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ABSTRACT

In this thesis, we study the robust counterparts of some classical stochastic dynamic

programming problems. In classical stochastic dynamic programming, the transition prob-

abilities of the underlying Markov Chain or other problem parameters are assumed to be

known with certainty. We focus on the case where the transition probabilities or other

input parameters have to be estimated from data and therefore are defined as an uncer-

tainty set. Robust dynamic programming addresses this problem by defining a max-min

game between Nature and the controller such that Nature’s solution is incorporated to the

problem as the minimizing argument whose feasible set is the uncertainty set. We consider

robust counterparts of classical problem using this approach. For a wide set of examples

from inventory and queueing control, we examine the structure of such robust counterparts

and the structure of their optimal policies. Constructing a systematic approach for exploit-

ing the usefulness of the event-based method is the primary tool in order to identify these

properties. This systematic approach enables us to show that the structure that governs the

optimal policy of the classical problem is retained for its robust counterpart for a wide set of

cases at the highest level of generality. In addition to this, we elaborate on the relationship

between the perfect duality property of a robust counterpart and its optimal policy and

an associated computationally efficient solution. Based on this latter approach, we propose

less conservative robust approaches that are both computationally tractable and responsive

to changes in the problem parameters.
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ÖZETÇE

Bu tezde bir dizi klasik stokastik dinamik problemin dayanıklı versiyonları ele alınmıştır.

Klasik stokastik dinamik programlamada, Markov Zinciri olasılık parametreleri veya diğer

problem parametrelerinin kesin olarak bilindiği varsayılır. Çalışmamızda, tarihsel veriden

veya diğer kaynaklardan tahmin edilmek durumunda olan bu parametreler bir belirsizlik

kümesi olarak ele alınmaktadır. Dayanıklı dinamik programlamada, Doğa ve kontrolör

arasında tanımlanan bir max-min oyunu çözülmesi ile söz konusu belirsizlik kümesinin

problem içerisinde modellenmesi sağlanır ve Doğa bu belirsizlik kümesi içerisinden prob-

lemin hedef fonksiyonunu minimize edecek argümanı seçer. Bu sayede elde edilen problem

klasik problemin dayanıklı eşleniğidir. Tezde, envanter ve kuyruk teorisi problemlerinden

geniş bir küme çalışılarak, elde edilen bu dayanıklı eşlenik problemlerin ve bu problem-

lerin optimal çözümlerinin yapısal özellikleri incelenmiştir. Söz konusu özelliklerin belir-

lenmesi öncelikle olay tabanlı yaklaşımın sistematik olarak kullanılması ile olmuştur. Ku-

rulan bu sistematik yaklaşım sayesinde, olabilecek en genel seviyede klasik problemde ve

ilişkili optimal çözümünde varolan matematiksel özelliklerin dayanıklı eşlenikte de varolduğu

gösterilmektedir. Bunun yanında dayanıklı eşleniğin mükemmel ikilik özellik özelliğine sahip

olması ile optimal politikasının ve bu politikanın hesaplanabilirliğine yönelik ilişkiler incelen-

mektedir. Bu inceleme sayesinde, max-min yaklaşıma göre daha esnek olup bunun yanında

gerek hesaplanabilirlik açısından gerekse de problem parametrelerindeki değişikliklere du-

yarlılık açısından etkili olan dayanıklı çözümler önerilmektedir.

xi
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Chapter 1

INTRODUCTION

1.1 Motivation

In this dissertation, we study a set of problems from queueing and inventory control the-

ory. These problems are consist of different replenishment (service) and demand (arrival)

components. Each component has a certain probability of event occurrence which could

correspond to the arrival of a customer or the completion of a service/production. The

optimal solution maximizes the total expected revenue and is obtained by stochastic dy-

namic programming for discrete time intervals by evaluating the state of the system in the

perception of immediate gain and future expected gain. These problems have been widely

studied by several authors for more than 30 years and the event-based dynamic program-

ming approach has been found to be useful in order to identify the structure of the optimal

policies determined by the thresholds such as protection levels, base stock levels or switch-

ing curves. In order to present an example, consider the classical single item inventory

management problem without replenishment (also known as single leg airline revenue man-

agement problem) where a certain number of inventory items have to be sold over a fixed

time horizon to different classes of customers that are distinguished by the prices they are

willing to pay. The demand is uncertain and the probability of selling to any customer class

is estimated from the historical data. The objective of the firm is to maximize expected

revenue over the sales horizon. The optimal actions are obtained for discrete time intervals

by evaluating each possible inventory status for the classical problem and the optimal ac-

tion for each stage and state does not depend on the decisions of other stage and states.

Therefore, the objective function (value function) is obtained at each stage and state sep-

arately. Mathematical properties of the value function such as concavity, supermodularity

(submodularity) and increasingness (decreasingness) are used to define the optimal policy,
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i.e. the set of optimal actions over the horizon. The optimal rationing policy defines the

optimal sales decision for each stage and state independently and has a monotone structure

and defined as a threshold type, i.e. to sell to the lower classes if the inventory level is higher

than the protection level at the given time. As one can already see, if the time left is short

enough, then it is optimal to satisfy demand from all customer classes, i.e., the protection

level is zero. Similarly, when the time left is long enough then it may be optimal to sell only

to the highest paying class. A replenishment component can be added to the model without

violating the structure of the optimal rationing policy, and the optimal replenishment policy

(set of all optimal actions defined for each stage and state) is characterized by base stock

level. Therefore, the optimal controller does not make a decision to produce unless the

number of inventory items falls below a certain level (base stock). Such kind of a structure

that governs the optimal policy enables managing the operations easily and improves the

solution time of the problem considerably.

Recently, as robust optimization became a popular topic, robust counterparts of these prob-

lems where problem parameters (transition probabilities, cost and reward values) are rep-

resented by uncertainty models rather than certain values have been studied by several

authors. There are several approaches for incorporating robustness into the model and one

of the most well known methods is based on defining a max-min game between the controller

and Nature. The controller decides according to the fact that Nature will select its decision

variable (uncertain problem parameters) in order to minimize the objective function (value

function). Although the max-min is a basic game theoretic model, it is a great challenge

for dynamic programming (DP) algorithms. The problem is twofold. The first question is

whether it is possible to solve these DPs in a reasonable time or not. It has been shown

that the robust counterparts of the DP problems can be solved in the same polynomial

time depending on the structure of the uncertainty set ([25]). The second question is the

existence of a structure that governs the optimal policy. Several authors from DP literature

studied specific problems for special uncertainty sets in order to find solutions to real life

problems. Our aim is to analyze the structure of these problems at the highest level of

generality. Therefore, we examine a wide set of problems and we use a general definition

of uncertainty set whenever possible. This approach also lets us propose well performing
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semi-robust optimal solutions that are computationally tractable.

1.2 Contributions

The main emphasis of the thesis is to analyze a wide set of problems in order to analyze

structure of the optimal policy and to explore how the robust optimal policy and the ob-

jective function change with respect to perturbations in the uncertainty sets. Instead of

restricting ourselves to a specific uncertainty model, we put our efforts into obtaining these

relationships by using general uncertainty model. The perfect duality is a commonly-used

term throughout the thesis, it is the case where the sequence of the game does not have

any effect on the objective function. Perfect duality is an efficient tool for identifying the

structural properties associated to the optimal policy. Because of this reason, we quest

the relationship between the perfect duality and the structure of the optimal policy. This

relationship has an importance especially for computational tractability and solution time

of the problem and is thoroughly studied in Chapter 3. We show in Chapter 3 that all of

the problems considered in the scope of this dissertation are perfectly dual if the transi-

tion probabilities are uncertain. Hence, the structure of the optimal policy of the classical

problem is retained for the robust counterpart for all of the problems we consider here. If

we consider the single-item inventory management with replenishment problem mentioned

above, the optimal rationing policy and the optimal replenishment policy are of threshold

type regardless of the structure of the uncertainty set representing transition probabilities.

It is important to note that the reverse statement is not always true. The optimal solution

can have the same structure with the classical problem even if the problem is not perfectly

dual and an illustration is included in Chapter 5. We also explore the case where other

problem parameters such as cost and rewards are uncertain. In this case, we show that

the problem is neither perfectly dual nor the optimal policy is structured. However, it is

interesting that the robust value function has the same mathematical properties with the

classical value function.

Apart from the difficulties of obtaining a solution, the robust approaches are subject to de-

bate as they are deemed to be too conservative and their solution may deviate considerably
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from optimality. Our analysis on the structural properties of robust problems enables us to

construct better performing semi-robust solutions while preserving computational efficiency.

We performed several numerical experiments and demonstrated how robust approaches can

be useful for improving performance when problem parameters are uncertain. It is notable

that semi-robust solutions are also efficient in improving the variability of the solution when

problem parameters are known with certainty.

1.3 Outline

The outline of the thesis is as follows:

Chapter 2: In Chapter 2, we provide definitions of the terms and methods used throughout

the thesis such as dynamic programming, robust dynamic programming, perfect duality and

event-based approach. We also describe the components that constitute the problem models

and define the operators which represent the mathematical definitions of these components.

Structural properties of the optimal policies are derived from mathematical properties of the

value function function such as concavity, supermodularity and K-concavity. We explain

these mathematical properties in that perspective and describe how the optimal policies

relate to these mathematical properties. Last, we provide a brief summary for some well-

known publications from the robust dynamic programming literature in that section.

Chapter 3: In this chapter, we provide the general results for a wide range of problems that

can be constituted of 12 different operators representing components. Here, we consider a

general definition of the uncertainty set and do not impose any particular mathematical

structure on the uncertainty model. First, we consider that the transition probabilities are

uncertain and at that level of generality we show that all of the mathematical properties of

the value function and the structural properties of the associated optimal policies propagate

to the robust counterpart. We show a stronger result than perfect duality in that case; the

independence of the optimal action from Nature’s posteriori decision. This kind of an in-

dependence enables us to exploit the event-based representation and improves the solution

time of the problem considerably. Then, we extend our results for the uncertain parameters

such as cost and rewards. In the latter case, neither the problem is perfectly dual nor the



Chapter 1: Introduction 5

optimal policy associated to the operators (components) whose parameters are uncertain is

structured. However, the structural properties of the robust value function are the same as

the classical problem. Last, we discuss some multi-dimensional problems.

Chapter 4: In this chapter, we consider that the transition probabilities are uncertain

and elaborate on our results given in Section 3 by restricting the uncertainty set to be

represented by the interval uncertainty model. We provide two particular models here,

single-item inventory management problem with and without replenishment. As already es-

tablished in Section 3, the optimal policy is of threshold type, i.e. optimal rationing policy

is defined as protection levels and optimal production policy is defined as base stock level.

In this section, we show that these thresholds monotonically change with respect to the size

of the uncertainty set. We utilize this behavior in order to obtain semi-robust solutions and

compare their performances.

Chapter 5: In this chapter, we investigate a classical inventory control problem of Scarf

[14] and consider the case where the replenishment has a fixed setup cost. This is an inter-

esting example where the solution of the problem is not perfectly dual, however the optimal

policy has the same structure with the classical problem. The second consideration of this

chapter is the variability of the expected profit. We demonstrate how a robust solution im-

proves the variability of a solution considerably without deviating from the optimal policy

even if all the problem parameters are certainly known.

Chapter 6: In contrast with the rest of the thesis, we study different economical methods

than the maximin game in order to propose further research. We demonstrate an interesting

finding of the research, a myopic policy based on robustness that almost achieves the same

results with the optimal policy for the admission control problem in the presence of financial

commitments. The problem is very similar to the classical single-item inventory manage-

ment problem without replenishment with a major difference. There are installments that

have to be paid at given due dates. There is a penalty that is equal to the interest rate for

the unpaid amount or a one-time financial loss in the case of a missed opportunity. The

challenge of the problem is due to the solution time since the cash position is also a state
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variable that can take continuous values. Besides, the optimal policy has no easy structure

and theoretically, the cash position can change between (-∞,∞). Hence, the state space is

uncountable. We compare two algorithms, the first algorithm is based on the semi-robust

decision. The second algorithm dynamically adjust robustness by evaluating the cash po-

sition. Although the semi-robust algorithm performs well, the second algorithm performs

almost up to 100% of the optimal policy.
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Chapter 2

LITERATURE REVIEW AND BACKGROUND

2.1 Background

2.1.1 Robust Optimization Overview

In many practical optimization problems, the input data to the problem is not known with

certainty and is approximated or estimated. This, if ignored, may cause significant subop-

timality or infeasibility for the optimization problem considered. Robust optimization is a

specific methodology that addresses this problem and has received a lot of attention lately

[4].

There are several ways of incorporating robustness in a problem. Among them we use the

maximin approach -also known as the absolute robust decision- suggested by Ben-Tal, El

Ghaoui and Nemirovski [4] to be used in dynamic programming problems. In the following,

we present a summary of the maximin approach.

Consider the following linear optimization problem of real numbers:

max
x

{cTx : Ax ≤ b},

where T denotes matrix transpose operation, x ∈ ℜn represents the decision variables,

c ∈ ℜn is the cost vector, A is the m × n constraint matrix, and b ∈ ℜm is the right

hand side vector. In most of the situations, at least some of the values associated to c, A,

b are not certain, rather they belong to an uncertainty set U ⊂ ℜ(m+1)×(n+1), where U is

any discrete or compact subset of ℜ(m+1)×(n+1). The robust counterpart of the problem is

represented in the following formulation in order to model the uncertainty as a parameter

in the problem:

max
x

{ min
(c,A,b) ∈ U

cTx : Ax ≤ b}. (2.1)
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As can be clearly seen, the robust solution approach models all possible values instead of

certain values that are introduced in the original problem as constant values.

This model also defines a structured game between two players. The controller represents

the decision maker in the original problem while Nature represents the opponent that acts

on observing the controller’s choice. While the controller tries to maximize its revenue,

Nature always takes the worst action with respect to the controller in order minimize the

revenue. The optimal action of the controller is the best performing outcome among all

actions that are incorporated as a parameter of nature’s inner problem (which may be a

linear or nonlinear optimization problem). In most simple words, the controller knows in

advance that Nature will present conditions to ruin its decision and the best decision is the

best performing one among all ruined ones.

We use the term “perfect duality” throughout the thesis. In order to define perfect duality,

let’s first define the dual counterpart for the revenue maximization problem. In the dual

setting, the controller observes Nature’s solution then decides its optimal policy. Nature’s

optimal policy in that case is the solution that achieves the minimum result among them.

Hence, the dual counterpart of the robust problem is given in the following equation:

min
(c,A,b) ∈ U

{max
x

cTx : Ax ≤ b}. (2.2)

The dual counterpart of the solution is the case where the resultant values of the Equation

(2.1) and Equation (2.2) are equal to each other, i.e:

max
x

{ min
(c,A,b) ∈ U

cTx : Ax ≤ b} = min
(c,A,b) ∈ U

{max
x

cTx : Ax ≤ b}.
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2.1.2 Other Approaches

Apart from the maximin approach that is used as the main approach in the context of this

dissertation, there are several other ways of formulating robustness. One particular method

is the minimax regret suggested by Kouvelis and Yu [20] that minimizes the total deviation

from the optimal solution of each scenario that may be realized throughout the uncertainty

set. In other words, minimax regret seeks a decision that has the minimum total deviation

from optimality. The minimax regret is less conservative than the maximin approach but

it is usually computationally intractable. Instead, we adopt the minimax regret approach

in order to evaluate the performance of the robust solution. Throughout the thesis there

are numerical examples demonstrating the performance of robust solutions with a trade off

from the optimality.

Apart from the maximin approach and minimax regret approach different techniques can

be adopted in order to attain robust solutions. We adopt the “prospect theory” from be-

havioral economics. Prospect theory is explained in Gilboa [12] with the following example:

Consider the following two cases that have the same expectation for each alternative:

CASE 1 : Suppose you have $1000 for sure and the following two options:

1. To get additional $500 with a probability of 100%

2. To get $1000 with a probability of 50% and get nothing with a probability of 50%.

CASE 2 : Suppose you have $2000 for sure and the following two options:

1. To lose additional $500 with a probability of 100%

2. To lose $1000 with a probability of 50% and lose nothing with a probability of 50%.

Most people prefer Alternative 1 in the first case whereas they prefer Alternative 2 in the

second case. Preferences of people change with respect to the total amount they already

have.
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Inspiring from Prospect theory we introduce the cash position to the dynamic programming

equation as a state variable in Chapter 6.1. However this modification makes the algorithm

computationally intractable. On the other hand, it is a practical approach to evaluate the

cash position on realization. We show that such a simple algorithm performs better than

the classical and robust solutions for a specific problem. For more information, please refer

to the Chapter 6.1.

2.1.3 Certainty, Stochasticity and Uncertainty

In order to present robust optimization, definitions of certainty, stochasticity and uncer-

tainty shall be revisited. Under certainty, problem parameters have certain values, or they

may have forecasted values and may be expressed as a best guess corrected by a safety

factor. Hence, the problem is solved with a single set of values for the parameters. The dif-

ference between a stochastic problem and a robust problem is less obvious. According to the

decision analysis literature, uncertainty refers to random quantities with known probability

measures whereas ambiguity refers to unknown probability measures. Therefore, uncertain

data of an optimization problem can be converted into a stochastic optimization problem.

However, in order to stochastically model the problem, certain conditions must be met.

First, the uncertain data have to have a computationally tractable probability distribution.

Second, the probability distribution has to be determined from the uncertainty set. Even if

these conditions are perfectly met, stochastic optimization usually applies only in risk neu-

tral decision making. In order to overcome this issue, the problem is constrained with the

probability of deviation from the expected result. In this case, the problem is represented

as chance-constrained stochastic optimization as given in the following :

max
x,t

{t : Prob(c,A,b)∼p{cTx ≥ t Ax ≤ b} ≥ (1− ε)},

where ε is the desired tolerance and P is the distribution data, i.e. the probability distribu-

tion of the uncertain quantities. Although chance constrained stochastic optimization is a

more flexible approach than robust optimization, there are still issues associated to stochas-

tic optimization that have to be addressed. There may be more than one distribution that
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fits a given uncertainty set. This last issue is the most important one since it may result in

degradation of performance for disadvantageous realizations in the uncertainty set. Hence,

there needs be an efficient subjective determination or very careful estimation of probabili-

ties in order to convert an uncertain problem into a stochastic problem.

Throughout this dissertation, the nominal problem will refer to the case where the transition

probabilities and/or the problem parameters (cost, reward) are represented with certain val-

ues and the robust problem will refer to the case where the transition probabilities and/or

the problem parameters (cost, reward) are represented by their respective uncertainty sets.

2.1.4 Basic Stochastic Dynamic Programming Problem

In this section, we present the basic stochastic dynamic programming problem that is also

known as a Markov Decision Process (MDP) and its optimality equation. The information

we give in this section is based on Chapter 1 of Bertsekas [5].

In our problem, t = 0, 1, ..., T denotes the horizon where T denotes the last stage in the

horizon. The system state x ∈ Xt is the state of the system that is selected from set Xt.

AXt denotes set of admissible actions defined for every stage t and state x independently.

Note that the controller is allowed to choose the action a ∈ AXt independently for all (x, t)

pairs. The random disturbance ωt in the period t is characterized by a probability distribu-

tion pt,a(x, y), therefore, wt is independent of prior disturbances. At each stage, depending

on the controller action Rt,a(x) is gained as an immediate reward, but every decision has

both immediate and long-term consequences. At each stage t, pt,a(x, y) denotes the transi-

tion probability from state x to state y when decision a is selected,
∑

y pt,a(x, y) = 1. The

sequence of actions π = {a0, a1, ....aN−1} is referred to as a policy. The revenue jπ0 (x0)

represents the collected revenue when policy π is applied and initial state is x0. The opti-

mal policy is the one that achieves the optimal revenue jπ
∗

0 (x0) over all polices.The basic

problem is defined as:
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max
πϵΠ

jπT (x0) ∀ x0 ϵ X0

jπT (x0) = E{RT,aT (xT ) +

t=T−1∑
t=0

Rt,a(xt, ωt)}.

The problem can be solved recursively starting from the last stage. Then at every stage

a tail subproblem is solved by backward induction in order to optimize the total reward

and future expected revenue. The basic dynamic programming algorithm -also known as

Bellman recursion- is as follows:

vt(x) = max
aϵAXt

{Rt,a(x) +
∑

pt,a(x, y)vt+1(y)},

where vT (x) = RT (x) and vt(x) is the expected optimal value for a tail subproblem from t

to T and expected value of any policy π = {a0, a1, ....aT−1} is given by:

vπt (x) = Rt,a(x) +
∑

pt,a(x, y)vt+1(y).

It is clear that v0(x0) = jπ
∗

T (x0), and the dynamic programming algorithm selects the action

that maximizes the immediate reward and the future expected revenue for each state and

stage.

2.1.5 Robust Dynamic Programming

In this section, we present the background on discrete time robust stochastic dynamic

programming. Nilim and El Ghaoui [25] and Iyengar [16] simultaneously studied robust

stochastic dynamic programs and showed some important properties under certain assump-

tions.

In order to present details of robust dynamic programming, first the definition of uncertainty

shall be given. Rather than a fixed value, transition probabilities are represented as a set

-uncertainty set- in the robust problem. The uncertainty defining transition probabilities or

rewards (cost) may vary with action, state and stage. At any stage t, and state x, if action

a is chosen, then probability of next state is pt,a(x, y)ϵPt,a(x, y). Hence, state transition is



Chapter 2: Literature Review and Background 13

uncertain and defines a set rather than specific values. In addition to this, state transitions

do not restrict each other, for example probability of transition from state x to state y are

independent, i.e:

P t,a(y) = Pt,a(1, y)× Pt,a(2, y)× Pt,a(3, y)......Pt,a(n, y),

for all y ∈ Xt+1 where Xt = {1, 2, ...n}. This property is called rectangularity ([16], [25]).

Rectangularity provides nature the capability of independently selecting its action for every

stage, state and controller action. Hence, it designates the independence of uncertainty set

variables for all states, stages and action combination (a, t, x).

The representation of rectangularity is given by Nilim and El Ghaoui [25] with the following

definition for set of all admissible policies P:

P = [
⊗

a∈AXt

P(t,a)(x, y)]
T ,

where
⊗

represents the direct product. Therefore, the set of all admissible policies of

Nature given π is:

τπ = τ0 × τ1 × τ2 × ...× τT .

Based on this independence property, the following properties were shown by Iyengar [16]

and Nilim and El Ghaoui [25] on slightly different formulations. The problems they studied

are presented in the following together with the main results.

The first problem shown in this section is defined by Iyengar is given in below equation:

jN (x) = max
πϵΠ

{jπN (x)} = max
πϵΠ

{min
Pϵτπ

{Rt,a(x, y) +

N−1∑
t=0

pt,a(x, y)vt+1(y)}},

where controller policy π = {a0, a1, a2, ...} and Nature policy against a given controller

policy τπ = τ0 × τ1 × τ2 × ...× τN .

Note that, different from our nominal problem Rt depends not only on the current stage

but also on the next stage. Hence, pt,a(x, y) also affects Rt. The main results are:
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1. The robust optimal policy π∗ satisfies the Belman equation for the finite horizon

problem. Hence:

vN (x) = rN (xN )

vt(xt) = max
aϵAxt

{
min
Pϵτπ

{Rt,a(x, y) +
∑

pt,a(x, y)vt+1(y)}
}

t = 0, 1, ...N − 1.

The infinite horizon problem was first studied by Satia and Lave [28], they proposed

a robust policy iteration algorithm that solves the robust DP problem in infinite hori-

zon setting. However, they fail to show that Nature’s policy in the robust setting is

stationary. Results of Iyengar [16] also include the following statement:

2. Nature’s optimal policy is stationary for the infinite horizon problem, i.e. its optimal

policy is fixed for all x, a pairs. Thus, the controller can be restricted to deterministic

policies without any loss in performance in the infinite horizon. Hence, the robust

optimal policy can be obtained by policy iteration.

The problem studied by Nilim and El Ghaoui [25] was given in the following recursion:

vt(x) = max
aϵA

{Rt,a(x) + min
pϵPt,a(x)

∑
pt,a(x, y)vt+1(y)}

t = 0, 1, ..., T − 1.

The main difference between these two equations is that in the above formulation the in-

stant reward or the instant cost of each stage is independent of next stage. In addition to

Iyengar’s results [16] , Nilim and El Ghaoui [25] also show that:

1. The problem is perfectly dual, i.e, the optimal actions of the controller and Nature

are independent of the sequence of the game. In the dual form of the game, controller

acts upon observing the Nature’s optimal action.
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max
πϵΠ

min
Pϵτ

v0(x) = min
Pϵτ

max
πϵΠ

v0(x).

According to the results of Nilim and El Ghaoui [25] perfect duality only holds under

the assumption that Nature can select an independent probability distribution for

each action and state.

2. Perfect duality still applies for the infinite horizon. Moreover if we restrict the con-

troller and Nature to stationary optimal policies then where Πs, τs denotes the allow-

able set of actions of the controller and Nature respectively in that case:

max
πϵΠ

min
Pϵτ

vλ(x) = max
πϵΠs

min
Pϵτs

vλ(x) = max
πϵΠs

min
Pϵτ

vλ(x) = max
πϵΠ

min
Pϵτs

vλ(x),

for all xϵX where λ is discount vector.

2.1.6 Uncertainty Sets

In this section, we provide the uncertainty sets that are commonly-used in the literature in

order to model the uncertainty representing the transition probabilities. We provide some

basic properties of these sets. Further information can be found in Ben-Tal, El Ghaoui

and Nemirovskĭı [4] Section 2 and Section 13. Although our results also apply to discrete

sets, we give the definitions of continuous uncertainty sets used from the literature. First

we present some information for the uncertainty sets used in order to represent transition

probabilities, later we summarize uncertainty sets used in order to represent other problem

parameters, i.e. cost and reward, in our setting.

Uncertainty sets defining transition probabilities:

Uncertainty sets defining transition probabilities are defined in below:

1. The Scenario Model defines a finite collection of distributions:

P = Conv{p1, ...., pk} where ps ∈ △n, △n is a standard simplex in ℜn+1 and defined

as △n = {p = [p(1)...p(n)] ∈ ℜn
+}, :

∑
j p(j) = 1, s = 1, ..., k are given, and P is the
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convex hull of {p1, ...., pk}. This is also known as the polytope model. The scenario

model represents the convex hull of a finite number of realizations.

2. The interval model is a special case of the polytope model, where event probabilities

do not have a dependence on each other, i.e, P = {p : p ≤ p ≤ p,
∑

j p(j) = 1}.

3. The likelihood model has the form:

P = P(ρ) := {pϵ△n : L(p) :=
∑n

i=1 q(i)ln[q(i)/p(i)] ≤ ρ},△n = {p = [p(1)...p(n)]ϵℜn
+ :∑

j p(j) = 1} where qϵ△n is a fixed reference distribution (initial estimate) and ρ ≥ 0

is the uncertainty level, with ρ = 0 the uncertainty set is fixed to initial the estimate

q and L(p) is the likelihood function. Maximum likelihood models define an uncer-

tainty around that prior distribution whose deviation is measured by ρ. Examples of

likelihood models can be found in [9], [25].

4. The entropy model is defined as:

P = P(ρ) := {p ∈ △n : D(p \ \q) :=
∑n

i=1 p(j)ln[q(i)/p(i)] ≤ ρ}, where △n

= {p = [p(1)...p(n)] ∈ ℜn
+ :

∑
j p(j) = 1}, D(p\\q) is the Kullback-Leibler divergence

between distribution p and the reference distribution q ∈ △n, and ρ ≥ 0 is the

uncertainty level. Examples of entropy based models can be found in [17], [23].

5. Ellipsoidal model is defined as P(ρ) = {p ∈ △n : (p − q)TH(p − q) ≤ ρ2} where

q ∈ △n, is a fixed reference distribution (initial estimate) and ρ ≥ 0 is the uncertainty

level (deviation from q), △n = {p = [p(1)...p(n)] ∈ ℜn
+ :

∑
j p(j) = 1}, H ≥ 0 is

given. Examples of ellipsoidal models can be found in [7].

