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Abstract

We present continuous and discrete-time models of polarization mode dispersion

(PMD) in single-mode optical fibers and random parameter sampling schemes for

these models for accurate and low-complexity PMD emulation. Our discussion on

continuous-time PMD emulation builds upon an earlier work, which uses model re-

duction techniques and Markov chain Monte Carlo (MCMC) methods. Here we de-

velop an improved model parameter sampling procedure to generate continuous-time

reduced complexity models making use of the proposed compensated MCMC method.

As the main contribution of this thesis, we present a discrete time PMD emula-

tion scheme that is on a par with the emerging coherent receiver techniques based on

digital signal processing algorithms. This scheme uses multiple-input multiple-output

(MIMO) FIR filters that are lossless and therefore lend themselves as perfect candi-

dates for emulation of fiber channels suffering from PMD. The concatenated composi-

tion of these filters resembles the continuous time lumped model of PMD channels and

offers a flexible emulator structure in terms of computational complexity which con-

stitutes the main bottleneck for real-time DSP applications. The parameter sampling

problem for accurate PMD emulation considering the required statistical behavior of

a PMD emulator is tackled using three different approaches, which are introduced in

order of decreasing deviation from the desired statistics and increasing computational

complexity.
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ÖZETÇE

Optik tek kipli fiberler üzerindeki polarizasyon kipi saçılımı (PMD) öykünücülerinde

kullanılmak üzere, zamanda devamlı ve ayrık modeller, ve bu modeller için rassal

parametre örnekleme düzenekleri sunmaktayız. Zamanda devamlı PMD öykünmesi

üzerine tartışmamızı, model indirgeme teknikleri ve Markov zinciri Monte Carlo

(MCMC) yöntemleri kullanan geçmiş bir çalışmanın üzerine inşaa etmekte ve ta-

rafımızdan önerilen dengelenmiş MCMC yöntemini kullanarak devamlı zamanlı, in-

dirgenmiş karmaşıklıkta modeller yaratmak için iyileştirilmiş bir rassal parametre

örnekleme yordamı geliştirmekteyiz.

Bu tezin ana katkısı olarak, yeni ortaya çıkmakta olan sayısal işaret işleme al-

goritmaları tabanlı faz uyumlu alıcı yöntemleriyle aynı düzlemde yer alan, zamanda

ayrık bir PMD öykünmesi yordamı tanıtmaktayız. Bu yordam, kayıpsız ve bu ne-

denle PMD’den etkilenen kanallar için mükemmel adaylar olan çok-girişli çok-çıkışlı

(MIMO) FIR filtreler kullanmaktadır. Bu filtreler, PMD kanallarının zamanda de-

vamlı toplu modeli ile benzeşen art arda bağlı bir biçime sahiptirler ve gerçek zamanlı

DSP uygulamalarında ana darboğazı oluşturan hesaplama karmaşılığı açısından esnek

bir öykünücü yapısı sunmaktadırlar. Arzu edilen istatistiksel özellikleri göz önünde

bulundurarak hassas bir PMD öykünücüsü için parametre örnekleme sorunu, üç farklı

yöntem kullanarak çözülmüştür. Bu yöntemler azalan istatistiksel sapma ve artan

hesaplama karmaşıklığı sırasıyla sunulmaktadırlar.
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Chapter 1: Introduction 1

Chapter 1

Introduction

1.1. Motivation and Outline

Optical fiber links form the backbones of global and local telecommunication networks

as they provide larger bandwidth compared to other media such as wireless and

copper links. The growing demand for data and voice services has led to research

for better spectral utilization of fiber links. With the use of single-frequency lasers

and dispersion-shifted optical fibers, the transmission speed for a single channel in

optical communication links has reached Gbit/s level. Currently, one of the biggest

hurdles preventing these communication systems based on single-mode optical fibers

from operating at even higher speeds is polarization mode dispersion (PMD).

PMD is a statistical phenomenon that occurs in single-mode optical fibers due to

random imperfections breaking the circular symmetry of the fiber. PMD results in a

random coupling and a speed difference between the two, normally degenerate orthog-

onal polarization modes of propagation. These effects give rise to pulse broadening

and intersymbol interference (ISI) as well as mixing of two orthogonal polarization

channels which limit the transmission speed while increasing the system outage prob-

ability. The causes of PMD, e.g. random flaws inflicted during the production process
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or mechanical deformations on underground cables, and its properties is discussed in

detail in optical communications literature [1, 2, 3, 4].

Since its first description [5, 6], PMD assumed a fundamental role in development

of high-speed optical communication systems. Although recent advances in coherent

receiver technologies brought some relief from optical distortions in optical fibers with

the use of compensation algorithms [7, 8], PMD continues to be a major impediment

at bit rates of 100 Gb/s and more [9, 10]. One of the important properties that needs

to be considered during the design of optical communication systems operating on

single-mode optical fibers is how much the system is affected by PMD. The statistical

nature of PMD complicates this procedure immensely. Considering that different

fibers will exhibit different PMD characteristics, that in themselves depend on the

fiber’s position and other environmental factors, the testing of such systems would

have to involve repetitive steps with numerous different fibers of realistic lengths. The

solution to this problem lies in the development of PMD emulators.

Communication channel emulators are critical devices for both the development

and testing of the communication transceivers. Emulators mimic the physical behav-

ior of the channel by distorting the transmitter output based on the mathematical

model of the communication channel input/output characteristics. Therefore, the

communication system developers and testers can use these devices to test the trans-

mitter/receiver combinations for various link scenarios in the lab environment. This

is a critical convenience, especially for the optical fiber communication systems, where

the development and testing with real channels are not manageable for the reasons

mentioned above.

For the case of PMD emulation, such a device must be able to capture the sta-

tistical properties of a PMD channel with the required accuracy for the particular

communication system in question. Furthermore, they must be versatile enough to

correctly emulate the behavior of older fibers installed in the existing optical links

which exhibit relatively high differential group delays (DGD), and modern fibers that

cause signal distortion mainly due to higher order effects [11].
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Generally, PMD emulator design can follow two different routes. One of these

methods results in devices that consist of optical parts such as concatenated birefrin-

gent plates and mechanical parts that allow the individual rotation of these plates

together with both analog and digital electronic circuitry. The other method of PMD

emulation employs analytical tools that approximate the desired statistics computa-

tionally.

The first group of PMD emulators with physical components is currently a com-

mercially available technology and therefore widely used. Devices with concatenated

polarization maintaining fibers combined with polarization scramblers can capture

the DGD statistics as well as the autocorrelation function of PMD vectors to a cer-

tain degree [12]. The approximation of the autocorrelation function enables these

devices to emulate not only the first order but also the higher order effects of PMD

[13, 14]. PMD emulators using freely rotatable birefringent crystals [15] have the

goal to uniformly distribute the polarization state on the Poincare sphere [2]. These

emulators are only programmable for a single frequency and have limited control over

higher order PMD. Devices that separate birefringent elements with freely rotatable

thin waveplates, on the other hand, are designed as PMD sources that strive to create

PMD effects with predetermined values [16]. Although PMD emulators constructed

with long polarization maintaining fibers which have fiber twisters placed periodically

on them or emulators that use ferroelectric crystals yield better results in terms of

PMD statistics, their complexity constitutes a problem in their practical implemen-

tations [17].

Despite providing the desired statistical characteristics, the above discussed meth-

ods of PMD emulation suffer from limitations originating from their construction with

movable optical and mechanical parts. This structure forces these devices not only to

be complex and bulky in size but also their operation at higher transmission speeds

is limited by the physical properties of the individual components.

The use of digital signal processing (DSP) based emulators would address these

problems, namely hard-programmability and large size, regarding analog emulators.
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The ability to construct such emulators is subject to the existence of effective DSP

emulation algorithms capturing the statistical behavior of fiber channels. This is an

area that is not sufficiently addressed in literature, and in this work, we are going

to address the construction of such algorithms. Our treatment of this problem is

presented in four parts.

In the remainder of this first chapter we will summarize the necessary mathemati-

cal groundwork for the description of PMD from a systems theoretical perspective. To

this end, we first define two important quantities regarding PMD computations, the

PMD vector and the PMD operator, and investigate the connection between them.

At the end of this introductory chapter we discuss the statistical properties of the

PMD vector.

The second chapter is dedicated to the presentation of different PMD models.

The first part discusses the continuous-time lumped model of PMD with a high num-

ber of concatenated birefringent sections, which we call the “full model”. In order

to arrive at this final form of the model, the time-domain representation of a PMD

channel is first given in the form of corresponding differential equations and the tran-

sition to a frequency-domain representation is then made using a modified trapezoidal

discretization scheme.

The second PMD model we present has its origins in the full model. This second

continuous-time model, which is our first step towards PMD emulation, relies on

Pade approximation and Krylov subspace techniques for model reduction such that

it has significantly fewer birefringent sections than the full model without losing the

statistical properties of PMD channels.

The third PMD model introduces the main contribution of this work which is a

discrete-time filter with low complexity that can be employed for PMD emulation

on DSPs. Our approach in this regard will be based on the exploitation of the

mathematical model corresponding to the PMD phenomenon. We will make use of the

fact that the PMD channels are generalized paraunitary channels, which means they

can be modeled by a lossless system with memory in combination with the frequency
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independent loss factor. This fact enables the use of discrete time paraunitary filter

structures. Consequently, the DSP based PMD emulation algorithm design boils

down to coming up with an accurate and low complexity method to select parameters

of the discrete time paraunitary filters.

In the third chapter we make a detour to discuss Markov chain Monte Carlo

(MCMC) sampling methods before going into the subject of how the parameters of

the models presented in Chapter 2 can be sampled such that the emerging model

satisfies the statistical requirements. Here we will present a general modified MCMC

sampling method, which we call “compensated MCMC”, that can be employed for

the solution of problems regarding random input sampling for complex models such

as PMD emulators and investigate its properties. This chapter contains the argu-

mentation why a new sampling scheme is necessary in the course of our work towards

PMD emulators as well as other usage possibilities of the proposed algorithm with an

example in numerical solutions of stochastic differential equations.

The final part of this work presents different parameter sampling algorithms (in-

cluding compensated MCMC) for PMD emulators. The accuracy in terms of approx-

imating the statistical properties of a real PMD channel is the main objective of our

treatment. Another critical objective is the suitability for real time implementation.

In fact, the frequency bandwidth to be simulated is relatively large in fiber com-

munication systems and the corresponding DSP emulators need to work in a large

sampling frequency regime. Therefore, the complexity of the algorithms will be a

major concern in the design of parameter sampling schemes.

The first parameter sampling scheme we discuss is for the reduced complexity con-

tinuous time model – a variation of the random parameter sampling method presented

in [18]. Here we use compensated MCMC instead of the standard MCMC algorithm

and present simulation results that illustrate the improvement in the statistical ac-

curacy of the models when their parameters are sampled with the proposed method.

The second part of this chapter deals with the parameter sampling problem for the

discrete-time paraunitary model. We propose three different methods for different
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PMD channel scenarios and present these techniques in order of decreasing devia-

tion from the desired statistics and increasing computational complexity. Finally, we

conclude our treatment with a brief summary.

1.2. Background on PMD

This section covers the basics of PMD to the extent that it is necessary for further

discussion. Interested readers should refer to [3] and the references therein for a

detailed treatment of the subject.

1.2.1. The PMD Vector

In the classical description of polarization, a monochromatic plane wave propagating

in the z-direction is represented by

E(z, t) =




Exe

jφx

Eye
jφy



 ej(ωt−kz) , (1.1)

where Ex and Ey denote the electric fields components in x and y directions re-

spectively. The 2 × 1 vector in (1.1) describes the polarization ellipse on the plane

perpendicular to the propagation axis. After factoring out the common phase of its

two components and normalizing their magnitudes, it can be written as

E = E0




cos(χ)

sin(χ)ejφ



 , (1.2)

where E0 =
√
E2

x + E2
y , tan(χ) = Ey/Ex and φ = φy −φx. The above vector is called

the Jones vector.

Another way of describing the polarization state of light is the four-dimensional

Stokes vector, S = [S0 S1 S2 S3]
T , which is connected to the Jones vector with the
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Figure 1.1: The speed difference between the two orthogonal modes of propagation
on an optical fiber.

following equations:

S0 = 1
2
E2

0 S1 = 1
2
E2

0 cos(2χ)

S2 = 1
2
E2

0 sin(2χ) cos(φ) S3 = 1
2
E2

0 sin(2χ) sin(φ)
(1.3)

The reason for this redundancy in the description of the polarization states is that

although the Jones vector can be derived directly from Maxwell’s equations, it is

not directly measurable, whereas the Stokes vector is. The Stokes vector is usually

normalized by the intensity component S0 which results in a three-dimensional unit

norm vector. Every polarization state can be described by the pointing direction of

this vector on the so-called Poincaré sphere. With the help of these formalisms we

can characterize the effects of PMD.

