed amount of the best found solution by the TF heuristic.

C(τf ) transportation cost of the best found solution by the TF heuristic.

K number of tours performed up to time τe for the best found solution.

v percentage of sites that are visited, averaged over K tours for the best found

solution (i.e., 100
∑K

k=1 vk/n, where vk is the number of sites visited in tour

k.)

f percentage of sites that are filtered, averaged over K tours for the best found

solution (i.e., 100
∑K

k=1 m∗
k/n, where the first m∗

k sites are filtered out in tour

k.)

DA achievement percentage, calculated as 100P (τf )/(τe

∑
i∈N λi).

DU capacity utilization percentage, calculated as 100P (τf )/(µτf ).

GapP (τf ) percentage gap between P (τf ) and UBP (τf ), calculated as 100(UBP (τf ) −

P (τf ))/P (τf ).
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GapC(τf ) percentage gap between C(τf ) and LBC(τf ), where LBC(τf ) is the best bound

found by CPLEX for the two relaxations at the end of the given run time limit

(i.e., 100(C(τf )− LBC(τf ))/LBC(τf ).

The experimental results are reported in Table 5.3.
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Table 5.3: Test results

Instance n α2 P (τf ) C(τf ) K v f DA DU GapP (τf ) GapC(τf )

set (%) (%) (%) (%) (%) (%)

1 14

0.8 10,493 171 4 7.14 80.95 100.00 80.00 0.00 0.00

1.0 10,185 321 9 10.7 59.82 97.06 97.06 1.23 10.69

1.2 8,507 284 8 11.2 63.27 81.07 97.29 1.07 9.23

2 9

0.8 4,786 143 4 14.8 74.07 100.00 80.00 0.00 0.70

1.0 4,658 328 9 23.6 68.06 97.33 97.33 1.21 21.93

1.2 3,886 260 9 16.7 43.06 81.21 97.45 1.16 22.64

3 12

0.8 4,522 173 4 11.1 33.33 100.00 80.00 0.00 3.59

1.0 4,389 352 10 13 48.15 97.05 97.05 1.27 21.80

1.2 3,665 306 8 13.1 34.52 81.04 97.25 1.13 15.04

4 13

0.8 4,509 218 3 23.1 42.31 100.00 80.00 0.00 1.40

1.0 4,361 415 10 13.7 51.28 96.71 96.71 1.56 23.88

1.2 3,651 362 8 15.4 53.85 80.97 97.16 1.16 20.67

5 14

0.8 4,540 215 3 17.9 42.86 100.00 80.00 0.00 2.38

1.0 4,362 379 8 16.3 37.76 96.07 96.07 2.30 20.70

1.2 3,668 351 8 13.3 56.12 80.80 96.96 1.38 21.88

6 11

0.8 4,928 169 3 18.2 72.73 100.00 80.00 0.00 0.00

1.0 4,746 334 7 21.2 50.00 96.30 96.30 1.93 24.16

1.2 3,983 320 8 14.3 71.43 80.82 96.98 1.23 24.03

7 11

0.8 4,807 170 3 22.7 59.09 100.00 80.00 0.00 1.19

1.0 4,643 344 9 18.2 55.68 96.58 96.58 1.46 22.86

1.2 3,873 290 7 19.7 43.94 80.56 96.67 1.39 20.33

8 12

0.8 4,455 173 3 16.7 75.00 100.00 80.00 0.00 0.58

1.0 4,301 351 9 16.7 52.08 96.55 96.55 1.74 23.59

1.2 3,601 312 7 16.7 75.00 80.83 97.00 1.36 22.35

9 11

0.8 4,763 150 3 18.2 54.55 100.00 80.00 0.00 1.35

1.0 4,613 317 8 18.2 41.56 96.86 96.86 1.48 17.84

1.2 3,849 270 7 13.6 28.79 80.82 96.98 1.42 6.30

10 16

0.8 5,798 216 4 10.4 52.08 100.00 80.00 0.00 1.89

1.0 5,592 428 10 11.8 66.67 96.44 96.44 1.92 25.15

1.2 4,666 378 6 25 50.00 80.47 96.56 1.85 23.93

11 17

0.8 6,214 229 4 13.7 50.98 100.00 80.00 0.00 2.23

1.0 5,906 387 8 13.4 41.18 95.05 95.05 3.59 24.04

1.2 4,967 357 9 9.56 42.65 79.94 95.92 2.71 23.96

12 14

0.8 4,687 173 4 11.9 64.29 100.00 80.00 0.00 0.00

1.0 4,502 311 10 10.3 45.24 96.05 96.05 2.38 21.96

1.2 3,784 291 8 13.3 40.82 80.74 96.89 1.57 21.76

Avg. 6.78 14.9 53.9 91.51 91.58 1.07 12.97

Min. 3 7.14 28.79 69.63 80.00 0.00 0.00

Max. 10 25 80.95 100.00 97.48 3.59 25.15
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We see from Table 5.3 that the gap between the processed amounts of the best

found solution by the TF heuristic and the infinite vehicle relaxation solution is 1.07%

on the average, while the maximum gap is 3.59%. This shows that this solution ap-

proach is very effective in terms of maximizing the processed amount. It also indicates

that the infinite vehicle relaxation provides tight upper bounds on the test instances.

The optimality gap for the transportation cost, GapC(τf ), is 12.97% on the average,

while the maximum gap is 25.15%. These relatively large gaps may be attributed to

several factors: (1) the weakness of the lower bounds, (2) the possibility that the best

found solutions may be far from the optimal, (3) inherent computational difficulty of

the problem. Similar to researchers studying challenging routing problems such as

IRP and TOP [Moin and Salhi, 2007, Archetti et al., 2007], we have observed that

finding a good lower bound for CfPP is very difficult. Although our problem relax-

ations given in Section 4.5.2 provide substantial improvement in achieving stronger

bounds, there is still room for further improvement.

Effect of workload level

In order to investigate the effect of the workload level on the solutions and the

problem difficulty, we aggregate in Table 5.4 the results by workload level and provide

averaged values corresponding to the same workload level. We see that the vehicle

performs less number of tours when α2 = 0.8, since a significant portion of the total

accumulation can be processed after the final TSP tour. When α2 ≥ 1.0, the vehicle

performs more tours to prevent idleness of the processing unit during the time interval

(0, τe]. Correspondingly, the transportation cost becomes higher. When α2 increases

to 1.2, the vehicle starts to perform less number of tours compared to the α2 = 1 case,

since it collects a smaller volume up to time τe as processing the total accumulation

is not possible. In the best found solutions, independent of the workload level, the
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vehicle visits about 15% of the sites in each tour on the average, implying that it

is generally sufficient to visit only a small subset of the nodes to collect “enough”

items. In addition, at least 50% of the sites are filtered out on the average in each

tour without much loss from optimality. For small α2, more nodes can be filtered

out. For all instances with α2 = 0.8, we see that utilizing 80% of the total processing

capacity is sufficient to process all of the total accumulated amount. For the instances

with α2 ≥ 1, although all the accumulated amount cannot be processed, 96.72% of

the total processing capacity is utilized on the average. As expected, the average DA

values in Table 5.4 show that the percentage of items processed on time decreases

as the workload increases. On the other hand, the processing capacity utilization

increases in the workload level. The gaps reported for the best found solutions in

terms of both the processed amount and the transportation cost are the highest for

α2 = 1.0, which generally represents a difficult case.

Table 5.4: Average results over each workload level

α2 Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg.

P (τf ) C(τf ) K v f DA DU GapP (τf ) GapC(τf )

(%) (%) (%) (%) (%) (%)

0.8 5,375 183 3.50 15.48 58.52 100 80 0 1.28

1.0 5,188 356 8.92 15.59 51.46 96.51 96.51 1.84 21.55

1.2 4,342 315 7.75 15.15 50.29 80.77 96.93 1.45 19.34

Effect of accumulation rate pattern

The accumulation rate pattern of the sites is an influential problem characteristic

in CfPP since nodes are selectively visited during the tours before τe. To evaluate the
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performance of the TF heuristic in settings with different accumulation rate patterns,

we extend our tests to new data sets. We pick the first instance set in Table 5.3,

and in addition to the original pattern (denoted by O), we generate new instance sets

by distributing the total accumulation randomly in four patterns: (i) Pareto Random

(PR), where 20 percent of sites contribute to 80 percent of the whole accumulation; (ii)

Pareto Closer (PC), where 20 percent of sites that are closest to the processing facility

accumulate 80 percent of the whole accumulation; (iii) Pareto Distant (PD), where

the closest 80 percent of sites contribute to only 20 percent of the whole accumulation;

and (iv) Identical (I), where all accumulation rates are identical. In all of the patterns,

the sum of the accumulation rates are equal to that of the original one. For the

selected problem instance, the geographical locations of the sites (nodes 1 to 14) and

the processing facility (node 0) are illustrated in Figure 5.2. The accumulation rates,

the traveling times to processing facility, and the service times for each site for pattern

O are provided in Table 5.5. In Figure 5.2, the sites are colored such that darker ones

have a higher accumulation rate.

