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ABSTRACT 

 

In today’s world, where sustainability of energy supply chains is questioned 

intensively, electric vehicles (EV) are emerging as a solution to reduce emissions 

and increase efficiency of the road transportation sector. Impacts of this emerging 

technology, such as emissions, primary energy consumption and cost to end users 

should be analyzed before introduction of the technology, in order to get the best 

benefit and avoid a case where they perform worse than conventional vehicles 

(CV). Studies in the literature are based on average energy mix or pre-defined 

generation scenarios and they aim to construct policy recommendations solely on 

the cost minimization objective. However, the performance of EVs depends on the 

sources that are used to generate the marginal electricity that charges the batteries 

and single objective models provide a limited analysis on the benefits of EVs. 

Moreover, impact analysis studies always used pre-defined scenarios for charging 

hours without any optimization effort to determine the best hours of charging and 

there are no studies that analyze Turkey, which is an important potential market 

for EVs. 

 

In this study, gaps above are addressed by a methodology that analyzes 

performance of EVs under different charging and market penetration scenarios 

and compares the performance with CVs. The methodology uses a bi-objective 

optimization model representing the electricity market to determine the efficient 

set of options for marginal generators that charge EVs. The model is applied by 
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using real data from the Turkish electricity market. Results show that, electric 

vehicles provide an opportunity to decrease costs, emissions and primary energy 

consumption significantly compared to CVs in Turkey. Single objective models are 

shown to prevent the sector from getting the best environmental benefit and may 

end up in a solution where EVs perform worse than CVs. Hence, decision makers 

should use bi-objective models to make better use of EVs and take specifications of 

the marginal electricity into account before shaping EV policies.  
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ÖZET 

 

Günümüzde çevresel sorunların artışı ve enerji kaynaklarının hızla azalması enerji 

sektörünün verimliliğinin ve sürdürülebilirliğinin giderek artan bir şekilde 

sorgulanmasına sebep olmaktadır. Bu şartlar altında elektrikli arabalar, karayolu 

taşımacılığının verimliğini artırmak ve egzoz gazı emisyonlarını azaltabilmek 

adına önemli bir seçenek olarak ortaya çıkmaktadır. Bu yeni teknolojinin vadettiği 

faydaları getirebilmesi için pazara girişlerinden önce birincil enerji tüketimi, 

emisyonlar ve son kullanıcıya maliyetleri gibi etkileri inceleyen kapsamlı 

araştırmalar yapılması gerekmektedir. Literatürde karşılaşılan çalışmalar elektrikli 

arabaların performanslarını sabit senaryoları üzerinden bulundukları bölgenin 

ortalama elektrik santrali portföyüne bakarak tahmin etmeye çalışmakta ve tek 

amaç fonksiyonlu modellerden yararlanmaktadır. Oysa elektrikli araçların gerçek 

performansı şebekeye getirdikleri yeni yükün karşılandığı santrallerin 

özelliklerine bağlıdır ve tek amaçlı modeller çözüm kümesini kısıtlayarak çevresel 

açıdan çok faydalı çözümleri gizleyebilmektedir. Ayrıca araçların şarj edileceği 

saatler hep önceden kabul edilen sabit senaryolar olarak modellere girilmiş ve bu 

değişken üzerinde herhangi bir eniyileme çabasına rastlanmamıştır. Son olarak 

elektrikli arabaları için önemli bir potansiyel pazar olan Türkiye’deki geniş çaplı 

bir elektrikli araç kullanımının etkilerini inceleyen bir çalışma bulunmamaktadır.  
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Bu tez çalışmasında literatürde tespit edilen bu eksiklikleri gidermek amacıyla 

elektrikli arabaların performasını hesaplayan ve içten yanmalı araçlarla 

karşılaştıran bir metot önerilmektedir. Bu metotda kullanılan çift amaçlı 

optimizasyon modeli sayesinde marjinal yükü karşılayacak çözümler sadece en 

ucuz şarjı sağlayacak şekilde kısıtlanmamış, emisyonları da azaltması mümkün 

olan tüm etkin jeneratör kümeleri tespit edilebilmiştir. Türkiye Elektrik İletim 

Anonim Şirketinden alınan gerçek verilerle yapılan çalışmada elektrikli arabaların 

egzoz gazı emisyonu, birincil enerji tüketimi ve son tüketiciye maliyetleri 

konusunda içten yanmalı araçlara üstünlük sağladığı görülmüştür. Ancak tek 

amaçlı çözümlerin, kimi örneklerde elektrikli arabaların emisyon ve enerji tüketici 

avantajlarını yok edecek şekilde çözümler önerdiği ve marjinal jeneratörler ile 

yapılan analizlerin sonuçlarının ortalama değerler ile yapılan çalışmalardan farklı 

sonuçlar verdiği de gösterilmiştir. Bu sebeplerden teknolojinin mevcut durumu 

kötüleştirmemesi ve etkilerinin doğru olarak tahmin edilebilmesi için bu 

çalışmada  önerilen metot ile yapılacak analizler önem teşkil etmektedir.  
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Chapter 1 

 

INTRODUCTION 

 

In today’s world, sustainability of industrial and economic activities is questioned more 

frequently than in the 20th century due to international agreements which aim to ensure 

sustainable development of mankind and increased environmental consciousness in the 

public. As defined by the United Nations, sustainable development is development that 

meets the needs of the present without compromising the ability of future generations to 

meet their own needs [1]. Two major threats on future generations to meet their needs are 

the extinction of natural resources and the damage caused to the environment. Despite the 

fact that there are numerous sectors contributing to these two, majority of research related 

to sustainability is conducted on energy supply chains.  

Energy supply chains consist of raw materials, processes and technologies that are used 

to satisfy different types of energy needs of end users. No matter which sector the energy 

supply chains operate in, they pose a threat on sustainability by consuming energy sources, 

most of which are fossil based, and by emitting harmful gases into the atmosphere. In order 

to decrease consumption and emissions levels, intense research effort is carried out to find 

efficient and clean alternative technologies. These efforts are showing promising results in 

developed countries in all sectors except one. Between 1990 and 2006, greenhouse gas 

emissions in EU-27 have decreased by 13.4% in non transport sectors but in the same 

period greenhouse gas (GHG) emissions from the transportation sector have increased by 

35.8%. The road transportation sector is the major contributor to overall emissions with its 

share of 71% and to the increase with its 61% share [2]. The cause of these worsening 
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figures is not the act of road transportation itself but the technology that dominates the road 

transportation sector: the internal combustion engine (ICE).  

The internal combustion engine is an engine which converts the chemical energy 

contained in a fuel into useful mechanical energy by combusting it.  Today, most common 

fuels used in ICEs are liquid hydrocarbons such as gasoline and diesel fuels. The 

technology, which is being used by the road transportation sector since the invention of 

internal combustion engine vehicle (ICEV) by Karl Benz in 1885, has not faced a serious 

threat from an alternative technology to its complete dominance in the market. Therefore, 

the sector’s addiction to liquid hydrocarbon fuels has deepened and it has become one of 

the most problematic sectors threatening sustainability. Two major disadvantages of the 

ICE technology, which are the root causes of the problems it creates, are inefficiency and 

carbon intensity of primary energy sources it is using.  

Despite being a robust machine which is very suitable for mass production, ICE 

operates with very low efficiencies. Although it can reach higher theoretical efficiencies, 

gasoline powered ICEs have 18% efficiency on average whereas diesel engines can operate 

with an average of 22% [3]. This means that out of 100 units of primary energy stored in 

the crude oil, only 18 units of kinetic energy is obtained from the engine and 82 units are 

wasted in intermediate steps. Considering the scarcity of natural resources, this waste 

cannot be tolerated anymore where alternative and more efficient technologies are 

emerging. In addition to being inefficient, ICE dominantly use liquid hydrocarbons which 

emit 2,350 (gasoline) to 2,690 grams (diesel) of CO2 when combusted [4].  Therefore, it is 

contributing to greenhouse effect which is considered to be the main root cause of the 

global warming. Hence, research to find and integrate alternative technologies to the ICE 

technology is important to help the creation of a more sustainable energy supply chain for 

the road transportation sector.  
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The alternatives developed to mitigate GHG emissions from the road transportation 

sector are classified under two titles: alternative propulsion technologies and alternative 

fuels. All alternative propulsion technologies discussed in the recent literature include some 

degree of electrification and are based on the idea of replacing or supporting the ICE by an 

electric motor supplied from an on board energy source. Alternative fuel technologies such 

as biodiesel, ethanol, LNG or LPG fuels that can be used by making slight modification on 

the internal combustion engine are not in the scope of this thesis. Among many different 

vehicle technologies battery electric vehicles (BEV) and plug-in hybrid electric vehicles 

(PHEV) are the most mature technologies that are ready for commercialization and they are 

expected to play a significant role in the road transportation sector’s move towards a more 

sustainable path in coming decades [5]. In this study, electric vehicle (EV) term is used to 

cover both technologies and defined as a road vehicle that converts the chemical energy 

stored in an onboard battery, which can be charged from the electricity grid, to useful 

mechanical energy by using an electric motor to move the vehicle.  

