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ABSTRACT 

Large composite parts are produced using Vacuum Assisted Resin Transfer 

Molding (VARTM) process; however, the major challenge in VARTM is to fill the mold 

completely with acceptable dimensional tolerances in the part. Simulation codes based on 

Darcy law are commonly used for flow modeling in Resin Transfer Molding (RTM) in 

which the thickness and permeability are fixed, i.e., do not vary with time. However, both 

thickness and permeability vary spatially and with time in VARTM due to the flexible 

vacuum bag used as the upper mold part. VARTM simulation codes should be incorporated 

with compaction models by coupling flow and fiber compaction. This also allows the 

simulation of post-filling stage of VARTM, where control actions are performed to exit the 

excess resin and minimize the variation in the part thickness.  

The present study models the post-filling stage of VARTM using experimental 

material characterization data for permeability and compaction. Continuity equation is 

solved using Finite Element Method (FEM) with triangular elements. The coupled 

distributions of pressure, thickness and permeability are calculated at the end of complete 

mold filling by using an iterative scheme. The solution is validated with several case 

studies such as single inlet single exit boundary conditions resulting in a 1D flow, and 

inlet/exit combinations resulting in 2D flow. Global mass conservation is used for 

validating the solution algorithm by comparing inlet and exit flow rates.  

Post-filling stage following a boundary condition update is simulated by starting 

from the simulated results of the end-of-mold-filling stage; and then applying the change in 

the boundary condition. The coupled distributions of pressure, thickness and permeability 

are calculated by using an explicit Eularian time integration; and the stability of algorithm 

is ensured by modifying the time step size.  

Modeling of mold-filling and verifying the simulations with experiments remain as 

future work. 
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ÖZET 

Büyük kompozit parçalar Vakum Destekli Reçine Transfer Kalıplama (VARTM) 

yöntemiyle üretilmektedir; ancak bu üretim yönteminde en sık karşılaşılan zorluklar ortaya 

çıkan üründe kabul edilebilir boyutsal toleransların elde edilememesi ve kalıbın boşluk 

kalmayacak şekilde doldurulamamasıdır. Kalınlık ve geçirgenliğin zamanla değişmediği 

Reçine Transfer Kalıplama (RTM) yönteminin akış modellemesi genellikle Darcy Yasası 

temelli simülasyon programlarıyla yapılır. VARTM yönteminde ise, üst kalıp esnek bir 

vakum torbası olduğu için; hem kalınlık hem de geçirgenlik zamana ve pozisyona bağlı 

olarak değişkenlik gösterir. Sıkıştırma modelleriyle birleştirilmiş VARTM simülasyon 

programları, fazla reçinenin kalıptan çıkarıldığı ve kalınlık farkının azaltıldığı kontrol 

aksiyonlarının yapıldığı dolum sonrası aşamaları modelleme açısından önemlidir. 

Bu çalışmada, VARTM üretim yönteminin dolum sonrası aşaması; deneysel 

geçirgenlik ve kalınlık malzeme karakterizasyonu verileriyle modellenmiştir. Süreklilik 

denklemi Sonlu Elemanlar Yöntemi’nde (FEM) üçgen elemanlar kullanılarak çözülmüştür. 

Basınç, kalınlık ve geçirgenliğin kalıbın dolum anındaki bağlaşık dağılımları ardışık 

yaklaştırmalar yoluyla çözülmüştür. Çözüm yöntemi,  tek giriş ve tek çıkışın olduğu tek 

boyutlu akış örnekleri ve farklı giriş/çıkış kombinasyonlarının oluşturduğu iki boyutlu akış 

örnekleriyle doğrulanmıştır. Toplam kütlenin korunumu, giriş ve çıkıştaki akış miktarları 

karşılaştırılarak çözüm algoritmasının doğrulanması için kullanılmıştır. 

Sınır koşullarındaki değişikliğin sebep olduğu dolum sonrası aşamanın 

simülasyonu, kalıbın dolum anındaki çözümün sonuçlarından başlayarak ve sınır 

koşullarındaki değişikliği bu sonuçlara uygulayarak yapılmıştır. Basınç, kalınlık, ve 

geçirgenliğin bağlaşık dağılımlarının zamanla değişimi belirtik bir yöntem kullanılarak 

çözülmüştür ve çözüm yönteminin kararlılığı zaman adımının büyüklüğü değiştirilerek 

sağlanmıştır. 

Kalıp dolumunun modellenmesi ve simülasyon sonuçlarının deneylerle 

karşılaştırılması gelecek çalışmalarda ele alınacaktır. 
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NOMENCLATURE 
 

Vf fiber volume fraction σ(Vf) stress on fabric 

Va 
theoretical maximum fiber 
volume fraction V0 

fiber volume fraction at zero 
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As spring constant  k softening coefficient 
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u  velocity vector f generation of mass  per unit 
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t time tfill 
time at the end of mold-
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w, h width and height of the mold  P  column vector of nodal 
pressures 

 F  column vector of nodal flows 
(load vector) Pn 

nodal pressures at nth 
iteration 

K(e) permeability at the centroid of 
the element  C  global capacitance matrix 

 P  column vector of time 
derivatives of nodal pressures Δt time step size 

λi eigenvalues of the system  i  eigenvectors of the system 

Vmold volume of resin in the mold Vout 
volume of resin leaving the 
mold 

Vtot total volume of resin    

     

 



CHAPTER 1 INTRODUCTION 

1 

 

Chapter 1 

INTRODUCTION 

1.1 Vacuum Assisted Resin Transfer Molding (VARTM) 

Liquid Composite Molding (LCM) is a class of composite material manufacturing 

processes. In these processes, fiber preform is placed in the mold cavity and it is saturated 

with resin flow induced by pressure difference between injection and ventilation ports. 

Mostly, a thermoset resin is preferred in these processes due to its low viscosity when 

compared to viscosity of thermoplastic resins. Impregnation with high viscosity resins 

requires high pressure and thus high investment cost in equipment, so use of high viscosity 

resins in LCM is limited. One other reason why thermoplastics are not used in LCM is that, 

even if high pressure is achieved with a robust injection machine, it causes fiber wash 

(movement of the fibers in the mold cavity). Resin Transfer Molding (RTM) and Vacuum 

Assisted Resin Transfer Molding (VARTM) are the two common LCM processes. 

VARTM is also known as Vacuum Infusion (VI) in the literature. In this study, a major 

issue (thickness variation) in VARTM will be investigated by using a process model based 

on conservation of mass within a control volume, and by solving it using Finite Element 

Method (FEM). Below, a brief descriptions of RTM and VARTM will be given. Modeling 

issues of VARTM, such as permeability and compaction are also studied later in this thesis. 

 

In RTM, both sides of the mold are rigid, and the mold is closed after fabric is 

placed in the mold cavity. Resin is pressurized in an injection machine, and it is injected 

into the mold. It is crucial to fill the mold cavity completely before resin gelation; 

otherwise the extreme increase in resin viscosity will cause very high pressures. The part is 

demolded after it cures (partially or completely), i.e., after it toughens enough not to warp 

during or after the demolding.  
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VARTM is a modification of RTM process. In VARTM, layers of glass or carbon 

fabric are placed on a lower mold. Instead of using a rigid upper mold part as in RTM, a 

plastic film is used in VARTM. Sealing between upper and lower mold parts is ensured by 

using a sealant tape (which is called tacky tape). A vacuum pump is connected to the mold 

through one or more ventilation ports; and the resin is provided to the system through one 

or more injection ports. In RTM positive pressure difference; in VARTM vacuum pressure 

difference between ventilation and injection ports drives the resin through the empty spaces 

between the fibers of the preform.  

 

VARTM is usually preferred for medium to large sized parts. Instead of machining 

a metallic upper mold part with low dimensional tolerances in RTM, using vacuum bag in 

VARTM decreases the initial investment cost significantly. On the other hand, pressure 

difference between injection and ventilation ports cannot exceed one atmospheric pressure, 

and this limits the flow rate and thus reduces the production rate in VARTM. Positions of 

injection and ventilation ports have to be designed ensuring that the part is completely 

wetted with resin. For complex part geometries, this task gets very challenging, not only for 

the nominal conditions, but also considering the variations in the material (fabric cutting, 

stacking and placement). 

 

Two major challenges in VARTM are (1) to fill the mold cavity completely within a 

reasonable time that allows mass production rate; and (2) to keep the dimensional 

tolerances within acceptable tolerances depending on where the part is used. The former 

issue requires to model resin flow which is usually done using simulation codes based on 

Darcy law which is an empirical relation between the resin velocity and pressure gradient. 

The latter issue requires modeling the fabric compaction by relating the compaction 

pressure and the part thickness. Especially in VARTM, considering the control actions that 

are taken during and after the filling stage, one needs to couple the resin flow and fabric 

compaction. In this thesis, the distributions of pressure, thickness and permeability will be 
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solved at the end of the mold filling; and then the effect of post-filling control actions will 

be studied.  

Thickness varies spatially and with time during infusion, and this variation is 

attributed to the following three main reasons in [1]  

 change of compaction pressure originating from the change in resin pressure, 

 fiber relaxation with time despite constant compaction pressure, 

 equalization of resin pressure during resin bleeding (closing the gates and keeping 

the vents active under vacuum pressure). 