The experimental results reported in Table 5.6 indicate that the performance of

the TF heuristic, measured by average GapP (τf ) and GapC(τf ), decreases in the order

of PC, PR, PD, and I. Since the accumulation rates are identical for all sites in

pattern I, the filtering rule can filter out only a small percentage of sites (around

10%); thus, the accelerating effect of the node filtering approach on the branch-and-

bound algorithm deteriorates. In PC, which resembles the original pattern observed

at the clinical laboratory we have been collaborating with, our approach shows the

best performance by filtering nearly 50% of the sites. Although the percentage of

filtered sites are also nearly 50% in PD, the solution quality gets worse especially in

traveling cost (GapC(τf ) = 25%). While the filtered node percentage is only 34% in

pattern PR, our solution approach still provides comparable average gaps (1.3% for

the processed amount and 22.2% for the transportation cost).
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Figure 5.2: The geographical locations

of the sites and the processing facility for

the selected problem instance set

Table 5.5: Parameters of the selected
problem instance set

site λi ti0 λi/ti0i (items per min.) (min.)
1 0.02 1 0.005
2 0.02 7 0.001
3 0.02 8 0.002
4 0.02 10 0.001
5 0.02 11 0.001
6 0.05 8 0.004
7 0.05 11 0.004
8 0.12 3 0.017
9 0.33 10 0.028
10 0.72 2 0.080
11 0.72 10 0.040
12 1.43 2 0.143
13 2.15 10 0.113
14 10.25 9 0.603

In conclusion, we observe that the filtering approach is effective in the Pareto cases,

which are probably the most realistic. The extreme case with identical accumulation

rates, which is unlikely to be seen in practice, results in relatively poor performance.

Managerial insights

All of the test results up to this point show that both the solution quality and the

characteristics of the solution change as the workload level changes. In this section,

we further investigate the real-life implications of this factor by additional tests with

the aim of providing some generalizable insights. We pick, again, the first instance set

in Table 5.3 and solve it for a number of different α2 values varying between 0.8 and

1.4 (obtained by decreasing the processing rate µ while keeping the total accumulated

amount constant).
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Table 5.6: Test results for the selected problem instance with different accumulation

rate patterns

Pattern α2 P (τf ) C(τf ) K v f DA DU GapP (τf ) GapC(τf )

(%) (%) (%) (%) (%) (%)

PC

0.8 10,493 154 3 9.52 59.67 100.00 80.00 0.00 0.00

1.0 10,315 308 10 25 53.00 98.30 98.30 0.85 21.26

1.2 8,612 249 9 22.2 39.51 82.07 98.48 0.66 5.51

Avg. 9,807 237 7.33 18.92 50.72 93.46 92.26 0.50 8.92

PR

0.8 10,493 169 3 16.7 28.57 100.00 80.00 0.00 0.00

1.0 10,192 381 8 31.3 50.00 97.13 97.13 1.99 39.05

1.2 8,511 305 9 38.1 25.40 81.11 97.33 1.90 27.62

Avg. 9,732 285 6.67 28.67 34.66 92.75 91.49 1.30 22.22

PD

0.8 10,493 223 4 16.1 65.75 100.00 80.00 0.00 0.00

1.0 10,035 419 8 31.3 59.25 95.63 95.63 2.56 43.00

1.2 8,391 367 6 39.3 25.07 79.97 95.96 2.31 32.01

Avg. 9,640 336 6.00 28.87 50.02 91.87 90.53 1.62 25.01

I

0.8 10,493 303 3 85.7 7.14 100.00 80.00 0.00 27.31

1.0 9,891 511 9 23 11.11 94.26 94.26 4.69 98.06

1.2 8,323 451 10 26.4 11.43 79.32 95.18 3.78 81.85

Avg. 9,569 422 7.33 45.05 9.89 91.19 89.81 2.82 69.08

According to the results presented in Table 5.7, we observe that all the accumu-

lated amount can be processed when α2 < 1.0. As the workload level increases, the

percentage of the total accumulated amount that can be processed on time decreases,
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Table 5.7: Test results for the selected problem instance for varying workload levels

α2 P (τf ) C(τf ) K v f DA DU GapP (τf ) GapC(τf )

(%) (%) (%) (%) (%) (%)

0.8 10,493 171 4 7.14 80.95 100.00 80.00 0.00 0.00

0.9 10,493 212 5 10.7 44.64 100.00 90.00 0.00 1.44

1.0 10,185 321 9 10.7 59.82 97.06 97.06 1.23 10.69

1.1 9,269 304 8 11.2 63.27 88.34 97.17 1.16 9.35

1.2 8,507 284 8 11.2 63.27 81.07 97.29 1.07 9.23

1.3 7,862 265 9 9.52 55.95 74.92 97.40 1.01 1.53

1.4 7,307 254 7 8.33 69.05 69.63 97.48 0.96 0.40

whereas the processing capacity utilization increases. The gap between the processed

amount of the solution and the corresponding infinite vehicle relaxation solution is

the largest when α2 = 1.0 and it decreases as the workload exceeds 1.

When α2 < 1.0, idle times at the processing unit are tolerable during (0, τe] since

most of the items can be processed after the final TSP tour. Since a smaller number

of tours is sufficient, the best found transportation costs are low. When α2 = 0.8,

the problem becomes relatively easy as around 81% of nodes can be filtered without

causing any significant loss from optimality. As α2 increases to 0.9, it is more difficult

to identify the nodes to be filtered (f = 44.64%). In addition, the percentage of

nodes visited in a tour increases from 7.14% to 10.7%, causing the transportation

cost to increase by 24%. In case of α2 = 1.0, the problem becomes significantly

more difficult since the number of tours required almost doubles. The vehicle visits

the same percentage of nodes in a tour but has to perform more frequent tours to

ensure that the processing center is well-supplied with the items to be processed. The
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processing rate decreases as α2 increases, so that it requires more time to process the

same amount of items. As a result, the best found transportation cost decreases in

α2.

When α2 ≥ 1.0, capacity utilization remains constant due to routing restrictions.

For α2 = 1.4, both M1 and M2 can be solved to near-optimality since filtering becomes

more effective while both K and v decrease.

The best found solutions by the TF heuristic for each workload level are provided

in Table 5.8, where the numbers in parentheses denote the amount of waiting times

at the corresponding nodes. The TSP tour performed after time τe is 8-6-2-7-14-5-

11-13-4-9-3-12-10-1 with a cost of 108. According to these solutions, before the first

tour a longer waiting time can be tolerated when α2 < 1, since all the accumulated

amount can be processed easily on time. For larger workload levels, the waiting time

before the first tour is smaller. For all workload levels, it is better to visit closer sites

with high accumulation rates (i.e., nodes 12, 13, and 14) before τe. In none of the

solutions, nodes 1 to 7, which have the lowest accumulation rates, are visited before

τe. For these nodes, the ratio of the accumulation rate to the total time to service a

node and return to the processing facility (given in Table 5.5) is less than 0.01.

In Table 5.8, we report the idle time of the processing facility throughout the day

and the idle time of the vehicle during the working day (i.e., between times 0 and

τe). As the workload level increases, the idle times of the processor decrease, while

the vehicle stays almost at the same level of idleness for α2 ≥ 1.

Next, we compare these solutions with the solutions obtained by a simple solution

approach. In real life, practitioners tend to apply simpler heuristic approaches to

determine the route and schedule of the vehicles. As an example, for instances like the

selected instance set, in which a small percentage of sites collects a high percentage of

the total accumulation, a common simple solution approach used by the practitioners

is to perform two tours before τe, one in the morning and one in the afternoon,
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Table 5.8: The best found solutions for the selected instance for varying workload

levels

α2 Best Found Solution Processor Idle Vehicle Idle

Time (min.) Time (min.)

0.8 0(226)-14-0(161.42)-10-0(61.58)-14-0(57)-TSP-0 252 506

0.9 0(100)-14-0(85.35)-12-0(16.43)-14-13-9- 126 465

0(19.28)-14-0(64.94)-TSP-0

1.0 0-13-14-0(1.2)-14-0(7.47)-14-0(11.2)-10-12-0-9-13-14- 37 294.6

0(101.18)-14-0(14.53)-12-0(29.04)-14-0-TSP-0

1.1 0(0.66)-8-9-14-0-14-0(12.28)-10-12-0-14-0(33.9)-14- 35.7 291.3

0(63.1)-13-14-0(181.35)-14-0-TSP-0

1.2 0(4.15)-9-14-0-14-0(1.4)-13-14-0(58.71)-10-12-0(25.16)-14- 34.2 270.3

0(180.81)-10-0(0.03)-14-0-TSP-0

1.3 0(2.84)-9-14-0-14-0(4.6)-13-14-0(68.17)-12-0(23.2)-14- 32.8 279.8

0(181)-14-0-TSP-0

1.4 0(1.71)-9-14-0-14-0(17.91)-14-0(64.55)-12-0(14.51)-14- 31.7 274.4

0(175.72)-14-0-TSP-0

that visit only a certain percentage of closer sites with high accumulation rate. The

solution proposed by the simple policy for the selected instance set is to make one

tour at time 120 and one tour at time 420, both of which visit only sites 10, 12, and

14, which are among 20% of sites with the highest λi/ti0 ratio. After τe, the vehicle

performs a TSP tour to collect the remaining items from sites. This solution has a

cost of 202 for all workload levels. Figure 5.3a provides the percentage of improvement
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on the processed amount and Figure 5.3b provides the percentage of improvement on

cost per processed item (CPPI) provided by our solution approach compared to the

simple policy for different workload levels. It is observed that the simple policy cannot

process all the accumulated amount even for the smallest workload level, whereas our

solution approach provides a solution that processes all of the collected items with a

smaller transportation cost of 171. As α2 increases, the costs of proposed solutions

are larger than that of the simple policy but the improvement percentages on the

processed amount are significant. In case of α2 = 1, the percentage improvement

provided by our solution approach on the processed amount is 22.5%. However, as

seen in Figure 5.3b, the improvement in customer service comes at an additional cost.