EV technology provides the opportunity to bring road transportation sector to a more 

sustainable path than ICEVs. The first main opportunity provided by the introduction of the 

electric vehicles is the mitigation of GHGs by using clean electricity generated by using 

renewable energy sources. Second, due to their higher tank-to-wheel efficiencies, they 

provide the opportunity to decrease energy consumption of the road transportation. The last 

benefit is the diversification of energy sources powering the sector by shifting the energy 

supplier from crude oil products to electricity, which can increase energy security and 

decrease energy costs of the sector. In order to harvest these promising potentials of the 

EVs automotive manufacturers are announcing production plans for EV models, 

governments are passing tax incentives to support EV buyers, utilities are planning new 

tariffs for EV charging and charging infrastructure is being built in major cities. However, 

these potential benefits can be actualized only when the electricity that charges the batteries 
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of the EVs is generated from clean and efficient sources and can be supplied without 

harming supply of the conventional electricity demand. 

At this point, another development in the energy sector that can have a positive impact 

on the success of electric vehicles, which is Smart Grid, can be coupled with EV 

technology to overcome these threats. With the advances in communication technologies 

such as Internet, data transfer is faster and easier than ever in 21
st
 century. So far, these 

advances have shown impacts on our daily life but electricity sector has not made use of 

this technology yet. In conventional electricity networks, data flow is discontinuous and 

does not enable the suppliers and demand points to shape their decisions based on the 

instant changes in the specifications of electricity such as utilization, cost and carbon 

intensity. Smart grid is a general term that is used to express electricity grid operations 

where a real time two-way communication between the end user and suppliers, which 

enable computer control and optimization of the grid operations. This provides opportunity 

to make better use of clean energy sources to supply energy demand of transportation 

sector and enable suppliers to balance negative impacts of EV technology to the grid such 

as increased peaks. 

Electricity mix changes significantly by magnitude, timing and location of charging, so 

do carbon intensity, overall efficiency and cost of electricity. Therefore, research to analyze 

the impacts of the EVs on the electricity grid and to determine the electricity generators 

utilized for charging the EVs must be conducted before the introduction of the EVs to get 

the best benefits from the technology and give insights to the policy makers which will 

have more room for optimization and more control over the network with the emergence of 

smart grid applications. This need for research creates a wide area of application for 

systems engineering and operations research methods. 

The introduction of EVs will affect the electricity generation, distribution and 

transmission sectors by changing the demand profile of cities and results in an increase in 
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total production and consumption in the system [5]. As discussed above, net environmental 

and economic impacts of EVs depend on how the electricity market is affected. Since it is 

intractable to conduct large scale experiments by charging EVs in different regions, 

mathematical modelling and optimization techniques come out as valuable tools to analyze 

impacts and determine possible outcomes of the introduction of the EVs. In recent years, 

many publications have analyzed the impacts of introduction of the EVs from a number of 

perspectives but gaps have been found during the literature review, which is given in detail 

in Chapter 2.  

Despite the fact that there are many studies dating back to 1990 which analyze the 

impacts of the EVs, almost every study has conducted a scenario analysis, in which impacts 

of electric vehicles are analyzed by general assumptions about the average energy mix, 

without proposing any mathematical models or optimization efforts. The emissions are 

calculated by using average emissions of the grid, which can lead to results far from the 

actual case in certain cases. The business as usual model in the electricity market aims to 

satisfy the total demand with minimum cost. If the electricity market will handle the EVs 

together with the conventional demand and continue with business as usual model, the 

EVs’ net impacts will directly depend on the marginal electricity generators that are put 

into operation when the EVs are introduced. If the carbon intensity of these generators 

differs from the average mix, the studies using average mix for calculation would mislead 

the policy makers. Therefore, the emphasis of the proposed methodology is on determining 

the marginal generators. The limited number of studies which use mathematical modelling 

and optimization methods has used a single objective function which minimizes total costs 

of the system and proposes policies that minimize costs, without a few exceptions where 

more than one objective was taken into account. In general, cheaper generators in the 

electricity market such as coal generators generate more emissions than costly generators 

like hydro power and natural gas plants. Therefore, single objective models would lead to 
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undesirable results regarding emissions in regions where cheap electricity is generated from 

carbon intensive energy sources. As stated above, cost and environmental performance of 

the electricity market are two conflicting objectives, which can be handled by the methods 

in bi-objective decision making. Use of bi-objective decision tools lead to generation of all 

efficient solutions for a region which can enable policy makers to choose among different 

options depending on their preferences of being more cost or emissions oriented. Another 

major gap in the studies using optimization methods was the use of scenarios for 

representing charging demand. Charging patterns are given as inputs to the model and 

results from different scenarios are compared without finding optimal charging hours from 

different regions and periods of the year. This approach limits the ability of the model to 

optimize performance of the EVs. Therefore, charging hours should be defined as decision 

variables to determine the most appropriate charging hours. The last gap addressed in this 

work is the lack of research about Turkey. There are no studies in the literature that analyze 

the impacts of a possible introduction of the EVs into the Turkish electricity market. The 

methodology in this thesis is an attempt to fill these gaps in the literature. 

The proposed methodology can be summarized in four steps. For different market 

introduction scenarios, a number of conventional vehicles that will be replaced by the EVs 

are determined and annual emissions, energy consumption and energy costs are calculated. 

In order to determine the marginal electricity generators that will be used to charge the 

EVs, a bi-objective mixed integer programming model is developed to represent the 

bidding in the day-ahead electricity market. The model’s objectives are minimization of 

total generation costs and CO2 emissions resulting from the charging of EVs which are 

based on certain scenarios under technical constraints coming from the generators and 

transmission lines. In the second step this model is run only for the cost function, which 

represents the business as usual behaviour of the system. In third step, the model is run as a 

bi-objective model and the efficient frontier is determined to show all possible options to 
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satisfy charging demand under predetermined scenarios. In the last step charging hours are 

defined as decision variables and optimal charging hours for minimizing costs and 

emissions are found. Results obtained from the models are compared to conventional 

vehicles to determine the magnitude of net environmental and economic impacts of the 

EVs. The results also give insights to policy makers to see which hours the EV owners 

should be encouraged to charge their vehicles to get the best benefits from the technology.  

This methodology is applied to the Turkish electricity market with real world data taken 

from Turkish Electricity Transmission Company (TEIAS) but it can be applied to any 

region with their own data set.  

The chapters of the thesis are organized as follows: The second chapter gives a more 

detailed analysis of threats on sustainability of today’s energy sector, investigates 

contribution of the transportation sector and provides information about the alternative 

technology of electric vehicles. The electric vehicle technology’s relation with the 

electricity network and the literature review about prior research on analysing electric 

vehicles’ environmental and economic impacts are also given in second chapter. Chapter 3 

starts with explanation of the experimental design proposed to analyze and optimize 

impacts of the electric vehicles in detail, which is followed by a bi-objective mathematical 

model that represent day ahead electricity bidding systems. Solution method that is used to 

solve the models is described briefly at the end of Chapter 3. Chapter 4 is dedicated to 

application of the methodology to Turkish market. Assumptions and data are given at the 

beginning of the chapter and followed by extensive analysis of the results. Net 

environmental and economic impacts of the electric vehicles are presented in detail. The 

fifth chapter concludes the thesis by discussing applicability of the model, giving policy 

recommendations for the Turkish case study and suggesting future improvements and 

studies on the subject.  



 

 

Chapter 2: Background      8 

 

 

Chapter 2 

 

BACKGROUND  

 

2.1. Sustainability in the Transportation Sector 

 

       The climate change is one of the biggest challenges facing today’s world. 

Despite the fact that the debate on the cause of the changes in the climate continues among 

scientists, a growing number of them now agree that human activities are playing an 

important role in this change [6]. According to National Aeronautics and Space 

Administration’s (NASA) Goddard Institute of Space Studies’ global average temperature 

measurements, 2010 has been recorded as the warmest year on record since the first year in 

record (1880), and the current average temperatures are 0.62
o
C higher than the average 

global average temperatures between 1950 and 1980 [7]. The climate researchers agree that 

the average increase should be kept below 2
o
C compared to the pre-industrial era to avoid 

catastrophic climate disasters [8]. Increasing temperatures are attributed to excessive 

concentrations of greenhouse gases (GHGs) in the atmosphere, which are largely caused by 

energy related activities that are dependent on combustion of fossil fuels, such 

transportation activities using ICE. GHGs are defined as gases that absorb radiation within 

the thermal infrared range and cause solar radiation to be trapped in the atmosphere, 

causing an increased warming effect. Most important GHGs are water vapour, CO2, CH4, 

N2O, ozone and chlorofluorocarbons. Concentrations of these gases in the atmosphere are 

increasing consistently since pre-industrial era due to anthropogenic activities and now far 

exceed pre-industrial values determined from ice cores spanning many thousands of years 
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[9]. According to Mauna Loa Observatory -one of the most widely accepted measurement 

institutions in the world- global CO2 concentrations have increased from 315 ppm to 394 

ppm between 1959 and 2012 [10]. Continued GHG emissions at or above current rates 

would induce many changes in the global climate system during the 21st century that 

would very likely be larger than those observed during the 20th century, therefore scientists 

propose emissions to be decreased before the change in the climate gets irreversible [8]. 