Figure 1.1 illustrates how two orthogonal polarization modes on an optical fiber

differ in their propagation speeds in the medium. It is intuitive to describe this

phenomenon in terms of the eigenmodes of the fiber which remain unchanged in

the course of their progress but experience different group velocities. However, this

approach proves to be unfruitful because the eigenmodes change to first order with

frequency. Therefore the computation of the group delay, which requires a frequency

derivative, does not allow the separation of the delay term from its eigenmode. At

this point a crucial observation can be made: according to Poole [6], two orthogonal

polarization states at the output of a fiber can always be found that are stationary to
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first order in frequency. Each of these states is called a principal states of polarization

(PSP). The main object of interest in PMD related calculations, the PMD vector, can

be defined using one of these states and the differential group delay between them [2].

Definition 1. The PMD vector, τ , is the three dimensional vector which points in

the direction of the slow PSP and has the length of the differential group delay between

fast and slow PSPs.

The PMD vector, τ , defines the infinitesimal precession rule which governs the

behavior of the output polarization state, s, with a variation in the frequency:

ds

dω
= τ × s , (1.4)

where “×” denotes the usual cross product in three-dimensional space. We note that

although the PMD vector is stationary to first order, this does not mean that it is

frequency independent. Because the output PSP must be stationary to first order at

every frequency, the corresponding input PSP has to change with frequency to account

for the precession difference about the birefringent axis and this results in a frequency

dependent PMD vector which is denoted with τ (ω). This frequency dependency is

the source of the so-called higher order PMD effects.

Another way of connecting the two formalisms of polarization is the spin-vector

calculus of polarization [2]. This treatment reshapes the equations (1.3) with the

Pauli spin vector, ~σ:

s =








s1

s2

s3








=








〈s|σ1|s〉
〈s|σ2|s〉
〈s|σ3|s〉








= 〈s|~σ|s〉 , (1.5)

where s is the normalized three-dimensional Stokes vector and |s〉 is the Jones vector.
Here we use the bra-ket notation to conform with the existing literature as well as

to clarify the distinction between vectors in Jones and Stokes spaces. The 2× 2 spin
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matrices in (1.5) are given by

σ1 =




1 0

0 −1



 ; σ2 =




0 1

1 0



 ; σ3 =




0 −j

j 0



 . (1.6)

Within this framework, the reciprocal conversion from a Stokes vector to a Jones

vector can be written as the eigenvalue equation

s · ~σ|s〉 = |s〉 . (1.7)

The dot product in the above equation is defined as the traceless Hermitian matrix,

s · ~σ = s1σ1 + s2σ2 + s3σ3

=




s1 s2 − js3

s2 + js3 −s1



 . (1.8)

This matrix is very closely related to the so-called PMD operator which describes

the transformation of an arbitrary input polarization state at the output of an op-

tical fiber. Now we derive this connection which will also be useful in the systems

theoretical treatment of PMD.

1.2.2. The PMD Operator

The input-output relation of polarization modes in an optical fiber can be described

with the transformation equation

|t〉 = e−jφ0U|s〉 , (1.9)
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where U is a 2 × 2 unitary matrix such that UU∗ = I. The frequency derivative of

this equation consists of two delay terms

|t〉ω = (−jφ′
0U+Uω)e

−jφ0|s〉

= −j(φ′
0 + jUωU

∗)|t〉. (1.10)

The first term in (1.10) is the common phase delay, τ0 both polarization states undergo

and the second factor, which is called the PMD operator, determines the differential

group delay properties of the fiber. Since U is unitary we have UU∗ = I. Taking the

frequency derivative of this equation results in UωU
∗ = −UU∗

ω which implies that

the matrix jUωU
∗ is Hermitian. Using the Taylor expansion of det(U(ω + δω)) it

can also be shown that this matrix is traceless.

det(U(ω + δω)) ≈ det(U(ω)) = 1

≈ det(U+ δωUω)

= det(I+ δωUωU
∗) det(U)

= 1 + tr(UωU
∗)δω +O(δω2) (1.11)

Therefore for this first order approximation to hold the trace of UωU
∗ must be zero.

A Hermitian 2 × 2 matrix with zero trace has orthogonal eigenvectors and real

eigenvalues that are symmetrical about the origin. If we denote these eigenvalue-

eigenvector pairs by (±τ/2, |p±〉), we can equivalently express (1.10) as

|p±〉ω = −j(φ′
0 + jUωU

∗)|p±〉

= −j
(

φ′
0 ±

τ

2

)

|p±〉 (1.12)

Hence the total group delay for the two polarization components is τg = τ0 ± τ/2.
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Moreover, if we convert the frequency derivative to Stokes space we can see that,

pω = 〈pω|~σ|pω〉

= jτg〈p|~σ|p〉 − jτg〈p|~σ|p〉 = 0 , (1.13)

consequently the eigenvectors of jUωU
∗ are principal states of polarization with a

differential group delay, τ , between them that is equal to the distance of the corre-

sponding eigenvalues, i.e., the spacing of the matrix.

Lastly we investigate the connection between the PMD operator and the PMD

vector. Using equations (1.10) and (1.12) we can obtain the useful relationship

jUωU
∗ =

1

2
(τ · ~σ) . (1.14)

Furthermore, the precession rule in (1.4) can be derived if we consider how an arbitrary

output polarization state changes with frequency.

sω = 〈sω|~σ|s〉+ 〈s|~σ|sω〉

= j〈s|
(

τ0 +
1

2
(τ · ~σ)

)

~σ|s〉 − j〈s|~σ
(

τ0 +
1

2
(τ · ~σ)

)

~σ|s〉

=
j

2
〈s|(τ · ~σ)~σ − ~σ(τ · ~σ)|s〉

= 〈s|τ × ~σ|s〉 (1.15)

Equation (1.15) implies
dt

dω
= τ × s . (1.16)

1.2.3. PMD Vector Statistics

It can be shown theoretically as well as experimentally that the PMD vector, τ , is the

result of a random walk process in three-dimensional space and it can be expressed as

a variant of 3D Brownian motion. Therefore it has i.i.d. Gaussian vector components

with zero-mean and variance σ2 [19, 20].
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As it will be discussed in Chapter 2, an optical fiber, subject to polarization mode

dispersion, can be modeled as the concatenation of many statistically independent

birefringent sections. As the number of sections grow, the accuracy of the model

increases. High accuracy models can be constructed with one hundred to thousands

of sections. Using such a model we can reveal some of the relevant statistics of

the PMD vector in an experimental fashion and confirm their accordance with the

existing theoretical results. Moreover, with the help of these experiments we can lay

the groundwork for some of the statistical assumptions and approximations we will be

using in the development of PMD emulators. During the course of this investigation,

in order to determine the statistical properties of the fiber model, we will make use

of a fiber simulation with 200 sections and 4.5× 106 samples. The mean DGD of the

model is set to be 10 psec.

Although their marginal distributions are known, there is no theoretical result

about the joint distribution of the components of the PMD vector τ (ω) at different

frequencies. The marginals of these components are Gaussian and independent at the

same frequency. Figure 1.2 shows the contours of the joint distribution of the first

and second components of τ (ω) at the center frequency, ω = 0. The dotted lines are

the contours of a jointly Gaussian distribution fitted to the simulation data. In this

case, the covariance matrix is

C =




0.3943 0.0001

0.0001 0.3921



× 10−22

which is in agreement with the expected result.

On the other hand, one expects the ith component of τ to be dependent on the ith

component at another frequency. The joint distribution is again unknown but there is

evidence suggesting that it is not jointly Gaussian due to its frequency derivative not

being Gaussian [19]. This odd behavior of random variables with Gaussian marginals

not being jointly Gaussian can be seen in Figure 1.3. Although there is a clear

deviation from the fitted jointly Gaussian distribution the similarity between two
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Figure 1.2: Contour plot of joint probability density function of first and second
components of the PMD vectors at the frequency f = 0.

curves hints on a joint Gaussian approximation. The covariance matrix computed for

the fitted Gaussian this time is

C =




0.3943 0.2951

0.2951 0.3939



× 10−22 .

As a result of the Gaussianity of the PMD vector components the Euclidean norm

of τ has a Maxwellian distribution. A random variable W =
√
X2 + Y 2 + Z2 has

a Maxwellian distribution if the random variables X, Y and Z are i.i.d. zero-mean

Gaussians. The PDF of W is given by

fW (w) =

√

2

π

w2

σ3
e−w2/(2σ2) , (1.17)

where σ is the standard deviation of X, Y and Z. The mean of W is connected to σ

by

E[W ] =

√

8

π
σ (1.18)

Figure 1.4 shows the PDF and the complementary cumulative distribution function
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tribution function (CCDF) of Maxwellian random variable with mean 2. Both curves
are plotted in linear and logarithmic scales.
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(CCDF) of a Maxwellian distribution in linear as well as semi-logarithmic scale.
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Chapter 2

Models of PMD

2.1. Introduction

In the most general case, one uses coupled nonlinear Schrödinger equations to devise a

mathematical model of signal propagation in single mode optical fibers [21]. The first

part of this chapter discusses the continuous-time lumped model of PMD with a high

number of concatenated birefringent sections, which emerges from these equations

with the terms for the effects of chromatic dispersion and fiber nonlinearities removed.

In order to arrive at this final form, which we call the “full model”, the time-domain

representation of a PMD channel is first given with the corresponding differential

equations and the transition to a frequency-domain representation is then made using

a modified trapezoidal discretization scheme for the solution of these equations and

converting them into the Laplace domain. The treatment in this section is based on

the information in [18].

The second PMD model we present has its origins in the full model. In order to

address the emulator complexity problem, caused by the higher number of birefringent

sections in the full model, a model complexity reduction procedure was proposed in

[18]. This reduced complexity continuous-time model, which is our first step towards

PMD emulation, relies on Pade approximation and Krylov subspace techniques for
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model reduction such that it has significantly fewer birefringent sections than the full

model without losing the statistical properties of PMD channels. The results here

serve as a brief summary for the techniques developed in [18] and are given without

proof. Interested readers should refer to the original paper for details.

The third PMD model introduces the main contribution of this work which is a

discrete-time filter with low complexity that can be employed for PMD emulation

on DSPs. Our approach in this regard will be based on the exploitation of the

mathematical model corresponding to the PMD phenomenon. We will make use of the

fact that the PMD channels are generalized paraunitary channels, which means they

can be modeled by a lossless system with memory in combination with the frequency

independent loss factor. This fact enables the use of discrete time paraunitary filter

structures. First we will introduce the general paraunitary FIR filter before turning

our focus on the resulting structures concerning PMD computations. Lastly we will

present the inherent DGD statistics of paraunitary filters.

2.2. Continuous-Time Lumped Lossless Model

A light wave propagating in a single-mode optical fiber carries two orthogonal polar-

ization components. The complex envelops of the corresponding electric fields can be

described with the following coupled partial differential equations [22, 23]:

∂A (z, t)

∂z
= D

∂A (z, t)

∂t
+R (z) A (z, t) (2.1)

where t is time, z is the position along the propagation direction, with

A (z, t) = [A1 (z, t) A2 (z, t)]
T (2.2)

and

D =




0 0

0 −∆β



 . (2.3)
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The first term on the RHS of (2.1) expresses the time difference relationship of the

two polarization components, and the second term accounts for the coupling between

them. Because (2.1) represents a lossless two-dimensional system, R (z) in (2.1)

should be a skew-Hermitian, 2× 2 matrix, i.e., R = −R∗, where the superscript “∗”
denotes conjugate-transpose [22]. Furthermore this PDE represents a causal system

because of its retarded frame of reference that moves with the group velocity of the

faster polarization component. Hence the system described by (2.1) is a lossless,

causal, distributed, continuous-time system.

In order to obtain the evolution equations with respect to spatial parameter z, we

now define

B (z, t) := exp

[

−
∫ z

0

R (u) du

]

A (z, t) = exp [−Q (z)]A (z, t) , (2.4)

where Q(z) =
∫ z

0
R (u) du. Note that the matrices R(z) and Q(z) commute since

their product is Hermitian.