(a) on the processed amount (b) on the cost per processed item

Figure 5.3: The percentage improvement provided by our solution approach compared

to the simple policy for different workload levels for the selected instance set

As a result, we can provide the following insights to the decision makers. First,

for all workload levels and accumulation rate patterns, it is not efficient to perform

tours that visit all sites before τe. Second, if the accumulation rates of sites show a
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Pareto distribution, regardless of the place of processing facility, a significant portion

of the sites can be filtered out in each tour before τe. Third, as the workload level

increases, the vehicle should perform more tours visiting only a small subset of sites,

which are closer and have higher accumulated amounts. Fourth, the performance

of simple solution approaches depends on the workload level, and these approaches

might yield significantly suboptimal solutions.

5.3 Conclusions and summary of contributions

In this chapter, we propose an MIP-based heuristic approach for the single vehi-

cle collection for processing problem with two prioritized objectives. The proposed

heuristic is a lexicographic approach, since it first optimizes the objective with the

first priority, and then, it optimizes the objective with the second priority among all

alternative optimal solutions. The heuristic incorporates additional constraints to the

MIP model with the goal of eliminating solutions that are likely to be suboptimal.

The computational tests show that the proposed approach finds solutions that are

very close to optimal in terms of the processed amount. Furthermore, we show that

transportation costs of these solutions are in the vicinity of 13% to optimality on the

average.

We identify the workload level (i.e., α2) as a key indicator parameter for problem

difficulty. For small (α2 < 1) and large (α2 ≥ 1.2) workload levels, the problem

becomes easier. When α2 is close to 1, the vehicle should perform frequent, and more

carefully designed tours in order to feed the processor continuously. In such cases,

a high service level can be achieved at the expense of a higher transportation cost.

Another indicator of problem difficulty is the pattern of the accumulation at the sites.

When the pattern is Pareto visiting sites with low accumulation rates can be ruled

out without significantly compromising from optimality.
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Chapter 6

A PRIORITIZED BICRITERIA HEURISTIC FOR THE

SINGLE VEHICLE PROBLEM

In this chapter, we focus on the single vehicle collection for processing problem

with two prioritized objectives and present a heuristic algorithm that obtains high

quality solutions even for larger-size problem instances in reasonable computation

time. Since our heuristic approach combines a tabu search algorithm by a prioritized

search mechanism and solves an LP model to evaluate each candidate solution at

every iteration, it is referred to as BM (bicriteria matheuristic).

The differences between the proposed tabu search based matheuristic, we propose

in this chapter, and a classical tabu search approach are as follows: Our BM algorithm

addresses a bicriteria problem with priority levels. In order for this, the algorithm

evaluates a candidate solution in terms of both objectives and determines the next

iteration’s solution according to the priorities associated with each objective. Our

BM algorithm can be considered as a matheuristic approach [see Maniezzo et al.,

2009] due to its hybridization approach that is based on the integration of LP with a

tabu search scheme. The solution with either first improvement or best improvement

is selected according to the neighborhood solutions.

The remainder of this chapter is organized as follows. The proposed solution

methodology is presented in Section 6.1. Results and analysis of numerous computa-

tional experiments conducted on realistic data instances are provided in Section 6.2.

Finally, Section 6.3 concludes with a summary and contributions of this chapter.
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6.1 Solution approach

More specifically, our BM algorithm uses a tabu search algorithm to determine the

sequence of nodes to be visited in all tours, i.e., the giant-tour, while the node visit

times of a giant-tour are scheduled through a linear programming (LP) model. The

LP model optimally schedules each giant-tour examined by the tabu search algorithm

under the single objective of maximizing the processed amount by time τf . The

tabu search searches the solution space in order to find a solution that processes as

many items as possible until the deadline, with the first priority, and to minimize the

transportation cost for the best found processed amount, with the second priority.

Upon termination, the algorithm provides a feasible scheduled giant-tour.

Two properties of optimal solutions to CfPP have been characterized by Propo-

sitions 4.3.2 and 4.3.3 in Section 4.3.2. The former states that any solution in which

the vehicle waits at a site can be converted to one in which the vehicle waits only at

the processing facility, without suboptimality. The latter states that there exists an

optimal solution such that a site is visited at most once in each tour. The BM seeks

solutions with these two properties.

The description of the BM algorithm is organized into the following sections.

Section 6.1.1 provides the solution representation and the notation. Section 6.1.2 de-

scribes a simple constructive heuristic that is used in the initial solution construction.

The LP model that finds an optimal schedule for a partial solution (a giant-tour) is

given in Section 6.1.3. Section 6.1.4 presents the tabu search algorithm that guides

its search according to the two prioritized objectives. Finally, the general scheme of

the BM algorithm is given in Section 6.1.5.
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6.1.1 Solution representation and notation

As described in Section 3.2, a CfPP solution has two components: a giant-tour

and a schedule of the giant-tour.

The giant-tour component of a solution g ∈ G, which is a partial solution, is

represented by a matrix, π, with κ1 + κ2 rows and n + 1 columns. The first κ1 rows

of π correspond to D-tours and the remaining κ2 tours correspond to A-tours. An

element in a row is a leg in a tour such that the vehicle visits the jth element in the

jth order. Since the vehicle is not required to visit all n nodes in a tour, there might

be a consecutive series of empty elements at the end of the corresponding row. In

addition, empty tours are also allowed.

In the algorithm, the schedule of a giant-tour is uniquely determined by an optimal

solution found by the LP model. Therefore, in the BM algorithm there is a one-to-one

correspondence between g and π.

6.1.2 Construction of an initial solution

An initial solution is required to start the search procedure. For this purpose,

first, a simple constructive tour building heuristic, which we refer to as TBH in short,

is applied to obtain an initial feasible scheduled giant-tour. Next, the schedule of

the initial solution is optimized in terms of the processed amount through the LP

model provided in Section 6.1.3. In the following paragraphs, we provide a detailed

description of the TBH algorithm.

The TBH constructs tours one at a time, dynamically, with the objective of min-

imizing the idleness of the processor during each tour, hence, in turn maximizing the

processed amount by time τf .

Let tour k be the current tour to be constructed. The TBH, first, determines

an upper bound for the duration of the tour, denoted by ∆k, so that the processor
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does not stay idle during the time interval (Rk−1, Rk]. Note that, the queue level at

the processing facility at the return time from tour k − 1, is Q(Rk−1), and the time

required for depletion of the queue at the processing facility is Q(Rk−1)/µ. If tour k

is completed by time Rk−1 + Q(Rk−1)/µ, there will be no idle time at the processing

facility during the tour. Accordingly, the TBH sets ∆k = Q(Rk−1)/µ. However, the

minimum possible tour length might be greater than ∆k, i.e., mini∈N{t0i + ti0} > ∆k,

then the processor has to stay idle for some time. In this case, the tour is constructed

according to a greedy rule, referred to as the Collection Rate Rule, which aims to

maximize the amount of items collected per unit time during the current tour. On

the other hand, if it is possible to construct a tour that returns to the processing

facility within ∆k time units, the TBH constructs the tour according to the Non-

Idling Rule, which aims to collect as many items as possible within ∆k time units.

Before explaining these rules in details, let us provide some notation for the current

tour k. Let Vk ⊆ N denote the set of sites visited, and node i ∈ Vk be the last node

visited so far in tour k. Let εpk represent the elapsed time from the processing

facility to node p ∈ Vk and apk represent the accumulated amount at site p ∈ Vk

at the time of visit. Note that both the time passed since the last visit of the site

and whether the visit time is before τe or after τe affects the accumulated amount.

Then, since Ip(Rk−1) denotes the amount of items at node p at time Rk−1, apk =

Ip(Rk−1) + λp(min{Rk−1 + εpk, τe} −min{Rk−1, τe}).

Starting with an empty tour, i.e., Vk = ∅, the current node i = 0, and εik = 0,

both the Collection Rate Rule and the Non-Idling Rule determine the nodes to be

appended at the end of tour k, one at a time, as follows.

Each time the Collection Rate Rule appends node j∗, which is not visited so far,

i.e., j∗ ∈ N\V , and maximizes the amount of items collected per unit time. More



Chapter 6: A prioritized bicriteria heuristic for CfPP 96

specifically,

j∗ = argmax
j∈N+\Vk


∑

p∈Vk

apk + ajk

εik + tij + tj0

 ,

where ajk is the accumulated amount at site j by the time of visit, which is calculated

as ajk = Ij(Rk−1) + λj(min{Rk−1 + εik + tij, τe} −min{Rk−1, τe}). Node j∗ is added

to Vk setting εj∗k = εik + tij∗ . (Note that j∗ might be the processing facility, where

a0k = 0.) The construction of tour k continues until j∗ = 0, in which case returning to

the processing facility results in the largest amount of items collected per unit time,

or, Vk = N , in which case all of the sites are visited.