1.2 Compaction Characterization 

Characterization of compaction behavior has been studied and modeled by 

researchers with the aim of controlling the thickness variation in the part. Most of these are 

elastic models which assume that the fabric responses instantaneously when the 

compaction pressure changes. One of the mostly recognized elastic models is suggested by 

Gutowski et al. [2]. Relationship between compaction pressure and fiber volume fraction is 

modeled as follows 

4
0

1

1
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V
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V
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where σ(Vf) is the stress on fabric in [Pa], Vf  is the fiber volume fraction, Va is the available 

fiber volume fraction (i.e., theoretical maximum fiber volume fraction), V0 is fiber volume 

fraction at zero compaction pressure, and As is the spring constant in [Pa]. Andersson et al. 

[3] modeled the compaction behavior using experimental results for dry and wetted fabrics 

as follows 
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where k is the softening coefficient, E is fiber stiffness,  and m are constants to be 

determined by curve-fitting the experimental data. Robitaille and Gauvin [4] and Joubaud 

et al. [5] used power law to relate the compaction pressure and fiber volume fraction as 

follows 

 
b

f aV       (1.3) 

 

where  a and b are constants to be determined by curve-fitting the experimental data. 

 

In elastic models, change of thickness in the fabric is as assumed to be 

instantaneous when compaction pressure changes. As shown in the experiments of [1], 

creep (i.e., change of strain or thickness with time) occurs at a constant compaction 

pressure. But, elastic compaction models cannot model this time-dependent response. 

There are various viscoelastic compaction models which account the time-dependent 

behavior of compaction response in the fabric. Some of these viscoelastic models are 

presented in [6, 7]. As demonstrated in [1], viscoelastic behavior becomes significant 

especially if compaction pressure drops below 40 kPa. Also, Govignon et al. [8] suggested 

that use of elastic modeling reduces the complexity of mechanical coupling between fiber 

volume fraction and compaction pressure. 

1.3 Process Modeling of VARTM 

One major disadvantage of VARTM is that the process is labor-dependent, and an 

inconsistent material preparation may cause deviation of the flow propagation and thus 

incomplete mold filling. This causes serious loss of time and money. Competitive 

circumstances in manufacturing also require short production cycles with minimum cost. 

Thus, combining mathematical process models and simulation codes is important for 

meeting the demands of competitive industries while keeping the scrap at minimum. 
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In this work; (a) pressure distribution at the instant of mold filling (t = tfill), and (b) 

evolution of pressure distribution following a control action (modification at injection 

and/or ventilation pressures) are solved. In both cases, continuity equation must be 

satisfied. Continuity equation is 

 

  fu
t



 



 
    (1.4) 

 

where ρ is density of fluid, u  is velocity vector and f is the generation of mass  per unit 

volume per unit time. In both cases, there is no mass generation or mass loss, i.e., f = 0; 

hence Equation (1.4) takes the following form 

 

  0

 u

t


      (1.5) 

 

Darcy’s law describes the flow through a porous medium as follows: 
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where, u, v, and w are velocity components, µ is the viscosity of liquid resin, [K] is the 

permeability tensor of porous medium. Darcy’s law is used relating the velocity of resin 

and pressure gradient. It replaces the conservation of momentum equations, since use of 

conservation of momentum equations requires the determination of flow channels between 

fibers. The determination of channels is troublesome for a typical fabric preform used in 

LCM due to its complicated fiber structure; so use of Darcy’s law instead of conservation 

of momentum equations reduces the complexity of modeling while estimating the macro 

flow in the porous medium. 
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Velocity vector in Equation (1.6) has three components, which corresponds to flow 

of resin in three principal axes. In most applications (parts with much smaller thickness 

than the in-plane dimensions), flow through thickness direction is negligible when 

compared to other two directions, and the flow is modeled as two-dimensional. For two-

dimensional flow, Darcy’s law can be re-written as 
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1     (1.7) 

 

1.4 Permeability Characterization 

The goals of the LCM processes are to manufacture parts in short production 

cycles, and having end products with good quality. Mechanical properties (such as specific 

strength, stiffness and toughness) of composites usually determine the part quality. These 

properties increase as the fiber volume fraction increases by compacting the preform [9]. 

On the other hand, increasing fiber volume fraction means reducing the size of channels 

through which resin flows, and decreases permeability. So, increasing the fiber volume 

fraction leads to longer fill times and longer production cycles. The trade-off between 

mechanical properties and production times is crucial in production planning. To achieve 

these goals, one needs to understand and model the resin flow, which requires a reliable 

permeability data. Many researchers have addressed this issue, and either modeled or 

measured the permeability of fabrics. 

One of the most renowned permeability models is known as Kozeny-Carman 

equation [10]. It models the permeability along the flow direction as follows 
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where Vf is the fiber volume fraction and A is an empirical constant. There are other 

constitutive models in the literature which also relate the permeability of the fabric to fiber 

volume fraction [11, 12]. Most of these constitutive equations contain empirical 

coefficients. These constitutive equations may fail to model permeability at high fiber 

volume fractions.  

 

In experimental characterization of permeability, either change of injection pressure 

is monitored under constant flow rate boundary condition, or position of flow front is 

monitored under constant pressure boundary condition. One-dimensional, radial (two-

dimensional) or three-dimensional experiments are performed [13, 14].  

 

1.5 Method of Process Modeling 

In our research group, characterization of permeability [15] and compaction [1, 13, 

16-18] were studied. Process control experiments are also being conducted using the results 

of compaction and permeability characterization databases [19-21]. A process model is 

needed for the process control and for planning control actions prior to experiments in 

complex geometries. 

 

In the literature, Finite Difference Method (FDM) is preferred to solve partial 

differential equations (PDE) if the domain geometry is simple. In FDM, one replaces 

derivative terms in differential equations or boundary conditions with finite difference 

equations (forward, central, or backward differences) resulting in a set of linear equations. 

Difficulty of modeling with FDM arises when discontinuities are present in the problem 

[22]. One of the most common discontinuities in LCM process models is due to the 

variation in material properties such as permeability or thickness. For example, 

permeability and thickness of a region with additional stiffening material are considerably 

different than the rest of the fabric, and modeling the sudden change of permeability and/or 

thickness is troublesome in FDM.  
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Another difficulty while modeling with FDM arises when non-rectangular 

geometries are considered [22-24]. In discretization of domain, nodes are used and these 

nodes should be distributed regularly in FDM for ease. However, for non-rectangular 

domains, either a jagged boundary needs to be generated which will deviate from the actual 

shape of the edge, or use of non-uniformly distributed nodes will require using complicated 

finite difference equations at the boundary.  

 

In FEM, governing equations are the same for all elements. Once the domain is 

discretized, all the elements are treated the same. Formulization of FEM is more laborious 

compared to FDM; but it is independent of geometry, so it is preferred for modeling of 

complex geometries. 

 

Simacek et al. [25] used FDM to solve post-filling stage in VARTM after 

modifying boundary conditions; and thus to study settling of pressure and thickness 

distributions. Simulations were performed for rectangular mold geometry with lineal 

injection and ventilation ports which are placed at opposite sides of the mold. The flow is 

1D due to the symmetry of injection and ventilation ports. The initial conditions of pressure 

and thickness distributions at the beginning of post-filling (i.e., the steady state of the mold 

filling stage) were directly taken from an experimental data. Differently here in this study, 

those distributions will also be solved using FEM.  

 

1.6 Contribution of this thesis 

The major objective of this study is to model the post-filling stage of VARTM by 

using material characterization data (permeability and compaction) that were previously 

constructed in our research group. Before achieving that goal, meaning the post-filling 

modeling, initially FEM is used to solve the pressure distribution at the end of the mold 

filling. This is done by considering different case studies. The case studies include single 

inlet and single exit with geometric symmetry (resulting in a 1D flow) and also 

complicated inlet and exit conditions resulting in different 2D flows. The accuracy of the 
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FEM results is investigated by considering global mass conservation in all cases. Pressure 

distribution and flow rates at injection and ventilation ports are compared with analytical 

solutions in some cases.  

 

In the second part of the thesis, post-filling modeling of VARTM is studied. To model 

the post-filling of VARTM, material characterization data (compaction and permeability) 

of the fabric preform are needed. In [18], an elastic model was used to determine the 

compaction behavior of a fabric preform which was also used in this study. The elastic 

model was fit to tens of experiments for the same fabric type and this solution was used as 

compaction model in this study.  In [15], permeability of different fabric types (including 

the fabric type in [18]) was characterized by performing steady and unsteady experiments 

at various thicknesses. By using the compaction relationship in [18] and permeability 

results in [15], the following steps will be taken: 

 

1. The steady pressure distribution at the end of the mold filling stage will be 

calculated in Sections 3.2 and 3.3 for two different case studies. 

2. The adjustments in boundary conditions (which are called control actions) will be 

modeled by evolving the thickness, permeability and pressure distributions with 

time. Evolution with time is achieved by explicit finite difference equations in time. 

3. The result of the unsteady case (item 2) will be validated by solving the steady 

distributions corresponding to the boundary condition set used in item 2, and 

comparing the two results. The correctness of the solution algorithm is validated if 

the convergence of the unsteady solution (in item 2) matches the result of steady 

state solution (in this item 3). 
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Chapter 2 

FINITE ELEMENT METHOD 

2.1 Linear Triangular Elements 

First, in order to solve a differential equation using Finite Element Method (FEM), 

one should discretize the domain of the problem. Discretization is achieved through 

generating a mesh over the domain with one or more type of elements. Dimensionality (1D, 

2D or 3D) of the problem domain determines the element types. For a one dimensional 

problem, one can use rod elements with linear, quadratic, or cubic approximation functions 

inside the element. For two dimensional problems, one can use triangular or quadrilateral 

elements with linear, quadratic or higher order approximation functions. 