We differentiate (2.4) with respect to z

∂B (z, t)

∂z
= −R (z) B (z, t) + exp [−Q (z)]

∂A (z, t)

∂z
(2.5)

and substitute (2.1) in the above equation to obtain

∂B (z, t)

∂z
= −R (z) B (z, t) + exp [−Q (z)]

[

D
∂A (z, t)

∂t
+R (z) A (z, t)

]

= −R (z) B (z, t)+

exp [−Q (z)]

[

D exp [Q (z)]
∂B (z, t)

∂t
+R (z) exp [Q (z)]B (z, t)

]

= exp [−Q (z)]D exp [Q (z)]
∂B (z, t)

∂t

(2.6)

where we have used the commutativity of exp [−Q (z)] with R (z). We note here that

exp [Q (z)] = U (z) is a unitary matrix (i.e., U (z)∗ U (z) = I, which follows from the

fact that Q (z) is skew-Hermitian) and its inverse is given by exp [−Q (z)].
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We can now discretize (2.6) on the z-axis and obtain a continuous-time lumped

approximation of the original distributed system. Since the losslessness of the system

is paramount to us, the discretization scheme we use must preserve this property. The

modified trapezoidal scheme below satisfies this requirement if the granularity is fine

enough for two consecutive values of U(z) to be approximately equal.

B(z+∆z,t)−B(z,t)
∆z

=
∂

∂t
U (z)∗ DU (z)

[
B(z+∆z,t)+B(z,t)

2

]

(2.7)

Equation (2.7) implies,

B (z +∆z, t) =

[

I− ∆z
2

∂

∂t
U (z)∗ DU (z)

]−1

[

I+ ∆z
2

∂

∂t
U (z)∗ DU (z)

]

B (z, t)

(2.8)

where I is the 2× 2 identity matrix. This is the description of a linear time-invariant

LTI system that relates the individual building blocks (sections) of an optical fiber in

a recursive manner. Its transfer function can be written in the Laplace domain with

the complex frequency variable, s, as

HB
∆z (z, s) =

[
I− s∆z

2
U (z)∗ DU (z)

]−1 [
I+ s∆z

2
U (z)∗ DU (z)

]
, (2.9)

where

B (z +∆z, s) = HB
∆z (z, s) B (z, s) (2.10)

and B (z, s) is the Laplace transform of B (z, t) with respect to t.

Keeping in mind that U(z) is unitary, the transfer function above can be written

as

HB
∆z (z, s) = U (z)∗




1 0

0
1−s∆z

2
∆β

1+s∆z
2
∆β



U (z) . (2.11)

It is easily verified that this transfer function is lossless since the entries of the 2× 2

matrix in the middle are all-pass systems. At this point we can build a multi-section
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system of length L by cascading one-section (not necessarily of equal length) transfer

functions in the form of (2.11).

HB (L, s) =
N−1∏

k=0






U (zk)

∗




1 0

0
1−s

∆zk
2

∆β

1+s
∆zk
2

∆β



U (zk)






(2.12)

where

B (L, s) = HB (L, s) B (0, s) (2.13)

and ∆zk = zk+1 − zk, with z0 = 0 and zN = L. With these transfer functions, the

expression for the Laplace transform of the complex envelopes of the two orthogonal

polarization components, A (z, t), becomes

HA (L, s) = U (L) HB (L, s) U (0)∗ (2.14)

where

A (L, s) = HA (L, s) A (0, s) . (2.15)

We note that

HB (L, s = 0) = I, HA (L, s = 0) = U (L) U (0)∗ . (2.16)

Since the two transfer functions HA (L, s) and HB (L, s) are linked with a frequency

independent transformation, we will treat HB (L, s) as the sole fiber transfer function

and omit the superscript ”B” from now on.

The expression in (2.12) serves as a realistic computational model of an optical

fiber if the number of sections, N , is high and its parameters are sampled uniformly

and independently. In this case it can be used for simulations in order to determine

the characteristics of a real fiber. In fact this model has the same structure with

the commonly used fiber model consisting of concatenated birefringent sections with

random phase retardations and relative orientations among each other. This can be

seen from the fact that the all-pass transfer functions in (2.12) correspond to first-
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order Pade approximations of an ideal continuous-time delay exp(−sτ) [24]:

exp (−s∆z∆β) ≈ 1− s∆z
2
∆β

1 + s∆z
2
∆β

(2.17)

where

τ = ∆z∆β (2.18)

Another way to express the overall fiber transfer function is to use the orthogonal

columns of the unitary matrix U(zk)
∗ = U∗

k = [ûk uk] which resembles the form of

the models that will be the subject of further discussion on reduced complexity PMD

emulation models:

Hk(s) = I− 2s

s+ αk

uku
∗
k = (I− 2uku

∗
k) +

2αk

s+ αk

uku
∗
k (2.19)

with αk = 2/τk. The equivalence of both forms follows from the fact that {αk−s
αk+s

,uk}
and {1,uk} are eigenvalue-eigenvector pairs of Hk. The losslessness of this system

can be verified by testing that Hk(s)
∗Hk(s) = I for all real s and because these

transfer functions are rational matrix functions, they represent lumped continuous-

time systems [25]. In the course of the further discussion this computational model

of an optical fiber will be called the “full model”.

2.3. Reduced Complexity Continuous-Time Model

A single birefringent section can be represented in Laplace domain as a 2× 2 transfer

function given in equation (2.19). Here αk = 2/τk is a real scalar parameter deter-

mining the phase retardation of the section with τk as the differential group delay

of that section. This transfer function can be converted into two-input, two-output

state-space form as
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d

dt
xk(t) = −αkxk(t) + u∗

kik(t)

yk(t) = 2αkukxk(t) + (I− 2uku
∗
k)ik(t) , (2.20)

with xk as the scalar state-space variable and 2× 1 input and output vectors ik and

yk respectively.

The concatenation of N such sections can be represented in frequency domain

with a product of transfer functions of the form (2.19) and in state-space form as

d

dt
x(t) = Ax(t) + Bi(t)

y(t) = Cx(t) + Di(t) , (2.21)

where x = [x0 x1 . . . xN−1]
T and A, B are N ×N and N × 1 matrices respectively.

At this point, model reduction techniques can be employed to obtain a reduced

dimension, smaller system

d

dt
x̃(t) = Ãx̃(t) + B̃i(t)

y(t) = C̃x̃(t) + D̃i(t) . (2.22)

This new system can then be transferred back to the Laplace domain as the

product of degree-one lossless rational matrix transfer functions to obtain,

Hk(s) = I− 2αk

αk − jβk

uku
∗
k +

2αk

s+ αk + jβk

αk + jβk

αk − jβk

uku
∗
k , (2.23)

where j =
√
−1, u∗u = 1, and αk and βk are real scalars. Equation (2.23) differs from

(2.19) in that its pole is not required to be real. These poles of the individual sections

will assume different locations on the complex plane to approximate the behavior of
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the full model. In [18] experiments were conducted with a full model of 200 section

and several reduced models with dimensions ranging from two to sixteen. The result

of a Monte Carlo simulation, in which the reduction algorithm was applied to 40000

random realizations of the full model, showed that the poles of the reduced models are

complex and their approximate locations are distributed on an half-ellipse centered

at the origin of the complex plane. This ellipse corresponds to the pole locations of

the Pade approximation of an ideal delay, e−Ts, where T is the total maximum DGD

obtainable from the full model.

This fact enabled the authors [18] to generate random realizations of the reduced

model directly by holding those pole locations fixed, and randomly sampling the unit

vector uk in (2.23). It was also observed that sampling the unit vectors uniformly

and independently among sections of the reduced model, as it was done for the full

model, does not produce the correct DGD statistics, which are expected to be fre-

quency independent. The required dependency structure for the sampling of uk was

introduced implicitly by using Markov chain Monte Carlo (MCMC) methods, specif-

ically the Metropolis-Hastings algorithm. This technique was shown to result in the

correct mean and standard deviation values for the DGD with small deviations from

the desired values.

Later in Section 4.2 it will be shown that these results can be improved by intro-

ducing a modification to the Metropolis-Hastings algorithm. This modification not

only produces better approximations for the mean and the standard deviation of the

DGD but also closely matches its Maxwellian PDF.

2.4. Discrete Time Lossless Model

2.4.1. Paraunitary FIR Filters

A matrix transfer function H(z) is said to be paraunitary if the following holds[26]:

H∗(z−∗)H(z) = c2Ir ∀z. (2.24)
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Here, Ir is the r × r identity matrix and c is a scalar constant.

If all the entries of H are stable transfer functions and equation (2.24) is satisfied

with c = 1, then H is unitary on the unit circle and therefore corresponds to a

lossless LTI system. Conversely, it can be shown that for rational transfer functions,

the unitariness of H(ejω) for all ω implies (2.24) with c = 1. Hence a lossless system

can be defined as a causal, stable paraunitary system [27]. Since FIR filters are

inherently stable, from now on the terms “lossless” and “paraunitary” will be used

interchangeably for causal systems.

A general M ×M degree-one lossless transfer function can be written as [27],

Hi(z) = [I− viv
∗
i + z−1viv

∗
i ]Hi(1) . (2.25)

Here, vi is a complex M×1 vector of unit norm and Hi(1) is a unitary matrix. It can

easily be verified that this transfer function is paraunitary. The extension to higher

degree systems follows naturally with the concatenation of such degree-one blocks and

a multiplication with a constant unitary matrix R.

H(z) = H1(z)H2(z) . . .HN(z)R (2.26)

Note that every lossless transfer function can be expressed in this form and this

factorization is not unique.

In PMD related calculations we will be dealing with 2 × 2 paraunitary transfer

functions that act on 2 × 1 vector valued time series consisting of two orthogonal

polarization directions of the transmitted signal. In this regard the DGD can be de-

fined using the expression in (2.26). The distance between the fast and slow principal

states of polarisation (PSP) can be expressed as the difference [3]

τ(ω) = |ℑ{λ1[G(ejω)]− λ2[G(ejω)]}| ,

where ℑ{λi[G(ejω)]} denotes the imaginary part of the ith eigenvalue of G(ejω) and,
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G(ejω) =
dH(ejω)

dω
H∗(ejω). (2.27)

If we now substitute equation (2.26) in (2.27) we get

G(ejω) = −j
N∑

i=1

i∏

j=1

Hj−1viv
∗
iH

∗
j−1 , (2.28)

with H0 = I2. This expression can be greatly simplified for ω = 0 if we set Hk(1) = I2

for all k. The DGD of the fiber, τ(ω), evaluated at the center frequency can in this

case be computed to be the difference between the two eigenvalues of the positive

definite matrix VV∗ with V = [v1v2 . . .vN ]. Calculating the eigenvalues of this

matrix results in a quadratic equation, and twice the discriminant of this equation

gives us the difference between the two eigenvalues.

τ(0) =
√

(a− b)2 + 4cc∗ (2.29)

where,

jG(1) =




a c

c∗ b



 , vi =




αi

βi



 ,

a =
∑N

i=1 |αi|2

b =
∑N

i=1 |βi|2 = N − a

c =
∑N

i=1 αiβ
∗
i

. (2.30)

2.4.2. DGD Statistics of Paraunitary Filters

As a reference point and motivation for further discussion, we investigate the statisti-

cal behavior of an ensemble of paraunitary filters when their parameters are sampled

uniformly and independently. The structure of paraunitary FIR filters as concate-

nation of degree-one building blocks is similar to the continuous time lumped model

of optical fibers discussed in Section 2.2 and their DGD distribution, therefore, re-

sembles a real fiber. However, two important hurdles limit this resemblance: The

mean DGD of filters tailored with this selection method is determined only by the
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Figure 2.1: Probability density functions of the DGD for various number of sections
(numbers at the end of the curves) for i.i.d. uniform filter parameters.

number of degree-one sections and is not adjustable which is a crucial feature for a

PMD emulator. Furthermore, the probability density functions deviate heavily from

the desired curves particularly in the tails which correspond to high DGD cases and

are consequently of primary importance for system outage probability considerations.

The results for the DGD distribution are given in Figure 2.1 for the uniform i.i.d.

parameter sampling method:

αi =
√

Xie
j2πYi βi =

√

1− |αi|2 =
√

1−Xi ,

where Xi and Yi are uniformly distributed in [0, 1] and independent among themselves

as well as among each other. The distribution of the DGD has been computed for

different number of sections, N = 10 to N = 30 with 109 samples and compared with

the expected Maxwellian distributions with the same mean as the generated data set.

