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Prof. Serpil Sayın

Date:



To my family

iii



ABSTRACT

In this thesis, we consider two types of turbo equalization methods over the frequency

selective channels, robust linear turbo equalization methods and nonlinear turbo equaliza-

tion methods. We provide novel approaches for both of these methods, a minimax and a

competitive approaches for robust linear turbo equalization and a nonlinear adaptive turbo

equalization method using context trees.

First, robust linear turbo equalization is studied when there are uncertainties in the

channel parameters. The turbo equalization framework investigated in this part is con-

sisted of a linear equalizer to combat ISI and a trellis based decoder. Instead of completely

tuning the linear equalizer parameters to the available inaccurate channel information, we

develop a minimax and a competitive schemes, which incorporate the uncertainty in chan-

nel information to equalizer design in order to improve robustness. For both approaches,

the problem of obtaining the linear equalizer coefficients is posed as a semi-definite pro-

gramming (SDP) problem. Approximate implementations of these methods are presented

with reduced computational complexity. The performance improvement obtained by the

proposed algorithms are demonstrated through simulations under different scenarios.

In the second part, nonlinear turbo equalization is studied when the underlying com-

munication channel is not known at the receiver. In particular, adaptive nonlinear turbo

equalization is investigated in order to model the nonlinear dependency of the linear min-

imum mean square error (MSE) equalizer on the soft information from the decoder. To

achieve this, we introduced piecewise linear models based on context trees. The piecewise

linear models introduced can adaptively choose both the piecewise regions as well as the

linear equalizer coefficients in each region independently, with computational complexity

only in the order of a regular adaptive linear equalizer. Through simulations it is demon-

strated that this approach is guaranteed to asymptotically achieve the performance of the

best piecewise linear equalizer that can choose both its piecewise regions (from a class of

doubly exponential number of partitions) as well as its filter parameters based on observing
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the whole data in advance. We also quantify the MSE performance of the resulting algo-

rithm and demonstrate the convergence of its MSE to the MSE of the linear minimum MSE

estimator as the depth of the context tree and the data length increase.



ÖZETÇE

Bu tez çalışmasında, frekans seçici kanallar için iki tip turbo dengeleme yöntemi üzerinde

durulmaktadır: gürbüz doğrusal turbo dengeleme yöntemleri ve doğrusal olmayan turbo

dengeleme yöntemleri. Bu yöntemlerin her ikisi için yeni yöntemler, gürbüz lineer turbo

dengeleme yöntemleri icin minimax ve kompetitif yaklaşımlar, doğrusal olmayan turbo den-

geleme yöntemleri için ise bağlam ağacı bazlı uyarlanır doğrusal olmayan turbo dengeleme

yöntemi sunulmuştur.

İlk olarak, gürbüz doğrusal turbo dengeleme kanal parametrelerinde belirsizlikler varken

incelenmiştir. Bu bölümde incelenmiş olan turbo dengeleme çerçevesi, kafes tabanlı dekoder

ve semboller arası girişim (ISI) ile mücadele etmek için doğrusal dengeleyiciden oluşmuştur.

Doğrusal dengeleyici parametrelerini belirsiz kanal bilgilerine ayarlamak yerine, gürbüzlüğu

artırmak için dengeleyici probleminin formülasyonuna kanaldaki belirsizliği katarak mini-

max ve kompetitif yaklaşımları geliştirilmiştir. Her iki yaklaşımda, kanal parametrelerini

elde etme problemi SDP (Semi Definite Programming) problemine indirgenmiştir. Bu

yöntemlerin daha az hesap karmasıklıgı içeren yaklaşık uygulamaları da sunulmuştur. Farklı

senaryolar altında yapılan simülasyonlar ile önerilen algoritmalardaki performans artışı

gösterilmiştir.

İkinci bölümde ise alıcıda kanal bilgisi yokken doğrusal olmayan turbo dengeleme yöntemleri

ele alındı. Özellikle, uyarlanır doğrusal olmayan turbo dengeleme hatanın karesinin orta-

lamasının minimum değerinin (Minimum Mean Square Error (MMSE)) yumuşak bilgiye

olan doğrusal olmayan bağımlılığını modellemek amacıyla incelendi. Bunun için, bağlam

ağacı bazlı parçalı doğrusal modeller sunulmuştur. Önerilen parcalı doğrusal modeller

uyarlamalı olarak hem parcalı b”olgeleri hem de doğrusal dengeleyici katsayılarını bağımsız

olarak her bölgede seçebilir ve bu seçimi sadece doğrusal dengeleyici vektörünün uzunluğu

karmaşı klığı seviyesinde yapabilir. Simülasyonlar ile önerilen yaklaşımın performansının

en iyi parçalı doğrusal dengeleyiciye (iki misli üssel numaralı parçaların içinden) asimp-

totik olarak yakınsadığı gösterilmiştir. Buna ilaveten önerilen yöntemin derinlik ve data
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uzunluğu arttıkça MSE (Mean Square Error) değeri hesaplandı ve bu değerin MSE’sinin

doğrusal MMSE dengeleyicisinin MSE’sine yakınsadığı gösterildi.
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Chapter 1

INTRODUCTION

In data transmission, the main aim is to achieve reliable communications when sending

a data signal from one point to another over channels that exhibit some form of time

dispersion. The signal may be observed in the presence of noise and other interfering

signals, or it may be distorted due to propagation of the signal from its source to the

receiver. Primarily two problems emerge in transmitting a signal from one point to another

point, additive noise and inter-symbol interference (ISI). Channel coding and equalization

techniques can be used mitigate noise and ISI.

With the introduction of turbo-codes by Berrou et al [1] a considerable interest has

been attracted to the field of digital communications. Modern communication systems

are typically consisted of a concatenation of several systems, each optimized to perform

a single task. In the turbo-processing, an iterative exchange of information is established

between two subsystems of the receiver in order to improve the overall system performance.

In 1995, the turbo principle was applied to an equalizer by Douillard et al [6]. Turbo

equalization has drew lots of interest due to its impressive performance gains for communi-

cation equalization, i.e., those that suffer from inter symbol interference (ISI) [30]. Turbo

equalization combines equalization with channel decoding in an efficient manner and offers

significant gains with respect to the conventional approach where equalization and decoding

are realized independently. Turbo equalization enables to jointly and efficiently perform the

required equalization and decoding tasks at the receiver, by making use of the turbo prin-

ciple [1]. This leads to significant performance improvement with regard to conventional

disjoint equalization and decoding approaches.

This thesis is based on two papers [11, 12]. In this thesis, two types of robust turbo

equalization methods are studied over frequency selective communication channels with

inter-symbol interference (ISI), robust linear turbo equalization and nonlinear turbo equal-
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ization. Particular attention is devoted to the design of equalization methods when there are

inaccuracies in the channel parameters and when the channel is not known at the receiver.

1.1 Linear Turbo Equalization

Turbo equalization takes advantage of the concatenated code structure of the data path

that consists of an error-correcting code (ECC) implemented at the transmitter and the

convolutional structure of the communication channel perceived as a rate-1 convolutional

code [1]. Turbo equalization mimics the classical turbo decoding procedure for the turbo

codes, however, one of the intentional ECCs of the classical turbo coding framework is

replaced by the unintentional convolutional channel [30]. In the classical turbo equalization

framework, MAP or ML based techniques are used for both equalization as well as decoding.

However, in certain applications, using MAP or ML based equalizers for large alphabet

sizes or long ISI channel filters may be computationally infeasible, since these methods have

exponentially increasing complexity with respect to channel length or alphabet size [24]. The

MAP based decoders suffer similar computational problems for long convolutional encoding

filters.

Linear turbo equalization framework we investigate here is consisted of a linear equalizer

to combat ISI and a trellis based decoder. The framework of the linear turbo equalization

studied in this thesis, where the MAP equalizer is replaced by a linear equalizer is initially

studied in [8], where an LMS adaptive algorithm is used to train the linear equalizer pa-

rameters. Different extensions of this idea are further elaborated in [25,30]. Note that the

methods introduced in here can be used in conjunction with such adaptive algorithms since

usually the channel or system parameters cannot be learned perfectly by the adaptive algo-

rithms and the uncertainty in learning can be learned perfectly by the adaptive algorithms

and the uncertainty in learning can be incorporated in the equalizer design as in here. Along

the lines of [25], in [30], authors replaced the MAP equalizer with a linear equalizer or a

DFE, where the parameters of these filters are trained using the MMSE criteria. In [30],

the parameters of the system are trained assuming perfect knowledge of the channel im-

pulse response. In this thesis, we assume that the underlying communication channel is

not known exactly. We propose robust equalization methods in linear turbo equalization

framework and compare compare our results with the classical linear MMSE equalizer which
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is tuned to the inaccurate channel information and demonstrate through simulations that

the introduced algorithms provide better BERs in certain scenarios.

1.2 Nonlinear Turbo Equalization

Nonlinear turbo equalization framework studied in this thesis contains a nonlinear equalizer

to combat ISI and a trellis based decoder. A significant amount of research has focused on

linear MMSE equalization for known or estimated channel information [29, 30]. However,

linear MMSE turbo equalizers still have higher computational complexity (and require the

channel information or the estimate of the channel) than adaptive linear turbo equalizers

that use adaptive learning algorithms such as the recursive least squares (RLS) or least

mean squares (LMS), to train their coefficients [24,26,30]. Such computational load becomes

especially important in applications with long channel impulse responses [28].

In the context of linear equalization, several different equalization algorithms based on

different adaptation methods without channel estimation have been investigated, e.g. [8,19]

due to their relatively good performance with low computational complexity compared to

trellis based turbo equalizers. Even though such adaptive linear turbo equalizers may con-

verge to their ”‘optimal, i.e., Wiener, solution, they usually deliver inferior performance

compared to a linear MMSE turbo equalizer [2], since the Wiener solution is for the station-

arized problem, where the time-varying soft information is replaced by its time average [30].

The performance loss of these adaptive algorithms is due to their implicit use of the log

likelihood ratio (LLR) information from the decoder as stationary soft decision data [2],

whereas a linear MMSE turbo equalizer considers LLR information as nonstationary a pri-

ori statistics over the transmitted symbols [30]. Hence, the filter coefficients of the linear

MMSE turbo equalizer are time varying even for a time invariant channel since the a priori

LLRs at the output of the decoder are themselves time varying. However, the filter coeffi-

cients of an adaptive linear turbo equalizer, e.g., trained using the LMS update, converge

to one time-invariant steady state filter [2]. In order to mimic such nonlinear dependency of

the optimal MMSE turbo equalizer to the a priori LLRs and to improve the performance

of such direct adaptive equalizers, we propose nonlinear adaptive turbo equalizers that can

explicitly follow the time variation of the soft decision data.
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1.3 Contributions

The contributions of this thesis are as follows:

• In linear turbo equalization framework, robust equalization methods, namely minimax

and competitive approaches are introduced.

• A minimax approach is studied where the inaccuracies in channel estimation are in-

corporated in the problem formulation. Specific to the turbo equalization framework,

this setup, unlike [5], needs an adaptive bias term and convolutive structure, where

obtaining equalization parameters are formulated as a SDP problem. Approximate

implementation of this method is also presented with reduced computational com-

plexity.

• A competitive approach is studied where the cost function is defined with respect to

the performance of the best linear equalizer in MSE sense (which is unavailable). As

in the minimax case, unlike [14] and [5], this competitive setup has a bias term and a

convolutive structure that needs different formulation specific to the turbo equalization

framework. Obtaining equalization parameters that optimizes this competitive setup

is formulated as a SDP problem. Approximate implementation of this method is also

presented with reduced computational complexity.

• A nonlinear adaptive turbo equalization algorithm is introduced using context trees

in order to model the nonlinear dependency of the linear MMSE equalizer on the soft

information generated from the decoder.

• A proof is given to show that the introduced nonlinear turbo equalization algorithm

asymptotically achieves the performance of the best piecewise model defined on this

context tree with a computational complexity in the order of an ordinary linear equal-

izer.

• The convergence of the MSE of the CTW algorithm to the MSE of the linear MMSE

estimator is demonstrated as the depth of the context tree and the data length increase.
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1.4 Content

In Chapter 2, robust linear turbo equalization methods are studied [12]. In Section 2.1 the

basic setup for turbo equalization is described. We illustrate the proposed robust equaliza-

tion approaches in Section 2.3. First the linear MMSE equalization tuned to the inaccurate

channel filter is studied in order to introduce reduced complexity versions of the proposed

algorithms. Then, we investigate the minimax approach and the competitive approach,

and demonstrate that both problems can be cast as SDP problems. Simulation results to

illustrate the performance of the proposed algorithms are presented in Section 2.5. Finally,

the conclusions are given in Section 2.6.