Therefore, efforts to stop global warming and climate change concentrate on finding ways 

to mitigate GHG emissions caused by human activity.    

CO2 is the most important anthropogenic GHG since it attributes to 77% of global 

anthropogenic emission and annual CO2 emissions grew by about 80% between 1970 and 

2004 [3]. The largest growth in CO2 emissions between 1970 and 2004 has come from the 

power generation and road transport sectors, whereas the industry, households and the 

service sector have been growing at a lower rate [6]. In the European Union, every sector 

has decreased GHG emissions between 1990 and 2006 whereas emissions from the 

transportation sector have increased by 27.3% [11]. Since 1970, GHG emissions from the 

transport sector have grown by over 120%; therefore it is important to understand the 

reasons of this growth and conduct necessary research to decrease GHG emissions from the 

sector. The emissions from road transportation vehicles will keep on increasing as more 

vehicles are put on the roads unless new ways to make clean use of fossil fuels in ICEs is 

found or new power train technologies that use cleaner fuels are commercialized. Only then 

GHG emissions from the sector can be decreased and climate protection targets can be 

reached.  

Another problem related to the dominance of the road transportation is the poor energy 

efficiency of the technology which increases total primary energy used by the sector. 

According to International Energy Agency’s energy statistics, the transportation sector 

consumed 26.7% of the total global final energy in 2008 [12]. Share of transport is slightly 
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higher in developed regions like Europe where transportation sector consumes 31.4% of 

total final energy and road transport accounts 81% of total final energy consumption of 

transportation sector [11]. In Turkey, the transportation sector has consumed 20.1% of total 

final energy, whereas 85% of transport energy was consumed by road transport [13]. 

Although ICE can reach higher theoretical efficiency, the average energy efficiency of a 

conventional engine is around 18% for gasoline powered engines and 22% for diesel 

powered engines [3]. Taking friction, heat and noise losses in other parts of the 

conventional cars into account, well-to-wheel efficiency of the conventional vehicles 

decrease to 12-15% [2]. This means that more than 85% of energy stored in crude oil is 

wasted as heat, noise and other by products during the energy supply chain of the road 

transportation sector.  In today’s world, where experts say that proven reserves can supply 

oil for only around 50 years, such an inefficient technology must be replaced with more 

efficient alternatives.   

Energy diversification is another problem related to sustainability of the road 

transportation sector. The source of energy where the energy demand of the sector is 

supplied leaves transportation sector in a unique place regarding diversification. 

Approximately 95% of primary energy consumed by the transport sector derives from 

crude oil whereas this share is higher in road transport [8]. This dependence brings two 

major problems: threatened energy security and high energy costs. Around 75% of the 

proven oil reserves are in the hands of Organization of the Petroleum Exporting Countries 

(OPEC) member states and an additional 8% of the reserves lie in Russian Federation [8]. 

The current geographical distribution of reserves and the rise of state owned oil companies 

pose an energy security threat to net oil importer countries such as US and EU-27 countries 

with the exception of Denmark, which is still a new exporter of oil. The current structure of 

the market does not enable countries to stock crude oil to use for long periods of time, 

hence oil dependent road vehicles are running on an imported source facing a threat of 
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being un-operational in case of a conflict with oil producing countries. In 2008, Turkey 

imported 94% of total crude oil to satisfy demand, around 50% of which came from the 

transportation sector [13]. Creating alternatives to ICE technology and diversifying energy 

sources would eliminate dependency on oil and hence create a more secure energy market. 

 After a century of extraction and production efforts, age of cheap oil is discussed to 

come to an end.  This can be readily seen from the market price of crude oil which recorded 

an all time high price of $147 per barrel in July 2008. After a year of rebalancing acts, the 

barrel price was drawn back to levels below $100 in 2009-2010 period but since then the 

price has climbed up levels between $100-$110 [9]. The reason lies in simple economic 

supply-demand theory. The population grows and crude oil demand increases, whereas the 

supply of crude oil is about to reach a maximum, which is named in the literature as Peak 

Oil. Whether Peak Oil is in the close future or not, energy professionals share an idea that 

Peak “Cheap” Oil has already been reached [14]. Today, the road transportation has no 

other choice than using oil products because ICE consumes gasoline or diesel fuels. As 

opposed to ICE, alternative technologies which provide an opportunity to break 

dependency on oil products and put the transportation sector on a more sustainable path 

that can be powered by many different energy sources should be found and integrated into 

the road transportation sector. EV technology is the most mature technology in the market 

as of today and this alternative technology will be analyzed in detail in the coming 

subsections as EV is the heart of this study.  

 

2.2. Electric Vehicles 

 

 EV is a mean of transport, which converts the chemical energy stored in onboard 

batteries to mechanical energy by using an electric motor used in the drive train. The first 

developments in electrical vehicles date back to the mid 19th century. Following the 
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technological progress shown in the scientific field of electricity and the invention of 

batteries, electric power became an alternative way to mobilize people and goods which 

were dependent on horse or steam power. Prior to the invention of ICEV by Carl Benz in 

1885, some EV models were produced in small quantities. By 1900, the market for 

automobiles was shared between three technologies: steam, electric and gasoline. In 1900, 

there were 1684 steam driven, 1575 electric powered and 963 gasoline powered (internal 

combustion engine) vehicles on US roads [15]. The EV was able to beat the ICEV in those 

days although it had serious limitations about the range. Gasoline powered engines of the 

day were too noisy and dirty which made them undesirable in cities, whereas EV was 

operating silently and leaving no smoke behind. Another drawback of the gasoline powered 

car was that they needed a hand crank to start the car which was hard especially for women 

drivers, and this made EV more preferable because they could be started instantly [15].  

 Two developments in the first decades of the 20th century changed the fate of the 

automotive industry in favour of ICEV. Costs of EV and ICEV were comparable to each 

other until the introduction of assembly line technology to automotive manufacturing by 

Henry Ford in the 1900s. The assembly line helped ICEV to overcome a bottleneck 

whereas battery production rates were still a problem for EV. As production capacity 

increased, ICE technology took advantage of the economies of scale and lowered its market 

price to nearly a quarter of EV prices. Despite low costs, hand crank start remained a 

problem for ICE but electric technology has ironically helped it overcome this by 

introducing an electric starter to the market in 1912. This technology made it possible to 

start ICEVs instantly and accelerated sales. After 1912, the number of EVs produced 

decreased sharply and by the early 1920’s almost all manufacturers were out of business 

[15]. 

 In the following years ICE technology has received great success in the market and 

intensive research effort was given to ICEV and the engine itself. Lack of demand has been 
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a barrier for developments in battery technology and electric motors as well as EV. This 

dark age of EV continued until the 1960’s when air pollution and traffic congestion started 

to concern people. Increased concern has lead to development of small scale EV projects 

like Ford Comuta, Enfield 8000 in Europe, but none of these cars has made a success in the 

market [15]. Despite being an unfavourable technology in the mass market, EV has two 

advantages over ICEV in two niche markets. EVs operate silently which make it preferable 

where sound is undesirable like golf courses, retirement pensions or holiday resorts [15]. 

Another advantage of EV is that it is emission free, which makes it a successful product for 

indoor transportation activities such as warehousing or airport operations. 

 Until 1970’s, liquid hydrocarbons have supplied a great demand from ICEVs without 

raising any concern and receiving any question from the community. The first questions 

against the ICEVs have risen during the oil crises of 1973 and 1979. The crises increased 

the governments’ concerns about energy security and actions decreasing crude oil 

consumption were taken. Following these two crises crude oil was substituted with other 

primary energy sources such as natural gas, coal or nuclear especially in the power 

generation sector. However, actions taken to decrease crude oil consumption in the 

transportation sector such as fuel consumption regulations, speed limits, biofuel research 

could not break dominance of oil in the sector because there were no feasible alternatives to 

ICE drive train technology [15]. Rebalancing acts dropped the price of oil in the 1980’s and 

this has lead to an increase in personal car sales as the public has kept on enjoying cheap 

energy and passenger car sales have increased. Starting from the last decade of the 20th 

century, global road vehicle sales have started to increase more sharply than ever before, 

resulting in a growth in oil demand. Today half of the crude oil extracted goes to the 

transportation sector and this share has increased as oil is excluded from other sectors such 

as power generation [15]. As the experts discuss that Peak Oil is about to be reached, and 
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the oil prices increase, the governments are more interested in alternative transportation 

technologies, then they were three decades ago.  

 Although economic issues are an important motivation for research about EV the 

most influential reason is the recent discussion about global climate change and the 

transportation sectors contribution to today’s environmental problems. Increased 

transportation activity has resulted in a growth in GHG emissions and today’s world, where 

a single CO2 molecule saved from being released to the atmosphere can be vital. As will be 

discussed below, the problems concerning the transportation sector are not because of the 

act of transportation itself but by the dominating ICE technology. Therefore, governments 

are now interested in EV technology which has zero direct emissions and promises to 

decrease the life cycle emissions. This rising interest has motivated the allocation of funds 

for EV, which lacked for decades.  