Uncertainty Sets Defining Cost And Reward:

There are several approaches for defining uncertainties on parameters. The commonly em-

ployed uncertainty model is to define the parameters between lower bound and upper bound

values. Chance constrained criterion is another common approach for linear and nonlinear

optimization problems. Delage and Mannor [9] used a chance constrained MDP problem

that is computationally tractable. The following equation defines the chance constrained

form of a linear equality given in Section 1.1. In the chance constrained uncertainty model,

ζ is the perturbation vector that has a known probability distribution P . The decision
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variable x is robust feasible with respect to perturbation set that belongs to the convex hull

of ζ with the desired tolerance ε. We define the chance constrained form of x as:

p(x) ≡ Probζ∼P {ζ : [a0]Tx+
∑L

l=1 ζl[a
0]Tx ≥ b0 +

∑L
l=1 ζlb} ≤ ε.

Uncertainty Set Models Used in the Thesis

Most of the results in the thesis are independent of the structure of the uncertainty set.

However, we show further characteristics considering the interval uncertainty set and use

polyhedral sets for numerical purposes. In Chapter 4 we represent the interval uncertainty

models as in the following equation:

Pt =

{
y = (y1, . . . , yn+1) : 0 ≤ y

i,t
≤ yi ≤ ȳi,t, 0 ≤ q ≤

n∑
i=1

yi ≤ 1

}
.

According to the above representation the uncertainty set is allowed to vary over the time

horizon. Especially for finite horizon inventory problems this flexibility is important in

order to represent the fluctuations and patterns over the demand. However, due to the

characteristic of the problems we solve, we consider that the uncertainty set representing

our problem parameters is independent of the controller’s action. In order to provide the

rationale, consider the “single-leg airline revenue management problem” where the customer

arrival probabilities are not affected by the admission/rejection of the controller.

2.2 Models and Their Structural Properties

2.2.1 event-based Dynamic Programming

In this dissertation, we use the event-based dynamic programming approach suggested by

Koole [18] in order to show certain structural properties of the robust dynamic program-

ming problem. Event-based dynamic programming expresses the value function of a given

control problem in terms of the composition of different operators corresponding to indi-

vidual events. Establishing the structure of an optimal policy can then be performed by

verifying that the different operators constituting the problem satisfy certain properties.

Instead of formulating the problem as a whole, it is formulated as components that apply

to the value function vt+1(x), then vt(x) is obtained by using these operators. The strength

of this approach is that it significantly facilitates demonstrating structural properties.
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We present the example given by [18] in order to clarify: Consider a queueing problem,

where customers arrive according to a Poisson arrival process with a rate of λ and are

considered for admission to the system. The probability of service completion is µ, and

λ + µ ≤ 1. If a customer is not admitted to the system then a positive penalty of c

is incurred. After uniformization and discretetization, the value function vt(x) is given as

follows:

vt(x) = λmin{vt+1(x), vt+1(x) + c}+ µvt+1(x− 1)+ + (1− λ− µ)vt+1(x),

where (x − 1)+ represents max(0, x − 1). Now we construct the dynamic programming

algorithm step by step. In the context of event-based dynamic programming, problem

is composed of two events, completion of a service and arrival of a new customer. The

representation of these operators are as follows:

TDvt(x) = v(x− 1)+

TAvt(x) = min{v(x), v(x) + c}.

In the second step, we combine these operators with the uniformization operator as given

in the following equation:

TU (TAv(x), TDvt(x)) = pAT1v(x) + (1− pA)T2v(x),

where pA is the event probability of the first operator.

Clearly, the uniformization operator is just a convex combination operation. Suppose that

vt+1(x) is convex and ND (nondecreasing) in x at t+ 1, then it is straightforward to argue

that the departure operator and the arrival operator preserve this property. Then, the uni-

formization operator defined on the departure and the arrival event, TU (TDvt+1(x), TAvt+1(x))

preserves these properties also. We can also add a fictitious event operator to the equation

via uniformization operator. Since vt+1(x) is convex and ND, it is clear that the resultant

equation is convex and ND. Then the value function defined as:

vt(x) = TU (TU (TDvt+1(x), TAvt+1(x)), TF vt+1(x)).



Chapter 2: Literature Review and Background 19

New operators can be added in this fashion. Several models can be constructed in the same

manner such as the below example, that considers admission from a queue upon each event

that is either a fictitious event or completion of a service:

vt(x) = TA(TU (TDvt+1(x), TF vt+1(x))),

is convex and ND.

The event-based DP facilitates obtaining structural properties by focusing on the individual

terms (events) rather than the whole value function and has been proved to be useful in

certain dynamic programming models. We explore the robust counterparts of the classical

dynamic programming problems under this framework. Hence, we define a set of operators

and their associated characteristics. We give some illustrations from the literature below

and then present our operators.

2.2.2 Some Illustrations from Literature

In the thesis, we study robust counterparts of a set of problems from inventory and queue-

ing theory. In this section, we give a brief summary of some of these which are well-known

and extensively studied. In the next section, we define the operators used to model these

problems.

1. single-item Revenue Management Problem without Replenishment

Consider the single resource capacity control problem of revenue management where

there is neither replenishment nor holding cost. The customers are distinguished

depending on their rewards and the first class customer is the one who offers the highest

reward. In the discrete formulation of this problem, the total horizon is divided into

equal intervals and each stage is treated by its own arrival probability vector, i.e. each

demand class has a certain arrival probability and sum of these probabilities is less

than or equal to 1. Moreover, the arrival probabilities of different classes are allowed
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to vary over time in order to model the customer class behavior. In order to maximize

the total expected revenue, at each stage, any customer is either accepted or rejected

in order to reserve seats for future potential customers that may probably be from a

higher class. This problem was previously studied by several authors (Lautenbacher

[22], Stidham [31] and Çil, Karaesmen and Örmeci [8]).

2. Make-to-Stock Queue Problem with Multiple Customer Classes

The make-to-stock queue is a continuous time problem where customers with different

rewards arrive according to independent Poisson processes with exponential rates.

Similar to the dynamic seat selling problem, the customers are ordered according to

their rewards and the first class customer is the one who offers the highest reward.

A single server whose processing time is exponentially distributed produces items

one-by-one. If a customer is admitted and if there is at least one unit of inventory

on hand, its demand is immediately satisfied and a class-dependent instant reward

is obtained. If inventory is empty, arriving demands are assumed to be lost. This

problem was previously modeled and explored by Ha [14]. The objective function

minimizes the total expected cost over an infinite horizon. Similar to the single-item

revenue management problem without replenishment, a customer might be rejected in

the anticipation of future expected revenue. In addition to this, the controller makes

a decision for production in order to establish a balance between the holding cost of

inventory items and lost sales.

3. Dynamic Pricing Problem

The dynamic pricing problem is similar to the single-item revenue management prob-

lem with some particular differences. In this case, the controller dynamically adjusts

the prices of identical goods to correspond to a customers’ willingness to pay. The

arriving customer purchases the product at the offered price R with a probability of

1−FR and does not purchase the product with a probability of FR. This problem was

previously studied by Talluri and Van Ryzin [32], and Gallego et. al [11] and various

other authors.

4. Server Assignment Models
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In the previous examples, considered state information x of the value function is one

dimensional. However, there can be various customers served with different holding

costs by the same resource. The objective function is to minimize the long-run av-

erage cost of the system. Intuitively, anyone can argue that it is better to serve to

the customer with the highest holding cost if their rewards are equal to each other.

Further, suppose that the server rate is different for different types of customers. It

is again intuitive to conclude that it is better to serve customers that are faster to

serve and have higher holding costs than customers that are slower to serve and have

lower holding costs. The problem can be modeled and solved recursively by dynamic

programming and the optimal policy can be described by µc rule which is also called

‘smallest index policy’ SIP , i.e. the classes are ordered according to the server rate

multiplied by holding cost, i.e. µc and served according to this order. Further details

might be found in Section 3.6.1. Extensive knowledge on structural behavior of these

models can be found in [19].

2.2.3 Operators

As discussed earlier, we use an event-based approach in order to represent the models we

study. Throughout the thesis, the models are constructed with operators. In order to do

this, we use a set of operators and illustrate our theoretical results on them. These operators

and their definitions are:

ONE DIMENSIONAL OPERATORS

One dimensional operators are used to represent the inventory problems with single-item

and the queueing problems with a single class of customers. The operators used in the thesis

are given below:

1. INVENTORY CONTROL OPERATORS

Batch Rationing Operator

The batch rationing operator represents the choice of the number of the customers to

be admitted from an arriving batch of class-i customers with batch size B in the inven-

tory systems. Some of the customers in a batch can be admitted while the remaining

ones are rejected, which is defined as partial acceptance and κi is the number of class-i
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customers admitted from this batch, and Ri is the reward obtained by admitting one

class-i customer.

Definition of the Operator

TBRiv(x) = maxκi≤min(x,B){κiRi + v(x− κi)},

TBRiv(x) = maxκiϵmin(x,B){v(x− κi)− v(x) + κiRi}+ v(x).

2. Rationing Operator

The rationing operator is a special case of the batch rationing operator where the

batch size B is exactly 1. This operator is defined in below:

Definition of the Operator

TRiv(x) = max{Ri + v(x− 1), v(x)},

TRiv(x) = {v(x− 1)− v(x) +Ri}+ + v(x).

3. Production Rate Operator

The production rate operator represents the choice of best service rate in production-

inventory systems for production unit i. If the system uses Πi portion of the service

rate, then a nonnegative cost of CΠi is incurred. The production rate operator is

defined as:

Definition of the Operator

TPRiv(x) = maxΠϵ[0,1]{−CΠi +Πiv(x+ 1) + (1−Πi)v(x)},

TPRiv(x) = maxΠiϵ[0,1]{Πi{v(x+ 1)− v(x)} − CΠi}+ v(x).

4. Production Operator

The production operator is a special case of production rate operator where Πi = {0, 1}

and Ci0 = 0. The production rate operator is defined according to the following equa-

tion:

Definition of the Operator

TPiv(x) = max{v(x+ 1)− Ci, v(x)},

TPiv(x) = {v(x+ 1)− v(x)− Ci}+ + v(x).
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5. Inventory Pricing Operator

The inventory pricing operator represents the optimal price to be charged for the ar-

riving customers in inventory systems. FZ(.) is the cumulative distribution function

of the reservation price of an arriving customer, where R is the maximum price a

customer is willing to pay. The inventory pricing operator is given by:

Definition of the Operator

TIP v(x) = maxR{FZ(R)[v(x− 1) +R] + FZ(R)v(x)},

TIP v(x) = maxRFZ(R){v(x− 1)− v(x) +R}+ v(x).

QUEUING OPERATORS

The queueing operators we consider throughout this thesis is given in the following. It is

important to note that the waiting room is taken as infinite. The definitions of the queueing

operators are symmetric counterparts of the inventory operators that are given in the above

part.

1. Batch Admission

The batch admission operator represents the choice of the number of the customers to

be admitted from an arriving batch of class-i customers with batch size B in queue-

ing systems. Some of the customers in a batch can be admitted while the remaining

ones are rejected, which is defined as partial acceptance κi is the number of class-i

customers admitted from this batch, and Ri is the reward obtained by admitting one

class-i customer. The definition of the batch admission operator is given in below:

Definition of the Operator

TBAiv(x) = maxκi≤min(x,B){κiRi + v(x+ κi}.

TBAiv(x) = maxκiϵmin(x,B){v(x+ κi)− v(x) + κiRi}+ v(x).

2. Admission

The admission operator is a special case of the batch admission operator where the
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batch size B is exactly 1. Its definition is as follows:

Definition of the Operator

TAiv(x) = max{Ri + v(x+ 1), v(x)},

TAiv(x) = {v(x+ 1)− v(x) +Ri}+ + v(x).

3. Departure Rate Operator

The departure rate operator represent the choice of the best service rate in queueing

systems. If the system uses Π portion of the service rate, then a nonnegative cost of

CΠ is incurred. The definition of the departure rate operator is as follows:

Definition of the Operator

TDRiv(x) = maxΠϵ[0,1]{−CΠ +Πv(x− 1) + (1−Π)v(x)},

TDRiv(x) = maxΠϵ[0,1]{Π{v(x− 1)− v(x)} − CΠ}+ v(x).

4. Controlled Departure Operator

The controlled departure operator is a special case of the departure rate operator

where Π = {0, 1} and C0 = 0. The definition of the controlled departure operator is

given:

Definition of the Operator

TCDiv(x) = max{v(x− 1)− Ci, v(x)},

TCDiv(x) = {v(x− 1)− v(x)− Ci}+ + v(x).

5. Queue Pricing Operator

The queue pricing operator represent the optimal price to be charged for the arriving

customers in queueing systems. FZ(.) is the cumulative distribution function of the

reservation price of an arriving customer, where R is the maximum price a customer

is willing to pay. The definition of the queue pricing operator is given in the following

equation:

Definition of the Operator

TQP v(x) = maxR{FZ(R)[v(x+ 1) +R] + FZ(R)v(x)},

TQP v(x) = maxR FZ(R){v(x+ 1)− v(x) +R}+ v(x).
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6. Uncontrolled Arrival to a Queue

The uncontrolled arrival operator represent the arrival process to a queueing system.

The function a(x) is, the probability that an arriving customer joins the system when

there are x customers, which we refer to as the joining probability. We assume that

a(x) is NI in x. When a is constant, arrival operator models a system where customers

enter the system with a fixed probability a, independent of the state, or choose not to

enter the system with probability 1 − a. We will call this type of arrivals as regular

arrivals, since they do not depend on the state of the system. The definition of the

uncontrolled arrival operator is given in the following equation:

Definition of the Operator

TUAv(x) = a(x)v(x+ 1) + (1− a(x))v(x),

TUAv(x) = a(x){v(x+ 1)− v(x)}+ v(x).

The special case of this operator is the case where a = 1:

TUAv(x) = v(x+ 1).

7. Uncontrolled Departure from a Queue

The uncontrolled departure operator represents the departure of an existing customer

from the system, where the service rate may depend on the state of the system. The

function b(x) corresponds to the probability of a service completion when the system

has x customers. We assume that b(x) is an ND function of x. The definition of the

uncontrolled arrival operator is given in the following equation:

Definition of the Operator

TUDv(x) = b(x)v(x− 1) + (1− b(x))v(x),

TUDv(x) = b(x){v(x− 1)− v(x)}+ v(x).

The special case of this operator is the case where b = 1:

TUAv(x) = v(x− 1).

Our theoretical results can be extended to multidimensional queuing operators as well.
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Below we list some operators from queueing theory. The multidimensional queues are

described in Section 3.6.2 in more detail.

MULTIDIMENSIONAL OPERATORS

The multidimensional operators are mainly used in the queueing systems when there is more

than one server with different properties. In the multidimensional queues x represents a row

vector where xi designates the number of items in the ith queue. When costs associated to

different classes are different, such as holding cost or service cost, the system state is defined

as a row vector in order to handle this situation. In the following, the multidimensional

counterparts of the one dimensional queueing operators are given:

1. Uncontrolled Arrival to a Queue

The uncontrolled arrival operator of a class-i customer is defined according to the

following equation, where ei denotes a unit row vector whose ith component is 1 and

the rest is 0:

TUAiv(x) = v(x+ ei).

2. Admission Control Operator

The admission control operator of a class-i customer is defined according to the fol-

lowing equation:

TAiv(x) = max{v(x+ ei) +Ri, v(x)}.

3. Uncontrolled Departure from a Queue

The uncontrolled departure operator of a class-i customer is defined according to the

following equation:

TUDiv(x) = v(x− ei)
+. where (x− ei)

+ = max(0, x− ei).

The additional queueing operators that represents the multidimensional servers are

represented in below also:
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4. Movable Server Operator

The movable server operator models the queue where decision maker is allowed to

decide on the customer class that will be served in the queue where µ(j) ≤ 1.0 is the

rate of production of class-j.

TMSv(x) = max
j∈I:xj>0

µ(j)v(x− ej) + (1− µ(j))v(x) if
∑
j∈I

xj > 0, (2.3)

TMSv(x) = v(x)otherwise.

(2.4)

5. Movable Tandem Server Operator

The movable tandem server operator models the tandem queue where the decision

maker is allowed to decide on which job on the sequence that will be served in the

tandem queue where 0 designates leaving the system and e1 designates the job at the

first server in the tandem sequence.

TMTSv(x) = max
j∈I:xj>0

µ(j)v(x− ei + ek) + (1− µ(j))v(x) if
∑
j∈I

xj > 0, (2.5)

TMTSv(x) = v(x) otherwise.

where
∑m

k=0 µ(i, k) = 1, µ(i, j) = 0 for all i and 0 < j < i − 1 and e0 = 0, i.e. k = 0

means leaving the system. Hence, the movable tandem server models a serial queue

where customers either leave the system or forwarded to a higher indexed queue in

the system.

2.2.4 Mathematical Properties

The emphasis of this thesis is to provide the structural properties of optimal policies for

robust counterparts of a set of problems from queueing and inventory theory. We use a set

of mathematical properties throughout the thesis in order to show these properties. In this

part, we explain some of these properties and describe how relevant these properties are to

the thesis in the context of revenue optimization. Other properties that we do not present
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here will be explained in the relevant sections.

1. Increasingness and Decreasingness

In the context of revenue management systems, increasingness/decreasingness of a

function used to describe the value of an additional item in the inventory or one unit

of time in the horizon to the value function x. If f(t, x) is increasing (strictly increas-

ing) both in t and x, this means that an additional one unit of inventory/one unit of

time has always have a nonnegative (positive) value to the optimal expected revenue.

This may seem quite intuitive, however in the presence of holding costs the optimal

expected revenue is not increasing in the inventory status x.

2. Concavity

A function f(x) is said to be concave in x if it satisfies the following inequality.

f(αx1 + (1− α)x2) ≥ αf(x1) + (1− α)f(x2) for all x1, x2 and 0 ≤ α ≤ 1.

By putting x− 1 instead of x1, x+1 instead of x2 and setting alpha = 0.5 we obtain:

f(x)− f(x− 1) ≥ f(x+ 1)− f(x) for all x

Now suppose that there is the following option, we have an inventory of x and there is

a customer who is willing to pay a price of R for this product. If we sell the product,

our inventory decreases by 1 unit and we will obtain a revenue of f(x − 1) + R, and

if we do not sell the product the inventory remains the same and we will obtain a

revenue of f(x). If it is optimal not to sell the product, this means that f(x) ≥

f(x − 1) + R and therefore f(x) − f(x − 1) ≥ R. If the function f(x) is concave in

x, then f(x − 1) − f(x − 2) ≥ R and therefore it is not optimal to sell the product

at x − 1 also. This is known as an optimal threshold policy and concavity implies

optimality of threshold policies in many inventory control problems. The optimal
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policy is structured such that the controller sells the product to the customer if the

inventory status is higher than a certain level, i.e. threshold or protection level. If

the inventory is below this threshold then the controller reserves the item for future

in the expectation of customers who may pay a higher price than R for the item.

3. k-concavity

k − concavity is a mathematical property invented by Scarf [13] for the inventory

problems where fixed cost of purchasing is not zero and the purchasing cost C is

described as below where u is the order quantity, k is the fixed cost of purchasing and

c is the unit cost of item:

C = k + uc if u > 0

C = 0 otherwise.

Function f(x) is said to be k − concave in x if it satisfies the following inequality:

f(x) ≥ −k + f(y)− (y − x)
f(x)− f(x− b)

b
. (2.6)

for all y ≥ x ≥ x− b ≥ 0.

In order to have a simplified representation we put 1 instead of b and x+1 instead of

y and the following inequality is obtained:

2f(x) ≥ −k + f(x+ 1) + f(x− 1).

It is easy to show that a function that is concave, is also k − concave for all values of

k > 0. The k − concavity property implies that the (s, S) policy is optimal, and if it

is optimal to order at x also it is optimal to order at x− 1. Moreover if it is optimal
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to order S − x items at x, then it is optimal to order S − x + 1 items at x − 1, i.e.

the optimal policy is described by an order up to level S and a reorder point s. More

formally the function for the optimal purchasing order quantity u is given by:

u = S − x if x ≤ s

u = 0 otherwise.

The complete proof of the optimality of an (s, S) policy is given in Scarf [13], [29],

however we provide a simple intuition here and we show that “if it is optimal to

purchase at x then it is optimal to purchase at x − 1”. Suppose the value

function satisfies the k − concavity property given in the Equation 5.2. By taking y

as S, and 1 as b, we obtain the following:

f(x) + (S − x)(f(x)− f(x− 1)) ≥ −k + f(S).

This means that:

S − x ≥ f(S)− k − f(x)

f(x)− f(x− 1)
.

It is given that it is optimal to purchase at x and therefore f(x) ≤ f(S)− c(S−x)−k

so that the controller prefers to raise the inventory to level S. Hence:

f(S)− k − f(x)

c
≥ S − x

Please note that this is a revenue maximization problem and f(S)− c(S−x)− k > 0.

We therefore conclude that f(x − 1) ≤ f(x) − c, this means that if inventory status

is x − 1 it would be better to raise the inventory to x by paying the unit price c if

there were no holding cost. More specifically: f(x−1) ≤ f(S)− c(S−x+1)−k since

f(x− 1) ≤ f(x)− c ≤ f(S)− k− c(S − x)− c = f(S)− k− c(S − x+1). Hence, if

the optimal decision is to purchase at x, then it is also optimal to purchase at x− 1.

This proves the optimality of reorder point s, and the optimality of order up to point

S is similar and can be found in Scarf [13].
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4. Supermodularity/Submodularity

We use the supermodularity and the submodularity properties throughout the thesis.

A function f(x) is called supermodular in (x1, x2), if it satisfies the following equation.

f(x1 + 1, x2)− f(x1, x2) ≤ f(x1 + 1, x2 + 1)− f(x1, x2 + 1) for all x1, x2.

Similar to our previous example for the concavity property, suppose that we have

two types of products in the inventory and (x1, x2) denotes the inventory status of

the product 1, product 2 respectively. Now suppose that our initial inventory is

(x1 + 1, x2) and we have an option to sell one unit of product 1 and obtain a rev-

enue of f(x1, x2) +R or do not sell the product and remain with the same inventory

with a revenue of f(x1 + 1, x2). It is clear that it is optimal not to sell one unit of

product 1 if and only if f(x1 + 1, x2) − f(x1, x2) ≥ R. This means that it is op-

timal not to sell this product also when inventory status is f(x1 + 1, x2 + 1) since

f(x1 + 1, x2 + 1) − f(x1, x2 + 1) ≥ R is easily implied by supermodularity. Hence,

there is a threshold in terms of x2 such that controller always prefers to keep one unit

of inventory 1 at that inventory status. This is known as switching curve and also a

symmetric argument, i.e. we sell Product 1 alone only when the inventory for Product

2 is lower than a certain level and sell Product 2 alone only when the inventory for

Product 1 is lower than a certain level. Otherwise, the controller reserves the prod-

uct for customers who are likely to pay more. We can also say that an additional

one unit of inventory for product 1 has more value when there is an additional one

unit of inventory for product 2, i.e. these products are more valuable when introduced

as a package to customer. This is also known as complementarity in economical theory.

Submodularity and its interpretation is quite similar. Hence we only provide the

submodularity equation here. A function f(x) is called submodular in (x1, x2) if it

satisfies the following equation.

f(x1 + 1, x2)− f(x1, x2) ≥ f(x1 + 1, x2 + 1)− f(x1, x2 + 1) for all x1, x2.
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2.3 Previous Work

In this part, we present examples from literature considering robust versions of the MDPs.

In the next two subsequent parts of this section, we summarize two well-known papers that

use the maximin approach in order to introduce robustness to their revenue models. In the

last part of this section we summarize the work of Çil, Karaesmen and Örmeci [8]. They

studied how the changes in the transition parameters affect the value function and the struc-

ture of the optimal policies for a set of revenue and queuing theory problems. Although the

main focus of this thesis is structural properties of robust dynamic programming problems,

most of their work are useful for our work.

2.3.1 Robust Optimization of single-item Inventory Management Problem without Replen-

ishment

Birbil, Frenk, Gromicho and Zhang [7] studied the robust version of a typical revenue

management problem -single-leg airline revenue management problem- in their paper. Re-

member that the customers are distinguished by their rewards, and each class-i customer

has a known reward Ri and an arrival probability pi. The value function of the nominal

problem is described below where the total number of customers is n:

vt(x) =

n∑
i=1

pimax{Ri + vt+1(x− 1), vt+1(x)}+ (1−
n∑

i=1

)vt+1(x).

The uncertainty model they use is a typical and useful one. The main elements of the un-

certainty set are the prior distribution p̂ and the deviation from that distribution ∆ where

the total deviation is constrained by the value δ. Hence, the arrival probability of each

class is pi = p̂i + ∆i and
∑n

i=1 pi = 1 by just considering the fictitious event (no arrival)

as a special customer with no reward. The total deviation from the prior distribution p̂ is

constrained, and the representation of the uncertainty set is as follows:

Pt =

{
y = (y1, . . . , yn+1) :

n∑
i=1

(
pi − p̂i

p̂i

)2

≤ δ2

}
.
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Apparently, the total deviation from the prior distribution
∑n

i=1∆i = 0 in order to preserve

the constraint
∑n

i=1 pi = 1. In typical situations, the higher classes show up when there

is shorter time left in the horizon, whereas the economy class customers are more likely to

arrive in the early phases of the horizon. The parameters of the uncertainty set are allowed

to change between the stages in order to represent the behavior of each class in the time

horizon. Therefore:

n∑
i=1

(
pi,t − p̂i,t

p̃i,t

)2

≤ δ2t .

Birbil, Frenk, Gramicho and Zhang [7] used the minimax approach in order to introduce

the uncertainty to their model. Hence, the robust value function wt(x) is given as:

wt(x) = min
pi,t

{
n∑

i=1

∆i{Ri + wt+1(x− 1) + wt+1(x)}+
}

+ wt+1(x).

Birbil, Frenk, Gramicho and Zhang [7] obtain an analytical solution of the problem. They

also explore the performance of their robust solution on real data.

2.3.2 Robust Dynamic Pricing and Queueing Problem

Lim and Shantikumar [23] studied a robust dynamic pricing problem. In this paper, they

utilize the relative entropy approach in order to model the uncertainty among the transition

probabilities. The dynamic pricing problem considers an arrival rate λ(R) function that is

modeled as a function of price R, i.e. λ(R) = AeBR where A, B are parameters that are

derived from historical data. Additional research that uses the relative entropy concept was

carried out by Jain, Lim and Shantikumar [17] where they model a queueing problem in

which the controller decides on arrival and departure rates. In both of these studies, they

succeed to show that the structure of the optimal policies are the same with the nominal

problem. In these papers, they do not utilize the event-based dynamic programming ap-

proach. In this thesis, we cover the same problems and do not restrict our models to a
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specific uncertainty set.

2.3.3 Effects of Parameters on Structure of Optimal Policies

Çil, Örmeci and Karaesmen [8] study the effects of parameters on the structure of optimal

policies. They explore a wide set of problems and most of them are represented in Section

3.1. In the following, we summarize how optimal polices are affected by parameters accord-

ing to their work. Please note that an increase in willingness to admit customers means

a nonincrease in thresholds (protection levels) in a queueing system, similarly willingness

to produce means a nondecrease in thresholds (basestocks) for all states and stages in an

inventory system.

In a queueing system represented as a combination of operators introduced in section 3.1:

1. The willingness of controller to admit customers decreases by an increase in an arrival

rate and increases by an increase in service capacity as well as waiting room capacity,

2. The willingness of controller to serve customers increases by an increase in an arrival

rate and decreases by an increase in service capacity as well as waiting room capacity.

In an inventory system represented as a combination of operators introduced in section 3.1:

1. The willingness to satisfy demand decreases by an increase in demand rate and in-

creases by an increase in finite storage capacity, and by an increase in production

rate,

2. The willingness to produce increases by an increase in demand rate and an increase

in finite storage capacity, whereas it decreases by an increase in production rate.