Although the PDF deviation becomes less prominent as N increases, the impact of

a high number of sections on the computational complexity of the emulator renders

this property unusable for our purposes.

Together with equation (2.29), (2.30) and the parameter selection method above
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the expression for the DGD becomes

τ =
√

(a− b)2 + 4cc∗

=
√

(2a−N)2 + (2ℜ{c})2 + (2ℑ{c})2 (2.31)

=





(

2
N∑

i=1

Xi −N

)2

+

(

2
N∑

i=1

√

Xi −X2
i cos(2πYi)

)2

+

(

2
N∑

i=1

√

Xi −X2
i sin(2πYi)

)2




1
2

Remembering that the Maxwellian distribution can be expressed as the square root

of sum of squares of three independent zero-mean Gaussian random variables with

the same variance, the above expression can be used to verify that the distribution

of τ indeed approximates a Maxwellian distribution. This is achieved invoking the

central limit theorem on each of the three summations of length N . The first term,

2
∑N

i=1 Xi −N , is zero-mean. Because Xi are independent the total random variable

2a−N has the sum of variances of Xi as its variance.

var(2a−N) = 4Nvar(Xi −
1

2
) =

N

3

It is again straightforward to calculate the mean and the variance of the second

and the third term of the sum. BecauseXi are independent among each other and also

independent of Yi one can see that ℜ{c} is again zero mean because of the symmetry

of the PDF of cos(2πYi) around zero. Furthermore the variance of 2ℜ{c} can be

computed as

var(2ℜ{c}) = Nvar

(

2
√

Xi −X2
i

)

var(cos(2πYi)) = 4N

(
1

2
− 1

3

)
1

2
=

N

3
.

The same applies for 2ℑ{c} and hence the total random variable τ consists of three

approximately normally distributed random variables with µ ≈ 0 and σ2 ≈ N/3. This

enables us to compute the expected mean of τ as

τ̄ ≈
√

8

π
σ =

√

8

3π
N . (2.32)
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These results are valid for the center frequency, ω = 0 but can be extended to other

frequencies. Further investigation reveals that this extension is justified for uniform

i.i.d. parameter selection since there is no bias for any specific frequency point.

More in depth discussion of innate statistical properties of PMD emulators with

i.i.d. uniform parameters including the derivation of the exact DGD distribution and

examination of the deviation from the Maxwellian is outside of the scope of this work,

but can be found in [28].

2.5. Conclusion

As the first step towards PMD emulation, we have presented three different models

of an optical fiber suffering from PMD. The first one, the full model, serves as a

mathematical abstraction of a real fiber. Its complicated structure due to its high

number of concatenated birefringent sections enables this model to capture the statis-

tical properties of PMD perfectly without any specially tailored parameter sampling

scheme, while rendering its use as a PMD emulator impossible because of its high

computational complexity.

The second model, the continuous-time reduced complexity model, springs from

the necessity to reduce the model complexity of the full model. This is accomplished

with a model order reduction scheme using Pade approximations and Krylov subspace

techniques. The effect of this transformation on the model structure is that the poles

of individual sections become complex-valued as opposed to equal-valued real poles

of the model which in turn results in sections being of different lengths. For an en-

semble of different reduced complexity models obtained by applying model reduction

to a batch of full models, these poles are distributed approximately on a half ellipse

on the LHS of the complex plane that represents the pole-locations of the Pade ap-

proximation of an ideal delay. This fact will be used as the basis for the parameter

sampling method for this model to obtain the desired statistical properties.

The third model we presented constitutes the main contribution of this work.
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The lossless nature of an optical fiber with PMD enables one to use discrete-time

paraunitary FIR filters to represent such a system in a form that can be implemented

on DSPs. These filters are built with two-input two-output sections of equal delays.

When its parameters are sampled uniformly and independently, such a structure

exhibits statistical properties close to those of the full model but suffers from an

unadjustable mean DGD value that only depends on the number of sections and

large deviations of the PDFs from the desired curves in their tail regions. Methods

to remedy this discrepancy will be the main subject of the remainder of this work.
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Chapter 3

Random Input Sampling for Complex

Models Using Markov Chain Monte Carlo

3.1. Introduction

Most algorithms employed to sample from complicated probability distributions such

as rejection sampling and importance sampling assume full knowledge of the target

density [29]. Contrary to these approaches Markov Chain Monte Carlo (MCMC)

methods can be used to sample from distributions for which the form of the density

function is known, but the function value itself can only be evaluated up to a scalar

constant. The versatility of MCMC algorithms make them powerful tools for com-

plicated sampling problems. In this chapter we develop a general method for later

implementation in the parameter sampling problem for PMD emulators.

MCMC algorithms devise a Markov chain on the sample space of a general vector

random variable. In typical settings the probability density function of the distribu-

tion can only be evaluated up to a normalizing constant. The common Metropolis

algorithm [30] starts with an initial state and generates samples of the random vari-

able iteratively. At every step of the procedure a new state is proposed according to

some proposal distribution. This proposal state is then accepted with a probability
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determined by the ratio of the PDF values for the new state and the old state. Be-

cause the accept-reject rule only requires the evaluation of the ratio of the probability

densities for the proposed and the old state, it is sufficient to know the target PDF

up to a scalar constant. The sole restriction of the Metropolis algorithm is that the

proposal density is symmetric and simple enough to sample directly.

One generalization of the Metropolis algorithm is the Metropolis-Hastings algo-

rithm [31] which can employ non-symmetric proposal densities. To achieve this, the

acceptance probability is modified to incorporate a ratio of the proposal density val-

ues.

MCMC methods are very general tools in regard to dealing with intractable prob-

abilistic settings. This generality allows MCMC to be integrated into many practical

problems in diverse fields like computational biology [32], statistical physics [33], ran-

dom number generation [34, 35], artificial intelligence [36] and many more. A review

for the applications of MCMC can be found in [37].

One of these broad applications deals with the model selection problem where one

tries to choose a model among many competing models that is more likely to have

generated the given probabilistic output data [38]. In this chapter we investigate a

related problem in which the model that generates the given data is fixed, but accepts

a random input with an unknown PDF. This situation arises naturally in the context

of complex models which accept random inputs either as the data to be processed or

as random model parameters. The realization of these models in practice can be in

various ways such as lengthy and complicated computer routines, a set of involved

mathematical equations or any kind of black box evaluation. Nevertheless they can be

viewed as a mapping of random variables as illustrated in figure 3.1. If h : Rn → R
m

is a multi-valued function of multiple variables with Y = h(X) and its inverse h−1

does not exist or cannot be computed analytically then the question arises: How does

one choose X, for Y to have the desired probability density fYd?

The answer to this question is not straightforward. First of all, generally h is very

complicated and all we have at our disposal is some kind of routine that evaluates
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Figure 3.1: Graphical representation of a deterministic mapping with random input
and output. The output of the complex system h, Y = h(X), is a random vector of
dimension two while the input X is a random vector with three dimensions.

it for a given input. Therefore the unknown density of X can be computed through

the inverse mapping only in special cases where h is known explicitly and m = n

with the Jacobian of h globally invertible. The use of standard sampling algorithms

including MCMC to sample X is for this reason not possible. Additionally more than

one input distribution can generate the desired output distribution creating an issue

of non-uniqueness.

In order to address this problem we first review some Markov chain and MCMC

theory then we provide a detailed description of the problem at hand and a toy exam-

ple to demonstrate the concept before proceeding to develop a solution. Finally we

conclude our discussion with a numerical example of a stochastic differential equation

(SDE) and demonstrate how our method can be used to sample from the space of

solution paths to this equation.

3.2. Background

In this section we present some elementary Markov chain and MCMC theory which

will be required for later discussion.

Definition 2. A sequence of indexed random variables Xi, i ∈ N is called a Markov



Chapter 3: Input Sampling for Complex Models using MCMC 33

chain if the following property holds for every measurable set A ⊆ R
n

Pr(Xi+1 ∈ A|Xi,Xi−1, . . . ,X0) = Pr(Xi+1 ∈ A|Xi) . (3.1)

T (x,A) = Pr(Xi+1 ∈ A|Xi = x) is called its transition kernel with the transition

density τ(x,x′), where

T (x,A) =

∫

A

τ(x,x′)dx′, x ∈ R
n (3.2)

Definition 3. f(x) is called a stationary distribution of the Markov chain if it satisfies

f(x′) =

∫

Rn

f(x)τ(x,x′)dx . (3.3)

Lemma 1. A sufficient condition for f(x) to be a stationary distribution of the

Markov chain Xi is the detailed balance equation:

f(x)τ(x,x′) = f(x′)τ(x′,x), x,x′ ∈ R
n . (3.4)

Proof. Integrating both sides of equation (3.4) and using definition 3,

∫

Rn

f(x)τ(x,x′)dx =

∫

Rn

f(x′)τ(x′,x)dx

= f(x′)

∫

Rn

τ(x′,x)dx

= f(x′) (3.5)

Note that lemma 1 gives a sufficient condition, and the necessary condition is

much looser [39]. Furthermore under certain conditions the stationary distribution is

unique [40].

Above definitions and lemma 1 are sufficient to describe the Metropolis-Hastings
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(and the Metropolis algorithm as its special case) in a formal way. Given a target

distribution f(x) for the random vectorX the strategy of the algorithm is to construct

a Markov chain on the state space of interest, Rn, and choose a transition kernel such

that the Markov chain has f(x) as its stationary distribution. This is accomplished

in two stages. At the first stage the procedure takes a random step in the state space

according to some proposal density p(x,x′) which describes the probability of moving

from the state, Xi = x, to the next one, Xi+1 = x′. Most common choice for p uses

a form of increment on x such that x′ = x + ∆x. Commonly used densities for the

random increment ∆x are tractable ones like the uniform and the Gaussian density.

At the second stage of the algorithm a decision is made whether the chain will advance

to x′ as its next state or stay at x. The decision mechanism uses the ratio f(x′)
f(x)

in the

decision rule

α(x,x′) = min

(

1,
f(x′)

f(x)

p(x′,x)

p(x,x′)

)

(3.6)

which gives the acceptance probability of the proposed move. After evaluating the

accept-reject ratio, a random number u is sampled according to a standard uniform

distribution and the move is accepted if u ≤ α(x,x′). If the proposed state is not

accepted the Markov chain remains in its previous state. Theorem 1 shows that the

distribution of the samples taken in this way indeed converges to f(x).

Theorem 1. The transition kernel of the Metropolis-Hastings algorithm satisfies the

detailed balance condition and f(x) is the stationary distribution of the resulting

Markov chain.

Proof. The transition kernel T (x,A) can be written as the sum of two probabilities:

The probability of an accepted step to a point x′ inA and the probability of a rejection

while the point x lies in A.

T (x,A) =

∫

A

p(x,x′)α(x,x′)dx′ + 1{x∈A}

∫

Ω

p(x,x′)(1− α(x,x′))dx′
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Hence the transition density is given by

τ(x,x′) = p(x,x′)α(x,x′) + δx(x
′)r(x) ,

where δx(x
′) is the point mass at x and r(x) = 1 −

∫

Ω
α(x,x′)p(x,x′)dx′ is the

probability that the chain does not leave its current position x.

Lemma 1 gives us a way of checking whether this transition kernel has the desired

PDF as its stationary distribution. If we now check if equation (3.4) is satisfied we

find for the first summand of the transition density

f(x)p(x,x′)α(x,x′) = f(x)p(x,x′)min

(

1,
f(x′)

f(x)

p(x′,x)

p(x,x′)

)

= min (f(x)p(x,x′), f(x′)p(x′,x))

= min

(
f(x)p(x,x′)

f(x′)p(x′,x)
, 1

)

f(x′)p(x′,x)

= f(x′)p(x′,x)α(x′,x) . (3.7)

Finally for the second summand the requirement is trivially satisfied

δx(x
′)r(x) = δx′(x)r(x′) ,

and this completes the proof.

Further discussion of Markov chain and MCMC theory is outside the scope of this

work but excellent material on this subject can be found in [41] and [42].

3.3. An Illustrative Example

Now let us recap the problem described in the introduction. Suppose we are given a

general many-to-one, non-isometric map h : Rn → R
m which maps a random vector

X to another random vector Y = h(X) where X ∈ R
n, Y ∈ R

m and let fYd be the

desired probability density of Y. Given fYd how must fX be chosen such that the
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transformed variable Y = h(X) has the desired PDF?

Given this setting one might be tempted to construct a Markov chain in the space

of the input variables to sample X while evaluating the accept-reject rule probabilities

of the Metropolis-Hastings algorithm in the space of the random output vector Y.