 California was the first state to take action and announced a Zero Emission Vehicle 

regulation in the early 1990’s to force major car manufacturers to sell ZEVs equivalent to 

2% of their total number of sales by 1998 [15].  Although this regulation was modified in 

following years to decrease EV shares, this regulation has motivated major car 

manufacturers to start research and development projects in the EV field. GM’s famous 

EV1 and Ford’s Ecostar are among most notable models manufactured in these years but 

all of these cars were far from being a success in the market. Currently, alongside strict 

emission regulations and targets, rising environmental consciousness among customers has 

created a boost for EV. A “green market” in which all major automobile manufacturers 

want to have a share is now growing. In this section, technology of EVs will be introduced 

and compared with the ICEVs. 

 Depending on the degree of electrification and use of different power sources in the 

drive train, electric vehicles are classified under four categories. Each type of electric 

vehicle has its own advantages and disadvantages.  
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 Hybrid electric vehicles (HEV) are the first step towards electrification of ICEV. 

HEVs are mainly driven by a conventional internal combustion engine which is supported 

by an electric propulsion system to improve fuel economy and overall environmental 

performance. HEV can be categorized under two concepts depending on the degree of 

electrification. Mild hybrid electric vehicles have an electric propulsion system that helps 

the vehicle during acceleration, stores energy by utilizing regenerative brakes and includes 

an engine start-stop system. Mild hybrid electric vehicles cannot be driven solely by the 

electric motor since the motor is small scaled and the capacity of the battery is limited.  

Research indicates that mild hybrid electric vehicles are 10-15% more fuel efficient 

compared to ICEVs [2]. One of the most recognized mild hybrid vehicles is the Honda 

Insight. Full hybrid vehicles are a further step in the electrification of ICEV since they 

allow pure electric driving. Similar to mild hybrid vehicles, the internal combustion engine 

remains as the main propulsion system but full hybrid vehicles include a larger battery pack 

and a larger electric motor that can drive the vehicle on its own at low speeds and a limited 

range. Recharging the battery can be accomplished by ICE or regenerative breakes. 

Research shows that full hybrid electric vehicles achieve fuel efficiency gains of 25-30% 

compared to conventional vehicles [2]. Toyota Prius, which exceeded sale of 1 million in 

2008, is today’s the most successful full hybrid vehicle on the market. 

 Full hybrid vehicles are also categorized into three depending on the arrangement of 

vehicle components. In parallel hybrid vehicles, the electric motor and the ICE can drive 

the vehicle individually or a combination of two can provide propulsion. Propulsion 

systems are independent of each other and it is not possible to charge the battery by using 

the ICE. The battery can only be charged by regenerative breaking. In a series hybrid 

electric vehicle it is not possible to drive the vehicle on ICE. ICE is used as a range 

extender for the vehicle since it is responsible for recharging the battery when needed. 

Series hybrid vehicles include a more powerful electric motor and a larger battery pack. In 
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split hybrid (or series-parallel hybrid) systems ICE can both drive the vehicle and charge 

the battery pack. It is possible to drive the vehicle on pure-electric mode. This system 

combines parallel and split systems and possesses advantages of both. Simplified structures 

of these three hybrid vehicle concepts are given in Figures 2.1. to 2.3. 

 

Figure 2.1 Basic Design of a Parallel Hybrid Drive train 

 

 

Figure 2.2 Basic Design of a Series Hybrid Drive train 

 

 

Figure 2.3 Basic Design of a Split Hybrid Drive train 
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 Plug-In Hybrid Vehicles (PHEV) are hybrid vehicles that allow drivers to recharge 

the battery from an electric grid by plugging in the charging socket. PHEV also has the 

capability to recharge from regenerative breaking and ICE. PHEV is distinguished from 

HEV by its ability to travel only on energy stored from the grid, which enables zero-

emission driving for a limited range.  The main advantage of PHEV is that it can operate 

solely on electric energy for daily commuting and still provide the possibility to travel long 

distances by switching to ICE. PHEV install larger battery packs than most hybrid vehicles 

to extend all-electric range and increase environmental performance. PHEV can also use 

parallel, series or split systems to operate. GM’s Chevrolet Volt is an example of a PHEV 

which operates on series system.    

 Battery electric vehicles (BEV) are the last step in electrification of road vehicles. 

Possessing only an electric motor, BEV is entirely propelled by electricity stored in a 

battery pack which is charged from the power grid and has no connection to any gasoline 

product. BEVs have zero direct emissions since they do not use an ICE to power the car or 

charge the battery. Tank-to-wheel efficiency is higher than HEV and PHEV due to 

decreased weight and efficiency gains of the electric motor compared to ICE. Current BEV 

models are relatively small city cars with limited driving range and performance since 

current battery technology poses limitations on the maximum amount of energy that can be 

stored on board. GM’s EV1 car which was commercially available in California in 1996 is 

an example of BEV.  Major manufacturers like Renault and Nissan have started production 

of BEV models, and most of the major manufacturers have announced plans to start 

production of BEVs before 2015. 

 

 

 

 



 

 

Chapter 2: Background     18 

2.3. Comparison with Today’s Technology 

 

 Compared to today’s dominant technology of ICEVs, the EV technology has some 

significant advantages as well as disadvantages. This subsection compares two competing 

technologies under major performance criteria titles.  

 

 2.3.1. Efficiency 

 

 As stated under ICEV title, the most important drawback of the conventional 

propulsion technologies is the inefficiency. Although ICE can reach higher theoretical 

efficiency, the average energy efficiency of a conventional engine is around 18% for 

gasoline powered engines and 22% for diesel powered engines [5]. Adding friction, heat 

and noise losses in other parts of the conventional car decrease tank-to-wheel efficiency of 

conventional vehicles around 12-15% [2]. The main reason behind this inefficiency is the 

relatively high number of moving parts in the mechanical drive train which causes energy 

to be lost as heat as a result of friction. The electric motor has a fewer number of moving 

parts and can reach an efficiency of 90% [5]. Since the electric drive train does not only 

consist of an electric motor, total tank-to-wheel efficiency range between 65-80% [5]. If a 

lithium battery pack is used detailed efficiencies are as follows: 88-90% for the charger, 

85-95% for charging, 96-98% for electronic management and 90-95% for the electric 

motor [3]. These efficiencies result in an approximate tank-to-wheel efficiency of 72% for 

EV that carry lithium based battery pack [3]. Comparing ICEV and EV in tank-to-wheel 

efficiency show that EV are around 4-5 times more efficient than conventional ICEV. This 

means that the EV consumes 4-5 times less final energy than ICEV.  
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 Despite the significance of tank-to-wheel efficiency in fuel economy, overall energy 

performance of EVs must be analyzed by their well-to-wheel efficiency. Conventional 

ICEVs use liquid hydrocarbons such as diesel and gasoline which are produced by 

distilling crude oil. The average gasoline and diesel distillation process is 83% [5]. This 

means that only 17% of energy stored in crude oil is lost in the refinery and 83% is stored 

in gasoline and diesel fuels that are pumped into the tanks of conventional cars. However, 

producing electricity for use in EV is not as efficient as the distillation process. Today, 

conventional efficiencies of coal power plants range around 36-44% and efficiencies of gas 

powered power plants average 43% [16]. This means that around 60% of energy stored in 

primary energy sources is lost in the electricity generation process. Despite being half as 

efficient as the crude oil distillation process, high tank-to-wheel energy efficiency of EV 

offsets low well-to-tank efficiency. Assuming a 15% efficiency for conventional cars and 

72% efficiency for lithium based BEV, well-to-wheel efficiency is around 12-13% for 

conventional cars are around 25-30% for EV. Hence, EVs are twice as efficient as 

conventional vehicles in well-to-wheel efficiency and consume half the primary energy 

consumed by ICEVs. Figure 2.4 summarizes the efficiencies of EV and ICEV. 

 

Figure 2.4: Approximate Efficiencies of EV and ICEV (Data from [3],[5],[16]) 

 

 These efficiency differences may bring significant reductions in primary energy 

consumption of road transport. Assuming an annual distance of 14,400 kilometres travelled 
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(Daily average of 40 kilometres), conventional gasoline vehicles with a fuel economy of 

7.0 lt/100 km consumes a primary energy of 11,800 kWh, assuming that gasoline contains 

36.2 MJ/lt. Travelling the same distance by a BEV which consumes 0.14 kWh/km would 

consume 5,040 kWh. Substitution of one conventional vehicle with a BEV brings a yearly 

saving of 6,800 kWh primary energy. These savings might directly turn to savings in the 

amount of petroleum products imported and a decrease in dependency of foreign oil in 

many countries such as Turkey.  

