
TECHNIQUES FOR VERIFYING TRANSACTIONAL PROGRAMS

AND LINEARIZABILITY

by

ÖMER SUBAŞİ

A Thesis Submitted to the

Graduate School of Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Computer Science and Engineering

Koç University

Mayıs, 2012

Koç University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a master’s thesis by

ÖMER SUBAŞİ

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Assistant Professor Serdar Taşıran

Associate Professor Öznur Özkasap

Associate Professor Alper Demir

Date:

To my family

iv

ABSTRACT

In this thesis, we consider two significant software verification problems regarding concurrent,

multi-threaded programs. First, we consider the problem of proving the linearizability of a concur-

rent implementation. We suggest a sound method for verifying a concurrent data structure imple-

mentation is linearizable to its sequential specification based on the QED proof system. Our method

is based on transforming the concurrent implementation into the specification aimed for the imple-

mentation. The transformation is governed by proof rules of the proof system. Each transformation

step preserves certain behaviors of the program that are relevant to the specification of the program.

At the limit, we obtain a program that is being the sequential specification considered for the cor-

rectness of the original concurrent program. In our approach, we provide the formalization of the

linearizability notion, concurrent programs as well as the proof system and its rules. We then state

our theoretical findings.

Second, we study the verification of transactional programs with programmer-defined conflict

detection. While programmer-defined conflict detection is desirable in terms of performance issues

of the transactional memory systems, such relaxed conflict detection complicates the verification of

the programs that use these transactional systems. In particular, the ability to use sequential reason-

ing provided by conventional transactional memories is lost when the relaxed conflict detection is

introduced. In our approach, we first model and formalize such transactional programs. Then, we

provide a recipe for the verification process in which we regain the ability to use sequential reason-

ing. This recipe includes abstractions provided by the programmer on the original program. After

the abstractions are introduced, the verification problem becomes the sequential verification prob-

lem automated by sequential verification tools such as VCC and HAVOC. Our soundness theorem

guarantees that once the abstracted program is verified, so is the original transactional program.

v

ÖZETÇE

Bu tezde, çoklu-iş parçacıklı ve koşut-zamanlı programların doǧrulanması ile ilgili iki önemli

probleme deǧinmekteyiz. Önce koşut-zamanlı bir uygulamanın doǧrusallaştırılabilirliǧini ispat-

lamak problemini ele alıyoruz. Geçerli bir ispat sistemine dayanarak doǧrusallaştırılabilirlik ispat-

larının mümkün kılındıǧı bir metod sunuyoruz. Metodumuz koşut-zamanlı uygulamanın amaçlanan

tanımlamalarına dönüştürülmesine dayanmaktadır. Bu dönüştürülmeler ispat sistemin kuralları tarafından

yönetilmektedir. Her dönüşüm adımı programın doǧruluk ile ilgili davranışlarını korumaktadır.

Limitte programın doǧruluǧunu gösteren tanımına ulaşılır. Yaklaşımımızda, doǧrusallaştırılabilirlik

kavramını , koşut-zamanlı programları ve ispat sisteminin kurallarını tanımlamaktayız. Ardından

teorik bulgularımıza yer vermekteyiz.

İkinci olarak, programcı tarafından tanımlanan çakışmaları bulan işlemsel programların doǧrulanması

problemini ele alıyoruz. Performans açısından bu tür sistemler istenilse de bu sistemler kendi-

lerini kullanan işlemsel programların doǧrulanmasını zorlaştırmaktadır. Özellikle de bu sistemler

dizisel kanıtların yapılmasını engellemektedir. Yaklaşımımızda, önce bu tip programları mod-

elliyoruz. Sonra, dizisel kanıtların yapılmasını saǧlayan bir reçete sunuyoruz. Bu reçetede pro-

gram üzerinde soyutlamalar yapılmaktadır. Soyutlamalar yapıldıktan sonra, doǧrulama işi otomatik

dizisel doǧrulamaya dönüşmektedir. Bu da VCC ve HAVOC gibi dizisel doǧrulama araçlarıyla

yapılabilir. Ana teoremimiz ise, soyutlanmış program doǧrulamasının ilk orjinal işlemsel programın

doǧrulaması anlamına geldiǧini ispatlamaktadır.

vi

ACKNOWLEDGMENTS

I would like to express my immense gratitude to my advisor Assist. Prof. Serdar Taşıran. His

strong guidance, experience, understanding, patience and invaluable advices helped me to conduct

my graduate study and do academic research. I would like to thank the other members of my thesis

committee, Öznur Özkasap and Alper Demir for critical reading of this thesis and and for their

valuable comments.

I am grateful to The Scientific and Technical Research Council of Turkey (TÜBİTAK) for pro-

viding financial support under scholarship programme for students studying for an MSc with a thesis

requirement (2210). My research presented in this thesis was also supported by TÜBİTAK under

project grant 111E135.

I am grateful to Tayfun Elmas and Ali Sezgin for their continuous support, strong contribution

and guidance during my graduate study and research.

I am grateful to Serpil Ekşioǧlu for her endless support during my eight years in Koç University.

I would like to thank all my friends from Koç University, especially the members of ENG-230,

İsmail, Erdal, Hassan, Ayşe Nur, Özge, Can, and İdil.

I must give immense gratitude to my family.

vii

TABLE OF CONTENTS

List of Figures xi

Chapter 1: Introduction 1

1.1 State of Art . 2

1.1.1 Linearizability . 2

1.1.2 Transactional Program Verification . 3

Chapter 2: Proving Linearizability using QED Proof System 5

2.1 Introduction . 5

2.2 Concurrent programs: syntax and semantics . 6

2.2.1 Operational semantics . 8

2.3 Program transformations . 10

2.3.1 Reduction . 11

2.3.2 Abstraction . 12

2.3.3 Variable introduction and hiding . 12

2.4 Linearizability . 13

Chapter 3: Verifiying Transactional Programs with Programmer-Defined Conflict

Detection 23

3.1 Introduction . 23

3.2 Motivation . 26

3.2.1 Motivating example: StringBuffer pool 26

3.2.2 Strict detection of conflicts for the StringBuffer pool 26

3.2.3 Relaxed detection of conflicts for the StringBuffer pool 28

3.2.4 Transforming the program for sequential verification 28

3.3 Transactional Programs and Executions . 29

ix

3.4 Semantics under TM Concurrency Control . 31

3.4.1 Semantics allowing interleavings of transactions 32

3.5 Program Abstraction for Sequential Verification 34

3.6 Experiments . 37

3.6.1 Linked list in Genome . 37

3.6.2 Labyrinth . 44

3.7 Soundness Theorem . 53

Chapter 4: Conclusions 55

4.1 Future Work . 56

4.1.1 Future work on verification of transactional programs with relaxed conflict

detection . 56

Bibliography 57

Vita 61

x

LIST OF FIGURES

2.1 Obtaining all possible subactions of a given full action via the silent transformation

relation, ãÝÑ. 8

3.1 StringBuffer pool example. The abstract program for sequential verification is ob-

tained by replacing the shaded and commented-out code with the line it appears. . 27

3.2 The insertion operation of a sorted linked list. The abstract program for sequential

verification is obtained by replacing the shaded and commented-out code with the

line it appears. 38

3.3 Transaction computing shortest paths in a grid. The abstract program for sequential

verification is obtained by replacing the shaded and commented-out code with the

line it appears. 44

xi

Chapter 1

INTRODUCTION

There are new emerging multiprocessor technologies in computing. Due to these advances and

performance requirements, concurrent software becomes mainstream in many computing systems

such as databases, operating systems and web servers. To make use of these multiprocessor systems

as well as match some performance criteria, concurrent software makes use of intricate synchroniza-

tion techniques, fine-grain locking and complicated non-blocking operations. Thus, because of the

complexity of the concurrent software, the verification of such software becomes extremely difficult

to achieve.

This thesis is concerned with two different aspects of verification of concurrent software. First,

we study the correctness of concurrent data structure implementations. In this first aspect, we study

how to prove the linearizability of the concurrent implementations. This study is based on the

former work of Elmas et. al [9]. The correctness condition linearizability [14] is prevalently

used for concurrent data structure implementations. This condition constructs a relation between

the implementation and the specification of the data structure. To prove the linearizability of a

concurrent implementation, we use QED proof system [9] in which we make use of atomicity of

the actions as a proof tool. Our focus in this thesis will be mostly on the theoretical part of our

joint work [8]. We will study this aspect of verification of concurrent software and our theoretical

findings in Chapter 2.

The second part of this thesis is concerned with the verification of transactional programs. These

programs make use some transactional memory implementation in certain parts of them where they

need the atomicity guarantee. In this thesis, we will study types of programs using transactional

memory that has relaxed conlict detection mechanism as opposed to conventional transactional

memory systems. Transactional memory [12] provides atomic code blocks to the programmmer

where they need atomicity or mutual exclusion. These blocks are often composable and easy to rea-

son about. Thus, the verification of such concurrent transactional programs becomes easy. However,

2 Chapter 1: Introduction

standard transactional memory systems with such conventional atomic blocks suffer from perfor-

mance. Due to this performance issues, some transactional memory systems offer different mecha-

nisms that relaxes on the conflict detection in order to gain in terms of performance. Subsequently,

such relaxed transactional programs become hard to formalize and verify. Our study in this thesis

achieves to model, formalize and verify transactional programs that use relaxed conflict detection.

We present our work in Chapter 3 in detail. This work is published in WoDET 2012 workshop

[26].

Our general contributions in this thesis are:

• Theory of verifying linearizability using QED proof system

• Method for model, formalize and verify transactional programs with programmer-defined

conflict detection

• Verified large benchmarks from STAMP suite [5]

We will state our specific contributions in Chapter 2 and Chapter 3.

The outline of the thesis is as follows: In the next section, we will provide related work on

proving linearizability and transactional program verification. Then, Chapter 2 discusses our first

main contribution regarding proving linearizability using the QED proof system with the focus being

the theoretical part of our joint work [8]. Chapter 3 discusses our work on the verification of relaxed

transaction programs which is second main part of our work. Chapter 4 concludes the thesis.

1.1 State of Art

1.1.1 Linearizability

Refinement between a concurrent program and its sequential specification is well-studied [1, 15, 17,

18]. Previous work showed that, under certain conditions, auxiliary variables enable construction

of an abstraction map to prove refinement [1, 15]. However, in practice writing an abstraction map

for programs with fine-grained concurrency remains a challenge since there are a large number of

cases to consider. [23] used a complex abstraction map, called aggregation function, that completes

the atomic transactions that are committed but not yet finished. The refinement proofs in [14, 13,

10, 6], despite being supported by automated proof checkers, all require manual guidance for the

Chapter 1: Introduction 3

derivation of the proof, requiring the user to manage low-level logical reasoning. On the other hand,

in our method the user guides the proof via code transformations at the programming language level.

Recently, [28] provided a tool that automates the derivation of the proof using shape abstraction.

To our knowledge, its automating ability is limited to linked-list based data structures and it still

requires identification of the possible commit points.

Owicki-Gries [22, 14] and rely-guarantee [30] methods have been used in refinement proofs.

However, in the case of fine-grained concurrency, deriving the proof obligations in both approaches

requires expertise. The idea of local reasoning is exploited by separation logic [2] which is not

particularly useful for shared objects with high level of interference. In these cases, we show that

abstraction is an important tool to reduce the effects of interference.

Wang and Stoller [31] statically prove linearizability of the program using its sequentially exe-

cuted version as the specification. Their notion of atomicity is defined over a fixed set of primitives,

which is limited in the case of superficial conflicts. On the other hand, our notion of atomicity is

more general and supported by abstraction to prove atomicity even under high level of interference.

They provided hand-crafted proofs for several non-blocking algorithms, and our proofs are mechan-

ically checked. In [11], Groves gives a hand-proof of the linearizability of the nonblocking queue,

by reducing executions the fine-grained program to its sequential version. His use of reduction is

non-incremental, and must consider the commutativity of each action by doing a global reasoning,

while our reasoning is local.

1.1.2 Transactional Program Verification

Attiya et al. [3] provide a set of techniques for reducing concurrent programs to sequential programs

for simplifying verification. They show that by only doing sequential reasoning that a program cor-

rectly implements two-phase, tree, and hand-over-hand locking protocols in the concurrent context.

Relying on this result, one can soundly verify any safety property by only considering serial exe-

cutions. This work considers concurrency control mechanisms that guarantee conflict-serializable

executions, i.e, ones in which no concurrent conflicting accesses are allowed. A key distinguishing

feature of our work is that we handle transaction executions that are not serializable. We explicitly

consider and model conflicts and verify correctness in their presence. To do this, we reduce the

original, unserializable program to a provably-serializable abstract program.

Our soundness theorem builds upon our previous work [9] on verifying concurrent programs by

4 Chapter 1: Introduction

combining abstraction and reduction. One could directly use the proof system in [9] to verify our

benchmarks, although this would require a low-level proof script for each program. In this work,

we model programs using programmer-defined conflicts such that the proof can be performed in

a streamlined manner, without devising a proof script or applying the low-level proof steps in [9].

The user only has to provide an abstraction invariant and sequentially verify some assertions and

the intended properties of the program. The verification of assertions in our approach implies that

there exists a proof of the same property in the style of [9], while our approach avoids pairwise

commutativity checks between actions.

Our modeling of transactions from the programmer’s point of view is based on Michael L.

Scott’s work on defining a sequential specification for TMs [24]. This view of TMs allowed us

to reason about transactions at the source-code level and without having to consider the low-level

(possibly out of order) execution of transactional accesses by the TM. Using his formalization, we

are able to use the requirements satisfied by correct TM implementations implicitly in our modeling

and verification.

Finally, correctness of transactions with relaxed conflict detection and snapshot consistency are

related. One use of relaxed conflicts is to allow transactions to work locally on a (possibly stale)

snapshot, as in the Labyrinth example. In general, however, our method verifies the correctness

of transactions that succeed despite stale reads, and these stale reads do not have to constitute a

snapshot.

Chapter 2

PROVING LINEARIZABILITY USING QED PROOF SYSTEM

2.1 Introduction

Linearizability is a well-known correctness criterion for concurrent data structure implementa-

tions [14]. Linearizability establishes a connection between the implementation of the data structure

and the sequential specification of the data structure. It states that every concurrent operation of the

implementation takes effect atomically between its invocation, or call, and return points. The correct

effect of the operation is determined by the sequential specification of the data structure.

The typical way to prove that a data structure is linearizable is to construct an abstraction map

from concurrent implementation to the sequential specification [1]. When constructing such an

abstraction map, one needs to identify the commit points or actions of the implementation. This is

because commit points are the points where the effect of the implementation becomes visible to other

threads. In the abstraction map, commit point is mapped to a point in the sequential specification.

The other operations in the implementation are mapped to identity transitions in the sequential

specification. Identifying commit points becomes difficult when the concurrent implementation use

fine-grained concurrency and intricate synchronization. This is because the commit action consists

of smaller actions that make visible changes to other threads. The abstraction map needs to consider

these changes while mapping a concurrent operation to a sequential specification operation. This

causes the abstraction map construction to be difficult under fine-grained concurrency and intricate

synchronization.

In this section, we propose a sound proof system which simplifies the linearizability proofs. The

key idea is to rewrite the concurrent program with larger atomic blocks. Using atomicity, we provide

an effective way to prove linearizability as follows: When proving a concurrent implementation is

linearizable with respect to a sequential specification, we transform the implementation into the

specification in a sequence of phase. In the first phase, we use abstraction and reduction to collect

atomic actions into larger atomic actions. By doing this, we eliminate the effects of the thread

interleavings. In the second phase, variable addition and hiding to make the implementation closer

6 Chapter 2: Proving Linearizability using QED Proof System

to the specification. In the end, we obtain a code that represents the specification. Our soundness

theorem imply the linearizability of the implementation.

Our method has important advantages. The first one is that the abstraction map is constructed

incrementally during the program transformation. That is, we avoid complex construction of the

map all at once. Another advantage of our method is that we do not require the identification

of commit points. This advantage is even more important when the commit point can only be

determined at runtime depending of the thread schedule. Last, we prove the soundness of our

method in which during program transfomation we preserve original program behaviors which are

related to the linearizability of the program.

Our contributions are:

• Defining linearizability in QED proof system

• Proving that complementing other methods with our transformations is sound

• Proving that transforming implementation to specification guarantees linearizability of imple-

mentation

In section 2.2, we give formal syntax and semantics of the concurrent programs. Next, in section

2.3, we define our sound proof system with formal proof rules. In section 2.4 we formally define

linearizability and related notions. In that section, we give full proofs about the proof system, in

particular the proof of the main soundness theorem which is our core contribution.

2.2 Concurrent programs: syntax and semantics

In this section we formalize the syntax and semantics of our programs.

Program. A program P is a tuple P � xGlobalP ,ProcPy. GlobalP is the set of global variables

which are uniquely named. ProcP is a set of procedures. A procedure is a tuple xρ, localρ, bodyρy,

where ρ is the name of the procedure, localρ is the set of local variables, and bodyρ is the body of

the procedure.