As the following toy-example illustrates, this method does not result in a Markov

chain in the space of input variables with the desired stationary distribution fYd of

the output variables.

Figure 3.2: A toy-example
to illustrate the problem of
mapping the state variables X
to another random variable Y
with the desired probability
distribution fY d.

Figure 3.2 describes a discrete state space con-

sisting of three states A = {X1, X2, X3}. The arrows
represent a many-to-one function h : A → B with

h(X1) = Y1 and h(X2) = h(X3) = Y2 and Y1, Y2 ∈ B.
It is of no importance if B is discrete or continu-

ous but the range of h is discrete for obvious rea-

sons. The desired distribution of Y is fY d(Y1) = 0.9

and fY d(Y2) = 0.1. The results about Markov chains

and the Metropolis-Hastings algorithm given in sec-

tion 3.2 can easily be adopted to general finite state

spaces and to this specific example.

Now suppose that we are running the Metropolis

algorithm on A with a symmetric proposal distri-

bution P . For the current state Xi a new state is

proposed according to the rule

Pr(Xj|Xi) = P (Xi, Xj) =







1
2

if i 6= j

0 if i = j

.

Together with the accept-reject rule of the Metropolis algorithm, this results in a

Markov chain with the transition probabilities T (Xi, Xj) = P (Xi, Xj)min(1,
fY d(h(Xj))

fY d(h(Xi))
)

for i 6= j and the transition probability matrix



Chapter 3: Input Sampling for Complex Models using MCMC 37

T =








16
18

1
18

1
18

1
2

0 1
2

1
2

1
2

0








(3.8)

The left eigenvector of this matrix that corresponds to the eigenvalue 1 gives us the

stationary distribution of the chain, which is ( 9
11
, 1
11
, 1
11
). It can be easily seen that this

distribution does not provide the desired stationary distribution on the range of h. In

fact this distribution corresponds to a function h′ which maps X3 to a different value

h′(X3) which has the same probability as h′(X2). This behaviour can also be observed

with the more general Metropolis-Hastings algorithm by choosing a non-symmetric

proposal distribution and applying the corresponding accept-reject rule.

This toy-example illustrates clearly that to address the problem of creating the

target probability density fYd we have to take the properties of the mapping h into

account and modify the Metropolis-Hastings algorithm accordingly.

3.4. Modification of MCMC with a Probing Term

The reason that the above example fails to converge to the desired stationary distribu-

tion fY d lies within the properties of the general mapping h. First h is not one-to-one

and hence the probability of a state Yi appearing in the chain on B depends on the

probability of all the states Xj on the space of inputs for which h(Xj) = Yi holds.

Additionally for the continuous case, even if h was one-to-one it would not necessarily

be an isometry so that volumes are distorted under the mapping creating a similar

effect on the stationary distribution. In this section we develop a method to over-

come the shortcomings of MCMC sampling for the problem described in the previous

section.

In this context for the general case we first implement a probing procedure for the

mapping h by using the output distribution that results when the input parameters

are sampled uniformly and independently. Then we show that a modification of the
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target density with this uniform output density can be used in the space of parameters

for the accept-reject rule in MCMC to achieve the desired density fYd on the range

of h.

Theorem 2. Let U be a uniform random vector on the probability space (Ω, F , FU)

where Ω is a bounded subset of Rn such that fU(u1) = fU(u2) for all u1,u2 ∈ Ω

with fU as the probability density function of the cumulative distribution function

FU. And let h : Rn → R
m be a mapping satisfying the required regularity conditions

such that (Ω′, F ′) with Ω′ = h(Ω) is the induced sample space by h and the associated

σ-algebra. Then a random variable X ∈ R
n constructs another random variable

Y = h(X), Y ∈ R
m with the desired probability density fYd if X has the unnormalized

probability density

fX(x) ∝
fYd(h(x))

fQ(h(x))

where fQ is the probability density of the transformed random variable Q = h(U).

Proof. Consider the bounded sample space Ω ⊆ R
n, Ω = [α1, β1] × [α2, β2] × · · · ×

[αn, βn] in which we assume fQ is strictly positive. For the cumulative distribution

function of Q we get

FQ(q) = Pr(Q ≤ q) = Pr({u : u ∈ Ω, h(u) ≤ q}) . (3.9)

which can be written with the indicator function as

FQ(q) =

∫

Ω

1{u:h(u)≤q}fU(u)du (3.10)

Note that the indicator function in equation (3.10) can be expressed with the com-

ponents of the random vector q and the function h as

1{u:h(u)≤q} = s(q1 − h1(u))s(q2 − h2(u)) . . . s(qm − hm(u)) (3.11)

where s is the unit step function.
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The PDF of Q is given by fQ(q) =
∂mFQ(q)

∂q1∂q2...∂qm
. Using generalized functions and

equation (3.11) we can write this expression as

fQ(q) =

∫

Ω

δ(q1 − h1(u))δ(q2 − h2(u)) . . . δ(qm − hm(u))fU(u)du

∝
β1∫

α1

β2∫

α2

. . .

βn∫

αn

δ(q1 − h1(u))δ(q2 − h2(u)) . . . δ(qm − hm(u))du (3.12)

If we now set the distribution of the input random variable X proportional to the

ratio of the desired distribution of Y and the distribution of Q,

fX(x) ∝
fYd(h(x))

fQ(h(x))
(3.13)

we have for the cumulative distribution function of Y = h(X)

FY(y) = Pr(Y ≤ y)

= Pr({x : x ∈ Ω, h(x) ≤ y})

=

∫

Ω

1{x:h(x)≤y}fX(x)dx

=

∫

Ω

1{x:h(x)≤y}
fYd(h(x))

fQ(h(x))
dx . (3.14)

Finally we have for the output probability density,
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fY(y) =
∂m

∂y1∂y2 . . . ∂ym
FY(y)

∝
β1∫

α1

β2∫

α2

. . .

βn∫

αn

δ(y1 − h1(x))δ(y2 − h2(x)) . . . δ(ym − hm(x))
fYd(h(x))

fQ(h(x))
dx

∝ fYd(y)

fQ(y)

∫

Ω

δ(y − h(x))dx

︸ ︷︷ ︸

fQ(y)

∝ fYd(y) (3.15)

Since both are normalized probability densities fY = fYd holds and the distribution

of the image of samples on R
n will be equal to the desired distribution on R

m.

Theorem 2 shows that we can find the distribution of a random variable X that

gives us the desired density fYd through the mapping h provided that we know the uni-

form input distribution fQ. This can be accomplished by modifying the Metropolis-

Hastings accept-reject rule in (3.6) as

α(x,x′) = min

(

1,
fYd(h(x

′))

fYd(h(x))

p(x′,x)

p(x,x′)

fQ(h(x))

fQ(h(x′))

)

. (3.16)

Note that Theorem 2 assumes a bounded support for the uniformly sampled ran-

dom vector Q, with Ω = [α1, β1]× [α2, β2]× · · · × [αn, βn]. This assumption implies

that the support of the input vector X is equal to or a subset of Ω. Therefore in case

X has unbounded support, this technique will sample a truncated version of the input

random vector. Nevertheless practical difficulties caused by this fact can be overcome

with an adjustment of Ω which theoretically can be chosen arbitrarily large.

Furthermore Theorem 2 gives us only the unnormalized PDF which is sufficient to

sample X with MCMC. But the above method can be used irrespective of the specific

sampling method once this density is normalized. Hence we obtain a general method

to control the input of complex systems with prescribed random outputs.

In practical applications one will not always be able to compute fQ analytically.
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In these situations fQ will have to be substituted with an approximation f̂Q. For this

purpose one can use various density estimation schemes available. For large data sets

nonparametric schemes like kernel density estimators and nearest neighbour methods

[43] can be used. For other settings Bayesian schemes like the EM algorithm [44] can

be employed for inference.

3.5. An Application: Stochastic Differential Equations

In this section we demonstrate an example for our algorithm on stochastic differential

equations. In this case the model is given by a differential equation driven by random

noise and the input random variable takes the form of the solution to this equation.

Consider the one dimensional Itō stochastic differential equation

dXt = b(Xt, t)dt+ a(Xt, t)dWt , 0 ≤ t ≤ T (3.17)

X0 = c

where a, b : R× [0, T ] → R are measurable functions and Wt is the Wiener process.

A numerical treatment of this equation can be done by discretization using the

simple Euler scheme.

Xi+1 = Xi + b(Xi, ti)∆t+ a(Xi, ti)∆Wi , 0 = t0 ≤ t1 ≤ · · · ≤ tN = T (3.18)

We now set ∆Xi = Xi − Xi−1 and define the random vectors

∆X = (∆X1,∆X2, . . . ,∆XN)
T and Y = h(∆X) = (Y1, Y2, . . . , YN)

T with

Yi =
∆Xi − b(Xi−1, ti−1)∆t

a(Xi−1, ti−1)
= ∆Wi−1 (3.19)

Note that ∆X together with X0 completely determines the sample path. Hence if
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we can sample ∆X such that it satisfies equation (3.18), that means we can generate

a solution path to the stochastic differential equation. The distribution of ∆X is

unknown but we know that Y is a Gaussian random vector with i.i.d. zero mean

components with variance ∆t. Using this fact we can employ the modified MCMC

algorithm to sample solution paths.

For this general class of stochastic differential equations we can obtain the PDF

of the output vector when the input random variables are sampled uniformly. First

we derive the expression of the joint output distribution for the uniformly sampled

input variables. Let ∆U ∈ R
N be a random vector with i.i.d. components distributed

uniformly in [−ρ, ρ] and Q = h(∆U) ∈ R
N another random vector with the joint

PDF fQ. We can express fQ as the product of conditional PDFs as follows.

fQ(q) = fQ(q1, q2, . . . , qN) = f(q1)f(q2|q1) . . . f(qN |qN−1, qN−2, . . . , q1) (3.20)

It can easily be seen from equation (3.19) that each of these conditional PDFs are

uniform in a range determined by the previous values of qi. Particularly since

Qi =
∆Ui − b(Ui−1, ti−1)∆t

a(Ui−1, ti−1)
, Uk = Uk−1 +∆Uk

we have

f(qi|qi−1, qi−2, . . . , q1) = f(qi|ui−1, ui−2, . . . , u1, u0)

∝ |ai−1|
[

s
(

qi −
−ρ− bi−1

|ai−1|
)

− s
(

qi −
ρ− bi−1

|ai−1|
)]

(3.21)

where ak = a(uk, tk), bk = b(uk, tk) and s is the step function. Now we can write the

joint density function.
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fQ(q1, q2, . . . , qN) ∝







N−1∏

i=0

|ai| if qi ∈
[
−ρ−bi−1

|ai−1| , ρ−bi−1

|ai−1|

]

∀i ∈ {1, 2, . . . , N}

0 o.w.

(3.22)

As discussed in the previous section, the restriction of ∆Ui in [−ρ, ρ] is a practical

necessity and does not create any problems in real world applications since ρ can be

chosen arbitrarily large, and the points where fQ is zero can be viewed as proposals

of impossible states and rejected immediately.

Combining equations (3.16) and (3.22) the whole accept-reject probability of the

MCMC algorithm can be written as

α(∆x,∆x′) = min

(

1,
fYd(h(∆x′))

fYd(h(∆x))

fQ(h(∆x))

fQ(h(∆x′))

)

(3.23)

with fYd(y) ∝ e−yTy/(2∆t).

As a numerical example for the above procedure consider the linear stochastic

differential equation

dXt = µXtdt+ σXtdWt , 0 ≤ t ≤ 1 (3.24)

X0 = 1

where µ and σ are scalar constants. This equation describes the geometric Brown-

ian motion [45] which finds applications in mathematical finance, particularly in the

Black-Scholes model of financial markets [46]. This is a good example for demonstra-

tion purposes because one can obtain its solution analytically. A stochastic process

satisfying equation (3.24) will have the form

Xt = X0e
(µ̂t+σWt) (3.25)

where µ̂ = µ− σ2

2
. It’s PDF has a lognormal distribution,
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Figure 3.3: Analytical probability density functions of Xt at t = 0.1, t= 0.5 and t=1
compared with the empirical PDFs of the simulation data.

fXt(x, t) =
1

σx
√
2πt

e−(lnx−lnX0)−µ̂t)2/(2σ2t) (3.26)

and the autocorrelation of Xt is given by

R(s, t) = eµ(s+t)(eσ
2 min (s,t) − 1) . (3.27)

Figures 3.3 and 3.4 display the results of a simulation with the modified MCMC

algorithm. The scalar constants in equation (3.24) were chosen as µ = 1 and σ = 0.5.