In Chapter 3, nonlinear turbo equalization is investigated [11]. In Section 3.1, we in-

troduce the basic system description. The nonlinear equalizers studied are introduced in

Section 3.2. In Section 3.2.1, we first introduce a partitioned linear turbo equalization al-

gorithm, where the piecewise regions are fixed. We continue in Section 3.3 with the turbo

equalization framework using context trees. We also provide the MSE performance of all

the algorithms introduced and compare them to the MSE performance of the linear MMSE

equalizer. The numerical examples demonstrating the performance gains and the learning

mechanism of the algorithm are introduced in Section 3.4. The conclusions are given in

Section 3.5.

Finally in Chapter 4, we summarize this work and give concluding remarks.

1.5 Notations

Throughout this document, bold lowercase letters will denote vectors and bold uppercase

letters will denote matrices. All vectors are column vectors and l2-norm of a vector v is

defined as ‖v‖ =
√
vHv, where (·)T , (·)H and (·)+ represent transpose, conjugate transpose

and conjugation, respectively. The time index is shown in the subscripts. The operator E[.]

denotes the expectation operator. For notational simplicity, the expected value of a random

variable x is denoted as x̄ = E[x], and the expected value of a random vector x is x̄ = E[x].

The matrix I denotes the identity matrix of appropriate dimensions. The vector (or matrix)

0 represents a vector (or matrix) of zeros, where the dimensions are understood from the

context. Here, N (µ, σ2) denotes the Gaussian distribution with mean µ and variance σ2.
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The operator “∗” is the convolution operator. For a square matrix M, tr(M) is the trace.

The sequences are represented using curly brackets, e.g., {xt}.
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Chapter 2

ROBUST LINEAR TURBO EQUALIZATION UNDER CHANNEL

UNCERTAINTIES

In this chapter, we consider robust turbo equalization over communication channels with

inter-symbol interference (ISI) in the presence of channel uncertainties [12]. Turbo equaliza-

tion mimics the classical turbo decoding procedure for the turbo codes, however, one of the

intentional ECCs of the classical turbo coding framework is replaced by the “unintentional”

convolutional channel [30]. The parameters of this unintentional code are to be estimated

by the receiver. These “code parameters” are prone to estimation errors. The inaccuracies

in the channel parameters may be either due to imperfect channel estimation caused by

the limited training data, high energy noise, or due to the time variations of the chan-

nel parameters outside the training period which may be attributed to the time variations

in the channel or timing recovery problems. Our goal in this chapter is to present novel

turbo equalization approaches to achieve robustness against such potential uncertainties in

the estimated channel parameters. In particular, we show that through use of equalization

algorithms based on minimax and competitive [5,16] frameworks we can obtain turbo equal-

ization methods whose performance are less sensitive against the channel estimation errors

and better in terms of bit-error-rate (BER) over the plug-in methods in certain scenarios.

The methods introduced are set up by using certain MMSE criterion which incorporate

the channel inaccuracies in the problem formulation. In the first approach, we apply a

minimax framework where the linear equalizer coefficients are selected by minimizing the

MSE with respect to the worst possible channel around the inaccurate channel coefficients

[13,23]. Then, we extend this framework and define a relative performance measure between

the MSE of a linear equalizer and the MMSE of the linear MMSE equalizer calculated

with the correct knowledge of the underlying channel [5, 14, 16]. Note that this relative

performance measure defines our regret in using a linear equalizer that is not the correct

linear MMSE (which is not available). We then seek for a linear equalizer that minimizes this
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regret with respect to the worst possible channel around the inaccurate channel coefficients.

We show that the linear equalizers for both approaches can be found by solving a semi-

defininite programming (SDP) problem, which can be efficiently solved [3]. For certain

applications, as in the linear MMSE equalization setup, applying these approaches at each

time instant may require highly computationally complexity [30]. Hence, we also provide

approximate implementations of both methods with lower computational complexity.

The robust minimax approach to equalization problems under channel uncertainties is

studied in [5, 13, 23]. In [23], the uncertainty in the channel information is represented in

spectral domain as bounds on the phase and amplitude function of the unknown channel.

However, unlike in here where we explicitly provide the linear equalizer coefficients that are

robust in a minimax sense, no expressions for a linear equalizer satisfying the functional

forms of the phase and amplitude response are given in [23]. Although in [5, 13] the min-

imax method is used to incorporate the uncertainty in the channel into the equalization

problem, the framework, the application as well as the cost function definitions are different

in here. Furthermore, it is critical to note that, unlike in [5], the equalizers used in here

have bias terms specific to the turbo equalization framework, hence the minimax problem

needs different formulation and optimization. However, we use the similar SDP approach

with [5, 14] to solve the convex constraint convex optimization problems.

The competitive approach as an alternative to the minimax framework studied in here

has extensive roots in computational learning theory, information theory and signal pro-

cessing [15–17]. The competitive approach studied in here with a similar cost function is

introduced in [5] for linear estimation. However, the competitive framework of [5] con-

centrates on data estimation where the uncertainty is in the statistics of the desired and

noise signals. In here, because of the nature of the communication problem, the uncer-

tainty is in the communication channel; the statistics of the desired signal and the noise

are assumed to be known. Hence the competitive algorithms of [5] cannot be applied in

here. Furthermore, unlike [5], we specifically work with a constrained linear mapping, i.e.,

the convolutive channel, which requires different formulations in this study. We emphasize

that unlike in [14] or [5], the equalizers used in here have bias terms specific to the turbo

equalization framework, hence the competitive approach needs different formulation and

optimization.
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2.1 System Description of The Turbo Equalization

We first present the general turbo equalization scheme, where equalization and decoding

are performed in an iterative manner, by exchanging soft information at all stages of the

process. In Fig. 2.1, we provide the basic description of the communication system studied

in this chapter. Here, {at}, t = 1, . . . , na, at ∈ {0, 1}, is the transmitted signal. To incorpo-

rate redundancy in transmission, the input signal {at} is encoded by a convolutional code

producing {bt}, t = 1, . . . , nb. To further decrease the possible transmission errors, the en-

coded bits {bt} are interleaved using an S-random interleaver [7] to produce the interleaved

and coded bits {rt} where each successive bits are separated at least S bits apart. Finally,

the interleaved bits are modulated to produce channel symbols {xt}. Throughout the thesis
we assume BPSK signaling for notational simplicity when we need to specify a modulation

method. Note that for BPSK signaling xt = (−1)rt+1. However, the formulations for the

introduced equalization algorithms are applicable for complex modulated data. The modu-

lated sequence, {xt}, is transmitted through a discrete-time finite-length impulse response

channel {ft}, t = 0, 1, . . . ,M−1, represented by f
4
= [fM−1, . . . , f0]

T . Here, the transmitted

signal {xt} is assumed to be uncorrelated owing to the function of the interleaver. The

received signal yt is given by

yt
4
= xt ∗ ft + nt =

(
M−1∑

k=0

fkxt−k

)
+ nt,

where {nt} is the additive complex white Gaussian noise with zero mean and circular sym-

metric variance σ2
n. Note that the underlying channel impulse response vector is not accu-

rately known. An estimate of ft is provided as f̂t (which can be possibly time varying for

certain adaptive methods [10]). The uncertainty in the channel impulse response vector is

modeled by ‖f − f̃t‖ ≤ δ, δ ∈ R+, δ < ∞, where δ or a bound on δ is known. Note that

although the results provided here hold for time varying ft and δt, we have dropped the

time index from f and δ for notational simplicity. The received signal {yt} is then pro-

cessed by a turbo equalization system comprised of an equalizer and a decoder as shown in

Fig. 2.1. In this framework, the equalizer and decoder are considered as the inner decoder

and outer decoder, respectively, and an iterative decoding scheme is used at the receiver

of Fig. 2.1. The equalizer computes the a posteriori information using the received signal,



Chapter 2: Robust Linear Turbo Equalization Under Channel Uncertainties 10

∏ mapperencoder

∏
−1

∏

decoder
ty

ta
tr tx

tx̂

E

aLLR D

eLLR

D

aLLR

+

E

eLLR

−

+

−

tâ
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Figure 2.1: A basic turbo equalization framework with the transmitter, the channel and the
receiver. The receiver contains both the equalizer and the decoder parts.

transmitted signal estimate, channel convolution matrix (or an estimate of it) and a priori

probability of the transmitted signals. After subtracting the a priori information LLRE
a

and LLRE
a and de-interleaving the extrinsic information LLRE

e , a soft input soft output

(SISO) channel decoder computes the extrinsic information LLRD
e on coded bits, which are

fed back to the linear equalizer as a priori information LLRE
a after interleaving. The a

priori information from the decoder can be used to compute the mean and variance of the

xt as x̄t
4
= E[xt|{LLRE

a,t}] and qt
4
= E[x2t |{LLRE

a,t}] − x̄2t , respectively. As an example, for

BPSK signaling, the mean and variance are given as x̄t = tanh(LLRE
a,t/2) and qt = 1−|x̄t|2.

Hence, the equalizer in turbo equalization system has access to second order statistics of

{xt} in addition to {yt}. To mitigate ISI we use a linear equalizer. The estimate of the

desired data xt is modeled as follows

x̂t = cTt yt + lt + x̄t, (2.1)

where ct = [ct,N2
, . . . , ct,−N1

]T is length N = N1 + N2 + 1 linear equalizer, where N1

is the length of the anticausal part and N2 is the length of the causal part and yt
4
=

[yt−N2
, . . . , yt+N1

]T . It is important to note that in (3.1), the equalizer is “affine”, i.e., there
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is a bias term lt since the received signal yt is not zero mean and the mean sequence {ȳt} is

not known exactly due to uncertainty in the channel. The received data vector yt is given

by

yt = Fxt + nt,

where xt
4
= [xt−M−N2+1, . . . , xt+N1

]T and F ∈ CN×(N+M−1)

F
4
=




fM−1 fM−2 . . . f0 0 . . . 0

0 fM−1 fM−2 . . . f0 0 . . . 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 . . . 0 fM−1 fM−2 . . . f0




is the convolution matrix constructed by f = [fM−1, . . . , f0]
T . The estimate of xt can be

written as

x̂t = cTt Fxt + cTt nt + lt + x̄t (2.2)

or

x̂t = fTCtxt + cTt nt + lt + x̄t,

where Ct ∈ CM×(N+M−1) is the convolution matrix corresponding to ct and cTt F = fTCt.

If the linear MMSE equalizer is used as the linear equalizer, then the corresponding

equalizer coefficients can be found as [10]

ct = [vTQtF
H(σ2

nI+FQtF
H)−1]T = [σ−2

n vT (Q−1
t + σ−2

n FHF)−1FH ]T , (2.3)

lt = cTt Fx̄t, (2.4)

where x̄t = [x̄t−M−N2+1, . . . , x̄t+N1
]T , Qt

4
= E[(xt− x̄t)(xt− x̄t)

H ] is a diagonal matrix (due

to uncorrelatedness assumption on xt with diagonal entriesQt = diag ([qt−M−N2+1, . . . , qt, . . . , qt+N1
])

and v ∈ RN+M−1 is a vector of all zeros except the (M +N2)th entry is equal to 1. Then,

the corresponding linear MMSE is given by

min
c,l

E[‖xt − x̂t‖2] = vT
[
Qt −QtF

H(σ2
nI+ FQtF

H)−1FQt

]
v

= vT (Q−1
t + σ−2

n FHF)−1v. (2.5)
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To remove dependency of x̂t to LLR
E
a,t due to using x̄t and qt in (2.3) and (2.2), we set LLRE

a,t

to 0 while computing x̂t, yielding x̄t = 0 and qt = 1 [30]. This changes the covariance matrix

to Q
′

t
4
= Q+ (1− qt)vv

T and the mean of x̄t to x̄t − x̄tv, resulting in (2.2) and (2.3)

ct = [σ−2
n vT (Q

′−1

t + σ−2
n FHF)−1FH ]T and lt = cTt F(x̄t − x̄tv) (2.6)

x̂t = cTt yt + lt. (2.7)

Since, the underlying channel vector f is not accurately known at the receiver, but an

estimate f̃t, ‖f − f̃t‖ ≤ δ, δ ∈ R+, δ < ∞ is provided, one cannot directly calculate (2.6)

and (2.7).

In the next section, we investigate three methods: a method using the inaccurate f̃t

to calculate the linear MMSE equalizer in (2.7); a minimax equalizer and a competitive

equalizer that incorporate the uncertainty in the problem formulation to mitigate the effect

of uncertainty on the equalization performance.

2.2 Linear MMSE Equalization

When the underlying communication channel is not known accurately but an estimated

channel vector is provided f̃t, a straightforward approach to estimate filter coefficients is to

use MMSE estimate corresponding to the estimated channel vector f̃t. If one uses a linear

MMSE equalizer matched to the estimated channel vector f̃t instead of the channel f then

the equalizer coefficients are obtained as follows

c̃t = [vTQ
′

tF̃
H
t (σ2

nI+ F̃tQ
′

tF̃
H
t )−1]T = [σ−2

n vT (Q
′−1

t + σ−2
n F̃H

t F̃t)
−1F̃H

t ]T ,

l̃t = c̃Tt F̃tx̄t, (2.8)

where F̃t is the convolution matrix of the vector f̃t. Calculating c̃t using (2.8) at each time t

may be computationally infeasible for certain applications since (2.8) requires O
(
M2 +N2

)

operations (as shown in Table 2.1). With the assumption that the channel estimate is time

invariant, i.e., f̃t = f̃ , the computational complexity can be reduced by approximating the

covariance matrix Q
′

t.