In this thesis, we also investigate the behavior of optimal policies with respect to changes in

uncertainty sets. Unlike our earlier results, in order to provide such a comparison, additional

constraints have to be imposed on the uncertainty set. In Chapter 4 we study the interval
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uncertainty model and investigate the behavior of optimal policy against perturbations in

the uncertainty set.
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Chapter 3

ROBUST CONTROL OF STOCHASTIC INVENTORY AND

QUEUING PROBLEMS

3.1 Introduction

As already discussed in Chapter 2, the input data to the problem is not known with certainty

and is approximated or estimated. This, if ignored, may cause significant suboptimality or

infeasibility for the solution considered. Robust optimization is a specific methodology that

addresses this problem and has received a lot of attention lately [4] and we employ the

maximin approach illustrated in Chapter 2.

Our focus in this chapter is on a set of problems from inventory and queueing theory.

The models considered include discrete-time versions of some well established cases such as

service rate control and admission control problems of Lippman [24], the stock rationing

problem of Ha [14] and the dynamic revenue management problem of Lautenbacher [22].

To address parameter uncertainty we formulate a robust stochastic dynamic program within

a maximin approach also known as the absolute robust decision. The maximin approach

defines a game between the controller (system manager) and Nature. For instance, in the

context of demand admission control, the controller’s aim is to maximize the expected profit

by choosing the allowable actions (admitting a given class of demand or not), whereas Na-

ture tries to minimize the expected profit by choosing the worst-possible parameters (arrival

rates) and acts upon observing the controller choice. This formulation is known as the ro-

bust counterpart of the classical problem. The robust optimal policy designates the policy

which yields the highest expected profit result after minimization by Nature.

The robust formulation of a Markov Decision Process with an uncertain transition prob-

ability distribution goes back to Satia and Lave [28] who proposed a solution by a policy
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iteration approach. More recently, Nilim and El Ghaoui [25] and Iyengar [16] simultane-

ously studied robust stochastic dynamic programs and established the existence of a robust

Bellman recursion whose solution yields the robust value function and the corresponding

optimal policy. In addition, both papers emphasized that under appropriate choice of un-

certainty sets, the additional complexity brought by the robust formulation is reasonable if

the standard formulation has a tractable solution.

The dynamic queueing and inventory control literature has a strong tradition in character-

izing the structure of optimal policies. This is in part due to the computational efficiency of

structured policies. However, the main motivation for looking for structured policies is that

they are usually expressed in a few parameters and tend to be easy to understand and com-

municate. There are known effective techniques to investigate the structure of the solution

of a stochastic dynamic program. Event-based dynamic programming proposed by Koole

[18] and further extended in [19] streamlines this procedure for a class of queueing control

problems. Recently, Çil, Örmeci and Karaesmen [8] employed event-based programming

to explore structural properties in a class of production/inventory problems and proposed

an extension to study the effects of perturbations of input parameters. In this chapter, we

employ event-based dynamic programming to formulate a robust counterpart of the stock

rationing problem and exploit the known properties of the standard problem.

The organization of this part is as follows; in section 3.2 we present the classical dynamic

programming problem and in section 3.3.1 we present the robust counterpart of the dynamic

programming problem. We provide our results in a general setting for a generic problem

that can be constituted of the operators listed in Section 3.2. In section 3.4 we provide

information on how the optimal policies respond to uncertainty sets. In the last section we

conclude our results.

3.2 Structural Properties of Some Queueing and Inventory Control Problems

In this section, we introduce the class of queueing and inventory control problems addressed

in this chapter and present a common a framework investigating their structural properties.
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The models we consider are the discrete-time revenue maximization problems that involve

demand or customer admissions and processing or replenishment decisions for queueing or

inventory systems. The demanding customers and offered jobs are categorized into classes

depending on the reward that they offer. Batch arrivals may also occur. The controller

decides whether to accept the incoming customer or job based on the instant reward and

the future expected revenue. Dynamic pricing is an alternative to admission control where

the controller sets the optimum price at each stage based on the reservation price distri-

bution of customers. There may also be processing decisions in the queuing and inventory

systems that we consider. The production control decision may be given depending on the

future sales and instant production costs. There may be more than one supplier/production

unit with different purchasing costs/production costs. Our main focus in the latter sections

of this chapter is on structural properties of the robust versions of the above problems.

However, in order to show how structural results on the value function propagate to the

robust counterpart we first present the standard versions of these systems within a common

perspective.

The problems we consider in the scope of this chapter are represented in discrete time.

In our setting, the stages (time) are denoted by t = 0, 1, ..., T , where T is the last stage

in the horizon. We use the event-based representation introduced by Koole [18]. Let i =

0, 1, 2, ..., n denote the event indices, where event 0 corresponds to a fictitious event. Note

that a fictitious event occurs if the system observes no state change. The system state x

can be any integer value at any stage t, then we have x ∈ X where X is a subset of

integers. We let ai denote the controller action regarding event i, so that an action can

be defined by ai ∈ {0, 1} as in the case admission/rejection or by ai ∈ ℜ as in the case of

pricing, where ℜ is the set of real numbers. Note that the controller is allowed to choose

her/his actions independently for all (x, t) pairs, and there is no restriction among the

actions regarding different events. The action vector a = (a1, a2, ..., an) denotes the actions

for all possible events. At each stage, depending on the controller action, Ri(a, x) (Ci(a, x))

is gained (incurred) as an immediate reward (cost). The randomness is characterized by a

transition probability distribution at each stage which is assumed to be independent of prior

uncertainties. The probability that event i occurs at stage t is given by pi,t, so
∑n

i=0 pi,t = 1
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for all t. When event i occurs in state x at stage t, the conditional probability that the next

state is y if controller selects action a is denoted by qt(a, x, y|i). Hence,
∑

y qt(a, x, y|i) = 1

for all t, a and x. We express the optimal value function vt(x) according to the following

equation when the time left until the end of the horizon is T − t:

vt(x) = max
a


n∑

i=0

pi,t
∑
y∈X

qt(a, x, y|i)(vt+1(y) +Ri(a, x))

 . (3.1)

Note that the action vector a is a function of x and t, but we suppress this for notational

simplicity. The event-based approach allows us to define the value function vt(x) as a con-

vex combination of operators T ivt+1(x) = maxa∈A

{∑
y∈X qt(a, x, y|i)(vt+1(y) +Ri(a, x))

}
,

vt(x) can be written as:

vt(x) =

n∑
i=0

pi,t

max
a

∑
y∈X

qt(a, x, y|i)(vt+1(y) +Ri(a, x))

 =

n∑
i=0

pi,t Tivt+1(x). (3.2)

Next, we investigate three important properties of the value function. Non-increasingness

(non-decreasingness) refers to vt(x) ≤ (≥)vt(x− 1) for all x, t. Supermodularity (submodu-

larity) refers to vt(x)− vt(x− 1) ≥ (≤) vt+1(x)− vt+1(x− 1) for all x, t. Finally, concavity

(convexity) refers to : vt(x + 1) − vt(x) ≤ (≤)vt(x) − vt(x − 1) for all x, t. Monotonicity

and concavity properties have been studied in detail previously ([19], [8]). Here, we restate

the known results in a different perspective: we assume that all the operators defined in

Table 3.1 preserve concavity, which is shown to be true by [19] and [8]. Then, we deduce

all other properties preserved by the operators from concavity. This approach will facilitate

our analysis of robust MDPs in the next section. Note that concavity and monotonicity

properties of the value functions determine the structure of the optimal policies as well,

e.g., optimal threshold policies for admission control and optimal base stock policies for

inventory control. Moreover, we elaborate on supermodularity/submodularity of the value

functions in x and t, which has not been studied in this perspective to our knowledge. These

properties ensure that the parameters of the structured optimal policies are also monotone

in time, e.g., the optimal base stock levels and optimal thresholds are monotone in t.
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In order to adress supermodularity, we first define Bivt+1(x) as the marginal time benefit

(MTB) function, so that we have:

Tivt+1(x) = Bivt+1(x) + vt+1(x). (3.3)

Note that this is conceptually similar to the marginal benefit of the operator discussed in

Çil et al. [8]. The MTB function is not only a tool to represent the value function vt(x),

but it has a direct relation with supermodularity/submodularity properties in the context

of these systems. The NI property of an MTB function, Bivt+1(x), implies that submod-

ularity is preserved by the corresponding operator, Tivt+1(x), whereas the ND property of

an MTB function, Bivt+1(x), implies that supermodularity is preserved by that operator.

The properties of MTB’s for different operators are presented in the next Proposition 4.2.1.

We first define the operators in below:

Type Operator Name Notation Definition

I Rationing TRiv(x) max{Ri + v(x− 1), v(x)}
I Batch Rationing TBRiv(x) maxκi∈min(x,B){κiRi + v(x− κi}
I Production Rate TPRiv(x) maxΠ∈[0,1]{−CΠi +Πiv(x+ 1) + (1−Πi)v(x)}
I Production TPiv(x) max{v(x+ 1)− Ci, v(x)}
I Inventory Pricing TIP v(x) maxR{FZ(R)[v(x− 1) +R] + FZ(R)v(x)}
Q Admission TAiv(x) max{Ri + v(x+ 1), v(x)}
Q Batch Admission TBAiv(x) maxκi∈min(x,B){κiRi + v(x+ κi}
Q Controlled Departure TCDiv(x) max{v(x− 1)− Ci, v(x)}
Q Departure Rate TDRiv(x) maxΠ∈[0,1]{−CΠ +Πv(x− 1) + (1−Π)v(x)}
Q Queue Pricing TQP v(x) maxR{FZ(R)[v(x+ 1) +R] + FZ(R)v(x)}
Q Uncontrolled Arrival TUAv(x) a(x)v(x+ 1) + (1− a(x))v(x)

Q Uncontrolled Departure TUDv(x) b(x)v(x− 1) + (1− b(x))v(x)

Table 3.1: Operators and Their Definitions (Q denotes a queueing operator and I denotes
an inventory operator)

Proposition 3.2.1 Let a value function vt(x) be concave in x for all x and t, then:
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1. The MTB functions of the below operators are nonincreasing (NI) in x for all x and

t.

(a) The queueing operators, admission control BAivt(x), batch admission BBAivt(x),

queue pricing BQPivt(x) and uncontrolled arrival BUAivt(x),

(b) The inventory operators, production control BPivt(x) and production rate control

BPRivt(x).

2. The MTB functions of the below operators are nondecreasing (ND) in x for all x at t.

(a) The queueing operators, controlled departure BCDivt(x), departure rate BDRivt(x),

uncontrolled departure BUDivt(x),

(b) The inventory operators, rationing BRivt(x), batch rationing BBRivt(x) and in-

ventory pricing BIPivt(x).

Proof: The proofs are given in the Section 3.2.1.

Finally, using the event-based dynamic programming framework, we summarize the results

when operators are combined to constitute a particular model.

Theorem 3.2.1 Let a value function vt(x) consist of convex combinations of the operators

preserving concavity in x for all x and t. Then:

1. The value function vt(x) is NI (ND) and concave in x for all x, t for the queueing

(inventory) systems.

2. Furthermore, assume that the value function vt(x) consists of convex combinations of

the operators such that their MTB functions, Bivt+1(x), are all NI (all ND). Then,

vt(x) is supermodular (submodular) in x, t for all x, t.

Proof The proof of Part 1 is omitted, since it borrows the main ideas from Koole [18] and

is straightforward. Here, we only provide the proof of part (2) when Bivt+1(x) is NI, since

the other case is similar. The value function, vt(x), can be written as follows by (3.3):

vt(x) =
n∑

i=0

pi,tBivt+1(x) + vt+1(x),
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since
∑n

i=0 pi,t = 1 for all t. Assuming that MTB functions, Bivt+1(x), are NI in x for all

x and t, we have:

vt(x)− vt+1(x) =

n∑
i=0

pi,tBivt+1(x) ≥
n∑

i=0

pi,tBivt+1(x− 1) = vt(x− 1)− vt+1(x− 1). (3.4)

Equation 3.4 completes the proof. 2

Theorem 3.2.1 ensures the submodularity (supermodularity) property for a general class of

models under the limitation that all the operators of a given model have NI (ND) MTB

functions. It applies, for example, for single-resource capacity control problems in revenue

management but does not hold in a queueing control model which has both admission con-

trol and uncontrolled departure operators.

In order to complete our arguments given in this part, we show the individual results of the

operators in below section.

3.2.1 Operators and Properties

We introduce a number of commonly-used operators for queueing and inventory problems

as in Koole [18], Koole [19] and Çil et al. [8]. Table 3.1 presents the type (“I” for inventory

and “Q” for queueing), names, notations and mathematical formulations of these operators.

Remember that their descriptions are already given in Chapter 2. The structural properties

of them are summarized in Table 3.2. Please remember that we used the previous result of

Koole [18], Koole [19] and Çil et al. [8] on concavity of all of these operators in x for all

t. We set vN (x) = 0 for all values of x, however, this assumption can be replaced with any

other condition as far as it is convenient to the statement.

Inventory Control Operators

1. Batch Rationing Operator

Definition of the Operator

TBRiv(x) = maxκi∈min(x,B){κiRi + v(x− κi},

TBRiv(x) = maxκi∈min(x,B){v(x− κi)− v(x) + κiRi}+ v(x)
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Marginal Time Benefit

BBRiv(x) = maxκi∈min(x,B){v(x− κi)− v(x) + κiRi} is ND in x ∀ t.

Proof:

Suppose ax, ax−1 is the optimal number of customers admitted in states x and x− 1

respectively. As it is stated in Çil, Örmeci and Karaesmen [8] concavity of v(x) im-

plies that customers admitted to x can be either same as with x− 1 or it can be only

differ by 1. Hence, ax is either ax−1 or ax−1 + 1. For ax−1 = 0, the claim is obvious.

Now suppose ax−1 ≥ 1. Concavity of v(x) implies v(x−1−a)−v(x−1) ≤ v(x−a)−v(x)

Therefore:

v(x− 1− ax−1)− v(x− 1) ≤ v(x− ax−1)− v(x)

v(x− 1− ax−1)− v(x− 1) + ax−1Ri ≤ v(x− ax−1)− v(x) + ax−1Ri

v(x− ax−1)− v(x) + ax−1Ri ≤ v(x− ax)− v(x) + axRi.

The second line proves the first case while the third line proves the second case by

optimality. 2

Monotonicity of Value Function

TBRiv(x) is ND in x for all t

Proof:

vN (x) = 0. By optimality,

v(x− ax) + axRi ≥ v(x− ax−1) + ax−1Ri.

Suppose v(x) ≥ v(x− 1):

v(x− ax−1) + ax−1Ri ≥ v(x− 1− ax−1) + ax−1Ri.

This completes proof. 2

2. Rationing Operator

Definition of the Operator



Chapter 3: Robust Control Of Stochastic Inventory and Queuing Problems 44

TRiv(x) = max{Ri + v(x− 1), v(x)},

TRiv(x) = {v(x− 1)− v(x) +Ri}+ + v(x)

Marginal Time Benefit

BRiv(x) = {v(x− 1)− v(x) +Ri}+ is ND in x for all t.

Proof:

v(x− 1)− v(x) ≤ v(x)− v(x+ 1)

v(x− 1)− v(x) +Ri ≤ v(x)− v(x+ 1) +Ri

{v(x− 1)− v(x) +Ri}+ ≤ {v(x)− v(x+ 1) +Ri}+.

First line holds by concavity, second line is obvious. For the third line, the inequality

is obvious if both sides of the inequalities are either greater than zero, or less than

zero. If v(x − 1) − v(x) + Ri ≤ 0 and v(x) − v(x + 1) + Ri ≥ 0 the inequality also

holds. This completes the proof. 2

Monotonicity of Value Function

TRiv(x) is ND in x for all t.

Proof:

vN (x) = 0. Suppose v(x) ≥ v(x− 1) for all x ≥ 1. By concavity property, there are

only three alternatives: 1. Do not admit at x, do not admit at x− 1. 2. Admit at x,

do not admit at x− 1. 3. Admit at x, admit at x− 1.

TRiv(x) = {v(x− 1)− v(x) +Ri}+ + v(x). Therefore, since v(x) ≥ v(x − 1), in

case 1, the monotonicity holds trivially. v(x − 1) + Ri ≥ v(x − 1), so in case 2,

the monotonicity again holds. v(x − 1) + Ri ≥ v(x − 2) + Ri, so in case 3, the

monotonicity holds.

This completes our proof. 2

3. Production Rate Operator

Definition of the Operator
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TPRiv(x) = maxΠ∈[0,1]{−CΠi +Πiv(x+ 1) + (1−Πi)v(x)},

TPRiv(x) = maxΠi∈[0,1]{Πi{v(x+ 1)− v(x)} − CΠi}+ v(x)

Marginal Time Benefit

BPRiv(x) = maxΠi∈[0,1]{Πi{v(x+ 1)− v(x)} − CΠi} is NI in x for all t.

Proof:

Suppose Πix and Πix−1 are the optimal production levels for x and x− 1 for t.

v(x+ 1)− v(x) ≤ v(x)− v(x− 1)

Πix [v(x+ 1)− v(x)] ≤ Πix [v(x)− v(x− 1)]

Πix [v(x+ 1)− v(x)]− CΠix
≤ Πix [v(x)− v(x− 1)]− CΠix

.

Since Πix−1 is optimal for x− 1 at t:

Πix [v(x+1)− v(x)]−CΠix
≤ Πix−1 [v(x)− v(x− 1)]−CΠix−1

, this proves our result.2

Monotonicity of Value Function

TPRiv(x) is ND in x for all t.

Proof:

Remember that vN (x) = 0. By optimality:

Πix{v(x+ 1)− v(x)} − CΠix
+ v(x) ≥ Πix−1{v(x+ 1)− v(x)} − CΠix−1

+ v(x).

Suppose v(x) ≥ v(x− 1), then following must be true:

Πix−1{v(x+ 1)− v(x)} − CΠix−1
+ v(x) ≥

Πix−1{v(x)− v(x− 1)} − CΠix−1
+ v(x− 1)

by rearranging the terms:

(1−Πix−1)v(x) + Πix−1v(x+ 1) ≥ (1−Πix−1)v(x− 1) + Πix−1v(x),

this completes proof. 2
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4. Production Operator

Definition of the Operator

TPiv(x) = max{v(x+ 1)− Ci, v(x)},

TPiv(x) = {v(x+ 1)− v(x)− Ci}+ + v(x)

for all t.

Marginal Time Benefit

BPiv(x) = {v(x+ 1)− v(x)− Ci}+ is NI in x for all t.

Proof:

v(x+ 1)− v(x) ≤ v(x)− v(x− 1)

v(x+ 1)− v(x)− Ci ≤ v(x)− v(x− 1)− Ci

{v(x+ 1)− v(x)− Ci}+ ≤ {v(x)− v(x− 1)− Ci}+.

The first line holds by concavity of value function in x. The second line is obvious.

If the both side of the inequality have the same sign, then the monotonicity property

holds. If v(x + 1) − v(x) − Ci ≤ 0 and v(x) − v(x − 1) − Ci > ge0 the monotonicity

holds as well. 2

Monotonicity of Value Function

TPiv(x) is ND in x for all t.

Proof:

vN (x) = 0. Suppose v(x) ≥ v(x − 1) By concavity property, there are only three

alternatives:

1. Do not produce at x, do not produce at x− 1.

2. Do not produce at x,produce at x− 1.

3. Produce at x, produce at x− 1.

TPiv(x) = {v(x+ 1)− v(x)− Ci}+ + v(x).

Since v(x) ≥ v(x− 1), in case 1, the monotonicity holds trivially. v(x) ≥ v(x)−Ci,

so in case 2, the monotonicity also holds. v(x + 1) − Ci ≥ v(x) − Ci, so in case 3,

the monotonicity also holds.This completes our proof. 2
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5. Inventory Pricing Operator

Definition of the Operator

TIP v(x) = maxR{FZ(R)[v(x− 1) +R] + FZ(R)v(x)},

TIP v(x) = maxRFZ(R){v(x− 1)− v(x) +R}+ v(x)

Marginal Time Benefit

BIP v(x) = maxR FZ(R){v(x− 1)− v(x) +R} is ND in x for all t.

Proof: Suppose Rx and Rx−1 are the optimal prices for x and x− 1 for t.

v(x− 1)− v(x) ≤ v(x)− v(x+ 1)

FZ(Rx){v(x− 1)− v(x) +Rx} ≤ FZ(Rx){v(x)− v(x+ 1) +Rx}.

Since Rx+1 is optimal for x+ 1 at t:

FZ(Rx){v(x)− v(x+ 1) +Rx} ≤ FZ(Rx+1){v(x)− v(x+ 1) +Rx+1} this proves our

result. 2

Monotonicity of Value Function

TIP v(x) is ND in x for all t.

Proof:

Please remember that vN (x) = 0, v(x) ≥ v(x − 1) and Rx and Rx−1 are the optimal

prices for x and x− 1 for t. By optimality:

FZ(Rx){v(x− 1)− v(x) +Rx}+ v(x) ≥

FZ(Rx−1){v(x− 1)− v(x) +Rx−1}+ v(x)

The following holds by concavity and ND property at t+ 1:

FZ(Rx−1){v(x− 1)− v(x) +Rx−1}+ v(x) ≥

FZ(Rx−1){v(x− 2)− v(x− 1) +Rx−1}+ v(x− 1)

This completes the proof. 2
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Queueing Operators

Queueing operators we consider throughout this dissertation are given in the following. It

is important to note that the waiting room is infinite.

1. Batch Admission

Definition of the Operator

TBAiv(x) = maxκi∈min(x,B){κiRi + v(x+ κi}.

TBAiv(x) = maxκi∈min(x,B){v(x+ κi)− v(x) + κiRi}+ v(x)

Marginal Time Benefit

BBAiv(x) = maxκi∈min(x,B){v(x+ κi)− v(x) + κiRi} is NI in x for all t.

Proof: Suppose ax, ax−1 is the number of customers admitted to states x and x − 1

respectively. As it is stated in Çil, Örmeci and Karaesmen [8] concavity of v(x) implies

that customers admitted to x can be either same as with x− 1 or it can be only differ

by 1. Hence, ax−1 is either ax or ax + 1. For ax = 0, claim is obvious. Now suppose

ax ≥ 1. The concavity of v(x) implies vt(x− 1 + a)− vt(x− 1) ≥ vt(x+ a)− vt(x):

v(x+ ax)− v(x) ≤ v(x− 1 + ax)− v(x− 1)

v(x+ ax)− v(x) + axRi ≤ v(x− 1 + ax)− v(x− 1) + axRi

v(x− 1 + ax)− v(x− 1) + axRi ≤ v(x− 1 + ax−1)− v(x− 1) + ax−1Ri.

The second line proves the first case while the third line proves the second case by

optimality. 2

Monotonicity of Value Function TBAiv(x) is NI in x for all t

Proof:

vN (x) = 0 so the inequality holds for the last stage. By optimality:

{v(x− 1 + ax)− v(x− 1) + axRi}+ v(x− 1) ≤

{v(x− 1 + ax−1)− v(x− 1) + ax−1Ri}+ v(x− 1)

Suppose v(x) ≤ v(x− 1):
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{v(x+ ax) + axRi} ≤ {v(x− 1 + ax) + axRi}+

This completes proof. 2

2. Admission

Definition of the Operator

TAiv(x) = max{Ri + v(x+ 1), v(x)},

TAiv(x) = {v(x+ 1)− v(x) +Ri}+ + v(x).

Marginal Time Benefit

BAiv(x) = {v(x+ 1)− v(x) +Ri}+ is NI in x for all t.

Proof:

v(x+ 1)− v(x) ≤ v(x)− v(x− 1)

v(x+ 1)− v(x) +Ri ≤ v(x)− v(x− 1) +Ri

{v(x+ 1)− v(x) +Ri}+ ≤ {v(x)− v(x− 1) +Ri}+.

The first line holds by concavity of v(x) in x and the second line is obvious. For the

third line, if both sides of the inequality has the same sign, then the monotonicity

result holds. If v(x + 1) − v(x) + Ri ≤ 0 whereas v(x) − v(x − 1) + Ri ≥ 0, the

monotonicity result holds as well. This completes the proof. 2 Monotonicity of

Value Function

TAiv(x) is NI in x for all t.

Proof:

vN (x) = 0. Suppose v(x) ≤ v(x − 1) By concavity property, there are only three

alternatives: 1. Do not admit at x, do not admit at x − 1. 2. Do not admit at x,

admit at x− 1. 3.Admit at x, admit at x− 1.

TAiv(x) = {v(x+ 1)− v(x) +Ri}+ + v(x). Therefore, Since v(x) ≤ v(x− 1), in case

1, the monotonicity holds trivially. v(x) ≤ v(x) + Ri, so in case 2 the monotonicity

holds. v(x + 1) + Ri ≤ v(x) + Ri, so in case 3 holds, the monotonicity also holds.

This completes our proof. 2
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3. Controlled Departure Operator

Definition of the Operator

TCDiv(x) = max{v(x− 1)− Ci, v(x)},

TCDiv(x) = {v(x− 1)− v(x)− Ci}+ + v(x)

Marginal Time Benefit

BCDv(x) = {v(x− 1)− v(x)− Ci}+ is ND in x for all t.

Proof:

v(x− 1)− v(x) ≤ v(x)− v(x+ 1)

v(x− 1)− v(x)− Ci ≤ v(x)− v(x+ 1)− Ci

{v(x− 1)− v(x)− Ci}+ ≤ {v(x)− v(x+ 1)− Ci}+.

The first line holds by concavity of v(x) in x and the second line is obvious. For the

third line, if both sides of the inequality has the same sign, then the monotonicity

result holds. If v(x − 1) − v(x) − Ci ≤ 0 whereas v(x) − v(x + 1) − Ci ≥ 0, the

monotonicity result holds as well. This completes the proof. 2

Monotonicity of Value Function

TCDiv(x) is NI in x for all t.

Proof:

vN (x) = 0. Suppose v(x) ≤ v(x − 1) By concavity property there are only three

alternatives. 1. Do not depart at x, do not depart at x − 1. 2. Depart at x, do not

depart at x− 1. 3.Depart at x, depart at x− 1.

TCDiv(x) = {v(x− 1)− v(x)− Ci}+ + v(x). Therefore, Since v(x) ≤ v(x − 1), in

case 1, the monotonicity holds trivially. v(x − 1) − Ci ≤ v(x − 1), so in case 2, the

monotonicity holds. v(x − 1) − Ci ≤ v(x − 2) − Ci, so in case 3, the monotonicity

also holds.

This completes our proof. 2

4. Departure Rate Operator

Definition of the Operator
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TDRiv(x) = maxΠ∈[0,1]{−CΠ +Πv(x− 1) + (1−Π)v(x)},

TDRiv(x) = maxΠ∈[0,1]{Π{v(x− 1)− v(x)} − CΠ}+ v(x)

Marginal Time Benefit

BDRiv(x) = maxΠ∈[0,1]{Π{v(x− 1)− v(x)} − CΠ} is ND in x for all t.

Proof:

Suppose Πix and Πix+1 are optimal results for x and x+ 1 for t.

v(x− 1)− v(x) ≤ v(x)− v(x+ 1)

Πix [v(x− 1)− v(x)] ≤ Πix [v(x)− v(x+ 1)]

Πix [v(x− 1)− v(x)]− CΠix
≤ Πix [v(x)− v(x+ 1)]− CΠix

.

Since Πix+1 is optimal for x+ 1 at t:

Πix [v(x)− v(x+1)]−CΠix
≤ Πix+1 [v(x)− v(x+1)]−CΠix+1

this proves our result.2

Monotonicity of Value Function

TDRiv(x) is NI in x for all t.

Proof:

Remember that vN (x) = 0. By optimality:

Πix [v(x− 2)− v(x− 1)]− CΠix
+ v(x− 1) ≤

Πix−1 [v(x− 2)− v(x− 1)]− CΠix−1
+ v(x− 1)

Suppose v(x) ≤ v(x− 1) The following must be true:

Πix [v(x− 1)− v(x)]− CΠix
+ v(x) ≤

Πix [v(x− 2)− v(x− 1)]− CΠix
+ v(x− 1)

By rearranging the terms:

Πixv(x− 1) + (1−Πix)v(x) ≤ Πixv(x− 2) + (1−Πix)v(x− 1),

this completes the proof. 2



Chapter 3: Robust Control Of Stochastic Inventory and Queuing Problems 52

5. Queue Pricing Operator

Definition of the Operator

TQP v(x) = maxR{FZ(R)[v(x+ 1) +R] + FZ(R)v(x)},

TQP v(x) = maxR FZ(R){v(x+ 1)− v(x) +R}+ v(x)

Marginal Time Benefit

BQP v(x) = maxR FZ(R){v(x+ 1)− v(x) +R} is NI in x for all t.