We distinguish the input variablesÝÑinρ � localρ and the output variablesÝÑoutρ � localρ. The tuple

xρ,
ÝÑinρ,

ÝÑoutρy is called the signature of the procedure. The signatures of the procedures in Proc form

the signature of the program, denoted SigpPq. We assume the convention that the variables in ÝÑinρ

Chapter 2: Proving Linearizability using QED Proof System 7

are read-only and ÝÑoutρ are write-only, and the rest of the variables in localρ can be both read and

updated.

We use VarP to denote GlobalP Y
�
ρPProc localρ. We assume that each local variable is used

in a unique procedure. Var 1P consisting of the primed version of each variable in VarP . We omit

the subscripts when the program and the procedure are clear from the context.

Execution model. Let Tid be the set of all thread identifiers. Without loss of generality, we assume

that each thread calls one procedure ρ from Proc, and terminates when ρ returns. we refer to the

current thread id through the special variable tid P Global , whose domain is Tid .

Syntax. We assume that each atomic statement α, which we call an atomic action, is in the form:

assert a; p. Let ρ be the procedure whose body contains α, and V � Global Y localρ. The assert

predicate a be over only unprimed variables from V . The transition predicate p is over both primed

and unprimed variables in V Y V 1. For any action α, let φα and τα denote its assert and transition

predicates. For instance, φα � a and τα � p, for α given above.

We use sequential composition (;), choice (l) and loop (ö) operators to form compound state-

ments. We also define the nullary action stop, which appears only at runtime and intuitively marks

the end of fully executing a statement. A full action is either the nullary action stop which intu-

itively marks the end of the code, or a compound action c sequentially composed with the nullary

action, c; stop. Let Atom and Full denote the set of all atomic and full actions, respectively.

Program states. A program state s is a pair consisting of

• a variable valuation σs that maps a thread id and a variable to a value, such that σspt, gq �

σspu, gq for all states s and thread id’s t, u, whenever g is a global variable.

• a code map εs that keeps track of a (compound) statement for each thread, such that εsptq � c

means that at program state s, the remaining part of the program to be executed by thread t is

given by c.

A program state s is called initial if @t P Tid . Dρ P Proc. εsptq � bodyρ, i.e. every thread is

about to call a procedure. State s is called final if εsptq � stop, for all t P Tid . We write Initialpsq

to denote that s is an initial state and write Finalpsq to denote that s is a final state.

Let σs|V denote the projection of valuation σs on V � Var . Define s|V to be the program state

pσs|V , εsq.

8 Chapter 2: Proving Linearizability using QED Proof System

ãÝÑ� Full � pAtomY tλuq � Full

A-EVAL

γ P Atom

γ; c1
γ
ãÝÑ c1

C-LEFT

γ � λ

c1lc2
γ
ãÝÑ c1

C-RIGHT

γ � λ

c1lc2
γ
ãÝÑ c2

L-ITER

γ � λ

cö1
γ
ãÝÑ c1; c

ö
1

L-SKIP

γ � λ

cö1 ; c2
γ
ãÝÑ c2

S-EVAL

c1
γ
ãÝÑ c2

c1; c3
γ
ãÝÑ c2; c3

Figure 2.1: Obtaining all possible subactions of a given full action via the silent transformation
relation, ãÝÑ.

Predicates over program variables. For an assert predicate x, let xrts denote the predicate in

which all free occurrences of tid is replaced with t. We say that a program state s satisfies xrts,

denoted as s (xrts or as xrtspsq, if xrts evaluates to true when all free occurrences of each un-

primed variable v is replaced with σspt, vq. An assert predicate is called a state predicate if it does

not contain any free occurrence of tid.

Similarly, the pair of program states ps1, s2q satisfies a transition predicate prts, denoted as

ps1, s2q (prts or as prtsps1, s2q, if prts evaluates to true when each unprimed variable v is replaced

with σs1pt, vq and each unprimed variable v1 is replaced with σs 2pt, vq.

Let fvppq be the set of free variables in the (state or transition) predicate p.

2.2.1 Operational semantics

Configurations. The evaluation of a full statement is given in terms of the silent transformation

relation, ãÝÑ, whose definition is given in Fig. 2.1. Intuitively, if we imagine the execution of a full

statement represented as a flowchart with an explicit control pointer denoting what to execute next,

the silent transformation relation corresponds to advancing the control pointer over the flowchart

not modifying any program variable’s value. When this imaginary control pointer selects a branch,

it is represented by the label λ which is called the invisible transition. Otherwise, the label is the

content of the box over which the control pointer passes.

For full actions c and d, and a string γ � γ1 . . . γn over Atom Y tλu, we let c
γ
ãÝÑ d denote a

Chapter 2: Proving Linearizability using QED Proof System 9

sequence of silent transformations

c � c0
γ1
ãÝÑ c1 . . .

γn
ãÝÑ cn � d

A program state s1 is in confpsq, the configurations reachable from program state s, if, for all t,

there exists some string γt such that εsptq
γt
ãÝÑ εs1ptq. Intuitively, s1 is a configuration of s if s1 can

be obtained by moving forward the control pointer of each thread’s program an arbitrary number of,

possibly 0, steps.

Let s and s1 be program states, t be a thread id. Then, s1 is called a pt, αq-successor of s, if the

following conditions hold:

• εsptq
λkα
ãÝÝÑ εs1ptq, for some k ¥ 0.

• for all u � t, εs1puq � εspuq,

Intuitively, s1 is a pt, αq-successor of s if at s thread t has α as a possible next action and s1 is the

same as s except the control flow at t skips over α.

Execution semantics. We assume a sequentially-consistent memory model. For thread t and

γ P Atom, pt, γq is called a transition label. Intuitively, s
pt,αq
ÝÝÝÑ s1 holds when t can execute α

next (in which case s1 is a pt, αq successor of s), all other threads do not update their control flow,

all local variables of other threads remain the same, the global variables and local variables of t are

updated so that the transition predicate of α is satisfied. Formally, s
pt,αq
ÝÝÝÑ s1 if ps, s1q (ταrts and

for all u � t and for any local variable x, σspu, xq � σs1pu, xq.

Run. A run r of the program is a sequence of state transitions:

r � r1
pt1,α1q
ÝÝÝÝÑ r2

pt2,α2q
ÝÝÝÝÑ � � �

ptn�1,αn�1q
ÝÝÝÝÝÝÝÑ rn

Let Tidprq denote the set of threads occurring in r. Let ri denote the ith program state, and

rpiq, the ith transition label pti, αiq in r. For a state predicate φ, we say that r is a run of P from φ

if Initialpr1q and r1 (φ.

The run is maximal if rn cannot make any transition. We will only consider maximal runs of the

programs.

Trace. A trace is a sequence of transition labels, l � l1 . . . lk. The trace moves a state s1 to sk�1,

written s1
l
ÝÑ sk�1, if there is a run r of P over l, such that rj � sj , for all 1 ¤ j ¤ k � 1 and

ri
liÝÑ ri�1.

10 Chapter 2: Proving Linearizability using QED Proof System

Violation-freedom. A run r of P from φ is called a violation if φαrtsprkq evaluates to true for

some pt, αq. Intuitively, a violation is a run of P that starts from an initial program state s1 and

reaches a program state sk which violates the assert predicate, φα, of an action α which thread t can

execute at state sk. A run is said to be successful if it is not a violation. We indicate a successful run

as s1
l
ÝÑ s2 and a violation as s1

l
ÝÑ error.

2.3 Program transformations

In this section, we formalize our notion of proof and introduce the rules for the proof calculus. A

proof state is the pair pP , Iq, where P is a program, and I is a state predicate, called the inductive

invariant of the program. We require that for every proof state pP , Iq, all the atomic actions of P

preserve I. An atomic action α preserves I, written α Ô I, if s1
pt,αq
ÝÝÝÑ s2 and s1 (I imply

s2 (I.

A proof consists of rewriting the input program, denoted P1, iteratively so that, in the limit, one

arrives at a program, denoted Pn, that can be verified by sequential reasoning methods. Formally,

the proof is expressed as pP1, trueq 99K pP2, I2q 99K � � � 99K pPn, Inq Each proof step is governed

by a proof rule, which we present below.

The following proof rule states the general form of updating I, replacing it with a stronger

invariant.

Rule 1 (Invariant) Replace invariant I1 with I2 if αÔ I2 for all the actions α in P, and I2 ñ I1.

The basic idea in reduction and abstraction is to replace an action with another action that sim-

ulates the former.

Definition 1 (Simulation) Let α, β be actions, t be an arbitrary thread id. We say β simulates α at

proof state pP , Iq, written pP , Iq $ α ¨ β, if both of the following hold:

S1. pI ^ φαq ñ φβ S2. pI ^ ταq ñ p φβ _ τβq

Intuitively, S1 states that if there is a violation with α, there has to be a violation with β substi-

tuted in place of α. S2 states that for each violation-free run, replacing α with β results in either a

violation, or a violation-free run with the same end state.

Chapter 2: Proving Linearizability using QED Proof System 11

2.3.1 Reduction

Reduction, due to Lipton [20], creates coarse-grained atomic statements by combining fine-grained

actions. An action α can be combined with another action if α is a certain type of mover. A mover

is an action that can commute over actions of other threads in any run. We write pP , Iq $ α : m to

indicate that α is m�mover in the proof state pP , Iq, where m P tL,Ru.

We decide that an action α is a mover by statically checking a simulation relation, that states

that commuting α with every β can lead to the same state or goes wrong. An assert predicate x is

p-stable, if @s, s1.xpsq ^ pps, s1q ñ xps1q.

Let wppp, xq, the weakest (liberal) pre-condition of predicate x for transition predicate p, stand

for all states which cannot reach a state where x evaluates to false after executing p. Formally,

wppp, xq � ts | @s1. pps, s1q ñ xps1qu. For two transition predicates p and q, define their composi-

tion p � q, as the transition predicate p � q � tps1, s2q | Ds3. pps1, s3q ^ qps3, s2qu. The operator J K

expresses the result of combining two actions to one atomic action.

Jα;βK � assert pφα ^ wppτα, φβqq; pτα � τβq JαlβK � assert pφα ^ φβq; pτα _ τβq

Definition 2 (Left-mover) Action α is a left-mover in proof state pP , Iq, denoted pP , Iq $ α : L,

if the following holds for every action β in P and every pair of distinct thread ids t and u: pP , Iq $

Jβrus ; αrtsK ¨ Jαrts ; βrusK.

Definition 3 (Right-mover) Action α is a right-mover in proof state pP , Iq, denoted pP , Iq $ α :

R, if, for every action β in P, and every pair of distinct thread ids t and u: pP , Iq $ Jαrts ; βrusK ¨

Jβrus ; αrtsK and φβrus is ταrts-stable.

The reduction rules below define the conditions under which non-atomic statements are trans-

formed to atomic actions. We omit the rules about procedure calls and parallel composition which

are similar to those of [9].

Rule 2 (Reduce-Sequential) Replace occurrences of α ; γ with Jα ; γK if either pP , Iq $ α : R

or pP , Iq $ γ : L.

Rule 3 (Reduce-Choice) Replace occurrences of α l γ with Jα l γK.

Rule 4 (Reduce-Loop) Replace occurrences of αö with β if the following hold:

L1. pP , Iq $ α : m s.t. m P tR,Lu L2. β Ô I

L3. φβ ñ τβrVar{Var
1s L4. pP , Iq $ Jβ ; αK ¨ α

12 Chapter 2: Proving Linearizability using QED Proof System

2.3.2 Abstraction

An abstraction step consists of replacing an action α with another action β, which in principle leads

to less interference with other actions.

Rule 5 (Abstraction) Replace the action α with action β if β Ô I and pP , Iq $ α ¨ β.

This rule is usually applied for an action assert a; p by replacing it with 1) assert b; p such

that b ñ a or 2) with assert a; q such that p ñ q. While the former corresponds to adding extra

assertions to the action, the latter adds more transitions.

2.3.3 Variable introduction and hiding

Intuitively, variable introduction rewrites some actions in the program so that these can refer to a

new (history) variable. Variable hiding is the dual of variable introduction; each action is rewritten

so that it does no longer refer to the hidden variable. Hiding a variable also requires quantifying out

the variable in the invariant.

In order to ensure soundness, in both cases, we need a relation between actions over different

sets of variables. For this, we extend our simulation relation (¨) for each rule. In addition, we

require that the input and output variables of the procedures (ÝÑinρ,
ÝÑoutρ) are fixed during the proof;

the rules below are not applicable to these variables.

Rule 6 (Add-Variable) Add the new variable v to VarP , and replace every action α with β when-

ever pP , Iq $ α ¨�v β, which holds if the following are both valid:

A1. pI ^ φαq ñ p@v . φβq A2. pI ^ ταq ñ p@v . φβ _ pDv
1. τβqq

Rule 7 (Hide-Variable) Remove the existing variable v from the program, and replace the invari-

ant I with Dv . I. Replace every action α with β whenever pP , Iq $ α ¨�v β, which holds if the

following are both valid:

H1. pDv . I ^ φαq ñ φβ H2. pDv , v 1. I ^ ταq ñ p φβ _ τβq

In both of the rules, the first condition (A1, H1) states that violations are preserved. The sec-

ond condition (A2, H2) states that transitions (over the common variables of α and β) are either

preserved or additional violations are introduced.

Chapter 2: Proving Linearizability using QED Proof System 13

2.4 Linearizability

In this section, we give the formal definitions and proofs for the linearizability.

Good and Bad. Below, we define GoodpP , Iq as the set of pre- and post-state pairs associated with

succeeding (maximal) runs of program P from states satisfying I. BadpP , Iq is the set of pre-states

associated with violations. Formally,

GoodpP , Iq � tps1, s2q | Initialps1q, s1 (I, Dl. s1
l
ÝÑ s2, F inalps2qu

BadpP , Iq � ts1 | Initialps1q, s1 (I, Dl. s1
l
ÝÑ erroru

P is said to be good from I if BadpP , Iq � H; it is called bad from I, otherwise.

Theorem 1 Let pP1, I1q 99K � � � 99K pPn, Inq be a sequence of proof steps. Let V � VarP1 X

VarPn and X � pVarP1 YVarPnqzV. The following hold:

C1. Bad |V pP1, DX. Inq � Bad |V pPn, DX. Inq

C2. @ps1, snq P Good |V pP1, DX. Inq :

a. s1 P Bad |V pPn, DX. Inq or b. ps1, snq P Good |V pPn, DX. Inq

Note that, since the input and output variables of procedures are fixed during the proof, so the set

V above will always be nonempty. A corollary of the above theorem is that, if Pn is good from In,

then P1 is good from In. This means that, one can prove the assertions in P1 by gradually obtaining

programs with coarser-grained concurrency using our proof rules.

We prove below the relation between P1 and Pn in order to prove linearizability. We first

define behavioral simulation, a special type of simulation that relates two programs through their

observable behaviors over procedure input and output values.

Behavioral simulation. Let r � s1
l
ÝÑ sn be a (maximal) run of the program. Let ρ be the

procedure executed by t. We call the tuple pt, ρ, σs1pt,
ÝÑinρq, σsnpt,

ÝÑoutρqq the behavior of t in r and

denote it by behpr, tq. The behavior includes the name of the procedure called by t, along with

the values of the input and the output variables of the procedure. Notice that the first and the last

states of the run provide us the values of ÝÑinρ and ÝÑoutρ, respectively. We write Behprq to denote

tbehpr, tq | t P Tidprqu.

We define fstpr, tq and lstpr, tq be the indices of first and the last actions of t in r. Formally, with

L � ti | rpiq � pt, αqu, fstpr, tq � minpLq and lstpr, tq � maxpLq. Let !r be a partial order over

Tidprq ordering threads that do not execute concurrently: t !r u if lstpr, tq fstpr, uq.

14 Chapter 2: Proving Linearizability using QED Proof System

Definition 4 Let P and P 1 be two programs with SigpPq � SigpP 1q, and let I be a state predicate.

Let X1 � fvpIqzVarP and X2 � fvpIqzVarP 1 . P 1 behaviorally-simulates P from I, denoted

P �I P 1 if for each maximal run r of program P from DX1.I, there exists a maximal run r1 of P 1

from DX2.I such that 1) Behprq � Behpr1q and 2) !r � !r1

Linearizability. We now define the notion of linearizability in [14]. In this notion a run of the

program is described by a sequence of meta-actions invoke and response. The sequence of these

meta-actions is called the history of the run. The history of the run r is denoted Hr, and Hpiq

denotes the ith meta-action in H.

TidpHq denotes the set of thread identifiers in H. Let H|t be the subhistory of H projected on

the thread t.

An invoke action invxρ, xs, ty describes a call to a procedure ρ with arguments xs by thread t. A

response action resxρ, ys, ty describes a return from the procedure ρ with return values ys in thread

t. We omit the elements of the meta-actions and refer to them using the dotted notation (e.g., inv.ρ).

We say that pinv, resq is a pair of matching invoke and response in H, if H|tpiq � inv and

H|tpi � 1q � res for some thread t and index i. We say that a history H is sequential, if for each

matching pair pinv, resq in H, Hpiq � inv and Hpi� 1q � res for some index i.

We say H and H1 are equivalent, denoted by H � H1, if TidpHq � TidpH1q and @t P

TidpHq.H|t � H1|t.

Given a history H, we define response-invoke preservation relation ¨H as follows: Two match-

ing invoke-response pairs pinv, resq and pinv1, res1q in H are ordered, denoted, (inv, res) ¨H (inv1,

res1), if Hpiq � res and Hpjq � inv1 for some i j.