 

 2.3.2. Emissions 

 

 Battery electric vehicles are characterized by zero tailpipe emissions and plug-in 

hybrid vehicles offer zero emission driving with their all electric range, whereas internal 

combustion engine vehicles produce a considerable amount of direct GHG. As stated in the 

introduction, the transportation sector is responsible for 19.2% of all GHG emissions and 

22.7% of all CO2 emissions in EU-27 countries [11]. The electric vehicle has the potential 

to reduce these figures if managed well. The first advantage of electric vehicles is a 

reduction in local emissions. The electric driving mode of PHEVs and all BEVs produce 

zero direct emissions of harmful air pollutants such as NOX and volatile organic 

compounds therefore increase air quality in urban areas [2].  

 Despite producing zero direct emissions, electric vehicles account for GHG 

emissions on a well-to-wheel basis. GHG emissions come from the electricity generation 

process in power plants; therefore, the environmental performance of electric vehicles is 

strongly dependent on the energy mix of the electricity generation in the region. Every 

primary energy source has a different carbon intensity; hence, CO2 released into the 

atmosphere by using that energy source varies. Coal power plants release approximately 

1000 g CO2 for every kWh of energy generated. Gas plants emit 380 g CO2 / kWh and oil 
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power plants emit 410 g CO2/ kWh [5]. Currently, the EU average is around 400 g 

CO2/kWh and 2030 estimations are 130 g / kWh. In the US, where coal is still an important 

source of energy in electricity generation, the average carbon intensity is 620 g /kWh [8].  

 Turkey, where half of the electricity comes from gas and 30% of electricity comes 

from coal the average is around 650 g / kWh [13]. Assuming a BEV that consumes 0.14 

kWh / km, carbon footprint of a car can be estimated by using average carbon intensities. 

In the EU such a car would emit 56 g / km, in Turkey 90 g / km and in the US emissions 

would be around 86 g / km. These figures are promising on a road to reducing GHG 

emissions when compared to current ICE targets that limit emissions to 130 g /km but there 

are some regions where transition to EV could even worsen the environmental performance 

of a car fleet. In India, where more than 90% of electricity comes from coal plants, average 

carbon intensity of generation is 973 g / kWh.  Charging an EV from electricity grid in 

India would result in an emission rate of 136 g /km which is worse than 2015 targets of EU 

[5]. Assuming an annual distance of 14,400 kilometres travelled (Daily average of 40 

kilometres) by  a conventional gasoline vehicle which emits 150 g / km, the annual carbon 

footprint is equal to 2,16 tonnes of CO2. Travelling the same distance by a BEV which 

consumes 0.14 kWh/km and charging from average EU grid annual emissions would make 

0,8 tonnes of CO2. As seen in the calculations, EV can emit half the CO2 if charged from an 

environmentally friendly electricity grid.  EVs also help decrease the amount of 

undesired particles in urban conditions by moving the emissions away from the city. In a 

study by Thompson T. et al, it is shown that nitrogen oxide (NOx), volatile organic 

compound (VOC) and CO emissions from mobile emissions during daytime hours, shows a 

great decrease in urban areas [27]. However it must be noted that these are only estimations 

based on the average mix which can vary significantly from the marginal set of generators 

that will be used to charge EVs.  
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 2.3.3. Range 

 

The most important and widely discussed disadvantage of EVs to conventional vehicles 

is the driving range. Driving range is directly dependent on the energy storage system of 

vehicles, which is a battery pack in an EV and a gas tank in a conventional ICEV. ICEVs 

use the chemical energy stored in gasoline or diesel fuel to produce mechanical energy to 

move the car and benefit from high energy density of these fuels. Gasoline and diesel are 

great energy carriers since they can store around 13 kWh/kg of fuel whereas today’s 

advanced  Li-Ion batteries can store up to 0,25 kWh / kg [2]. For the same weight liquid 

hydrocarbons can store 65 times more energy than batteries and thus provide a great range 

for conventional ICEV. Average size cars have a gas tank capacity of 50-60 litres which 

provides a driving range up to 700 kilometres without refuelling. Since weight and volume 

constraints limit the maximum weight of the battery pack in BEV, the range is limited 

compared to conventional vehicles, whereas PHEVs can reach comparable ranges due to 

on-board range extender engines. BEVs that are introduced for market entry have ranges up 

to 200 kilometres which would be sufficient to cover daily driving needs assuming that the 

average daily driving distance in EU countries are 30 kilometres / day [17]. Charging time 

is another drawback of BEV. In addition to being energy dense, liquid hydrocarbons can be 

filled in relatively short times compared to BEVs. Visiting a gas station takes up to 5 

minutes whereas recharging a BEV from grid can take up to 8 hours. There are variety of 

projects that are trying to solve this problem such as fast charging stations with high 

voltage that can bring charging times under 30 minutes or battery swapping stations where 

BEVs exchange depleted batteries with charged ones [18][19].   EVs are dependent on 

battery technology to reach a comparable range with ICEVs. The energy density of 

batteries need to be increased to overcome limited driving range problem and the charging 
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time of battery packs need to be reduced to attract customers that are sceptical to 

electrification of road vehicles [20].  

 

 2.3.4. Energy Diversification 

 

As stated in the introduction, liquid hydrocarbon fuels derived from crude oil provide 95 % 

of the primary energy consumed in the transport sector worldwide [8].There is no other 

sector that is dependent on one source of primary energy and this dependence threatens the 

energy security of oil importing nations. As opposed to crude oil, most nations are able to 

generate electricity by using a variety of natural resources. A transition to electric vehicles 

would allow governments to supply the energy demand of the transportation sector by 

using national sources. Today, electricity can be generated by using a variety of primary 

energy sources such as coal, natural gas, oil, hydropower, nuclear power, wind, sun, 

geothermal energy or other renewable sources. Diversifying the source of energy would 

increase energy security and enable a more environmentally friendly transportation sector 

by using renewable energy sources such as wind and sun. The use of a wider range of 

primary energy sources is assessed in the literature as an essential prerequisite to achieving 

decarbonisation of the transport sector fuels. In order to reach the promised benefits of 

electrification of transport and diversification of transport energy demand the electric 

network should be modified to adopt new loads and frequent charging of EVs. Besides the 

existing charging opportunities at private homes a dense charging infrastructure is needed 

to permit charging during daytime.   
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 2.3.5. Cost of Ownership 

 

One of the main barriers to successful market introduction of electric vehicles is the total 

cost of ownership (TCO) for this technology. TCO is a financial estimate that helps 

consumers determine direct and indirect costs of using a product. For transportation 

products, TCO defines the cost of owning a vehicle from the time of purchase by the 

owner, through its operation and maintenance to the time it leaves the possession of the 

owner. The first component of TCO is sale price. The cost of batteries plays a critical role 

in determining commercial viability of EV, because at current production costs for high-

energy lithium-ion batteries (about 2000 $/kWh) they correspond to a price difference of 

more than $15,000 depending on the all-electric range [2].  Low production volumes of 

high-energy battery systems avoid the use of economies of scales in battery production thus 

pose a barrier in decreasing the gap between ICEV and EV sale prices. However, a drop in 

battery prices is expected if production volumes reach desired levels. Between 1991 and 

2005, the price of lithium ion batteries per unit of stored energy decreased by a factor of ten 

following increased production volumes with demand from the portable electronics market 

[2].  A similar increase in EV battery pack production is expected to bring costs down and 

make EV a feasible alternative for customers. Experts agree that EV can challenge ICEV 

prices only when battery costs are decreased significantly and relevant targets are set such 

as the United States Advanced Battery Consortium’s  $ 250/ kWh [21]. In the literature 

there are estimations that vary significantly due to the high level of uncertainty on EV 

technology. The Boston Consulting Group has conducted a detailed analysis to estimate 

future costs of battery and has predicted that the battery pack cost can be decreased by 60-

65 percent ($600-700 / kWh) in period between 2009 and 2020 [21].  Another study by 

United Kingdom Department of Business, Enterprise and Regulatory Reform and 

Department for Transport concludes that it is unlikely that the price of lithium-ion batteries 
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will fall significantly and that it will fall below $300 levels in the near term [2]. These 

estimations point out that a considerable price premium compared to conventional vehicles 

is likely to remain on the sale price part.   

 The second part of TOC is operating costs. Rising oil prices have increased the sale 

price of gasoline and diesel; hence, operating costs of conventional vehicles have increased 

compared to past years. The retail price of gasoline in the US has increased from $1.2 per 

gallon in 1990 to $2.79 in 2010 seeing an all time high of $4.05 per gallon in July 2008. 

Assuming a gasoline powered car in Turkey (gasoline retail price in 09/2010 is $2.4 /lt) 

that consumes 7.5 lt / 100 km, an annual mileage of 14400 kilometres costs $2650. The 

same annual mileage with an EV that consumes 0.14 kWh/km would cost around $280, 

assuming that retail price of electricity is 0.14 $ / kWh. The price gap between electric and 

gasoline running costs are closer in countries where the retail price of gasoline is cheaper, 

but even in Turkey the difference in operating costs can compensate the price premium of 

$15.000 in 6.5 years assuming that the battery is never changed.   Surveys such as Boston 

Consulting Group’s, which suggest that customers want to break even on the higher 

purchase price of electric vehicles in three years, show that EVs need to decrease costs to 

break ICEVs’ dominance in the market [21]. In summary, despite the moderate optimistic 

estimation of battery cost development and the low operating costs of EV, it is assumed 

that battery costs pose the greatest long-term risk to commercialisation of electrically-

driven vehicles.  