Each time the Non-Idling Rule appends node j∗, which is not visited so far, i.e.,

j∗ ∈ N\V , and satisfies εik +tij∗ +tj∗0 ≤ ∆k, and has the largest accumulated amount

per unit additional travel time spent to obtain that amount. More specifically,

j∗ = argmax
j∈N\Vk|εik+tij+tj0≤∆k

{
ajk

δij

}
,

where ajk is the accumulated amount at site j at the time of visit, like in the case

of the Collection Rate Rule, and δij is the additional traveling time spent for visiting

site j, instead of returning to the processing facility right after visiting site i, i.e.,

δij = tij + tj0 − ti0. Node j∗ is added to Vk setting εj∗k = εik + tij∗ . The construction

of tour k continues as long as there exists a feasible candidate node j with positive

item volume, i.e., ajk > 0. Note that the tour duration, i.e., εik + ti0, should be less

than or equal to ∆k. If εik + ti0 is strictly less than ∆k, then the algorithm inserts

a waiting time of Wk = ∆k − (εik + ti0) time units at the processing facility before

starting the tour. Note that inserting a positive waiting time before the tour increases

the collected amount from every visited site.

After constructing tour k, the algorithm constructs the next tour, tour k + 1, and

so on. The TBH continues until the current time reaches time τf or all of the items

accumulated at sites are delivered to the processing facility. The pseudocode of the
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TBH is provided as follows.

By construction, the TBH prioritizes maximizing the processed amount and only

indirectly aims to minimize the transportation cost. Therefore, although the solutions

found by the TBH are effective in terms of the processed amount, they incur high

transportation cost as observed through computational experiments provided in Sec-

tion 6.2. Anyway, the BM algorithm uses the TBH as a fast heuristic that provides

good initial solutions.

Note that the TBH algorithm has no restriction on the number of tours of the

resulting solution. However, the BM algorithm constructs solutions that have at most

κ1 tours before τe and at most κ2 = n tours after τe. Therefore, if the TBH solution

has more than κ1 tours before τe, then κ1 is increased to the number of D-tours of

the initial solution generated by TBH. The impact of setting κ1 in such a dynamic

way is examined in Section 6.2.3.



Chapter 6: A prioritized bicriteria heuristic for CfPP 98

Algorithm 1 TBH algorithm

1: Set k ← 1, R0 ← 0, Ij(R0)← 0 for all j ∈ N .

2: while Rk−1 < τf do

3: Set i← 0, Vk ← {}, Wk ← 0, εjk ← 0 for all j ∈ N , ∆k ← Q(Rk−1)/µ.

4: if mini∈N{t0i + ti0} > ∆k then // Collection Rate Rule

5: Set j∗ ← argmaxj∈N+\Vk
{(

∑
p∈Vk

apk + ajk)/(εik + tij + tj0)} where ajk =

Ij(Rk−1) + λj(min{Rk−1 + εik + tij, τe} −min{Rk−1, τe}).

6: while j∗ 6= 0 and V ⊂ N do

7: Set Vk ← Vk ∪ {j∗}, εj∗k ← εik + tij∗ , i← j∗.

8: Set aj∗k ← Ij∗(Rk−1) + λj∗(min{Rk−1 + εj∗k, τe} −min{Rk−1, τe}).

9: Set j∗ ← argmaxj∈N+\Vk
{(

∑
p∈Vk

apk + ajk)/(εik + tij + tj0)}.

10: end while

11: else// Non-Idling Rule

12: Set j∗ ← argmaxj∈N\Vk|εik+tij+tj0≤∆k
{ajk/δij}.

13: while aj∗k > 0 do

14: Set Vk ← Vk ∪ {j∗}, εj∗k ← εik + tij∗ , i← j∗.

15: Set aj∗k ← Ij∗(Rk−1) + λj∗(min{Rk−1 + εj∗k, τe} −min{Rk−1, τe}).

16: Set j∗ ← argmaxj∈N\Vk|εik+tij+tj0≤∆k
{ajk/δij}.

17: end while

18: Set Wk = max{∆k − (εik + ti0), 0}.

19: end if

20: Set Rk ← Rk−1 + Wk + εik + ti0.

21: Set Q(Rk) = Q(Rk−1) − min{Q(Rk−1), µ(Rk − Rk−1)} +
∑

j∈Vk

(Ij(Rk−1) +

λj(min{Rk−1 + Wk + εjk, τe} −min{Rk−1, τe})).

22: Set Ij(Rk)← Ij(Rk−1) + λj(min{Rk, τe} −min{Rk−1, τe}) for all j ∈ N\Vk.

23: Set Ij(Rk)← λj(min{Rk, τe} −min{Rk−1 + Wk + εjk, τe}) for all j ∈ Vk.

24: Set k ← k + 1.

25: end while
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6.1.3 The LP model for scheduling

For a given partial CfPP solution (a sequence of nodes, i.e., a giant-tour), the

scheduling problem aims to provide a complete CfPP solution (a scheduled giant-tour)

by scheduling the giant-tour with the single objective of maximizing the processed

amount by time τf . As the vehicle is allowed to wait only at the processing facility ac-

cording to Proposition 4.3.2, scheduling the node visit times of a giant-tour reduces to

finding the waiting time at the processing facility prior to each tour. There are several

possible approaches to solve this scheduling problem. For example, a metaheuristic

algorithm such as a tabu search or a simulated annealing might be implemented for

this purpose. However, since all the expressions for the objective function and the

constraints are linear, and we have nonnegative decision variables, which are not re-

stricted to be integer, in this problem, the fastest way of obtaining an exact solution is

using an LP model. Therefore, we developed the following LP formulation to schedule

a giant-tour.

The model maximizes the processed amount by time τf for a given giant-tour π

and determines the optimal schedule of π, the node visit times in each tour, i.e., Tik’s.

The model has the following parameters and decision variables.

Parameters

xijk binary variable indicating if node j is visited immediately after node i in

tour k, (i, j ∈ N, k = 1, 2, . . . , κ1 +κ2). If x00k = 1, then tour k is an empty

tour.

εik required time to go from node 0 to node i in tour k, (i ∈ N , k = 1, 2, . . . , κ1+

κ2). If node i is not visited in tour k, then εik = 0.

Decision variables
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Tik visit time of node i at tour k (i ∈ N+, k = 1, 2, . . . , κ1 + κ2). If node i is

not visited in tour k, it denotes the last visit time of node i before tour

k (i.e., Tik = Ti,k−1). T0k denotes the starting time of tour k.

Rk return time of the vehicle from tour k to processing facility (k =

1, . . . , κ1 + κ2); R0 = 0.

Eik collected amount from site i in tour k, (i ∈ N, k = 1, 2, . . . , κ1 + κ2).

Sk total collected amount in tour k, (k = 1, 2, . . . , κ1 + κ2).

Lik auxiliary variable used to calculate Eik (i ∈ N , k = 1, 2, . . . , κ1 + κ2).

Wk waiting time of the vehicle at processing facility at the beginning of tour

k, (k = 1, 2, . . . , κ1 + κ2).

Qk amount of unprocessed items at the processing facility at the end of tour

k, (k = 0, 1, 2, . . . , κ1 + κ2). Q0 is a parameter, which represents the

number of unprocessed items at the beginning of the day.

Uk amount of processed items between Rk and Rk+1, (k = 0, 1, 2, . . . , κ1 +

κ2 − 1).

Uκ1+κ2 amount of processed items between Rκ1+κ2 and τf .

Model

M : Maximize
κ1+κ2∑
k=1

Uk

subject to

Rk = Rk−1 + Wk +
∑

(i,j)∈A

tijXijk, ∀k = 1, 2, . . . , κ1 + κ2, (6.1a)

T0k = Rk−1 + Wk, ∀k = 1, 2, . . . , κ1 + κ2, (6.1b)
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Rκ1+κ2 ≤ τf , (6.1c)

T0,κ1 ≤ τe, (6.1d)

T0,κ1+1 ≥ τe, (6.1e)

Tik =
∑
j∈N

xkij(Rk−1 + Wk + εik)

+ (1−
∑
j∈N

xkij)Ti,k−1, ∀i ∈ N, k = 1, 2, . . . , κ1 + κ2 (6.1f)

Lik ≤ Tik, ∀i ∈ N, k = 1, 2, . . . , κ1 + κ2, (6.2a)

Lik ≤ τe, ∀i ∈ N, k = 1, 2, . . . , κ1 + κ2, (6.2b)

Eik = λi(Lik − Li,k−1), ∀i ∈ N, k = 1, 2, . . . , κ1 + κ2, (6.2c)

Li0 = 0, ∀i ∈ N, (6.2d)

Sk =
∑
i∈N

Eik, ∀k = 1, 2, . . . , κ1 + κ2, (6.2e)

κ1+κ2∑
k=1

Eik = λiτe, ∀i ∈ N, (6.2f)

Uk ≤ µ(Rk+1 −Rk), ∀k = 0, 1, . . . , κ1 + κ2 − 1, (6.3a)

Uκ1+κ2 ≤ µ(τf −Rκ1+κ2), (6.3b)

Uk ≤ Qk, ∀k = 0, 1, . . . , κ1 + κ2, (6.3c)

Qk = Qk−1 − Uk−1 + Sk, ∀k = 1, 2, . . . , κ1 + κ2, (6.4)

All variables nonnegative. (6.5)

Constraints (6.1a)-(6.1e) define the relation between tour return times, waiting

times, and tour start times. Constraints (6.1a) and (6.1b) calculate the return time

and the starting time of a tour, respectively. Constraint (6.1c) ensures that the last

tour should be completed by τf , and Constraints (6.1d)-(6.1e) limit the number of

tours before τe by κ1.