A history H is linearizable to a sequential history H1 if H � H1 and ¨H�¨H1 .

Definition 5 (Linearizability) Let P 1 be an atomic program and I be an assert predicate. A pro-

gram P is linearizable to P 1 from I if every history of P from I is linearizable to some sequential

history of P 1 from I.

The following theorem connects behavioral simulation to the notion of linearizability. We say

P is linearizable to P 1 from I to restrict the definition of linearizability to runs of P and P 1 from I.

A program P is called an atomic program if for every ρ P ProcP , bodyρ is an atomic action.

Theorem 2 Let P 1 be an atomic program that is good from I. A program P is linearizable to P 1

from I iff P �I P 1.

Chapter 2: Proving Linearizability using QED Proof System 15

PROOF.

Assume P is linearizable to P 1 from I. Let r be a run of P from I. Consider its history Hr. By

assumption, there exists a sequential history H1 of P 1 from I such that H is linearizable to H1. Then

there exists a run r1 of P 1. We obtain H1 from r1 such that TidpHq � TidpH1q � Tidprq � Tidpr1q.

In addition, Behpr1q � Behprq since the input and output values from H and H1 are equivalent. In

addition, ¨H � ¨H1 implies !r � !r1 . Thus for every r, we can find a run r1 such that P �I P 1.

Assume P �I P 1. Let H be history of program P . We have a run r of P from which we obtain

H. Since P �I P 1, there exits a run r1 of P 1 such that Behprq � Behpr1q and !r � !r1 . We

first construct sequential history H1 of r1 of atomic program P 1 as described in the definition of a

history by means of invocation and return of procedures in r1. Since Behprq � Behpr1q we know

that Tidprq � Tidpr1q and hence TidpHq � TidpH1q and @t P Tidprq, behpr, tq � behpr1, tq.

Thus, @t P TidpHq H|t � H1|t. That is, H � H1. We also have !r � !r1 which implies ¨H

� ¨H1 since we do not change order of actions when deriving the history of a run. Hence, H is

linearizable to H1, and P is linearizable to P 1.

To prove the soundness theorem, first we need to prove some lemmas.

Below, we extend the definition of state transitions as follows:

• σ1
l
ÝÑ σ2 holds if there exists ε1, ε2 such that pσ1, ε1q

l
ÝÑ pσ2, ε2q

• ε1
l
ÝÑ ε2 holds if there exists σ1, σ2 such that pσ1, ε1q

l
ÝÑ pσ2, ε2q

Note that, σ1
l
ÝÑ σ2 and ε1

l
ÝÑ ε2 imply pσ1, ε1q

l
ÝÑ pσ2, ε2q.

Definition 6 (Behaviorally-simulating runs) Let P and P 1 be two programs with SigpPq � SigpP 1q,

and let I be a state predicate. Let r and r1 be maximal runs of P and P 1, respectively. The run r1 is

said to behaviorally-simulate r, denoted r � r1, if 1) Behprq � Behpr1q, and 2) !r � !r1 .

For statement c, we define crβ{αs be the statement in which every occurrence of α is replaced

by β. In addition, εrβ{αs and Prβ{αs are defined to be ε and P in which the same replacement is

applied to every εptq and bodypρq, respectively.

The following lemma states that after replacing α with β in the program, the sequences of ε-

transitions remain the same.

16 Chapter 2: Proving Linearizability using QED Proof System

Lemma 1 Let P be a program. The following holds.

• For t � u, if ε1
pt,αqpu,βq
ÝÝÝÝÝÝÑ ε2 be a run of P , then ε1

pu,βqpt,αq
ÝÝÝÝÝÝÑ ε2 is a run of P .

• If ε1
pt,αq
ÝÝÝÑ ε2 be a run of P , then ε1rβ{αs

pt,αq
ÝÝÝÑ ε2rβ{αs is a run of Prβ{αs.

• If ε1
pt,αqpt,βq
ÝÝÝÝÝÑ ε2 be a run of P , then ε1rγ{pα;βqs

pt,γq
ÝÝÝÑ ε2rγ{pα;βqs is a run of Prγ{pα;βqs.

• If ε1
pt,αq
ÝÝÝÑ ε2 be a run of P , then ε1rγ{pαlβqs

pt,γq
ÝÝÝÑ ε2rγ{pαlβqs is a run of Prγ{pα;βqs.

• If ε1
pt,βq
ÝÝÝÑ ε2 be a run of P , then ε1rγ{pαlβqs

pt,γq
ÝÝÝÑ ε2rγ{pαlβqs is a run of Prγ{pα;βqs.

• If ε1
pt,α1q...pt,αnq
ÝÝÝÝÝÝÝÝÑ ε2 be a run of P , then ε1rβ{αös

pt,βq
ÝÝÝÑ ε2rβ{α

ös is a run of Prβ{αös.

PROOF.

This lemma holds from the operational semantics of the language given in Section 2.2.1.

Lemma 2 � is reflexive and transitive.

PROOF.

We know that equivalence on Beh and � relation on ! are both reflexive and transitive. Thus, � is

trivially reflexive and transitive.

The following lemma states that final state of a run determines the behavior of that run.

Lemma 3 (Final state) Let pP , Iq be a proof state such that P is good from I. Let r � r1
l
ÝÑ rn

and r1 � r11
l1
ÝÑ r1m are two maximal runs of P from I such that Tidprq � Tidpr1q and every thread

calls the same procedure in r and r1. If σrn � σr1m , then Behprq � Behpr1q.

PROOF.

The behaviors are encoded by input and output variables of the threads, which are all local. For

each thread t P Tidprq let ρ be the procedure called by t. The input variablesÝÑinρ are read-only, and

output variables ÝÑoutρ are only written by t. Thus, the behavior behpr, tq can be determined by only

looking at the values ÝÑinρ and ÝÑoutρ at rn and rm. Thus, the equivalence of the final states implies the

equivalence of the behaviors.

Chapter 2: Proving Linearizability using QED Proof System 17

Lemma 4 (Right-mover) Let pP , Iq be a proof state such that P is good from I, and α be action

that is right-mover. Let r � r1
l1ÝÑ ri

pt,αql
ÝÝÝÑ rj

pt,γql2
ÝÝÝÝÑ rn be a maximal run of P from I.,

such that l � pu1, β1qpu2, β2q � � � pum, βmq and t R tu1, . . . , umu. There exists a maximal run

r1 � r1
l1ÝÑ ri

lpt,αq
ÝÝÝÑ rj

pt,γql2
ÝÝÝÝÑ rn of P from I, such that r � r1.

PROOF.

Assume that pP , Iq $ α : R. We will do induction on the length m of the sequence l �

pu1, β1qpu2, β2q � � � pum, βmq. In the base case, that is when m � 0, the claim trivially holds since

we take r � r1. In the inductive case, we consider the run r � r1
l1ÝÑ ri

pt,αql
ÝÝÝÑ rk

pum�1,βm�1q
ÝÝÝÝÝÝÝÝÑ

rj
pt,γql2
ÝÝÝÝÑ rn such that t R tu1, . . . , um, um�1u. By the inductive hypothesis, there exists a run

r2 � r1
l1ÝÑ ri

lpt,αq
ÝÝÝÑ rk

pum�1,βm�1q
ÝÝÝÝÝÝÝÝÑ rj

pt,γql2
ÝÝÝÝÑ rn such that r2 � r. We want to show that there ex-

ists r1 � r1
l1ÝÑ ri

lpum�1,βm�1qpt,αq
ÝÝÝÝÝÝÝÝÝÝÝÝÑ rj

pt,γql2
ÝÝÝÝÑ rn. Let r2 be as follows: r2 � r1

l1ÝÑ ri
l
ÝÑ rz

pt,αq
ÝÝÝÑ

rk
pum�1,βm�1q
ÝÝÝÝÝÝÝÝÑ rj

pt,γql2
ÝÝÝÝÑ rn. We know that σrz (φβm�1 ^ wppτβm�1 , φαq, since P is good from

I. In addition, σrz
pum�1,βm�1qpt,αq
ÝÝÝÝÝÝÝÝÝÝÝÑ σrj holds, since pP , Iq $ α : R, and τβm�1 � τα ñ τα � τβm�1 .

Then, rz
pum�1,βm�1q
ÝÝÝÝÝÝÝÝÑ rs

pt,αq
ÝÝÝÑ rj for some rs holds.

Next, we want to show that r � r1. r � r2 holds by the inductive hypothesis. Since the final states

of r2 and r1 are equivalent, Behpr2q � Behpr1q by Lemma 3. The only way to break a relation in

!r2 , by commuting pt, αq with pum�1, βm�1q is when α is the last action of t and βm�1 is the first

action of um�1. However, this contradicts with the existence of γ. Thus !r2�!r1 . Then, r � r1

since r2 � r1, r2 � r1, and � is transitive.

Lemma 5 (Left-mover) Let pP , Iq be a proof state such that P is good from I, and γ be action

that is left-mover. Let r � r1
l1pt,αq
ÝÝÝÝÑ ri

lpt,γq
ÝÝÝÑ rj

l2ÝÑ rn be a successful, maximal run of P from

I., such that l � pu1, β1qpu2, β2q � � � pum, βmq and t R tu1, . . . , un, un�1u. There exists a maximal

run r1 � r1
l1pt,αq
ÝÝÝÝÑ ri

pt,γql
ÝÝÝÑ rj

l2ÝÑ rn of P from I, such that r � r1.

PROOF.

The proof is similiar to that of Lemma 4

The following main soundness theorem states that each good program reached during the proof

behaviorally simulates the initial program.

18 Chapter 2: Proving Linearizability using QED Proof System

Theorem 3 (Soundness) Let pP1, I1q 99K � � � 99K pPn, Inq be a sequence of proof steps such that

Pn is good from In. Then forall 1 ¤ i ¤ n, P1 �In Pi holds.

PROOF.

Since Pn is good from In, for all 1 ¤ i ¤ n, Pi is good from In, by Theorem 1. We will prove the

theorem by induction on the length of the proof, i.e. the number of proof states reached during the

proof. In the base case, there is only one proof state pP1, I1q. The claim holds trivially for pP1, I1q,

since P1 �I1 P1, by definition of � and Lemma 2.

In the inductive case, we proceed as follows: Consider part of proof: pP1, I1q 99K � � � 99K

pPi, Iiq 99K pPi�1, Ii�1q 99K � � � 99K pPn, Inq. We know that for all 1 ¤ j ¤ i, P1 �In Pj

holds, by inductive hypothesis. We want to show P1 �In Pi�1. For any 1 ¤ k ¤ n, let Xk �

VarPk
zfvpInq. Let run r � r1

l
ÝÑ rN of P1 from DX1.In. We claim that there exists a run r1 of

Pn�1 from DXi�1.In such that r � r1. We will prove by case split on the proof rule.

CASE: Rule INVARIANT: Replace invariant I1 with I2 if α Ô I2 for all the actions α in P, and

I2 ñ I1.

Since Pi � Pi�1, so taking r1 � r makes the claim hold, since r � r by Lemma 2.

CASE: Rule ABSTRACT: Replace the action α with action β if β Ô I and pP , Iq $ α ¨ β.

We know pPi, Iiq $ α ¨ β. By proof rule, In�1 � In and Xi � Xi�1, since VarPi � VarPi�1 .

We construct r1 from r as follows: Take r11 � pσr1 , εr1rβ{αsq. Assume that r11
r
ÝÑ

1
j so that

@1 ¤ k ¤ j. r1j � pσrj , εrj rβ{αsq and transition rj
pt,γq
ÝÝÝÑ rj�1. We claim pσrj , εrj rβ{αsq

pt,γq
ÝÝÝÑ

pσrj�1 , εrj�1rβ{αsq. If γ � α, the claim trivially holds by operational semantics of atomic actions,

and Lemma 1. Then, let γ � α. Since pP , Iq $ α ¨ β, and P is good from I. σrj
pt,βq
ÝÝÝÑ σrj�1 .

We also know that εrj rβ{αs
pt,βq
ÝÝÝÑ εrj�1rβ{αs, by Lemma 1. Therefore,pσrj , εrj rβ{αsq

pt,αq
ÝÝÝÑ

pσrj�1 , εrj�1rβ{αsq. Next, for this case we want to show r � r1. By the construction above,

Tidprq � Tidpr1q, and every procedure executes the same procedure in both r and r1. Also,

@1 ¤ j ¤ N. rj � r1j . Thus, Behprq � Behpr1q by Lemma 3. For every thread t P Tidprq,

fstpr, tq � fstpr1, tq and lstpr, tq � lstpr1, tq. Thus !r�!r1 . Since Xi � Xi�1, r1 (DXn.In

implies r11 (DXi�1.In. Thus r1 is a run of Pi�1 from DXi�1.In such that r � r1.

CASE: Rule REDUCE-SEQUENTIAL: Replace occurrences of α ; γ with Jα ; γK if either pP , Iq $

α : R or pP , Iq $ γ : L.

Because of the proof rule and VarPi � VarPi�1 , we know that In�1 � In and Xi � Xi�1. We

will proceed the proof for this case considering the cases where α is right-mover and γ is left-mover.

Chapter 2: Proving Linearizability using QED Proof System 19

CASE: pPi, Iiq $ α : R

We will construct r2, a run of Pi from r, such that r � r2 by induction on the number of pα, γq pairs

not appearing adjacent in r. In the base we can simply have r2 � r, so r � r2. In the inductive

case, we assume r2 � r1
l1ÝÑ ri

pt,αqlpt,γq
ÝÝÝÝÝÝÑ rj

l2ÝÑ rN , such that l � pu1, β1qpu2, β2q � � � pum, βmq,

t R tu1, . . . , um, um�1u, and r � r2. By Lemma 4, r3 � r1
l1ÝÑ ri

lpt,αqpt,γq
ÝÝÝÝÝÝÑ rj

l1ÝÑ rn exists

such that r � r2. We contruct the run r2 such that for every r2pkq � pt, αq for some thread t,

r2pk � 1q � pt, γq, i.e., all pα, γq pairs appear adjacent to each other. As a result of the induction,

r � r2. Then, we construct r1, a run of Pi�1 from r2 by induction on the length of the run. For

the base case, we simple take r11 � r21 . For the inductive case, we have r1 � r21
l
ÝÑ r2k for some

l and the transition r2k
pt,αq
ÝÝÝÑ r2k�1

pt,γq
ÝÝÝÑ r2k�2. We claim that pσr2k , εr2krJα; γK{α;βsq

pt,Jα;γKq
ÝÝÝÝÝÑ

pσr2k�2
, εr2k�2

rJα; γK{α; γsq. By definition of J K, Jα; γK � assert pφα ^ wppτα, φγqq; pτα � τγq.

Since the run r is successful, r2k (φα, and in addition r2k�1 (φγ . We also know r2k (wppτα, φγq.

By definition of �, pταprk, r2k�1q^τγpr
2
k�1, r

2
k�2qq ñ pτα �τγqpr

2
k, r

2
k�2q. We also have σr2k

pt,Jα;γKq
ÝÝÝÝÝÑ

σr2k�2
and εr2krJα; γK{α; γs

pt,Jα;γKq
ÝÝÝÝÝÑ εr2k�2

rJα; γK{α; γs, by Lemma 1. Next we need to show r2 � r1.

By the construction we did, Tidpr2q � Tidpr1q, and every thread executes the same procedure in

both r2 and r1. Also, by construction, r2N � r1N . Then, together with Lemma 3, Behpr2q � Behpr1q.

!r2�!r1 , since the construction we did does not introduce in r1 any more interleavings than that of

r2 between two threads. Now, r11 (DXi�1.In, by σr1 � σr21 � σr11 , r1 (DXi.In. Thus r1 is a run

of Pi�1 from DXi�1.In. r � r1, by r � r2, r2 � r1, and Lemma 2.

CASE: pPi, Iiq $ γ : L

This case is similar to the right mover case, but using Lemma 5.

CASE: Rule REDUCE-CHOICE: Replace occurrences of α l γ with Jα l γK.

Because of the proof rule and VarPi � VarPi�1 , we know that In�1 � In and Xi � Xi�1. We

construct r1, a run of Pi�1 from r by induction on the length of the run. For the base case, we

simple take r11 � r1. For the inductive case, we have r1 � r1
l
ÝÑ rk for some l and rk

pt,βq
ÝÝÝÑ rk�1.

We want to show that pσrk , εrkrJαlγK{α; γsq
pt,βq
ÝÝÝÑ pσrk�1

, εrk�1
rJαlγK{αlγsq. If β � α and

β � γ, then the claim trivially holds by operational semantics of atomic actions, and Lemma 1.

Let β � α where the transition is part of αlγ. JαlγK � assert pφα ^ φγq; pτα _ τγq, by

definition of J K. Since Pi is good from DXi.I, rk (φγ , and in addition to rk (φα. We

also know that ταprk, rk�1q ñ pτα _ τγqprk, rk�1q and σrk
pt,JαlγKq
ÝÝÝÝÝÝÑ σrk�1

. By Lemma 1

εrkrJαlγK{αlγs
pt,JαlγKq
ÝÝÝÝÝÝÑ εrk�1

rJαlγK{αlγs. A similar proof can be done when β � γ

20 Chapter 2: Proving Linearizability using QED Proof System

where the transition is part of αlγ. Next, we need to show r � r1. By the construction we did,

Tidprq � Tidpr1q, and every thread executes the same procedure in both r and r1. Also, by con-

struction, rN � r1N . Then, together with Lemma 3, Behprq � Behpr1q. !r�!r1 , since the con-

struction we did does not introduce in r1 any more interleavings than that of r between two threads.