Proof: Suppose Rx and Rx−1 are optimal results for x and x− 1 for t.

v(x+ 1)− v(x) ≤ v(x)− v(x− 1)

FZ(Rx){v(x+ 1)− v(x) +Rx} ≤ FZ(Rx){v(x)− v(x− 1) +Rx}.

Since Rx−1 is optimal for x− 1 at t:

FZ(Rx){v(x)− v(x− 1) +Rx} ≤ FZ(Rx−1){v(x)− v(x− 1) +Rx−1} this proves our

result. 2

Monotonicity of Value Function

TQP v(x) is NI in x for all t.

Proof:

Remember vN (x) = 0 and v(x) ≤ v(x− 1). By optimality:

FZ(Rx){v(x)− v(x− 1) +Rx}+ v(x− 1) ≤

FZ(Rx−1){v(x)− v(x− 1) +Rx−1}+ v(x− 1).

The following is true by concavity and NI at t+ 1:

FZ(Rx){v(x+ 1)− v(x) +Rx}+ v(x) ≤

FZ(Rx){v(x)− v(x− 1) +Rx}+ v(x− 1).

This completes the proof. 2

6. Uncontrolled Arrival to a Queue

Definition of the Operator
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TUAv(x) = a(x)v(x+ 1) + (1− a(x))v(x),

TUAv(x) = a(x){v(x+ 1)− v(x)}+ v(x)

The Uncontrolled arrival operator preserves concavity in x for all t.

Marginal Time Benefit

BUAv(x) = a(x){v(x+1)− v(x)} is NI in x ∀x, where a(x) is NI in x for all t. Proof:

a(x){v(x+ 1)− v(x)} ≤ a(x){v(x)− v(x− 1)}

a(x){v(x)− v(x− 1)} ≤ a(x− 1){v(x)− v(x− 1)}.

First line holds by concavity and the second line holds since a(x) ≤ a(x − 1). This

completes the proof. 2

Monotonicity of Value Function

TUAv(x) is NI in x for all t.

Proof:

Remember vN (x) = 0. Suppose v(x) ≤ v(x− 1) By concavity property proof follows

automatically. 2

7. Uncontrolled Departure to a Queue

Definition of the Operator

TUDv(x) = b(x)v(x− 1) + (1− b(x))v(x),

TUDv(x) = b(x){v(x− 1)− v(x)}+ v(x)

Marginal Time Benefit

BUDv(x) = b(x){v(x−1)−v(x)} is ND in x ∀x, where b(x) is ND in x for all t. Proof:

b(x){v(x− 1)− v(x)} ≤ b(x){v(x)− v(x+ 1)}

b(x){v(x− 1)− v(x)} ≤ b(x+ 1){v(x)− v(x+ 1)}.

First line holds by concavity and the second line holds since b(x) ≤ b(x + 1). This

completes the proof. 2
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Monotonicity of Value Function

TUDv(x) is NI in x for all t.

Proof:

Remember that vN (x) = 0. Suppose v(x) ≤ v(x − 1). Supermodularity implies

b(x − 1) ≤ b(x). Hence, proof follows automatically. An alternative proof is given in

Çil, Örmeci and Karaesmen [8].

The properties of the operators we present here are summarized in Table 3.2:

Table 3.2: Monotonicity Results

Operator Name Supermodularity in (x, t) Bvt(x) vt(x)

Rationing supermodular ND. in x ND. in x

Batch Rationing supermodular ND. in x ND. in x

Production submodular NI. in x ND. in x

Production Rate submodular NI. in x ND. in x

Inventory Pricing supermodular ND. in x ND. in x

Admission submodular NI. in x NI. in x

Batch Admission submodular NI. in x NI. in x

Controlled Departure supermodular ND. in x NI. in x

Departure Rate supermodular ND. in x NI. in x

Queue Pricing submodular NI. in x NI. in x

Uncontrolled Arrival to a Queue submodular NI. in x NI. in x

Uncontrolled Departure from a Queue supermodular ND. in x NI. in x

3.3 Structural Properties of Some Robust Queueing and Inventory Problems

In this section, we consider the robust version of the dynamic optimization problem (which

will be referred to as the nominal problem) described in Section 2. In this version of the

problem, a subset of the problem parameters is assumed to be uncertain. Typically, the

system controller decides on his actions before observing the uncertain parameters. Once

his decisions are taken, Nature selects these parameters from an uncertainty set in order

to minimize the benefit of the system. Hence, the controller has to consider the worst case

scenario when choosing his actions. Our robust formulations are based on the maximin ap-

proach suggested by Nilim and El Ghaoui [25] and Iyengar [16]. We present the formulation
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and the underlying assumptions in Section 3.3.1, and investigate the structural results of

the optimal policy under these assumptions in Section 3.3.2.

3.3.1 The Robust Dynamic Programming Formulation

In the robust formulation, the transition probabilities or the rewards (costs) belong to an

uncertainty set, rather than being fixed values as in the nominal problem. In general, an

uncertainty set may vary with action, state and stage. In this chapter, we mainly focus

on having uncertain transition probabilities, while considering uncertain rewards (costs) in

extensions (Section 6).

In our formulation, the transition probabilities consist of two components as observed in

Equation (3.1): qt(a, x, y|i) and pi,t. We assume that qt(a, x, y|i) is known with certainty

and pi,t is uncertain and can depend on the chosen action and state of the system. This

may be a limitation for certain models but is appropriate for queueing control represented

by event-based dynamic programming. In such models, qt(a, x, y|i) is either 0 or 1 and the

probabilistic structure is only reflected through the event probability pi,t.

We let pi,t(x,a) be the probability of observing event i when the system is in state x and

action vector a is chosen at stage t. We assume that pi,t(x,a) belongs to an uncertainty

set Pt, where Pt represents the available information on the event probability distribution.

Our uncertainty model is based on the model proposed by Nilim and El Ghaoui [25], where

the so-called rectangularity property is the main condition for obtaining a recursive solu-

tion. When the rectangularity property holds, nature can independently select its action

for every stage, state and the controller action. We consider a special case of Nilim and El

Ghaoui [25] by assuming that the uncertainty set at each stage t, Pt, is independent of the

controller’s action vector a as well as the state x. Then, this assumption together with the

rectangularity property implies that Nature’s choice of a particular distribution at time t

does not limit the choices of nature in the future. Note that this additional assumption is

not very restrictive when handling real life problems: The state-dependent event probabil-

ity distribution is difficult to estimate from limited statistical data. In addition, in typical
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examples, these probabilities represent demand rates which do not depend on the state of

the system or the actions taken.

Letting π = (a1, a2, . . . , aT ) denote a policy, we define the set of all admissible policies of

Nature for a given policy π

as:

τπ = P1 × P2 × P3 × ...× PT ,

regardless of the particular states and actions.

Now we let wt(x) be the robust counterpart of the value function given in (3.2), and consider

the following robust DP equation:

wt(x) = max
a

 min
pt(x,a)

n∑
i=0

pi,t(x,a)
∑
y∈X

qt(a, x, y|i)(wt+1(y) +Ri(a, x))

 , (3.5)

where pt(x,a) = (p1,t(x,a), p2,t(x,a), ..., pn,t(x,a)). Note that, as in the previous section,

we suppress the dependence of the action vector a on x and t for notational simplicity. This

problem can be solved by recursively due to the above assumptions, as shown by Nilim and

El Ghaoui [25] and Iyengar [16].

3.3.2 Properties of the Value Function and the Optimal Policy

To establish certain properties of the robust value function, we start by exploring the effects

of the decision sequence in the game between the controller and Nature. In particular, we

prove that the optimal action is independent of the uncertainty choice at any stage, which

implies the perfect duality of the game. These results are then used to show that the robust

formulation inherits the structural properties of the nominal problem.

In the robust formulation given by (3.5), Nature chooses the event probabilities to minimize

the value function wt(x) after observing the action of the controller. The value function

w̃t(x) is defined as the dual counterpart of wt(x), and refers to the game when the con-

troller chooses his action after he observes the event probabilities chosen by Nature. We
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let pt(x) = (p1,t(x), p2,t(x), ..., pn,t(x)) be the event probabilities chosen by Nature and

at(x,pt(x)) be the corresponding action vector chosen by the controller in state x at stage

t. Then, the value function, w̃t(x), is given as follows:

w̃t(x) = min
pt(x)

max
a

n∑
i=0

pi,t(x)
∑
y∈X

qt(a, x, y|i)(w̃t+1(y) +Ri(a, x))

 , (3.6)

where a = at(x,pt(x)). The value function, w̃t(x), can be expressed in terms of the opera-

tors, Ti, as shown by the next lemma:

Lemma 3.3.1 The optimal action vector, at(x,pt), does not depend on the event probabili-

ties, pt(x) ∈ Pt, for the value function, w̃t(x), given in (3.6). Therefore, the value function,

w̃t(x), can be expressed as follows:

w̃t(x) = min
pt(x)

{
n∑

i=0

pi,t(x)Tiw̃t+1(x))

}
.

Proof In equation (3.6), the inside maximization corresponds to the actions of the controller

given the event probabilities, pt(x) = (p1,t(x), p2,t(x), ..., pn,t(x)). Then, it can be written

as a convex combination of the operators, Tiwt+1(x) = maxa
∑

y∈X qt(a, x, y|i)(w̃t+1(y) +

Ri(a, x)). Therefore, similarly to the derivation of equation (3.2), we have:

w̃t(x) = min
pt(x)


n∑

i=0

pi,t(x)max
a

∑
y∈X

qt(a, x, y|i)(w̃t+1(y) +Ri(a, x))


= min

pt(x)

{
n∑

i=0

pi,t(x)Tiw̃t+1(x))

}
.

This completes the proof. 2 Now we present the well-known property of the maximin

theorem, which relates the robust value function, wt(x), with its dual counterpart, w̃t(x):

Property 3.3.1 The value function, wt(x), is less than or equal to its dual counterpart,

w̃t(x), i.e., wt(x) ≤ w̃t(x) for all states x and stages t.

When a game is perfectly dual, then the two value functions are equal to each other, i.e.,

wt(x) = w̃t(x) for all states x and stages t. Perfect duality has been shown for multistage
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stochastic games by various authors (Nilim and El Ghaoui [25], Nowak [26], and Altman

[1]). However, we restate the perfect duality in Theorem 3.3.1 in our terminology.

Theorem 3.3.1 The game between the controller and Nature is perfectly dual so that

wt(x) = w̃t(x) for all states x and stages t. Hence, the robust value function wt(x) can

be expressed as:

wt(x) = min
pt(x)

{
n∑

i=0

pi,t(x)Tiwt(x)

}
, (3.7)

or

wt(x) = min
pt(x)

{
n∑

i=0

pi,t(x)Biwt(x)

}
+ wt+1(x), (3.8)

where the probability vector pt(x) = (p1,t(x), p2,t(x), ..., pn,t(x)) is the Nature’s corresponding

optimal action.

Proof We first consider the dual counterpart of the game so that the controller decides on

his actions after observing the choice of Nature, pt(x). Let a
∗
t (x) = (a∗1,t(x), . . . , a

∗
n,t(x)) be

the optimal action vector in state x at stage t for the value function w̃t(x). Let’s denote

the Nature’s respective solution p∗
t (x) according to the following equation:

p∗
t (x) = arg min

pt(x)
(

n∑
i=0

pi,t(x)Tiw̃t+1(x)). (3.9)

Now we feed the optimal action vector a∗
t (x) to the game in which the controller decides on

his actions before observing the choice of Nature. Apparently, Nature’s respective solution

is p∗
t (x) according to Equation 3.5 implying that (a∗

t (x),p
∗
t (x) ) is a feasible pair for wt(x).

Hence, by Property 3.3.1, perfect duality holds, i.e. wt(x) = w̃t(x) for all states x and stages

t. Then, equation (3.7) holds due to Lemma 3.3.1, and equation (3.8) holds by equations

(3.7), (3.3) and
∑n

i=0 pi,t = 1 for all t. 2

By Theorem 3.3.1, we have established that the robust counterpart can be represented sim-

ilarly to the nominal problem. This enables us to define the problem as in (3.7) or (3.8). In

fact, Lemma 3.3.1 and Theorem 3.3.1 provide a much stronger result than perfect duality.

By reformulating Equation (3.5) in this way, we establish a sort of independence of the

controller’s action from the Nature’s posteriori action. Instead of solving the inner problem

of nature for every controller action, we solve it only for one action (i.e., the optimal action
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of the dual counterpart) of the controller at each stage and state, which improves the so-

lution time dramatically as the controller’s action set gets larger. Hence, our contribution

is important especially for the problems with uncertainty sets that are not proven to be

solvable in polynomial time (see Nilim and El Ghaoui [25]). Now we will show that the

structural properties of the value function vt(x) propagate to the robust counterpart for

these situations. We start by considering the concavity:

Lemma 3.3.2 Let the robust value function wt(x) be concave in x for all x and t, then

Tiwt(x) is concave in x for all x and t. Table 3.1.

Proof This result follows from [19] and [8], since concavity is preserved by the considered

operators without any additional condition. 2

As in the nominal problem, concavity guarantees the monotonicity of the value functions:

Lemma 3.3.3 Let the robust value function wt(x) be concave in x for all x at t, then

the queueing operators preserve NI property in x and the inventory operators preserve ND

property in x for all x and t in the robust formulation.

Proof The proofs are given in section 3.2.1. 2

Our next result shows that concavity induces the same monotonicity properties for the MTB

functions as in the nominal problem:

Lemma 3.3.4 Let the robust value function wt(x) be concave in x for all x and t, then:

1. The MTB functions of the below operators are nonincreasing (NI) in x for all x and

t.

(a) The queueing operators, admission control BAiwt(x), batch admission BBAiwt(x),

queue pricing BQPiwt(x) and uncontrolled arrival BUAiwt(x),
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(b) The inventory operators, production control BPiwt(x) and production rate control

BPRiwt(x).

2. The MTB functions of the stated operators are nondecreasing (ND) in x for all x and

t.

(a) The queueing operators, controlled departure BCDiwt(x), departure rate BDRiwt(x),

uncontrolled departure BUDiwt(x),

(b) The inventory operators, rationing BRiwt(x), batch rationing BBRiwt(x) and

inventory pricing BIPiwt(x).

Proof The proofs are given in section 3.2.1. 2

Finally, we present our main result, which extends Theorem 3.2.1 to the robust counterpart

of these problems. More explicitly, for any problem that can be expressed in the form of

Equation (2), all the structural results given in Theorem 3.2.1 extend to the value function

of the robust counterpart, wt(x):

Theorem 3.3.2 Let a value function of the robust counterpart, wt(x), consist of convex

combinations of the operators preserving concavity in x for all x and t. Then:

1. The value function wt(x) is NI (ND) and concave in x for all x, t for queueing (in-

ventory) systems.

2. If a value function wt(x) consists of convex combinations of operators such that their

MTB functions, Biwt+1(x), are all NI (all ND), then wt(x) is supermodular (submod-

ular) in x, t for all x, t.

Proof We let pt(x−1), pt(x), pt(x+1) denote the optimal choices of Nature in states x−1,

x and x+ 1, respectively, at stage t, in the rest of the proof.

We first show concavity: Since wt+1(x) is concave in x for all x at stage t+1, then Tiwt+1(x)

is concave in x for every operator i by Lemma 3.3.2, so that the convex combination of these

operators also preserve this property. Hence, we can write the following inequality:∑
i

pi,t(x)Tiwt+1(x− 1) +
∑
i

pi,t(x)Tiwt+1(x+ 1) ≤ 2

[∑
i

pi,t(x)Tiwt+1(x)

]
. (3.10)
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We know that:

∑
i

pi,t(x− 1)Tiwt+1(x− 1) ≤
∑
i

pi,t(x)Tiwt+1(x− 1),

by the optimality of pi,t(x− 1) in state x− 1, and:

∑
i

pi,t(x+ 1)Tiwt+1(x+ 1) ≤
∑
i

pi,t(x)Tiwt+1(x+ 1),

by the optimality of pi,t(x+ 1) in state x+ 1. Then, the sum of the left-hand-sides (LHSs)

of these two inequalities is less than the LHS of inequality (3.10), which proves that wt(x)

is concave in x at stage t.

Now we prove the value function is NI for queueing operators. The result for the inventory

operators can be proven similarly. We suppose that wt+1(x) is NI in x. Then Tiwt+1(x) is

NI in x by Lemma 3.3.3. Hence, we have:

∑
i

pi,t(x)Tiwt+1(x) ≤
∑
i

pi,t(x− 1)Tiwt+1(x) ≤
∑
i

pi,t(x− 1)Tiwt+1(x− 1),

where the first inequality is due to the optimality of pi,t(x) in state x, and the second

inequality follows since Tiwt+1(x) is NI in x. This completes the proof of Part 1.

We prove part (2) only for the case when MTB functions of all the operators are NI, since

the proof of the other case is similar. By equation (3.8) in Theorem 3.3.1, we have:

wt(x)− wt+1(x) =
∑
i

pi,t(x)Biwt+1(x).

On the other hand:

∑
i

pi,t(x)Biwt+1(x) ≥
∑
i

pi,t(x)Biwt+1(x− 1) ≥
∑
i

pi,t(x− 1)Biwt+1(x− 1),
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where the first inequality is due to the optimality of pi,t(x) in state x, and the second in-

equality follows since Biwt+1(x) is NI in x. Therefore:

wt(x)− wt+1(x) =
∑
i

pi,t(x)Biwt+1(x)ge
∑
i

pi,t(x− 1)Biwt+1(x− 1) = wt(x− 1)− wt+1(x− 1).

This completes the proof. 2

Theorem 3.3.2 together with Lemmas 3.3.3 and 3.3.4 establishes a general result: The value

function wt(x) has the same monotonicity properties with the nominal value function vt(x),

independently of how the uncertainty set is constructed. Note that the nominal policy is a

special case of robust policy where uncertainty set is defined as a single point. As a result,

we show that optimal policies have the same structure for any system which is built by the

operators listed in Table 3.1 of Section 3.2. In the next section, we discuss the effect of

the degree of uncertainty on the structure of the value function and the optimal policies.

Please note that it is not, a queueing system is generally constituted of operators whose

MTB functions are both NI and ND.

3.4 Effect of Uncertainty on the Structure of the Optimal Policy

In this section we present some results on the effect of transition probability uncertainty on

the robust value function wt(x) and the threshold ∆wt(x). In order to analyze the effect of

uncertainty, we compare two uncertainty sets P and Pε where the former is the subset of

the latter, i.e. P ⊆ Pε.

Lemma 3.4.1 Let P and Pε be two uncertainty sets and w(x) and wε(x) be the corre-

sponding robust value functions constituted of a subset of operators given in the Table 3.1.

If P ⊆ Pε then w(x) ≥ wε(x).
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Proof Assume that induction hypothesis holds. Suppose we have two systems where all

system parameters are the same for all stages except from the stage t. The uncertainty

set defining event probabilities at stage t is Pt ⊆ Pε
t . Now suppose that pt and pε

t are the

respective solutions of Nature associated with the uncertainty sets P and Pε. Then we

have:

∑
i

pεi,t(x)Tiw
ε
t+1(x) ≤

∑
i

pi,t(x)Tiw
ε
t+1(x) ≤

∑
i

pi,t(x)Tiwt+1(x). (3.11)

The first inequality follows since pt is a feasible solution for both systems and the second

is due to the induction hypothesis. Hence, we have wt(x) ≥ wε
t (x) for all x at stage t. Now

consider the production rate operator TPRiwt(x) and suppose that Πi,t and Πi,t
ε are the

respective optimal solutions at stage t:

−CΠi +Πiwt(x+ 1) + (1−Πi)wt(x)} ≥

−CΠε
i
+Πε

iwt(x+ 1) + (1−Πε
i )wt(x)} ≥

−CΠε
i
+Πε

iw
ε
t (x+ 1) + (1−Πε

i )w
ε
t (x).

We do not provide proofs for all of the operators since they are similar. Equation 3.11

implies wt−1(x) ≥ wε
t−1(x). This completes the proof.

2

Before concluding the theoretical results, it is important to mention that the thresholds

are not necessarily monotone with respect to uncertainty sets. Hence, neither ∆wP
t (x) ≥

∆wPε

t (x) nor ∆wP
t (x) ≤ ∆wPε

t (x) holds for all x and t. To present a counter example,

suppose that, without loss of generality, ∆wP
t (x) ≥ ∆wPε

t (x) holds, then wP
t (x)−wPε

t (x) ≥

wP
t (x−1)−wPε

t (x−1). This means that, as we enlarge the uncertainty set, the loss in wt(x)

is greater than the corresponding loss in wt(x − 1). Further suppose that P contains all

improving feasible directions for wt(x−1) but improving feasible directions for wt(x). Hence,
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as we enlarge the uncertainty set by this way, the loss in value function wP
t (x)−wPε

t (x) = 0

whereas wP
t (x − 1) − wPε

t (x − 1) ≥ 0. In the following we present a numerical counter

example where we compare two systems. The reward of each class is as follows: R1 = 40,

R2 = 35, R3 = 30, R4 = 20 and they have the same values for both systems.

The uncertainty set defining probabilities are denoted as P and defined as follows:

4p1 + 2p2 + 3p3 + p4 ≥ 1.65

0.1 ≤ pi ≤ 0.2 i = 1, ..., 4.

(3.12)

The calculations for states 1 and 2 for stages T − 1, T − 2, T − 3, T − 4, T − 5 are presented

in the following for the first system:

When stage t = T − 1 and the state x = 1 the computed values are as follows:

i 1 2 3 4

BiwT−1(1) 40 35 30 20

BiwT−1(1)/bi 10 17.5 10 20

pi,T−1(1) 0.1875 0.1 0.2 0.1

bipi,T−1(1) 0.75 0.2 0.6 0.1

wT−1(1) = 19 and pT−1(1) = (0.1875, 0.1, 0.2, 0.1). When stage t = T − 1 and the state

x = 2 the computed values are as follows:

i 1 2 3 4

BiwT−1(2) 40 35 30 20

BiwT−1(2)/bi 10 17.5 10 20

pi,T−1(2) 0.1875 0.1 0.2 0.1

bipi,T−1(2) 0.75 0.2 0.6 0.1

The wT−1(x) = 19 for all x > 0 and pT−1(x) = (0.1875, 0.1, 0.2, 0.1). When stage t = T − 2

and the state x = 1 the computed values are as follows:
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i 1 2 3 4

BiwT−2(1) 21 16 11 1

BiwT−2(1)/bi 5.25 8 3.666667 1

pi,T−2(1) 0.1625 0.1 0.2 0.2

bipi,T−2(1) 0.65 0.2 0.6 0.2

wT−2(1) = 26.415 and pT−2(1) = (0.1625, 0.1, 0.2, 0.2). When stage t = T − 2 and the state

x = 2 the computed values are as follows:

i 1 2 3 4

BiwT−2(2) 40 35 30 20

BiwT−2(2)/bi 10 17.5 10 20

pi,T−2(2) 0.1875 0.1 0.2 0.1

bipi,T−2(2) 0.75 0.2 0.6 0.1

wT−2(2) = 38 and pT−2(2) = (0.1875, 0.1, 0.2, 0.1). When stage t = T − 3 and the state

x = 1 the computed values are as follows:

i 1 2 3 4

BiwT−3(1) 13.5875 8.5875 3.5875 0

BiwT−3(1)/bi 3.396875 4.29375 1.195833 0

pi,T−3(1) 0.1625 0.1 0.2 0.2

bipi,T−3(1) 0.65 0.2 0.6 0.2

wT−3(1) = 30.19672 and pT−3(1) = (0.1625, 0.1, 0.2, 0.2). When stage t = T − 3 and the

state x = 2 the computed values are as follows:

i 1 2 3 4

BiwT−3(2) 28.4125 23.4125 18.4125 8.4125

BiwT−3(2)/bi 7.103125 11.70625 6.1375 8.4125

pi,T−3(2) 0.1875 0.1 0.2 0.1

bipi,T−3(2) 0.75 0.2 0.6 0.1

wT−3(2) = 50.19234 and pT−3(2) = (0.1875, 0.1, 0.2, 0.1). When stage t = T − 4 and the

state x = 1 the computed values are as follows:
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i 1 2 3 4

BiwT−4(1) 9.803281 4.803281 0 0

BiwT−4(1)/bi 2.45082 2.401641 0 0

pi,T−4(1) 0.1125 0.2 0.2 0.2

bipi,T−4(1) 0.45 0.4 0.6 0.2

wT−4(1) = 32.26024 and pT−4(1) = (0.1125, 0.2, 0.2, 0.2). When stage t = T − 4 and the

state x = 2 the computed values are as follows:

i 1 2 3 4

BiwT−4(2) 20.00438 15.00438 10.00438 0.004375

BiwT−4(2)/bi 5.001094 7.502188 3.334792 0.004375

pi,T−4(2) 0.1625 0.1 0.2 0.2

bipi,T−4(2) 0.65 0.2 0.6 0.2

wT−4(2) = 56.94524 and pT−4(2) = (0.1625, 0.1, 0.2, 0.2). When stage t = T − 5 and the

state x = 1 the computed values are as follows::

i 1 2 3 4

BiwT−5(1) 7.739756 2.739756 0 0

BiwT−5(1)/bi 1.93 1.37 0.00 0.00

pi,T−5(1) 0.1125 0.2 0.2 0.2

bipi,T−5(1) 0.45 0.4 0.6 0.2

wT−5(1) = 33.67892 and pT−5(1) = (0.1125, 0.2, 0.2, 0.2). When stage t = T − 5 and the

state x = 2 the computed values are as follows:

i 1 2 3 4

BiwT−5(2) 15.315 10.315 5.315002 0

BiwT−5(2)/bi 3.83 5.16 1.77 0.00

pi,T−5(2) 0.1625 0.1 0.2 0.2

bipi,T−5(2) 0.65 0.2 0.6 0.2
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wT−5(2) = 61.52843 and pT−5(2) = (0.1625, 0.1, 0.2, 0.2). Now consider the second system.

The uncertainty set P ′ of that system is larger than the uncertainty set of the first system

P ′ ⊇ P. The definition of P ′ is as follows:

p1 + 2p2 + 3p3 + p4 ≥ 1.65 if t ̸= T − 5

0.1 ≤ pi,t ≤ 0.1 i = 1, ..., 4 if t = T − 5

0.05 ≤ pi,t ≤ 0.325 i = 1, ..., 4

. If we denote the value function and probabilities of the second system with w′
t(x) and

p′i,t(x), it is apparent that w
′
t(x) = wt(x) and p′t(x) = pt(x) for t = T − 1, ..., T − 4. Hence,

we just show the values for T − 5 When stage t = T − 5 and the state x = 1 the computed

values are as follows:

i 1 2 3 4

B′
iwT−5(1) 7.739756 2.739756 0 0

B′
iwT−5(1)/bi 1.93 1.37 0.00 0.00

p′i,T−5(1) 0.05 0.325 0.2 0.2

bip
′
i,T−5(1) 0.2 0.65 0.6 0.2

w′
T−5(1) = 33.53765 and p′

T−5(1) = (0.05, 0.325, 0.2, 0.2). When stage t = T − 5 and the

state x = 2 the computed values are as follows:

i 1 2 3 4

B′
iwT−5(2) 15.315 10.315 5.315002 0

B′
iwT−5(2)/bi 3.83 5.16 1.77 0.00

p′i,T−5(2) 0.1875 0.05 0.2 0.2

bip
′
i,T−5(2) 0.75 0.1 0.6 0.2

w′
T−5(2) = 61.39556 and p′

T−5(2) = (0.1875, 0.05, 0.2, 0.2).