Constraint (6.1f) defines the node visit times. If the vehicle visits node j imme-
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diately after node i in tour k, the constraint restricts the vehicle to be at node j at

time Tik + tij. If node i is not visited in tour k, Tik equals the last visit time before

that tour, i.e., Ti,k−1.

Constraints (6.2a)-(6.2f) are used to calculate the collected amounts from the vis-

ited nodes. As the accumulation at sites ends at time τe, λi(min{Tik, τe}−min{Ti,k−1, τe})

gives the collected amount from node i in tour k. Note that, if node i is not visited in

tour k, λi(min{Tik, τe} −min{Ti,k−1, τe}) is zero. We linearize this quantity by defin-

ing the auxiliary variables, Lik’s, as min{Tik, τe} through Constraints (6.2a)-(6.2b).

Constraints (6.2c)-(6.2e) calculate the collected amount in tour k. Constraint (6.2f)

ensures that all of the items accumulated at the nodes are collected.

The amount of processed items between the return times of two consecutive tours,

Uk, cannot be greater than the amount of unprocessed items, Qk, and the processing

capacity, µ(Rk+1 −Rk). This condition is satisfied via Constraints (6.3a)-(6.3c).

Constraint (6.4) balances the queue size at the processing facility.

Finally, Constraint (6.5) dictates nonnegativity of all variables.

For a given giant-tour, Model M can be used to generate a feasible scheduling

plan with a maximum processed amount by time τf .

6.1.4 The tabu search algorithm for routing

The BM algorithm utilizes a bicriteria tabu search technique to search the solution

space in order to find a solution that maximizes the processed amount by a deadline,

with the first priority, and to minimize the transportation cost for the best found

processed amount, with the second priority. The tabu search algorithm makes use of

the notation provided in Table 6.3.

The tabu search algorithm starts by setting the giant-tour of the solution of the

TBH algorithm as the current giant-tour and keeps moving from the current giant-
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Table 6.3: Notation used for the description of the tabu search algorithm of the BM

π current giant-tour

π∗ best found giant-tour so far

π′ neighboring giant-tour of giant-tour π, π′ ∈ N (π)

NI(π) neighboring giant-tours of giant-tour π with a larger processed

amount compared to that of π.

NII(π) neighboring giant-tours of giant-tour π with the same processed

amount and smaller transportation cost compared to those of π.

NIII(π) neighboring giant-tours of giant-tour π with the same processed

amount and the same or larger transportation cost compared to

those of π.

NIV(π) neighboring giant-tours of giant-tour π with a smaller processed

amount compared to that of π.

πI a giant-tour in NI(π)

π∗
II π∗

II ∈ NII(π) that has the smallest transportation cost

π∗
III π∗

III ∈ NIII(π) that has the smallest transportation cost

π∗
IV π∗

IV ∈ NIV(π) that has the largest processed amount

η total number of iterations allowed

γ number of iterations allowed without an improvement in any of the

objective functions

θ tabu tenure

tour π to a neighboring giant-tour π′ ∈ N (π) until a stopping condition is reached.

Neighborhood definition: N (π) is composed of all the giant-tours that can
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be reached by performing one of the following four move operations to the current

giant-tour, π. While performing these operations, feasibility due to the constraints

that (i) every tour visits a node at most once, (ii) each node must be visited exactly

once after time τe, (iii) the last D-tour should start before time τe, and (iv) the first

node of the first A-tour should be visited after τe should be retained.

1. Swap: Two nodes visited after τe are swapped. Since exactly n nodes are

visited after τe, π has at most n(n−1)/2 neighbors due to Swap move operation.

2. Delete: A node visited in a D-tour is deleted from that tour. In any D-tour,

at most n nodes can be visited, meaning that π has at most nκ1 neighbors due

to Delete move operation.

3. Insert : An unvisited node is inserted as the first leg of a D-tour. Since the set

of unvisited sites of a tour can have at most n members, Insert move operation

results in at most nκ1 neighbors.

4. Mutate: A node i visited in a D-tour is deleted from that tour and a node j,

which is selected randomly among the unvisited nodes in that tour, is inserted

in place of node i. In any D-tour, at most n nodes can be visited, meaning that

π has at most nκ1 neighbors due to Mutate move operation.

The size of N (π) is O(n2 + nκ1).

Tabu lists: When a node is removed from a tour through Swap, Delete, or Mutate

move operations, inserting it again into the same tour through Swap, Insert, or Mutate

move operations is prohibited, declared tabu, for θ iterations. Conversely, when a node

is inserted to a tour through Swap, Insert, or Mutate move operations, removing

it again from the same tour through Swap, Delete, or Mutate move operations is

prohibited, for θ iterations. Similarly, when two nodes visited after τe are swapped,
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exchanging them again is prohibited for θ iterations. Therefore, each move operation

has its own tabu list with size θ.

As an aspiration criterion, the BM algorithm allows solutions which are better

than the currently-known best solution in terms of the processed amount.

Solution evaluation: Since the LP model is used to schedule a giant-tour op-

timally, it provides the optimal processed amount by time τf for the corresponding

CfPP solution. The transportation cost of a CfPP solution is calculated by adding

up the transportation costs of traversed edges in its giant-tour.

Search mechanism and improvement strategy: As previously mentioned,

a prominent challenge of the BM algorithm is to identify a giant-tour that allows

for a scheduling plan with the largest processed amount and lowest transportation

cost. With this goal, two objectives with priority levels are handled in the tabu

search framework as follows. While searching the solution space, the algorithm assigns

priorities to each neighboring giant-tour. A neighboring giant-tour π′ ∈ N (π), which

is compared to the current solution π, belongs to one of the following four priority

classes (sets) that are ordered from highest to lowest:

1. NI(π) contains neighboring giant-tours that lead to CfPP solutions with larger

processed amount compared to that of π.

2. NII(π) contains neighboring giant-tours that lead to CfPP solutions with the

same processed amount and smaller transportation cost compared to those of

π.

3. NIII(π) contains neighboring giant-tours that lead to CfPP solutions with the

same processed amount and the same or larger transportation cost compared

to those of π.
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4. NIV(π) contains neighboring giant-tours that lead to CfPP solutions with a

smaller processed amount compared to that of π.

With this notation, N (π) = NI(π)
⋃
NII(π)

⋃
NIII(π)

⋃
NIV(π). While searching

the neighborhood of a current giant-tour π, if a neighboring giant-tour that belongs to

the priority class NI(π) is encountered, then it is selected as the current giant-tour of

the next iteration due to the higher priority of maximizing the processed amount by

time τf . Since the whole neighborhood has not been scanned yet, this is a kind of first

improvement strategy. If there is no neighboring giant-tour that belongs to the priority

class NI(π), then the neighboring giant-tour that belongs to NII(π) with the smallest

transportation cost is selected as the next giant-tour and is identified as π∗
II. In this

case, since the whole neighborhood has been scanned, a best improvement strategy is

taken. Therefore, a combination of the first and best improvement strategies is used

by the BM algorithm. Note that, during the search of the neighborhood of π, the

neighboring solutions, π∗
II, π∗

III, and π∗
IV, are updated.

Since the first improvement strategy is used by our BM algorithm, the order of

scan of the neighborhoods of the move operations affects the best-found solution. Af-

ter sample runs, we identified the best order of scan of the neighborhoods of the move

operations as Insert, Mutate, Delete, and Swap. The impact of the selected improve-

ment strategy and the order of scan of the neighborhoods of the move operations are

examined in Section 6.2.3 through experimental tests.

Diversification: Diversification techniques are often used in tabu search algo-

rithms to escape from local optima. We consider the following two strategies for this

purpose.

1. When both NI(π) and NII(π) are empty, then the neighboring giant-tour, iden-

tified as π∗
III ∈ NIII(π), which has the smallest transportation cost in NIII(π), is

selected as the giant-tour of next iteration.
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2. If NIII(π) is also empty in addition to NI(π) and NII(π), then the neighboring

giant-tour, identified as π∗
IV ∈ NIV(π), which has the largest processed amount

in NIV(π), is selected as the giant-tour of next iteration.

Termination: We use two termination criteria in the algorithm. The algorithm

stops after a chosen number of iterations (η) or a specified number of iterations

without an improvement (γ) in the objective function.
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6.1.5 The algorithm

Algorithm 2 The BM algorithm

1: Construct the initial solution g0, which has a giant-tour π0.