Now, r11 (DXi�1.In, by σr1 � σr11 , r1 (DXi.In. Thus r1 is a run of Pi�1 from DXi�1.In.

CASE: Rule REDUCE-LOOP

We know that In�1 � In and Xi � Xi�1, since VarPi � VarPi�1 . There are two cases where the

body α is right or left mover.

CASE: pPi, Iiq $ α : R

We will construct r2, a run of Pi from r in the following way: For each occurrence of the pair α, γ,

contruct a new run from the current one, by moving every α (due to αö) to the right, until it becomes

adjacent to the last occurrence of α. We claim r � r2. We will do induction on the number of pairs

α1, α2, where α2 is last iteration of the loop, that do not appear adjacent in r. In the base case, we

can take r2 � r, then r � r2. In the inductive case, we take the run r � r1
l1ÝÑ ri

pt,α1qlpt,α2q
ÝÝÝÝÝÝÝÑ

rj
l2ÝÑ rn such that l � pu1, β1qpu2, β2q � � � pum, βmq and t R tu1, . . . , un, un�1u, and construct the

run r2 � r1
l1ÝÑ ri

lpt,α1qpt,α2q
ÝÝÝÝÝÝÝÑ rj

l1ÝÑ rn. By Lemma 4, r � r2 holds. In addition, the number of

pairs α, γ in r2 is less than r. We contruct r2 such that for every r2pkq � pt, αq for some thread

t, either r2pkq is the last iteration, or r2pk � 1q � pt, αq. Then, r � r2. Next, we construct r1, a

run of Pi�1 from r2 in the following way: We will replace every occurrence of r2k
pt,αq�
ÝÝÝÝÑ r2k�m

with pσr2k , εr2krα
ö{βsq

pt,βq
ÝÝÝÑ pσr2k�m

, εr2k�m
rαö{βsq. If m � 0, since τβ is reflexive, we have the

transition pσr2k , εr2krα
ö{βsq

pt,βq
ÝÝÝÑ pσr2k , εr

2

k
rαö{βsq. If m ¡ 0, by pPi, Iiq $ Jβ;αK ¨ β, and since

Pi is good from DXi.In,σr2k
pt,Jα;γKq
ÝÝÝÝÝÑ σr2k�m

holds. Also by operational semantics, εr2krα
ö{βs

pt,βq
ÝÝÝÑ

εr2k�m
rαö{βs. Next, we want to show Tidpr2q � Tidpr1q. Since the final states of r2 and r1 are

equivalent, Behpr2q � Behpr1q by Lemma 3. For every thread t P Tidpr2q, replacing consecutive

transitions of t with again transitions of t does not effect relative ordering of t with other threads.

Thus!r�!r1 . We also have r1 � r21 , by construction and Lemma 4. r11 (DXi�1.In, by σr21 � σr11 ,

r1 (DXi.In. Thus r1 is a run of Pi�1 from DXi�1.In. r � r1, by r � r2 and r2 � r1.

CASE: pPi, Iiq $ α : L

This case is similar to the right mover case, but using Lemma 5.

CASE: Rule ADD-VARIABLE: Add the new variable v to VarP , and replace every action α with β

Chapter 2: Proving Linearizability using QED Proof System 21

whenever pP , Iq $ α ¨�v β, which holds if the following are both valid:

A1. pI ^ φαq ñ p@v . φβq A2. pI ^ ταq ñ p@v . φβ _ pDv
1. τβqq

We know by proof rule In�1 � In. If v is a local variable, then Xi � Xi�1; otherwise Xi �

Xi�1Ytvu, since VarPi�1 � VarPiYtvu. We will construct r1 from r by induction on the number

of states in r. In the base case, If v P localρ for some procedure ρ, then take r11 � pσr1 , εr1rβ{αsq,

where σr1 � σr1rt, v ÞÑ xs and x is some value, for every thread t calling ρ. If v is global, then take

r11 � pσr1 , εr1rβ{αsq, where σr1 � σr1rv ÞÑ xs such that σr1 (DXi�1.In. There exists x since

σr1 (Xi.In and Xi � Xi�1 Y tvu. In the inductive case, we assume r1 � r11
l
ÝÑ r1k so that forall

1 ¤ j ¤ k, r1j � pσrj , εrj rβ{αsq, where σrj � σrj rv ÞÑ xs, with x chosen during the construction

properly. Now assume rk
pt,αq
ÝÝÝÑ rk�1 exists. We want to show r1k

pt,αq
ÝÝÝÑ pσrk�1

, εrk�1
rβ{αsq.

σrk
pt,βq
ÝÝÝÑ σrk�1

, where σrk�1
� σrk�1

rv ÞÑ xs such that τβpσrk , σrk�1
q holds. There exists x since

ταpσrk , σrk�1
) and by condition A2 of ¨�v . By Lemma 1, εrkrβ{αs

pt,βq
ÝÝÝÑ εrk�1

rβ{αs. Next, we

want to show r � r1. We know Tidprq � Tidpr1q. Let V � VarPi X VarPi�1 . Our construction

ensures that σrN |V � σr1N |V , and @ρ. v R localρ, thus Behprq � Behpr1q by Lemma 3. We also

know that for every thread t P Tidprq, fstpr, tq � fstpr1, tq and lstpr, tq � lstpr1, tq. Thus !r�!r1 .

Now, if v is local, then r11 (DXi�1.In since r1 (DXi.In and Xi � Xi�1. If v is global,

r11 (DXi�1.In is ensured by our construction, choosing σr11pvq properly to satisfy DXi.In. Thus r1

is a run of Pi�1 from DXi�1.In.

CASE: Rule HIDE-VARIABLE: Remove the existing variable v from the program, and replace the

invariant I with Dv . I. Replace every action α with β whenever pP , Iq $ α ¨�v β, which

holds if the following are both valid:

H1. pDv . I ^ φαq ñ φβ H2. pDv , v 1. I ^ ταq ñ p φβ _ τβq

We know by the proof rule that In�1 � Dv .In and Xi � Xi�1. We will construct r1 from r by

induction on the number of states in r. In the base case, we can take r11 � pσr1 , εr1rβ{αsq, where

σr1 � σr1 |VarPi
. r1 (Xi.In, In�1 � Dv .In and Xi � Xi�1 imply that r11 (Xi�1.In. In

the inductive case, assume that r1 � r11
l
ÝÑ r1k so that forall 1 ¤ j ¤ k, r1j � pσrj , εrj rβ{αsq,

where σrj � σrj |VarPi
. Also assume that transition rk

pt,αq
ÝÝÝÑ rk�1 exists. We claim that r1k

pt,αq
ÝÝÝÑ

pσrk�1
, εrk�1

rβ{αsq. Then we have σrk
pt,βq
ÝÝÝÑ σrk�1

, where σrk�1
� σrk�1

|VarPi
, since condition

H2 of ¨�v implies that if σrk
pt,αq
ÝÝÝÑ σrk�1

holds then σrk |V arPi

pt,βq
ÝÝÝÑ σrk�1

|V arPi
holds. By

Lemma 1, εrkrβ{αs
pt,βq
ÝÝÝÑ εrk�1

rβ{αs. Next, we want to show r � r1. We have Tidprq � Tidpr1q.

Let V � VarPi X VarPi�1 . Our construction ensures that σrN |V � σr1N |V , and @ρ. v R localρ,

22 Chapter 2: Proving Linearizability using QED Proof System

thus Behprq � Behpr1q by Lemma 3. For every thread t P Tidprq, fstpr, tq � fstpr1, tq and

lstpr, tq � lstpr1, tq. Thus !r�!r1 . Since r1 (DXi.In and Xi � Xi�1, our construction ensures

that r11 (DXi�1.In holds. Thus r1 is a run of Pi�1 from DXi�1.In.

Theorems 2 and 3 provide two options for proving linearizability of P1 to the intended speci-

fication from I, represented by an atomic program Pn. First, one can complement another proof

method with ours, by first performing the proof pP1, trueq 99K � � � 99K pPk, Iq, and then applying

her method to prove that Pk is linearizable to Pn. Once the proof passes, this implies that P1 is also

linearizable to Pn, since our transformations preserve all the behaviors of the program relevant to

linearizability. Alternatively, one can keep transforming pPk, Iq up to pPn, Iq, and complete the full

proof of linearizability in our system. Note that, for the theorems to ensure soundness in these cases,

one must also prove that Pk (resp. Pn) is good from I. The latter is formalized by the following.

Corollary 4 Let pP1, trueq 99K � � � 99K pPn, Iq be a sequence of proof steps, such that Pn is an

atomic program that is good from I. Then, P1 is linearizable to Pn from I.

In this chapter, we presented our work regarding proving linearizability of the concurrent data

structures. We provided our formal framework for concurrent programs. We defined our formal

proof system to prove linearizability of the concurrent program. In the end we provided our proof

of the main soundness theorem.

Chapter 3

VERIFIYING TRANSACTIONAL PROGRAMS WITH

PROGRAMMER-DEFINED CONFLICT DETECTION

3.1 Introduction

Transactional memory [12] provides atomic blocks by which programmers are able to use sequen-

tial reasoning about the correctness of the concurrent implementations. By these atomic blocks,

concurrent programming and its verification become easy. This is because to verify the concurrent

program consisting of these atomic blocks, we can safely ignore the interleaved executions of such

atomic code blocks due to the atomicity guarantee provided by transactional memmory. In addition,

atomic blocks enable programmers to use sequential verification tools.

In reality, while transactional memory implementations provide atomic blocks, these blocks are

executed highly concurrent to achieve high performance. Two concurrent transactions are said to

conflict if they access the same memory location and at least one of them modifies it. When blocks

are being executed if a conflict occurs one of the blocks is aborted and re-executed in order to

provide atomicity.
Code below is for a sorted and singly-linked list:

list_insert (list_t* listPtr, node_t* node):

atomic { // or, atomic (!WAR) {

prev = &(listPtr->head);

curr = prev->next;

while (curr != NULL && curr->key < node->key){

prev = curr;

curr = curr->next;

}

node->next = curr;

prev->next = node;

}

Now assume that we have two transactions, Tx1 and Tx2, trying to insert nodes concurrently

24 Chapter 3: Verifiying Transactional Programs with Programmer-Defined Conflict Detection

into a linked list. Assume we have the following interleaving of the transactions where time flows

from left to right:

Tx1 Tx2 Tx1

------------ ---------------------------- -------------------------------

xread n_lefty ... xread n_lefty xwrite to n_lefty ... xread n_righty xwrite to n_righty

Tx1 inserts a node after node n right which is closer to the tail of the list and Tx2 inserts a node

after node n left which is closer to the head of the list. First, Tx1 reads node pointers and passes

node n left. Then, Tx2 reads node pointers and inserts a node after the node n left. After Tx2

finishes, Tx1 inserts a node after n right. This situation is called write-after-read (WAR) conflict. In

such cases, many conflicts can occur and thus transactions can abort, if many different transactions

concurrently try to insert nodes into the same linked list.

To gain in terms of performance, transactional memory implementations provide different ways

to detect conflicts in which they ignore conflicts that do not hurt correctness of the program. For

example, some implementations offer early discard mechanisms where the implementations discard

certain locations from the read or write sets of the transaction in order to discard some conflicts

that do not hurt correctness [25]. Some researchers suggest programmer-defined conflict detection

[27]. The programmer annotates a block with ’!WAR’ and the hardware will execute that block by

ignoring the write-after-read conflicts. This way performance gain is achieved.

When we apply the method of [27], the atomicity guarantee of the transaction memory imple-

mentation and the ability to use sequential reasoning are lost. If we use ’!WAR’ annotation technique

of [27], Tx1 will succesfully commit. But in this case, since the read of n left of Tx1 is old and is

interleaved with transaction Tx2, we cannot say Tx1 is executed as atomically. Thus, to prove the

correctness of the program under this new programmer-defined conflict mechanism, one needs to

think about concurrency and concurrent executions of the linked list implementation.

If we analyse the nature of the write-after-read conflicts, we can see that this type of conflicts

does not hurt correctness. To see why, even if Tx1 inserts a node after the insert of Tx2, the nodes

are inserted in the correct places and the linked list is sorted and connected after the insertions. In

additon, both inserted nodes are reachable from head.

In this work, we propose a verification method and formal model to prove correctness of pro-

grams under programmer-defined conflict mechanisms. Our method regains the ability to use se-

quential reasoning. We perform the correctness proof of the programs in two main steps. First, we

Chapter 3: Verifiying Transactional Programs with Programmer-Defined Conflict Detection 25

perform a contract-based sequential proof on the transactional program. The specifications of the

programs, which define what the correctness of the program means, consist of pre-conditons, post-

conditions, loop invariants and invariants. For instance for the linked list example, the list being

sorted and the node being in the list after insertion are the correctness conditons of the linked list

implementation. Second, we perform what is called ’read abstraction’. We replace reads of vari-

ables on which we ignore write-after-read conflicts with reads that allow more behaviors and that are

non-deterministic. For instance for the linked list example above, we replace the read of curr-¡next

in curr = curr-¡next with a non deterministic read that returns a node reachable from head. Then,

our main soundness theorem, which builds on Scott’s fundamental theorem for TM [24], and on [9],

states that this modified and abstract version of the program can be treated as atomic. After apply-

ing read abstraction, we perform a sequential verification on the abstract program which include the

specifications of the original program determining the correctness of the original program. Once we

proved these specifications, our main soundness theorem states that these specifications hold also

for the original program.

To evaluate our method, we verified pre-conditons and post-conditions of transactions in the

Genome and Labyrinth benchmarks from the STAMP [5] benchmark suite that use TM with relaxed

detection of conflicts as stated in Titos et al [27] by sequential verification tools.

Our contributions are:

• We provide a formal model for programs using TM and programmer-controlled conflict de-

tection. This formalization allows static, modular proof techniques to be used on programs

using TM.

• We provide a sound rely-guarantee approach that makes it possible to use only sequential

verification tools.

• Our soundness argument builds on a result by Scott and the soundness of the QED proof

system for concurrent programs. Unlike QED, our approach requires no pairwise mover

checks or iterative proof steps. Transactions become atomic by construction. This allows our

proof method to use sequential verification tools only.

• We have demonstrated our approach on two large benchmarks from STAMP.

26 Chapter 3: Verifiying Transactional Programs with Programmer-Defined Conflict Detection

In the next motivation section, we will explain our approach with a running example. In section

3.3, we will formalize transactional programs and their exacutions. In section 3.4, we will define

different semantics for transactional programs. In section 3.5, we will show how we formally per-

form abstraction on the programs. In section 3.6, we will explain the experiments we carried out.

Finally, in section 3.7, we formally state and prove our main soundness theorem.

3.2 Motivation

In this section, we will explain our approach with a StringBuffer pool implementation.

3.2.1 Motivating example: StringBuffer pool

Figure 3.1 shows a program that implements a data structure for using a pool of StringBuffer objects

by concurrent threads. The pool is implemented by an array of 1000 StringBuffer object pointers.

The global(shared) accesses are read from the pool array at line 4 and write to pool array at line 7.

A cell in the pool array is called full if that cell contains a non-null pointer. A cell is called empty if

it contains a null pointer.

Allocate method returns a pointer to a StringBuffer object that is stored in a full cell of the pool

or returns a newly created object if there is no full cell in the pool. The allocate method traverses the

pool array. If it finds a full cell, it makes it empty and returns the value stored in the cell. Otherwise,

it returns a newly created pointer. The free method is the dual of of the allocate method.

We will use the following invariant to express the programmer’s correctness condition:

SBPoolInvariant: At any time, every StringBuffer object must either be in the pool, or it must have

been returned by a call to allocate method and is being used by the program. In addition, a call to

free method must either insert the given pointer to the pool or deallocate the corresponding object.

3.2.2 Strict detection of conflicts for the StringBuffer pool

Now assume that the allocate and free methods are treated as transactions. We can consider the

execution of allocate happens in two phases. In the read phase, transaction traverses the array

and finds cells being empty. In the commit phase, the transaction reads a full cell and makes it

NULL and returns the value stored in that cell. Assume we have transaction Tx1 that runs allocate

method. Assume in the read phase Tx1 reads cells 1 to 100 and writes to 101st cell. When Tx1

in its read phase, assume another transaction Tx2 running allocate method that makes a cell empty

Chapter 3: Verifiying Transactional Programs with Programmer-Defined Conflict Detection 27

StringBuffer* pool[] = new StringBuffer[1000];

1 StringBuffer* Allocate() {

2 StringBuffer* ptr;

3 for (int i = 0; i < 1000; ++i) {

4 ptr = pool[i]; // havoc(ptr);

5 if (ptr != NULL) { // check if full

6 // assume(ptr == pool[i]);

7 pool[i] = NULL; // empty cell

8 return ptr;

9 }

10 }

11 // default operation

12 return new StringBuffer();

13 }

1 void Free(StringBuffer* buff) {

2 StringBuffer* ptr;

3 for (int i = 0; i < 1000; ++i) {

4 ptr = pool[i]; // havoc(ptr);

5 if (ptr == NULL) { // check if empty

6 // assume(ptr == pool[i]);

7 pool[i] = buff; // fill cell

8 return;

9 }

10 }

11 // default operation

12 delete buff;

13 }

Figure 3.1: StringBuffer pool example. The abstract program for sequential verification is obtained
by replacing the shaded and commented-out code with the line it appears.

before Tx1 reads from it or assume Tx2 running free method that fills a cell after Tx1 reads from

it. In these cases, conventional transactional memory implementations with strict conflict detection

mechanisms will detect a conflict and abort at least one of the two transactions. However, we see

these write-after-read (WAR) conflicts do not cause the violation of SBPoolInvariant.