 

Rectangular elements do not conform to curved geometries well when compared to 

triangular elements [26]. Geometries of the problems in this thesis are two dimensional and 

flat. Thus, rectangular elements could have been used here; however, triangular elements 

are used in this thesis to have the ability to work with curved boundaries of future work. 

Linear approximation functions are used for defining the distribution of properties within 

the elements (linear triangular elements). 
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Figure 2.1 Typical triangular element 

 

Figure 2.1 shows a typical triangular element. The element has three non-collinear 

nodes The distribution of the dependent variable (it is pressure, P, in this study) in a linear 

triangular element can be approximated as in [27] 

 

cybxayxP e ),()(     (2.1) 

 

where a, b, and c are constants explained below, x and y are the global coordinates. Using 

Equation (2.1), nodal pressure values are expressed as follows: 

 

iii cybxaP       (2.2) 

jjj cybxaP       (2.3) 

kkk cybxaP  .     (2.4) 
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From Equations (2.2)-(2.4) one can calculate a, b, and c as described in [28] 

 

 kijjijkiikijkkj PyxyxPyxyxPyxyx
A

a )()()(
2
1

   (2.5) 

 kjijikikj PyyPyyPyy
A

b )()()(
2
1

     (2.6) 

 kijjkiijk PxxPxxPxx
A

c )()()(
2
1

     (2.7) 

 

where A is the area of the triangular element and it is calculated as follows 

 

 

 

kk

jj

ii
kjijikikj

kk

jj

ii

kjijikikj

yx
yx
yx

xyyxyyxyy
A

yx
yx
yx

xyyxyyxyyA

1
1
1

 
2

)()()(

or                                                
1
1
1

 2)()()(2








  (2.8) 

 

Substituting a, b, and c terms in Equations (2.5) - (2.7) into Equation (2.1) and grouping Pi, 

Pj, and Pk terms in matrix form yields 

 

  

















k

j

i

kji
e

P
P
P

SSSP  )(      (2.9) 

 

where Sn defined as follows 
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kji, n
A

yx
S nnn

n  , for       
2





    

 (2.10) 

 

and  

 

jkkji yxyx    kji yy    jki xx   

kiikj yxyx    ikj yy    kij xx     (2.11) 

ijjik yxyx    jik yy    ijk xx   
 

2.2 Galerkin’s Weighted Residual Method 

In general, weighted residual methods are based on finding an approximate solution 

for the governing ordinary or partial differential equations. The approximate solution must 

satisfy the differential equation as well as the boundary conditions of the given problem. 

Since the solution is approximate, not exact, substitution of the solution will introduce an 

error which is also called residual. The aim in the weighted residual methods is to minimize 

the error introduced by the approximation of solution. 

 

A typical two-dimensional differential equation to be solved by using weighted 

residual method is given in below 

 

  0 fA       (2.12) 

 

where A is a differential operator, ϕ(x, y) is the dependent field variable to be calculated 

approximately, and f(x, y) is a given function of independent variables x and y. ϕ is defined 

over a domain Ω and this domain is surrounded by the boundary Γ. Boundary Γ conforms 

to the given boundary conditions of the problem. Approximation of ϕ is represented as  . 

  is a function of independent variables, and it is approximated as 
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m

iiCS
1

     (2.13) 

 

where Si is the linear interpolation function and Ci is the unknown function of independent 

variables for the ith node. m is the total number of nodes in the domain, and both Si  and Ci 

are defined for all nodes in the domain. Substituting Equation (2.13) into Equation (2.12) 

yields 

 

0)(  RfA       (2.14) 

 

where R is the residual resulted by approximation of the field variable. Weighted residual 

methods seek to determine the unknown iC in such a way that the residual R is minimized. 

The minimization is achieved through a weighted summation of residuals over the domain. 

Hence, m linearly independent weighting functions are selected to yield 

 

  0 )(   
dRWdWfA ii     (2.15) 

 

where i = 1,2,…,m.  

 

There are many possible weighting functions that can be used in this error 

minimization process. Commonly used weighted residual method is Galerkin’s Method. In 

this method, weighting functions are chosen to be equal to the interpolation functions (see 

Equation (2.10)) of the elements, Wi = Si. Galerkin’s Method will be used for error 

minimization throughout this thesis meaning that interpolation functions of triangular 

elements, Si, will be used as the weighting functions which are calculated using Equations 

(2.10) and (2.11).     
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Chapter 3 

SIMULATIONS OF VARTM 

3.1 Overview 

In this part of the thesis, simulations are performed for different material properties 

and for different boundary conditions. Tables 3.1, 3.2 and 3.3 show the boundary 

conditions and material characterization data for Case 1, Case 2 and Case 3, respectively. 

Numerical methods of Finite Element Method are implemented using the algorithms 

described in [28, 29]. The first two cases are studied to validate the correctness of the 

solution algorithm by comparing the numerical results with analytical solutions available. 

Then in the third case, the evolution of process variables (h, K and P) will be investigated 

for 1D and 2D flow cases. 

 

Table 3.1 Material data and boundary conditions in Case 1 

       29101 ,003.0 ,1.0 ,3.0 mKmhmLmL yx
  

Case # Boundary Conditions 

Case 1-a 

 

Case 1-b 
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Table 3.2 Material data and boundary conditions in Case 2 

       21010 1015105 ,003.0 ,1.0 ,3.0 mxKmhmLmL yx
   

Case # Boundary Conditions 

Case 2-a 

 

Case 2-b 
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Table 3.3 Material data and boundary conditions in Case 3 

        21010 1015105  ,
2540

450.08,
04.2

ln
42.19

1  1030 mxK
V

h
P

V,m., Lm.L
f

c
fyx

 






  

Case # Boundary Conditions 

Case 3-a 

 

Case 3-b1 

(Evolution of 
variables with 

time) 

 

Case 3-c 

(Steady state 
solution) 

 

                                                        
1 The initial conditions of process variables (h, K, and P) in Case 3-b are taken from Case 3-a. Upon applying  
the sudden changes at the boundary (closing the inlet on the left edge), the evolutions of the variables are 
tracked until a convergence is achieved. This solution is then compared with the solution of Case 3-c. 
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3.2 Solution at the end of mold-filling for constant thickness and permeability 

3.2.1 Case 1-a: 1D flow 

Here, the solution of pressure distribution in a mold will be studied by using FEM. 

In order to simulate the pressure distribution at the instant of mold filling, one should solve 

the continuity equation 

 

  fu
t



       (3.1) 

 

where ρ is density of fluid, u  is velocity vector and f is the source term which corresponds 

to the generation of mass per unit volume per unit time. There is no mass generation in this 

case, so the right-hand side of the equation is set to zero 

 

  0

 u

t


      (3.2) 

 

Fluid is incompressible, so ρ is constant and does not change with time. Thus, dropping 

t  term from Equation (3.2), it takes the following form: 

 

  0 u      (3.3) 

 

Since ρ is constant and right-hand side of Equation (3.3) is zero, one can drop ρ term as 

well 

 

  0 u      (3.4) 

 

Darcy’s law is an empirical equation describing the flow through porous medium, and it 

replaces the momentum equation 
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yP
xP

KK
KK

v
u

yyyx

xyxx


1

    (3.5) 

 

Where µ is the viscosity of liquid resin, [K] is the permeability tensor of porous medium, 

and P(x, y) is the pressure distribution at the end of mold filling (t = tfill). In this study, the 

principal axes are x and y so that 

 

0 yxxy KK      (3.6) 

 

We will consider isotropic fabrics such as random fabrics, so that 

 

KKK yyxx      (3.7) 

 

Curing of the resin is out of the scope of this work, so viscosity, µ, is assumed to be 

constant throughout this work. Combining Equations (3.4) and (3.5) yields 

 

0    

or                      

   0

2

2

2

2
2

2

2

2

2
2



































y
P

x
PKPK

y
P

x
PKPK




    (3.8) 

 

for uniform K (i.e. K ≠ K(x, y)). Figure 3.1 shows the dimensions of a typical mold used for 

the simulation of this study. Figure 3.2 shows all the boundary conditions for the 

boundaries and governing differential equation for interior of the mold. In this case, Pinj = 

100 kPa = 100000 Pa and Pvent = 0. 
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Figure 3.1 Dimensions of a typical part used for simulations 

 

Figure 3.2 Global boundary conditions for the part 

Applying Galerkin’s Residual Method, Equation (3.8) takes the following form 

 

02

)(2

2

)(2
)(2 
































  

d
y
P

x
PKWdPKW

ee

i
e

i 
  (3.9) 

 

where domain   is divided into triangular elements; and pressure distribution inside each 

element can be written as 

 

x

y

x

z

mL x  3.0

mL y  1.0

mhL z  003.0

0




y
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PP vent

 0
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PP inj
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     (3.10) 

 

where r is the number of nodes assigned to that element, e. 

 

In Section 2.2, approximation of ϕ(x, y), a dependent field variable, was explained. 

  is used for approximation of the field variable ϕ. In this study, approximate solution of 

pressure distribution, P is sought. P(e) is used throughout this study as the approximation of 

P, pressure distribution inside an element. In other words, P(e) term is analogous to the 

approximation of   in Equation (2.13).  