The time axis was divided in one hundred equal length intervals with ∆t = 0.01.

Initially 5.1× 106 samples were generated and the first 105 samples were discarded as

the burn-in length. For this setting ρ was chosen to be 2 and a uniform distribution

in [−0.2, 0.2] was used as the proposal distribution for ∆X. Figure 3.3 shows three

analytical PDFs at different time points compared with the empirical PDFs obtained

from the simulation data and figure 3.4 shows the normalized autocorrelation with

one time point held fixed and the second one varied between 0 and 1. These graphical

results verify that the sample paths built using our algorithm converge to the desired

stationary distribution and hence satisfy the given stochastic differential equation.
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with simulation data.

One noteworthy property of numerical solutions using the modified MCMC algo-

rithm is that all points of a sample path get sampled in parallel as opposed to classical

iterative methods such as the Euler-Maruyama scheme [47]. These methods usually

begin with the initial value X0, and sample later points of the solution path with an

iterative update rule given by the difference equation (3.18). For this reason dealing

with more complicated settings like stochastic boundary value problems of the form

dXt = b(Xt, t)dt+ a(Xt, t)dWt , 0 ≤ t ≤ T (3.28)

h(X0, XT ) = 0

becomes troublesome because the points of a sample path are not independent of

its future values. On the other hand the incorporation of boundary conditions to the

modified MCMC algorithm is straightforward since the points of the proposed sample

paths are obtained simultaneously with independent increments.
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3.6. Conclusion

We have presented a solution to the problem of input variable sampling for complex

stochastic models with prescribed output distribution. This approach is based on

a modification to the Metropolis-Hastings algorithm with an additional expression

which can be viewed as a probing term for the model of interest. Our algorithm is

easy to implement, benefits from the extensive literature on MCMC and hence we

believe that it can be adapted to a variety of applications. We have demonstrated

one such application on general stochastic differential equations viewing them from

the perspective of stochastic input-output models enabling us to apply our algorithm

to obtain solution paths. In the next chapter we will implement the compensated

MCMC algorithm to sample input parameters for continuous and discrete-time models

in order to generate the desired output statistics.

Although this treatment is based on MCMC, the approach taken to tackle the

input variable sampling problem does not require any specific sampling method to

be used. The algorithm presented here can be implemented equally well with other

sampling methods once the output distribution for uniformly sampled input variables

is worked out and therefore offers a fresh approach for dealing with general stochastic

models.
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Chapter 4

Parameter Sampling Methods for Ac-

curate PMD Emulation

4.1. Introduction

In Chapter 2 we have presented three different computational models of PMD, two

of which were of interest regarding PMD emulation, namely the reduced complexity

continuous-time model and the discrete-time paraunitary model. Although it was

mentioned several times that the uniform i.i.d. parameter sampling method for these

models does not produce correct PMD statistics, no remedy was offered for this

problem. In this chapter we investigate solution methods for the input parameter

sampling problem of PMD models.

We begin our treatment with the continuous-time reduced complexity model and

take up the problem where it was left off in [18]. Here, the authors fixed the pole

locations of the reduced model on a half ellipse and sampled the remaining parameters

of the model using MCMC. We show that this method results in suboptimal DGD

statistics and offer a solution which greatly improves the DGD PDFs of the model by

using compensated MCMC instead of the standard Metropolis-Hastings algorithm.

In the second part of this chapter we focus on the discrete time model and provide
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a more in depth treatment of the parameter sampling problem. The discussion in

Section 2.4.2 suggests that a different parameter sampling scheme must be imple-

mented in order to achieve accurate DGD statistics which is only the first step in

the construction of a PMD emulator since higher order statistics must be considered

as well. To this end, in this section we propose three different parameter sampling

methods for discrete time paraunitary FIR filters which can be used for more accurate

PMD emulation. From such an emulator we expect a Maxwellian DGD distribution

with an adjustable mean value and frequency independent behavior over the whole

frequency range of interest. In order to capture higher order effects, we also require a

good approximation of the frequency autocorrelation of the PMD vector [48]. With

respect to these performance criteria, the three random parameter sampling schemes

we propose can be listed and classified as follows:

• Cascading of two-section blocks: First order statistics matching.

• Compensated MCMC: Higher order statistics matching.

• Greedy paraunitary approximation algorithm: Transfer function match-

ing.

There is a direct link between this classification and the computational complexity

of the sampling schemes: The least “general” method is also the fastest.

4.2. Parameter Sampling for Reduced Complexity Continuous-

Time Models using Compensated MCMC

In order to create the required dependency structure among the random model pa-

rameters {u1,u2, . . . ,uN}, the standard Metropolis-Hastings algorithm starts with

an initial value for uk, k = 1 . . . N , and takes a random step in a subset of R3N by

randomly incrementing the components of the complex 2 × 1 unit vectors using a

symmetric proposal density. The new set of parameters, {ũ1, ũ2, . . . , ũN}, construct
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another model with different DGD values τ̃(ω). This step is then accepted with the

probability,

α = min

(

1,
K∏

i=1

fM(τ̃(ωi), τ̄)

fM(τ(ωi), τ̄)

)

, (4.1)

where fM(•, τ̄) denotes the Maxwellian PDF with mean τ̄ and ωi is the i
th frequency

point. Note that in (4.1) the term with the proposal densities was left out because

of the symmetry of the proposal distribution. If the proposed step is rejected, the

algorithm stays at the same values of uk, and sets the new sample of model parameters

equal to the previous one. In (4.1) the frequency axis is discretized in such a way

that the frequency points are well separated from each other to be approximately

independent. Therefore their joint DGD distribution can be written as the product

of marginal PDFs.

The distribution of the samples generated in this way is expected to converge

to the desired stationary distribution fM . It was argued in the previous section

that the stationary distribution of the above Markov chain deviates from the desired

distribution because of the mapping between the random variables (uk’s) lying in the

space of the random walk, and the random variable (DGD) the accept-reject rule in

(4.1) is based on. In order to compensate for this discrepancy, we use the modified

accept-reject rule in (4.16). The new acceptance probability of the compensated

algorithm reads

αc = min

(

1,
K∏

i=1

fM(τ̃(ωi), τ̄)

fM(τ(ωi), τ̄)

fU(τ(ωi))

fU(τ̃(ωi))

)

. (4.2)

Here, fU denotes the probability density function of the resulting DGD values when

the model parameters uk are sampled uniformly and independently.

We now present simulation results comparing the standard method [18] in (4.1)

and the proposed compensated method in (4.2) to sample the parameters of the

reduced model in (2.23).

In order to avoid the issues related to convergence, the exact same simulation
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parameters are used for the compensated algorithm as they were used in the example

given in [18]. A reduced model with 16 sections was considered to emulate an optical

fiber with a mean-DGD of τ̄ = 10 ps over a 40 GHz bandwidth. The random walk

on uk is achieved by random increments to the components of the unit vectors.

uk =





√
γke

jθk

√
1− γke

jφk



 , ũk =





√
γ̃ke

jθ̃k

√
1− γ̃ke

jφ̃k



 ,

γ̃k = γk + δγk

θ̃k = θk + δθk

φ̃k = φk + δφk

where δγk is a uniform random variable in [−0.1, 0.1] and δθk and δφk are uniformly

distributed in [− π
20
, π
20
].

The probability density function fU(τ) for i.i.d. uniform model parameters is rather

complicated and can be found in [49]. Note that the sections of the reduced model

do not have the same poles and therefore the DGD of each section is different. The

DGD of one section is given by

DGDk(ω) =
2αk

α2
k + (ω + βk)2

. (4.3)

For the simulations, K in (4.1) and (4.2) was chosen to be 3. The frequencies used

to compute the acceptance probabilities α and αc are 0, 10 and 20 GHz. Initially

2.01 × 106 samples were generated and the first 104 were discarded as the burn-in

length.

Figure 4.1 shows the mean DGD and the standard deviation over the whole fre-

quency range. As observed, the compensated MCMC technique proposed performs

considerably better than the standard MCMC algorithm. Figure 4.2 displays the

DGD distribution on the corner frequency, 20 GHz, in semi-logarithmic scale. Here,

one can see that although the mean and the standard deviation results of the uncom-

pensated algorithm are not very far from the expected values, the shape of the DGD

probability density function does not resemble the Maxwellian. Simulation results

on the other two frequencies used to compute the accept-reject rule, 0 and 10 GHz,

exhibit a similar behavior. Finally, Figure 4.3 displays the log-scale DGD distribution
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Figure 4.1: Mean DGD and standard deviation values for both algorithms over the
whole frequency range.

at an intermediate frequency, 15 GHz, which is not one of the three frequencies used

in (4.1) and (4.2). As expected the DGD distribution of the output of the compen-

sated MCMC algorithm compares similarly to the uncompensated MCMC much like

at other frequencies. Above results confirm the predicted discrepancy in the DGD

distribution of the randomized reduced model when the samples are generated with

the standard MCMC as well as the correction that can be achieved using the proposed

compensated MCMC technique.

4.3. Parameter Sampling for Paraunitary FIR Filters

The following section introduces the aforementioned sampling schemes and demon-

strate their performance emulating an optical communication link with a bandwidth

of 40 GHz and a mean DGD of 0.4 symbol period. All of the experiments use a

discrete time filter consisting of 20 birefringent sections. Furthermore we assume that

the continuous time system was sampled four times over its minimum rate (4 × 40

GHz) and therefore set the mean DGD of the emulators to 1.6 sampling periods.
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Figure 4.2: Probability density function of DGD at 20 GHz for both algorithms
compared with the desired Maxwellian PDF.
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Figure 4.3: Probability density function of DGD at 15 GHz for both algorithms
compared with the desired Maxwellian PDF.
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4.3.1. Cascading Method

In order to sample the filter parameters in such a way that the mean DGD becomes

adjustable and frequency independent, one can extend the degree-one paraunitary

building blocks of the filter to two-section blocks that have dependent vi. We call

this technique “cascading” and analyze its properties below.

Constructing a Paraunitary FIR Filter with Maxwellian DGD Distribution at the

Center Frequency

The difference between the eigenvalues of a Hermitian matrix,

G =




A C

C∗ B



 , (4.4)

has the form: τ =
√

(A−B)2 + 4CC∗. Therefore an ensemble of 2 × 2 Hermitian

matrices will have a Maxwellian spacing distribution if the individual components in

(4.4) are distributed as follows:

A ∼ N (N
2
, σ) ℜ{C} ∼ N (0, σ)

B = N − A ℑ{C} ∼ N (0, σ)
(4.5)

Here N (µ, σ) denotes the Gaussian distribution with mean µ and standard deviation

σ. Considering equation 1.18, the resulting Maxwellian distribution will have the

following mean value:

τ̄ = 2

√

8

π
σ . (4.6)

At this stage one can ask if unit norm vectors vi can be found such that G =
∑N

i=1 viv
∗
i . If one can find such vectors they can be used to construct a parauni-

tary FIR filter so that it will have a Maxwellian DGD at the center frequency by

construction. This is indeed the case if tr(G) ∈ Z and tr(G) ≥ rank(G) [50].

Since N = tr(G) can be restraint to positive integers, this condition can always
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be satisfied. Being the sum of rank 1 projection matrices, viv
∗
i , puts one additional

constraint on G: G must be positive definite. This enforces following inequalities on

the parameters in (4.5).

A > 0, B > 0, AB > |C|2 (4.7)

Because of these constraints, the distributions of A and C in (4.5) must have finite

support and hence cannot be actual Gaussians. In section 4.3.1 we will show that ad-

justing the standard deviation of the distributions one can eliminate this discrepancy

for all practical purposes.

The case for N = 2

Since G has real eigenvalues and orthogonal eigenvectors if it is constructed as in

(4.4) and (4.5) with N = 2, it can be easily verified that G can be partitioned in the

following way:

G = v1v
∗
1 + v2v

∗
2, v∗

1v1 = v∗
2v2 = 1

with,

v1 =
1√
2

(√

λ1e1 +
√

λ2e2

)

v2 =
1√
2

(√

λ1e1 −
√

λ2e2

)

. (4.8)

Where ei are the unit norm orthogonal eigenvectors of G with λi as the corresponding

eigenvalues. In order to get a marginally uniform distribution for magnitude squares

of the components of vi, the eigenvectors ei can be multiplied with a phase term ejφi ,

where φi is selected uniformly at random in [0, 2π].