As an example, (2.8) can be computed using Q
′

t = I, i.e., if unit variance and zero mean
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number of multiplications number of additions

MMSE (time variant), c̃t O(N2 +M2) O(N2 +M2)

MMSE (time invariant), c̃APP O(N +M) O(N +M)

Minimax (time variant), c̃MM
t O(N (N +M)7/2) O(N (N +M)7/2)

Minimax (time invariant), c̃MM,APP O(N +M) O(N +M)

Competitive (time variant), c̃CP
t O(N (N +M)7/2) O(N (N +M)7/2)

Competitive (time invariant), c̃CP,APP O(N +M) O(N +M)

Table 2.1: Number of required computations to implement the corresponding algorithms at
each time t per received symbol yt for large packet size. Here, N is the equalizer length, M
is the channel length.

is assumed for each xt, corresponding to a covariance matrix constructed without a priori

information on xt [30]. Then, (2.8) can be solved once and the resulting time invariant

linear equalizer can be used over the whole block of the received data in (2.3) and (2.4).

A better approximation can be achieved by computing (2.8) using Qt =
1
nx

(
∑nx

i=1 qi)I, i.e.,

using time averaged variances, yielding Q
′

t =
1
nx

(
∑nx

i=1 qi)I − (1 − qt)vv
T , where nx is the

size of the data block. By this approximation (2.8) yields

c̃APP
t = [vT F̃H(βF̃F̃H + σ2

nI+ (1− qt)F̃vv
T F̃H)−1]T

=
[vT F̃H(βF̃F̃H + σ2

nI)
−1]T

1 + (1− qt)vT F̃H(βF̃F̃H + σ2
nI)

−1F̃v
, (2.9)

where β
4
= 1

nx

∑nx

i=1 qi, (2.9) follows from matrix inversion lemma and F̃ is the convolution

matrix constructed by the time invariant channel estimate f̃ . Note that to get a time invari-

ant version of (2.9), a time invariant Q
′

t = I can be used assuming no apriori knowledge

on xt or Q
′

t = βI, i.e., without (1− qt)vv
T term. The linear equalizer with time invariant

approximation is given by

c̃APP = [βvT F̃H(σ2
nI+ F̃F̃H)−1]T (2.10)

= [σ−2
n vT (βI+ σ−2

n F̃HF̃)−1F̃H ]T .

The required number of computations at each time t, per received symbol yt, for c̃t and

c̃APP are listed in Table 2.1.
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2.3 Linear Equalization with A Minimax Formulation

To improve robustness over (2.8) one can incorporate the uncertainty in the channel es-

timate. In this minimax framework, the MSE performance is optimized with respect to

the worst possible communication channel around the channel estimate f̃t and the equalizer

coefficients are obtained by minimizing the worst case MSE, i.e.,

{c̃MM
t , l̃MM

t } = argmin
c,l

max
f=f̃t+df ,‖df‖≤δ

{
E[|xt − x̄t − cTyt − l|2]

}
. (2.11)

Note that

E[|xt − x̄t − cTyt − l|2] = E[|xt − x̄t − cTFxt − cTnt − l + cTFx̄t − cTFx̄t|2] (2.12)

= (v −FT c)HQ
′

t(v − FT c) + σ2
nc

Hc+ |l + cTFx̄t|2

= (v −CT f)HQ
′

t(v −CT f) + σ2
nc

Hc+ |l + fTCx̄t|2,

where C is the convolution matrix of c, the second line follows since nt is i.i.d. and (xt− x̄t)

has zero mean. To find the minimax equalizer coefficients {c̃MM
t , l̃MM

t } satisfying (2.11),the

corresponding problem is formulated in (2.11) as an SDP problem. Note that SDP problems

are convex constraint convex optimization problems, where efficient methods exist for their

solutions [3]. The following theorem, whose proof is given in Appendix A, provides the

corresponding robust linear equalizer while solving the corresponding SDP problem.

Theorem 1: Let {xt}, {yt} and {nt} represent the transmitted, received and noise se-

quences in Fig. 2.1 such that yt = ft ∗ xt + nt, where f = [fM−1, . . . , f0]
T is the unknown,

possibly time varying, channel impulse response vector and nt is zero mean. At each time t,

given an estimate f̃t of the underlying communication channel response vector f satisfying

f = f̃t + df , ‖df‖ ≤ δ, then the problem

minimize
c,l

maximize
f=f̃t+df ,‖df‖≤δ

[
(v −CT f)HQ

′

t(v −CT f) + σ2
nc

Hc+ |l + fTCx̄t|2
]
, (2.13)

where c = [cN2
, . . . , c−N1

]T and l are the coefficients of the linear equalizer, C is the con-

volution matrix generated from c, Q
′

t = Qt − (1 − qt)vv
T and E[ntn

H
t ] = σ2

nI are the

covariance matrices of the transmitted and noise sequences, respectively, is equivalent to
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the SDP problem

minimize
α,c,l,τ

α (2.14)

such that




α− τ cH (v −CT f̃t)
H (l + x̄T

t C
T f̃t)

H 0

c σ−2
n I 0 0 0

(v −CT f̃t) 0 Q
′−1
t 0 −δCT

(l + x̄T
t C

T f̃t) 0 0 1 δx̄T
t C

T

0 0 −δC+ δC+x̄+
t τI




≥ 0. (2.15)

The minimizer {c, l} in (2.14) yields the robust linear equalizer {c̃MM
t , l̃MM

t } in (2.11).

The proof of the theorem is provided in Appendix A. Note that in Theorem 1, for

notational simplicity, the time indices are dropped from f and δ. The same formulation

equally applies to time varying δ. To get the corresponding log-likelihood ratios, LLRE
e,t =

ln p(x̂t|xt=+1)
p(x̂t|xt=−1) , to fed into the decoder, assume that p(x̂t|xt = x) is a Gaussian distribution

with N
(
E[x̂t|xt = x],Cov(x̂t, x̂t|xt = x)

)
[30]. With the formulation x̂t = c̃

MM,T
t yt + l̃MM

t ,

one calculates E[x̂t|xt = x] and Cov(x̂t, x̂t|xt = x) as

E[x̂t|xt = x] = E[c̃MM,T
t yt + l̃MM

t |xt = x]

= c̃
MM,T
t F(x̄t − x̄tv + xv) + l̃MM

t , (2.16)

Cov(x̂t, x̂t|xt = x) = c̃
MM,T
t [σ2

nI+ F(Qt − qtvv
T )FT ]c̃MM

t . (2.17)

Since F is unknown, F̃t in (2.16) and (2.17) are used to calculate LLRE
e,t. As in (2.8) of

Section 2.2, the SDP problem in (2.14) should be solved at each time t to compute c̃MM
t

since Q
′

t and (possibly) f̃t are time dependent. Although there exists efficient methods

to solve the corresponding SDP problem presented in Theorem 1, using these methods for

each time instant t may be computationally infeasible in certain applications since these

calculations have O
(
N (N +M)7/2

)
computational complexity. To reduce computational

complexity, assuming a time invariant channel estimate f̃t = f̃ , one can use a time invariant

covariance matrix Q
′

t = I corresponding to a covariance matrix constructed without a

priori information on xt or Q
′

t = βI corresponding to time averaged variances. Note that
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unlike in Section 2.2, one can not directly use Q
′

t = βI− (1− qt)vv
T , since this formulation

is time dependent. Then, the corresponding SDP problem can be solved once to yield a

time invariant equalizer, which can be used over the whole block, i.e.,

minimize
α,c,l,τ

α (2.18)

such that




α− τ cH (v −CT f̃)H (l + x̄T
t C

T f̃)H 0

c σ−2
n I 0 0 0

(v −CT f̃) 0 βI 0 −δCT

(l + x̄T
t C

T f̃) 0 0 1 δx̄T
t C

T

0 0 −δC+ δC+x̄+
t τI




≥ 0.

The required number of computations at each time t, per received symbol yt, for c̃
MM
t and

c̃MM,APP are given in Table 2.1.

2.4 Linear Equalization With Competitive Algorithm Formulation

The minimax framework investigated in Section 2.3 to construct robust linear equalizers may

result in overly conservative solutions in certain applications, since the linear equalizers are

optimized to minimize the MSE corresponding to the worst possible channel. To improve the

equalization performance, while trying to preserve robustness, a competitive approach may

be used [5,14,16,17]. In this competitive framework, instead of the usual MSE performance,

the performance of a linear equalizer is defined with respect to the MMSE linear equalizer

tuned to the underlying unknown channel. For any affine equalizer coefficients {c, l}, the
regret defined as the difference between the MSE using a linear equalizer coefficients {c, l}
and the linear MMSE equalizer tuned to f is

E[|xt − x̄t − cTyt − l|2]−
(
min
w,r

E[|xt − x̄t −wTyt − r)|2]
)

=
[
(v −CT f)HQ

′

t(v −CT f) + σ2
nc

Hc+ |l + fTCx̄t|2
]
−
(
vT [Q

′−1

t + σ−2
n FHF]−1v

)
,

(2.19)
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where (2.12) and (2.5) are used in (2.19). However, to make the SDP problem formulation

tractable, instead of directly using (vT [Q
′−1
t + σ−2

n FHF]−1v) in the regret formulation of

(2.19), one can use a first order linear (Taylor) approximation around f̃t [14], given in

Appendix A, as

vT [Q
′−1

t + σ−2
n FHF]−1v = ηt + dfHgt

+ + gt
Tdf +O(‖df‖2),

where ηt
4
= vT [Q

′−1

t + σ−2
n F̃H

t F̃t]
−1v and gt

4
= −C̃t(Q

′

t + σ−2
n F̃H

t F̃t)
−1v and C̃t is the

convolution matrix constructed using c̃t in (2.8). Using this in (2.19) yields the regret as

[
(v −CT f)HQ

′

t(v −CT f) + σ2
nc

Hc+ |l + fTCx̄t|2
]
−
(
ηt + dfHgt

+ + gt
Tdf

)
, (2.20)

where the O(‖df‖2) term is left out. Note that the first order Taylor approximation is

introduced in order to make the solution of (2.19) in a minimax setting tractable. Clearly,

the effect of this approximation diminishes as ‖df‖ gets smaller. For distortions with larger

‖df‖, one can use the higher order Taylor approximations instead, however, we have ob-

served through our simulations that the solution using the first order approximation yields

satisfactory results even for fairly large ‖df‖ (when compared to ‖f‖).
To get the competitive linear equalizer, this regret is minimized over all possible com-

munication channels around the channel estimate f̃t, i.e.,

{c̃CP
t , l̃CP

t } = argmin
c,l

max
f=f̃t+df ,‖df‖≤δ

[
(v −CT f)HQ

′

t(v −CT f) + σ2
nc

Hc+ |l + fTCx̄t|2

− (ηt + dfHgt
+ + gt

Tdf)

]
. (2.21)

The problem in (2.21) that will yield the corresponding competitive linear equalizer can be

formulated as an SDP problem as follows.

Theorem 2: Let {xt}, {yt} and {nt} represent the transmitted, received and noise se-

quences in Fig. 2.1 such that yt = ft ∗ xt + nt, where f is the unknown, possibly time

varying, channel impulse response vector and nt is zero mean. At each time t, given an

estimate f̃t of the underlying communication channel impulse response vector f satisfying
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f = f̃t + df , ‖df‖ ≤ δ, then the problem

minimize
c,l

maximize
f=f̃t+df ,‖df‖≤δ

[
(v −CT f)HQ

′

t(v −CT f) + σ2
nc

Hc+ |l + fTCx̄t|2

− (ηt + dfHgt
+ + gt

Tdf)

]
(2.22)

where c = [cN2
, . . . , c−N1

]T and l are the coefficients of the linear equalizer, C is the convolu-

tion matrix generated from c, Q
′

t = Qt−(1−qt)vv
T and E[ntn

H
t ] = σ2

nI are the covariance

matrices of the transmitted and noise sequences, respectively, ηt = vT [Q
′−1

t +σ−2
n F̃H

t F̃t]
−1v,

gt = −C̃t(Q
′

t + σ−2
n F̃H

t F̃t)
−1v, and > 0, is equivalent to the SDP problem

minimize
α,c,l,τ

α (2.23)

such that




α+ ηt − τ cH (v −CT f̃t)
H (l + x̄T

t C
T f̃t)

H δgt
T

c σ−2
n I 0 0 0

(v −CT f̃t) 0 Q
′−1
t 0 −δCT

(l + x̄T
t C

T f̃t) 0 0 1 δx̄T
t C

T

δgt
+ 0 −δC+ δC+x̄+

t τI




≥ 0. (2.24)

The minimizer {c, l} in (2.23) yields the competitive linear equalizer coefficients {c̃CP
t , l̃CP

t }
in (2.21).