 

0)( 2

)(2

2

)(2
























 e dxdy
y
P

x
PKS

ee

i 
   (3.11) 

 

Equation (3.11) shows the governing equation inside an element where Wi = Si as 

discussed in Section 2.2 and it can be written for other interpolation functions, Sj and Sk 

namely.  Combining the three equations, and writing them in compact matrix form, it 

results in 

 

  0
)( 2

)(2

2

)(2
























 e
dxdy

y
P

x
PKS

ee
T


   (3.12) 

 

where the transpose of the interpolation functions is given as 
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S      (3.13) 
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P(e) is first order as discussed in Section 2.1. 2)(2 xP e   and 2)(2 yP e  are equal 

to zero since both terms are second derivatives of a linear function. Solving Equation (3.12) 

does not give a fruitful result, because the second derivatives of linear functions give the 

redundant result of 0 = 0. To get a meaningful result, second order terms need to be 

manipulated, and manipulation is achieved through integration by parts as follows: 
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which can be re-written as 
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    (3.17) 

 

Substituting Equations (3.16) and (3.17) into Equation (3.12) yields 
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By applying Green’s theorem, the area integrals can be converted to line integrals as 

follows 
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Figure 3.3 Unit normal vector of a triangular element at global boundary 

 

where nx and ny are the two components of unit normal vector to the boundary Γ shown in 

Figure 3.3. Unit normal vector n  to the boundary is as follows 

 

jninn yx


       (3.21) 
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Substituting Equations (3.19) and (3.20) into Equation (3.18) yields 
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The first term of the area integral in Equation (3.22),  
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and 
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Substitution of Equations (3.23) and (3.24) into  
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x
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yields 
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 (3.25) 

 

Entities in the integral in Equation (3.25) are independent of both x and y, in other words 

these entities are constants. Hence, Equation (3.25) can be re-written as 
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(3.26) 

 

since Adxdy
e

  
)(

. 

 

Second term of the area integral in Equation (3.22),  
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and 
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Substitution of Equation (3.27) and Equation (3.28) into 
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Entities in the integral in Equation (3.29) are independent of both x and y as in Equation 

(3.27). Hence, Equation (3.29) can be re-written as 
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  (3.30) 

 

The global stiffness matrix for any element is obtained by substituting Equations 

(3.25) and (3.30) into Equation (3.22) 
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shows the global boundary conditions for this case. Left edge of the part is an injection port 

and the right edge of the part is a ventilation port. Boundary conditions at injection and 

ventilation ports are convective boundary condition type. A typical convective boundary 

condition for a triangular element is schematically shown in Figure 3.4 where q is flux per 

unit volume.  

 

Figure 3.4 Triangular element with convective boundary condition 

 

 

Figure 3.5 Three elements with different convective boundaries 

 

Convective boundary condition along the edges of a triangular element is shown 

below by following the reference [28] 
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where convective boundary condition can be present at one edge or at two edges, or it may 

not be present at all as shown in Figure 3.5. Triangular element C in Figure 3.5 has one 

edge with convective boundary condition, namely Cij. So, Equation (3.32) gives the 

convection  
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C   for element C. 

 

Element B, in the same figure has convective boundary condition at two edges, namely Bjk 

and Bki. Hence, total convection from this element is equal to sum of Equations (3.33) and 

(3.34) 
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C   for element B. 
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Element A in Figure 3.5 has no edge with convective boundary condition, so convection 

from this element is equal to zero 

 

0)( eC   for element A. 

 

  

 

Figure 3.6 Convective boundary condition at the edge of an element 

 

lij, ljk, and lki are shown in Figure 3.6. The flux q is equal to 
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CHAPTER 3 SIMULATIONS OF VARTM 

30 

 

 

Figure 3.7 Four separate elements in the domain 

 

After assembling the global stiffness matrix, one should solve  

 

    FPC        (3.36)  

 

to obtain the pressure for all nodes. [C] is the global stiffness matrix and it is m×m square 

matrix where m is the number of nodes used in the complete mesh.  P  and  F  are m×1 

column vectors.  

 

 

 F  is the load vector and it is calculated as shown in reference [28] 
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and it is zero everywhere except along the injection and ventilation boundaries. Figure 3.7 

shows different elements which have different load vectors,  F . Element A has an edge, 

namely Aki edge, overlapping with the inlet port. Hence, load vector for this element is 

calculated using Equation (3.39). Element D has two edges (Djk, Dki) overlapping with the 

exit port, so the load vector for this element is the sum of Equations (3.38) and (3.39) 
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F

     

for the element D. 

 

Elements B and C have no edges on either inlet or exit port, so load vectors of these 

elements are zero 

    

for elements B and C.

 
 

In this thesis, MATLAB and its built-in functions are used for computations. After 

calculating the stiffness and load matrices, the next step is to implement the calculations in 

MATLAB and solve the nodal pressures. The geometry is defined with dimensions and 

boundary conditions given in Figures 3.1 and 3.2 using MATLAB’s pdetool toolbox. For 

generating mesh, initmesh function of MATLAB is used. initmesh function uses the 

algorithm described in [30] and Figure 3.8 shows the domain after the mesh generation. 

One can refine the generated mesh by using refinemesh function of MATLAB as seen in 

0)( eF
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Figure 3.9. One can generate a regular mesh on a rectangular geometry using triangular 

elements with MATLAB’s poimesh function as seen in Figure 3.10. Domain is divided into 

112 elements in Figure 3.8, 448 elements in Figure 3.9, and 600 elements in Figure 3.10. 

 

Figure 3.8 The domain with mesh generated using initmesh function 

(several nodes and elements are shown for clarity purpose) 
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Figure 3.9 Refined random triangular elements  

 

Figure 3.10 Regular triangular elements  
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Final step of the solution is to assemble the global stiffness matrix, [C] and the load 

vector,  F . Global stiffness matrix is assembled using Equations (3.32) – (3.35). The load 

vector is assembled using Equations (3.37) – (3.39); and nodal pressures are solved using 

MATLAB. As discussed above, there are m nodes in the system and m unknown nodal 

pressures. The system of equations to be solved is shown in Equation (3.36) and there are 

m independent equations for m unknowns. Thus, the system can be solved directly (and 

uniquely) by using MATLAB’s backslash “\”operator as follows: 

 

          FCPFPC \            (3.40) 

 

[C] is a sparse matrix with a size of m×m. MATLAB’s “\” operator uses the algorithms 

described in [31] for solving a sparse matrix system. The uniqueness of the solution is 

guaranteed if the rank of  C  is of order m; and this is satisfied if all nodal points are 

distinct, (i.e., not overlapping). Since the variables P, h and K are coupled, the solution of 

them is determined by using an iterative approach. The algorithm of that iterative scheme is 

illustrated in the flow chart above. 

 

Figures 3.11 and 3.12 show the pressure distributions in the part calculated using 

MATLAB. 
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Figure 3.11 Pressure distribution in the mold 
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Figure 3.12 Pressure distribution along y = 0.05 m 

 

To validate the correctness of the numerical result and determine the accuracy of it, 

the numerical results will be compared with the analytical result which is explained below.  
 

The boundary conditions are P = 100 kPa along the left edge (which is called a line 

injection), and P = Pvacuum = 0 along the right edge (which is called a line ventilation). Due 

to the simple geometry and symmetry of this problem, a 1D flow is expected for this 

problem. Since   dxdPKu  , P(x) should be a linearly decreasing function; and it is 

calculated so.  

The governing differential equation is as follows:  
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After dropping 22 yP   term from Equation (3.41) due to 1D flow (i.e.,  yfP  ), 

equation takes the following form 
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x
PK


     (3.42) 

 

and the partial differential equation becomes an ordinary differential equation: 
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dx
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    (3.43) 

 

Permeability and viscosity are constant, so Equation (3.43) reduces to 
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dx
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     (3.44) 

 

Integrating Equation (3.44) twice yields 

 

21 CxCP       (3.45) 

 

C1 and C2 are calculated using boundary conditions of the problem, P(x = 0) = Pinj = 100 

kPa and P(x=0.3)=Pvent = 0. Solving for C1 and C2 yields 
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3

1000000



 xP     (3.46) 

 

where x is in [m] and P is in [Pa]. In this case, steady flow inside the part is solved. Hence 

the following equation must be satisfied 
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dx
dPKAQQ ventinj 

    (3.47) 

 

Substituting Equation (3.46) into Equation (3.47), one gets 
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  (3.48) 

 

Post-processing the pressure distribution solution of FEM, flow rate at injection and 

ventilation ports are calculated. Both of them are in agreement with the result of analytical 

solution given by Equation (3.48). Accuracy of the numerical solution is in the order of 

floating-point relative accuracy, machine epsilon. It can be concluded that the error is most 

likely due to rounding in floating-point arithmetic. The velocity field is shown in Figure 

3.13, and it is 1D, again in agreement with the analytical solution.  
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Figure 3.13 Velocity field in the mold 

3.2.2 Case 1-b: 2D flow 

To validate the solution procedure, another simulation was performed after slightly 

modifying the boundary conditions as shown in Figure 3.14. Pressure distribution and 

velocity field are shown in Figures 3.15 and 3.16, respectively. It is difficult to get an 

analytical solution for this 2D flow case. The accuracy of the numerical solution was 

checked by comparing the inlet and exit flow rates. The inlet and exit flow rates are 

calculated by post-processing the MATLAB solution for nodal pressures. Five significant 

digits for the resin entering and leaving the mold are equal, Qinj = Qvent = 0.83721 cc/s. In 

more detail, the accuracy of solution for injection and ventilation is in the order of machine 

epsilon.  
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Figure 3.14 Global boundary conditions for the part 

 

 

Figure 3.15 Pressure distribution in the mold 

0




y
P

μ
Kv

0




y
P

μ
Kv

0)( 2

2

2

2









y
P

x
PK

 yL 2
yL

2
yL

ventPP 

injPP 

10000
10000

20000
20000

20000

30000
30000

30000

40000
40000

40000

50000
50000

50000

60000
60000

60000

70000
70000

70000

80000
80000

80000

90000
90000

x [m]

y 
[m

]