2: Set π ← π0, π∗ ← π0 and calculate P π∗(τf ) and Cπ∗(τf ).

3: Initialize Tabu Lists.

4: while termination criteria not satisfied do

5: Set P (τf ) = 0 and C(τf ) =∞ for π∗
II, π

∗
III, π

∗
IV.

6: for π′ ∈ N (π) do

7: if P π′(τf ) > P π∗(τf ) then // π′ improves the best found P (τf )

8: Set π ← π′.

9: Update π∗, P π∗(τf ) and Cπ∗(τf ). // First improvement strategy

10: go to UPDATE.

11: else if P π′(τf ) = P π∗(τf ) then

12: if Cπ′(τf ) < Cπ(τf ) then // π′ improves the best found C(τf )

13: if Cπ′(τf ) < Cπ∗II(τf ) then

14: Set π∗
II ← π′. // Update the candidate solution

15: end if

16: else if Cπ′(τf ) < Cπ∗III(τf ) then // No improvement

17: Set π∗
III ← π′. // Update the candidate diversifying solution

18: end if

19: else if P π′(τf ) > P π∗IV(τf ) then // No improvement

20: Set π∗
IV ← π′. // Update the candidate diversifying solution

21: end if

22: end for
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Algorithm 2 The BM algorithm(cont.)

23: if π∗
II 6= NULL then

24: Set π ← π∗
II.

25: Update π∗, P π∗(τf ) and Cπ∗(τf ). // Best improvement strategy

26: else if π∗
III 6= NULL then

27: Set π ← π∗
III. // Diversify

28: else

29: Set π ← π∗
IV. // Diversify

30: end if

31: UPDATE: Update the Tabu List of the move operation used to obtain π.

32: end while

6.2 Computational experiments

In this section, we analyze the performance of the solutions obtained by the pro-

posed solution approach using numerical experiments with two groups of test in-

stances. The first group is composed of the benchmark data sets introduced in Chap-

ter 5 that has a number of nodes varying between 10 and 18, and the second group

includes a new set of data instances tailored from the selected CVRP (Capacitated

Vehicle Routing Problem) instances from the literature with up to 51 nodes. In this

section, we explain how the new test problems were generated, and the results ob-

tained with the algorithm on both groups of test problems. We compare the solution

values of the BM algorithm with those of TF heuristic proposed in Chapter 5. In

addition, we evaluate the performance of solutions obtained from the BM algorithm

using the upper bound on the processed amount by time τf and the lower bound on

the transportation cost, which are derived in Chapter 4. Since the TBH algorithm is

used as an initial solution generator for the BM, through the computational analysis
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we also aim to see how much the BM algorithm improves the solution of the TBH in

terms of both objectives.

The BM approach was implemented in C++. ILOG CPLEX 12.2 was used to solve

the LP model of the BM algorithm. The computational experiments were performed

on a Xeon E5520 @ 2.27 GHz processing unit with 48GB of memory.

6.2.1 Description of the test instances

We apply our BM approach on two groups of instances. The first group is com-

posed of test instances, which are defined in Chapter 5 based on the data of a clinical

laboratory, and include 12 instance sets, where each set is defined on a different com-

plete graph, G = (N+, E) with the number of nodes in N+ varying between 10 and

18. In each instance set, there are three instances generated according to three work-

load levels (α2 = 0.8, 1.0, 1.2). As a result, there are 36 data instances in total in the

first group.

In the second group, we tailored a set of CVRP data instances from the VRPLIB-

DEIS. We selected 3 different problem sizes from VRPLIB-DEIS (31, 41, and 51), each

of which corresponds to an instance set. In the following paragraphs, we describe how

the CVRP instances are tailored to obtain CfPP instances.

All nodes except the depot have demands in a CVRP instance. By default, we

take the demand of a node i ∈ N in a CVRP instance as the accumulation rate of

the site, λi, in the corresponding CfPP instance.

Similar to the first group of CfPP instances, in each instance set, there are three

instances generated according to three workload levels (α2 = 0.8, 1.0, 1.2) by vary-

ing µ. The value of µ for the corresponding instance is defined using the equality

τe

∑
i λi = α2µτf . As a result, there are 9 data instances in total in the second group

of CfPP instances.
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Distance matrices, dij’s, of the CVRP instances remain as given in the correspond-

ing CfPP instances and the travel time of edge (i, j) is assumed to be equal to the

traveling distance, i.e., tij = dij.

In the first group of instances τe = 660, and τf = 1, 260 minutes. This setting

remains the same in the second group.

The data sets can be accessed at http://home.ku.edu.tr/eyucel/Research/Dataset

CfPP.zip.

6.2.2 Experimental setting

The BM algorithm involves five parameters: (η, γ, θ, κ1, κ2) (see Table 6.3). On

the basis of preliminary tests, we set these parameter values as η = 500, γ = 6, θ =

8, κ1 = 10, κ2 = n.

Because of the randomness associated with the Mutate move operation, different

runs of the BM algorithm lead to possibly different solutions. We made some prelim-

inary tests with different seeds of the random numbers generator, and we observed

that 5 experimental runs are sufficient to evaluate the quality of the BM. Thus, we

generated 5 experimental runs in the following tests. From these runs, the BM so-

lution with the best processed amount is provided. The total run time of 5 runs (in

seconds) is reported for the BM algorithm. The TF heuristic in Chapter 5 was run

for a total computation time of six hours (21600 s) on the same computation platform

that the experiments of the BM were done. Note that the running time of the TBH

algorithm is approximately 1 s, which is negligible.

6.2.3 Experimental results

In this section, we first compare the solutions found by the BM, TF, and TBH

algorithms in terms of the processed amount by time τf and the transportation cost

http://home.ku.edu.tr/eyucel/Research/Dataset CfPP.zip
http://home.ku.edu.tr/eyucel/Research/Dataset CfPP.zip
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for both groups of CfPP test instances. We report the solutions with respect to the

deviations from

UBP (τf ) the upper bound presented in Chapter 4 on the processed amount by time

τf that is found by relaxing the single vehicle restriction and assuming

that there are infinitely many vehicles, and

LBC(τf ) the best lower bound on the transportation cost obtained from the two

relaxations given in Chapter 4, which are defined for a given level of the

processed amount, at the end of a run time limit of four hours (14400 s).

In addition, we analyze the impact of some characteristics of the BM algorithm

on the solution quality. Finally, we investigate the effect of the problem size and

workload level on the solutions and the problem difficulty.

The comparative results of the BM, TF, and TBH algorithms on the first and

second group of CfPP test instances are provided in Table 6.6 and Table 6.7, respec-

tively. In the tables, the first three columns specify the instance. Then, for each

algorithm, three columns report the processed amount by time τf (P (τf )), the trans-

portation cost (C(τf )), and the percentage gap between P (τf ) and UBP (τf ), which is

referred to as GapP (τf ) and calculated as 100(UBP (τf ) − P (τf ))/P (τf ). For the BM

solutions, we also report the run time under the CPU sec column. For each instance,

for the solution with the best found P (τf ) value among the BM and TF solutions,

the percentage gap between C(τf ) and LBC(τf ), which is referred to as GapC(τf ) and

calculated as 100(C(τf )−LBC(τf ))/(LBC(τf )), is reported in parenthesis besides C(τf )

value. In Table 6.7, rows with * sign indicate that the TF approach cannot find a

feasible solution at the end of the given run time limit.
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The results prove the effectiveness of the BM algorithm on both groups of CfPP

instances. In all CfPP instances, the BM solutions dominate the TF solutions in

terms of both objectives. The percentage deviation on the processed amount between

the TF and BM solutions is less than 1% on the average for the first group of CfPP

instances. In Table 6.7, we see that as the problem size and the workload level increase,

the TF heuristic cannot even find a feasible solution at the end of the given run time

limit. For the instances in the second group that the TF can find a solution at the

end of run time limit, the percentage deviation on the processed amount between the

TF and BM solutions is 6% on the average for the ones. This shows the effectiveness

of the BM algorithm on larger CfPP instances.

For the first group of CfPP instances that the BM finds solutions with strictly

larger P (τf ) value, the percentage deviation on the transportation cost between the

TF and BM solutions is −7% on the average. On the other hand, for the second group

of CfPP instances, the percentage deviation on the transportation cost between the

TF and BM solutions is 20.1% on the average.

Next, we compare the BM and TF heuristics in terms of the computation time.

The results reported in Tables 6.6 and 6.7 show that the BM is faster than the TF

heuristic which has a total run time of 21600 s. According to Table 6.7, for larger

CfPP instances with higher workload levels, the TF heuristic cannot even find a

feasible solution at the end of this run time limit. On the other hand, it takes 18711 s

on the average (maximum = 21502 s) for the BM algorithm to find the best solution.
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From these results, we can also examine how much the initial solution found by the

TBH heuristic improves through the BM algorithm. For the first group of instances,

the initial solution is improved by the BM 1.2% on the processed amount and 56.5%

on the transportation cost, on the average. For the second group of instances, the

initial solution is improved by the BM 2.7% on the processed amount and 34.4% on

the transportation cost, on the average.

Next, we analyze the impact of some characteristics of the BM algorithm on the

solution quality.