The calculated values are as follows where the greater values are shown with boldface letters:
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Figure 3.1: Behavior of Thresholds wrt Uncertainty Size at Various Stages

wT−5(x) w′
T−5(x) ∆wT−5(x) ∆w′

T−5(x)

X=1 33.67892 33.53765 33.67892 33.53765

X=2 61.52843 61.39556 27.84951 27.8579

This is a counterintuitive argument stating that larger the uncertainty set does not necessi-

tate more pessimistic decisions taken by the controller unless certain conditions are imposed

on the structure of the uncertainty set. Further suppose that, we add a new class with a

reward R = 27.85 to both of these systems whose arrival probability is zero everywhere

except from the T −6th stage. Although, the uncertainty set of second system is larger, the

controller of this system behaves more optimistically than the controller of the first system

at this stage when inventory level is 2 and rejects this customer in the anticipation of a

higher paying customer. However, the controller of the first system accepts this class at this

stage and state.

Finally, we note that ∆wP
t (x) −∆wPε

t (x) is not necessarily monotone in t. In Figure 3.1,

optimal ∆wt(x) for state x = 30 and various stages associated to nominal and robust so-

lution of a rationing problem. However, Figure 3.1 represents the tendency of the system

against uncertainty set.
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3.4.1 Different Robust Approaches

In addition to the maximin approach it is possible to show the properties of value function

of the robust counterpart for different approaches. We present here the approach based on

bicriteria optimization suggested by Xu and Mannor [34] that is less conservative and more

responsive to the uncertainty set. In their work, they propose a nested structure where Pλ

⊆ P. Here any distribution within the uncertainty set belong to Pλ with probability of

λ whereas it belongs to P with probability of 1. They call a robust policy S-robust if it

satisfies the following condition when only event probabilities are considered:

wt(x) = λmax
a

 min
pt(x,a)∈Pλ

n∑
i=0

pi,t(x,a)
∑
y∈X

qt(a, x, y|i)(wt+1(y) +Ri(a, x))


+(1− λ)max

a

 min
pt(x,a)∈P

n∑
i=0

pi,t(x,a)
∑
y∈X

qt(a, x, y|i)(wt+1(y) +Ri(a, x))

 ,

Since the problem is in recursive form, Theorem 3.3.1 also applies for the value function of

the S-robust counterpart. Hence, the S-robust counterparts of the classical problem have

the same structural properties with them and the S-robust value function wt(x) can be

represented as in the following equation:

wt(x) = λ min
pλ
t (x)∈Pλ

t

{∑
i

pλi,t(x)Tiwt+1(x)

}
+ (1− λ) min

pt(x)∈Pt

{∑
i

pi,t(x)Tiwt+1(x)

}
.

or equivalently:

wt(x) = λ min
pλ
t (x)∈Pλ

t

{∑
i

pλi,t(x)Biwt+1(x)

}
+ (1− λ) min

pt(x)∈Pt

{∑
i

pi,t(x)Biwt+1(x)

}
+ wt+1(x).

It is clear that Theorem 3.3.2 also applies for this equation and the value function obtained
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in this way is a convex combination of two particular value functions having the same prop-

erties.

3.5 Illustrations from the Literature

In this section, we present some conclusions on the structure of optimal policies for robust

versions of some well-known examples from the literature.

The first example is the single- resource capacity control from revenue management system

([22]) that is modeled by the inventory rationing operator:

vt(x) =

n∑
i=1

pi,tTBRivt+1(x) + p0,tvt+1(x) for x > 0

where x denotes the number of available inventory (seats) and pi,t is the probability of an

arrival of customer class-i with corresponding reward Ri.

By Theorem 3, in the robust version of this problem the value function is concave and

optimal admission policies are of threshold type. In addition, by part 2 of the theorem the

thresholds are monotone over time.

Let us now consider an extended version of this capacity control problem that comprises

dynamic pricing. In this case, rationing operators and dynamic pricing operators are used

together in order to model a special customer segment (class n + 1) that is offered a spot

price). A typical value function is then given by:

vt(x) =

n∑
i=1

pi,tTBRivt+1(x) + pn+1,tTIP vt+1(x) + p0,tvt+1(x) for x > 0

Once again, using Theorem 3 we conclude that for the corresponding robust problem thresh-

old policies are optimal for admission control and optimal prices are non-increasing in x and

in t.
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Apart from the discrete time models, our results apply for continuous-time models under

certain assumptions. In particular, a class of continuous-time problems can be converted to

equivalent discrete time problems using uniformization (Lippman [24]). If the uncertainty

in the model can be represented after the conversion in discrete time (i.e. if the transition

rates of the continuous-time model are uncertain), the results continue to apply. As an

example, let us consider the uniformized version of a typical admission control problem to

a single-server Markovian queue (Koole [18]):

vt(x) = −h(x) + p1,tTAvt+1(x) + p2,tTUDvt+1(x) + p0,tvt+1(x) for x > 0,

where x denotes the number of customers in the system, p1,t is the probability of an arrival,

p2,t is the probability of a service completion and h(x) is a non-decreasing and convex

holding cost function.

From Theorem 3, the optimal admission control policy of the robust version of the above

problem is a threshold policy but optimal thresholds are not necessarily monotone over

time.

Finally, let us consider a dynamic pricing and production control problem for a make-to-

stock queue with lost sales ([14]). After uniformization, the value function is expressed

as:

vt(x) = −h(x) + p1,tTIP vt+1(x) + p2,tTP vt+1(x) + p0,tvt+1(x) for x > 0,

where x denotes the available inventory, p1,t is the probability of a demand arrival, p2,t is

the probability of production completion and h(x) is an non-decreasing and convex holding

cost function.

Using Theorem 3, we observe that the optimal production policy is determined by a thresh-

old and that the optimal prices are non-decreasing in x even for the robust version of this

problem.

Finally, let us briefly discuss the infinite horizon extension. Iyengar [16] and Nilim and El

Ghaoui [25] establish that the respective controller and nature policies are stationary for the

infinite horizon problem. Moreover, Nilim and El Ghaoui [25] show that the optimal value

function of the infinite horizon problem with a discounted cost function can be obtained
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as the unique limit of the finite horizon problem. This suggests that the optimal policy

structure can be extended to the infinite horizon case.

3.6 Discussion

3.6.1 Uncertainty Affecting Parameters

So far uncertainty affecting transition probability distributions was considered. Alterna-

tively, other problem parameters such as costs, rewards or batch sizes may also be subject

to uncertainty. In general, uncertainty of other parameters than the transition probability

distributions leads to a more challenging situation and the previous results do not seem to

generalize easily.

In order to present some of the contrasts and the challenges, we present an illustrative

example where we consider the inventory rationing problem under the assumption that the

rewards of the arriving customer classes are uncertain. Like transition probabilities, we

assume that the uncertainty set defining reward (cost) values possesses the rectangularity

property and that Nature independently selects its optimal action from the uncertainty set

Rt in period t. Hence, the set of all admissible policies of Nature given π is:

τπ = R1 ×R2 ×R3 × ...×RT ,

In order to model the robust counterpart of the problem we represent the combined inventory

rationing operator TRI
as follows:

TRI
wt+1(x) = max

a

{
min

Ri,t(a,x)

n∑
i=0

pi,t(aiRi,t(a, x) + wt+1(x− ai))

}
(3.13)

Since ai ∈ {0, 1} and noting that
∑n

i=0 pi,t ≤ 1, the preceding equation can also be expressed

as:

TRI
wt+1(x) = max

a

{
min

Ri,t(a,x)

n∑
i=0

pi,tai(Ri,t(a, x)−∆wt+1(x)) +

n∑
i=0

pi,twt+1(x)

}
. (3.14)
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Please note that the above representation represents the inventory rationing operators as

a combined operator TRI
wt+1(x)). Now consider the robust counterpart of the inventory

rationing operator when rewards are uncertain:

The dual counterpart is given as follows:

TRI
w̃t+1(x) = min

Rt(x)
{ max
a(Rt(x),x)

n∑
i=0

pi,t(aiRi,t(x) + w̃t+1(x− ai))}.

It turns out that the above problem does not always have the perfect duality property.

To provide an example, suppose each class has an arrival probability of 0.10 and the

uncertainty set consists of two distinct points over the horizon, i.e. R = R1,R2 and

R1 = (60, 40, 45, 10, 10) and R2 = (60, 40, 42.5, 20, 10). Consider the first stage and the

dual counterpart w̃1(x) given in equation (3.13). In that case, it is apparent that it is op-

timal to accept all classes for both cases and the optimal solution a1(R
1, x) and a1(R

2, x)

are (1, 1, 1, 1, 1) and the corresponding Nature solution is R2 respectively. If we consider

w1(x) we obtain the optimal solution by enumerating each action a1(x). It is found that

the optimal solutions do not change, i.e. perfect duality holds at stage 1 for all x and

w̃1(x) = w1(x) = 15.5 for all x > 0.

Now consider the second stage and suppose the inventory level is 1. First, consider the dual

counterpart w̃t(x), if Nature selects R1, the optimal action a2(R
1, 1) is (1, 1, 1, 0, 0) with a

value function 17.6. If Nature selects R2, the optimal action a2(R
2, 1) is (1, 1, 1, 1, 0) with

a value function 17.8. Hence, the solution pair is (1, 1, 1, 0, 0) and 17.6 respectively in that

setting. We obtain wt(x) similarly by enumerating all possible actions a:

The optimal actions of the controller and Nature are (1, 1, 1, 0, 0) and R2 respectively with a

corresponding value function 17.35. Please note that the fourth class with a reward R4 = 20

is rejected although 20 > 15.5.

Even though perfect duality does not hold, it is clear that Nature’s optimal solution de-

pends only on the action chosen by the controller, i.e. is independent of the state x. Then,

it is straightforward to show that the structural properties we mention in Theorem 3.3.2

propagate to the robust counterpart wt(x). Now we state our next Lemma.
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Table 3.3: Calculation of the robust value function wT−1(1)

a1 a2 a3 a4 a5 w1(a) a1 a2 a3 a4 a5 w2(a) min(w1(a), w2(a))

a1 0 0 0 0 0 0 0 0 0 0 0 0 0

a2 0 0 0 0 1 0 0 0 0 0 1 1 0

a3 0 0 0 1 0 1 0 0 0 1 0 2 1

a4 0 0 0 1 1 1 0 0 0 1 1 3 1

a5 0 0 1 0 0 4.5 0 0 1 0 0 4.25 4.25

a6 0 0 1 0 1 4.5 0 0 1 0 1 5.25 4.5

a7 0 0 1 1 0 5.5 0 0 1 1 0 6.25 5.5

a8 0 0 1 1 1 5.5 0 0 1 1 1 7.25 5.5

a9 0 1 0 0 0 4 0 1 0 0 0 4 4

a10 0 1 0 0 1 4 0 1 0 0 1 5 4

a11 0 1 0 1 0 5 0 1 0 1 0 6 5

a12 0 1 0 1 1 5 0 1 0 1 1 7 5

a13 0 1 1 0 0 8.5 0 1 1 0 0 8.25 8.25

a14 0 1 1 0 1 8.5 0 1 1 0 1 9.25 8.5

a15 0 1 1 1 0 9.5 0 1 1 1 0 10.25 9.5

a16 0 1 1 1 1 9.5 0 1 1 1 1 11.25 9.5

a17 1 0 0 0 0 6 1 0 0 0 0 6 6

a18 1 0 0 0 1 6 1 0 0 0 1 7 6

a19 1 0 0 1 0 7 1 0 0 1 0 8 7

a20 1 0 0 1 1 7 1 0 0 1 1 9 7

a21 1 0 1 0 0 10.5 1 0 1 0 0 10.25 10.25

a22 1 0 1 0 1 10.5 1 0 1 0 1 11.25 10.5

a23 1 0 1 1 0 11.5 1 0 1 1 0 12.25 11.5

a24 1 0 1 1 1 11.5 1 0 1 1 1 13.25 11.5

a25 1 1 0 0 0 10 1 1 0 0 0 10 10

a26 1 1 0 0 1 10 1 1 0 0 1 11 10

a27 1 1 0 1 0 11 1 1 0 1 0 12 11

a28 1 1 0 1 1 11 1 1 0 1 1 13 11

a29 1 1 1 0 0 14.5 1 1 1 0 0 14.25 14.25

a30 1 1 1 0 1 14.5 1 1 1 0 1 15.25 14.5

a31 1 1 1 1 0 15.5 1 1 1 1 0 16.25 15.5

a32 1 1 1 1 1 15.5 1 1 1 1 1 17.25 15.5

Table 3.4: Calculation of the robust value function wT−2(1)

a1 a2 a3 a4 a5 w1(a) a1 a2 a3 a4 a5 w2(a) min(w1(a), w2(a))

a1 0 0 0 0 0 7.75 0 0 0 0 0 7.75 7.75

a2 0 0 0 0 1 7.2 0 0 0 0 1 7.2 7.2

a3 0 0 0 1 0 7.2 0 0 0 1 0 8.2 7.2

a4 0 0 0 1 1 6.65 0 0 0 1 1 7.65 6.65

a5 0 0 1 0 0 10.7 0 0 1 0 0 10.45 10.45

a6 0 0 1 0 1 10.15 0 0 1 0 1 9.9 9.9

a7 0 0 1 1 0 10.15 0 0 1 1 0 10.9 10.15

a8 0 0 1 1 1 9.6 0 0 1 1 1 10.35 9.6

a9 0 1 0 0 0 10.2 0 1 0 0 0 10.2 10.2

a10 0 1 0 0 1 9.65 0 1 0 0 1 9.65 9.65

a11 0 1 0 1 0 9.65 0 1 0 1 0 10.65 9.65

a12 0 1 0 1 1 9.1 0 1 0 1 1 10.1 9.1

a13 0 1 1 0 0 13.15 0 1 1 0 0 12.9 12.9

a14 0 1 1 0 1 12.6 0 1 1 0 1 12.35 12.35

a15 0 1 1 1 0 12.6 0 1 1 1 0 13.35 12.6

a16 0 1 1 1 1 12.05 0 1 1 1 1 12.8 12.05

a17 1 0 0 0 0 12.2 1 0 0 0 0 12.2 12.2

a18 1 0 0 0 1 11.65 1 0 0 0 1 11.65 11.65

a19 1 0 0 1 0 11.65 1 0 0 1 0 12.65 11.65

a20 1 0 0 1 1 11.1 1 0 0 1 1 12.1 11.1

a21 1 0 1 0 0 15.15 1 0 1 0 0 14.9 14.9

a22 1 0 1 0 1 14.6 1 0 1 0 1 14.35 14.35

a23 1 0 1 1 0 14.6 1 0 1 1 0 15.35 14.6

a24 1 0 1 1 1 14.05 1 0 1 1 1 14.8 14.05

a25 1 1 0 0 0 14.65 1 1 0 0 0 14.65 14.65

a26 1 1 0 0 1 14.1 1 1 0 0 1 14.1 14.1

a27 1 1 0 1 0 14.1 1 1 0 1 0 15.1 14.1

a28 1 1 0 1 1 13.55 1 1 0 1 1 14.55 13.55

a29 1 1 1 0 0 17.6 1 1 1 0 0 17.35 17.35

a30 1 1 1 0 1 17.05 1 1 1 0 1 16.8 16.8

a31 1 1 1 1 0 17.05 1 1 1 1 0 17.8 17.05

a32 1 1 1 1 1 16.5 1 1 1 1 1 17.25 16.5
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Table 3.5: Illustration of concavity for each case

ai(x − 1) ai(x + 1) Inequality
0 0 wt+1(x) + wt+1(x) ≥ wt+1(x − 1) + wt+1(x + 1)
1 1 wt+1(x − 1) + Ri,t(x − 1) + wt+1(x − 1) + Ri,t(x + 1) ≥

wt+1(x − 2) + Ri,t(x − 1)wt+1(x) + Ri,t(x + 1)
0 1 wt+1(x − 1) + wt+1(x) + Ri,t(x + 1) ≥ wt+1(x − 1) + wt+1(x) + +Ri,t(x + 1)
1 0 wt+1(x − 1) + Ri,t(x − 1) + wt+1(x) ≥ wt+1(x − 2) + Ri,t(x − 1) + wt+1(x + 1)

wt+1(x − 1) − wt+1(x − 2) ≥ wt+1(x) − wt+1(x − 1) ≥ wt+1(x + 1) − wt+1(x − 1)

Lemma 3.6.1 Let the robust value function wt+1(x) be concave in x for all x at stage t+1,

then the combined rationing operator TRI
wt+1(x) has the following properties:

1. TRI
wt+1(x) is concave in x,

2. TRI
wt+1(x) is ND in x, and

3. TRI
wt+1(x) preserves supermodularity in x, t,

Proof: Now suppose that set at(x+ 1) denotes the optimal action at x+ 1 and t, whereas

at(x− 1) denotes the optimal action at x− 1 and t. Furthermore, let’s denote the Nature’s

corresponding optimal decisions as Rt(x+1) = (R1,t(x+1), R2,t(x+1), ..., Rn,t(x+1) and

Rt(x− 1) = (R1,t(x− 1), R2,t(x− 1), ..., Rn,t(x− 1) respectively, in state x+ 1 and x− 1.

Further suppose that we use the optimal actions of states x+1 and x− 1 for state x in the

following equation. Then we obtain the following inequality:

n∑
i=0

ai,t(x− 1)pi,t(wt+1(x− 1) +Ri,t(x− 1)) + pi,t(1− ai,t(x− 1))wt+1(x) +

n∑
i=0

ai,t(x+ 1)pi,t(wt+1(x− 1) +Ri,t(x+ 1)) + pi,t(1− ai,t(x+ 1))wt+1(x) ≥

n∑
i=0

ai,t(x− 1)pi,t(wt+1(x− 2) +Ri,t(x− 1)) + pi,t(1− ai,t(x− 1))wt+1(x− 1) +

n∑
i=0

ai,t(x+ 1)pi,t(wt+1(x) +Ri,t(x+ 1)) + pi,t(1− ai,t(x+ 1))wt+1(x+ 1).

In order to simplify the former inequality, we analyze the inequality for each operator i

independently. The results are given in Table 3.6.1:
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The proof of concavity and preservation of supermodularity are similar. Suppose wt+1(x)

is ND in x at t for all x. Further, suppose that we use the optimal action of state x− 1 for

state x, then the result follows easily by optimality at x for every i:

ai,t(x− 1) [wt+1(x− 1) +Ri,t(x− 1)] + (1− ai,t(x− 1))wt+1(x) ≥

ai,t(x− 1) [wt+1(x− 2) +Ri,t(x− 1)] + (1− ai,t(x− 1))wt+1(x− 1).

In order to prove the preservation of supermodularity we again use the optimal action of

state x− 1 for state x, Then by concavity every operator i satisfies the following inequality:

n∑
i=0

pi,tai[Ri,t(x− 1)−∆wt+1(x)] ≥
n∑

i=0

pi,tai[Ri,t(x− 1)−∆wt+1(x− 1)]. (3.15)

Equation (3.15) . 2

Lemma 3.6.1 states that the combined rationing operator TRIwt+1(x) can be incorporated

in any robust value function wt(x) constituted of the operators given in Table 3.1 with

uncertain (certain) event probabilities without violating the structural properties of wt(x).

It is important to note that Lemma 3.6.1 does not mean that the optimal admission policy

has a monotone structure. However, if we introduce any inventory production operator

given in Table 3.1 to the problem, the optimal production policy will be base stock level.

In fact, consider the following example presented in order to show that it may be optimal to

sell to a customer class at lower levels of inventory and not to sell the same class at higher

levels of inventory. Here we provide 5 customer classes. The parameters of these classes are

as follows from t = T − 1 to t = T − 13.

Class Reward Arrival probability

1 60 0.1

2 50 0.1

3 45 0.1

4 23 0.13

5 20 0.1



Chapter 3: Robust Control Of Stochastic Inventory and Queuing Problems 77

Now suppose that at t = T − 14 the rewards take the following discrete values without any

change in the arrival probabilities:

Scenario R1 R2 R3 R4 R5

1 45 50 40 46 50

2 60 50 42 31 20

3 50 55 40 27 30

4 50 60 45 23 20

The calculations are given in the following table, please note that ai stands for controller

decision for the class-i, where 1 denotes admission and 0 denotes rejection, S denotes the

scenario.

At x = 4 the calculated values are as follows:
∆wT−13(4) a1 a2 a3 a4 a5 Scn1 Scn2 Scn3 Scn4 Nature Solution

34.68142 0 0 0 0 0 0 0 0 0 0

34.68142 0 0 0 1 0 1.471415 -0.47858 -0.99858 -1.51858 -1.51858

34.68142 0 0 0 0 1 1.531858 -1.46814 -0.46814 -1.46814 -1.46814

34.68142 0 0 0 1 1 3.003274 -1.94673 -1.46673 -2.98673 -2.98673

34.68142 0 0 1 0 0 0.531858 0.731858 0.531858 1.031858 0.531858

34.68142 0 0 1 1 0 2.003274 0.253274 -0.46673 -0.48673 -0.48673

34.68142 0 0 1 0 1 2.063716 -0.73628 0.063716 -0.43628 -0.73628

34.68142 0 0 1 1 1 3.535132 -1.21487 -0.93487 -1.95487 -1.95487

34.68142 0 1 0 0 0 1.531858 1.531858 2.031858 2.531858 1.531858

34.68142 0 1 0 1 0 3.003274 1.053274 1.033274 1.013274 1.013274

34.68142 0 1 0 0 1 3.063716 0.063716 1.563716 1.063716 0.063716

34.68142 0 1 0 1 1 4.535132 -0.41487 0.565132 -0.45487 -0.45487

34.68142 0 1 1 0 0 2.063716 2.263716 2.563716 3.563716 2.063716

34.68142 0 1 1 1 0 3.535132 1.785132 1.565132 2.045132 1.565132

34.68142 0 1 1 0 1 3.595574 0.795574 2.095574 2.095574 0.795574

34.68142 0 1 1 1 1 5.06699 0.31699 1.09699 0.57699 0.31699

34.68142 1 0 0 0 0 1.031858 2.531858 1.531858 1.531858 1.031858

34.68142 1 0 0 1 0 2.503274 2.053274 0.533274 0.013274 0.013274

34.68142 1 0 0 0 1 2.563716 1.063716 1.063716 0.063716 0.063716

34.68142 1 0 0 1 1 4.035132 0.585132 0.065132 -1.45487 -1.45487

34.68142 1 0 1 0 0 1.563716 3.263716 2.063716 2.563716 1.563716

34.68142 1 0 1 1 0 3.035132 2.785132 1.065132 1.045132 1.045132

34.68142 1 0 1 0 1 3.095574 1.795574 1.595574 1.095574 1.095574

34.68142 1 0 1 1 1 4.56699 1.31699 0.59699 -0.42301 -0.42301

34.68142 1 1 0 0 0 2.563716 4.063716 3.563716 4.063716 2.563716

34.68142 1 1 0 1 0 4.035132 3.585132 2.565132 2.545132 2.545132

34.68142 1 1 0 0 1 4.095574 2.595574 3.095574 2.595574 2.595574

34.68142 1 1 0 1 1 5.56699 2.11699 2.09699 1.07699 1.07699

34.68142 1 1 1 0 0 3.095574 4.795574 4.095574 5.095574 3.095574

34.68142 1 1 1 1 0 4.56699 4.31699 3.09699 3.57699 3.09699

34.68142 1 1 1 0 1 4.627432 3.327432 3.627432 3.627432 3.327432

34.68142 1 1 1 1 1 6.098848 2.848848 2.628848 2.108848 2.108848

At x = 5 the calculated values are as follows:
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∆wT−13(4) a1 a2 a3 a4 a5 Scn1 Scn2 Scn3 Scn4 Nature Solution

26.99553 0 0 0 0 0 0 0 0 0 0

26.99553 0 0 0 1 0 2.470581 0.520581 0.000581 -0.51942 -0.51942

26.99553 0 0 0 0 1 2.300447 -0.69955 0.300447 -0.69955 -0.69955

26.99553 0 0 0 1 1 4.771028 -0.17897 0.301028 -1.21897 -1.21897

26.99553 0 0 1 0 0 1.300447 1.500447 1.300447 1.800447 1.300447

26.99553 0 0 1 1 0 3.771028 2.021028 1.301028 1.281028 1.281028

26.99553 0 0 1 0 1 3.600894 0.800894 1.600894 1.100894 0.800894

26.99553 0 0 1 1 1 6.071475 1.321475 1.601475 0.581475 0.581475

26.99553 0 1 0 0 0 2.300447 2.300447 2.800447 3.300447 2.300447

26.99553 0 1 0 1 0 4.771028 2.821028 2.801028 2.781028 2.781028

26.99553 0 1 0 0 1 4.600894 1.600894 3.100894 2.600894 1.600894

26.99553 0 1 0 1 1 7.071475 2.121475 3.101475 2.081475 2.081475

26.99553 0 1 1 0 0 3.600894 3.800894 4.100894 5.100894 3.600894

26.99553 0 1 1 1 0 6.071475 4.321475 4.101475 4.581475 4.101475

26.99553 0 1 1 0 1 5.901341 3.101341 4.401341 4.401341 3.101341

26.99553 0 1 1 1 1 8.371922 3.621922 4.401922 3.881922 3.621922

26.99553 1 0 0 0 0 1.800447 3.300447 2.300447 2.300447 1.800447

26.99553 1 0 0 1 0 4.271028 3.821028 2.301028 1.781028 1.781028

26.99553 1 0 0 0 1 4.100894 2.600894 2.600894 1.600894 1.600894

26.99553 1 0 0 1 1 6.571475 3.121475 2.601475 1.081475 1.081475

26.99553 1 0 1 0 0 3.100894 4.800894 3.600894 4.100894 3.100894

26.99553 1 0 1 1 0 5.571475 5.321475 3.601475 3.581475 3.581475

26.99553 1 0 1 0 1 5.401341 4.101341 3.901341 3.401341 3.401341

26.99553 1 0 1 1 1 7.871922 4.621922 3.901922 2.881922 2.881922

26.99553 1 1 0 0 0 4.100894 5.600894 5.100894 5.600894 4.100894

26.99553 1 1 0 1 0 6.571475 6.121475 5.101475 5.081475 5.081475

26.99553 1 1 0 0 1 6.401341 4.901341 5.401341 4.901341 4.901341

26.99553 1 1 0 1 1 8.871922 5.421922 5.401922 4.381922 4.381922

26.99553 1 1 1 0 0 5.401341 7.101341 6.401341 7.401341 5.401341

26.99553 1 1 1 1 0 7.871922 7.621922 6.401922 6.881922 6.401922

26.99553 1 1 1 0 1 7.701788 6.401788 6.701788 6.701788 6.401788

26.99553 1 1 1 1 1 10.17237 6.922369 6.702369 6.182369 6.182369

Hence, the respective optimal controller and Nature policies at x = 4 and x = 5 are:

x Admission Policy Reward Values

4 (1, 1, 1, 0, 1) (60 50 42 20 31)

5 (1, 1, 1, 1, 0) (50 55 40 27 30)

This shows that optimal policy does not have a threshold structure.

However, structural results of the optimal policies of other operators are not violated in that

case. In order to present an illustration, let us consider a particular example where there is

one or more production units with unknown production completion probabilities but certain

production costs and the customer classes have known arrival rates but uncertain rewards.
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In this case the optimal production policies are threshold type.

3.6.2 Robust Control of Server Assignment Models

In this section, we extend our results to some sample problems from queueing theory where

multi-dimensional properties are of concern. In order to be consistent with the literature on

queueing systems, we change our notation in this section slightly and use c instead of h in

order to denote the holding cost. Second, unlike the other parts of the thesis, the problems

of this section are cost minimization problems. The first model we consider is the server

assignment model [19]. Customers of different types arrive according to a Poisson process at

a service station with a single server. Class-i customers require an exponentially distributed

service time with parameter µ(i). Each time unit a class-i customer spends waiting costs

c(i) and the service might be interrupted. According to the µc rule if Class i customer enters

to the system while the server is busy with serving to customer j with µ(i)c(i) ≥ µ(j)c(j),

the service that has been provided to the customer j shall be interrupted and switched to

the Class i customer. We show that the optimal policy of robust counterpart of the server

assignment model is of µc type under the given conditions. Another model is the tandem

server model where the arriving customers are served by sequential servers. It is shown

by Koole [19] that the optimal policy is to first serve the jobs at the earlier queues in the

sequence. We show that this optimality condition also holds for the robust case. Similar to

the server assignment model, the µc rule applies for the optimal control of movable tandem

server where µ refers to the server rate and c refers to the holding cost. In order to show

these characteristics we first define the operators we use in this section.