The proof of the theorem is provided in Appendix A. Note that in Theorem 2, for

notational ease, the time indices from f and δ are dropped. The same formulation equally

applies to time varying δ. Note that to get the corresponding LLRE
e,t, one needs to replace

{c̃MM
t , l̃MM

t } with {c̃CP
t , l̃CP

t } in (2.16) and (2.17).

The proof of the Theorem 2 is provided in Appendix A 5. Instead of solving the SDP

problem for all t, one can approximate the time varying correlation matrix Q
′

t with a time

invariant correlation matrix Q
′

t = I or Q
′

t = βI as in Section 2.4. Then, assuming a time

invariant channel estimate f̃ , the SDP problem in (2.23) can be solved only once. The

linear equalizer c̃CP,APP calculated under this approximation can then be used over the
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whole block of received data with the corresponding SDP problem formulation

minimize
α,c,l,τ

α (2.25)

such that




α+ η − τ cH (v −CT f̃)H (l + x̄T
t C

T f̃)H δgT

c σ−2
n I 0 0 0

(v −CT f̃) 0 βI 0 −δCT

(l + x̄T
t C

T f̃) 0 0 1 δx̄T
t C

T

δg+ 0 −δC+ δC+x̄+
t τI




≥ 0.

where η and g are computed using time invariant f̃ and Q
′
.

The required number of computations at each time t, per received symbol yt, for c̃CP
t

and c̃CP,APP are given in Table 2.1.

2.5 Simulations

In this section, we demonstrate the performance of the introduced algorithms under different

settings. For all examples, bits to be transmitted are encoded using a convolutional encoder

with a generator matrix

G =
[
1 0 D2; 1 D D2

]
.

An 8-random interleaver is used to shuffle the coded bits such that any consecutive bits

will have a minimum distance of 8 bits after interleaving [7]. The coded bits are BPSK

modulated. We use linear equalizers introduced in the text and a MAP based algorithm for

decoding [24,30].

For the initial experiments, the modulated bits are transmitted through the ISI channel

from [24] (Chapter 10)

f =
[
0.227 0.46 0.688 0.46 0.227

]T
(2.26)



Chapter 2: Robust Linear Turbo Equalization Under Channel Uncertainties 20

with ||f || = 1, M = 5 and the noise variance σ2
n is determined by

SNR =
E[||xt||2]

N0
=

1

2σ2
n

.

The channel estimates are constructed using f̃ = f+df , where the distortion df is randomly

generated using a zero mean Gaussian distribution. In the first set of experiments, the norm

of df is randomly scaled to give |df | ≤ 0.3 for each trial, the length of {xt} is selected as

2048 and SNR = 15dB. For all equalizers N = 15, N1 = 7 and N2 = 7. In Fig. 2.2a, we

plot the sorted MSEs, i.e., E[‖xt− x̂t‖2], at the equalizer output for the first iteration of the

turbo equalization with respect to 100 randomly selected df ’s. Here, we have c̃t from (2.8)

labeled “mmse”, c̃MM from (2.11) labeled “minimax” and c̃CP from (2.21) labeled “regret”.

For the same algorithms, we also plot the sorted BERs at the decoder output with respect

to randomly selected df ’s in Fig. 2.2b. We observe that, as expected, the worst case MSE

under channel distortion is minimized for the “minimax” algorithm. The same behavior is

observed in BER plot in Fig. 2.2b. However, although the “minimax” algorithm has the best

worst case performance, its average performance over randomly selected channel distortions

is worse than the “regret” and the “mmse” algorithms: the worst case and the average

BERs for the “mmse” algorithm are 0.3542 and 0.0748, respectively; for the “minimax”

algorithm are 0.1194 and 0.0847, respectively; for the “regret” algorithm are 0.2798 and

0.0229, respectively. Note that the worst case BER performance of the “regret” approach is

worse than the “minimax” method but better than the plug-in MMSE. However, the average

BER of the competitive approach is better than the “minimax” method and worse than

the “mmse” algorithm. Hence, for these simulations, the competitive approach provides a

fair trade-off between the worst case performance and the average case performance. We

then plot the corresponding sorted BERs for the second and fourth iterations of turbo

equalization. We observe similar results for the second and fourth iterations in Fig. 2.2c

and Fig. 2.2d, respectively, such that the robust methods significantly outperform the plug-

in “mmse” method for these simulations. We note that the performance improvement due

to the robust methods becomes more noticeable as the turbo iteration count increases. We

observe that since the “minimax” method is able to minimize the worst case performance,

it is able to further minimize the BERs (forcing them to zero) as iteration count increases

for all random distortions in these simulations.
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In the next set of experiments, we simulate the performance of the introduced algorithms

under different SNRs values over the channel in (2.26). However, since the channel estimates

usually deteriorate with low SNR [26], we scale the bound for the norm of df inversely

proportional to SNR to give ‖df‖ ≤ 0.4 for SNR = 0(dB) and ‖df‖ ≤ 0.3 for SNR = 6(dB),

i.e., ‖df‖ ≤ 0.4 − 0.1 SNR/6 (based on some empirical values). For these simulations, at

each SNR, BERs are averaged over 100 random df and random {xt} with packet length

2048. In Fig. 2.3a, we present average BERs corresponding to the linear equalizers c̃t from

(2.8) labeled “mmse”, c̃MM
t from (2.11) labeled “minimax” and c̃CP

t from (2.21) labeled

“regret”. We present BERs for the first iteration (the straight lines), the second iteration

(dashed lines) and the fourth iteration (the dotted lines). We observe that although the

robust algorithms are “optimized” with respect to the worst case MSE or to the worst case

regret, their average performance is comparable and in certain SNRs much better than

the plug-in method. We next repeat the same set of experiments over a different channel

from [24]

f =
[
0.407 0.815 0.407

]T
. (2.27)

For these simulations, we run the experiments over 200 randomly selected channel distortions

with packet length 4096. For this three tap channel, we choose N = 7, N1 = 3 and N2 = 3.

The other system parameters are set to the same values as in the first set of experiments. As

in the previous example, we scale the norm of randomly generated df inversely proportional

to SNR such that ‖df‖ ≤ 0.4 for SNR = 0(dB) and ‖df‖ ≤ 0.3 for SNR = 6(dB), i.e.,

‖df‖ ≤ 0.4 − 0.1 SNR/6. The BERs with respect to different SNRs are plotted in 2.3b.

Note that since this channel introduces less severe ISI than (2.26), the BERs are better than

the first channel. We observe similar behavior as in Fig. 2.3a such that the robust methods

provide comparable or better BERs with respect to the plug-in method.

We next repeat the previous experiments with the same channels and the same system

parameters to test the performance of the approximate implementations. In Fig. 2.4a and

2.4b, we plot the BERs with respect to different SNRs over the channels from (2.26) and

from (2.27), respectively, for algorithms with low computational complexity: c̃APP from

(2.10) labeled “mmse”, c̃MM,APP from (2.18) labeled “minimax” and c̃CP,APP from (2.25)

labeled “regret”. For all equalizers, we use Q
′

t = I. We present BERs corresponding to

the first iteration (the straight lines), the second iteration (dashed lines) and the fourth
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iteration (the dotted lines). Although, as expected, the performance of the approximate

implementations are inferior to exact implementations, we observe that the “regret” and

“minimax” algorithms provide similar or better BERs with respect to the time invariant

plug-in MMSE equalization algorithm for these simulations.

2.6 Conclusions

In this chapter, robust linear Turbo equalization problem is investigated when the coeffi-

cients of the underlying discrete time communication channel are not accurately known. A

minimax approach and a competitive approach are studied in the design of the equalizer

where the uncertainty in the channel coefficients are incorporated and a certain MSE opti-

mality criterion is used in the problem formulation. For both approaches, the linear equalizer

coefficients are found by solving the corresponding SDP problems. We observed through

simulations that the introduced methods improve over the plug-in MMSE estimators for

our examples under different distortions and SNRs.
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Figure 2.2: Equalization results for the channel in (2.26) for 100 randomly introduced
distortions with |df | ≤ 0.3. Here, SNR=15dB. Included algorithms are c̃t from (2.8) labeled
“mmse”, c̃MM

t from (2.11) labeled “minimax” and c̃CP
t from (2.21) labeled “regret”. (a)

Sorted MSEs for the 1st iteration. (b) Sorted BERs for the 1st iteration. (c) Sorted BERs
for the 2nd iteration. (d) Sorted BERs for the 3rd iteration.
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Figure 2.3: Equalization results and average BERs for BPSK signaling under different SNRs.
Included algorithms are c̃t from (2.8) labeled “mmse”, c̃MM

t from (2.11) labeled “minimax”
and c̃CP

t from (2.21) labeled “regret”. Here, the first iteration (the straight lines), the
second iteration (dashed lines) and the fourth iteration (the dotted lines). (a) Results for
the channel in (2.26) (b) Results for the channel in (2.27).
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Figure 2.4: Approximate equalization algorithms and average BERs. Included algorithms
are c̃APP from (2.8) labeled “mmse”, c̃MM,APP from (2.18) labeled “minimax” and c̃CP,APP

from (2.25) labeled “regret”. Here, the first iteration (the straight lines), the second iteration
(dashed lines) and the fourth iteration (the dotted lines). (a) Results for the channel in
(2.26) (b) Results for the channel in (2.27).
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Chapter 3

NONLINEAR TURBO EQUALIZATION

In this chapter, we consider turbo equalization [6] when the underlying communication

channel is not known at the receiver. In particular, we investigate adaptive nonlinear

turbo equalization in order to model the nonlinear dependency of the optimal linear MMSE

equalizer with priors on the soft information from the decoder [11, 30]. To achieve this we

introduce piecewise linear models based on context trees [31] that partition the space of

variances calculated from the soft information. The nonlinear algorithm we introduce can

adaptively choose the piecewise regions as well as the linear equalizer coefficients in each

region with computational complexity only in the order of a regular adaptive linear equalizer

[24]. We demonstrate that the resulting nonlinear equalizer is guaranteed to asymptotically

(and uniformly) achieve the performance of the best piecewise linear equalizer that can

choose both its piecewise regions (from a class of doubly exponential number of partitions)

as well as the filter parameters in these regions based on the underlying signal. We also

quantify the MSE of this equalizer and demonstrate the convergence of its MSE to the MSE

of the linear MMSE estimator as the depth of the context tree and data length increase.

We propose a novel adaptive turbo equalization framework where the nonlinear depen-

dence of the linear MMSE turbo equalization on the soft information from the decoder

are modeled using piecewise linear models by partitioning the space of variances calculated

from the soft information into disjoint regions. By this approach, we view the time-varying

nature of the MMSE-optimal filter as a time-invariant, but spatially-varying filter, over the

space of a priori LLRs from the decoder. However, instead of directly learning (or ap-

proximating) the nonlinear relation through fixed piecewise partitioning of the space of soft

information, we use context trees to adaptively learn both the optimal partitioning of the

space as well as the filter coefficients for each region. In the context of nonlinear prediction,

context trees are used to represent piecewise linear models by partitioning the space of past

regressors [16], specifically for labeling the past observations. Note that although we use



Chapter 3: Nonlinear Turbo Equalization 27

∏ MapperEncoder

∏−1

∏

Decoder

tf

tw

+
−

ty

tb tc
tx

tx̂

E
aLLR D

eLLR

D
aLLR

+

E
eLLR

−

tx

+

−

tb̂

Figure 3.1: The block diagram for a bit interleaved coded modulation transmitter and
receiver with a linear turbo equalizer.

the notion of context trees for nonlinear modeling as in [9, 17,31], our results and usage of

context trees differ from [9,17,31], in a number of important ways. We emphasize that the

context trees used here are specifically used to represent the nonlinear dependence of equal-

izer coefficients on the soft information. In this sense, as an example, the time adaptation

is mainly (in addition to learning) due to the time variation of the soft information coming

from the decoder. Hence, in here, we explicitly calculate the MSE performance and quantify

the difference between the MSE of the context tree algorithm and the MSE of the linear

MMSE equalizer, which is the main objective. We also quantify the difference between the

MSE performances of the introduced adaptive piecewise modeling and the optimal linear

MMSE turbo equalization.

3.1 System Description

The basic communication system studied in this chapter is illustrated in Fig. 3.1. The

transmitted information bits {bt} are first encoded using an error correcting code (ECC)

and then encoded bits are interleaved producing {ct}. The interleaved coded bits {ct} are

transmitted after modulation. For notational simplicity we assume BPSK signaling. The

symbols x(t) = (−1)c(t) are transmitted through a baseband discrete-time channel with fini-
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tle length impulse response {h(t)}, t = 0, 1, . . . ,M −1, represented by h
4
= [hM−1, . . . , h0]

T .