Impact of the improvement strategy

Although a general approach used in tabu search applications is to use only best

improvement strategy, our BM algorithm uses both first and best improvement strat-

egy, together. In order to evaluate the impact of this novel improvement strategy on

the quality of the solution generated by the BM algorithm, the first instance set in

Table 6.6 is chosen. We implemented a variant of the BM algorithm that uses only

best improvement strategy. The results shown in Table 6.8 refer to the best found

solutions of the original BM algorithm and its variant (the BM without first improve-

ment strategy). In the table, P ′(τf ) and C ′(τf ) stand for the processed amount and

the transportation cost of the best found solution of the BM variant. From the table,

it can be observed that the original BM algorithm finds dominating solutions in terms

of both objectives in a shorter amount of time than its variant. Clearly, the reason

for this is that if first improvement strategy is not applied, then it requires more time

to pass to the next iteration on the average. When α2 = 0.8, both algorithms find

the same solution, but the computation time of the BM variant is longer. Figure 6.1

shows how both objective values change on time for α2 = 1 and 1.2 for both of the

algorithms. The figure shows that for the selected instance set the first improvement
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strategy diversifies the search.

Table 6.8: Test results for the selected instance set provided by the BM with and

without first improvement strategy

Instance BM BM without first improvement strategy

Set α2 P (τf ) C(τf ) CPU sec P ′(τf ) C′(τf ) CPU sec

1

0.8 10493 160 427 10493 160 863

1 10185 329 1498 10171 334 2006

1.2 8507 280 1682 8471 288 1944

Avg. 9346 304.5 1590 9321 311 1975

Figure 6.1: Change in the objective values on time for α2 = 1 and 1.2 for BM with

and without first improvement strategy
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Impact of setting κ1 in a dynamic way

Note that our BM algorithm constructs solutions that have at most κ1 tours before

τe and κ1 is initially set to 10 during the computational experiments. However, if

the TBH solution has more than κ1 tours before τe, then the BM increases κ1 to

the number of D-tours of the initial solution generated by the TBH. Now, we test

the impact of setting κ1 in such a dynamic way inside the BM algorithm. For this

purpose, we implement the variant of the algorithm with fixed κ1, i.e., κ1 = 10. Since

the number of D-tours of the initial solution generated by the TBH is larger than 10

for the instance set with size 51 in Table 6.7, this instance set was chosen for these

tests. The results shown in Table 6.9 provide the solutions of the original algorithm

and the variant with fixed κ1. In the table, for both the original BM and its variant,

five columns report the processed amount by time τf (P (τf )), the transportation cost

(C(τf )), the number of D-tours (K1), the number of A-tours (K2), and the percentage

of visited sites in each D-tour (V1) of the best found solutions. The last column in

the table, Gapκ1

P (τf ), reports the percentage gap between the best found processed

amounts. The table shows that the gap between the processed amounts of the best

found solutions is 7.3% on the average. The number of D-tours of the best found

solutions of the original BM are nearly three times larger than those of the BM with

fixed κ1, on the average. However, the percentage of sites visited in each tour of

the original BM solutions are nearly half of those of the BM variant, on the average,

meaning that setting κ1 dynamically results in solutions that perform frequent and

short tours to feed the processor at the processing facility.
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Table 6.9: Test results for the selected instance set provided by the BM with and

without fixed κ1 = 10

Instance BM BM with fixed κ1 = 10 Gapκ1
P (τf )

n α2 P (τf ) C(τf ) K1 K2 v1 P (τf ) C(τf ) K1 K2 v1 (%)

50

0.8 512820 893 24 1 12.8 467986 705 6 1 23.3 9.6

1 473850 982 19 1 14.6 439584 644 7 1 33.7 7.8

1.2 404679 981 18 1 18.1 386674 628 7 1 32.7 4.5

Avg. 463783 952 20.3 1 15.2 431415 659 6.7 1 29.9 7.3

Impact of the order of scan of the neighborhoods of the move operations

Since the first improvement strategy is used in our BM algorithm, the order of scan

of the neighborhoods of the move operations affects the best-found solution. Note that

the original order of scan of neighborhoods in our BM algorithm is Insert(I)-Mutate

(M)-Delete(D)-Swap(S), which we refer to as I-M-D-S in short. Now, we test the BM

algorithm with different order of scan of the neighborhoods of the move operations.

We again picked the first instance set in Table 6.6 to perform these tests. Since there

are four types of move operations, there are 24 different possible orderings. Although

we tried all of the possible orderings in our sample runs, due to space limitations, in

Table 6.10, we report the results for the BM variants with one of the three selected

orderings (M-I-D-S, I-M-S-D, I-D-M-S), which provide better results compared to the

others, in addition to the original BM with ordering of I-M-D-S. In the table, for each

BM variant, two columns report the processed amount by time τf (P (τf )) and the

transportation cost (C(τf )) of the best found solution. According to the table, the

best found solutions of the original BM algorithm dominate the others although the

BM variants with the orders M-I-D-S and I-D-M-S find close solutions.
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Table 6.10: Test results for the selected instance set with different orders of neighbor-

hood scan

Instance BM BM with M-I-D-S BM with I-M-S-D BM with I-D-M-S

Set α2 P (τf ) C(τf ) P (τf ) C(τf ) P (τf ) C(τf ) P (τf ) C(τf )

1

0.8 10493 160 10493 162 10493 181 10493 160

1 10185 329 10185 329 10179 354 10185 348

1.2 8507 280 8498 277 8467 293 8507 282

Impact of the problem size

Now, we analyze the impact of the problem size on the problem difficulty and

the quality of solutions found by our BM algorithm. Figure 6.2 provides a bar chart

extracted from Tables 6.6 and 6.7 on the statistics of GapP (τf ) value for different prob-

lem sizes. According to the figure, although the best found solutions have a processed

amount very close to that of the infinite vehicle relaxation, for larger problem sizes

the maximum gap increases up to 11.85%. These relatively large gaps may be at-

tributed to several factors: (1) the weakness of the upper bounds, (2) the possibility

that the best found solutions may be far from the optimal, (3) inherent computational

difficulty of the problem for large problem sizes.
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Figure 6.2: GapP (τf ) statistics of the BM solutions for different problem sizes

Impact of the workload level

Next, we analyze the effect of workload level on the transportation cost and the

number of tours. Table 6.11 and Table 6.12 report the statistics on the transportation

costs and the average number of tours for different workload levels for the first and

second groups of instances, respectively. In the tables, the results of the BM and

TF solutions are reported separately. According to Table 6.11, similar to the TF

solutions, in the BM solutions, the vehicle performs fewer tours when α2 = 0.8 paying

the lowest transportation cost on the average. Both approaches incur the highest cost

and the highest number of tours on the average when α2 = 1. Here, we note that as

stated in previous paragraphs the BM solutions outperform the TF solutions in terms

of the processed amount, therefore Tables 6.11 and 6.12 cannot be used to compare

the BM and TF solutions in terms of the transportation cost and the number of tours.
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Table 6.11: Average results over each workload level for the first group of instances

α2 Avg. Avg. Avg. Avg. Avg. Avg.

P (τf ) C(τf ) K1 K2 v1 GapP (τf )

(%) (%)

0.8
BM 5375 178.5 2.8 1.2 15.9 0

TF 5375 183 3.50 1 15.5 0

1
BM 5194 369.5 8.3 1 18.9 1.7

TF 5188 356 8.92 1 15.6 1.84

1.2
BM 4344 320.3 7.4 1 17.2 1.4

TF 4342 315 7.75 1 15.15 1.45

Table 6.12: Average results over each workload level for the second group of instances

α2 Avg. Avg. Avg. Avg. Avg. Avg.

P (τf ) C(τf ) K1 K2 v1 GapP (τf )

(%) (%)

0.8
BM 476300 618 10.3 1 29.9 0

TF 450338 564 4.33 1 26.4 5.84

1 not valid

1.2 not valid

Alternatives to prioritized objectives

As stated in Section 4.2.1, there are alternative approaches to deal with MOOPs

with a priori prioritized objectives. Now, we consider two other approaches to handle

the two objectives of CfPP and evaluate their suitability for CfPP optimization. First,

the common approach of taking a weighted sum of the objectives is considered and

a composite single objective function is generated from the two objectives of CfPP
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as ω1P (τf ) + ω2C(τf ), where ω1 + ω2 = 1. To analyze the effect of this approach

on the solution quality, we implemented a variant of the BM algorithm that maxi-

mizes only this composite single objective function. We call this variant of BM as

M<ω1,ω2>. During our experimental analysis, we considered two sets for < ω1, ω2 >

as < 0.7, 0.3 > and < 0.6, 0.4 >.

Second, as another way of unifying the two objectives, the performance metric,

CPTU, is defined as the cost paid per 1,000 units processed, and we implemented

another variant of the BM algorithm that minimizes only CPTU. We call this variant

of BM as MCPTU.

Again, we picked the first instance set in Table 6.6 for these tests. In Table 6.13,

we report the best found solutions of the BM variants. In the table, for each of the

variants, three columns report the processed amount by time τf (P (τf )), the trans-

portation cost (C(τf )), and the CPTU value of the best found solution. According

to the results, the original BM finds better results in terms of both objectives for this

instance set.