Operators The queueing operators we use are given in the following where 1 ≤ ı ≤ m

TAiv(x) = min v(x), v(x+ ei)−Ri

TUAiv(x) = v(x+ ei)

TUDiv(x) = v((x− ei)
+)

TMTSv(x) = minj∈I:xj>0
∑m

k=0 µ(i, k)v(x− ei + ek) if
∑

j∈I xj > 0

TMTSv(x) = v(x) otherwise

where
∑m

k=0 µ(i, k) = 1 for all i and µ(i, j) = 0 for all i and 0 < j < i− 1 and e0 = 0
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TMSv(x) = minj∈I:xj>0 µ(j)v(x− ej) + (1− µ(j)v(x)) if
∑

j∈I

TMSv(x) = v(x) otherwise

As discussed in the earlier sections the admission operator TAi models the queue where

the decision is whether to admit the Class − i job/customer to the queue and earn an

instantaneous reward Ri or to reject the customer and reserve a one unit capacity in the

system for more valuable jobs/customers that may arrive in the future. The uncontrolled

arrival operator TUAi admits any arriving customer to the system, whereas the uncontrolled

departure operator TUDi processes the next i-class customer in the system by interrupting

an ongoing service if any. The controlled departure TMS operator decides which customer

class will be served in the system next and interruption of an ongoing service is allowed.

Properties of the Nominal Problem and the Robust Counterpart

Based on the results given in Koole the following operators preserve the following properties

under the stated conditions:

Property 3.6.1 The queueing operators, admission TAi and uncontrolled arrival operator

TUAi, the uncontrolled departure operator TUDi TCDi preserve the UI property:

Tiv(x+ ej) ≤ Tiv(x+ ei) where i < j

We show that the same results also hold for the value function wt(x) of the robust counter-

part in the following.

Theorem 3.6.1 The robust value function wt(x) constituted of the queueing operators TAi,

TUAi, TUDi preserves UI property.

Proof According to Property 3.6.1 the wt(x) holds the following inequality if uncertainty

set Pt has a single element p. Therefore following holds for every p ∈ Pt:

n∑
i=1

pitTiw(x+ ej) ≤
n∑

i=1

pitTiw(x+ ei) where i < j ∀ p ∈ Pt.
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Now suppose that p(x+ ej) and p(x+ ei) are the respective solutions of the Nature in the

robust setting. Hence, the following holds:

n∑
i=1

pit(x+ ej)Tiw(x+ ej) ≤

n∑
i=1

pit(x+ ej)Tiw(x+ ei) ≤

n∑
i=1

pit(x+ ei)Tiw(x+ ei) where i < j.

This completes the proof.

Property 3.6.2 The queueing operators uncontrolled arrival operator TUAi and the tandem

movable server TMTS preserve the gUI property, i.e:

n∑
k=1

µ(i, k)Tv(x+ ei+1 + ek) ≤
n∑

k=1

µ(i+ 1, k)Tv(x+ ei + ek).

Theorem 3.6.2 The robust value function wt(x) constituted of the queueing operators

TUAi, TMTS preserve the gUI property.

Proof According to Property 3.6.2, wt(x) satisfies the following inequality if uncertainty

set Pt has a single element p. Therefore, the following holds for every p ∈ Pt:

k=n∑
k=1

µ(i, k)

n∑
i=1

pitTiw(x+ ei+1 + ek) ≤
k=n∑
k=1

µ(i+ 1, k)

n∑
i=1

pitTiw(x+ ei + ek)

∀ p ∈ Pt.

Now suppose that p(x+ ei+1) and p(x+ ei) are the respective solutions of the Nature in the

robust setting. Hence, the following holds:

k=n∑
k=1

µ(i, k)

n∑
i=1

pit(x+ ei+1)Tiw(x+ ei+1 + ek) ≤
k=n∑
k=1

µ(i+ 1, k)

n∑
i=1

pit(x+ ei)Tiw(x+ ei + ek).

This completes the proof. 2

Theorem 3.6.2 has an important implication. The optimal robust policy is to first serve the

jobs in the earlier queues in the tandem sequence similar to its classical counterpart.

Based on the result given by Koole [19] the following property holds:

Property 3.6.3 The queueing operators uncontrolled arrival operator TUAi and the mov-

able server operator TMS preserve the wUI property if m = 2 and µ1 = µ2 i.e:
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1. µv(x+ e1) + (1− µ)v(x+ e1 + e2) ≤ µv(x+ e2) + (1− µ)v(x+ e1 + e2)

2. v(x+ e1) + v(x+ e2) ≤ v(x) + v(x+ e1 + e2)

According to Property 3.6.3, if we consider a queueing system consisting of one movable

server with equal server rates serving both customer classes, then the optimal policy is

to serve to the class with the higher holding cost. Thus, whenever a customer that has

the higher holding cost (customer class-1) arrives, the server serving the other customer

(customer class-2) interrupts the service and does not serve her until there is no remaining

class-1 customer in the system.

Theorem 3.6.3 The robust value function wt(x) constituted of the queueing operators TAi,

TUAi and TMS has the following wUI property, i.e. µw(x+ e1) + (1− µ)w(x+ e1 + e2) ≤

µw(x+ e2) + (1− µ)w(x+ e1 + e2)

Proof According to Property 3.6.2 the wt(x) holds the following inequality if uncertainty

set Pt has a single element p. Therefore, the following holds for every pt ∈ Pt:

µ

n∑
i=1

pitTiw(x+ e1) + (1− µ)

n∑
i=1

pitTiw(x+ e1 + e2) ≤

µ
n∑

i=1

pitTiw(x+ e2) + (1− µ)
n∑

i=1

pitTiw(x+ e1 + e2).

(3.16)

Now suppose that p(x+ e1), p(x+ e2) and p(x+ e1 + e2) are the respective solutions of the

Nature in the robust setting. Hence, the following holds:

µ

n∑
i=1

pit(x+ e1)Tiw(x+ e1) ≤ µ

n∑
i=1

pit(x+ e1)Tiw(x+ e2)

µ

n∑
i=1

pit(x+ e1)Tiw(x+ e1) ≤ µ

n∑
i=1

pit(x+ e2)Tiw(x+ e2).

This completes the proof 2.
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Chapter 4

A SINGLE-PRODUCT REVENUE MANAGEMENT PROBLEM WITH

INTERVAL UNCERTAINTY ON DEMAND/ PRODUCTION RATES

4.1 Introduction

In Chapter 3 we consider a general definition of uncertainty set but this chapter consid-

ers a particular type of uncertainty set. In order to represent the connection between the

real problem data and the prior estimations, a number of uncertainty models have been

proposed. We briefly discuss these uncertainty models in Chapter 2. One relatively simple

uncertainty model is to define uncertainty intervals where parameters are allowed to lie be-

tween a lower bound and an upper bound [28]. Ben-Tal, Nemirovsky and El Ghaoui [4] and

Nilim and El Ghaoui [25] propose a number of more sophisticated yet tractable uncertainty

sets. Some recent applications of such uncertainty sets include Lim and Shanthikumar [23],

Jain, Lim and Shanthikumar [17] which employ entropy based models of uncertainty in

robust dynamic pricing problems. We employ the simpler model of interval uncertainty

in this chapter because our focus is on exploring the structure of optimal policies rather

than developing efficient uncertainty sets or fitting data to existing uncertainty sets. Some

recent papers investigate the admission control problem under demand rate uncertainty.

An absolute robust approach for both the static and dynamic versions of this problem is

suggested by Birbil, Frenk, Gromicho and Zhang [7] where they employ an ellipsoidal model

of uncertainty. It is shown that this uncertainty model leads to tractable solutions of the

problem. By considering an interval uncertainty model, we complement the results of [7]

by obtaining additional properties of optimal robust policies. Finally, Lan, Gao, Ball and

Karaesmen [21] and Ball and Queyranne [3] propose and explore an alternative approach

for addressing uncertainty based on a competitive analysis method.

In contrast to the above papers, we obtain results on the structure of the optimal policy for

both cases with or without replenishment. We also explore how the optimal policies change
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with respect to uncertainty sets. The dynamic queueing and inventory control literature

has a strong tradition in characterizing the structure of optimal policies. This is in part due

to the computational efficiency of structured policies. However, the main reason for looking

for structured policies is that they are usually expressed in a few parameters and tend to

be easy to understand, communicate and implement. There are known general approaches

to investigate the structure of the solution of a stochastic dynamic program (for instance

Koole [18], [19], Çil, Örmeci and Karaesmen [8]). The current chapter can be seen as an

exploration of such properties in the context of a robust stochastic dynamic program. In

addition to the results in Chapter 3, we explore additional properties with respect to varying

uncertainty sets and present a numerical study.

The organization of this chapter is as follows. In Section 4.2 we analyze the single-item in-

ventory model without replenishment and its robust counterpart. In Section 4.3 we explore

the properties obtained in Section 4.2 for a model where replenishment is allowed. In Sec-

tion 4.4, we present some numerical results and explore some of the quantitative trade-offs.

Finally, our conclusions are provided in Section 4.5.

4.2 A ROBUST DYNAMIC REVENUE MANAGEMENT PROBLEM

4.2.1 Nominal Problem: Dynamic Single-Product Revenue Management

We consider the discrete-time formulation of a single product (i.e. single resource or

single-leg) revenue management problem. Consider a planning horizon consisting of T pe-

riods. There are n customer classes differentiated by their admission rewards Ri for class-i

(i = 1, 2, ..., n). Without loss of generality, we assume that the classes are ordered such that

Ri > Rj , if i < j (i, j = 1, 2, ..., n). At most one arrival can take place in each period t

(t = 0, 1, 2, ..., T ).

Let x (where x ∈ Z+) be the remaining inventory (number of seats available). A class-i

customer arrives in a given period t with probability λi,t and λn+1,t denotes the probability

of no-arrival which can also be considered as special customer class with 0 reward. Obvi-

ously, λi,t ≥ 0 for all i, t and
∑n+1

i=1 λi,t = 1. We denote the arrival probability vector in
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period t by λt = (λ1,t, λ2,t, . . . , λn+1,t).

The admission control problem is to decide whether to admit or reject an arriving demand

considering the remaining capacity x in each period in order to maximize the expected

revenue over the planning horizon. Let vt(x) denote the expected optimal revenue starting

from period t with a capacity of x. The optimality equation can be written as:

vt(x) =
n∑

i=1

λi,tmax{Ri + vt+1(x− 1), vt+1(x)}+ λn+1,t(x)vt+1(x), (4.1)

with boundary conditions vt(0) = 0 for all t and vT (x) = 0 for all x. Let us denote the

difference function by ∆v(x) = v(x) − v(x − 1). Clearly, a class-i customer is accepted at

stage t if and only if Ri −∆vt+1(x) ≥ 0.

We can alternatively express (4.1) as follows:

vt(x) =

n∑
i=1

λi,t (Ri −∆vt+1(x))
+ + vt+1(x), (4.2)

where (Ri −∆vt+1(x))
+ denotes max(0, Ri −∆vt+1(x)).

A number of structural results for the optimal policy are well-known for the above problem.

In particular, vt(x) is concave in x for all t (Lautenbacher and Stidham [22]). This implies

the optimality of threshold type policies. In each period t and for each class-i, there is an

admission threshold ℓi,t. If the inventory available at time t, x ≥ ℓi,t then the class-i demand

will be admitted, otherwise it will be rejected. Moreover, the thresholds ordered according

to the rewards of the classes: ℓ1,t = 1 and ℓi,t ≤ ℓj,t if i < j, for t = 1, 2, ..., T .

In addition to being concave, vt(x) is also supermodular in t and x, i.e. ∆vt(x) ≥ ∆vt+1(x)

for all t, x (see Talluri and Van Ryzin [32] or Aydin, Akcay and Karaesmen [2]). This

implies that the optimal thresholds are non-increasing over time: ℓi,t ≥ ℓi,t+1 for all i and t.

We conclude this section by establishing an additional property of the value function vt(x) as

a function of the arrival probability vector. To this end, let us employ the following partial
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order. An arrival probability vector is said to be preferred (denoted by the ≽ operator) over

another if it receives higher classes with higher probability:

λt ≽ λ′
t ⇔

k∑
i=1

λi,t ≥
k∑

i=1

λ′
i,t ∀ k = 1, 2, . . . , n.

Theorem 4.2.1 Consider two problems that are identical in their parameters except their

arrival probabilities in period t. Let λt and λ′
t be two arrival probability vectors, and vt(x)

and v′t(x) be the corresponding value functions respectively. If λt ≽ λ′
t then:

1. vt(x) ≥ v′t(x) for all x, t,

2. ∆vt(x) ≥ ∆v′t(x) for all x, t.

Proof:

Before proving Theorem 4.2.1 we introduce a simple algorithm that starts with λ and ends

up with λ′ (where λt ≽ λ′
t) by a sequence of reallocation of probabilities. By definition,∑n+1

i=1 λi =
∑n+1

i=1 λ′
i = 1. Now consider the following sequence of vectors, λ(1),λ(2), ...,λ(n).

Let λ(1) = λ.

Now let ϵ1 = λ1 − λ′
1, we construct λ(2) = λ(1) + (−ϵ1, ϵ1, 0, 0, ..., 0). Obviously ϵ1 ≥ 0.

In the next iteration, we let ϵ2 = λ2 + λ1 −λ′
1 − λ′

2, again ϵ2 ≥ 0 and λ(3) = λ(2) +

(0,−ϵ2, ϵ2, 0, ..., 0). We continue to iterate similarly for n− 1 steps. At step n− 1 we have:

λ(n) = λ(n−1) + (0, 0, ...,−ϵn−1, ϵn−1). By construction, we have λ(n) = λ′. In addition, the

sequence of vectors have the property λ(1) ≼ λ(2) ≼ ... ≼ λ(n).

Proof:

i-Suppose at any stage t, we replace λt by λ′
t by the above algorithm. Hence, we con-

secutively decrease the arrival probability of a higher class-i by ϵ and increase the ar-

rival probability of a lower class j by ϵ. By each iteration the value function vt(x) de-

creases by ϵ (Ri −∆vt+1(x))
+ and increases by ϵ (Rj −∆vt+1(x))

+ where i < j. Since

Ri > Rj , vt(x) is non-increasing at each step. Applying the algorithm, we then ob-

tain v′t(x) ≤ vt(x). For stage t − 1, it is clear that v′t−1(x) ≤ vt−1(x) since v′t−1(x) =
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∑
i≤k(v

′
t(x − 1) + Ri) +

∑
i>k v

′
t(x), where k denotes the highest rejected class. Hence,

vt−1(x) ≥
∑

i≤k(vt(x− 1) +Ri) +
∑

i>k vt(x) ≥ v′t−1(x) This completes the proof of part i .

ii- We prove the desired result in two phases corresponding to stages t and t− 1. Consider

two systems that are identical and substitute λt with λ′
t. In the first phase, we prove that

∆vt(x) ≥ ∆v′t(x) holds at t, then in the second phase we prove that ∆vt−1(x) ≥ ∆v′t−1(x).

Please note that at stage t, we have vt+1(x) = v′t+1(x), for all x and λt ̸= λ′
t whereas in

stage t− 1, vt(x) and v′t(x) are not necessarily equal but λt−1 = λ′
t−1.

Suppose ∆vt(x) ≥ ∆v′t(x) holds, then vt(x) − v′t(x) ≥ vt(x − 1) − v′t(x − 1). This implies

that as we replace the λt with λ′
t at stage t the loss in vt(x) is greater than loss in vt(x−1).

We again use the above algorithm in order to perform such a replacement. Hence, we

consecutively decrease a class-i by ϵ and increase a class j by ϵ where i < j.

ϵ (Ri −∆vt+1(x))
+ − ϵ (Rj −∆vt+1(x))

+ ≥ ϵ (Ri −∆vt+1(x− 1))+

−ϵ (Rj −∆vt+1(x− 1))+ . (4.3)

We prove the inequality case by case, note that A stands for admission and R stands for

rejection. The non-trivial cases are listed in below (we do not present the cases where all

classes are accepted or all classes are rejected since these are obvious). Please note that

accepting a lower class (j) means that a higher class (i) is always accepted. Also please

note that, if a customer class is accepted at an inventory x − 1 then it is also accepted at

x, and if it is rejected at x then it is also rejected at x− 1.

Ri − Rj ≥ Ri − Rj

−∆vt+1(x) −∆vt+1(x) ≥ −∆vt+1(x − 1) −∆vt+1(x − 1) Result

(A) (A) (A) (R) Ri − Rj ≥

Ri − ∆vt+1(x − 1)

(A) (R) (A) (R) Ri − ∆vt+1(x) ≥

Ri − ∆vt+1(x − 1)

(A) (A) (R) (R) Ri − Rj ≥ 0

(A) (R) (R) (R) Ri − ∆vt+1(x) ≥ 0

Except for the case in the first row, all inequalities follow easily by concavity of v(x) (a

summary of the result is provided in the last column). Consider the case in the first row:

because class j is rejected at x − 1 for this case, we must have Rj − ∆vt+1(x − 1) ≤ 0.

This implies that Ri −Rj ≥ Ri −∆vt+1(x− 1).

Next, we consider the second phase where we need to establish that ∆vt−1(x) ≥ ∆v′t−1(x).
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We use a similar approach here, but we consider only one operator T i (admission decision

for a single class) at a time. The cases related to accept all and reject all for both sys-

tems at states x− 1 and x are obvious. Please note that since ∆vt(x) ≥ ∆v′t(x), therefore

Ri −∆vt(x) ≤ Ri −∆v′t(x), which means that any class accepted to the initial system will

always be accepted to the second system. Except from the obvious cases (accept all, reject

all) there are only four alternatives:

T ivt−1(x) −T iv′
t−1(x) ≥ T ivt−1(x − 1) −T iv′

t−1(x − 1) Result

(A) (A) (R) (R) Ri + vt(x − 1) − Ri − v′
t(x − 1) ≥

vt(x − 1) − v′
t(x − 1)

(A) (A) (R) (A) Ri + vt(x − 1) − Ri − v′
t(x − 1) ≥

v′
t(x − 1) − Ri − v′

t(x − 2)

(R) (A) (R) (A) vt(x) − Ri − v′
t(x − 1) ≥

vt(x − 1) − Ri − v′
t(x − 2)

(R) (A) (R) (R) vt(x) − v′
t(x − 1) − Ri ≥

vt(x − 1) − v′
t(x − 1)

The first case is clear. Consider the second case, since it is optimal to accept at x − 1 for

the second system, Ri + v′t(x − 2) ≥ v′t(x − 1). The third case is trivial, the LHS can be

easily decreased by replacing the optimal action of the first system and the second case is

attained. The last case is clear too, since the optimal action of the first system at state x

is rejection, vt(x) ≥ vt(x− 1) +Ri. These results hold for each operator Ti and any convex

combination of them satisfies the inequality. This completes the proof of part ii 2

4.2.2 The Robust Discrete-Time Revenue Management Problem with Arrival Uncertainty

In this section, we focus on a robust formulation that takes into account arrival uncer-

tainty. Let us assume that the arrival probabilities -which may depend on x- λi,t(x) are

not known with certainty but are estimated to lie in some uncertainty set Pt in each period

t. The uncertainty set may include additional constraints representing sample information

in addition to the default constraints λi,t(x) ≥ 0 for all i and t and
∑n+1

i=1 λi,t(x) = 1 for all t.

In order to model decision making under such an uncertainty, we employ the max-min

formulation and formulate a robust dynamic program. The robust dynamic programming

framework with transition uncertainty was established by Nilim and El Ghaoui [25] and

Iyengar [16] and a revenue management example is studied in Birbil et al [7]. Under the

max-min robust formulation, the controller plays a game against nature. It is assumed that

nature selects the worst possible probability distribution from the uncertainty set in each
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state and time after observing the controller’s action. To achieve this, we let nature choose

an independent arrival vector for each state, time and action as in [25].

Let us now define the action space of the problem. Let ai denote the action corresponding

to class-i where ai = 1 (= 0) corresponds to admission (rejection). a = (a1, a2, ...) de-

notes the combined action vector and A denotes the set of admissible actions (combinations

of accept/reject decisions for each class) of the controller. We also have to redefine the

arrival probabilities as λi,t(x,a) which denotes the probability of a class-i arrival at time

t when the system is in state x and takes action a. Let an arrival probability vector be

λt(x,a) = (λ1,t(x,a), ..., λn+1,t(x,a)). We assume that λt(x,a) belongs to an uncertainty

set which does not depend on state x and action a. This appears to be a reasonable as-

sumption in the revenue management context.

We define two types of interval uncertainty models here, where one is a subset of the other.

Let us define Pt ̸= ∅ an interval uncertainty set for the demand arrival vector:

Pt =

{
y = (y1, . . . , yn+1) : 0 ≤ y

i,t
≤ yi,t ≤ ȳi,t, 0 ≤ qt ≤

n∑
i=1

yi,t ≤ 1

}
,

where y
i,t

and ȳi,t are respectively lower and upper bounds on the arrival probability and q

is a lower bound on the minimum total probability of demand arrival.

Pt is a fairly standard interval uncertainty set for a probability vector. However, some of

the results we present in this chapter can be extended to a modified uncertainty set Ct ⊆ Pt

where Ct ̸= ∅ is defined as follows:

Ct =

{
y = (y1, . . . , yn+1) : 0 ≤ y

i,t
≤ yi,t ≤ ȳi,t,

n∑
i=1

biyi,t ≥ Qt, 0 ≤ qt ≤
n∑

i=1

yi,t ≤ 1

}
,

where Q is a lower bound on a linear combination of the decision variables yi. In particular,

using this constraint and taking bi = Ri one can bound the expected reward per stage which

is useful for revenue management applications.
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Given the uncertainty set Pt, the robust value function, for x > 0, is given by:

wt(x) = max
a∈A

min
λt(x,a)∈Pt

{
n+1∑
i=1

λi,t(x,a) (aiRi + wt+1(x− ai))}, (4.4)

where we set an+1 = 0 and take the boundary conditions wT (x) = 0 for all x and

wt(0) = 0 for all t.

Let us also define the dual version of the value function where the min and max are inter-

changed:

w̃t(x) = min
λt(x,a)∈Pt

max
a∈A

{
n+1∑
i=1

λi,t(x,a) (aiRi + w̃t+1(x− ai))}. (4.5)

Note that by the well-known property of the maximin theorem wt(x) ≤ w̃t(x).

4.2.3 Structural Properties of the Robust Problem

In this subsection, we characterize the solution of Nature’s problem at a particular stage t.

In particular, we establish that Nature’s optimal solution does not depend on the state x.

To this end, we first investigate duality and its effects. Let us note that Nilim and El Ghaoui

[25] show that the problem can be solved by a Bellman recursion as expressed in Equation

(4.4)and investigate some duality properties of this solution. Our problem is a modified

version of theirs. Hence, we establish a useful duality property based on their approach.

In particular perfect duality implies that the objective function value does not change if

the sequence of game is changed, i.e. if the controller is allowed to choose after observing

Nature in our problem. This has been established for multistage stochastic games by various

authors (Nilim and El Ghaoui [25], Nowak [26], and Altman [1]). Indeed, this seems to be

a consequence of the Neumann minimax theorem as explained in Sion [30]. However, we

present a stronger result than perfect duality in Proposition 4.2.1 where we also establish

that the optimal action of the controller is independent of the Nature’s posteriori action.

Proposition 4.2.1 The optimal expected revenue at stage t in state x does not depend on

the sequence of the game: wt(x) = w̃t(x) where wt(x) and w̃t(x) are defined respectively in

(4.4) and (4.5). Moreover, the optimal action a∗ is independent of the Nature’s posteriori
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decision. Hence, the robust value function can be represented as follows:

wt(x) = min
λt(x)∈Pt

{
n∑

i=1

λi,t(x)max{Ri + wt+1(x− 1), wt+1(x)}}

+λn+1,t(x)wt+1(x), (4.6)

or alternatively as:

wt(x) = min
λt(x)∈Pt

{
n∑

i=1

λi,t(x) (Ri −∆wt+1(x))
+ + wt+1(x)}. (4.7)

Proof:

Let us reconsider the nominal problem and define the wλt
t (x) as in the following equation

assuming that the problem is perfectly dual at stage t+ 1:

wλt
t (x) = max

a∈A
{
n+1∑
i=1

λi,t(x,a) (aiRi + wt+1(x− ai))}.

for all λt ∈ Pt. Apparently, the optimal action a is the same for every λt ∈ Pt, i.e. ai = 1

if Ri + wt+1(x− ai) ≥ 0 else a1 = 0.

Now we define λ∗
t (x) follows:

λ∗
t (x) = arg min

λt(x)∈Pt

{
n∑

i=1

λi,t(x)max{Ri+wt+1(x− 1), wt+1(x)}+λn+1,t(x)wt+1(x)}. (4.8)

Therefore, the pair (λ∗
t (x),a

∗) is the equilibrium of the problem w̃t(x) where a∗ denotes

the optimal action that admits customers according to Equation 4.1.

Now consider the original form of the game, i.e. robust value function and let the controller

choose a∗. As already given in Equation 4.8 Nature’s best response to a∗ is λ∗
t (x). Because

wt(x) ≤ w̃t(x), (λ
∗
t (x),a

∗) is the optimal solution of 4.4. This completes the proof. 2

In general, in a robust stochastic dynamic program, the worst case probability distribution

may be state dependent. While this is not a major computational problem, it is an issue

when structural optimal policies are desired. Next, we use representation (4.7) to establish

that Nature’s solution is not state dependent for our problem.

Theorem 4.2.2 Consider the uncertainty set Pt, then Nature’s optimal choice of probabil-

ity distribution can be obtained by a simple rule and is identical for all states at all times:

λt(x) = λt ∀ x.
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Proof:

Consider Nature’s problem for a given x and t, which is a Linear Program with decision

variables λt(x) and objective function coefficients (R1 −∆wt(x))
+, (R2 −∆wt(x))

+, ...,

(Rn −∆wt(x))
+. Since R1 ≥ R2 ≥ ... ≥ Rn, (R1 −∆wt(x))

+ ≥ (R2 −∆wt(x))
+ ≥

... ≥ (Rn −∆wt(x))
+ for all t, x. Please note that the problem can be also represented by

the following equation through a transformation of the uncertainty set Pt to ∆Pt.

∆Pt =

{
∆y = (∆y1, . . . ,∆yn+1) : 0 ≤ ∆yi,t ≤ ȳi,t − y

i,t
, 0 ≤ q −

n∑
i=1

y
i,t

≤
n∑

i=1

∆yi ≤ 1

}
,

wt(x) =

n∑
i=1

λi,t(x) (Ri −∆wt+1(x))
+

+ min
∆λt(x)∈∆Pt

{
n∑

i=1

∆λi,t(x) (Ri −∆wt+1(x))
+}+ wt+1(x).

The minimization term corresponds to a continuous Knapsack Problem with upper bounds

(with decision variables ∆λi,t(x)) . In addition, the objective function coefficients (Ri −∆wt+1(x))
+

are decreasing in i since Ri > Rj if i < j for any given state x. The optimal solution is then

given by the following allocation where k denotes a class between 1, ..., n:

∆λi,t(x) = 0 if 1 ≤ i < k

∆λk,t(x) = qt −
n∑

i=k+1

∆λi,t(x)

∆λi,t(x) = λ̄i,t − λi,t if k < i.

The dual of the problem is as follows:

max
z,u≥0

q′tz − w

st. z − wi ≤ (Ri −∆wt+1(x))
+ .

where q′ = q −
∑n

i=1∆λ̄i,t, let’s take z∗ = (Rk −∆wt+1(x))
+ and

wi = 0 if; 1 < i ≤ k

wi = (Rk −∆wt+1(x))
+ − (Ri −∆wt+1(x))

+ if k < i ≤ n.
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The optimal solution is:

q′t (Rk −∆wt+1(x))
+ −

[
(Rk −∆wt+1(x))

+ − (Rk+1 −∆wt+1(x))
+] (λ̄k+1,t − λk+1,t)− ...[

(Rk −∆wt+1(x))
+ − (Rn −∆wt+1(x))

+] (λ̄n,t − λn,t).