28 Chapter 3: Verifiying Transactional Programs with Programmer-Defined Conflict Detection

3.2.3 Relaxed detection of conflicts for the StringBuffer pool

When we use the method of [27] to increase transactional memory performance, we annotate a

transaction with ’!WAR’ to tell the transactional memory implementation to ignore write-after-read

conflicts during the program executions. Here, we note that we do not ignore conflicts where the

conflicting read is followed by a write by the same transaction to the same variable. [27] reports that

the relaxed detection of conflicts provided by compiler and hardware support decreases the number

of aborted transactions by 50-90%.

Transactional memory implementations with relaxed detection of conflicts does not guaran-

tee atomicity for allocate and free methods as conventional transactional memory implementations

would. Conflicting reads and writes are now allowed to be interleaved and transactions still commit

successfully. Thus, we need to prove the correctness of the programs under the relaxed conflict

detection without assuming atomic executions of the programs.

3.2.4 Transforming the program for sequential verification

We propose a two-step recipe for our running StringBuffer pool example:

Step 1 Transform the original program P to a new program PAbs , by replacing standard reads from

global variables with nondeterministic read operations. In particular, replace every assign-

ment l � x, where x is a global and l is a local variable, with an assignment that nondeter-

ministically chooses a value of proper type and assigns it to l. In other examples, we will need

a more limited nondeterminism. We will see examples of limited nondeterministic reads in

experiments section.

Step 2 Verify “sequentially” the intended correctness condition in PAbs .

In Step 1, we obtain the program PAbs from Figure 3.1 by (i) replacing line 4 with the code that

is shaded and commented out at the same line, and (ii) uncommenting the shaded code at line 6.

The new program PAbs is a sound, sequential and abstracted version of P . Our soundness theorem

states that the result of the verification in Step 2 can be safely carried to P . In section 3.7, we will

prove soundness theorem.

The key idea of transforming P to PAbs is to incorporate the effects of the conflicting writes that

are ignored by the transactional memory implementation on the global reads of a transaction that are

Chapter 3: Verifiying Transactional Programs with Programmer-Defined Conflict Detection 29

subject to conflicts. We incorporate these effects into the code statically by rewriting these reads to

nondeterministic reads. For our example, the cells of the pool array are the global (shared) variables,

on which conflicts can happen. Our transformation to PAbs , which is given in shaded comments,

replaces assignments from pool[i] to local variable ptr at line 4 of Figure 3.1 with a completely

nondeterministic assignment represented by the havoc statement which is a special command in the

Boogie language [4]. The new nondeterministic assignment is a sound abstraction of the original

deterministic assignment, because the new assignment can still assign ptr variable all the values that

can be assigned by the original program. Our soundness theorem states that if SBPoolInvariant is

verified on the abstract program PAbs , the original program also satisfies SBPoolInvariant even when

transactions are allowed to succeed despite WAR conflicts on pool[i].

When performing read abstractions on the original program, one needs to do read abstractions

in a careful manner. In some cases, one may need to apply limited abstractions in the sense that

there may be some condition on the nondeterministic reads, whose examples are in the experiments

section. The first thing to be careful about is that we should not abstract reads from a location which

the transaction later writes to. The transactional memory implementations using relaxed conflict

detection does not ignore WAR conflicts in these cases. Such abstractions will not allow us to verify

the correctness of the transactional programs. The assume statement at line 6 of the abstract program

inserted to handle this situation. With this assumption we implement our intention that the last read

from pool[i] is not abstracted. Assume statements are special statements that tell the verifier to

ignore the program executions that violate them. These executions are not considered as a part of

program behavior. Thus, during the verification process, executions that violate these assumptions

are ignored.

The second thing to be careful about is that we found that abstracting reads to fully nondetermin-

istic reads may be too coarse to prove the correctness of the programs as for STAMP benchmarks on

which we carried out the experiments. For the benchmarks we worked on, we used an abstraction

invariant which we define in Section 3.5 that expresses the effects on a read access from conflicting

writes.

3.3 Transactional Programs and Executions

A program P consists of a set of transactions. Each transaction is a sequence of atomic statements.

An arbitrary number of threads execute the transactions. For simplicity of exposition, each thread

30 Chapter 3: Verifiying Transactional Programs with Programmer-Defined Conflict Detection

executes a single transaction. The variable t ranges over thread identifiers. As each thread is running

a single transaction, we use t also to refer to the transaction instance being run by this thread.

Every thread executes in program order the statements in the transaction it is running. A par-

ticular execution of an atomic statement by a thread is called an action and results in an atomic

state transition of the program. An execution of program P is obtained by a sequentially-consistent

interleaving of actions by each thread in P . We write xSy to express an action where S is a program

statement being executed indivisibly. We also use α to denote an action, if its exact operation is not

of interest.

We build on Scott’s formalization of transactional programs [24]. We are particularly interested

in reads from and writes to global variables. As is conventional when modeling TM, we assume

that an action may read or write at most one global variable in a simple assignment from/to a local

variable. Let x and l range over global and local variables, respectively. We denote by xl :� xy a

read from global variable x to local variable l, and similarly, by xx :� ly a write to global x from

local l. Global variable reads and writes, as well as transaction commit actions (described below) are

global actions. Other kinds of statements, including local computations, procedure calls, branches,

refer only to local variables.

Global access action xSy can be annotated with assumptions and/or assertions as follows:

xassert φ; rS; assume ψy

Normally rS � S, but we can also replace S � l :� x with rS � havoc l, which represents the

assignment to local variable l of a nondeterministically chosen value from its domain. In the latter

case, we use the statement havoc l to abstract (overapproximate) the read from global variable x as

discussed later. The semantics of the assertion is that the execution goes to a designated failure state

if φ is violated. Assumptions are used to limit nondeterminism (especially when havoc is used):

execution can only continue if ψ is satisfied.

We express each execution of the program as a linear sequence of actions separated by program

states: E � s0
α1ÝÑt1 s1

α2ÝÑt2 s2 � � �
αnÝÝÑtn sn. Let ActE � tα1, ..., αnu be the set of actions in

E. We write IdxEpαiq to refer to the index i of action αi in the execution, and TrEpαiq to refer to

the transaction performing αi. For integers i and j such that i ¤ j, we write ri..js to refer to the

set of integers ti, i� 1, ..., j � 1, ju. When talking about ordering between actions and states of the

same execution, we overload the comparison operators over integers to actions and states, i.e., for

Chapter 3: Verifiying Transactional Programs with Programmer-Defined Conflict Detection 31

 P t ,¡,¤,¥u, αi
E αj (resp. si
E sj) if i
 j. We use the standard definition of program state:

a valuation from (global and local) variables to values of proper type.

A successful execution of a transaction t inE starts with the local action startEptq and ends with

the global (commit) action cmtEptq. Thus, for each action αi of t, startEptq ¤E αi ¤E cmtEptq

holds. We write s0
E
ÝÑ sn to denote that the execution leads s0 to sn.

Two executions E and E1 are equivalent, written E � E1, iff they satisfy the following con-

ditions: (i) E and E’ have the same set of threads running the same transactions, in particular,

ActE � ActE1 , (ii) the program order within each transaction is the same in E and E1, and (iii) E

and E1 both lead from the same initial state to the same final state s0
E
ÝÑ s1 and s0

E1
ÝÑ s1.

Following Scott [24], a read action xl :� xy by thread t is said to be consistent at a state s

of the execution if its value returns the value written by either (i) the last committed write in the

execution to x before the read action, or (ii) the last write to x by thread t, whichever comes later in

the execution. The standard TM semantics requires consistency of a read action by thread t at two

points in the execution: (i) the state reached after the read is performed, and (ii) right before cmtptq

is performed. Programmer-defined conflict detection will relax the second consistency requirement

in certain cases.

An execution is complete if the program runs without violating any assertions to completion

all of its threads. Given an execution E, the successful projection of execution successfulpEq is

obtained by removing from E all actions and state transitions for aborted, failed, or uncompleted

transactions. Correct TM operation requires that successfulpEq is a consistent execution of P . Let

ExecspPq contain all complete and successful executions of the program generated by the inter-

leaving semantics. It is the largest set of executions of the program can generate with no constraints

on concurrent transactions and conflicts between them. In the next section, we will explore different

constraints on concurrent transactions.

3.4 Semantics under TM Concurrency Control

In this section, we define different sets of (successful) executions of a program allowed by TMs

handling conflicts in various ways. We define three sets of semantics for a TM program P based on

the set of executions they each allow: SerpPq � SrblpPq � RlxpPq � ExecspPq.

Definition 7 (Serial semantics) SerpPq is the set of successful executions of P such that E P

SerpPq iff every transaction t runs in E serially, i.e., all actions of t are contiguous, and not

32 Chapter 3: Verifiying Transactional Programs with Programmer-Defined Conflict Detection

interleaved by actions from other transactions. Formally, E P SerpPq iff for each transaction t in

E and action startEptq ¤E αi ¤E cmtEptq, Trpαiq � t.

Our definition of sequential semantics follows the usual single-global-lock semantics.

3.4.1 Semantics allowing interleavings of transactions

We say that two actions αi and αj from the same execution are conflicting with each other, if (i)

Trpαiq � Trpαiq, (ii) αi and αj access the same global variable, and (iii) at least one of αi and αj

is a write. We define each semantics by specifying where in the execution two conflicting actions

are allowed to run without causing their transactions to fail. For this, we define the concept of a

validity span. Given an execution E and an action αi accessing a global variable in E, the validity

span of αi, denoted ValSpanEpαiq, is the set of indices at which a write action conflicting with αi

is not allowed to take place. We will specify the set of executions a semantics allows by specifying

ValSpanEpαiq for that semantics.

In the following, we define a serializable semantics.

Definition 8 (Serializable semantics) SrblpPq is the set of successful executions of P such that

E P SrblpPq iff for every global action αi of transaction t, ValSpanEpαiq � ri..Idx pcmtptqqs.

In words, once a transaction t accesses a global variable x, serializable semantics does not allow

any other transaction to perform a conflicting write access to x between t’s access and t’s commit

point. We note that, this is not the weakest possible serializable semantics but weak enough to

present our technique for relaxed-conflict semantics.

In most TM implementations [12] the serializability condition above is ensured by maintaining

the sets of addresses accessed (the read and write sets) by each transaction and aborting and rolling

back transactions that experience disallowed conflicts.

As its name suggests, SrblpPq contains executions where runs of transactions can be serial-

ized around the commit action. The following theorem states that SerpPq and SrblpPq contains

equivalent executions (with respect to �).

Theorem 5 For each E P SrblpPq, there exists E1 P SerpPq such that E � E1.

An important consequence of Theorem 5 is that, since every interleaved, serializable execution

E is equivalent to a serial execution E1, one can reason about the correctness of program P assum-

Chapter 3: Verifiying Transactional Programs with Programmer-Defined Conflict Detection 33

ing that every transaction t runs sequentially and without considering interleavings of t with other

transactions.

However, when we relax the restrictions on conflicting actions, we lose this advantage of reduc-

ing the reasoning to sequential verification. We next define another concurrency control semantics,

RlxpPq, by changing the definition of span to allow conflicting actions to appear more frequently.

This semantics specifies the executions provided by the TM with relaxed detection of conflicts using

the !WAR annotation in [27].

Definition 9 (Relaxed-conflict semantics (!WAR)) RlxpPq is the set of executions such that E P

RlxpPq iff for every global action αi of transaction t, ValSpanEpαiq is given as follows:

ValSpanEpαiq �

$''''''&
''''''%

ri..Idx pcmtptqqs if αi is a write action xx :� ly

ri..Idx pcmtptqqs if αi is a read action xl :� xy, and there is a write to x

αj , such that Trpαiq � Trpαjq and αi E αj

H otherwise

In words, after transaction t reads from x, other transactions may write to x arbitrarily many

times as long as t itself does not access x again. However, conflicting writes are never allowed

between a write access and the corresponding commit action.

We note that more relaxed detection of conflicts than RlxpPq are also possible. For example, we

could unconditionally allow conflicting writes between a read access and the corresponding commit

action. However, we found such semantics too permissive and thus unrealistic for the programs we

worked on.

When we relax detection of conflicts as in RlxpPq as given above, the same relationship be-

tween SrblpPq and SerpPq indicated in Theorem 5 does not hold any more between RlxpPq and

SerpPq. Thus, under the relaxed conflicts, we can no longer reason about the program sequentially.

To see why, consider the following execution in (3.1) allowed by RlxpPq:

E � � � � si�1
αi�xl:�xy
ÝÝÝÝÝÝÑt si

αi�1�xx:�l
1y

ÝÝÝÝÝÝÝÝÑu si�1 � � �
cmtptq
ÝÝÝÝÑt � � � (3.1)

Assume that there is no access to x by t between αi�1 and cmtptq. In an equivalent, serialized

execution, we need to be able to execute αi of t after αi�1 of u. Let the following be such an

execution:

34 Chapter 3: Verifiying Transactional Programs with Programmer-Defined Conflict Detection

E1 � � � � s1i�1

α1ixx:�l
1y

ÝÝÝÝÝÑu s1i
α1i�1xl:�xy
ÝÝÝÝÝÝÝÑt s

1
i�1 � � �

cmt 1ptq
ÝÝÝÝÑt � � � (3.2)

Let v be the value of x at state si�1. Clearly, the values of l in si�1 and s1i�1 may not match, and

we can not deduce that transaction t will behave in the same way in both executions; consequently

it is not possible to prove that the final states of E and E1 match. We are not able to claim that

a serialized execution E1 of P such that E � E1 exists. This is why sequential reasoning about

transactions becomes unsound. In the rest of this section, we will present a technique that will allow

us to gain back the ability to soundly perform sequential reasoning.

3.5 Program Abstraction for Sequential Verification

Consider the execution fragment given in (3.1). We previously argued that we may not be able to

obtain an equivalent execution of P by commuting xl :� xy to the right of xx :� l1y. That is,

swapping the execution order of xl :� xy and xx :� l1y. To restore the ability to reason sequen-

tially, we abstract, or in other words overapproximate, global read accesses of the form xl :� xy.

This abstraction allows read actions to assign to the local variable l not only the current value of a

global variable, but also other values that could be written to x by conflicting writes in a concurrent

execution. When this is done to all read accesses on which conflicts are ignored, we obtain a new

and more nondeterministic program PAbs on which we show that one can use sequential reasoning

and verify properties that carry over to the concurrent executions of the original program P . Below,

we make this approach more precise.

We propose a two-step recipe:

Step 1 Transform program P to PAbs , by (i) replacing reads from globals with nondeterministic read

operations and (ii) annotating writes to globals with assertions.

Step 2 Verify “sequentially” the correctness of PAbs , i.e., prove (i) all the assertions in PAbs added in

Step 1 and (ii) the desired correctness property.

We prove by Theorem 6 below that once all the assertions in PAbs added in Step 1 are verified in

Step 2, then a safety property can be verified sequentially in PAbs . Moreover, if a safety property is

verified in PAbs , then it is sound to carry the result of this verification to P . We accomplish this by

Chapter 3: Verifiying Transactional Programs with Programmer-Defined Conflict Detection 35

proving that for every interleaved execution of P there exists an equivalent serializable execution of

PAbs .

Abstraction invariant. The most permissive or nondeterministic abstraction of a global read state-

ment xl :� xy is replacing it with the statement xhavoc ly. This was the abstraction used in the

StringBuffer pool example in Section 3.2.1. However, for many other programs, this abstraction is

too loose or coarse and it is not possible to prove interesting properties of PAbs . In order to provide

finer control over how a read statement is abstracted, we allow the user to provide, for each global

variable x, a predicate Absxpvq, we call the abstraction invariant. The argument of the predicate is

the value of the variable x.We note that the abstraction invariant Absx may defined by referring to

valuations of other variables in the current state. Section 3.6 gives examples to such invariants. Let

JAbsxK represent the set of values v such that Absxpvq holds. Intuitively, the set JAbsxK represents

the set of values that may be written to x by other, conflicting transactions. Abstracting xl :� xy to

xhavoc ly corresponds to an abstraction invariant of true and JAbsxK being the domain of x. For

instance, in the linked-list example, instead of an abstraction invariant of true, or a read resulting in

a completely nondeterministic value, using the abstraction invariant, we constrain the result of the

read to nodes that are reachable from the head of the linked list. In this way, the abstraction invariant

constrains the values that a read statement xl :� xy can write to l. It is important to note that the

programmer only needs to provide a guess for the abstraction invariant. Our approach verifies in

Step 2 the correctness of the invariant along with the desired correctness properties of the original

program.