The resulting DGD density of a simulation with this selection method for vi is

displayed in Figure 4.4. The sample size is 107 and τ̄ was taken to be 0.4.

Because of the positive definiteness constraint given in equation (4.7), the above

two-section unit can only reach DGD values up to a limit. This shortcoming of the

second degree FIR filter can be overcome with the extension of the same idea to higher

degree filters. The first possibility that comes to mind is to cascade M second degree
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Figure 4.4: The PDF of the DGD of the second degree FIR filter compared against a
true Maxwellian with the same mean.

filters and build a more general FIR filter with 2M sections.

Extension to Higher Degree Filters

Using the fact that the sum of two independent Gaussian random variables is again a

Gaussian random variable, we can extend the above discussed second order FIR filter

to a more general system of even order.

G = G1 +G2 + · · ·+GM

G has a Maxwellian spacing distribution if the summands Gi are constructed inde-

pendently according to (4.4) and (4.5). In this case, the unit norm vectors vi can be

selected with the same scheme as (4.8).

G =
M∑

k=1




Ak Ck

C∗
k Bk



 =
M∑

k1,k2=1

vk1v
∗
k1
+ vk2v

∗
k2

(4.9)

Ak ∼ N (1, σ) ℜ{Ck} ∼ N (0, σ)

Bk = N − ak ℑ{Ck} ∼ N (0, σ)
(4.10)
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This filter of order 2M will have the following mean DGD:

τ̄ = 2

√

8M

π
σ . (4.11)

Constraints on Model Parameters

As discussed earlier, the selection of the standard deviation σ in (4.5) is not arbitrary.

The fact that G must be positive definite restrains σ with an upper bound determined

by the minimum probability value we want to match in the DGD distribution. For a

fixed value of σ the probability thatG in (4.4) is not positive definite can be computed

from (4.7).

The last constraint in (4.7) takes precedence over the other two since A and B can

never be negative simultaneously and |C|2 is always positive. The maximum value

AB = A(N − A) can get is N2

4
. Hence in the case that |C| ≥ N

2
, G is never positive

definite. Similarly for A /∈ (0, N) G cannot be positive definite. This restricts the

range of τ to (0, N) as it is expected from an FIR filter built with N delay elements.

With the conditions above we can calculate the probability that G is positive

definite with given N and σ.

P(G ≻ 0) = P ({A = a | a ∈ (0, N)} ∩ {|C| = c | c2 ≤ a(N − a)})

=

N2

4∫

0

P (|C|2 ≤ x |X = x) dx

=

N2

4∫

0

P (|C|2 ≤ x)fX(x) dx (4.12)

Where X = AB. The last line of the above equation holds because X and C are

independent.

The PDF of X is given by
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fX(x) =
1√
2πσ

e
−(N2/4−x)

2σ2
1

√
N2

4
− x

The random variable |C| is Reighley distributed since |C| =
√

ℜ{C}2 + ℑ{C}2 and

its CDF is given by

F|C|(c) = 1− e−
c2

2σ2

Hence

P(G ≻ 0) =

N2

4∫

0

(

1− e−
x

2σ2

) 1√
2πσ

e
−(N2/4−x)

2σ2
1

√
N2

4
− x

dx

=
−N√
2πσ

e
−N2

8σ2 +
1√
2πσ

N2

4∫

0

e
−(N2/4−x)

2σ2
1

√
N2

4
− x

dx

After the variable transformation u2 = N2/4− x we arrive at the final result.

P(G ≻ 0) = erf

(
N

2
√
2σ

)

− N√
2πσ

e
−N2

8σ2

Where erf(•) is the error function.

Note that this expression is equal to the probability that a Maxwellian random

variable with the same mean as in equation (4.6) is smaller than N . In other words,

the positive definiteness of G ensures that the resulting DGD is at most N which is

the maximum delay of a discrete time filter with N sections.

This result can be used as a model order selection tool for a given minimum

probability we want to match, p, and a mean DGD, τ̄ .
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Figure 4.5: The value of P(G ≻ 0) and its upper bound.

p = 1− P(G ≻ 0)

= erfc

(
N

2
√
2σ

)

+
N√
2πσ

e
−N2

8σ2

= 2

[

Q

(
N

2σ

)

+
N√
2π2σ

e−
(N/2σ)2

2

]

(4.13)

Furthermore we can use the well known upper bound for the Q-function

Q(ζ) <
ζ√
2π

e
−ζ2

2 , ζ ≥ 1

to get a more useful expression. If we set ζ = N
2σ

in the above expression we get

p < 4
N

2σ
√
2π

e−
(N/2σ)2

2 (4.14)

For a predetermined p, we can calculate the value of σ. For example for N = 2 and

p = 10−6 the maximum value of σ is approximately 0.18. This equals to a maximum

mean DGD of 0.5745.

The fact that σ has an upper bound limits the cascading method in terms of the
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maximum achievable mean DGD τ̄max(p) for a given threshold probability p in (4.13)

and the filter length N . This value can be computed for varying filter degrees via

(4.6) and (4.11). Figure 4.6 shows the maximum achievable DGD values for p = 10−6.

The second restriction on σ originates from the discrete time nature of the problem

at hand. The above calculations of τ , particularly (4.6), are normalized in terms of

the sampling period TS.

τ =
DGD

TS

Because the sampling period must be less than or equal to the symbol period TSym

we have

DGD

TS

= 2

√

8

π
σ ≥ DGD

TSym

and

σ ≥ DGD

2TSym

√
π

8
. (4.15)

Where DGD is the mean DGD of the system in seconds.
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As an example a communication channel with a 40 GHz bandwidth has a symbol

period of 25 psecs when binary signalling is used. A typical mean DGD value is 10

psecs. If we evaluate (4.15) with these values we get approximately σ ≥ 0.125. With

the upper bound above we have 0.125 ≤ σ ≤ 0.18.

Although with the continuous time system sampled at Nyquist rate gives us a

viable range for σ this situation changes immediately if we oversample the signal. An

oversampling rate of 2 is sufficient to render the second order FIR filter unusable.

The treatment of a general communication link is possible with the extension of the

second order FIR filter to higher orders.

For the example communication link above with 40 GHz bandwidth and an over-

sampling rate of 2 (TS =
TSym

2
) the use of the cascading method allows a viable

standard deviation if M is large enough: 0.25√
M

≤ σ ≤ 0.18. With the use of a sixth

order FIR filter (M = 3) one can obtain a mean DGD of 10 psecs if σ is selected to

be 0.1447.

Frequency Behavior of the Cascading Method

The analysis given above only discusses the properties of the cascade method at the

center frequency but the reason this method was chosen among other alternatives to

partition a positive definite matrix as sum of idempotents is its uniform frequency

behavior.

Figure 4.7 illustrates this behavior in terms of the PDF of the DGD. These graphics

display the DGD distribution of a filter with 20 sections and a mean DGD value of

1.6 first at the center frequency, ω = 0, and then at the corner frequency, ω = π
4
.

The solid curves in the graphics are the expected Maxwellians with mean 1.6. Figure

4.7 shows complete agreement of the model output with the expected values at the

center as well as the corner frequency. This behavior is typical for the cascade method

with low enough mean DGD values however higher order statistics do not display a

similar behavior. Figure 4.8 shows that although the mean of the DGD distribution

is constant over the whole frequency range, the correlation structure deviates from
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Figure 4.7: PDF of the DGD at the center frequency (ω = 0) and the corner frequency
(ω = π

4
). Red curves represent the Maxwellian with mean 1.6.

the desired curve. Therefore the cascade method, in its current form, remains only

as a tool for matching the first order statistics of a real PMD channel.

4.3.2. Compensated MCMC Method

Now let us investigate how MCMC can be employed to generate samples of fiber mod-

els using paraunitary FIR filters. A discrete time fiber model with N concatenated

degree-one sections can be viewed as a complex mapping from the sample space of

filter parameters to the space of PMD vector values. This mapping accepts a set of

2 × 1 complex valued unit norm vectors, {v1,v2, . . . ,vN}, which have a total of 2N

real scalar parameters as input and produces a frequency dependent PMD vector,

τ (ω), at the output. If we discretize the frequency axis such that we force the statis-

tical properties of the PMD vectors, {τ (ω1), τ (ω2), . . . τ (ωM)} at a set of frequencies,

ω1 through ωM , in the frequency range of interest, we can expect the model to be-

have similarly at intermediate frequencies. Consequently, we obtain a mapping from

R
2N to R

M . Therefore, the problem of sampling the input parameters, such that the

output statistics exhibit the desired behavior, can be described as follows.

Suppose we are given a general many-to-one, non-isometric map h : Rn → R
m
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Figure 4.8: Mean and normalized autocorrelation curves of the cascade method com-
pared with the expected values.

which maps a random vector X to another random vector Y = h(X) where X ∈ R
n,

Y ∈ R
m and let fYd be the desired probability density of Y. Given fYd how must fX

be chosen such that the transformed variable Y = h(X) has the desired PDF?

The answer to this question was given in Chapter 3 under the framework of the

compensated MCMC algorithm which modifies the accept-reject rule in the standard

Metropolis-Hastings algorithm as

αc(x,x
′) = min

(

1,
fYd(h(x

′))

fYd(h(x))

p(x′,x)

p(x,x′)

fU(h(x))

fU(h(x′))

)

, (4.16)

where fU(•) is the distribution of the output random vectors with uniform i.i.d.

input parameters. This distribution will be called uniform parameter distribution

and abbreviated as UPD from now on.

Although the general setting for the discrete time model parameter sampling prob-

lem is the same as the continuous time case, the particulars assume a more complicated

form. For the continuous time model we only consider the first order statistics of the

DGD and build the accept reject rule of the MCMC algorithm accordingly, whereas
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in the discrete time case we strive to match higher order statistics of a true PMD

channel. In order to achieve this goal, we use the output PMD vector of the model

as the target random variable. Due to the complicated nature of the PMD vector,

we make use of simplifying assumptions and approximations about its probability

distributions concerning the full model as well as the paraunitary FIR filter.

Target Density for Compensated MCMC

As the discussion in Section 1.2.3 suggests, we expect an ensemble of PMD vectors

to satisfy the higher order statistical requirements of a true PMD channel when the

individual components have a jointly Gaussian distribution. Since we assume that

only the same components at different frequency points are dependent on each other,

we can express the joint probability density of a collection of PMD vectors as follows:

fT (T, τ̄) = K(Σ) exp

(

−1

2
tr(TΣ−1TT )

)

. (4.17)

Here, T is the 3 × k matrix of PMD vectors, T = [τ (ω1) τ (ω2) . . . τ (ωk)], Σ is the

k × k covariance matrix and K(Σ) is the normalizing constant of the PDF.

The covariance matrix depends only on one parameter which is the desired mean

DGD, τ̄ , and can be computed with the expression describing the expected value of

the inner product of two PMD vectors at different frequency points ω and ω′ [13]:

〈τ (ω) · τ (ω′)〉 = 3

∆ω2

(

1− exp

(

−∆ω2 〈τ̄ 2〉
3

))

, (4.18)

where ∆ω = |ω − ω′| and 〈τ̄ 2〉 = 3π
8
τ̄ 2.

Using (4.18) we can fill in the entries of Σ with

Σij =
1

3
〈τ (ωi) · τ (ωj)〉 ,

since different components of PMD vectors are independent. Because the covariance

between two components depends on their distance on the frequency axis, this matrix

has a Toeplitz structure.
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Uniform Parameter Distribution of the FIR Filter

The evaluation of the accept-reject rule in the compensated MCMC algorithm requires

the knowledge of the distribution of the PMD vectors when the model parameters are

sampled uniformly and independently. Although this distribution resembles the PMD

vector distribution of the full model, its exact form deviates from a joint Gaussian

much more than the PDF of the full model does because it has significantly fewer

birefringent sections. Indeed, the effort to approximate this PDF with a joint Gaussian

or even a Gaussian mixture model results in inaccurate PMD vector statistics in

terms of mean DGD and covariance structure. Moreover, upon close inspection one

can observe that despite being uncorrelated, different PMD vector components at

different frequency points exhibit a tail dependency which cannot be captured with

a jointly Gaussian distribution. In order to overcome these difficulties we model the

uniform parameter distribution as a copula vine [51].