Note that the underlying communication channel h is unknown. The transmitted signal is

assumed as uncorrelated due to interleaver. The received signal y(t) is given in the following

formula:

y(t)
4
=

(
M−1∑

k=0

h(k)x(t− k)

)
+ n(t),

where {n(t)} is the additive complex white Gaussian noise with zero mean and circular

symmetric variance σ2
n.

If a linear equalizer is used to mitigate the ISI, then the estimate of the desired data

x(t) using the received data y(t) is

x̂t = wT
t [y(t)− ȳ(t)] + x̄(t), (3.1)

where w(t) = [w(t,N2), . . . , w(t,−N1)]
T with length N = N1 + N2 + 1 linear equalizer,

where N1 is the length of the anticausal part and N2 is the length of the causal part and

the received data vectory(t)
4
= [y(t−N2), . . . , y(t+N1)]

T is given by

y(t) = Hx(t) + n(t),

where x(t)
4
= [x(t−M −N2 + 1), . . . , x(t+N1)]

T and H ∈ CN×(N+M−1)

F
4
=




h(M − 1) h(M − 2) . . . h(0) 0 . . . 0

0 h(M − 1) h(M − 2) . . . h(0) 0 . . . 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 . . . 0 h(M − 1) h(M − 2) . . . h(0)




is the convolution matrix corresponding to h = [h(M − 1), . . . , h(0)]T . The estimate of x(t)

can be written as

x̂(t) = wT (t)[y(t)−Hx̄(t)]x̄(t),

given that the mean of the transmitted data is known.

If one uses the linear MMSE equalizer as the linear equalizer, the mean and the variance

of x(t) are required to calculate w(t) and x̂(t). The mean and the variance of the transmit-
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ted signal are computed as x̄(t) = E[x(t)|LLRE
a (t)], and q(t) = E[x2(t)|LLRE

a (t)] − x̄2(t)

respectively using the a priori information from the decoder. For BPSK modulation

x̄(t) = tanh(LLRE
a (t)/2) and q(t) = 1 − |x̄(t)|2. Then, the linear MMSE equalizer is

given by

w(t) = [vH(σ2
nI+HrQ(t)HH

r + vvH)−1]T , (3.2)

where Q(t) ∈ CN+M−2 is a diagonal matrix (due to uncorrelatedness assumption on xt)

with diagonal entries Q(t) = diag ([q(t−M −N2 + 1), . . . , q(t), . . . , q(t+N1)]) and v ∈ CN

is the (M +N2)th column of H, Hr is the reduced form of H where (M +N2)th column is

removed.

The linear MMSE equalizer is a nonlinear function of the variances of the transmitted

signal, i.e.,

w(t) = W (q)
4
= [vH(σ2

nI+Hrdiag(q)H
H
r + vvH)−1]T , (3.3)

W (.) : CN+M−2 → CN and time variation in 3.3 is due to the time variation in the vector

of variances q, i.e., w(t) = W (q(t)). Here we assume h is time invariant.

The linear MMSE equalizer in (3.1) yields

x̂t = wT (t)[y(t)−Hx̄(t)]

= wT (t)y(t)− fT x̄(t) (3.4)

where f(t)
4
= HTw(t). Equation 3.4 shows that linear MMSE equalizer can be decomposed

into a feedforward filter w(t) on y(t) and a feedback filter f(t) on ¯x(t). Both of these filters

are nonlinear functions of q, i.e., w = W (q) and f = F (q)
4
= HTW (q), F (.) : CN+M−2 →

CN+M−1. To learn feedforward and feedback filters we use piecewise linear models based

on vector quantization and context trees.

The space spanned by q is partitioned into piecewise disjoint regions and a separate

linear model is trained for each region to approximate functions W (q) and F (q) using

piecewise linear models.

If the channel is not known, the corresponding equalizers in 3.4 can be directly trained

by using adaptive algorithms such as in [8], [2] without channel estimation or piecewise
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constant partitioning which is studied in this chapter. In this case, one directly applies

the adaptive algorithms to feedforward and feedback filters using the received data {yt}
and the mean vector x̄(t) as feedback without considering the soft decisions as a priori

probabilities. Assuming stationarity of x̄(t), such an adaptive feedforward and feedback

filters have Wiener solutions [2]

w(t) = [vH(σ2
nI+Hrdiag(q)H

H
r + vvH)−1]T , (3.5)

f = HTw.

If PSK modulation is adopted such that E[|x(t)|2|{LLRE
a (t)}] = 1, the filter coefficients in

(3.5) is equal the the MMSE equalizer in [30] with time averaged soft information.

In the next section, piecewise linear equalizers are introduced in order to approximate

W (.) and F (.). First, adaptive piecewise linear equalizers with a fixed partition of CN+M−2

(where q ∈ CN+M−2) are presented. Then, adaptive piecewise linear equalizers using

context trees are introduced that can also learn the best partition from a large class of

possible partitions of CN+M−2.

3.2 Nonlinear Turbo Equalization Using Piecewise Linear Models

In this section, our aim is to construct piecewise linear equalizer to approximate w = W (q)

and f = F (q). In order to achieve this, first, we divide the space spanned by q ∈ [0, 1]N+M−2

into disjoint regions Vk, e.g., [0, 1]
N+M−2 = ∪K

k=1Vk for some K and train an independent

linear equalizer in each region Vk to obtain a final piecewise linear equalizer. For each region

Vk, k = 1, . . . ,K, a time varying linear equalizer is assigned to each region as wk(t), fk(t).

At each time t, if q(t) ∈ Vk, the estimate of the transmitted signal is computed as

x̂k(t)
4
= wT

k (t)[y(t)− fTk (t)x̄(t)]

x̂(t) = x̂k(t). (3.6)

If K is large and the regions are dense such that W (q) and F (q) can be considered as

constant in Vk, say equal to W (qk) and F (qk) respectively, for some qk ∈ Vk then if the

adaptive method used in each region converges successfully, this implies wk(t) → W (qk)
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and fk(t) → F (qk) as t → ∞. If these regions are dense and there is enough data to learn the

corresponding filter coefficients in each region, then the piecewise model can approximate

any smoothly varying W (q) and F (q) [22]. In the following, we first introduce a method to

choose the corresponding piecewise regions and then provide adaptive algorithms to train

the corresponding piecewise linear models in each region to approximate W () and F ().

We also quantify the corresponding approximation error in convergence due to using such

adaptive piecewise linear filters to learn the corresponding highly nonlinear functions instead

of directly using the linear MMSE filter (which is not available).

3.2.1 Piecewise Region Choosing and Linear Modeling

In this section, we introduce a method to choose the corresponding piecewise regions

V1, . . . , VK . We apply a vector quantization (VQ) algorithm to the sequence of {q(t)},
such as the LBG VQ algorithm [?]. For VQ algorithm the centroids of the clusters are

calculated as

q̃k
4
=

∑
t,q(t)∈Vk

q(t)
∑

t,q(t)∈Vk
1

, (3.7)

Vk
4
= {q : ||q− q̃k|| ≤ ||q− q̃j ||, j = 1, . . . ,K, j 6= k}. (3.8)

We emphasize that we use a VQ algorithm on {q(t)} to construct the corresponding piece-

wise regions in order to concentrate on q vectors that are in {q(t)} since W (.) and F (.)

should only be learned around q ∈ {q(t)}, not for all CN+M−2. After the regions are

selected using VQ algorithm, one can calculate the estimate of x(t) at each time t as follows

x̂(t) = x̂i(t) if i = arg mink||q− q̃k||. (3.9)

Then, the corresponding filters in each region can be trained by an adaptive method.

In Table 3.1, we introduce a sequential piecewise linear equalizer that uses the LMS

update to train its equalizer filters. One can also use different update methods instead of

the LMS update, such as RLS or NLMS [26].

In the pseudocode, the iteration numbers are displayed as superscripts, e.g., w
(m)
i , f

(m)
i

are the feedforward filter and feedback filter for the mth iteration corresponding to the ith
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Table 3.1: A piecewise linear equalizer for turbo equalization. This algorithm requires
O(M +N) computations.

A Pseudo-code of Piecewise Linear Turbo Equalizer:
%1st iteration:
for t = 1, . . . , n:

x̂(t) = w(1)T (t)y(t),
if t ≤ T : e(t) = x(t)− x̂(t), elseif t > T : e(t) = Q(x̂(t))− x̂(t), Q() is a quantizer.
w(1)(t+ 1) = w(1)(t) + µe(t)y(t).

calculate q(t) using the SISO decoder for t > T .
% 2nd iteration:

apply LBG VQ [21] algorithm to q(t)t>T to generate q̃
(2)
k , k = 1, . . . ,K.

for k = 1, . . . ,K: w
(2)
k (0) = w(1)(n), where w(1)(n) is from 1st iteration. (line A)

for t = 1, . . . , T :
for k = 1, . . . ,K:

ek(t) = x(t) − w
(2)T
k (t)y(t)− f

(2)T
k (t)[I− diag(q̃

(2)
k )]1/2x(t), (line B)

w
(2)
k (t+ 1) = w

(2)
k (t) + µek(t)y(t),

f
(2)
k (t+ 1) = f

(2)
k (t) + µek(t)[I − diag(q̃

(2)
k )]1/2x(t).

for t = T + 1, . . . , n:
i = argmink||q(t)− q̃(2)||,
x̂(t) = w

(2)T
i (t)y(t)− f

(2)T
i (t)x̄(t),

e(t) = Q(x̂(t)) − x̂(t),

w(2)i(t+ 1) = w
(2)
i (t) + µe(t)y(t), f

(2)
i (t+ 1) = f

(2)
i (t) + µe(t)x̄(t).

calculate q(t)t>T using the SISO decoder.
% mth iteration:

apply LBG VQ algorithm to q(t)t>T to generate q̃
(m)
k , k = 1, . . . ,K.

for k = 1, . . . ,K:

w
(m)
k (0) = w

(m−1)
j (n), f

(m)
k (0) = f

(m−1)
j (n), where j = argmini||q̃(m)

k − q̃
(m−1)
i ||. (line C)

for t = 1, . . . , T :
for k = 1, . . . ,K:

ek(t) = x(t)− w
(m)T
k (t)y(t)− f

(m)T
k (t)[I − diag(q̃k)]

1/2x(t),

w
(m)
k (t+ 1) = w

(m)
k (t) + µek(t)y(t), f

(m)
k (t+ 1) = f

(m)
k (t) + µek(t)[I − diag(q̃

(m)
k )]1/2x(t).

for t = T + 1, . . . , n,

i = argmink||q(t)− q̃
(m)
k ||,

x̂(t) = w
(m)T
i (t)y(t)− f

(m)T
i (t)x̄(t),

e(t) = Q(x̂(t)) − x̂(t),

w
(m)
i (t+ 1) = w

(m)
i (t) + µe(t)y(t), f

(m)
i (t+ 1) = f

(m)
i (t) + µe(t)x̄(t).

calculate q(t)t>T using the SISO decoder.
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region, respectively. µ is the step size of the LMS updates. The size of the training data

is denoted as T . After the training data is used, the adaptive methods work in decision

directed (DD) mode [26]. In the first iteration, since there is no a priori probabilities only

the feedforward filter w(t) is trained, i.e., x̂(t) = wT (t)y(t) without any piecewise regions

or mean vectors. The feedforward filter w(t) trained on y(t) without a priori probabilities

converges to [2] (assuming zero variance in convergence)

w(t) → w0
4
= [vH(σ2

nI+HrH
H
r + vvH)−1]T ast → ∞, (3.10)

which is linear MMSE feedforward filter in (3.2) with Q(t) = I.

After the first iteration, {q(t)} becomes available. To get the centroids of the K regions

we apply VQ algorithm. Then, for each region k, we train feedforward and feedback filters by

LMS algorithm and construct the estimated data as in (3.6). In the beginning of the second

iteration, that is, in line A, each feedforward filter is initialized by the feedforward filter

trained in the first iteration. Furthermore, although the linear equalizers should have the

formwT
k (t)y(t)−fTk x̄(t), since we have the correct x(t) in the training mode for t = 1, . . . , T ,

the algorithms are trained usingwT
k (t)y(t)−fTk [I−diag(q̃k)]

1/2x̄(t) in line B, to incorporate

the uncertainty during training [18]. After the second iteration, in the beginning of each

iteration, in line C, the linear equalizers in each region, say k, are initialized using the filters

trained in the previous iteration that are closest to the kth region, i.e.,

j = argmini||q̃m
k − q̃

(m−1)
i ||,

w
(m)
k (0) = w

(m−1)
j (n)

f
(m)
k (0) = f

(m−1)
j (n). (3.11)

For each region k, a separate linear equalizer is trained using the part of the data {x(t)}
which belongs to Vk, i.e., using x(t)s with q(t) as the closest vector to q̃k(t). Hence, assuming

large K with dense regions we have q(t) ≈ q̃k if q(t) ∈ Vk.