Table 6.13: Test results for the selected instance set with different objectives

Instance BM M<0.6,0.4> M<0.7,0.3> MCPTU

Set α2 P (τf ) C(τf ) CPTU P (τf ) C(τf ) CPTU P (τf ) C(τf ) CPTU P (τf ) C(τf ) CPTU

1

0.8 10493 160 15.2 10493 171 16.3 10493 181 17.2 10493 160 15.2

1 10185 329 32.3 10149 311 30.6 10179 354 34.8 10153 307 30.2

1.2 8507 280 32.9 8500 243 28.6 8484 231 27.2 8500 233 27.4
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6.3 Conclusions and summary of contributions

In this chapter, we present a bicriteria matheuristic, BM, to address the single

vehicle collection for processing problem with two prioritized objectives. The proposed

approach combines a tabu search scheme with exact LP models in a way that the

use of LP models speeds up the search process by means of completing the partial

solution of tabu search optimally. Our heuristic handles the two prioritized objectives

of the problem through a novel approach by classifying the neighborhood into priority

classes and using a combination of first and best improvement strategies to update

the current solution. Priority classes also enhance the diversification.

Our heuristic has been tested on realistic data sets. The results show that the

proposed heuristic outperforms the TF heuristic developed in Chapter 5 by providing

effective solutions for large-size CfPP instances within reasonable computation time.

Through numerical tests we also show that the novel features of our algorithm are

largely responsible for its effectiveness in the computational experiments.
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Chapter 7

CONCLUSION

With developments in medical technologies and increasing use of clinical testing

procedures, clinical testing laboratories are likely to continue their crucial role in the

delivery of healthcare services. This thesis has addressed the specimen collection

problem that clinical testing laboratories face daily, and often results in lost process-

ing capacity, penalties due to late delivery of test results, increased processing and

transportation costs, and potential negative impact on patient health. The prob-

lem was formalized as collection for processing problem (CfPP). Specifically, CfPP

aims to transport items that accumulate at a number of geographically-dispersed

sites throughout the working day to a centralized facility for subsequent processing

on equipment with limited capacity.

We studied two variants of the collection for processing problem in this thesis: (i)

multi-vehicle problem under the objective of minimizing total completion time of all

the accumulated amount, i.e., makespan, which is defined as mCfPP(Cmax), and (ii)

single vehicle problem under the objectives of maximizing the total processed amount

as a first priority and minimizing the transportation costs as a second priority.

We proposed the first approximation result for mCfPP(Cmax). We proved that

the problem is NP-hard by a reduction from a two-stage, hybrid flowshop scheduling

problem. We analyzed the special case with a single site to find the number of vehicles

necessary to achieve the minimum makespan and to identify the minimum makespan

for a single vehicle. Using the insights obtained from these results, we developed a

clustering-based, constant-factor approximation algorithm for this strongly NP-hard
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problem. The proposed approximation algorithm is based on the idea of partitioning

the sites into clusters, and solving a single vehicle problem for each cluster. Since

assigning a single vehicle to a dedicated region of sites is a practically used approach

in the real-world problem and the worst-case bound of the proposed algorithm is

motivating, we studied the single vehicle problem.

We studied the single vehicle problem with two prioritized objectives. We showed

that this problem is NP-hard and formulated a mixed integer programming (MIP)

model for its solution. We observed that since the solution space is extremely large

even for small problem sizes, the MIP model strengthened with valid inequalities can-

not find good solutions within reasonable time. Therefore, we proposed two heuristic

approaches to address the single vehicle problem. We also presented a procedure to

calculate an upper bound on the processed amount by a deadline and two relaxed

MIP models to generate lower bounds on the transportation cost.

The first heuristic for the single vehicle problem incorporates additional constraints

to the MIP model with the goal of eliminating solutions that are likely to be sub-

optimal. We showed through computational tests that the proposed approach finds

solutions that are very close to optimal in terms of the processed amount. Further-

more, we showed that transportation costs of these solutions are in the vicinity of

13% to optimality on the average. In addition, we identified the workload level and

the pattern of the accumulation at the sites as key indicator parameters for problem

difficulty.

In order to solve larger instances of the single vehicle problem, we presented a bicri-

teria matheuristic, that combines a tabu search scheme with exact linear programming

models. Numerical experiments conducted on the realistic data sets showed that the

proposed heuristic was able to provide effective solutions for actual large-size instances

within reasonable computation time. In the proposed bicriteria matheuristic, the use

of linear programming models enhanced the search process by means of completing
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the partial solution of tabu search optimally. By classifying the neighborhood into

priority classes and using a combination of first and best improvement strategies to

update the current solution, the heuristic handled two objectives with priority levels

while searching the solution space. Priority classes also enhanced the diversification.

These features were largely responsible for the effectiveness of the proposed approach

in the computational experiments.

In conclusion, the proposed research not only yields practical insights and heuris-

tics, but also significant extensions to the theory through novel solution methodologies

for the generalized problem of coordinating transportation decisions and subsequent

processing operations. Hence, while the problem is described in the context of a

healthcare logistics problem, we expect that the results obtained in this thesis would

be useful to the logistics problems encountered in environments with accumulation of

items at the nodes and subsequent processing of these items at a centralized facility

where processing is a critical concern.

7.1 Future research directions

There are the following ample opportunities for further research in the context of

the collection problem in clinical laboratories.

An important characteristic in the real-world problems is that accumulation rates

at the sites change throughout the day; typically the specimen accumulation rates are

higher in the morning than the other times of the day, but the delivery of the specimens

at the processing center are later in the afternoons. The pickups and delivery need

to be coordinated so that the expensive processing equipment is better utilized. In

addition to making better decisions regarding the collection of items from the various

locations, the processing rate of the equipment can be adjusted throughout the day

to better match the collection rate. Explicit modeling of the nonstationary nature of
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accumulation at the nodes, in conjunction with the consideration of possibly changing

the processing capacity throughout the day is likely to yield significant improvements

in the amount of specimens that can be processed per day, and as well as reductions

in the labor, operating, and transportation costs.

While processing equipment requires significant capital investment, it is conceiv-

able that processing is performed in multiple locations rather than a single centralized

location. A promising research direction is to investigate the implications of extend-

ing our models to the case of multiple processing facilities, so that selection of the

processing center is considered in addition to the routing/scheduling of the visits.

It would also be interesting to consider information/data availability at the collec-

tion sites as an additional problem characteristic. If the status of each collection site

is available in real-time, then dispatching vehicles and scheduling of collection times

can be made more efficient.

Finally, another interesting topic for further research would be to address the

problem of locating satellite pre-processing facilities to decrease delays at the central

facility – where and with what capacity. Candidate locations for these units are the

laboratory’s own patient service centers. In particular, the various collection sites

need to be assigned to the various pre-processing locations, and these locations have

to be staffed appropriately. The research on this problem might be broadened to

answer how the specimens should then be transported to the central facility.
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EDA YÜCEL was born in Denizli, on January, 1982. She graduated with a B.S.

degree from Bilkent University Department of Computer Engineering in 2003, with a

3rd rank. Up to July 2004, she worked in Milsoft Software Technologies as a design

and software engineer. She started the M.Sc. program in Industrial Engineering
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She is married to Ahmet Oğuz and they have two sons, Mert Selim and Mete

Kerem.


	List of Tables
	List of Figures
	Nomenclature
	Introduction
	Motivation
	Solution methods
	Thesis contribution
	Thesis outline

	Literature review
	Studies on clinical specimen collection
	Traveling salesman problem and its related variants
	Traveling salesman problem with profits
	m-Traveling salesman problem

	Team orienteering problem
	Vehicle routing problem and its related variants
	Vehicle routing problem with multiple tours
	Vehicle routing problem with time windows

	Inventory routing problem
	Distinctive features of the collection for processing problem

	A constant-factor approximation algorithm for mCfPP(Cmax)
	Introduction
	Problem description
	NP-hardness of mCfPP(Cmax)
	Preliminaries

	Special case: mCfPP with a single site
	Multiple vehicles
	Single vehicle
	Analysis of the results

	Solution approach
	Clustering
	Scheduling
	Performance analysis

	Conclusions and summary of contributions

	Single vehicle problem with two prioritized objectives (CfPP)
	Introduction
	Previous work on multi-objective optimization and relevant heuristic approaches
	Studies on multi-objective combinatorial optimization problems
	Possible heuristic approaches for CfPP

	Problem description
	NP-hardness of CfPP
	Properties of some optimal solutions of a CfPP instance

	An upper bound on the processed amount by a deadline
	The mathematical model
	Valid inequalities
	Lower bounds on the transportation cost

	Conclusions and summary of contributions

	An MIP-based heuristic for CfPP
	Solution approach
	Searching for solutions with a final TSP tour
	Node filtering heuristic

	Computational experiments
	Description of the test instances
	Experimental results

	Conclusions and summary of contributions

	A prioritized bicriteria heuristic for CfPP
	Solution approach
	Solution representation and notation
	Construction of an initial solution
	The LP model for scheduling
	The tabu search algorithm for routing
	The algorithm

	Computational experiments
	Description of the test instances
	Experimental setting
	Experimental results

	Conclusions and summary of contributions

	Conclusion
	Future research directions

	Bibliography
	Vita