 

2.4. Literature Review 

 

Starting with the emergence of the electric vehicles at the last decade of 20
th

 

century, number of studies that analyzed impacts of EVs has increased dramatically. Since 

the first large scaled policy mandate (Zero Emission Vehicle (ZEV) Mandate) was 
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introduced in state of California most of the early studies were limited to United States but 

nowadays, with the rising interest in EVs in world markets due to increase environmental 

consciousness and pressure coming from international agreements, studies’ geographical 

scope has spread to cover all important markets like EU, India and China. In addition to 

this, announcements about plans to introduce EVs from the major manufacturers made 

more data available about the EV technology which was a black box for most of the 

researchers at the early stages of emergence; hence more people were able to conduct 

analysis on this open subject. The literature consists of many different types of work from 

articles to doctorate dissertations, from conference proceedings to large scale reports 

prepared by consultancy companies or government agencies. This part aims to give a short 

review of the literature by making use of all these different types of work from various 

markets of the world.  

Most widely analyzed impact of emerging transportation technologies is GHG 

emissions, as this is the starting point of the rising interest in electric vehicles. “Green 

Power for Electric Cars Development of policy recommendations to harvest the potential of 

electric vehicles” report prepared by CE Delft in 2010 compares the GHG emissions of 

EVs in different markets by assuming different CO2 intensities of electricity networks in 

2030. This is an important work to demonstrate that performance of the EVs show 

significant variance from region to region as the applications of the same methodology in 

Germany, France and UK has provided different results [5]. Plugged-In: The End of Oil 

Age published by World Wide Fund for Nature (WWF) also compares the performance of 

EVs with conventional vehicles but bases the calculations on average assumptions which 

do not incorporate the marginal impacts of EVs to the electricity network [8]. European 

Topic Centre’s critical literature review published in 2009, gives an overview of different 

studies conducted so far in different regions which have different GHG emission rates [2]. 

In this overview emissions are shown to vary from 40 g CO2/km in countries where clean 
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energy sources like hydro power have a big share (like Austria) to 220 g CO2/km in regions 

where energy mix is coal intense like some states of US and Greece [2]. This proves the 

necessity of impact analysis studies that can be applied to different regions because EVs 

impacts show significant variance based on the region’s energy mix. 

A good example of a study that takes regional specifications into consideration for 

the impact analysis is given by Perujo and Ciuffo on the Province of Milan case [22]. In 

this study impacts of EVs on GHG were analyzed for a time span covering 2030, and lots 

of valuable local data like penetration estimation were used to understand the region 

specific impacts. No effort was carried to optimize charging hours, and the energy was 

based on three different assumptions of the Italian average mix in the future. But the article 

proves that EV charging might impact load profile dramatically if not managed carefully 

and point to the necessity of optimization of charging hours. A similar analysis conducted 

for Ireland covering a time span between 2010 and 2030, also shows that PHEV have a 

potential to decrease GHG emissions compared to conventional vehicles but benefits are 

strongly dependent on the energy mix assumptions [23].  

Another regional study that highlights the importance of local studies by showing 

how much results can differ from each other is written by Huo H. et al in 2010 [24].  

Authors of this paper focus on emission impacts of EV in China. Since China is a country 

that gets majority of its electricity from coal (upto 98% in North China) environmental 

performance of EVs are very close or even worse than conventional vehicles. However in 

locations where hydro power is abundant EVs perform better than ICEVs. This shows that 

it is impossible to define a country wide regulation in regions where the specifications of 

the electricity grid shows variance. This study is also an important base to the idea of 

applying bi-objective decision making tools to problems about EVs because all cost 

effective solutions lead to coal intensive generation. This study also uses use average mix 

to calculate emissions of EV, which might be misleading the results. Sensitivity work 
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added to the study shows that EVs would become less pollutant than ICEV only when coal 

share drops below 87% and less pollutant than HEV when coal mix drops below 60%. This 

shows that for China EVs have a long way to become environmentally preferable [24]. A 

similar study in Alabama has shown that EVs can decrease emissions only by 1% due to 

extensive use of coal resources [34]. Studies conducted in Europe also show a similar 

trend. A study by Kristien et al. shows that for Belgium, depending on different policies 

about electricity sector PHEV performance will change significantly and this new 

technology might perform worse than relatively mature technology of hybrid vehicles if no 

support to renewable energy sources is given in the near future [25].  

In one of the most cited papers about the literature of EV’s impacts, Samaras and 

Meisterling have analyzed emission impacts of alternative technologies on a life-cycle 

basis [26]. In life cycle calculations they have considered vehicle production, battery 

production, gasoline consumption, electricity consumption. This approach is an important 

aspect of the emission impacts that are also taken into account in this thesis depending on 

the references in the literature. Despite suggesting a strong method to compare new 

technologies, in electricity consumption case, no dispatch model was used. Authors have 

assumed 2 extreme cases (carbon intense - 950 g/kWh and low carbon case - 200 g /kWh) 

and one average mix (670 g/kWh) case to calculate emissions of PHEVs. Results prove that 

without having an idea about the energy mix it is impossible to reach a conclusion about 

the performance of EVs.  

Another popular work in the literature is that of Craig and Sullivan’s impact 

analysis by using a different approach to determination of energy mix emission and which 

has a wide geographical scope in the U.S. electricity network [35].  Authors assume that it 

is economical to use spare electricity at night times to charge PHEVs since operating costs 

are low. Assumptions are that all vehicles will be charged between 22:00-06:00 and there 

will always be a vehicle available to charge when utilities want to charge and CO2 
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emissions are analyzed under these assumptions. Authors introduce the idea of marginal 

plants but state that a simple merit-order approach would be insufficient to analyze impacts 

of PHEV charging. Instead of using merit order approach they define an elasticity 

coefficient which relates the fractional increase in CO2 emissions to a given fractional 

increase in load. If all power plants had equal emission rates, then the elasticity coefficient 

would be unity and CO2 emissions would be strictly proportional to load. However, if 

plants brought online as demand increases have higher CO2 emission rates than base load, 

the coefficient will be positive, reflecting the fact that CO2 emissions increase more than 

proportionally to load. Similarly, if added plants have lower than base load CO2 emissions, 

the coefficient will be negative. The magnitude of the coefficient changes with load, 

reflecting importance of marginal generators instead of using only average or other fixed 

assumptions. For many regions, the coefficient is close to or greater than 1 meaning that 

CO2 increases with the load increase. This is a valuable piece of work that puts emphasis 

on the differentiation of the marginal generators with a relatively simple approach.  

Not just energy mix, but different scenarios for charging also changes the 

performance of EVs significantly. In a study by Peterson S. et al in 2011, an experimental 

design for analyzing impacts of electric vehicles in proposed to compare impacts of 

different mix and charge scenarios [27]. This study is also important as it uses marginal 

generators but the model used to determine this is hidden in the study. After finding the 

generators it is easy to calculate emissions resulting from electricity generation and 

compare these to emissions from conventional vehicles. First, for a certain market scenario 

number of conventional vehicles in Pennsylvania and New York regions are determined 

and resulting emissions are calculated. Then for three charging scenarios power dispatch is 

done. There are four scenarios assumed for power dispatch. First model dispatches the 

extra load to current grid whereas the second scenarios assumed that all coal generators are 

equipped with carbon capturing and storage technology. In scenario 3 all power needed to 
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charge the vehicles are supplied by natural gas plants and in scenario 4 wind turbines 

support natural gas plants. CO2 benefits of EV in PJM region is not very significant 

because the region uses coal in night hours and the performance shows significant variance 

based on the scenario. In New York benefits are more significant since most generation is 

done by natural gas plants. The scenario based experimental design of this study is a base 

to the methodology proposed in this thesis. Another study that is a good reference for 

scenario analysis approach is the work of van Vliet O. et al [29]. In that study, the focus is 

on a similar set of performance measures and total energy use, total cost of ownership and 

net CO2 emissions of a possible introduction of EVs in passenger car market is calculated. 

Electric supply used for charging electric vehicles is found by sorting generators in the 

region in merit order of cost and dispatching cost efficient generators until all demand is 

satisfied. This is a good approach as it puts emphasis to marginal generators however this 

study also lacks the bi-objective approach and is only cost oriented.  

Thiel C. et al also showed that the performance of the alternative vehicle 

technologies is strongly dependent on the new energy policies that will shape the energy 

mix of Europe in 2020 and 2030 [30]. Silva C. et al gave a very good overview of the 

PHEV technology as of today and discussed how the performance can change depending 

on the charge scenarios [31].  Results of that study also puts emphasis on how the impacts 

change depending on the energy mix of the region and charging scenarios. Other studies 

which analyze the impacts of different alternative technologies also based their approaches 

on scenario analysis to model behaviour of new technologies under different settings and 

showed that performances of EVs might perform worse than conventional vehicles and 

hybrid vehicles under specific energy mix and consumption cases [32], [33]. Due to lack of 

large scale introduction of EVs, the number of studies that used real data was very limited. 