For each region k we want to find the limiting vector for the linear filters as a result of
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LMS training as t → ∞. Since

E{[x(t)− x̄(t)][x(t)− x̄(t)]H |q(t) = q̃k}

= E{[x(t)− x̄(t)][x(t)− x̄(t)]H |{LLRE
a (t)},q(t) = q̃k}|q(t) = q̃k}

= diag{[q̃k(1), . . . , q̃k(M +N2 − 1), 1, q̃k(M +N2), . . . , q̃k(M +N − 2)]}

assuming stationarity on x̄(t). Then for each region k

wk(t) → wk,0
4
= [vH(σ2

nI+HrQ̃kH
H
r + vvH)−1]T , t → ∞

fk(t) → fk,0
4
= HTwk,0, t → ∞, (3.12)

where Q̃k
4
= diag(q̃k), assuming zero variance in convergence. Hence, at each time t, the

difference between the MSE of the equalizer in (3.12) and the MSE of the linear MMSE

equalizer in (3.2) is given by

||wT
k,0HrQ(t)HH

r w∗
k,0+σ2

nw
T
k,0w

∗
k,0−[1−vH(σ2

nI+HrQ(t)HH
r +vvH)−1v]|| ≤ O(||q(t)−q̃k||),

(3.13)

as shown in Appendix B. As the number of regions K increases ||q(t) − q̃k|| → 0, the

MSE of the converged adaptive filter accurately approximates the MSE of the linear MMSE

equalizer.

Note that in the pseudocode, the partition of the space q ∈ [0, 1]N+M−2 is fixed i.e.,

piecewise regions are fixed in the start of the equalization after the VQ algorithm, and

we sequentially learn a different linear equalizer for each region. Since the equalizers are

sequentially learned with a limited amount of data, this may cause training problems if

there is not enough data in each region to train on. Even if K is increased to increase

the approximation power, if there is not enough data to learn the linear equalizers for

each region, this may penalize the performance. To mitigate this, one can use a piecewise

model with smaller K in the beginning of the learning and gradually increase the number of

regions K if enough data is available. In the next section, the context tree weighting method

is introduced which intrinsically applies such weighting among different piecewise models

based on the performance of each region, hence, allowing the boundaries of the piecewise

regions to be design parameters.
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Figure 3.2: A full binary context tree with depth, D = 2, with 4 leaves. The leaves of this
binary tree partitions [0, 1]2, i.e., [q(t− 1) q(t+ 1)] ∈ [0, 1]2, into 4 disjoint regions.

3.3 Piecewise Linear Turbo Equalization Using Context Trees

In this section, we present a binary context tree to partition the space [0, 1]N+M−2 into

disjoint regions. Our aim is to construct piecewise linear equalizer which can choose both

the piecewise regions as well as the equalizer coefficients in these regions based on the

equalization performance. Fig. 3.2 shows a binary context tree of depth D = 2 with 4

leaves. Starting from the root node which is shown with dark square, we have left and a

right child. Each left and right hand child have their own left and right hand children. Each

internal node on this tree represents a region which is the union of regions assigned to its

children. At the end, this branching yields a binary tree of depth D with a total of 2D+1−1

nodes including the leaves at depth D.

On a binary tree of depth D, a doubly exponential number m ≈ 1.52
D

of ”‘complete”

subtrees can be defined as in Fig 3.3. We call a subtree complete if the union of regions

assigned to its leaves results [0, 1]N+M−2. Note that a leaf of a subtree is either an internal

node or the leaf of the original tree. For example, for a subtree i, if the regions assigned

to its leaves are labeled as V1,i, . . . , VKi,i, where Ki is the number of leaves of the subtree i,

then [0, 1]N+M−2 = ∪Ki

k=1Vk,i. Each Vk,i of the subtree corresponds to a node in the original

tree. Thus a complete subtree with the regions assigned to its leaves defines a complete
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”partition” of [0, 1]N+M−2.

Consider Fig. 3.3, on a binary context tree of depthD = 2, there are 5 different partitions

of [0, 1]2 as Γ1, . . . ,Γ5 labeled as Γ1, . . . ,Γ5. For example, the partition Γ1 corresponds to the

root node with only one region covering the space [0, 1]2 and Γ5 corresponds to all leaf nodes

of the original tree. For each partition, Γi = {V1,i, . . . , VKi,i} and ∪l = 1KiVk,i = [0, 1N+M−2.

We next describe the construction of such a binary context tree and the selection of the

regions to partition [0, 1N+M−2 for the proposed nonlinear modeling.

As in the previous section, piecewise regions are selected with the LBG VQ algorithm.

The context tree is built over these piecewise regions as follows. Suppose the LBG VQ

algorithm is applied to {q(t)} with K = 2D to generate K regions [21]. The LBG VQ

algorithm is an iterative algorithm that alternatively solves (3.7) and (3.8). The LBG VQ

algorithm uses a tree notion similar to the context tree introduced in Fig. 3.3 such that the

algorithm starts from a root node which calculates the mean of all the vectors in {q(t)} as

the root codeword, and binary splits the data as well as the root codeword into two segments.

Then, these newly constructed codewords are iteratively used as the initial codebook of the

split segments. These two codewords are then split in four and the process is repeated

until the desired number of regions are obtained. At the end, this binary splitting yield

2D regions with the corresponding centroids q̃i, i = 1, . . . , 2D, which are assigned to the

leaves of the context tree. Note that since each couple of the leaves (or nodes) come from

a parent node after a binary splitting, codewords assigned to these parent nodes are stored

as the internal nodes of the context tree. Hence, in this sense, the LBG VQ algorithm

intrinsically constructs the context tree. However, note that, at each turn, even though the

initial centroids at each splitting directly come from the parent node in the original LBG

VQ algorithm, the final regions of the leaf nodes while minimizing distortion by iterating

(3.7) and (3.8) may invade the regions of the other parents nodes, i.e., the union of regions

assigned to the children of the split parent node can be different than region assigned to

the parent node. Note that one can modify the LBG algorithm with the constraint that

the region of the children nodes should be optimized within the regions of the their parent

nodes. However, this constraint may deteriorate the performance due to more quantization

error.

For a context tree of depth D, one can define m ≈ 1.52
D

different partitions of the
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Table 3.2: A context tree based turbo equalization. This algorithm requires O(D(M + N))
computations

A Pseudo-code of Piecewise Linear Turbo Equalizer Using Context Trees:
% 1st iteration:
for t = 1, . . . , n:

x̂ctw(t) = w(1)T (t)y(t),
if t = T : e(t) = x(t)− x̂(t).
elseif t > T : e(t) = Q(x̂(t))− x̂(t), Q() is a quantizer.
w(1)(t+ 1) = w(1)(t) + µe(t)y(t).

calculate q(t) using the SISO decoder for t > T . % mth iteration:
apply LBG VQ algorithm to q(t)t>T

to generate q̃
(2)
k , k = 1, . . . , 2D and q̃

(2)
k , k = 2D + 1, . . . , 2D+1 − 1.

if m == 2:
for k = 1, . . . , 2D+1 − 1:

w
(2)
k (1) = w(1)(n), where w(1)(n) is from 1st iteration.

if m ≥ 3:
for i = 1, ..., 2D+1 − 1:

w
(m)
k (1) = w

(m−1)
j (n), f

(m)
k (1) = f

(m−1)
j (n), where j = argmini||q̃(m)

k − q̃
(m−1)
i ||.

for k = 1, . . . , 2D+1 − 1: Ak(0) = 1, Bk(0) = 1. (line A)
for t = 1, . . . , T :

for i = 1, . . . , 2D:

x̄(t)
4
= [I− diag(q̃

(m)
k )]1/2x(t) %to consider uncertainty during training

l(1) = i, where l corresponds dark nodes starting from the leaf node i
η1(t) = 1/2.
for l = 2, . . . , D + 1:

ηl(t) =
1
2As(t− 1)ηl−1(t), where s is a sibling node of l(l), i.e., Vs ∪ Vl(l) = Vl(l−1),

βl(t) = ηl(t)Bl(l)(t− 1)Al(1)(t− 1). (line B)

for l = D + 1, . . . , 1: el(l)(t) = x(t)− [w
(m)T
l(l) (t)y(t)− f

(m)T
l(l) (t)x̄(t)],

Bl(l)(t) = Bl(l)(t− 1)exp(−c||el(l)(t)||2), % where c is a positive constant, (line C)
if l = D + 1 : Al(l)(t) = Bl(l)(t), (line D)
else: Al(l)(t) =

1
2Al(l),l(t− 1)Al(l),r(t−1) +

1
2Bl(l)(t), (lineE)

% where (l(l), l) and (l(l), r) are the left and right hand children of l(l), respectively,

w
(m)
l(l) (t+ 1) = w

(m)
l(l) (t) + µel(l)(t)y(t), f

(m)
l(l) (t+ 1) = f

(m)
l(l) (t) + µel(l)(t)x̄(t).

for t = T + 1, . . . , n: i = argmink||q(t)− q̃
(m)
k ||, k = 1, . . . , 2D.

find nodes that i belongs to and store them in l starting from the leaf node i, i.e., l(1) = i.
η1(t) = 1/2,
for l = 2, . . . , D + 1:

ηl(t) =
1
2As(t)ηl−1(t).

βl(t) = ηl(t)Bl(l)(t− 1)Al(1)(t− 1).

x̂ctw(t) =
∑D+1

k=1 βk(t)[w
(m)T
l(k) (t)y(t)− f

(m)T
l(k) (t)x̄(t)], (line F)

for l = D + 1, . . . , 1: el(l)(t) = Q(x̂ctw(t))− [w
(m)T
l(l) (t)y(t)− f

(m)T
l(l) (t)x̄(t)], (line G)

Bl(l)(t+ 1) = Bl(l)(t− 1)exp(−c||el(l)(t)||2),
if l = D + 1: Al(l)(t) = Bl(l)(t),
else: Al(l)(t) =

1
2Al(l),l(t− 1)Al(l),r(t− 1) + 1

2Bl(l)(t),

w
(m)
l(l) (t+ 1) = w

(m)
l(l) (t) + µel(l)(t)y(t), f

(m)
l(l) (t+ 1) = f

(m)
l(l) (t) + µel(l)(t)x̄(t).

calculate q(t)t>T using the SISO decoder.
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space of q and construct a piecewise linear equalizer as in Table 3.1 for each partition.

However, there exist a double exponential number of different piecewise linear models that

one can choose from. For each such partition, one can train and use a piecewise linear

model. However, the best piecewise model with the best partition is not known a priori.

Although one can construct a doubly exponential numberm of piecewise linear equalizers

as in Table 3.1, note that all these piecewise linear equalizers are constructed using subsets

of nodes ρ ∈ {1, . . . , 2D+1 − 1}. Now, suppose we number each node on this context tree

and assign a linear equalizer to each node as

x̂ρ(t) = wT
ρ y(t)− fTρ x̄(t) (3.14)

The linear equalizer coefficients wρ, fρ that are assigned to node ρ, train only on the data

assigned to that node as in Table 3.1. That is, if q(t) ∈ Vρ then wρ and fρ are updated.

Then, the estimate of the desired data using the piecewise linear equalizer corresponding to

the partition Γi, is defined as follows. If q(t) ∈ Vk,i and ρ is the node that is assigned to

Vk,i then

x̂Γi
(t) = x̂ρ(t) = wT

ρ y(t)− fTρ x̄(t). (3.15)

One of these partitions, with the given piecewise adaptive linear model x̂Γi
achieves the

minimal loss. However, we want to emphasize that one needs to try a doubly exponential

number of different partitions to find that partition with the best fit to the data.

We next introduce an algorithm that achieves the performance of the best partition with

the best linear model with complexity only linear in depth of the context tree per sample,

i.e., complexity O(D(2N +M)) instead of O((1.5)2
D

D(2N +M). We emphasize that the

piecewise model that corresponds to the union of the leaves, i.e., the finest partition, has the

finest partition of the space of variances. Hence, it has the highest number of regions and

parameters to model the nonlinear dependency. However, note that at each such region, the

finest partition needs to train the corresponding linear equalizer that belongs to that region.

As an example, the piecewise equalizer with the finest partition may not yield satisfactory

results in the beginning of the adaptation if there are not enough data to train all the

model parameters. In this sense the context tree algorithm adaptive weights coarser and

finer models based on their performances.
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The pseudo-code of the introduced algorithm is given in Table 3.2. The context tree

based equalization algorithm hypothetically builds all x̂Γi
(t), i = 1, . . . ,m, piecewise linear

equalizers and run these equalizers on parallel on the received data. At each time t, the

final estimation x̂ctw(t) is constructed as a weighted combination of all the outputs x̂Γi
(t) of

these piecewise linear equalizers, where the combination weights are calculated proportional

to the performance of each equalizer x̂Γi
(t) on the past data. However, as shown in (3.15),

although there are m different piecewise linear algorithms, at each time t, each x̂Γi
(t) is

equal to one of the D node estimations that q(t) belongs to. In Table 3.2, the update

of each m piecewise linear models and their performance based combination weights with

computational complexity only linear in the depth of the context tree is described.

For the context tree algorithm, since there are no a priori probabilities in the first

iteration, the first iteration of Table 3.2 is the same as the first iteration of Table 3.1.