Copulas are multivariate functions that are employed to describe dependency

structures of random variables [52, 53]. For our purposes, without going into their

theoretical description, copulas can be viewed as linkage functions that express the

joint PDFs of random variables as the product of their marginals and their depen-

dency structure. For the case of two dependent random variables, X and Y with

marginal CDFs FX and FY , one can write

fXY (x, y) = fX(x)fY (y)cXY (FX(x), FY (y)) , (4.19)

where fX and fY are marginal PDFs of X and Y respectively and fXY is their joint

PDF. The non-negative bivariate function cXY : [0, 1] × [0, 1] → R+ is the copula

density of the two random variables. According to Sklar’s theorem [54], under some

regularity conditions, such a function always exists.

Equation (4.19) becomes especially useful if the marginals are known. This is

indeed the case in the UPD. The PMD vector at the ith frequency point, τ (ωi) =

[τ1(ωi), τ2(ωi), τ3(ωi)]
T , has independent components that are distributed according to
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the uniform sum distribution. A random variable X that is the sum of N independent

uniform random variables has the PDF

fU(x,N) =
1

2 (N − 1)!

N∑

k=0

(−1)k
(
N

k

)

(x− k)N−1 sgn(x− k) . (4.20)

Its CDF is given by

FU(x,N) =
1

N !

⌊x⌋
∑

k=0

(−1)k
(
N

k

)

(x− k)N . (4.21)

The subscript U denotes that this distribution is the univariate margin of the UPD.

As one can easily guess, in this case N is the number of sections of the paraunitary

FIR filter.

For the construction of the copula density, the multivariate t-copula has proven

to be useful [55]. In fact the set of same PMD vector components (e.g. the first

component at all the frequency points etc.) follows a multivariate t-copula distribution

with uniform sum marginals almost exactly. The remaining dependency among cross-

components is modeled using bivariate t-copulas and arranging them into a D-vine

[56] in order to exploit the stationarity property of the joint PMD vector distribution.

The parameters of the multivariate as well as the bivariate copulas can be estimated

using standard maximum likelihood algorithms.

Figure 4.9 illustrates the strategy for building trees of pair copulas for three fre-

quency points. The three-variate t-copula, c123(FU(τm(ω1)), FU(τm(ω2)), FU(τm(ω3))),

is the joint density of themth PMD vector components. The dependency among cross-

components, (τm(ωi), τn(ωj)), m 6= n, i 6= j, is accounted for with the pair copulas

c1 and c2, and 1 is the independence copula that connects the components of a single

PMD vector. The symmetry in Figure 4.9 is caused by a simplifying assumption we

make in order to obtain a more tractable UPD. Note that the pair copulas connecting

the cross-components are in fact conditional PDFs that not only depend on the condi-

tioning variables but also operate on the transformed forms of their arguments. Here
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Figure 4.9: Copula vine structure for the uniform parameter distribution.

we make the assumption that these copulas are sufficiently flat so that we can describe

the relationship among cross-components solely based on their frequency separation.

At the end, we obtain the whole joint copula of all nine variables by multiplying all

the components in Figure 4.9.

Performance of Compensated MCMC

Using the results from previous discussion, we can construct an accept-reject rule in

the compensated MCMC algorithm such that the statistics of the ensemble of output

PMD vectors will approximate the desired values. To this end we can write

αc = min

(

1,
fT (T̃, τ̄)

fT (T, τ̄)

fU(T, N)

fU(T̃, N)

)

, (4.22)

The statistics of the compensated MCMC algorithm output is illustrated in Fig-

ures 4.10 and 4.11. The simulation was ran with 2 × 106 samples and the first 104

samples were discarded as the burn-in phase. The number of frequencies in the accept-

reject rule, k, was chosen to be 3 (−π/4, 0 and π/4). It can be observed that this

algorithm performs much better in terms of the autocorrelation function than the

cascade algorithm at the cost of a small deviation in the mean value.

The limiting factor on the accuracy of the compensated MCMC algorithm is how
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Figure 4.10: PDF of the DGD at the center frequency (ω = 0) and the corner fre-
quency (ω = π

4
). Red curves represent the Maxwellian with mean 1.6.
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Figure 4.12: The mean DGD values for a twice oversampled system with three and
five frequency points in the accept-reject rule of the compensated MCMC algorithm.

well the UDP can be modeled and approximated. The assumptions about the UDP

and the pair copulas describing it are a source of increasing inaccuracy as the number

of frequencies in the accept-reject rule grows. On the other hand, holding the number

of frequencies fixed while increasing their distance results in non-uniform frequency

behavior of the output. Figure 4.12 illustrates these two properties together by dis-

playing the mean DGD values for simulations using three and five frequencies over the

frequency range [−π/2, π/2], i.e. for a system that is oversampled at twice its mini-

mum sampling rate. The simulation with three frequency points in the accept-reject

rule matches the desired mean DGD value at these frequencies but exhibits large de-

viations at intermediate points while the simulation with five frequencies results in a

relatively constant mean DGD value smaller than the desired one.

4.3.3. Greedy Approximation Algorithm

At the heart of the last method we consider for the discrete time PMD emulation

parameter sampling problem lies a greedy iterative transfer function approximation

algorithm [57]. This algorithm takes a general matrix transfer function as input and
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tries to approximate it with a paraunitary FIR filter. This is achieved by iteratively

optimizing each section of the filter. Figure 4.13 shows the result of one sample run

of the algorithm with 200 iterations. Although only the absolute value of the 2 × 2

transfer function is displayed, the same behavior of complete overlap of the curves

can also be observed with the phases.

The iterative approximation algorithm method first defines a distance measure in

the space of discrete time transfer functions as a mean-squared weighted Frobenius

norm,

ξ ,
1

2π

2π∫

0

W (ω)
∥
∥D(ejω)−H(ejω)

∥
∥
2

F
dω , (4.23)

where, for our purposes, D(ejω) is the transfer function of a real fiber constructed

with a high number of birefringent sections (full model) and H(ejω) is the transfer

function of the paraunitary FIR filter. W (ω) is a weighting function which is set

equal to identity in the frequency range of interest and zero otherwise. This distance

is then iteratively minimized by handling the unitary matrix R and each degree-one

section Hi in equation (2.26) separately.

The optimization of R boils down to maximizing ℜ{tr(R∗A)}, with

A =
1

2π

2π∫

0

W (ω)V∗(ejω)D(ejω)dω (4.24)

andV(ejω) =
∏1

i=N Hi(e
jω). This expression can be optimized elegantly by the closest

unitary matrix to A which in turn can be computed via the SVD of A [58]. Similarly

the optimization for individual vi in equation (2.25) is achieved by minimizing the

quadratic form v∗
i (B+B∗)vi = v∗

iQvi with

B =
1

2π

2π∫

0

W (ω)(1− e−jω)Ri(e
jω)RD∗(ejω)Li(e

jω)dω . (4.25)

Here, Ri and Li denote the right and left factors of V respectively, such that
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Figure 4.13: The result of the greedy approximation on one sample transfer function.
Continuous lines represent the original transfer function and the dots represent the
approximation.

V(ejω) = Li(e
jω)Hi(e

jω)Ri(e
jω). The minimization of this expression is achieved by

setting vi equal to the corresponding normalized eigenvector of the smallest eigenvalue

of B. It is shown in [57] that with every such iteration the error term in (4.23) is

reduced. Hence, the algorithm moves forward by optimizing each section and the

paraunitary matrix iteratively.

The statistical behavior of this method is demonstrated in Figures 4.14 and 4.15. It

is obvious that greedy approximation method outperforms the previous two strategies

at the cost of increased computational complexity.

4.4. Conclusion

Building upon an earlier work on PMD emulation and compensation which uses

model reduction techniques and Markov chain Monte Carlo methods, we have pre-

sented an improved sampling procedure to generate low complexity continuous-time
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Figure 4.14: PDF of the DGD at the center frequency (ω = 0) and the corner fre-
quency (ω = π

4
). Red curves represent the Maxwellian with mean 1.6.
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models of an optical fiber subject to PMD. Introducing a modification to the stan-

dard Metropolis-Hastings algorithm, we have resolved a discrepancy of the sampling

method in [18] and obtained better results in terms of approximating the desired

DGD statistics. The models obtained with our technique preserve losslessness and

offer a close approximation to PMD statistics while being computationally efficient.

Therefore they can be used for efficient emulation of PMD in optical fibers.

For the emulation of PMD channels on discrete time devices we have presented

a paraunitary FIR filter structure. This structure constitutes a good candidate for

PMD emulation not only because of its losslessness property but also for its cascaded

nature that enables one to adjust the complexity of the filter. Using three different

approaches we have addressed the question of how the parameters of an ensemble

of such filters have to be chosen for them to capture the statistical behavior of a

real PMD channel. Using theoretical and simulation results we have shown that the

cascading method can be employed for systems that suffer mainly from effects that

can be described by the first order statistics of PMD. For higher order effects one

can use the compensated MCMC algorithm which provides a good approximation

for the mean and the autocorrelation values of the PMD vector. The final approach

approximates the transfer function of an optical fiber in the frequency range of interest

and hence provides the best results in terms of desired statistics. The choice of

appropriate method depends on the trade-off between computational cost and the

statistical accuracy.
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Chapter 5

Summary and Conclusion

We have presented continuous and discrete-time models for PMD emulation and ran-

dom parameter sampling schemes for these models with the goal of accurately em-

ulating PMD in terms of desired statistical properties of a real single mode optical

fiber. As an introduction to our treatment, in Chapter 1 we have discussed why ac-

curate PMD emulation is necessary as well as the fundamentals of the mathematical

description of PMD and its statistical behavior.

Chapter 2 was dedicated to the presentation of different PMD models relevant to

our discussion. First of these models was the continuous-time lumped system with

a high number of birefringent sections which serves as a realistic, high complexity

representation of an optical fiber. This model was employed to determine the desired

statistical properties of a PMD emulator as well as the accuracy of the approximations

used to capture the statistical nature of PMD channels. Based on the full model, we

continued our discussion with the reduced complexity continuous time model. This

model is obtained by applying Pade approximation and Krylov subspace techniques

to reduce the number of birefringent sections in a full model. Investigating its Laplace

domain representation, we have made an important observation about the distribution

of the pole locations of the reduced complexity model, which was our first step towards

the random parameter sampling problem for PMD emulators. The last PMD model
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we presented was designed to be implemented on DSPs in order to be used with

the emerging coherent receivers technologies. This model was based on discrete-

time paraunitary filters which inherently satisfy the losslessness condition of a PMD

channel. The statistical properties of these models was also discussed from which we

concluded that a specifically tailored random parameter sampling scheme was needed

in order to be able to produce viable PMD emulators.

Before continuing with the solution of this parameter sampling problem, we made

a detour to introduce an extension of the standard MCMC method for random input

selection tasks for general complex models. In this chapter we developed a sampling

scheme based on a modification to the Metropolis-Hastings algorithm with an addi-

tional expression which can be viewed as a probing term for the model of interest.

The proposed algorithm is easy to implement, benefits from the extensive literature

on MCMC and hence we believe that it can be adapted to a variety of applications.

We have demonstrated one such application on general stochastic differential equa-

tions viewing them from the perspective of stochastic input-output models enabling

us to apply our algorithm to obtain solution paths.

The compensated MCMC algorithm found further use during the course of our

discussion in Chapter 4. Using the proposed sampling method, we have resolved a

discrepancy that was present in earlier treatments of the continuous-time reduced

complexity model and obtained better results in terms of approximating the desired

DGD statistics. For the emulation of PMD channels on discrete time devices we have

used three different approaches and addressed the question of how the parameters

of an ensemble of such filters have to be chosen in order to capture the statistical

behavior of a real PMD channel. Using theoretical and simulation results we have

shown that the cascading method can be employed for communication systems which

suffer mainly from first order effects of PMD. For higher order effects, one can use the

compensated MCMC algorithm which provides a good approximation for the mean

and the autocorrelation values of the PMD vector. The final approach approximates

the transfer function of an optical fiber in the frequency range of interest and hence
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provides the best results in terms of desired statistics. The choice of appropriate

sampling method for a particular communication system depends on the requirements

of statistical accuracy and computational complexity.

The methods presented in this thesis can be used to construct versatile and effi-

cient PMD emulators as parts of continuous as well as discrete-time communication

systems. The discrete-time models are of particular interest because they can be em-

ployed in testing of systems operating with coherent receivers built on digital signal

processing algorithms. In parallel to the development of these devices, our algorithms

can be extended to incorporate the evolution of PMD effects in time such that PMD

channels can be emulated with models which not only offer a batch of independent

optical fiber realisations but also are able to capture the gradual changes a single

optical fiber undergoes. This task still stands as an open problem and can constitute

the main objective of further work on this subject.
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