In Step 1 above, we transform program P to PAbs performing the following changes for every

global variable x:

1. Replace every action xl :� xy with xassertpAbsxpxqq; havoc l; assumepAbsxplqqy

2. Replace every action xx :� ly with xassertpAbsxplqq;x :� ly

Observe that, given a guess for the abstraction invariant, the two steps above are easily auto-

mated. The first modification replaces reads from x with a more abstract version of the action,

which, instead of reading the current value of x, is now free to read any value from JAbsxK. Note

that, the assume statement constrains the nondeterminism provided by the havoc statement. In order

to ensure that this is a sound abstraction i.e., JAbsxK contains the values the original read returns,

we also insert an assertion before the read. In the style of rely-guarantee reasoning in [9], simulat-

ing state transitions with assertion violations is a sound abstraction of an action. If this assertion

36 Chapter 3: Verifiying Transactional Programs with Programmer-Defined Conflict Detection

is discharged, then we are ensured that all values of x encountered by the original read statement

fall inside the set JAbsxK, i.e., the new read statement has not removed any behaviors of the original

program. We also annotate every write with an assertion. These assertions become proof obligations

for the later sequential proof. When discharged, they ensure that the programmer’s guess, JAbsxK,

does indeed properly model all writes to x by conflicting write actions.

We note that the aim of this abstraction of reads is not to obtain an executable program but a

program that can ve verified statically and be used to validate the original and unmodified program.

The introduction of Absx and abstracting global reads and annotating global writes with assertions

is a form of rely-guarantee reasoning [16]. Rely-guarantee reasoning for concurrent programs using

abstractions in conjunction with commutativity and mover arguments, as made more precise below,

is sound as was shown in work [9] on which our soundness theorem builds upon.

Theorem 6 (Soundness) If no execution in SerpPAbsq violates an assertion (i.e., PAbs is “sequen-

tially” correct), then for each E P RlxpPAbsq, there exists an execution E1 P SerpPAbsq such that

E � E1.

We provide the proof in section 3.7.

The theorem states that once we sequentially prove all the assertions we inserted in PAbs at

step Step 1, then we can conclude that all executions in RlxpPAbsq have equivalent counterparts in

SerpPAbsq. Thus, it is sufficient to prove a safety property such as invariants and pre- and post-

conditions sequentially to reason about the correctness of the property in concurrent executions of

PAbs . Next, we apply this result to P .

Corollary 7 If no execution in SerpPAbsq violates an assertion (i.e., PAbs is “sequentially” cor-

rect), then no execution in RlxpPq violates an assertion.

We provide the proof in section 3.7.

The theorem states that in order prove a safety property for all concurrent executions of program

P under transactional memory implementations with relaxed detection of conflicts with !WAR an-

notation, the user can carry out this verification over and the abstract program considering only

serialized executions of PAbs .

Chapter 3: Verifiying Transactional Programs with Programmer-Defined Conflict Detection 37

3.6 Experiments

We now demonstrate our verification technique on two benchmarks from Stanford Transactional

Applications for Multi-Processing (STAMP) [5], a widely-used collection of concurrent benchmark

programs containing pre-annotated transactional code blocks. Using the relaxed conflict detec-

tion !WAR annotations reported in the work of Titos et al. [27], for the Genome and Labyrinth

benchmarks, we statically verified correctness of transactions that make use of programmer-defined

conflict detection.

We carried out the correctness proofs of the transactions in two steps. First, we did a stan-

dard, contract-based sequential proof on the transactions in our benchmarks. For this step, we used

HAVOC [19] for the linked list implementation in Genome and VCC [7] for Labyrinth, which are

state-of-the-art modular verification tools for C programs. We note that we opted for using a differ-

ent tool for each benchmark, since the features and logical theories required for the benchmarks are

not all supported by the same tool. The contracts we had to write manually include invariants, pre-

and post-conditions and loop invariants. In the second step, we applied the abstraction technique

described in Section 3.5 on the benchmarks and repeated on the abstract program the sequential

verification of contracts and specifications that constituted the desired correctness specification for

the original program. By proving the abstract program sequentially and relying on our soundness

theorem, we have showed that the original program satisfies the contracts not only in the sequen-

tial context but also in the concurrent context when running under a TM ignoring WAR conflicts.

We found that the sequential verification of these benchmarks after the abstraction did not require

any extra or stronger contracts compared to the original sequential proof. This indicates that the

arguments about why the transactions work under relaxed detection conflicts originates from the

arguments about why these transactions work sequentially. Our work validates the claims in [27]

about the correctness of the transactions in the benchmarks and provides evidence that the intuitive

reasoning about why programs can function correctly under TM relaxations can be expressed and

verified systematically and sequentially with moderate effort.

We will be using the following shorthands in the proofs of the two benchmarks:

CheckNDAssign (T* ptr, T value) = assert(Abs(value)); havoc(ptr); assume(Abs(*ptr));

CheckAssign (T* ptr, T value) = assert(Abs(value)); *ptr = value;

3.6.1 Linked list in Genome

38 Chapter 3: Verifiying Transactional Programs with Programmer-Defined Conflict Detection

struct node t { int key; node t* next; }

struct list t { node t* head; }

1 bool list_insert(list_t *listPtr, node_t *node) {

2 atomic (!WAR) {

3 node_t *prev, *curr = listPtr->head; int key = node->key;

4

5 do {

6 prev = curr;

7 curr = curr->next; // CheckNDAssign (&curr, curr->next, listPtr, key);

8 } while (curr != NULL && curr->key < key);

9

10 if (curr != NULL && curr->key == key)

11 return false; // key was present

12

13 // assume(prev->next == curr);

14 node->next = curr; // CheckAssign (&node->next, curr, listPtr, key);

15 prev->next = node; // CheckAssign (&prev->next, node, listPtr, key);

16 return true; // key was not present

17 }

18 }

Figure 3.2: The insertion operation of a sorted linked list. The abstract program for sequential
verification is obtained by replacing the shaded and commented-out code with the line it appears.

Figure 3.2 shows the pseudocode for a linked list-based set implementation, which is used in

the Genome bioinformatics and DNA gene sequencing benchmark of STAMP. We have restructured

the code for simplicity of presentation. The figure shows the list insert operation; while the remove

operation is not used in Genome, the same reasoning for list insert would be valid for removals from

the list. In the code, the only shared and mutable variables are the next fields of list nodes; the key

and head fields are shared but immutable.

The linked list stores a set of keys in sorted ascending order, and the list insert operation adds

a new node to the list preserving this ordering. Given a node to be inserted, list insert follows the

two-phase transaction pattern we discussed before: In the read phase (lines 5-8), it traverses the list

by following the next pointers of the nodes until it finds a node curr whose key is ¥ node-¡key,

or it reaches NULL at the end of the list. In the commit phase, list insert either returns false (lines

10-11) indicating that node-¡key already exists in the list, or it inserts node to the list.

In the Genome benchmark, the body of list insert is marked as a TM transaction annotated with

Chapter 3: Verifiying Transactional Programs with Programmer-Defined Conflict Detection 39

!WAR to ignore the write-after-read conflicts. Titos et al. [27] claimed that list insert in this case

operates as intended. Here, the programmer’s intention is expressed as a post-condition for list insert

, which dictates that the code preserves the existing structure (e.g., sortedness) of the linked list and

inserts the given node properly i.e., it returns true iff there was no node with the same key in the

list and node was inserted in the list. We note that proving this post-condition in the concurrent

context (due to the relaxation WAR of conflicts) corresponds to proving the linearizability of the

list insert operation, where the post-condition is a stronger version of the sequential specification

for a set of keys. While proving linearizability for concurrent objects has been well-studied [14,

21, 8, 29], techniques for such proofs require complicated and error-prone reasoning about certain

types of noninterference. In this paper, we aim to simplify this reasoning about noninterference

using abstraction and prove the post-condition sequentially.

We will first explain the sequential proof of the linked list implementation which is done by one

of our co-authors of CAV 2012 submission. Then we will continue with program abstraction phase.

The sequential proof of the linked list insert implementation. Code below constitutes the imple-

mentation, specification and verification of the insert method. Lines 5 to 43 we define the required

structures and auxiliary fields, sets and addresses for the verification process. In particular, most

importantly, we define set of reachable nodes in line 36 and 38 by using HAVOC environment. In

lines 49 to 61, we define the invariant for the list data struture in steps(parts). Each step is described

by comments in the code. From line 65 to 71, we take the conjunction of the parts of the invari-

ant to constitute the final version of the invariant to be used in pre-conditions, post-conditions and

loop invariants. Lines 74-77 define auxiliary containment functions to be used in verification pro-

cess. After defining two shorthands inline 81 and 82, we finally specify the insert function in lines

85-89. The specification states that insert method expects a list that satisfies the list invariant as a

pre-condition. As the post-condition, lines 86 and 87 state that after the insert method list invariant

is guaranteed and the new list contains the data. Lines 88 and 89 state the frame conditions of the

insert method in which one expect to see what part of the memory the method may modify. Thus, it

is expected that after the insertion the size of the list is incremented and the dataset of the list now

expands to contain the data being inserted. The verification of the insert method is based on the

proving loop invariants to the loop in lines 108-115. The loop invariant provided is the following:

Line 102 states that list invariant is maintained throughout the loop. Line 103 states that prev pointer

is neither NULL nor not allocated. Line 104 states that prev pointer is reachable from the head of

40 Chapter 3: Verifiying Transactional Programs with Programmer-Defined Conflict Detection

the list during the loop. Line 105 states that next pointer of prev pointer is curr pointer throughout

the loop. Finally line 106 states that prev pointer’s data is less than the data that is being inserted

during the loop. After providing these loop invariants, the verifier is able to prove the post-condition

we explained above. Thereby, we finished the sequential proof of the insert method.

1 #include <windows.h>

2 #include <havoc.h>

3 #include <malloc.h>

4

5 #define bool int

6 #if !(TRUE)

7 #error "TRUE is not 1"

8 #endif

9 #if (FALSE)

10 #error "FALSE is not 0"

11 #endif

12

13 #define data_t long

14

15 typedef struct list_node {

16 data_t data;

17 struct list_node* next;

18 } list_node_t, *plist_node_t;

19

20 typedef struct list {

21 list_node_t head;

22 size_t size;

23 } list_t, *plist_t;

24

25

26 // declare bound variables to use in __forall

27 __declare_havoc_bvar_type(_H_x, plist_node_t);

28 __declare_havoc_bvar_type(_H_y, plist_node_t);

29

30 // offset of next field

31 #define __offnext __field(plist_node_t,next)

32 // offset of data field

33 #define __offdata __field(plist_node_t,data)

34

35 // list of nodes accessible from h (inclusive) following next field until NULL

36 #define __listnext(h) __btwn(__offnext, h, NULL)

37 // h1 can reach h2 by following next field

38 #define __reach(h1,h2) __setin(h2, __listnext(h1))

39

Chapter 3: Verifiying Transactional Programs with Programmer-Defined Conflict Detection 41

40 // set of data field addresses of nodes in S

41 #define __dataSet(S) __set_incr(S, __offdata)

42 // set of next field addresses of nodes in S

43 #define __nextSet(S) __set_incr(S, __offnext)

44

45 //

46 // list invariant (parameterized by head h)

47 //

48 // head is not null and allocated

49 #define list_inv1(h) (h != NULL && __allocated(h))

50 // head is in the list

51 #define list_inv2(h) (__setin(h, __listnext(h)))

52 // null is in the list

53 #define list_inv3(h) (__setin(NULL, __listnext(h)))

54 // all elements (except null) are allocated

55 #define list_inv4(h) (__forall(_H_x, __listnext(h), _H_x != NULL ==> __allocated(_H_x)))

56 // all elements (except null) are pointer to list_node_t

57 #define list_inv5(h) (__forall(_H_x, __listnext(h), _H_x != NULL ==> __type(_H_x, plist_node_t)))

58 // list is sorted

59 #define list_inv6(h) (__forall(__qvars(_H_x,_H_y), __listnext(h),

60 (_H_x != NULL && _H_y != NULL && _H_x != _H_y && __reach(_H_x, _H_y))

61 ==> (_H_x->data < _H_y->data)))

62

63 // s is used to to be able to use loop_inv in different contexts

64 // such as __ensures, __requires, __loop_assert

65 #define list_inv(s,h)

66 s(list_inv1(h))

67 s(list_inv2(h))

68 s(list_inv3(h))

69 s(list_inv4(h))

70 s(list_inv5(h))

71 s(list_inv6(h))

72

73

74 #define __list_not_contains(h, d)

75 __forall(_H_x, __listnext(h->next), _H_x != NULL ==> _H_x->data != d)

76 #define __list_contains(h, d)

77 (!__list_not_contains(h,d))

78

79 // shorthands for expressing list head and size

80 // (make sure that name of param to list_insert is listPtr)

81 #define PHEAD (&(listPtr->head))

82 #define PSIZE (&(listPtr->size))

83

42 Chapter 3: Verifiying Transactional Programs with Programmer-Defined Conflict Detection

84 ///

85 list_inv(__requires, PHEAD)

86 list_inv(__ensures, PHEAD)

87 __ensures(__list_contains(PHEAD, data))

88 __modifies(PSIZE)

89 __modifies(__dataSet(__listnext(PHEAD)))

90 ///

91 bool list_insert (plist_t listPtr, long data)

92 {

93 plist_node_t prev;

94 plist_node_t node;

95 plist_node_t curr;

96

97 // head is dummy and its data is less than any other given data

98 __hv_assume(PHEAD->data < data);

99

100

101 __loop_invariant (

102 list_inv(__loop_assert, PHEAD)

103 __loop_assert(prev != NULL && __allocated(prev))

104 __loop_assert(__reach(PHEAD, prev))

105 __loop_assert(prev->next == curr)

106 __loop_assert(prev != PHEAD ==> prev->data < data)

107)

108 for (prev = PHEAD, curr = prev->next; curr != NULL;)

109 {

110 if (data <= curr->data) {

111 break;

112 }

113 prev = curr;

114 curr = curr->next;

115 }

116

117 if ((curr != NULL) &&

118 (curr->data == data)) {

119 return FALSE;

120 }

121

122 node = (plist_node_t) malloc(sizeof(list_node_t));

123 if (node == NULL) {

124 return FALSE;

125 }

126

127 node->data = data;

Chapter 3: Verifiying Transactional Programs with Programmer-Defined Conflict Detection 43

128 node->next = curr;

129

130 prev->next = node;

131

132 *PSIZE += 1;

133

134 return TRUE;

135 }

Program abstraction on the linked list insert implementation. We note that we refer to the code

in figure 3.2 in the following. We obtain the abstract version of the code from Figure 3.2 by (i)

replacing the deterministic read from curr-¡next at line 7 and the assignments at line 14-15 with

the shaded and commented out code at the same line, and (ii) uncommenting the code at line 13.

Note that, both CheckNDAssign and CheckAssign are defined above using the benchmark-specific

abstraction invariant. In contrast with our StringBuffer example, replacing the assignment curr =

curr-¡next at line 7 with a fully nondeterministic assignment (havoc curr) would clearly violate

the post-condition, because in this case curr after the abstract assignment would point to any node

even in a separate list. But, the programmer ensures that even under WAR conflicts, the curr pointer

always points to some node in the given list or NULL. To alleviate this problem, we use the following

abstraction invariant and restrict the nondeterminism in the assignments.

Abs(node t *node, list t *listPtr, int key) � Reachable(listPtr->head, node)

&& (forall n P ReachableSet(listPtr->head, node)z{node}: n->key < key)

Argument node refers to the nondeterministically chosen value by the abstracted read. This

abstraction invariant expresses that although curr-¡next may be overwritten by other transactions,

those writes cannot write a pointer to a node outside the list pointed by listPtr, and the key of nodes

in the list before nondeterministically chosen node cannot exceed the given key. Here, we are able

to precisely encode being inside the list (i.e., reachable from the head via next pointers) using the

Reachable and ReachableSet functions available in the annotation language of HAVOC [19].

As explained in Section 3.5, we use two kinds of assertions in order to ensure that the read

abstraction at lines 7 is sound. First, CheckNDAssign uses an assertion to check that using the

current value of curr-¡next (as the original, deterministic read at line 7 would use) satisfies the

abstraction invariant. Second, CheckAssign at line 14-15 uses assertions to check that the values

written to node-¡next and prev-¡next satisfy the abstraction invariant. Although the abstraction

44 Chapter 3: Verifiying Transactional Programs with Programmer-Defined Conflict Detection

1 atomic (!WAR){

2 // copy global grid to local grid

3 grid_copy(localGridPtr, globalGridPtr);

4 localPaths = // compute a set of shortest-path candidates using local grid

5 foreach (pointVectorPtr in localPaths) {

6 // insert collected paths to global grid

7 grid_addPath(globalGridPtr, pointVectorPtr);

8 // check if global grid was added a valid path

9 assert(isValidPath(globalGridPtr, pointVectorPtr));

10 }

11 }

12 grid_copy(localGridPtr, globalGridPtr):

13 for (int i =)

14 localGridPtr[i] = globalGridPtr[i]; // CheckNDAssign (&localGridPtr[i], globalGridPtr[i]);

15

16 grid_addPath(globalGridPtr, pointVectorPtr):

17 for (int i =) {

18 int j = pointVectorPtr[i];

19 globalGridPtr[j] = GRID POINT FULL ; // CheckAssign (&globalGridPtr[j], GRID POINT FULL);

20 }

Figure 3.3: Transaction computing shortest paths in a grid. The abstract program for sequential
verification is obtained by replacing the shaded and commented-out code with the line it appears.

invariant seems complicated, it actually shares the same intuition with the loop invariant used in the

standard sequential verification. Thus, these assertions are proved without needing extra/stronger

contracts.