Clearly the solution is dual feasible, has the same objective value with the primal problem

and satisfies complementary slackness. The optimal solution clearly does not depend on x

for all t. This completes the proof. 2

We have established that Nature’s solution is identical for all states x for any stage t.

Moreover, if the uncertainty set is not time dependent, i.e. Pt = P ∀ t, then nature’s

optimal choice of probability distribution is identical for all states at all times: λt(x) = λ

∀ x, t.

Corollary 4.2.1 Consider the uncertainty set Ct, if bi ≤ bj for all i ≤ j then Nature’s

optimal choice of probability distribution can be obtained by a simple rule and is identical

for all states at all times: λt(x) = λt ∀ x.

Proof:

Please remember the definition of ∆Ct:

∆Ct =

{
∆y = (∆y1, . . . ,∆yn+1) : 0 ≤ ∆yi,t ≤ ȳi,t − y

i,t
,

n∑
i=1

bi∆yi ≥ Q −
n∑

i=1

bi∆yi, 0 ≤ q −
n∑

i=1

y
i,t

≤
n∑

i=1

∆yi ≤ 1

}
.

Please note that
∑n

i=0 b
iλi,t(x) = Q, where b1 ≤ b2 ≤ ... ≤ bn, it is easy to conclude

that:

(R1 −∆wt+1(x))
+

b1
≥ (R2 −∆wt+1(x))

+

b2
... ≥ (Rn −∆wt+1(x))

+

bn
.

for all t, x. Since Ct ⊆ Pt the resultant optimal solution is given as:
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∆λi,t(x) = 0 if 1 ≤ i < k

∆λk,t(x) =
∆Qt −

∑n
i=k+1 bi∆λi,t(x)

bk

∆λi,t(x) = λ̄i,t − λi,t if k < i ≤ n

.

Similar to Theorem 4.2.2 the problem is continuous Knapsack problem with upper bounds

with the exception that the qt ≤
∑n

i=1 λi,t is the untight constraint. The dual of the

problem together with the optimal values are as follows:

max
z,u≥0

q′tz1 +Q′
tz2 − w

st.z1 + biz2 − wi ≤ Ri −∆wt+1(x)
+.

where q′t = qt −
∑n

i=1∆λ̄i,t and Q′
t = Qt −

∑n
i=1∆biλ̄i,t. Let’s take z1∗ = 0, z2∗ =

(Rk−∆wt+1(x))
+

bk
and

wi = 0 if 1 < i ≤ k

wi =
bi
bk

(Rk −∆wt+1(x))
+ − (Ri −∆wt+1(x))

+ if k < i ≤ n.

The optimal solution is:

Q′
t (Rk −∆wt(x))

+ −
[
bk+1

bk
(Rk −∆wt+1(x))

+ − (Rk+1 −∆wt+1(x))
+

]
(λ̄k+1,t − λk+1,t)− ...[

bn
bk

(Rk −∆wt(x))
+ − (Rn −∆wt(x))

+

]
(λ̄n,t − λn,t).

Clearly the solution is dual feasible, has the same objective value with the primal problem

and satisfies complementary slackness. The optimal solution clearly does not depend on x

for all t. This completes the proof. 2

As in Theorem 4.2.2, the optimal solution does not depend on x at all stages t. 2

Corollary 4.2.2 Consider the uncertainty set Ct, if bi = Ri for all i then Nature’s optimal

choice of probability distribution is identical for all states at all stages: λt(x) = λt ∀ x.
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Proof:

Please note that ∆wt(x) ≤ R1 and Class 1 customer is always accepted to the system. We

have:

1− ∆wt(x)

R1
≥ 1− ∆wt(x)

R2
.... ≥ 1− ∆wt(x)

Rn
.

Using a similar argument to the one in the Proof of Corollary 4.2.1 we find that Nature’s

optimal solution does not depend on x. This establishes the result. 2

Under the conditions of Theorem 4.2.2, Nature’s probability distribution cannot be state

dependent. The controller is then playing a game against a state-independent arrival dis-

tribution which makes the problem a standard Markov Decision Processes as in Talluri and

Van Ryzin [32] or Aydin et al. [2]. The next theorem establishes that all structural results

of the nominal problem propagate to the robust counterpart.

Theorem 4.2.3 Consider the uncertainty set Pt, then the robust value has function has

the following properties:

1. wt(x) is nondecreasing (ND) in x for all t,

2. wt(x) is concave in x for all t,

3. wt(x) is supermodular in x, t for all x, t.

Proof:

Due to Theorem 4.2.2, nature’s optimal policy does not depend on x. The controller’s prob-

lem then becomes a Markov Decision Process with state indepedent demand arrival rates.

The proof then follows from the results on the nominal problem given in Aydin, Akcay and

Karaesmen [2]. 2

Theorem 4.2.3 establishes that principal structural properties of the optimal polices also

hold for the robust counterpart of the problem defined in Equation (4.4). This implies

the optimality of threshold policies as in the nominal problem. Besides, supermodularity

implies that the thresholds are also monotone over time.
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Next we establish the structural results for the uncertainty set C under certain conditions.

Corollary 4.2.3 Consider the uncertainty set Ct, if bi ≤ bj for all i ≤ j or bi = Ri for all

i, then the robust value function has the following properties:

1. wt(x) is nondecreasing (ND) in x for all t,

2. wt(x) is concave in x for all t,

3. wt(x) is supermodular in x, t for all x, t.

Proof:

Due to Corollaries 4.2.1 and 4.2.2, nature’s optimal policy does not depend on x. Once

again, the proof then follows from the results on the nominal problem given in Aydin,

Akcay and Karaesmen [2]. 2

4.2.4 Behavior of the Optimal Policy for Nested Uncertainty Sets

In this section, we investigate the behavior of the optimal policy when the uncertainty set

is relaxed. In particular, we consider nested uncertainty sets where a relaxation of ε leads

to a larger uncertainty set that includes the first set P such that Pt ⊆ Pε
t for all t.

We first state the following property of Nature’s optimal solutions:

Lemma 4.2.1 Consider two problems that are identical in their parameters except their

uncertainty sets that represent their arrival probabilities at stage t. Let Pt and Pε
t be two

uncertainty sets, λt and λε
t be the corresponding Nature’s optimal solutions respectively. If

Pt ⊆ Pε
t then λt ≽ λε

t .

Proof:

According to definition of Pt, Pε
t ⊇ Pt iff at least one of the conditions is true:

1. qε ≤ q,

2. yε
i,t

≤ y
i,t
,
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3. ȳεi,t ≥ ȳi,t.

The corresponding solution of Nature is given in Theorem 4.2.2. For the first case the

inequality is clear since
∑n

i=1 λ
ε
i,t ≥

∑n
i=1 λi,t, ∀ i. For the second and third cases, solution

assigns probabilities in increasing order of rewards, thereby implying higher probabilities to

lower revenue classes for Pε
t . Hence,

n∑
i=k

λε
i,t ≥

n∑
i=k

λi,t, ∀ k

which implies that λt ≽ λε
t . 2

Theorem 4.2.4 Consider two problems that are identical in their parameters except their

uncertainty sets that represent their arrival probabilities at stage t. Let Pt and Pε
t be two

uncertainty sets, wt(x) and wε
t (x) be the corresponding value functions respectively. If Pt ⊆

Pε
t then:

1. wt(x) ≥ wε
t (x) for all x, t,

2. ∆wt(x) ≥ ∆wε
t (x) for all x, t.

Proof:

1: This follows by Lemma 4.2.1 and the first part of Theorem 4.2.1. 2

2: This follows from Lemma 4.2.1 and the second part of Theorem 4.2.1 2

Theorem 4.2.4 has important implications. The first part implies that the expected revenue

of the controller is monotone in nested interval uncertainty sets. The second part is less ob-

vious but implies that optimal admission policies are also monotone for nested uncertainty

sets. If a class-i demand is admitted to the original system at a given state x under the

uncertainty set P, then it is always admitted at x under Pε. Similarly, a class-i demand

that is rejected at x under Pε, is also rejected at x under P. In short, the optimal admission

thresholds for P and Pε are ordered for all i and all t.
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4.2.5 Nested Uncertainty Sets and a Weighted Optimization Approach

In this section, we investigate the structure of optimal policies under a more general ro-

bust dynamic programming formulation. The so-called S-Robust Policy framework was

proposed by Xu and Mannor [34] who propose a weighted optimization approach between

multiple uncertainty sets that have a nested structure. In particular, in this approach, it

is assumed that the transition probability vector belongs to a concentration set Pf
t ⊆ Pt

with probability δ and it belongs to the larger set Pt with probability of 1, for all t. Here,

the concentration set Pf
t can be viewed as a prior distribution and δ is a measure of re-

liance on that distribution. The concentration set weights could be represented as a vector

δ = (δ1, δ2, δ3, ..., δT ) if δ is allowed to vary between stages.

Xu and Mannor define an S-robust policy as the outcome of the following equation of opti-

mality:

wt(x) = max
aϵA

{
δt min

λf
t (x,a)∈Pf

t

[∑
i

λf
i,t(x) (aiRi + wt+1(x− ai))

]

+(1− δt) min
λt(x,a)∈Pt

[∑
i

λi,t(x) (aiRi + wt+1(x− ai))

]}
.

By Proposition 4.2.1 we can rewrite the above as:

wt(x) = δt min
λf
t (x)∈Pf

t

[∑
i

λf
i,t(x)(Ri −∆wt+1(x))

+

]

+(1− δt) min
λt(x)∈Pt

[∑
i

λi,t(x)(Ri −∆wt+1(x))
+

]
+ wt+1(x). (4.9)

The next corollary establishes that robust value functions are monotone with respect to the

reliance weight vector δ.

Corollary 4.2.4 Consider two problems that are identical in their parameters except their

reliance weight factors at stage t. Let δ1 and δ2 be two reliance weight factors, w1
t (x) and

w2
t (x) be the corresponding value functions respectively. If δ1t ≥ δ2t for all t:

1. w1
t (x) ≥ w2

t (x) for all t, x,
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2. ∆w1
t (x) ≥ ∆w2

t (x) for all t, x.

Proof:

First by Theorem 4.2.4 wf
t (x) ≥ wt(x) and ∆wf

t (x) ≥ ∆wt(x). It is then straightforward

to show that for any two if δ1t ≥ δ2t both w1
t (x) ≥ w2

t (x) and ∆w1
t (x) ≥ ∆w2

t (x) for

stages t, ..., T . Once again by Theorem 4.2.4 the inequalities also hold for stages 1, ..., t− 1.

This completes the proof. 2

Clearly, as δ increases, the weight of the concentration set increases and the resulting policy

becomes less robust and therefore less conservative. Corollary 4.2.4 implies that the optimal

admission thresholds are non-decreasing in δ for all customer classes. As the decision maker

assigns more weight to the concentration set, she chooses to be more selective in customer

admission at any given state x and time t.

4.3 Dynamic Single-Product Revenue Management with Replenishment

4.3.1 Problem:Dynamic Single-Product Revenue Management with Replenishment

In this section, we consider the revenue management of Section 4.2 but we allow replen-

ishments. The model we explore is an example of a class of inventory problems in stock

rationing. In order to maintain consistency with respect to Section 4.2, we consider the

discrete version of the stock rationing problem for a multiple demand class M/M/1 make-

to-stock queue with lost sales that was previously modeled and explore by Ha [14]. This

is a model that has received significant attention and was later extended in several directions.

The discrete-time version of Ha’s model [14] turns out to be very similar to the model in

the previous section. The original continuous-time version has n classes of customers whose

demands arrive according to independent Poisson processes with rate λi (i = 1, 2, ..., n). A

single server whose processing time is exponentially distributed with rate µ produces items

one-by-one. If a demand of class-i is admitted when there is at least one unit of inventory

on hand, it is immediately satisfied and a class-dependent instant reward of Ri is obtained.

If inventory is empty, all arriving demands are assumed to be lost. As before, the classes

are ordered such that if i < j then Ri > Rj . At any time t, the inventory level is
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denoted by X(t) (where X(t) ∈ Z+) and the inventory holding cost rate is h(X(t)) per

unit of time. The holding cost function h(x) is increasing and convex in x. Ha [14] con-

siders an infinite-horizon discounted profit maximization objective with a discount rate of α.

The production can be stopped and started at any time t and the demands are admitted

or rejected from the system upon arrival. Ha [14] shows that, after uniformization, the

equivalent discrete time problem can be expressed as follows. Let γ = µ̄ +
∑n

i=1 λ̄i + ᾱ

be the uniformization rate which can be set to 1 without loss of generality and by setting

µ = µ̄/γ, λi = λ̄i/γ and α = ᾱ/γ, we obtain:

vt(x) = µmax{vt+1(x+ 1), vt+1(x)}

+

n∑
i=1

λimax{vt+1(x− 1) +Ri, vt+1(x)} − h(x) if x > 0 (4.10)

and

vt(0) = µmax{vt+1(1), vt+1(0)}+
n∑

i=1

λivt+1(0)− h(0), if x = 0 (4.11)

.

Let α′ = (1− α), Equation (4.11) can alternatively be represented as follows:

vt(x) = µ(∆vt+1(x+ 1))+ (4.12)

+
n∑

i=1

λi (Ri −∆vt+1(x))
+ + α′vt+1(x)− h(x), if x > 0,

with the boundary condition vT (x) = 0 for all x. Ha [14] established that the value func-

tion vt(x) is concave for all finite t and for the infinite horizon value function as t tends to

infinity. This implies that the optimal demand admission policy is of threshold type. In

addition, the optimal production policy is of target level type. There is a target production

level below which the system should produce and at or above which the system should stop

production. These results can be extended to a number of more complicated cases including

batch arrivals (Huang and Iravani [15] and Çil et al. [8]).
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4.3.2 The Robust Discrete Time Revenue Management Problem with Arrival Uncertainty

In this section, we consider the discrete-time model in Section 4.3.1 but assume that the

arrival and production rates are not known with certainty. We first consider a model of

interval uncertainty for the finite horizon case where each rate parameter is estimated inde-

pendently and is assumed to lie in an interval between upper and lower bounds rather than

taking a specific value.

Let the arrival and production probability vector be: (λt(x,a), µt(x,a)) = (λ1,t(x,a), ..., λn,t(x,a), µt(x,a)).

We assume again that this vector belongs to an uncertainty set which does not depend on

the state x and the action a.

Let us define P ̸= ∅ an interval uncertainty set for the demand arrival - production proba-

bility vector:

P =

{
z = (z1, . . . , zn+1) : 0 ≤ zi ≤ zi ≤ z̄i, 0 ≤ q ≤

n∑
i=1

zi ≤ α′

}
.

where zi and z̄i upper and lower bounds on individual event probabilities and q is a lower

bound on the total probability of arrival and production.

Let wt(x) be the robust value function. Similarly to the previous section, the optimality

equation for wt(x) can be expressed as:

wt(x) = min
(λt(x),µt(x))∈P

{
µt(x) (∆wt+1(x+ 1))+

+

n∑
i=1

λi,t(x) (Ri −∆wt+1(x))
+ + α′wt+1(x)− h(x)

}
, if x > 0 (4.13)

wt(0) = min
(λt(0),µt(0))∈P

{µt(0) (∆wt+1(1))
+}. (4.14)

4.3.3 Structural Properties of the Robust Problem

In the below, we show that the results given for the single-resource revenue management

problem of Section 4.2.3 can be extended to the case with replenishment. First, please note

that Proposition 4.2.1 applies for the above problem with an identical argument. Hence,

the optimal action of the controller at any stage t and state x is independent of the Nature’s

posteriori decision. Next, we establish the concavity of the robust value function.
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Theorem 4.3.1 Consider the uncertainty set P, then the robust value function wt(x) is

concave in x for all t.

Proof:

According to Proposition 4.2.1, the optimal actions of the controller do not depend on the

choice of nature. Suppose that λt(x) and µt(x) are the optimal solutions of the Nature for

state x. We use an induction argument and assume that wt+1(x) is concave in x. Next, we

have to show that under this assumption wt(x) preserves concavity. Using the concavity

assumption, the following inequality holds if the arrival and rates are identical at states

x− 1, x and x+ 1 and are equal to λt(x) and µt(x) using the existing results (Ha [14], Çil

et al. [8]):

µt(x){∆wt+1(x+ 1)}+ +
∑n

i=1 λi,t(x){Ri −∆wt+1(x)}+ + α′wt+1(x)− h(x) ≥

1/2{µt(x){∆wt+1(x)}+ +
∑n

i=1 λi,t(x){Ri −∆wt+1(x− 1)}+ + α′wt+1(x− 1)− h(x− 1)}

+ 1/2{µt(x){∆wt+1(x+ 2)}+ +
∑n

i=1 λi,t(x){Ri −∆wt+1(x+ 1)}+ + α′wt+1(x+ 1)− h(x+ 1)}.

Now let us relax the assumption that the arrival and production rates are equal for all

states. Because Nature’s objective is to minimize the robust value function wt(x), the

following holds:

µt(x){∆wt+1(x+ 1)}+ +
∑n

i=1 λi,t(x){Ri −∆wt+1(x)}+ + α′wt+1(x)− h(x) ≥

1/2{µt(x− 1){∆wt+1(x)}+ +
∑n

i=1 λi,t(x− 1){Ri −∆wt+1(x− 1)}+ + α′wt+1(x− 1)− h(x− 1)}

+ 1/2{µt(x+ 1){∆wt+1(x+ 2)}+ +
∑n

i=1 λi,t(x+ 1){Ri −∆wt+1(x+ 1)}+ + α′wt+1(x+ 1)− h(x+ 1)}.

This establishes that wt(x) is concave in x. 2

Theorem 4.3.1 implies that, as in the revenue management problem of Section 4.2 or the

nominal problem of Ha [14], the optimal demand admission policy of the robust problem

is of threshold type. Hence, in each period t and for each class-i, there is an admission

threshold li,t. Similarly, there is a target level St for each period t, such that the controller

stops production if the inventory on hand reaches this level. However, this time there are

no corresponding results for supermodularity/submodularity of the value function wt(x) in
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x, t or the monotonicity of thresholds over time.

It is important to note that if the uncertainty in event probabilities pertains to only one

type of operator, i.e. either admission operators only or the production operator only, Na-

ture’s solution is independent of the state x for all stages t. In this case, although there may

be alternative optimal solutions, the optimal policy of Nature can be reduced to a unique

solution that has the identical profit.

4.3.4 Behavior of the Optimal Policy for Nested Uncertainty Sets

In this subsection, we explore the effects of increasing or decreasing uncertainty on the op-

timal robust value function and the optimal policy. The results we provided for the revenue

management problem of Section 4.2 also hold for this problem under certain additional

conditions.

Corollary 4.3.1 Consider two problems that are identical in their parameters except their

uncertainty sets that represent their arrival probabilities at stage t. Let Pt and Pε
t be two un-

certainty sets, wt(x) and wε
t (x) be the corresponding value functions respectively. If Pt ⊆ Pε

t

then:

1. wt(x) ≥ wε
t (x) for all t, x,

2. (a) If only the arrival probabilities are uncertain, then ∆wt(x) ≥ ∆wε
t (x) for all t, x,

(b) If only the production rate is uncertain, then ∆wt(x) ≤ ∆wε
t (x) for all t, x.

Proof:

a- The beginning of this part is the same as above. For the second phase we need to show

that production operator also preserves the inequality. Since ∆vt−1(x) ≥ ∆v′t−1(x) if it is

not optimal to produce in the original system then it is also not optimal to produce in the

perturbed system. By concavity we know that the base stock policy is optimal therefore
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the cases except from the produce at all of the conditions and not produce at all of the

conditions the cases are as follows:

T iwt−1(x) −T iw′
t−1(x) ≥ T iwt−1(x − 1) −T iw′

t−1(x − 1) Result

(NP) (NP) (P) (P) wt(x) − w′
t(x) ≥

wt(x) − w′
t(x)

(P) (NP) (P) (P) wt(x + 1) − w′
t(x) ≥

wt(x) − w′
t(x)

(NP) (NP) (P) (NP) wt(x) − w′
t(x) ≥

wt(x) − w′
t(x − 1)

(P) (NP) (P) (NP) wt(x + 1) − w′
t(x) ≥

wt(x) − w′
t(x − 1)

The first case is clear. In the second case it is optimal to make a production in the original

system therefore wt(x+ 1) ≥ wt(x). The third case is similar too, since it is not optimal to

produce at the second system we have w′
t(x) ≤ w′

t(x−1). For the last case wt(x+1)−w′
t(x) ≥

wt(x)− w′
t(x) and wt(x)− w′

t(x) ≥ wt(x)− w′
t(x− 1). This completes the proof of 2.a. 2.

(2) For that case it is obvious that µt(x) ≥ µε
t (x). Since wt(x) ≤ wt(x − 1) loss at state x

is less than loss at x− 1 for all states. Rest of the proof is the same with the above. 2.

The two properties of Corollary 4.3.1 have the following implications. As we enlarge the

uncertainty set, the optimal robust value function decreases. Besides, if arrival rates are un-

certain but the production rate is fixed, enlarging the uncertainty set part of the uncertainty

set leads to lower optimal admission thresholds. Likewise, optimal production target levels

decrease when the uncertainty set is enlarged. Finally, if the arrival rates are fixed, as the

uncertainty set representing the production rates is enlarged, both the optimal admission

thresholds and the production target levels increase.

Next, we focus on the S-robust formulation of the problem and investigate the structural

properties under this formulation.

Corollary 4.3.2 Consider two problems that are identical in their parameters except their

reliance weight factors at stage t. Let δ1 and δ2 be two reliance weight factors, w1
t (x) and

w2
t (x) be the corresponding value functions respectively. If δ1t ≥ δ2t then: t:

1. w1
t (x) ≥ w2

t (x) for all t, x,

2. (a) If only the arrival probabilities are uncertain, then ∆w1
t (x) ≥ ∆w2

t (x) for all
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Customer Class Reward Nominal Arrival Probability Interval

1 $80 per item 0.075 (0.05, 0.10)

2 $35 per item 0.075 (0.05, 0.10)

3 $25 per item 0.15 (0.10, 0.20)

Table 4.1: Demand and Reward Parameters for the Numerical Example

t, x,

(b) If only the production rate is uncertain, ∆w1
t (x) ≤ ∆w2

t (x) for all t, x.

Proof:

The results follows from Corollary 4.3.1 by using the results of Corollary 4.2.4. 2

Finally, let us briefly discuss the infinite horizon extension. Iyengar [16] and Nilim and El

Ghaoui [25] establish that the respective controller and nature policies are stationary for the

infinite horizon problem. Moreover, Nilim and El Ghaoui [25] show that the optimal value

function of the infinite horizon problem with a discounted cost function can be obtained

as the unique limit of the finite horizon problem. This suggests that the optimal policy

structure can be extended to the infinite horizon case.

4.4 Numerical Results

In this section, we present some numerical results for the make-to-stock queue with multi-

ple demand classes introduced in Section 4.3. Let us a consider system consisting of three

customer classes. The holding cost is assumed to be $5 per item per year (approximately

$0.0142 per item per day). The (daily) production probability is 0.2 and is certain. The

(daily) demand arrival probabilities are assumed to be uncertain. In particular, we assume

that there is best guess for the demand probability which we label as the nominal proba-

bility and an interval around this nominal probability. This data as well as the rewards of

each class are presented in Table 4.1.

We experiment with the S-Robust Policy which includes the nominal policy and the pure

robust policy as special cases. The nominal probabilities are taken as the concentration
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Figure 4.1: Optimal Admission Thresholds of Customer Classes 2 and 3 as a function of δ

set and the optimal policies are obtained for different δ values where δ reflects the weight

of the concentration set. Hence, δ = 1.0 designates the nominal solution whereas δ = 0

designates the pure robust solution. We solve the problem for different δ values between

[0, 1] and compute the optimal S− robust policy for different values of δ. Then we simulate

the performance of these policies for demand data that is sampled from the uncertainty

set. In particular, we generate the arrival probabilities to lie in their associated intervals

uniformly, consequently with a mean equal to the nominal arrival probability.

In Figures 4.4 to 4.4 we present the long run results (using a 1 million stages) of the problem.

In Figure 4.4 and Figure 4.4 the admission thresholds of Classes 2 and 3 and the target

levels are depicted as a function of δ. Obviously, customer class 1 is the preferred customer

in this problem and is always accepted to the system. Clearly, the admission thresholds

increase as reliance on the nominal distribution increases as established in Corollary 4.3.2.

Similarly, optimal target levels also increase as reliance on the nominal distribution increases.

Therefore, at any given inventory level, the controller becomes less willing to sell and more

willing to produce when δ increases. Robustness in this problem requires setting lower

thresholds and lower target inventory levels.

Figure 4.4 depicts the average profit per stage as a function of δ. To better understand

how the average profit increases in δ, we next investigate the fill rates (demand satisfaction
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Figure 4.2: Optimal Base Stock Levels as a function of δ

probabilities) for each class as a function of δ. Apparently, increasing robustness (measured

by δ) requires treating customers similarly in terms of demand admission in addition to

keeping lower target inventory levels. Figure 4.4 reports the fill rates of class 1 and class 3,

this shows that the fill rate of class 1 is increasing and the fill rate of Class 3 is decreasing

in δ. Please note that decreasing δ, results in a decrease in the service quality of the class 1

customer as the controller produces uses a lower base stock level and admits more customers

from other classes which increases the stock-out probability. On the other hand, class 3 has

better access to the inventory and its fill rate improves when δ decreases.

An interesting question is how robustness affects overall performance. For this investigation,

we consider two measures of performance: the expected total profit and the variance of the

total profit obtained by simulation. Next, we report results for these performance measures

as a function of δ. In order to explore the effects of variability on the expected profit, we

explore the total expected profit over a short horizon. We consider the case where the total

horizon is 55 stages and the initial inventory is 0. With these parameters the expected

sales over the horizon is approximately 9 units. As a benchmark, we also consider the case

where replenishment is not allowed. In this case, we assume that the starting inventory

is 9 (corresponding to the average sales with the above case). In Figure 4.5, we present

the expected profit versus the variance for both cases. It can be observed that there is a
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Figure 4.3: Average Profit as a function of δ

Figure 4.4: Fill Rates of Class 1 and Class 3 Customers wrt δ
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Figure 4.5: Expected Profit vs. Variance of The Profit with Production (left) and without
Production (right)

significant trade-off between expected profit and variance of the profit.

Obviously the variance in the case without replenishment is less than the former case since

the number of available items in the stock not affected by random production. Besides, in

this case the opportunity to improve this variability is stronger. The total changes in the

expected profit between the absolute robust and the nominal cases are nearly the same but

the improvement in the variance is approximately 4% in the case with production and 30%

without production. To further investigate these findings, let us consider a risk-sensitive

objective function of the type U(X) = E[X] − aσX where σX is the standard deviation of

the random return X. Next, we assume that a = 1 and numerically compute the δ value

that maximizes U(Profit). The utility maximizing reliance factor is denoted by δ∗ and

the corresponding maximum utility is denoted by U∗(Profit) respectively. As a benchmark

Ũ(Profit) designates the expected utility of the nominal policy. The results are reported in

Table 4.2.

Finally, we briefly explore how the optimal δ changes with respect to the risk-sensitivity

factor a. It is clear that a = 0 corresponds to the risk-neutral case and the optimizing

δ∗ = 1. As we increase the value of a, we expect the δ∗ to decrease. The computations

reported in Figure 4.6 confirm that δ∗ decreases as a increases. This preliminary exploration
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With Production Without Production

U∗(Profit) 302.7 363.85

Ũ(Profit) 302 360.11

Improvement 0.7 3.74

Table 4.2: Optimum U(Profit) values

Figure 4.6: Optimum δ for Various Values of a for the cases with Production (left) and No
Production (right)

suggests that there may be useful links between robust policies and their applications in a

risk-sensitive decision making environment.