After the first iteration, to incorporate the uncertainty during training as in Table 3.1, the

context tree algorithm is implemented by using weighted training data corresponding to 2D

leaf nodes for not only updating filter coefficients but also updating context tree weights.

At each time t > T , x̂ctw(t) constructs its nonlinear estimation of x(t) as follows. First

the regions (or nodes) that q(t) belongs to are found. Note that due to the tree structure

of regions, one needs to only find the leaf node that q(t) belongs to and collect all the

parent nodes towards the root node. The nodes that q(t) belongs to are stored in l. The

final estimate x̂ctw(t) is constructed as a weighted combination of the estimates generated

in these nodes, i.e., x̂ρ(t), ρ ∈ l, where the weights are functions of the performance of the

node estimates in previous samples.

At each time t, x̂ctw(t) requires O(ln(D)) calculations to find the leaf that q(t) belongs

to. Then, D + 1 node estimations, x̂ρ(t), ρ ∈ l, are calculated and the equalizers at these

nodes should be updated with O(2N +M) computations. The final weighted combination

is produced with O(D) computations. Thus the overall computaional complexity of the

context tree algorithm is O(D(2N +M)) at each time t. For this algorithm, we have the

following result.

Theorem 1: Let {xt}, {nt}, and {yt}represent the transmitted, noise and received signals

and {q(t)} represent the sequence of variances constructed using the a priori probabilities
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for each constellation produced by the SISO decoder. Let x̂ρ(t), ρ = 1, . . . , 2D+1 − 1, are

estimates of x(t) produced by the equalizers assigned to each node on the context tree. The

algorithm x̂ctw(t), when applied to {yt}, for all n achieves

n∑

t=1

(x(t)− x̂ctw(t))
2 ≤ min

Γi

{
n∑

t=1

[x(t)− x̂Γi
(t)]2 + 2Ki − 1},

for all i, i = 1, . . . ,m ≈ (1.5)2
D

, assuming perfect feedback in decision directed mode i.e.,

Q(x̂(t)) = x(t) when t ≥ T , where x̂Γi
(t) is the equalizer constructed as x̂Γi

(t) = x̂ρ(t) and ρ

is the node which is assigned to the volume in Γi = {V1,i, . . . , VKi,i} such that q(t) belongs.

If RLS update is used instead of the LMS update, (3.3) yields

n∑

t=1

(x(t)− x̂ctw(t))
2 ≤ min

Γi

{ min
wk,i∈CN ,fk,i∈CN+M−1

n∑

t=1

E{[x(t) −wT
si(t),i

y(t)− fTsi(t−1),ix̄(t)]
2}

+O((2N +M)ln(n)) + 2Ki − 1}. (3.16)

where si(t) is an indicator variable for Γi such that if q(t) ∈ Vk,i then si(t) = k

The outline of the proof is given in Appendix B.

Remark: We observe from (3.3) that the context tree algorithm achieves the performance

of the best sequential algorithm among a doubly exponential number of possible algorithms.

Note that the bound in (3.3) holds uniformly for all i, however the bound is the largest for

the finest partition corresponding to all leaves (however still O(1)). Also, we observe from

(3.16) that the context tree algorithm achieves the performance of even the best piecewise

linear model, independently optimized in each region, for all i, if the node estimators are

selected as certain adaptive algorithms.

3.3.1 MSE Performance of the Context Tree Equalizer

To get the MSE performance of the context tree equalizer, we observe that the result (3.16)

in the theorem is uniformly true for any sequence {x(t)}. Hence, as a corollary to the

theorem, taking the expectation of both sides of (3.16) with respect to any distribution on

{x(t)} yields the following corollary:
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Corollary:

n∑

t=1

E{(x(t) − x̂ctw(t))
2} ≤ min

Γi

{ min
wk,i∈CN ,fk,i∈CN+M−1

n∑

t=1

E{[x(t)−wT
si(t),i

y(t)− fTsi(t−1),ix̄(t)]
2}

+O((N +M)ln(n)) + 2Ki − 1}. (3.17)

Note that the minimizer vectors wk,i and fk,i at the right hand side of (3.17) minimize the

sum of all the MSEs. Hence, the corollary does not relate the MSE performance of the CTW

equalizer to the MSE performance of the linear MMSE equalizer given in (3.2). However, if

we assume that the adaptive filters trained at each node converge to their optimal coefficient

vectors with zero variance and if D and n are sufficiently large, we have for piecewise models

such as for the finest partition

n∑

t=1

(x(t)− x̂Γ|K|
(t))2 ≈

n∑

t=1

{[x(t)−wT
s|K|(t),|K|,oy(t)− fTs|K|(t),|K|,ox̄(t)]

2}, (3.18)

where we assumed that, for notational simplicity, the |K|th partition is the finest partition,

ws|K|(t),|K|,o and fs|K|(t),|K|,o are the MSE optimal filters (if defined) corresponding to the

regions assigned to the leaves of the context tree. Note that we require D to be large so

that we can assume q(t) to be constant at each region such that these MSE optimal filters

are well-defined. Since (3.16) is correct for all partitions and for the minimizer w,f vectors,

(3.16) holds for any w and f pairs including ws|K|(t),|K|,o and fs|K|(t),|K|,o pair.

Then by taking the expectation of the equation (3.16) and by using (3.18) we obtain

1

n

n∑

t=1

E{[x(t)−x̂ctw(t)]
2} ≤ 1

n

n∑

t=1

E{[x(t)−wT
s|K|(t),|K|,oy(t)−fTs|K|(t),|K|,ox̄(t)]

2+O(
2D+1

n
)}.

(3.19)
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Using the definition of the MSE of each node

1

n

n∑

t=1

E{[x(t) − x̂ctw(t)]
2}

≤ 1

n

n∑

t=1

{wT
s|K|(t),|K|,oHrQ(t)HH

r w∗
s|K|(t),|K|,o

+ σ2
nw

T
s|K|(t),|K|,ow

∗
s|K|(t),|K|,o +O(

2D+1

n
)}

≤ 1

n

n∑

t=1

{minw,fE{[x(t) −wTy(t)− fT x̄(t)]2|q(t) +O(
1

2D
)}}+O(

2D+1

n
), (3.20)

where the last equation line follows since for large D, the MSE in each node is bounded as

in equation 3.13. Furthermore, O(||q(t) − q̃l||) can be upper bounded by O( 1
2D

) assuming

large enough D. Hence, as D → ∞, the context tree algorithm asymptotically achieves the

performance of the linear MMSE equalizer.

3.4 Simulations

For this chapter, we demonstrate the performance of the introduced algorithms through

numerical examples under different scenarios. The set of experiments involve channel ex-

amples from [24] (Chapter 10). Rate 1/2 with constraint length 3 convolutional code is

used. The coded bits are shuffled by random interleaving.

In the first set of experiments, we use the time invariant channel

h = [0.227, 0.46, 0.688, 0.46, 0.227]T

with the training size T = 1024 and data length 5120 (excluding the training part). The

BERs and MSE curves are calculated over 20 independent trials. The decision directed

(DD) mode is used for all the LMS algorithms, e.g., for the ordinary LMS turbo equalizer

we compete against and for all the node filters on the context tree. Our calculation of the

extrinsic LLR at the output of the ordinary LMS algorithm is based on [4]. For all LMS

filters, we use N1 = 9, N2 = 5, length N +M − 1 = 19 feedback filter. The learning rates

for the LMS algorithms are set to µ = 0.001. This learning rate is selected to guarantee

the convergence of the ordinary LMS filter in the training part. The same learning rate is

directly used on the context tree without tuning. In Fig. 3.4 (a), we demonstrate the time
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evaluation of the weight vector for the ordinary LMS turbo equalization algorithm in the

first turbo iteration. Also the plot of the convolution of the h and the converged weight

vector of the LMS algorithm at the end of the first iteration is given in Fig. 3.4 (b). In

Fig. 3.4 (a), BERs for an ordinary LMS algorithm, a context-tree equalization algorithm

with D = 2 is given in Table 3.2 and the piecewise equalization algorithm with the finest

partition, i.e., xT|K|
(t), on the same tree. Note that the piecewise equalizer with the finest

partition, i.e., Γ5, in Fig. 3.3, has the finest partition with the highest number of linear

models, i.e., 2D independent filters, for equalization. However, we emphasize that all the

linear filters in the leaves should be sequentially trained for the finest partition. Hence, as

explained in Section 3.3, the piecewise model with the finest partition may yield inferior

performance compared to the CTW algorithm that adaptively weights all the piecewise

models based on their performance. We observe that the context tree equalizer outperforms

the ordinary LMS equalizer and the equalizer corresponding to the finest partition for these

simulations. In Fig. 3.4 (b), we plot the weight evaluation of the context tree algorithm, i.e.,

the combined weight in line F of Table 3.2 to show the convergence of the CTW algorithm.

The context tree algorithm, unlike the finest partition piecewise model, adaptively weights

different partitions in each level. To see this, in Fig. 3.4 (a), we plot weights assigned to

each level in depth D = 2 context tree. We also plot the time evaluation of the performance

measures Aρ(t) in Fig. ?? (b). We observe that the context tree algorithm, as expected, at

the start of the equalization divides the weights fairly uniform among the partitions or node

equalizers. However, naturally, as the training size increases, when there is enough data

to train all the node filters, than the context tree algorithm favors the models with better

performance. To see the effect of depth on the performance of the context tree equalizer,

we plot the for the same channel, BERs corresponding to context tree equalizers of depth,

D = 1, D = 2 and D = 3 in Fig. (a). We observe that as the depth of the tree increases the

performance of the tree equalizer gets better for these depth range. However, note that the

computational complexity of the CTW equalizer is directly proportional to the depth. As

the last set of experiments, we perform the same set of experiments on a randomly generated

channel of length 7 and plot the BERs in Fig. (b). We observe the similar improvement in

BER for this randomly generated channel for these simulations.
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3.5 Conclusions

In this chapter, an adaptive nonlinear turbo equalization algorithm using context trees is

introduced in order to model the nonlinear dependency of the linear MMSE equalizer on

the soft information generated from the decoder. The CTW algorithm is used to partition

the space of variances, which are time dependent and generated from the soft information,

and train a separate linear model for each region. It is demonstrated that the introduced

algorithm asymptotically achieves the performance of the best piecewise model defined on

this context tree with a computational complexity only in the order of an ordinary linear

equalizer. Also, the convergence of the MSE of the CTW algorithm to the MSE of the

linear minimum MSE estimator is shown as the depth of the context tree and the data

length increase.
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Figure 3.3: All partitions of [0, 1]2 using binary context tree with D = 2. Given any
partition, the union of the regions represented by the leaves of each partition is equal to
[0, 1]2.
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Figure 3.4: (a)Ensemble averaged weight vector for the DD LMS algorithm in the first turbo
iteration, where = 0.001, T = 1024 and data length 5120. (b) Convolution of the trained
weight vector of the DD LMS algorithm at sample 5120 and the channel h.
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Figure 3.5: (a)BERs for an ordinary DD LMS algorithm, a CTW equalizer with D = 2 and
tree given in Fig. 3.2, the piecewise equalizer with the finest partition, i.e., x̂(t)Γ5

, where
µ = 0.001, N1 = 9, N2 = 5, N+M−1 = 19. (b)Ensemble averaged combined weight vector
for the CTW equalizer over 7 turbo iterations. Here, we have µ = 0.001, T = 1024, data
length 5120 and 7 turbo iterations. Note that the combined weight vector for the CTW
algorithm is only defined over the data length period 5120 at each turbo iteration.
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Figure 3.7: (a)BERs corresponding to CTW equalizers of depth D = 1, D = 2 and D = 3.
(b)BERs for an ordinary DD LMS algorithm, a CTW equalizer with D = 2 and tree given
in Fig. 3.2, the piecewise equalizer with the finest partition, i.e., x̂(t)Γ5

, where µ = 0.001,
N1 = 9, N2 = 5, N +M − 1 = 19.
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Chapter 4

CONCLUSIONS

In this thesis, we consider two types of turbo equalization methods over the frequency

selective channels, robust linear turbo equalization methods and nonlinear turbo equaliza-

tion methods. Chapter 2 deals with robust linear turbo equalization methods over frequency

selective channels under channel uncertainties and Chapter 3 is dedicated to nonlinear turbo

equalization methods when the channel information is not known.

In Chapter 2, we have investigated robust linear equalization methods when there are un-

certainties in channel parameters [12]. Robust turbo equalization methods are introduced,

minimax approach and the competitive approach. In both approaches, we have shown that

obtaining linear equalizer coefficients for both problems can formulated as SDP problems.

Furthermore, implementations of the proposed methods with reduced computational com-

plexity are introduced. With simulation results, we have seen that there are significant

improvements in the performance of the proposed methods over the plug-in MMSE estima-

tors.