Finally, we used the assumption at line 13 to express that the nondeterministic assignment at

line 7 chooses the deterministic value (i.e., prev-¡next) that would be used by the assignment. This

ensures that the new node is inserted at the right place in the list. Note that, if another thread writes

to prev-¡next after the last execution of line 7, this will trigger a write-after-write conflict and will

abort one of the conflicting transactions, preserving the atomicity of list insert . This guarantee

implies an essential fact about the correctness, i.e., that prev-¡next points to curr before and during

the insertion.

3.6.2 Labyrinth

Figure 3.3 (lines 1-11) shows the pseudo-code for the core transaction in the Labyrinth bench-

Chapter 3: Verifiying Transactional Programs with Programmer-Defined Conflict Detection 45

mark, which includes 2.3K lines of C code. The transaction is executed by multiple threads to find

shortest paths connecting a given set of source-destination points in a 3D maze. The 3D maze is rep-

resented by a one-dimensional array, called a grid. Each cell in the grid stores an integer indicating

whether that entry is available for a path to pass through (represented by constant GRID POINT -

EMPTY = -1), or is not available to pass through (represented by constant GRID POINT EMPTY

= -2), or is already marked as a potential point for a path (represented by a distance measure ¥ 0).

The goal is to connect a set of source-destination pairs with valid paths. A valid path should consist

of contiguous cells, not intersect with another path, and not pass through an initially-blocked cell

(storing GRID POINT FULL). The validity of paths is checked using an assertion after they are

computed and added to the global grid (line 9). We first proved this assertion in VCC [7] sequen-

tially, in addition to 60 contracts (pre- and post-conditions, program and loop invariants), encoding

several complicated C language features including pointer and modular arithmetic, required for the

modular verification.

Each transaction performs its operation in three steps: First, it makes a local copy of the global

grid using the grid copy operation (read phase), then it computes, over the local grid, a set of

candidate shortest paths between the given source and destination cells, and finally, it commits its

paths to the global grid using the grid addPath operation (commit phase). Each path is added to the

global grid by marking the cells occupied by the path with the special value GRID POINT FULL

. Figure 3.3 also shows simplified pseudo-code for grid copy(lines 12-14) and grid addPath(lines

16-20), which contain the only accesses the shared, global grid.

Next we will explain the abstraction we done on the Labyrinth. After that we will explain the

sequential proof of the Labyrinth.

Program abstraction on the Labyrinth. Consider the following scenario: After a transaction

Tx1 takes a snapshot of the global grid and sees a cell C in the grid as empty (at line 3), Tx2 up-

dates the global grid by writing GRID POINT FULL to C (at line 7). After this, if Tx1 computes

another path passing through C and attempts to add that path to the global grid. This creates a

write-after-write conflict and aborts one of the transactions. Thus, the transactional memory en-

sures that grid addPath does not commit to overlapping paths to the global grid. If Tx1 does not

write to C later, a standard transactional memory would still trigger a write-after-read conflict and

abort by transactional memory implementation, although such an execution does not lead to invalid

paths and should be allowed. The only drawback of such stale reads is redundant computation for

46 Chapter 3: Verifiying Transactional Programs with Programmer-Defined Conflict Detection

paths in aborted transactions. Therefore, the programmer can safely annotate the transaction with

!WAR, which instructs the transactional memory implementation to ignore the conflicts between

these accesses.

In order to verify the transaction under the relaxation of !WAR conflicts, we use the following

abstraction invariant.

Abs(int C2, int C1) � (C1 = GRID POINT FULL ñ C2 = GRID POINT FULL)

&& (C1 = GRID POINT EMPTY ñ C2 P {GRID POINT EMPTY ,GRID POINT FULL })

Argument C2 refers to the nondeterministically chosen value for a cell and C1 refers to the

current value of that cell. The invariant states that once a path is committed to the global grid, the

cells on this path are not overwritten by another transaction (first conjunct), thus a transaction can

assume that full cells will remain as is. Note that this condition restricts the nondeterminism so that

an initially-blocked cell cannot be read as unblocked and used in a path. However, an empty cell

can be overwritten with the value GRID POINT FULL , thus a transaction should anticipate such

writes (second conjunct).

In the abstraction of the transaction in Figure 3.3 lines 14 and 19 are replaced by the com-

mented CheckNDAssign and CheckAssign operations, respectively. For this example, the assertion

in CheckNDAssign about the original assignment passes because the cells in the global grid can

only contain GRID POINT EMPTY or GRID POINT FULL and the abstraction invariant is satis-

fied when C1=C2, i.e., when the abstract read choses to return the current value of the regarding

cell. The assertion in CheckAssign about the writes to the global grid passes, as well, since the

only value written is GRID POINT FULL and the abstraction invariant is always satisfied when

C1=GRID POINT FULL . We were able to prove these assertion using the same contracts from the

original sequential proof.

The sequential proof of the Labyrinth. The router solve code below is the method where the

write-after-read conflicts are ignored by the transactional memory implementation indicated by

CONFLICT UNSET WAR signature (line 46). Write-after-read conflicts on PdoTraceback method

are ignored. Our correctness condition is asserted by line 55 in the code below. It states that a path

vector generated by PdoTraceback should be valid. We implemented the validity of a path by is-

ValidPath logic formula in VCC (lines 1-20 below router solve code). The validity condition states

that successor points in the path vector should be adjacent and none of the points should be empty.

Thus, we need to show that the post-condition of the PdoTraceback is that the return value is a valid

Chapter 3: Verifiying Transactional Programs with Programmer-Defined Conflict Detection 47

path if it is not null. We do this by providing loop invariants to main while loop in the PdoTraceback

method. Before going into the details of the loop invariants, the method traceToNeighbor tries to

move in a given direction(for instance in the positive x direction) by one unit and store the new

point in the next pointer. The verification of the traceToNeighbor is quite straightforward so we do

not include it here. If the curr and next pointers are equal, this means we could not move in any

direction so we stop (line 148 in PdoTraceback code). If the value of the next is zero this means that

we have reached the destination (line 80 in PdoTraceback code). In this case we return a non-null

path vector. Otherwise, we return null (line 156 in PdoTraceback code). The ghost variable xCo-

ords, yCoords and zCoords (line 22-25 in PdoTraceback code) are defined and used for path validity

checking.

In the following we refer to PdoTraceback code. Lines 32-60 show the invariants we provided for

PdoTraceback method to verify. First four invariants state the thread-locality of the relevant pointers

and the non-nullity of the constructed path vector. The invariants at line 37 and 38 state that the curr

and next pointers’ values are equal if we could not move to the next pointer by traceToNeighbor.

Lines 40-44 state that ghost variables indeed hold the correct values. Lines 46-48 state that in the

case of not reaching the destination, the ghost variables hold current values. Lines 49-52 state

that the predecessor ghost variables hold current values in the case of non-failure movement by

traceToNeighbor method. The lines 54-55 are about values of some constants. Line 57 states that

we reach the destination if and only if the stopping variable is 2. Line 58 and 59 states in the case

of non-failure movement by traceToNeighbor method the curr and next pointers are adjacent. Line

60 states that if the stopping variable is 2, then the path is valid. This loop invariant indeed lets the

verifier to verify the post-condition of the PdoTraceback.

1 void

2 router_solve (void* argPtr)

3 _(requires thread_local((router_solve_arg_t*)argPtr))

4 _(requires thread_local(((router_solve_arg_t*)argPtr)->mazePtr))

5 _(requires thread_local(((router_solve_arg_t*)argPtr)->mazePtr->gridPtr))

6 _(requires thread_local(((router_solve_arg_t*)argPtr)->routerPtr))

7

8 {

9 router_solve_arg_t* routerArgPtr = (router_solve_arg_t*)argPtr;

10 router_t* routerPtr = routerArgPtr->routerPtr;

11 maze_t* mazePtr = routerArgPtr->mazePtr;

12 vector_t* myPathVectorPtr = PVECTOR_ALLOC(1);

13

48 Chapter 3: Verifiying Transactional Programs with Programmer-Defined Conflict Detection

14 queue_t* workQueuePtr = mazePtr->workQueuePtr;

15 grid_t* gridPtr = mazePtr->gridPtr;

16 grid_t* myGridPtr =

17 grid_alloc(gridPtr->width, gridPtr->height, gridPtr->depth); // Call regular malloc

18

19 long bendCost = routerPtr->bendCost;

20 queue_t* myExpansionQueuePtr = PQUEUE_ALLOC(-1);

21

22 while (1)

23 {

24 pair_t* coordinatePairPtr;

25

26 if (TMQUEUE_ISEMPTY(workQueuePtr)) {

27 coordinatePairPtr = NULL;

28 } else {

29 coordinatePairPtr = (pair_t*)TMQUEUE_POP(workQueuePtr);

30 }

31

32 if (coordinatePairPtr == NULL) {

33 break;

34 }

35 _(assume thread_local (coordinatePairPtr))

36 coordinate_t* srcPtr = (coordinate_t*)coordinatePairPtr->firstPtr;

37 coordinate_t* dstPtr = (coordinate_t*)coordinatePairPtr->secondPtr;

38

39 bool_t success = FALSE;

40 vector_t* pointVectorPtr = NULL;

41

42 // TM_BEGIN(1);

43

44 grid_copy(myGridPtr, gridPtr);

45

46 //CONFLICT_UNSET_WAR;

47 //CONFLICT_DISABLE_CONFLICT_SIGNATURE;

48

49 if (PdoExpansion(routerPtr, myGridPtr, myExpansionQueuePtr,

50 srcPtr, dstPtr)) {

51

52 pointVectorPtr = PdoTraceback(gridPtr, myGridPtr, dstPtr, bendCost);

53

54 if (pointVectorPtr) {

55 _(assert isValidPath(pointVectorPtr))

56 //CONFLICT_SET_WAR; // Avoid remote writes while path is being validated & added

57 TMGRID_ADDPATH(gridPtr, pointVectorPtr);

Chapter 3: Verifiying Transactional Programs with Programmer-Defined Conflict Detection 49

58 //TM_LOCAL_WRITE(success, TRUE);

59 }

60 }

61 //TM_END(1);

62

63 if (success) {

64 bool_t status = PVECTOR_PUSHBACK(myPathVectorPtr,

65 (void*)pointVectorPtr);

66 _(assert status)

67 }

68 }

69

70 list_t* pathVectorListPtr = routerArgPtr->pathVectorListPtr;

71 //TM_BEGIN(2);

72 TMLIST_INSERT(pathVectorListPtr, (void*)myPathVectorPtr);

73 //TM_END(2);

74

75 PGRID_FREE(myGridPtr);

76 PQUEUE_FREE(myExpansionQueuePtr);

77 }

1 _(logic bool isValidPath(vector_t* myPathVectorPtr)

2 =(forall int i; 0<=i && i<(myPathVectorPtr->size-1) ==>

3 isAdjacent(

4 myPathVectorPtr->xCoords[i],

5 myPathVectorPtr->xCoords[i+1],

6 myPathVectorPtr->yCoords[i],

7 myPathVectorPtr->yCoords[i+1],

8 myPathVectorPtr->zCoords[i],

9 myPathVectorPtr->zCoords[i+1]

10)

11

12 &&

13 myPathVectorPtr->points[i] != GRID_POINT_EMPTY

14)

15 &&

16 myPathVectorPtr->points[0] != 0

17 &&

18 myPathVectorPtr->points[myPathVectorPtr->size-1] != 0

19

20)

21 _(logic bool isAdjacent(long x1, long x2, long y1, long y2, long z1, long z2)=

22 (((_(unchecked)(x1-x2)==1) && (y1==y2) && (z1==z2)) ||

23 ((_(unchecked)(x2-x1)==1) && (y1==y2) && (z1==z2)) ||

24 ((x1==x2) && (_(unchecked)(y1-y2)==1) && (z1==z2)) ||

50 Chapter 3: Verifiying Transactional Programs with Programmer-Defined Conflict Detection

25 ((x1==x2) && (_(unchecked)(y2-y1)==1) && (z1==z2)) ||

26 ((x1==x2) && (y1==y2) && (_(unchecked)(z1-z2)==1)) ||

27 ((x1==x2) && (y1==y2) && (_(unchecked)(z2-z1)==1)))

28)

1 static vector_t*

2 PdoTraceback (grid_t* gridPtr, grid_t* myGridPtr,

3 coordinate_t* dstPtr, long bendCost)

4 _(ensures result != NULL ==> isValidPath(result))

5 {

6

7 vector_t* pointVectorPtr = vector_alloc(1);

8

9 _(assume thread_local(pointVectorPtr))

10 _(assume pointVectorPtr->size==0)

11 _(assume (pointVectorPtr!=NULL))

12 point_t next;

13 next.x = dstPtr->x;

14 next.y = dstPtr->y;

15 next.z = dstPtr->z;

16 next.value = grid_getPoint(myGridPtr, next.x, next.y, next.z);

17 next.momentum = MOMENTUM_ZERO;

18 point_t curr;

19 _(assume !((curr.x == next.x) &&

20 (curr.y == next.y) &&

21 (curr.z == next.z)))

22 _(ghost pointVectorPtr->xCoords[(pointVectorPtr->size)] = next.x;)

23 _(ghost pointVectorPtr->yCoords[(pointVectorPtr->size)] = next.y;)

24 _(ghost pointVectorPtr->zCoords[(pointVectorPtr->size)] = next.z;)

25 _(ghost pointVectorPtr->points[pointVectorPtr->size] = GRID_POINT_FULL;)

26

27 _(assume thread_local(pointVectorPtr))

28

29 int stopIterating = -1;

30 _(assume next.value == 0 <==> (stopIterating == 2))

31 while (stopIterating <= 1)

32 _(invariant thread_local(pointVectorPtr))

33 _(invariant pointVectorPtr!=NULL)

34 _(invariant thread_local(&next))

35 _(invariant thread_local(&curr))

36 _(invariant

37 ((stopIterating ==-1) ==> isEqual(dstPtr->x, next.x, dstPtr->y, next.y, dstPtr->z, next.z))

38 && ((stopIterating == 1) ==> isEqual(curr.x, next.x, curr.y, next.y, curr.z, next.z))

39 && ((stopIterating ==0 || stopIterating ==2) ==>

40 ((pointVectorPtr->xCoords[(pointVectorPtr->size)] == next.x)

Chapter 3: Verifiying Transactional Programs with Programmer-Defined Conflict Detection 51

41 && (pointVectorPtr->yCoords[(pointVectorPtr->size)] == next.y)

42 && (pointVectorPtr->zCoords[(pointVectorPtr->size)] == next.z)

43)

44)

45

46 && ((stopIterating == 1) ==> ((pointVectorPtr->xCoords[(pointVectorPtr->size)] == curr.x)

47 && (pointVectorPtr->yCoords[(pointVectorPtr->size)] == curr.y)

48 && (pointVectorPtr->zCoords[(pointVectorPtr->size)] == curr.z)))

49 && ((stopIterating == 0 || stopIterating ==2) ==>

50 ((pointVectorPtr->xCoords[(pointVectorPtr->size)-1] == curr.x)

51 && (pointVectorPtr->yCoords[(pointVectorPtr->size)-1] == curr.y)

52 && (pointVectorPtr->zCoords[(pointVectorPtr->size)-1] == curr.z)))

53

54 && (GRID_POINT_FULL != 0 && GRID_POINT_EMPTY != 0)

55 && (pointVectorPtr->points[pointVectorPtr->size] == GRID_POINT_FULL)

56

57 && ((next.value == 0) <==> (stopIterating == 2))

58 && ((stopIterating ==2) ==> (isAdjacent(curr.x, next.x, curr.y, next.y, curr.z, next.z)))

59 &&((stopIterating ==0) ==> (isAdjacent(curr.x, next.x, curr.y, next.y, curr.z, next.z)))

60 && ((stopIterating == 2) ==> isValidPath(pointVectorPtr))

61

62)

63 {

64 stopIterating = 0;

65

66 _(assume thread_local(&next))

67 _(assume thread_local(&curr))

68 _(ghost pointVectorPtr->xCoords[(pointVectorPtr->size)] = curr.x;)

69 _(ghost pointVectorPtr->yCoords[(pointVectorPtr->size)] = curr.y;)

70 _(ghost pointVectorPtr->zCoords[(pointVectorPtr->size)] = curr.z;)

71 long* gridPointPtr = grid_getPointRef(gridPtr, next.x, next.y, next.z);

72 vector_pushBack(pointVectorPtr, &next);

73

74 ...