 

 

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.02

0.04

0.06

0.08

0.1

0

1

2

3

4

5

6

7

8

9
x 10

4



CHAPTER 3 SIMULATIONS OF VARTM 

41 

 

  

Figure 3.16 Velocity field in the mold 

3.3 Solution at the end of mold-filling for constant thickness and variable 

permeability 

3.3.1 Case 2-a: 1D flow 

In this case, distributions of pressure and velocity components u and v will be 

calculated using FEM. The mold is the same as the one used in Section 3.2 except that the 

permeability of the porous medium, K varies spatially here, i.e. K = K(x).  It was assumed 

to be constant in Case 1-a, b, which is commonly assumed in RTM applications if h is 

constant. In this case, K is taken as a function of position as follows 
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where x is in [m] and K is in [m2]. This corresponds to the fabric variation along x-direction 
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due to the variability of K(x) in this case, as expected. Equation (3.8) shows the governing 

equation for Case 1-a, b: 
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while it is modified as follows to incorporate the variability of K 
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Equation (3.31) stated the global stiffness for Cases 1-a and 1-b (corresponds to 

Equation (3.8)) and it was as follows: 
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Equation (3.31) is modified to account the variation in K = K(x) as follows: 
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   (3.51) 

 

where K(e) is the permeability inside the element e. K(e) is calculated as follows: 
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  (3.52) 
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which corresponds to the permeability at the centroid of the element e, as shown in Figure 

3.17 . 

 

 

Figure 3.17 Permeability distribution inside a triangular element 
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distribution along y = 0.05m. To further check the validity of the FEM analysis and 

solution, the numerical results were compared with the results of analytical solution which 

is given below. 
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Figure 3.18 Global boundary conditions for the part 

 

 

 

Figure 3.19 Pressure distribution in the mold 
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Figure 3.20 Pressure distribution along y = 0.05 m 

 

Darcy’s Law relates the velocity to the pressure gradient: 
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       (3.53) 

 

for 1D flow. Multiplying both sides with cross-sectional area yields the flow rate 
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      (3.54) 

 

which is constant for any cross-section along x-axis due to 1D flow and constant h. 

Rearranging Equation (3.54) yields: 
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KA
Q

dx
dP 1

       (3.55) 

 

 

 Substituting Equation (3.49) into Equation (3.55) yields 
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     (3.56) 

 

Integrating both sides of Equation (3.56) results in 
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Let u = 5×10-10 - 15×10-10x, then dx = 15×10-10du. Then 
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where P(0)=Pinj = 100 kPa and P(Lx) = P(0.3) = Pvent = 0. Rewriting Equation (3.59) 

yields 
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The exit flow rate at the ventilation port (x = Lx = 0.3m) is calculated using Equation (3.60)  
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re-written as: 
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Q   (3.62) 

 

where viscosity of liquid resin, µ, is set to 0.1 Pa.s. Hence 
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(3.63) 

 

Being able to calculate the flow rate at inlet/exit ports analytically allows us to 

check the correctness of the solution algorithm of the FEM solution by comparing these 

flow rates with the FEM’s results. Both solutions for pressure distributions along y = 0.05m 

are seen in Figure 3.21. Analytical solution for pressure distribution is obtained by 

substituting result of Equation (3.63) into Equation (3.60) and solving Equation (3.60) for 

0<x<0.3m.A mesh with N = 300 elements consisting of regularly distributed 12 nodes in x-

direction and 12 nodes in y-direction was used for numerical solution of pressure 

distribution. Even for this coarse mesh, numerical solution fits well to analytical solution. 

To further investigate the effect of number of elements, Q is calculated by varying N. As 

seen from Figure 3.22, the error decays logarithmically as N increases. The analytical 

solution in Figure 3.21 is obtained as explained above. Velocity field in Figure 3.24 is 1D, 

which is in agreement with the analytical solution. Figure 3.23 shows the relation between 
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maximum percentage error and number of elements in logarithmic scale. As seen from the 

figure, the error decreases logarithmically as N increases. 

 

 

 

Figure 3.21 Pressure distribution along y = 0.05 m 
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Figure 3.22 Effect of number of elements on flow rate 

 

Figure 3.23 Effect of number of elements on error in pressure 
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Figure 3.24 Velocity field in the mold 

3.3.2 Case 2-b: 2D flow 

Boundary conditions are modified as shown in Figure 3.25, and simulation is 

repeated for updated boundary conditions to validate the FEM analysis and the solution. It 

is easy to predict that the flow will be 2D, so analytical solution to this case is difficult to 

get. Instead, validity of this modified case will be checked by comparing the flow rates at 

inlet and exit ports and to see if global mass conservation is satisfied. Numerical results of 

FEM for flow rates at inlet and exit ports are calculated by post-processing the nodal 

pressures (seen in Figure 3.26). Figure 3.27 shows the velocity field in the mold and flow 

rates at inlet and exit ports. As seen from Figure 3.27, five significant digits for inlet flow 
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accuracy of the inlet and exit flow rates is on the order of machine accuracy. Qvent,1 is about 

five times larger than Q vent,2, and this difference is attributed to pressure gradient at the exit 

ports. As seen in Figure 3.25, exit port on the upper side of the mold is closer to the inlet 

port when compared to the exit port on the right side of the mold. Pressures on the exit 
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ports are equal, Qvent,2, so the port with smaller distance to the source has a higher pressure 

gradient and higher flow rate than the other port.  

 

 

Figure 3.25 Differential equation and global boundary conditions for the part 

 

Figure 3.26 Pressure distribution in the mold 

0




y
P

μ
Kv

0




y
P

μ
Kv

01


































y
PK

yx
PK

x

m02.0

ventPP 

ventPP 

injPP m03.0

m05.0

m04.0m04.0

0




y
P

μ
Kv

0




x
P

μ
Ku

0




x
P

μ
Ku

0




x
P

μ
Ku

m02.0

m3.0

20000

20000

20
00

0

30000
30000

30000

40000
40000

40000

50000
50000

50000

60000
60000

60000

70000
70000

70000

80000
80000

80000

90000
90000

x [m]

y 
[m

]

 

 

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.02

0.04

0.06

0.08

0.1

0

1

2

3

4

5

6

7

8

9
x 10

4



CHAPTER 3 SIMULATIONS OF VARTM 

52 

 

 

Figure 3.27 Velocity field in the mold 

 

3.4 Solution for variable thickness and variable permeability 

3.4.1 Case 3-a: Solution at the end of mold-filling 

In this part of the study, distribution of pressure in the mold, and velocity 

components u and v will be calculated using FEM. In previous cases, permeability of 

porous medium (K) and thickness of fabric (h) were either constant or varied spatially, i.e. 

K=K(x). Compaction of fabric is usually modeled using empirical models [2-5], and in this 

study, compaction behavior is given by curve-fitting to the experimental data given in [18]. 

The form of equation to relate the thickness and compaction pressure is as follows: 
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where Pc is compaction pressure  

 

PPP atmc        (3.66) 

 

where Patm and P are the atmospheric pressure and the resin pressure. Vf is the fiber volume 

fraction which is calculated as follows 
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h
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     (3.67) 

 

which can be re-written as 

ffiber

fabric

V
n

h 1sup,




     (3.68) 

 

where ρsup,fabric is superficial density of one layer of fabric, ρfiber is bulk density of  fiber, n 

is the number of fabric layers and h is the thickness of preform. For eight layers of random 

fabric used in [18]: 

 

  
fV

h 1
2540

450.08
       (3.69) 

 

where h is in [m]. Coefficients given in Equation (3.65) are calculated by curve-fitting to 

experimental data given in [18] which result in the following 
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Combining Equations (3.69) and (3.70) yields 
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h       (3.71) 

 

Permeability of the fabric, K, is dependent on fiber volume fraction, and it is usually 

modeled by curve-fitting to experimental data. In this study, it is modeled by curve-fitting 

to the experimental data given in [15]. The form of equation to relate the permeability, K, 

and fiber volume fraction, Vf is as follows: 

 
fDVCeK        (3.72) 

 

The same fabric type was used in both [15] and [18], so 

 

  
h

V f
1

2540
450.08

       (3.73) 

 

is valid for eight layers of random fabric. Curve-fitting to the experimental data in [15] 

yields 

 

  fVeK 59.89  1073.2       (3.74) 

 

Case 3 consists of three main parts. In the first part, steady solution for boundary 

conditions given in Figure 3.28 will be obtained. In the second part, boundary conditions 

will be modified as shown in Figure 3.31; and in the third part, steady nodal pressures will 

be solved for the boundary conditions given in Figure 3.31. 

 



CHAPTER 3 SIMULATIONS OF VARTM 

55 

 

To begin with the first part of the case, one should solve the continuity equation to 

simulate the pressure distribution and the other variables (thickness, permeability, and 

velocity components) dependent on pressure. One can begin with the continuity equation 

 

  fu
t



 


     (3.75) 

 

Differential equation given in Equation (3.75) is solved in an infinitesimal volume. 