Although in Chapter 2 we have focused on the linear turbo equalizers, they have still

have higher computational complexity than adaptive linear turbo equalizers that use adap-

tive learning algorithms such as the RLS or LMS to train their coefficients and require the

channel information or the estimate of the channel. For a linear MMSE turbo equalizer

computational complexity is O(N2 + M2). However, a turbo equalizer using LMS algo-

rithm only needs O(N + M) computational complexity. In Chapter 3, we introduced a

novel nonlinear turbo equalization method when the underlying communication channel

is not known at the receiver [11]. In particular, adaptive nonlinear turbo equalization is

investigated in order to model the nonlinear dependency of the linear MMSE equalizer on

the soft information from the decoder. This is accomplished by the introduction of the

piecewise linear models based on context trees. The piecewise linear models introduced can

adaptively choose both the piecewise regions as well as the linear equalizer coefficients in
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each region independently, with computational complexity only in the order of a regular

adaptive linear equalizer. Through simulations it is demonstrated that this approach is

guaranteed to asymptotically achieve the performance of the best piecewise linear equalizer

that can choose both its piecewise regions (from a class of doubly exponential number of

partitions) as well as its filter parameters based on observing the whole data in advance.

Also, the MSE performance of the resulting algorithm is shown to converge to the MSE of

the linear minimum MSE estimator as the depth of the context tree and the data length

increase.
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Chapter 5

APPENDIX A

Lemma 1: The first order linear approximation of vT [Q
′−1
t + σ−2

n FHF]−1v around the

channel estimate f̃t is given by

vT [Q
′−1

t + σ−2
n FHF]−1v = ηt + dfHgt

+ + gt
Tdf +O(‖df‖2).

Proof: The derivation of Lemma 1 is similar to the derivation of Lemma 1 of [14]. The first

order linear approximation is given by

vT [Q
′−1

t + σ−2
n FHF]−1v ≈ vT [Q

′−1

t + σ−2
n F̃H

t F̃t]
−1v︸ ︷︷ ︸

ηt

+2<e{tr[TH
t dF]}, (5.1)

where Tt
4
= ∇F

(
vT [Q

′−1

t + σ−2
n FHF]−1v

)
|
F=F̃t

and dF is the convolution matrix gener-

ated from df . The gradient term Tt is derived in Lemma 1 of [14] as

Tt = −σ−2
n F̃t(Q

′

t + σ−2
n F̃H

t F̃t)
−1vvT (Q

′

t + σ−2
n F̃H

t F̃t)
−1. (5.2)

Using (5.2), we have

tr[TH
t dF] = tr[−σ−2

n (Q
′

t + σ−2
n F̃H

t F̃t)
−1vvT (Q

′

t + σ−2
n F̃H

t F̃t)
−1F̃H

t dF]

= tr[−σ−2
n vT (Q

′

t + σ−2
n F̃H

t F̃t)
−1F̃H

t dF (Q
′

t + σ−2
n F̃H

t F̃t)
−1v]

= tr[−c̃Tt dF (Q
′

t + σ−2
n F̃H

t F̃t)
−1v]

= [dfT (−C̃t(Q
′

t + σ−2
n F̃H

t F̃t)
−1v)︸ ︷︷ ︸

gt

] (5.3)

where the second line is due to the properties of the trace operation, the third line follows

from (2.8), the fourth line follows since dF is a convolution matrix and C̃t is the convolution
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matrix constructed using c̃t. Then, using (5.3) in (5.1) we get

vT [Q
′−1

t + σ−2
n FHF]−1v ≈ vT [Q

′−1

t + σ−2
n F̃H

t F̃t]
−1v︸ ︷︷ ︸

ηt

+2<e[dfTgt].

This completes the proof of Lemma 1. 2

Lemma 2: The inequality 
 Q S

SH R


 ≥ 0, (5.4)

where Q = QH , R = RH and R > 0 is equivalent to

R > 0, Q− SR−1SH ≥ 0. (5.5)

Proof of Lemma 2: Assume R > 0 and M1 =


Q S

SH R


 ≥ 0. Then, using the nonsingular

matrix T =


 I 0

−R−1SH I


, one can establish the congruence transformation

M2 = THM1T =


Q− SR−1SH 0

0 R


 . (5.6)

Assuming M1 ≥ 0 yields M1 and M2 to have the same inertia. Since by assumption R > 0,

we conclude that Q− SR−1SH ≥ 0. 2

Lemma 3: Given matrices P, Q and A with A = AH ,

A ≥ PHZQ+QHZHP, ∀‖Z‖ ≤ α,

if and only if there exists a λ ≥ 0 such that


 A− λQHQ −αPH

−αP λI


 ≥ 0.

This lemma is from Proposition 2 of [5]. 2
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Proofs of Theorem 1 and Theorem 2

Proof of Theorem 1: We first observe that the MSE expression in (2.13) can be written as

min
c

max
f=f̃t+df ,‖df‖≤δ

[
(v −CT f)HQ

′

t(v −CT f) + σ2
nc

Hc
]
= min

df ,α
α

such that

(v −CT f)HQ
′

t(v −CT f) + σ2
nc

Hc ≤ α (5.7)

and ‖df‖ ≤ δ. Using Lemma 2 in (5.7) yields


 α− (v −CT f)HQ

′

t(v −CT f) cH

c σ−2
n I


 ≥ 0. (5.8)

Applying Lemma 2 to (5.8) yields




α cH (v −CT f)H

c σ−2
n I 0

(v −CT f) 0 Q
′−1
t


 ≥ 0. (5.9)

However, (5.9) can be written as




α cH (v −CT f̃t)
H

c σ−2
n I 0

(v −CT f̃t) 0 Q
′−1

t


 ≥




0

0

CT


df

[
1 0 0

]
+




1

0

0


dfH

[
0 0 C+

]
.

(5.10)

Applying Lemma 3 to (5.10) yields




α− τ cH (v −CT f̃t)
H 0

c σ−2
n I 0 0

(v −CT f̃t) 0 Q
′−1

t −δCT

0 0 −δC+ τI



≥ 0, (5.11)

with the constraint ‖df‖ ≤ δ. Hence, using (5.11) in (5.7) results Theorem 1. This completes

the proof of Theorem 1. 2

Proof of Theorem 2: The proof of Theorem 2 closely follows the proof of Theorem 1. The
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MSE expression in (2.22) can be written as

min
c

max
f=f̃t+df ,‖df‖≤δ

[
(v −CT f)HQ

′

t(v −CT f) + σ2
nc

Hc− (ηt + dfHgt
+ + gt

Tdf)
]
= min

df ,α
α

such that

(v −CT f)HQ
′

t(v −CT f) + σ2
nc

Hc− (ηt + dfHgt
+ + gt

Tdf) ≤ α (5.12)

and ‖df‖ ≤ δ. Applying Lemma 2 to (5.12) successively two times yields




α− (ηt + dfHgt
+ + gt

Tdf) cH (v −CT f)H

c σ−2
n I 0

(v −CT f) 0 Q
′−1
t


 ≥ 0,

which can be written as




α− ηt cH (v −CT f̃t)
H

c σ−2
n I 0

(v −CT f̃t) 0 Q
′−1
t


 ≥




gt
T

0

CT


df

[
1 0 0

]
+




1

0

0


dfH

[
gt

+ 0 C+
]
,

(5.13)

with ‖df‖ ≤ δ. Using Lemma 3 in (5.13) yields the constraint (2.24) given in Theorem 2.

This completes the proof of Theorem 2. 2
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Chapter 6

APPENDIX B

Proof of equation 3.13

||wT
k,0HrQ(t)HH

r w∗
k,0 + σ2

nw
T
k,0w

∗
k,0 − [1− vH(σ2

nI+HrQ(t)HH
r + vvH)−1v]||

= wT
k,0Hr∆Q̃kH

H
r w∗

k,0 + [(M +Hr∆Q̃kH
H
r )−1 −M−1]v, (6.1)

where M
4
= σ2

nI+HrQ̃kH
H
r + vvH and ∆Q̃k = Q(t)− Q̃k. Note that

vH(M+Hr∆Q̃kH
H
r )−1v = vHM−1v + tr{∇H

∆
˜Qk

[vH(M+Hr∆Q̃kH
H
r )−1v]|

∆Q̃k=0
∆Q̃k}

+O(tr[∆Q̃
H
k ∆Q̃k])

= vHM−1v + tr{M−1vvHM−1∆Q̃k}+O(tr[∆Q̃
H
k ∆Q̃k])

(6.2)

around ∆Q̃k = 0. Substituting the above equation into (6.1) yields

wT
k,0Hr∆Q̃kH

H
r w∗

k,0 + [(M+Hr∆Q̃kH
H
r )−1 −M−1]v

= wT
k,0Hr∆Q̃kH

H
r w∗

k,0 + tr{M−1vvHM−1∆Q̃k}+O(||q(t)− q̃k||2) ≤ O(||q(t)− q̃k||)
(6.3)

by Schwarz inequality.

Lemma:

∇
∆

˜Qk

vH(M +Hr∆Q̃kH
H
r )−1v = (M +Hr∆Q̃kH

H
r )−1vv−1(M +Hr∆Q̃kH

H
r )−1. (6.4)

Proof of Lemma: Differentiating the identity (M + Hr∆Q̃kH
H
r )−1(M + Hr∆Q̃kH

H
r ) = I
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with respect to (∆Q̃k)a,b yields

∂(M +Hr∆Q̃kH
H
r )−1

∂(∆Q̃k)a,b
(M +Hr∆Q̃kH

H
r ) + (M +Hr∆Q̃kH

H
r )−1(Hreae

T
b H

T
r ) = 0, (6.5)

where ea is a vector of all zeros except ath entry with 1. This yields

∂vH(M +Hr∆Q̃kH
H
r )−1v

∂(∆Q̃k)a,b
= vH(M +Hr∆Q̃kH

H
r )−1Hreae

T
b H

H
r (M +Hr∆Q̃kH

H
r )−1v

= ebH
H
r vH(M +Hr∆Q̃kH

H
r )−1vvH(M +Hr∆Q̃kH

H
r )−1Hrea

(6.6)

which yields the result.

Outline of the proof of the Theorem 1 in Section 3.3: The proof of the theorem

follows the proof of the Theorem 2 of [17] and Theorem 1 of [27]. Hence, we mainly focus

on differences.

Suppose we construct x̂Γi
(t), i = 1, . . . ,m and compute weights

ci(t)
4
=

2−C(Γi)exp{−a
∑t−1

r=1}[x(r)− x̂Γi
(r)]2

∑m
j=1 2

−C(Γj)exp{−a
∑t−1

r=1}[x(r)− x̂Γj
(r)]2

, (6.7)

where 0 < C(Γj) ≤ 2Kj−1 are certain constants that are used only for proof purposes such

that
∑m

j=1 2
−C(Γj ) = 1 [31] and a is a positive constant set to a = 1/2 [27]. If we define

x̂(t) =
m∑

k=1

= ck(t)x̂Γk
(t) (6.8)

then it follows from Theorem 1 of [27] that

n∑

t=1

[x(t)− x̂(t)]2 ≤
n∑

t=1

[x(t)− x̂Γi
(t)]2 +O(Ki)

for all i = 1, . . . ,m. Hence, x̂(t) is the desired x̂ctw(t) However, note that x̂(t) requires output

of m algorithms and computes m performance based weights in (6.7). However, in x̂(t) there

are only D distinct node predictions x̂ρ(t) that q(t) belongs to such that all the weights

with the same node predictions can be merged to construct the performance weighting. It

is shown in [17] that if one defines certain functions of performance for each node as Aρ(t),
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Bρ(t) that are initialized in (line A) and updated in (line C), (line D), (line E) of Table 3.2,

then the corresponding x̂(t) can be written as x̂(t) = x̂(t) =
∑D+1

l=1 = βl(t)x̂l(l)(t), where

l contains the nodes that q(t) belongs to and βl(t) are calculated as shown in (line B) of

Table 3.2. Hence, the desired equalizer is given by

x̂ctw(t) = x̂(t) =
D+1∑

l=1

= βl(t)x̂l(l)(t), (6.9)

which requires to combine D+1 node estimations and update only D+1 node equalizers at

each time t and store 2D+1 − 1 node weights. This completes the outline of the proof. To

get the corresponding result in (3.16), we define the node predictors as the LS predictors

such that

[wρ(t) fρ(t)]
T = M−1(t− 1)p(t− 1), (6.10)

M(t− 1)
4
= (

t∑

r=1

d(r − 1)d(r − 1)T sρ(r) + δI) (6.11)

where p(t− 1)
4
=
∑t−1

r=1Q(ŷ(r))d(r− 1)sρ(r), and d(r)
4
= [y(r) x̄(r)]T , sρ(r) is the indicator

variable for node ρ, i.e., sρ(r) = 1 if q(r) ∈ Vρ otherwise sρ(r) = 0. The affine predictor in

(6.11) is a least squares predictor that trains only on the observed data {y(t)} and {x̄(t)}
that belongs to that node. The RLS algorithm is shown to achieve the excess loss given in

(3.16) as shown in [20].
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