75 /* Check if we are done */

76 if (next.value == 0) {

77 _(ghost pointVectorPtr->xCoords[(pointVectorPtr->size)] = next.x;)

78 _(ghost pointVectorPtr->yCoords[(pointVectorPtr->size)] = next.y;)

79 _(ghost pointVectorPtr->zCoords[(pointVectorPtr->size)] = next.z;)

80 stopIterating = 2; // Done with success

81 }

82 else {

83 curr = next;

84 traceToNeighbor(myGridPtr, &curr, MOVE_POSX, TRUE, bendCost, &next);

52 Chapter 3: Verifiying Transactional Programs with Programmer-Defined Conflict Detection

85 _(ghost pointVectorPtr->xCoords[(pointVectorPtr->size)] = next.x;)

86 _(ghost pointVectorPtr->yCoords[(pointVectorPtr->size)] = next.y;)

87 _(ghost pointVectorPtr->zCoords[(pointVectorPtr->size)] = next.z;)

88 traceToNeighbor(myGridPtr, &curr, MOVE_POSY, TRUE, bendCost, &next);

89 _(ghost pointVectorPtr->xCoords[(pointVectorPtr->size)] = next.x;)

90 _(ghost pointVectorPtr->yCoords[(pointVectorPtr->size)] = next.y;)

91 _(ghost pointVectorPtr->zCoords[(pointVectorPtr->size)] = next.z;)

92 traceToNeighbor(myGridPtr, &curr, MOVE_POSZ, TRUE, bendCost, &next);

93 _(ghost pointVectorPtr->xCoords[(pointVectorPtr->size)] = next.x;)

94 _(ghost pointVectorPtr->yCoords[(pointVectorPtr->size)] = next.y;)

95 _(ghost pointVectorPtr->zCoords[(pointVectorPtr->size)] = next.z;)

96 traceToNeighbor(myGridPtr, &curr, MOVE_NEGX, TRUE, bendCost, &next);

97 _(ghost pointVectorPtr->xCoords[(pointVectorPtr->size)] = next.x;)

98 _(ghost pointVectorPtr->yCoords[(pointVectorPtr->size)] = next.y;)

99 _(ghost pointVectorPtr->zCoords[(pointVectorPtr->size)] = next.z;)

100 traceToNeighbor(myGridPtr, &curr, MOVE_NEGY, TRUE, bendCost, &next);

101 _(ghost pointVectorPtr->xCoords[(pointVectorPtr->size)] = next.x;)

102 _(ghost pointVectorPtr->yCoords[(pointVectorPtr->size)] = next.y;)

103 _(ghost pointVectorPtr->zCoords[(pointVectorPtr->size)] = next.z;)

104 traceToNeighbor(myGridPtr, &curr, MOVE_NEGZ, TRUE, bendCost, &next);

105 _(ghost pointVectorPtr->xCoords[(pointVectorPtr->size)] = next.x;)

106 _(ghost pointVectorPtr->yCoords[(pointVectorPtr->size)] = next.y;)

107 _(ghost pointVectorPtr->zCoords[(pointVectorPtr->size)] = next.z;)

108

109 /*

110 * Because of bend costs, none of the neighbors may appear to be closer.

111 * In this case, pick a neighbor while ignoring momentum.

112 */

113 if ((curr.x == next.x) &&

114 (curr.y == next.y) &&

115 (curr.z == next.z))

116 {

117 next.value = curr.value;

118

119 traceToNeighbor(myGridPtr, &curr, MOVE_POSX, FALSE, bendCost, &next);

120 _(ghost pointVectorPtr->xCoords[(pointVectorPtr->size)] = next.x;)

121 _(ghost pointVectorPtr->yCoords[(pointVectorPtr->size)] = next.y;)

122 _(ghost pointVectorPtr->zCoords[(pointVectorPtr->size)] = next.z;)

123 traceToNeighbor(myGridPtr, &curr, MOVE_POSY, FALSE, bendCost, &next);

124 _(ghost pointVectorPtr->xCoords[(pointVectorPtr->size)] = next.x;)

125 _(ghost pointVectorPtr->yCoords[(pointVectorPtr->size)] = next.y;)

126 _(ghost pointVectorPtr->zCoords[(pointVectorPtr->size)] = next.z;)

127 traceToNeighbor(myGridPtr, &curr, MOVE_POSZ, FALSE, bendCost, &next);

128 _(ghost pointVectorPtr->xCoords[(pointVectorPtr->size)] = next.x;)

Chapter 3: Verifiying Transactional Programs with Programmer-Defined Conflict Detection 53

129 _(ghost pointVectorPtr->yCoords[(pointVectorPtr->size)] = next.y;)

130 _(ghost pointVectorPtr->zCoords[(pointVectorPtr->size)] = next.z;)

131 traceToNeighbor(myGridPtr, &curr, MOVE_NEGX, FALSE, bendCost, &next);

132 _(ghost pointVectorPtr->xCoords[(pointVectorPtr->size)] = next.x;)

133 _(ghost pointVectorPtr->yCoords[(pointVectorPtr->size)] = next.y;)

134 _(ghost pointVectorPtr->zCoords[(pointVectorPtr->size)] = next.z;)

135 traceToNeighbor(myGridPtr, &curr, MOVE_NEGY, FALSE, bendCost, &next);

136 _(ghost pointVectorPtr->xCoords[(pointVectorPtr->size)] = next.x;)

137 _(ghost pointVectorPtr->yCoords[(pointVectorPtr->size)] = next.y;)

138 _(ghost pointVectorPtr->zCoords[(pointVectorPtr->size)] = next.z;)

139 traceToNeighbor(myGridPtr, &curr, MOVE_NEGZ, FALSE, bendCost, &next);

140 _(ghost pointVectorPtr->xCoords[(pointVectorPtr->size)] = next.x;)

141 _(ghost pointVectorPtr->yCoords[(pointVectorPtr->size)] = next.y;)

142 _(ghost pointVectorPtr->zCoords[(pointVectorPtr->size)] = next.z;)

143

144 if ((curr.x == next.x) &&

145 (curr.y == next.y) &&

146 (curr.z == next.z))

147 {

148 stopIterating = 1; // Done with failure

149 }

150

151 }

152 }

153

154 _(ghost pointVectorPtr->points[pointVectorPtr->size] = GRID_POINT_FULL;)

155 }

156 return (stopIterating == 2) ? pointVectorPtr: NULL;

157 }

3.7 Soundness Theorem

Theorem 8 (Soundness) If no execution in SerpPAbsq violates an assertion (i.e., PAbs is “sequen-

tially” correct), then for each E P RlxpPAbsq, there exists an execution E1 P SerpPAbsq such that

E � E1.

Proof: We show that in PAbs every transaction is composed of right-mover actions (as defined

in [9]) in the sense that, for each execution E P RlxpPAbsq with a transaction t, we can obtain an

execution E2 P RlxpPAbsq in which t is serialized (for each action startEptq ¤E αi ¤E cmtEptq,

Trpαiq � t) . Given that, we have proved in [9] that each transaction t is atomic, and consequently,

every execution E2 P RlxpPAbsq is equivalent to some execution E1 P SerpPAbsq. To prove the

54 Chapter 3: Verifiying Transactional Programs with Programmer-Defined Conflict Detection

right-moverness of the actions, we use (i) the guarantees from TM about the absence of write-after-

write conflicts, and (ii) the validity of the assertions in PAbs that were added during the abstraction

step S1. For each action αi � xSy of transaction t, we do a case split on the type of the statement

S:

• S does not access any global variables: In this case, αi is trivially a right-mover.

• S writes to a global variable x: The only problematic case is when there is a write to x by

another transaction between αi and cmtptq. However, by definition ValSpanE for RlxpPq,

this scenario cannot happen.

• The subtle case is when S is an abstracted read. In this case, one can show that the right-

moverness check for αi as explained in [9] would always succeed.

Corollary 9 If no execution in SerpPAbsq violates an assertion (i.e., PAbs is “sequentially” cor-

rect), then no execution in RlxpPq violates an assertion.

Proof: Recall that, PAbs is a sound abstraction of P (as we make some reads return more values

and add extra assertions, which are all validated). Therefore, for each E P RlxpPq, there exists

an execution E1 P RlxpPAbsq such that E � E1. By Theorem 6, there also exist an execution

E2 P SerpPAbsq such that E1 � E2. Thus E � E2. Consequently, if E2 of PAbs does not violate

an assertion, then E of P does not violate an assertion, either.

Chapter 4

CONCLUSIONS

In this thesis, we study two different verification problems in the context of concurrent, multi-

threaded software. First, we study how to prove the correctness of concurrent data structure im-

plementation when the correctness condition is linearizability. Our theory and way of verification

are based on the sound proof system of QED. We first adapted generic definition of linearizability

to the proof system. Then, we showed that each proof step in QED preserves a certain type of

simulation relation. We then showed the critical connection between the simulation relation and

the linearizability. Thereby, we concluded that the concurrent implementation is linearizable to the

specification we got at the end of the QED proof. To reach the specification we aim, we use two

main steps of the QED proofs, namely abstraction and reduction. While abstraction in general re-

places an action with one that allows more behaviors, reduction composes two atomic actions into

a single atomic action given that one of them has a proper mover type. With the addition of two

new rules, variable introduction and hiding, we make implementation closer to the specification we

aim in each proof step. Thus, when we reach the specification at the end of the proof, our sound-

ness theorem guarantees that the initial concurrent implementation is linearizable to the sequential

specification reached.

The second part of the thesis considers the problem of verifying transactional programs that

uses some transactional memory implementation which has relaxed or programmer-defined conflict

detection. While introducing and supporting relaxed conflict detection are beneficial in terms of

performance, the verification becomes hard to do since the ability of sequential reasoning is lost.

We provided a way to model and verify such transactional programs which regains the ability to use

sequential reasoning to do the verification job. Our method was based on providing the abstractions

on global variable reads and assertions to global variable writes needed for the soundness. The

rest of the method is automated. After providing abstractions, one can use a sequential verification

tool to verify the program. If the program verifies, then we conclude that the specifications of

the program, given in terms of pre-condtions and post-conditions, assertions, loop invariants, holds

56 Chapter 4: Conclusions

under the relaxed conflict detection. If not, the abstractions most probably are not correct and the

programmer tries to provide other abstractions that correctly describes and takes into account the

conflicting actions in the concurrent executions of the program. We note that our approach reduces

the verification of the transactional program to the sequential verification.

4.1 Future Work

4.1.1 Future work on verification of transactional programs with relaxed conflict detection

One of the first improvements for our method to verify transactional programs with programmer-

defined conflict detection is to automate the deduction of the abstractions provided by the program-

mer. The conflicting actions in the programmer can be analyzed such that the correct abstraction

can be found automatically by the verifier. In addition, the assertions needed for the global writes

can be added to the program in an automated manner.

Other than the automated deduction and additions of the abstractions and assertions, different

types of relaxed conflict detection mechanisms can be studied and formalized, then verified. We

specifically consider ignoring write-after-read conflicts in the concurrent executions of the program.

However, many different types of conflicts or conflict detection approaches can be studied. Thereby,

we will obtain a much more general verification approach and solution for transactional programs.

BIBLIOGRAPHY

[1] M. Abadi and L. Lamport. The existence of refinement mappings. Theor. Comput. Sci.,

82(2):253–284, 1991.

[2] D. Amit, N. Rinetzky, T. W. Reps, M. Sagiv, and E. Yahav. Comparison under abstraction for

verifying linearizability. In CAV, pages 477–490, 2007.

[3] H. Attiya, G. Ramalingam, and N. Rinetzky. Sequential verification of serializability. SIG-

PLAN Not., 45:31–42, January 2010.

[4] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie: A modular

reusable verifier for object-oriented programs. FMCO, 2005.

[5] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stanford transactional

applications for multi-processing. In IISWC ’08: Proc. of The IEEE International Symposium

on Workload Characterization, September 2008.

[6] R. Colvin, L. Groves, V. Luchangco, and M. Moir. Formal verification of a lazy concurrent

list-based set algorithm. In CAV, pages 475–488, 2006.

[7] M. Dahlweid, M. Moskal, T. Santen, S. Tobies, and W. Schulte. Vcc: Contract-based modular

verification of concurrent c. In ICSE-Companion 2009., pages 429 –430, may 2009.

[8] T. Elmas, S. Qadeer, A. Sezgin, O. Subasi, and S. Tasiran. Simplifying the proof of lin-

earizability with reduction and abstraction. In TACAS 2010: Proc. of the 7th International

Conference on Tools and Algorithms for the Construction and Analysis of Systems, 2010.

[9] T. Elmas, S. Qadeer, and S. Tasiran. A calculus of atomic actions. In POPL ’09: ACM

Symposium on Principles of Programming Languages, New York, NY, USA, 2009. ACM.

[10] H. Gao, J. F. Groote, and W. H. Hesselink. Lock-free dynamic hash tables with open address-

ing. Distrib. Comput., 18(1):21–42, 2005.

Bibliography 58

[11] L. Groves. Verifying michael and scott’s lock-free queue algorithm using trace reduction. In

CATS ’08: Symposium on Computing: the Australasian theory, pages 133–142, Darlinghurst,

Australia, 2008. Australian Computer Society, Inc.

[12] T. Harris, J. R. Larus, and R. Rajwar. Transactional Memory, 2nd edition. Synthesis Lectures

on Computer Architecture. Morgan & Claypool Publishers, 2010.

[13] D. Hendler, N. Shavit, and L. Yerushalmi. A scalable lock-free stack algorithm. In SPAA ’04:

ACM symposium on Parallelism in algorithms and architectures, pages 206–215, New York,

NY, USA, 2004. ACM.

[14] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects.

ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[15] W. H. Hesselink. Eternity variables to prove simulation of specifications. ACM Trans. Comput.

Logic, 6(1):175–201, 2005.

[16] C. B. Jones. Development Methods for Computer Programs including a Notion of Interference.

PhD thesis, Oxford University, June 1981.

[17] B. Jonsson, A. Pnueli, and C. Rump. Proving refinement using transduction. Distrib. Comput.,

12(2-3):129–149, 1999.

[18] Y. Kesten, A. Pnueli, E. Shahar, and L. D. Zuck. Network invariants in action. In CONCUR

’02: The 13th International Conference on Concurrency Theory, pages 101–115, London, UK,

2002. Springer-Verlag.

[19] S. Lahiri and S. Qadeer. Back to the future: revisiting precise program verification using smt

solvers. SIGPLAN Not., 43:171–182, January 2008.

[20] R. J. Lipton. Reduction: a method of proving properties of parallel programs. Commun. ACM,

18(12):717–721, 1975.

Bibliography 59

[21] P. W. O’Hearn, N. Rinetzky, M. T. Vechev, E. Yahav, and G. Yorsh. Verifying linearizabil-

ity with hindsight. In Proc. of the 29th ACM SIGACT-SIGOPS symposium on Principles of

distributed computing, PODC ’10, pages 85–94, New York, NY, USA, 2010. ACM.

[22] S. Owicki and D. Gries. Verifying properties of parallel programs: an axiomatic approach.

Commun. ACM, 19(5):279–285, 1976.

[23] S. Park and D. L. Dill. Protocol verification by aggregation of distributed transactions. In CAV

’96: The International Conference on Computer Aided Verification, pages 300–310, London,

UK, 1996. Springer-Verlag.

[24] M. L. Scott. Sequential specification of transactional memory semantics. In ACM SIGPLAN

Workshop on Transactional Computing. Jun 2006.

[25] T. Skare and C. Kozyrakis. Early release: Friend or foe? In Workshop on Transactional

Memory Workloads. Jun 2006.

[26] O. Subasi, T. Elmas, A. Cristal, T. Harris, S. Tasiran, R. Titos-Gil, and O. Unsal. On justifying

and verifying relaxed detection of conflicts in concurrent programs. Workshop on Determinism

and Correctness in Parallel Programming (WoDet), March 2012.

[27] R. Titos, M. E. Acacio, J. M. Garca, T. Harris, A. Cristal, O. Unsal, and M. Valero. Hardware

transactional memory with software-defined conflicts. In (To appear) High-Performance and

Embedded Architectures and Compilation (HiPEAC’2012), January 2012.

[28] V. Vafeiadis. Shape-value abstraction for verifying linearizability. In VMCAI ’09: The In-

ternational Conference on Verification, Model Checking, and Abstract Interpretation, pages

335–348, Heidelberg, 2009. Springer-Verlag.

[29] V. Vafeiadis. Automatically proving linearizability. In CAV, pages 450–464, 2010.

[30] V. Vafeiadis, M. Herlihy, T. Hoare, and M. Shapiro. Proving correctness of highly-concurrent

linearisable objects. In PPoPP ’06 ACM Symposium on Principles and practice of parallel

programming, pages 129–136, New York, NY, USA, 2006. ACM.

Bibliography 60

[31] L. Wang and S. D. Stoller. Static analysis for programs with non-blocking synchronization.

In ACM SIGPLAN 2005 Symposium on Principles and Practice of Parallel Programming

(PPoPP). ACM Press, June 2005.

VITA

Ömer Subaşi was born in Kars, in 1987. He received his B.Sc. degree in Computer Engineering

with double major in Mathematics from Koç University in 2009. From September 2009 to May

2012, he worked as a teaching and research assistant at Research Center for Multi-core Software

Engineering at Koç University, Turkey. During Spring 2010, he left his graduate study due to health

reasons. His research was supported by TÜBİTAK. He has published papers about statically veri-

fying concurrent software for TACAS’10 conference and workshops WoDET’12 and CSW’10. He

plans to pursue a PhD study at Barcelona Super Computing Center having an Intel PhD scholarship.