Multiplying both sides by dV yields 

 

    FdVudV
t



 

     (3.76) 

 

where dV=dxdydz and F=fdV. In previous cases, dV was fixed meaning that its dimensions 

were constant. Hence, we could take dV out of the differential equation and then drop it 

from equation. In this case, dV is not constant; so we should consider the variability of dV 

during modeling and calculations. There is no mass generation in this case, so the right-

hand side of Equation (3.76) is set to zero 
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 dVudV
t


     (3.77) 

 

which can be re-written as 
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Here, thickness (h) corresponds to dz; dx and dy are length and width of the control 

volume, respectively. In this case, dx and dy are constants. We can drop dx and dy from 

Equation (3.78) 

 

    0



 

 uhh
t

     (3.79) 

 

The fluid is incompressible, so ρ is constant and its change with time is equal to 0. 

Dropping t  term from Equation (3.79), it takes the following form: 

 

  0 uh       (3.80) 

 

Since ρ is constant, and right-hand side of Equation (3.80) is zero, one can also drop ρ 

term, and it becomes: 

 

  0 uh      (3.81) 

 

Darcy’s law describes 2D flow through a porous medium as follows: 
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 (3.82) 

 

where µ is the viscosity of liquid resin, [K] is the permeability tensor of porous medium, 

and P(x, y) is the pressure distribution at the end of the mold filling (at t = tfill). As in the 

previous cases, the principal axes are x and y so that: 

 

0 yxxy KK      (3.83) 

 

and random fabric which is isotropic is considered in this study; thus 
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KKK yyxx      (3.84) 

 

and µ is constant as in previous cases. Combining Equations (3.81) and (3.82) yields 
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Dimensions of the mold used in this case are the same as the previous cases. The 

boundary conditions are given in Figure 3.28 where Pinj = 90 kPa = 90000 Pa and Pvent = 

10 kPa = 10000 Pa. 

 

 

Figure 3.28 Global boundary conditions for the part 
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In previous cases, h was constant and right-hand sides of the governing equations 

were equal to 0; so we dropped h term from the equations. In this case, h is a function of x 

as h(x) and we incorporate h
 
terms in a similar way to incorporating K term in Section 3.3. 

Equation (3.8) shows the governing equation for constant K and constant h case and 

equation (3.50) shows the governing equation for variable K and constant h case. Equation 

(3.85) is the governing equation for this case and it is similar to Equation (3.50) except that 

it is also multiplied by h. Equation (3.51) gives the global stiffness matrix for variable K 

and constant h case and it is slightly modified to incorporate the variability of h as follows 
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   (3.86) 

 

where h(e)
 and K(e) are thickness and permeability at the centroid of the element e, 

respectively. 

 

Figure 3.29 Pressure distribution in the mold 
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Figure 3.30 Velocity field in the mold 

 

As seen in Figure 3.29, pressure gradient at the exit port on the upper side of the 

mold is steeper than the gradient at the other exit port. Figure 3.30 shows the velocity field 

in the mold and flow rates at the inlet and exit ports. Qvent,1 is about three times larger than 

Qvent,2, in agreement with the pressure gradient difference between the exit ports. Also, the 

sum of the exit flow rates is equal to the inlet flow rate with an accuracy of five significant 

digits. The accuracy is in the order of machine accuracy as in the previous cases. 

 

3.4.2 Case 3-b: Evolution of solution with time due to change in boundary conditions 

Control actions are commonly applied in VARTM [19] to decrease the thickness 

variation along the part are common. Control actions are usually taken by modifying the 

pressures at inlet and exit port or simply by closing some of them.  In this part, a typical 

control action is simulated (see Figure 3.31). The inlet port at the left side of the mold is 
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closed and pressure at the exit ports remained the same, 10 kPa. Closing of the inlet port(s) 

and applying vacuum from exit ports is called bleeding in VARTM. Evolution of pressure, 

thickness, and permeability throughout the part is observed during bleeding. The code is 

run to simulate the first 1200 seconds after the boundary condition is updated. 

 

 

Figure 3.31 Global boundary conditions for the part 

To simulate the evolution of pressure and other parameters, one should solve the 

continuity equation. One can start the solution with 
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    (3.78) 

 

where dV=dxdydz. Thickness (h) corresponds to dz; dx and dy are length and width of the 

part, respectively. In this case, dx and dy are constants. We can drop dx and dy from 

Equation (3.78) and re-write it as 
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Fluid is incompressible, so ρ is constant and we can re-write Equation (3.87) as 
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    (3.88) 

 

Since ρ is constant and right-hand side of Equation (3.88) is zero, one can drop ρ term and 

the equation becomes 
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    (3.89) 

 

Utilizing chain rule for time derivative term in Equation (3.89), it can be written as 
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    (3.90) 

 

where 
P
h

  can be calculated by taking derivative of Equation (3.71) with respect to P, and 

it yields 
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    (3.91) 

 

As discussed in Section 3.2, the system of equations to be solved is in the form of 

    FPC   for the solution of pressure at the instant of mold filling.  F  is the load 

vector and it is zero everywhere except along the injection and ventilation boundaries; and 

it can be calculated using Equations (3.37) - (3.39). In this part of Case 3, evolution of 

pressure is solved using the governing equation  
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       FPCPC       (3.92) 

 

where [C] is the global stiffness matrix 
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is valid for this case due to variability of thickness and permeability. )(eC  is usually called 

the capacitance matrix and it is calculated as follows 
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where 
)(e

P
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 is the derivative of thickness with respect to pressure at the centroid of the 

element e. 
)(e
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  is calculated as follows; 
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and derivative of thickness with respect to pressure at the nodes of the element is calculated 

using Equation (3.91). In Equation (3.93), lumped capacitance matrix, namely L  
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for a triangular element is used where the capacitance is equally divided between three 

nodes as discussed in [29]. 

 

System of equations given below  

 

       FPCPC       (3.92) 

 

is solved explicitly at each time increment using Euler Method. The approximation for  P  

is as follows 

 

     
t

PP
P nn

n 


 1      (3.96) 

 

where n = 1, 2, 3, …, N and  nP  is the pressure at the nth time increment. At the nth time 

increment, we can re-write Equation (3.92) as 

 

       nnn FPCPC      (3.97) 

 

Substituting Equation (3.96) into Equation (3.97) yields 
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1    (3.98) 

 

which can be re-written as 
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Multiplying both sides by Δt results in 
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          nnnn PCtPCtFPC  1
     (3.100) 

 

and re-writing Equation (3.100) gives 

 

          nnn PCtCtFPC   1
     (3.101) 

 

Right-hand side of the Equation (3.101) is known for any instant;   1nP  is directly 

calculated by utilizing the solution sequence for explicit algorithm given in [29]. The 

disadvantage for the explicit algorithm is that Δt should be chosen carefully to ensure the 

stability of the solution. Choosing smaller Δt gives finer results in terms of converging to 

the exact solution, but smaller Δt means more computation. On the contrary, larger Δt 

decreases the computational load; but very large Δt may cause the solution to become 

unstable. To achieve the minimum computational load without causing the solution to 

become unstable, critical time step size, Δtcr is calculated. The procedure to determine Δtcr 

is given in [29] and it is summarized below 

 

max

2


 crt      (3.102) 

 

where λmax  is the maximum eigenvalue of the system. Eigenvalues of the system, λi , are 

calculated as follows 
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where *
iiC  and *

iiC  are calculated as follows 
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     (3.104) 

 

Here,  i  are the eigenvectors of the system corresponding to eigenvalues λi. [C] is the 

global stiffness matrix and  C  is the global capacitance matrix. Both global matrices are 

m×m square matrices and thus i = 1, 2, 3, …, m in Equations (3.103) and (3.104). 

 

The algorithm described between Equations (3.87) and (3.104) is used for 

simulating the evolution of pressure and other variables. Figures 3.32 and 3.33 show the 

pressure distribution at different instants. Figure 3.34 shows the pressure distribution at 

t=1200 seconds (corresponding to the pressure distribution at the end of simulation) and as 

seen from that figure; the maximum pressure at this instant is slightly higher than 10 kPa. 

The expected behavior of pressure is to settle at 10 kPa at steady state, which is equal to the 

pressure at ventilation ports. To be more accurate about the settling time, four points, 

namely A, B, C, and D are marked as seen in Figure 3.35, and evolution of pressure at 

these four points is recorded throughout the simulation. Figure 3.36 shows the evolution of 

pressure at these four points. As seen from that figure, pressure settles at all these four 

points around t = 1000 s, which also shows that result is in agreement with the pressure 

distribution in Figure 3.34. 
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Figure 3.32 Pressure distribution at different instants 

 

 

Figure 3.33 Pressure distribution at different instants from another angle 
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Figure 3.34 Pressure distribution in the mold at t = 1200 s 

 

 

Figure 3.35 Positions of A, B, C, and D points 
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Figure 3.36 Evolution of pressure at A, B, C, and D points 

 

Bleeding is performed in order to decrease the thickness variation in the part by 

ejecting the excess resin through ventilation ports. In other words, volume of resin in the 

mold decreases until settling, which occurs around t = 1000 s. Vmold in Figure 3.37 is the 

volume of the mold and it settles about t = 1000 s, which is in agreement with our 

expectation as discussed earlier. Vout shows the total amount of resin leaving the mold and 

increases until about t = 1000 s. There is no inlet port in this case, so there is no resin 

entering the system. Thus, we expect that sum of the volume of resin leaving the mold and 
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mass) 
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Vtot is shown in Figure 3.37 and in Figure 3.38 in more detail for 300 elements. As seen in 

Figure 3.38, the total volume changes though it is expected to be constant. To discover the 

source of this error, the simulation is repeated for 600, and 1200 elements. In Figure 3.39, 

percentage errors for 300, 600, and 1200 elements are shown. As seen from the figure, 

error decreases as element number increases, and this indicates that error is attributed to 

linearization of pressure, thickness, and permeability inside the elements during 

discretization. Also, it should be noted that the problem of mass conservation is reported in 

[33, 34] to be a common issue in this numerical approach. 