4.5 Conclusion

We investigated the robust versions of two single-product dynamic revenue management

problems: a standard model where a fixed inventory is allocated over time to different

classes of customers and a related model where inventory can be replenished by a finite

capacity resource. We show that, under certain interval uncertainty models, the optimal

policy structure extends to the robust case. Further, we characterized how the optimal

policy changes with respect to the uncertainty set.

One drawback of a robust dynamic model is that the resulting policy may be too con-

servative. To alleviate this problem, we extended the analysis to a weighted optimization
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approach recently suggested by Xu and Mannor [34]. This approach can calibrate the level

of robustness by choosing the appropriate weights between alternative objectives. We show

that the optimal policy structure is not affected by this formulation.

Finally, we presented numerical results that explore how robustness affects optimal admis-

sion and production policies. While expected profits may be affected negatively by taking

a robust approach, there are situations where the gain in the variance of the profit may be

significant. This may suggest a computational link between risk-sensitive decision making

and robust optimal policies.

In future research, we aim to explore the optimal policy structure for robust formulations

of more general production/inventory control problems. Risk-sensitive optimization and

computational approaches also appear to be fruitful avenues for further exploration.
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Chapter 5

VALUE OF ROBUSTNESS IN BATCH RATIONING PROBLEM: AN

EVALUATION ON SPOT MARKET CASE

5.1 Introduction

In this chapter, we consider the robust version of the single-item inventory management

problem with replenishment where there is a setup cost of purchasing. Similar to Chapters

3 and 4, we use the maximin approach that has been used by various authors (Iyengar [16],

Nilim and El Ghaoui [25], Gallego, Ryan and Simchi-Levi [10]). In that problem, we consider

that the customer orders arrive in batches and partial demand acceptance is allowed. In

order to model the spot market, we consider that the various batch sizes arrive with certain

arrival probabilities. The batch sizes and the unit price of each item can change according

to the class of the arriving demand. A similar problem has been studied by Gallego, Ryan

and Simchi-Levi [10] where batch rationing is not allowed and all orders are accepted by

the controller.

Perfect duality is discussed extensively in earlier Chapters. In this chapter, we illustrate a

different case. We show that although the problem is not perfectly dual, the optimal robust

policy and the classical policy have the same structure. Our contribution in this chapter

mainly addresses the performance of the optimal policy. We propose a solution in order to

improve the variance of the profit by employing the S-Robust approach suggested by Xu

and Mannor [34]. In Section 5.2, we analyze the mathematical properties of the problem

and in Section 5.3 we demonstrate a case where a significant improvement in variance of

the profit (12%) is obtained by trading of 1% of the profit.
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5.2 Model

5.2.1 Nominal Problem

We consider a finite horizon dynamic inventory control problem in this chapter. There

are n classes of customers with deterministic rewards (per unit of item sold) Ri and

R1 ≥ R2 ≥ ... ≥ Rn arriving as batches (please see the Section 2.2.3 for defini-

tion). The batch size Bi is a discrete random variable and order sizes are integer-valued

which makes the state space discrete. However, the results can be easily extended to the

continuous case. Time is denoted by t, where T denotes the end of the horizon. The prob-

ability of arrival pit(.) may be known with certainty or it may belong to an uncertainty set

Pt. We focus on the certain arrival probabilities first, then present the uncertain case later.

The state space is denoted by x ∈ X, consists of integers or may be continuous. The batch

size Bi is a random variable with a discrete probability function, the controller is allowed to

set the optimal rationing policy m ∈ R+ upon observing the inventory status x for every ar-

riving batch, stage and state independently, note that mi
t(y) ≤ Bi and B = (B1, B2, ..., Bn).

Likewise, the controller is allowed to set the ordering policy and ut(x) ∈ R+ for each stage

and state independently.

The parameters are as follows; k ($) is the fixed cost of the supplier and c ($) is the unit

cost per item. The holding cost is h $/item− time and it is assumed that the backlogs are

not allowed and unsatisfied demand is lost.

Every batch has a specific size Bi and an arrival probability pit. The cost of purchasing u

units is defined as follows:

C(u) = k + cu if u > 0

C(u) = 0 otherwise

where y = x+ u.

By using event-based approach, the value function vt(x) can be written as follows:
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vT (x) = 0

vt(x) = max
mi

t,u

n∑
i=1

pit{mi
t(y)R

i + vt+1(y −mi
t(y))− h(y −mi

t(y))− C(u)},

The function gt(y) and the value function vt(xt) is defined according to the following equa-

tion:

gt(y) = max
mi

t

n∑
i=1

pit{mi
t(y)R

i + vt+1(y −mi
t(y))− h(y −mi

t(y))} if y > 0

gt(y) = vt+1(0) if y = 0.

vt(x) = max
y∈X

{gt(xt)− cx,max
y≥x

{k + gt(y)− cy}}+ cx

vT (x) = 0. (5.1)

The solution of the problem was provided by Scarf [29]. Scarf [29] shows that the s, S

policy is optimal for a single customer class and lost sales case. Hence, the controller does

not order unless the inventory status falls below the reorder point (s). In addition to this,

there is a order up to level (S) if the controller decides for a purchase. In other words, it is

only optimal to purchase if the inventory status falls below st and the optimal order is St−x.

These results will be extended to the multiple customer class case. First we give the nec-

essary properties of the k − concave functions (see Chapter 1) together with the following

property from the Scarf’s proof:

Remember that a function f(x) is said to be k − concave in x if it satisfies the following

inequality:

f(y) ≤ k + f(x) + (y − x)
f(x)− f(x− b)

b
. (5.2)

for all y ≥ x ≥ x− b ≥ 0.
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Figure 5.1: Optimal rationing decision per y

Property 5.2.1 If f(y) is k − concave then o(y) = max0≤q≤d f(y − q) is k-concave

Property 5.2.2 If gt(y)− cy is k − concave in y then s, S policy is optimal

Property 5.2.3 If g1(y) and g2(y) are k1 − concave and k2 − concave respectively, then

for α, β ≥ 0, αg1(y) + βg2(y) is αk1 + βk2 − concave

Based on these properties we define the function git(y) as follows:

git(y) = max
mi

t

∑
{(mi

t(y)− y)Ri + vt+1(y −mi
t(y))− h(y −mi

t(y))}+Riy.

(5.3)

By Property 5.2.3, it is clear that git(y) is k-concave in y. Therefore, g(y) =
∑

pitg
i
t(y)+ R̂y

is k-concave and where R̂ =
∑

pitR
i and is a constant, by rewriting the equation of vt(x):

vt(x) = max
y∈X

{gt(x)− cx,max
y≥x

{−k + gt(y)− cy}}+ cx.

(5.4)

is k-concave, and Property 5.2.2 the (s, S) policy is optimal.

It is important to mention that the optimal rationing policy does not have a simple mono-

tonic structure. In the following figure 5.1 the optimal rationing decisions per y is given.

5.2.2 Robust Problem

In the robust formulation, we follow the convention given in Chapters 3 and 4. We aim to

show that the optimal robust replenishment policy is of (s, S) type. In order to do achieve,
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we use Properties 5.2.4 and 5.2.5. A formal proof for Property 5.2.4 can be found at Chapter

3.

Property 5.2.4 The optimal action mi
t(y) does not depend on p ∈ Pt for the robust value

function equation wt(x) given in the Equation as:

wt(x) = max
mi

t,y≥x
{ min
pti(x,a)∈Pt

{
∑

pit(x){mi
t(x)R

i + vt+1(x−mi
t(x))− h(x−mi

t(x))} − cx,∑
pit(y){mi

t(y)R
i + vt+1(x−mi

t(y))− h(x−mi
t(y))} − cy − k}+ cx.

Proof: Property 5.2.4 is a direct consequence of Theorem 3.3.1 given in Section 3. 2

Property 5.2.5 The pointwise minimum of k-concave functions is k-concave

Proof of this property can be found in several sources, however we provide an independent

proof here.

Proof: First please note that the following inequality holds for every i:[
1 +

a

b

]
fi(x) ≥ fi(x+ a) +

a

b
fi(x− b)− k.

Hence, it is apparent that:[
1 +

a

b

]
fi(x) ≥ min

i
f1(x+ a), f2(x+ a), ..., fi(x+ a)....+

a

b
min
i

f1(x− b), f2(x− b), ..., fi(x− b)....− k for all i.f

Suppose that m = argmini f1(x), f2(x), ..., fi(x)..... Then:[
1 +

a

b

]
fm(x) ≥ min

i
f1(x+ a), f2(x+ a), ..., fi(x+ a)....+

a

b
min
i

f1(x− b), f2(x− b), ..., fi(x− b)....− k for all i.

This completes the proof. 2

Theorem 5.2.1 The optimal replenishment policy is of (s, S) type.

Proof According to Property 5.2.4 the optimal robust rationing policy mi
t(y) does not

depend on the posteriori decision of the Nature. Hence, the optimal mi
t(y) is defined by:

mi
t(y) = arg max

m≤min(Bi,y)
{mRi + wt+1(y −m)−H(y −m)}.

The robust dynamic programming equation is given in the following:
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git(y) =
∑

pit(y) max
mi

t∈M
{(mi

t(y)− y)Ri + wt+1(y −mi
t(y))− h(y −mi

t(y))}+ pit(y)R
iy.

By Property 5.2.5, git(y) is k-concave, and the following robust value function wt(x) preserves

the k-concavity property. Therefore, an (s, S) policy is optimal for the robust counterpart

of the problem.

wt(x) = max
y∈X

{gt(x)− cx,max
y≥x

{−k + gt(y)− cy}}+ cx.

5.2.3 Counter Examples

Here, we present two counterexamples. The first is a counterexample for monotonicity of the

optimal rationing policy. We show that the optimal rationing policy is not monotone and

counterintuitive by an example. In the second counter example, we show that the problem

is not perfectly dual and unlike to the optimal rationing decision, the optimal purchasing

decision depends on the Nature’s posteriori decision.

Counter Example for Monotonicity of the Batch Rationing Policy

The parameters of the counter example is as follows:

Number of Batches 6

Total Stages 10

Setup Cost k $300

Cost/Item $5

Holding Cost/Item-Stage $0.01

Batch No Batch Size Arrival Probability Reward

1 30 0.70 30

2 10 0.06 20

3 20 0.06 15

4 30 0.06 10

5 40 0.06 7.50

6 50 0.06 3
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Table 5.1: Optimal Rationing Decisions for Different Inventory Levels

Inventory Status y Class 2 Class 3
43 20 30
44 14 30

In the Table 5.2.3 optimal rationing decisions are presented when there is 3 more stages in

the horizon. As it is seen in the Table 5.2.3 all the incoming demand has been satisfied at

state y = 43. However, when there is one more item in the inventory, i.e. 44 items, the con-

troller only satisfies 14/20 of the demand. Moreover, the controller satisfies all the demand

of a less valuable Class and satisfies all the incoming demand at both states. The reason of

this situation depends on the purchasing decisions of the following stages, controller gives a

purchase order when there are less than 28 items in the inventory when there are two more

remaining stages. When a demand of 20 arrives at state 44, the controller concludes that to

reserve 30 items in the inventory and earn an instant reward of $280 and to not order in the

preceding stages (and sell only to Class-1 customer) instead of earning an $400 of instant

reward and make a purchase order in the preceding stages. However, when a class with

lower reward but higher demand comes controller earns $450 instant reward and concludes

to make purchasing decisions for the preceding stages.

Counter Example for the Perfect Duality

In this part, we show that the problem is not perfectly dual. Hence, the optimal pur-

chasing decision and the optimal expected revenue change if the sequence of the game is

changed. In the original robust formulation, Nature decides upon observing the controller’s

decision. The dual counterpart designates the case where controller decides upon observing

the Nature’s decision. In our example, the uncertainty set consists of three discrete points

representing the arrival probabilities, p1 = (1, 0, 0), p2 = (0, 1, 0) and p3 = (0, 0, 1). The

other problem parameters are as follows:
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Number of Batches 3

Setup Cost k $ 200

Cost/Item $ 5

Holding Cost/Item-Stage $ 0,01

Batch No Batch Size Reward

1 10 30

2 20 20

3 30 15

Now suppose that the problem is a single stage problem and there is not any item in the

inventory (x = 0) and controller decides after observing the arrival probabilities. The un-

certainty set represents a situation that the arrival will be exactly from one of the classes. If

controller knows that the arrival will be Class-1, then it decides to purchase 10 items, sell to

the Customer and have an expected profit of $50. If controller knows that the arrival will be

Class-2, then it decides to purchase 20 items, sell to customer and have an expected profit

of $100 . Similarly, if the controller knows that the arrival will be Class-3 then it decides

to purchase 30 items, sell to customer and have an expected profit of $100. Obviously,

by knowing these Nature will decide on the p1, and the arrival will be Class − 1 and the

controller will earn $50.

Now suppose the original form of the game. Let f1(y), f2(y), f3(y) denotes the expected

profit if the controller selects y item and the probability distribution is p1, p2, p3 respec-

tively. The equations are as follows:

f1(y) = 25y − 200 if 0 < y ≤ 10

f1(y) = 100.1− 5.01y else,

f2(y) = 15y − 200 if 0 < y ≤ 20

f2(y) = 200.2− 5.01y else,

f3(y) = 10y − 200 if 0 < y ≤ 30

f3(y) = 250.3− 5.01y else.
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Since Nature’s objective is to minimize the following resultant function is given as the

solution of the game:

f(y) = min{25y − 200, 15y − 200, 10y − 200} if 0 < y ≤ 10

f(y) = min{100.1− 5.01y, 15y − 200, 10y − 200} if 10 < y ≤ 20

f(y) = min{100.1− 5.01y, 200.2− 5.01y, 10y − 200} if 20 < y ≤ 30

f(y) = min{100.1− 5.01y, 200.2− 5.01y, 250.3− 5.01y} else

and equivalently:

f(y) = 10y − 200 if 0 < y < 19.9933

f(y) = 100.1− 5.01y else.

Apparently, the optimal value of y ≃ 19.9933 and Nature is indifferent between p1 and p3

in that case. Hence, the controller’s best choice is to stay at inventory level 0 and not to

order anything. In Figure 5.2 the expected profit of each decision under each probability

distribution is presented.

This establishes that the problem is not perfectly dual. Table is given as illustration for the

integer case.

5.2.4 S-Robust Policy

Xu and Mannor [34] and Paschalidis [27] proposed an approach modifying the absolute

robust policy that are more adaptive to different realizations in the uncertainty set. We

again discuss here the S-Robust Policy framework suggested by Xu and Mannor [34] that

we illustrate in Chapter 3.

By using their approach, we suggest that the S-robust policy satisfies the following equation:
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Table 5.2: Profit of Each Decision Under Different Probability Distribution

y Profit 1 Profit 2 Profit 3 minimum
1 -175 -185 -190 -190
2 -150 -170 -180 -180
3 -125 -155 -170 -170
4 -100 -140 -160 -160
5 -75 -125 -150 -150
6 -50 -110 -140 -140
7 -25 -95 -130 -130
8 0 -80 -120 -120
9 25 -65 -110 -110

10 50 -50 -100 -100
11 44.99 -35 -90 -90
12 39.98 -20 -80 -80
13 34.97 -5 -70 -70
14 29.96 10 -60 -60
15 24.95 25 -50 -50
16 19.94 40 -40 -40
17 14.93 55 -30 -30
18 9.92 70 -20 -20
19 4.91 85 -10 -10
20 -0.1 100 0 -0.1
21 -5.11 94.99 10 -5.11
22 -10.12 89.98 20 -10.12
23 -15.13 84.97 30 -15.13
24 -20.14 79.96 40 -20.14
25 -25.15 74.95 50 -25.15
26 -30.16 69.94 60 -30.16
27 -35.17 64.93 70 -35.17
28 -40.18 59.92 80 -40.18
29 -45.19 54.91 90 -45.19
30 -50.2 49.9 100 -50.2
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Figure 5.2: Profit of Each Decision Under Different Probability Distributions
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By property 5.2.4, the optimal action mi
t does not depend on the Nature’s posteriori deci-

sions pti(x, a) and qti(x, a). Therefore, Theorem 5.2.1 applies easily.

We use this approach in order to improve the variance of the profit. By constructing a

fictitious uncertainty set around the probability distribution and selecting different δ values

different sub-optimal polices are obtained. These policies are then simulated with respect

to the actual probability distribution. In the next section we provide an example.

5.3 Numerical Example

In order to demonstrate our solution approach, we present the following example. Suppose

the main customer batch size is 100, arrival probability is 0.1 and reward is $10. The setup
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Figure 5.3: Revenue vs. Trade-Off Chart

cost k is $250, and c is $5 and the annual interest rate is 0.20. The batches coming from

the spot market has the arrival probability of 0.90 and the batch sizes can be any value

in the set (10, 20, 30, 40, 50) each having an equal probability. In order to reduce the

variability of the solution, we construct a fictitious set around this distribution and suppose

that arrival probability of the spot market classes changes between 0.18∓ 20%. The subop-

timal solutions obtained by selecting different δ values are then ranked according to their

average revenue and variance results. Please note that the coefficient of variation (standard

deviation/average revenue) of the profit in the nominal problem is 0.19.

The simulation is performed with 1000, 000 runs. Figure 5.3 depicts the trade off between

the variance and the simulated revenue.

The worst 10% cases out of 1000000 simulations in terms of profit are obtained for the

nominal policy. Then these cases are reevaluated by using the pure robust and S-robust

policies, i.e. a simulation is carried out for these instances with robust and S-robust poli-

cies. In the following figures, the difference between the average robust revenue and the

average nominal revenue are shown for each particular realization. Therefore, each point

corresponds to the difference of simulated revenue for that instance. In Figure 5.4, the

robust revenue − nominal revenue are given. When the worst 1000 realization of the

nominal policy are considered the 36.8% of these realizations are higher than the associated

result obtained by pure robust strategy. If the same comparison is performed between the
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Figure 5.4: Difference b/w pure robust and nominal strategies for worst 10% results

Figure 5.5: Difference b/w pure robust and nominal strategies for worst 10% results (δ =
0.49)

S− robust policy and the nominal policy the results are given in Figure 5.5, where 31.7% of

the results obtained by nominal policy performs better than the associated result obtained

by S − robust policy. These figures demonstrate that the robust policies perform better for

the worst case realizations. It is notable that the performance of the pure robust policy

with respect to nominal policy is superior for the worst case realizations.
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Chapter 6

REVENUE MANAGEMENT PROBLEMS WITH COMMITMENTS

6.1 Problem Definition

In this part, we consider a slightly different formulation of a revenue management problem.

We suppose that there are financial commitments such as sales targets and installment dues

in the horizon. A similar problem is first analyzed by Besbes and Maglaras [6] where they

propose a discrete-review policy and dynamically track the commitments. In our approach,

we track the provision of commitments but we employ a dynamic policy rather than a dis-

crete policy. We consider the installments whose due dates are set to equal intervals over

the horizon and whose amounts are equal to each other. However, our method can easily

be extended to a case where the intervals and installment amounts change over the horizon.

Although the emphasis of this thesis is a set of problems with structural characteristics, we

provide some numerical examples in order to demonstrate the usefulness of robust decision

making when the problem does not possess any structure for its optimal policy. Before

providing our examples, we first formulate the revenue management problem with periodic

installments. We compare the numerical results with the dynamic programming solution

and the approximate solution that is based on robust decision making.

As discussed in Chapter 4 the value function of the single-item inventory management

problem without replenishment and its robust counterpart is already given. The objective

function is to maximize the total expected profit. Let’s recall the classical formulation of

the problem:

vt(x) =

n∑
i=1

λi,tmax{Ri + vt+1(x− 1), vt+1(x)}+ λn+1,t(x)vt+1(x).

Please remember that vt(x) denotes the value function, x ∈ Z+ denotes the inventory status,
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i represents the customer class, Ri represents the associated reward of each customer class.

There is a total of n classes and n + 1 represents the fictitious class (class with 0 reward).

The total arrival probability together with the fictitious class is 1 and each arrival prob-

ability is represented with λi,t. The total horizon is T stages and t denotes the current stage.

Now suppose that the company has to pay an installment at certain stages. Hence, there

is an installment It for a given stage t. If the controller fails to pay the total installment

amount, then a positive penalty proportional to the unpaid amount is borne, i.e. suppose

the installment is $1000 and the current cash position is $900, then the cash position drops to

$−100 and after the introduction of the penalty (suppose 20%) the cash position is calculated

as $− 120, i.e. there is a penalty Pe for unsuccessful commitment. We introduce the cash

position as CP , installment as It and penalty ratio as pr into the dynamic programming

algorithm and formulate the dynamic programming algorithm as follows by treating the

fictitious event as a special customer class with 0 reward:

Now let’s define the following equations for penalties where A stands for admission and R

stands for rejection:

PeiA = 0 if CP +Ri − It > 0

PeiA = pr(CP +Ri − It) else

PeiR = 0 if CP − It > 0

PeiR = pr(CP − It) else.

If the controller admits any customer class at x, t the operator TvAi,t+1(x,CP ) is equal to:

TvAi,t+1(x,CP ) = Ri + PeiA − It + vt+1(CP +Ri + PeiA − It, x− 1).

Similarly, if the controller rejects any customer class at x, t the operator TvRi,t+1(x,CP ) is

equal to:

TvRi,t+1(x,CP ) = PeiR − It + vt+1(CP + PeiR − It, x).
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Last, the fictitious operator is a special type where a customer with zero reward is rejected.

Therefore, the value function is given in below equation:

vt(x,CP ) =

n∑
i=1

λi,tmax{TvAi,t+1(x,CP ), T vRi,t+1(x,CP )}+ (6.1)

λn+1,t(x)Tv
R
n+1,t+1(x,CP ),

with the following boundary condition for t = T :

Pe = 0 if CP − IT > 0

Pe = pr(CP − IT ) if CP − IT < 0

vT (x,CP ) = −IT − Pe.

Due the fact that the cash position CP is a continuous variable, the dynamic programming

equation given in Algorithm 6.1 cannot be solved exactly. Therefore, an appropriate dis-

cretization is selected for CP in order to compute the optimal policy. Moreover, there does

not appear to be simple structure that governs the optimal policy and it is possible to find

examples for the following argument:

Rejecting a customer at x does not necessitate rejecting a customer at x−1 for a given cash

position CP , i.e., there is not necessarily a threshold in terms of x at any stage at a given

cash position CP .

Consider the following example with two customers where the arrival probability vector is

p = (0.5, 0.5) and the reward vector is R = ($64, $16). Suppose that at every two stage

there is an installment of 32$ and at the initial stage there is no payment, the penalty ratio

pr = 1. Hence, if cash position is negative at the end of any stage, it is multiplied by 2.

In the initial stage when the inventory status x = 4 and the initial cash position is $ − 1

it is optimal to reject the second class customer (i.e. $16) on the contrary when inventory

status x = 3 (and the initial cash position is $− 1) it is optimal to accept the second class

customer.

We propose a myopic algorithm based on the classical dynamic programming formulation.

The algorithm is developed in two phases, in the first phase the optimal threshold policy

is obtained by using the dynamic programming equation given in Algorithm . In the sec-

ond phase, the policy is reevaluated based on the current cash position CP and the next

installment It+n at stage t where It+1 = ... = It+n−1 = 0.
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k = the lowest class accepted at state C, x (6.2)

isSurvive = false

do

if n

i=k∑
i=1

λi,tRi + C ≥ It+n

isSurvive = true

else k = k + 1

until isSurvive or k = n.

As clearly seen, the algorithm evaluates the sufficiency of the current policy and cash position

for satisfying the next installment. In order to determine this the optimal threshold of the

current inventory is checked and the lowest customer class that is admitted is obtained.

Then by assuming that the this thresholds are maintained till the installment due the average

collected reward is calculated. If the cash position CP is sufficient, i.e. n
∑i=k

i=1 λi,tRi+C ≥

It+n, then the optimal policy evaluated for the classical problem is applied otherwise the

optimal policy is updated according to the Algorithm 6.2. In the next section, we provide

some numerical examples in order to demonstrate the efficiency of the algorithm.

6.2 Numerical Illustrations

In order to assess the effectiveness of the algorithm we compare it with the semi-robust

approach on a sample problem whose parameters are given in below:
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Number of Stages 500

Starting Inventory 100

Number Of Installments 10

Installment Period Every 50 stages

Number of Customer Classes 5

Customer Rewards ($) (40, 38, 35, 33, 30)

Arrival Probability (0.10, 0.10, 0.10, 0.10, 0.10)

Absolute Robust Arrival Parameters (0.05, 0.05, 0.05, 0.05, 0.05)

Penalty ratio pr 0.01

Absolute robust arrival probabilities represent the lower bounds on the arrival probabilities.

The semi-robust approach is given in Chapter 3 and 4 and the best performing S-robust

policy is evaluated according to the method illustrated there. There are 10 installments

on every 50th stage and the installment is $350 in the first case and $380 in the second

case. The installment amounts are selected as approximately %90 and %98 of the optimal

expected revenue obtained by Equation 6.1. The dynamic programming algorithm given in

the Equation 6.1 can not solve the equation exactly since the cash position CP is a continu-

ous variable. For this reason, we solve only for integer cash positions between (−1200, 1200)

interval. The results are as follows:

1. When installment is $350 the results are as follows:

Optimal revenue obtained by DP algorithm 6.1 $380.47

Simulation result of the 6.1 $376.75

Simulation result of 6.2 $379.52

Simulation result of the best semi-robust solution $375.82

2. When installment is 380$ the results are as follows:

Optimal revenue obtained by DP algorithm 6.1 $76.78

Simulation result of the 6.1 $69.87

Simulation result of 6.2 $74.77

Simulation result of the best semi-robust solution $74.22

As it is seen, the myopic algorithm proposed in 6.2 performs better than the policy obtained
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Figure 6.1: Cash Position After Each $350 Installment Payment

Figure 6.2: Cash Position After Each $380 Installment Payment

by the dynamic programming equation given in 6.1. The reason is that the equation is not

exactly solved, rather it is solved for a discrete approximation values and the cash position

is rounded to the nearest discrete value during simulation. Semi-robust solution is compet-

itive to the 6.1 however at least 20 S-robust solutions have to evaluated in order to obtain

the best performing S-robust policy. In the following figures 6.1 and 6.2, the cash positions

at the end of each installment period are presented for both cases.

As it is seen Figures 6.1 and 6.2 the cash position in the semi-robust solution is the highest

in the early installment periods. As already explained in Chapter 4, the semi-robust solution

gradually decreases the acceptance thresholds. However, the proposed algorithm efficiently

mimics the dynamic programming algorithm given in Algorithm 6.1 and does not decrease
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the thresholds unless it is necessary.
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Chapter 7

CONCLUSION

In this thesis, we investigated the structural properties of the optimal policies of the robust

counterparts of some stochastic dynamic programming problems. In order to achieve this,

we explored the mathematical properties of the robust value function wt(x). By using a

general model of uncertainty representing the transition probabilities, we succeeded to show

that the mathematical properties of the robust value function wt(x) are inherited from the

classical counterpart. This result implies that the structure of the optimal policy that gov-

erns the system is also the same. We also elaborated on the perfect duality property and

effectively used this property in order to prove the independence of the optimal action from

Natures posteriori decisions. This enabled us to propose semi robust solutions with better

performance while maintaining computational tractability.

Imposing certain mathematical conditions on the uncertainty set enabled us to compare

the optimal polices with respect to the perturbations in the uncertainty set. By using an

interval uncertainty set, we showed that the optimal thresholds monotonically change when

the uncertainty set is enlarged. This is a powerful feature that enables to construct and

compare different policies systematically.

We provide some results for the cases where other problem parameters such as cost and

rewards are uncertain. We demonstrate that the robust dynamic problem does not have

a computationally tractable solution unless the problem parameters have certain properties.

Our research suggests some future areas of exploration. We provide some general knowledge

on optimal policies of the robust counterparts of multi dimensional problems. However,

there remains a lot of opportunity for this case. We also proposed to use S-robust approach

in order to improve the variance of the expected profit for a case where all of the problem
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parameters are known with certainty. Different techniques may be adopted and compared

for this purpose. Last, we demonstrated on a specific case that an approximate algorithm

inspired by other economical theories has a good performance.
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