However, in a study by Williams et al, impacts of PHEVs were analyzed by collecting real 

world data from 12 California houses that drive NiMH Toyota Prius PHEVs [36]. 1676 
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driving and 437 charging events in 1 year period were analyzed. To find emissions from 

electricity generation three scenarios are were used without any effort to determine real 

time specifications of the electricity. Despite having a limited sample, this study is 

important as it gives chance to compare scenario approaches with real data studies.  

The references given so far support the idea of this thesis that every introduction of 

EV fleet gives a different result; therefore, a generic methodology that utilizes the tools of 

operations research is essential in the pursuit of understanding the impacts of EVs. They 

also show that EVs might perform worse than conventional vehicles when energy mixes 

are carbon intensive. However, these studies have not proposed a structured operations 

research approach by creating a mathematical model. In the next paragraphs these attempts 

in the literature are given in summary.  

Jansen et al analyzed impacts of PHEVs on western US grid by using a resources 

dispatch and emission model [37]. Based on a certain market scenarios extra PHEV load 

for two different charging scenarios are added on conventional electricity load. The 

charging scenarios considered in the study are best guess scenario which charges the 

vehicles when drivers comeback home and valley filling scenario which shifts charging 

hours to off-peak hours. For these two load profiles the authors run a resources dispatch 

model that is based on historical loads. Algorithm given in the study works on the merit 

order dispatch and accepts orders depending on their costs until all demand is satisfied. 

Outputs of the model are compared with real world data and they seem to be a good 

representation of the system. When marginal generators are known, CO2, SO2 and NOx 

emissions of PHEV are known so performance of the EVs is given. Most important 

contribution of the study to the literature is to show how average mix emission rates differ 

from marginal generation rates by proposing a marginal dispatch model. However, this 

study does not make any comparison with conventional vehicles and does not take any 

environmental objective into account in the model. Therefore it becomes impossible to 



 

 

Chapter 2: Background     32 

suggest new options in a case where EVs charged from marginal mix is more polluting than 

conventional vehicles. Another study conducted by Kristoffersen et al. also proposes an 

optimization model based on electricity market operations to find the most suitable hours 

for charging based on only cost minimization [38]. In the previous papers analyzed it was 

clear that this approach might end up in cases where the system is forced to charge in cheap 

but very polluting hours, especially with the high share of coal generators.  

An important work on EV impact analysis is the work of Sioshansi et al where 

authors analyzed the impacts of PHEVs in Ohio power system [39]. Authors analyzed 

impacts of 5% PHEV integration on Ohio power system with two charge scenarios: 

controlled and uncontrolled. In controlled scenario system operator has near-total control 

over charging decisions, whereas in uncontrolled scenario PHEV users charge their 

vehicles whenever they want. For uncontrolled scenario a classic no-drive hours curve is 

used. To determine generators of electricity, a unit commitment model is used. To enable a 

linear model a step function was used to reflect variable costs. Model is not based on bids, 

it is based on operation costs therefore it has more technical depth than electricity market 

models. An important result from the paper is that in controlled charge scenario, where 

operator charges the vehicles in cheapest hours, more coal generators are in operation thus 

emission results are worse. In uncontrolled scenario, marginal electricity is generated in 

natural gas plants which are more expensive to operate but cleaner. This result is proof of 

the necessity of bi-objective models in EV impact analysis. Having higher emissions for 

both SO2 and NOX emissions compared to ICEVs highlights the need of a full assessment 

before any decision about EVs are taken.  

One of the most recent and influential works on the EV impact analysis is the work 

of McCarthy and Yang [40]. This paper estimates CO2 emissions from three different 

alternative technologies (BEV, PHEV and Fuel Cell vehicles) by running an economic 

dispatch algorithm to determine where marginal electricity that charge these alternative 
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pathways is supplied. Results are compared with HEV and ICEV in California case. Also 

sensitivity analysis are done to determine best hours of charging. For analyzing each 

technology it is assumed that 1% of vehicle miles travelled in California comes from one of 

these technologies alone. Based on consumption data, this creates an extra demand on 

electricity network. To determine where this demand will be supplied from, authors run a 

dispatch model called EDGE-CA. Algorithm assigns nuclear, hydro and import power 

supplies to base load based on historical data so base load gets fixed similar to historical 

data. Than dispatchable plants (most of thermal generators and hydro sources) are listed in 

increasing order of cost of electricity and cheaper plants are put on operation until new 

demand is satisfied. By using this method, a set of marginal generators are found and 

emissions are calculated. Two charging scenarios are used; off-peak (vehicle idle hours) 

and load balance (3 in the morning). As a result it is found that marginal electricity mix 

(570-670 g CO2/kWh) is more carbon intense than both gasoline (350 g CO2/kWh) and 

average mix (250 g CO2/kWh). However due to being more energy efficient EVs still 

perform better than ICEVs. Emission results for different times of the year are given so it is 

possible to see how the performance changes in time and shape charging incentives based 

on this data. Despite being a strong study in the field this lacks optimization of charge 

hours, has a very high view about technical constraints and does not incorporate any 

environmental objectives.  

In summary, despite the fact that an extensive number of studies about EV impacts 

exist in the literature almost every study has conducted a scenario analysis, in which 

impacts of electric vehicles are analyzed by general assumptions about the average energy 

mix, without using structured or clearly defined mathematical models or optimization 

efforts that incorporates market or network operation constraints into account. The 

emissions are calculated by using average emissions or by predetermined fixed scenarios in 

the future, which can lead to results far from the actual case in certain cases. The business 
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as usual model in the electricity market aims to satisfy the total demand with minimum 

cost. If the electricity market will handle the EVs together with the conventional demand 

and continue with business as usual model, the EVs’ net impacts will directly depend on 

the marginal electricity generators that are put into operation when the EVs are introduced. 

There are some studies which use this approach and they also proved that the difference is 

significant. The limited number of studies which use mathematical modelling and 

optimization methods has always used a single objective function which minimizes total 

costs of the system and proposes policies that minimize costs. In general, cheaper 

generators in the electricity market such as coal generators generate more emissions than 

costly generators like hydro power and natural gas plants. Therefore, single objective 

models would lead to undesirable results regarding emissions in regions where cheap 

electricity is generated from carbon intensive energy sources. As stated above, the cost and 

the environmental performance of the electricity market are two conflicting objectives, 

which can be handled by the methods in bi-objective decision making. Using bi-objective 

decision tools may lead to generation of all efficient solutions for a region which can 

enable policy makers to choose among different options depending on their preferences of 

being more cost or emissions oriented. Another major gap in the studies using optimization 

methods was the use of scenarios for representing charging demand. Charging patterns are 

given as inputs to the model and results from different scenarios are compared without 

finding optimal charging hours from different regions and periods of the year. This 

approach limits the ability of the model to optimize performance of the EVs. Therefore, 

charging hours should be defined as decision variables to determine the most appropriate 

charging hours. The last gap addressed in this work is the lack of research about Turkey. 

There are no studies in the literature that analyze the impacts of a possible introduction of 

the EVs into the Turkish electricity market. The methodology in this thesis is an attempt to 

fill these gaps in the literature. 
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Chapter 3 

 

A METHODOLOGY TO ANALYZE THE IMPACTS OF ELECTRIC VEHICLE 

CHARGING 

 

3.1 Problem Definition 

 

 The common result reached in the studies that analyze the environmental and 

economic impacts of the EVs is that the impacts depend on magnitude, timing and location 

of battery charging. This means that the EV’s impacts are going to show different 

behaviours in different markets and regions. Since the EV technology is beginning to be 

commercialized in the mass market in the developed countries, the decision makers need to 

get a clear understanding of its net impacts in their own region and make appropriate policy  

recommendations to get the best benefits from the technology. Therefore, a significant 

number of studies have proposed methods to analyze the impacts of introduction of EVs 

and this thesis is believed to make a contribution to the research in the area by filling the 

gaps in the literature.   

As discussed in Chapter 2, there are three major methodological gaps that are 

targeted to be filled by this study. First gap is related to determining where the electricity 

that is used to charge the EVs is generated. In interconnected grids, it is a cumbersome 

effort to try to assign certain electrons to predetermined end users; hence, researchers have 

focused on higher levels of analysis to determine the energy mix used to charge the EVs. 

Most of the studies have based their calculations either on predetermined energy mix 
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scenarios or average electricity mix of regions. There are problems with these two 

approaches.  

In the first years of the introduction of electric vehicles, the electricity generation 

sector is not expected to react fast enough to add generation capacity equal to the demand 

coming from the EVs which are charged from the grid [20]. In addition to the slowness of 

the reaction, the uncertainties related to customers’ charging behaviours are going to make 

it very difficult to determine timing and magnitude of new capacity decisions for EV 

charging. Therefore, in the short term, it is not possible to assign certain types of generators 

to the EV charging and conduct environmental and economic analysis depending on 

predetermined technologies. Studies using this approach are going to be misleading the 

results about the impacts of the EVs. Another method that is being used widely is assuming 

that the EV charging will be equivalent to average energy mix which is used by the 

conventional electricity demand. The emissions released to the atmosphere during the 

supply of the conventional demand, will keep on being emitted whilst the EVs are charged. 