 

Figure 3.37 Change of volume in and out of the mold by using 300 elements 
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Figure 3.38 Change of total volume by using 300 elements 

 

 

Figure 3.39 Percentage error by using 300, 600, and 1200 elements 
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3.4.3 Case 3-c: Steady state solution for new boundary conditions 

In this part of the study, steady state solution is obtained for boundary conditions 

shown in Figure 3.31. There is no inlet port in this case meaning that solution of this case 

corresponds to the end of bleeding which is explained in the previous case. Since pressure 

in the exit ports is equal to each other as seen in Figure 3.31, we expect the pressure to be 

equal everywhere in the mold at steady state as t . Pressure distribution for these 

boundary conditions is shown in Figure 3.40; and pressure is equal to pressure at exit ports, 

10 kPa, which is in agreement with our expectation. Solution is numerical, so there is a 

minor difference between pressure values at different nodes and the difference is in the 

order of 10-12 while machine epsilon is 2.2204×10-16. To further check the correctness of 

the algorithm we can compare the volume of the mold for the steady case and for the end of 

the previous case (at t = 1200 s). Volume at the end of previous case is calculated as 77.211 

cc. In this steady case, the volume is calculated as 77.210 cc meaning that the variation is 

0.001%. The minor variation is due to the difference in pressure distributions between at 

the end of Case 3-b and this case (Case 3-c) which are shown in Figures 3.34 and 3.40 

respectively. 
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Figure 3.40 Pressure distribution in the mold
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Chapter 4 

SUMMARY AND CONCLUSIONS 

In the first part of this study (Cases 1 and 2), pressure distribution at the end of 

mold filling (t = tfill) was simulated for different cases. Simulations were repeated for 

different boundary conditions. Global mass conservation was used to validate the model, 

and in all of these cases, mass was conserved with accuracies which are approximately 

equal to machine accuracy, i.e. inlet and exit flow rates were equal. In some of these cases, 

results were also compared with analytical solutions of pressure distribution and flow rates 

for 1D flow. In those cases, pressure distribution curves overlapped with pressure 

distribution of analytical solution and flow rates were equal for numerical and analytical 

solutions. 

 

In the second part (Case 3), post-filling of VARTM was studied. Material 

characterization data obtained in our research laboratory, permeability data in [15] and 

compaction data in [18], were incorporated into FEM model. Steady solution of pressure 

distribution was obtained for end of mold-filling. Then, boundary conditions were updated 

(simulating a control action in VARTM) and evolution of pressure, thickness and 

permeability were recorded for a sufficient amount of time. The expected result was the 

convergence of solution to steady solution due to the new boundary conditions, and yes, the 

solution converged to a steady state solution as expected. Global mass conservation was 

also checked to validate the solution. Mass conservation had an error of 0.2% even by 

using a coarse mesh with 300 elements. The error could be further decreased by increasing 

number of elements, which showed that error was due to the linear approximation of 

variables (h, K, and P) in an element. 

 

Future work of this study is explained in this part. In this study, solution at the end 

of the mold filling and post-filling are done. However, flow propagation should also be 
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modeled to have a complete model of VARTM.  The only element type used in FEM is 

linear triangular element, meaning that any function is distributed linearly in the element. 

To have a more realistic model, other element types, i.e. quadratic triangular elements (or 

six node triangular elements) should also be incorporated. Time integration is modeled 

using an explicit time-marching scheme which is conditionally stable. If time increment is 

selected to be higher than a critical value, non-physical oscillations occur, and the solution 

does not converge. Using an implicit method may increase the computational load, but 

stability of the solution will be ensured. Verifying the simulation results by comparing the 

results with experiments and repeating the simulations for non-rectangular mold geometries 

also remain as a matter of future work. 
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APPENDIX A 

Thickness and Permeability Distributions for Studied Cases 
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Figure A.1 Input thickness (in [m]) distribution along y = 0.05m for Cases 1-a and 1-b 

 

 
Figure A.2 Input permeability (in [m2]) distribution along y = 0.05m for Cases 1-a and 

1-b 
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Figure A.3 Input thickness (in [m]) distribution along y = 0.05m for Cases 2-a and 2-b 

 

 
Figure A.4 Input permeability (in [m2]) distribution along y = 0.05m for Cases 2-a and 

2-b 
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Figure A.5 Simulated thickness (in [m]) distribution for Case 3-a 

  

 
Figure A.6 Simulated permeability (in [m2]) distribution for Case 3-a 

0.0026

0.0026

0.
00

26

0.0027
0.0027

0.0027

0.0028
0.0028

0.0028

0.0029
0.0029

0.0029

0.003
0.003

0.0031

0.
00

32

x [m]

y 
[m

]

 

 

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.02

0.04

0.06

0.08

0.1

2.6

2.7

2.8

2.9

3

3.1

3.2
x 10

-3

2.5e-011

2.
5e

-0
11

3e-011
3e-011

3e-011

3.5e-011
3.5e-011

4e-011
4e-011

4e-011

4.5e-011
4.5e-011

5e-011

5e
-0

11

5.
5e

-0
116e

-0
11

x [m]

y 
[m

]

 

 

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.02

0.04

0.06

0.08

0.1

2.5

3

3.5

4

4.5

5

5.5

6
x 10

-11



APPENDIX A 

82 

 

 
Figure A.7 Simulated thickness (in [m]) distribution at different instants for Case 3-b 

 
Figure A.8 Simulated thickness (in [m]) distribution at different instants for Case 3-b 

from another angle 
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Figure A.9 Simulated permeability (in [m2]) distribution at different instants for Case 3-

b 

 
Figure A.10 Simulated permeability (in [m2]) distribution at different instants for Case 

3-b from another angle 
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Figure A.11 Simulated thickness (in [m]) distribution along y = 0.05m for Case 3-c 

 

 
Figure A.12 Simulated permeability (in [m2]) distribution along y = 0.05m for Case 3-c 
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APPENDIX B 

MATLAB Code for Solution of Steady Cases 

Steady.m  
 
function Steady() 
%Functions used in this code are constructed to solve Case 3-a 
%and they can be modified to solve  
%other cases (Case 1, Case 2, and Case 3-c)) 
 
 
clear all 
close all 
clc 
%%SOLUTION OF Case 3-a 
  
%%VARIABLES 
%Lx: length of mold 
%Ly: width of mold 
%Nx: number of rectangles in x direction (rectangles are divided 
%diagonally to form triangular elements) 
  
%Ny: number of elements in y direction 
%meshp, meshe, mesht: see help of poimesh for details 
%node_x: coordinates of nodes in x direction 
%node_y: coordinates of nodes in y direction 
%node_num: number of nodes 
%elem_conn: element connectivity matrix, contains the indices of the 
%corner points of triangular element 
  
%elem_num: number of elements 
%p: array of nodal pressures [Pa] 
%P_inj: pressure at injection port(s) 
%P_vent: pressure at ventilation port(s) 
%mu: viscosity [Pa.s] 
%Inj_index: indices of nodes at injection port(s) 
%Ven_index: indices of nodes at ventilation port(s) 
%Boun_index: indices of nodes at injection and ventilation ports 
%Boun_values: pressure at nodes at injection and ventilation ports 
%area: array of areas of elements 
%S_n: see Equation (2.10) for details 
%C: global stiffness matrix 
%h_node: thickness of nodes 
%Knxx = Knyy (isotropic fabric): permeability of nodes 
%f: load vector (RHS of C*P = F) 
%p_prev: nodal pressures at previous iteration 
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load geometry %Geometry file is loaded from current folder, it is created 
%using pdetool it contains two matrices (boun, geom) 
  
Lx = 0.3; 
Ly = 0.1; 
Nx = 30; 
Ny = 20; 
  
[meshp, meshe, mesht] = poimesh(geom,Nx,Ny); %mesh generation with 
%regular triangular elements 
%(use initmesh for Delaunay triangulation algorithm) 
  
figure 
pdemesh(meshp, meshe, mesht) %displaying the meshed geometry 
  
node_x = meshp(1,:); 
node_y = meshp(2,:); 
node_num = size(meshp,2); 
  
elem_conn = mesht(1:3,:)'; 
elem_num = size(mesht,2); 
  
p = ones(node_num,1); 
  
P_inj  = 90e3; 
P_vent = 10e3; 
mu = 0.1; 
  
Inj_index = find(node_x == 0);%indices corresponding to injection port 
are 
%found, in this case left side of the mold geometry 
  
Ven_index = find(node_x == Lx ); %indices corresponding to injection port 
%are found, in this case left side of the mold geometry 
  
Boun_index = [Inj_index, Ven_index]'; 
Boun_values = [P_inj+0*Inj_index, P_vent+0*Ven_index ]'; 
  
area = zeros(1,elem_num); 
S_n = zeros(elem_num,3,3); 
  
  
for i = 1:elem_num 
    %this for loop is for generating the interpolation functions 
    %(see Section 2.1) 
     
    %n1, n2, n3: indices of corner points of element 
    %x1, x2, x3: global coordinates of corner points in x direction 
    %y1, y2, y3: global coordinates of corner points in x direction 
    %a1, a2, a3: see Equation (2.11) 
    %b1, b2, b3: see Equation (2.11) 
    %c1, c2, c3: see Equation (2.11) 



APPENDIX B 

87 

 

     
    n1 = elem_conn(i,1); 
    n2 = elem_conn(i,2); 
    n3 = elem_conn(i,3); 
     
    x1 = node_x(n1);    y1 = node_y(n1); 
    x2 = node_x(n2);    y2 = node_y(n2); 
    x3 = node_x(n3);    y3 = node_y(n3); 
     
    area(i) = 0.5*(x1*(y2-y3)+x2*(y3-y1)+x3*(y1-y2)); 
     
    a1 = x2*y3-x3*y2;   b1 = y2-y3; c1 = x3-x2; 
    a2 = x3*y1-x1*y3;   b2 = y3-y1; c2 = x1-x3; 
    a3 = x1*y2-x2*y1;   b3 = y1-y2; c3 = x2-x1; 
     
     
    S_n(i,:,:) = (0.5/area(i)) * [ a1 b1 c1 ; ... 
        a2 b2 c2 ; ... 
        a3 b3 c3 ]; 
end 
  
  
p_prev = inf; 
  
while norm(p-p_prev)>1e-3 
    %this iterative loop solves the pressure until norm of two iterations 
    %is smaller than 0.001. pressure values are updated by calculating  
    %the thickness and permeability at each node and solving P = C\F 
after 
    %modifying C with new thickness and permeability values 
     
    C = sparse(zeros(node_num,node_num)); 
     
     
    h_node = Hfun(p);%thickness at nodes are calculated by using function 
    %Hfun described at the end of code 
     
    Knxx = Kfun(h_node);%permeability at nodes are calculated by using 
    %function Kfun described at the end of code 
     
    Knyy = Knxx;%isotropic fabric 
     
    for k = 1:elem_num 
        %this for loop constructs the stiffness matrix for each element 
        %n: index of element 
        %Kxx = Kyy: permeability at the centroid of the element 
        %(see Equation (3.52)) 
         
        %h: thickness at the centroid of the element  
         
        n = elem_conn(k,:); 
        Kxx = mean(Knxx(n)); 
        Kyy = mean(Knyy(n)); 
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        h = mean(h_node(n)); 
         
        dx = 2 * area(k) * S_n(k,:,2); 
        %dx'*dx gives 3x3 matrix of beta terms in Equation (3.86) 
        %it can be used for Case 1 and Case 2 as well 
         
        dy = 2 * area(k) * S_n(k,:,3); 
        %dy'*dy gives 3x3 matrix of gamma terms in Equation (3.86) 
        %it can be used for Case 1 and Case 2 as well 
         
        C(n,n) = C(n,n) + (  ( dx'* dx * Kxx + dy'* dy * Kyy ) * h   ... 
            ) / 4 / area(k) / mu ; 
        %stiffness matrix of element is added to global stiffness matrix 
         
         
    end 
     
    %lines below is for modifying the load vector in a way that only 
    %indices corresponding to injection or ventilation nodes are non-zero 
    %procedure is explained in detail in  
    %Programing the Finite Element Method with Matlab 
    %by Jack Chessa 
     
    f = zeros(node_num,1); 
    bcwt=trace(C)/node_num;      
    f=f-C(:,Boun_index)*Boun_values; 
    C(:,Boun_index)=0; 
    C(Boun_index,:)=0; 
    C(Boun_index,Boun_index)=bcwt*speye(length(Boun_index)); 
    f(Boun_index)=bcwt*Boun_values; 
     
     
    p_prev = p; 
  
    p = C\f; 
    %solution of pressure 
end 
  
%workspace is saved to use for post-processing and to use nodal pressures 
%as initial conditions for evolution of solution with time 
save steady 
 
  
function [h] = Hfun(P) 
%compaction model used in Case 3-a (see Equation (3.71)) 
h =(8*450/2540)*(19.42./log((1e5-P)/2.04))/1000; 
  
  
function [K] = Kfun(h) 
%permeability model used in Case 3-a (see Equations (3.73) and (3.74)) 
Vf = (8*450/2540)./h/1000; 
K= 2.7314e-9*exp(-8.59*Vf); 
 



APPENDIX C 

89 

 

 

APPENDIX C 

MATLAB Code for Evolution of Solution with Time 

Evolution.m  
 
function Evolution() 
  
clear all 
close all 
clc 
%%SOLUTION OF Case 3-b 
  
%%VARIABLES 
%Ven_index: indices of nodes at ventilation port(s) (loaded from 
workspace) 
%P_vent: pressure at ventilation port(s) (loaded from workspace) 
%dt: time step size in seconds 
%t: time in seconds 
%t_fin: simulation will continue until time reaches to this value 
%P_array: nodal pressures are saved to this matrix at desired time steps 
%C: global stiffness matrix 
%C_dot: global lumped mass matrix 
%h_node: thickness of nodes 
%dhdpn: derivative of thickness with respect to pressure 
%(calculated at nodes) 
  
%Knxx = Knyy (isotropic fabric): permeability of nodes 
%elem_num: number of elements (loaded from workspace) 
%elem_conn: element connectivity matrix, contains the indices of the 
%corner points of triangular element (loaded from workspace) 
  
%S_n: see Equation (2.10) for details (loaded from workspace) 
  
  
  
load steady 
%solution of Case 3-a is loaded since nodal pressures will be used 
%as initial condition and some of the other variables will be used as 
well 
  
dt =1e-5;%dt is initialized arbitrarily 
  
Boun_index = Ven_index';%boundary conditions are modified here 
%to correspond to closing of injection port 
Boun_values = [P_vent+0*Ven_index]'; 
  
P_array = zeros(25000,node_num); 
t_array = zeros(25000,1); 
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t = 0; 
  
t_fin = 2000; 
  
while t<t_fin 
    %this loop solves the pressure at nodes explicitly at each time step 
     
    C = sparse(zeros(node_num,node_num)); 
    C_dot = sparse(zeros(node_num,node_num)); 
     
    h_node = Hfun(p);%thickness at nodes are calculated by using function 
    %Hfun described at the end of code 
     
    dhdpn = dHdPfun(p);%derivative of thickness with respect to pressure 
    %at nodes. They are calculated by using function dHdPfun described 
    %at the end of code 
     
    Knxx = Kfun(h_node);%permeability at nodes are calculated by using 
    %function Kfun described at the end of code 
     
    Knyy = Knxx; 
     
     
    for k = 1:elem_num 
        %this for loop constructs the stiffness matrix for each element 
        %n: index of element 
        %Kxx = Kyy: permeability at the centroid of the element 
        %(see Equation (3.52)) 
         
        %h: thickness at the centroid of the element 
        %dhdp: derivative of thickness with respect to pressure at the  
        %centroid of the element 
         
        n = elem_conn(k,:); 
        Kxx = mean(Knxx(n)); 
        Kyy = mean(Knyy(n)); 
        h = mean(h_node(n)); 
        dhdp = mean(dhdpn(n)); 
         
        dx = 2 * area(k) * S_n(k,:,2); 
        dy = 2 * area(k) * S_n(k,:,3); 
         
        C(n,n) = C(n,n) + (  ( dx'* dx * Kxx + dy'* dy * Kyy ) * h       
... 
            ) / 4 / area(k) / mu ; 
         
        C_dot(n,n) = C_dot(n,n) + [1 0 0 
            0 1 0 
            0 0 1]*dhdp*area(k)/3; 
         
    end 
     
    %%lines below is for time integration explained in detail 
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    %in The Finite Element Method for Engineers 
    %by Huebner et al. 
     
    R_bar = (-dt*C+C_dot)*p+dt*f; %see Equation (3.101) for details 
    dp = C_dot\R_bar - p; 
    p  = p + dp; 
    p(Boun_index) = Boun_values; 
    f = ( C_dot*dp + C*p ) * dt; 
    % 
    % 
    t = t + dt; 
     
    check_num = 10;%dt is modified whenever the number of increments 
    %is a multiples of check_num, in this case 10 
     
    if mod(counter,check_num)==0 
        %dt (time step size) is modified in the lines below using the 
        %algorithm described between Eqautions (3.96) and (3.104) 
         
        %lambda: array of eigenvalues 
        %eVec: eigenvectors of the system 
        %eVal: eigenvalues of the system. lambda and eVal are equal to 
        %each other but both ways are used during calculations 
         
        lambda = zeros(node_num,1); 
         
        [eVec, eVal] = eig(full(C),full(C_dot)); 
         
        for i = 1:node_num 
            lambda(i) = 
eVec(:,i)'*C*eVec(:,i)/(eVec(:,i)'*C_dot*eVec(:,i)); 
             
        end 
        lambda(Boun_index) = 0; 
        dt = 0.90*2/max(lambda); 
        %max(lambda) gives the critical time step size and it in this 
case 
        %dt is set to 0.9 of the critical time step size 
         
         
        P_array(counter/check_num,:) = p; 
        t_array(counter/check_num) = t; 
        %nodal pressures anda current time are saved to corresponding 
        %matrices 
         
    end 
     
    counter = counter +1; 
     
     
end 
  
%workspace is saved to use for post-processing 
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save evolution 
  
  
function [h] = Hfun(P) 
%compaction model used in Case 3-a (see Equation (3.71)) 
h =(8*450/2540)*(19.42./log((1e5-P)/2.04))/1000; 
  
function [K] = Kfun(h) 
%permeability model used in Case 3-a (see Equations (3.73) and (3.74)) 
Vf = (8*450/2540)./h/1000; 
K= 2.7314e-9*exp(-8.59*Vf); 
  
function [dHdP] = dHdPfun(P) 
%derivative of thickness with respect to pressure (see Equation (3.91)) 
dHdP = 8*450*19.42/2540/1000*(log((1e5-P)/2.04).^-2)./(1e5-P); 
 