But when the EVs are added to the conventional demand, new generators will start running 

to supply the increased demand and the amount of total generation will change alongside 

the shares of primary energy sources. No matter if the electricity which runs through the 

battery chargers of the EVs are coming from these new generators or not, the net emissions 

increase will be equal to the amount of GHGs emitted by the new generators. Since EVs 

are the only root cause of this increase, the energy mix related to the charging of them 

cannot be determined by the average mix. Calculations based on the average mix can be 

different from the actual case if the new generators running have a different mix then the 

average mix. Before the electricity market takes the EV charging demand into account 

during the capacity expansion decisions in the long term, the EV charging must be treated 

as a marginal demand that will be added to the conventional electricity demand. The 

models used in the methodology proposed in this study are created to determine the 
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marginal electricity mix under different market penetration and charging scenarios and base 

impact calculations on the marginal effects of EV charging. 

Another important gap in the literature is about determining the effects of charging 

hours. All the studies in the literature which have taken charging hours’ effects into account 

have conducted the calculations based on predetermined scenarios and compared the 

environmental and economic results of these scenarios. Despite the fact that the number of 

different scenarios analyzed are sufficient to provide insight to policy makers, the scenario 

analysis approach limits the analysis to a certain number of cases and inhibits the studies 

from determining which charging patterns would be the most beneficial for the region to 

charge the EVs. By adding the charging pattern optimization dimension to the system, it 

becomes possible to see if there are better charging patterns than predetermined scenarios. 

The multiple-stage methodology proposed in this study enable defining charging hours as 

decision variables to find the best patterns alongside conducting scenario analysis.  

The third gap targeted to be filled with the proposed methodology is the lack of 

application of bi-objective decision tools to shape policy recommendations about the 

charging hours and marginal generators of the EVs. In order to get a better understanding 

about why this is important, the way electricity markets operate will be explained briefly. 

As expected, the electricity supply chains, aim to supply the electricity demand with the 

minimum cost possible without violating technical constraints of the generation, 

transmission and distribution systems. The generators which are going to be operating to 

supply the electricity demand are determined by a merit-order decision process in which 

the bids from generators are accepted starting from the lowest possible cost until the 

demand is met. Generators operating at lower costs are generally thermal generators such 

as coal and lignite power plants which use the chemical energy contained in fossil fuels to 

generate electricity. These generators are emitting higher levels of GHGs than those 

generators which are more costly to operate such as natural gas and hydroelectric power 
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plants. Therefore, the single objective methods which recommend EVs to be charged at the 

lowest cost hours are forcing EVs to emit more GHGs at the same time. This conflicting 

relation between the costs and the emissions provide a perfect application area for bi-

objective optimization. To the best of the author’s knowledge, none of the studies have 

used a bi-objective model to analyze impacts of the EVs. By optimizing the cost and 

emissions objectives together, the proposed methodology enables decision makers to see all 

possible alternatives in their electricity markets and base their supporting policies on these 

alternative results rather than being only cost oriented. Increased number of alternatives 

will make it possible to choose among more environmental or more economic policies for 

the charging hours and electricity markets. 

Since the policies regarding the EVs are dependent on the net impacts on the 

environment and the economy, they should be understood well before the introduction 

takes place. The systems affected by the introduction of the EVs are too large to be 

analyzed by a real experiment; therefore, mathematical modelling and solution methods of 

operations research are the tools that have been used in the methodology proposed in this 

thesis. Briefly, the methodology presented in this chapter consists of four steps. For a 

number of market introduction scenarios, on which no agreement is present in the 

literature, the number of battery electric vehicles (BEV) and plug-in hybrid electric 

vehicles (PHEV) that are going to be introduced are determined. In the first step, for the 

same number of gasoline and diesel conventional vehicles, annual GHG emissions, primary 

energy consumption and energy costs are calculated. For further steps, a bi-objective MILP 

model to represent the day-ahead electricity market is created which determines the 

marginal generators. The next step, assumes that the EVs are charged from the electricity 

grid depending on the business as usual scenario, in which the lowest cost generators are 

added to the conventional supply, and uses the single objective version of the MILP model 

to determine the marginal generators. Charging patterns are assumed as fixed scenarios in 
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this step. Environmental and economic impacts of the EVs are calculated depending on the 

results of the model. In the third step, the model is run as a bi-objective model which 

determines a number of sets of marginal generators that can be used to supply the 

additional electricity demand coming from the EVs. The last step defines the charging 

hours as decision variables rather than fixed scenarios and determines the most economic 

and environmental charging hours and marginal generators to optimize the benefits of the 

EVs. Steps 2, 3 and 4 are conducted for different days in a year to represent the average 

behaviour in a year the annual results are compared with the emissions, cost and energy 

consumption figures of the conventional vehicles. Remaining subsections of this chapter 

are organized as follows. First the experimental design is explained in detail. This is 

followed by the mathematical models created to represent the electricity day ahead market. 

The last subsection gives brief information about the solution methods used to solve the bi-

objective MILP model.  

 

3.2 Step 1: Conventional Vehicles’ Impacts 

 

The EV technology is the substitute of the internal combustion engine vehicles 

which are powered by gasoline or diesel fuels. If the EVs are to be successful in the mass 

market, they need to perform better than ICEVs in the means of GHG emissions, primary 

energy consumption and energy costs. Therefore, the performance of conventional vehicles 

must be understood well to set a reference point to the EVs. In the first step of the impact 

analysis of the EVs, conventional vehicles’ annual performance will be calculated based on 

simplifying assumptions about market penetration scenarios, vehicle specifications and 

customer behaviour.  
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3.2.1. Market Penetration Scenarios 

 

The first assumption that is needed to be set is the market penetration levels of the 

BEVs and PHEVs but the prediction of market scenarios includes great uncertainties and 

depends on numerous factors that cannot be foreseen easily. Despite the fact that the 

automotive industry professionals and environmentalist agree that the electric vehicles will 

be on the roads before 2020, the magnitude and speed of penetration is a wide topic of 

debate. Every country will have its own acceptance rate based on the supports of the 

governments and customer behaviours; therefore, there is no agreement on an 

internationally accepted prediction about the penetration levels. The way followed to 

overcome the uncertainties that was used  frequently in the literature is to assume different 

scenarios of penetration levels and conduct analysis for all of them to analyze behaviour of 

the system under varying parameters.  

In the literature, scenarios span over a large scope from very pessimistic to very 

optimistic market projections. According to International Energy Agency’s Energy 

Technology Perspectives 2008 report, which is an optimistic estimation that includes 3 

different scenarios, the penetration of EVs range from 5 to 50% by 2030 [41]. However a 

revision was issued by IEA after the global economic crisis which is a more pessimistic 

estimation that assumes average global sale rates to reach 2.5% for BEV and 6.1% for 

PHEVs with a maximum share of 10% in lead markets by 2020 [2]. United Kingdom 

Department of Business, Enterprise and Regulatory Reform has made an analysis of the 

market to shape UK’s policies forward and ended in 3 scenarios. This study assumes that 

by 2020 2.5%, 4.9% and 10% of all cars on the road will be EV for mid-range, high-range 

and extreme-range scenarios respectively [42].  Another governmental attempt to predict 

and target penetration rates for EVs was done by Germany, which announced a target of 

2.1% market share by 2020 and 10.4% market share by 2030 [43]. Another study 
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conducted in Germany expects a market share of 1% for BEVs 2% for PHEVs by 2015 and 

expects an increase to 2% and 5% respectively for EVs and PHEVs by 2020 [2]. 

Consulting companies also had some work to predict the market penetration scenarios.   

The Boston Consultancy Group predicts vehicles with alternative propulsion technologies 

to reach 12% to 45% market share by 2020 [20].  In a study by McKinsey, two scenarios 

are used to analyze the impacts. In the lower penetration scenario BEVs and PHEVs reach 

respective shares of 1% and 5% by 2020, whereas in the medium scenario these increase to 

2% and 6% [44].  Some articles that have analyzed impacts of EVs also used scenarios to 

reach a solution. Brady and O’Mahony have used 3 scenarios named low, medium and high 

scenarios and estimated that PHEVs would reach 10% in low case, 15% in medium case 

and 20% in high case [45]. Hadley and Tsvetkova, estimated that PHEVs will achieve a 

constant 25% market share by the year 2020 [46]. There are also other approaches different 

than just assuming numbers, like Perujo and Ciuffo who based their penetration estimation 

on LPG vehicle sales in Italy by arguing that EV technology and LPG vehicles attract the 

interest of same customer groups, thus they will follow similar trends [22]. 

As a result of the literature review on market scenarios, it is decided to assume three 

different scenarios and compare their results to analyze varying behaviour of the system in 

this unpredictable environment. The scenarios are named as low, medium and high market 

scenarios. In the past, new technologies like LPG powered vehicles have penetrated into 

the market between 10 to 20 years after introduction; therefore, it assumed that at least 10 

years are needed for EV technology to have significant market share but the speed of 

penetration is highly dependent on the policy incentives and governmental regulations [2]. 

According to this information, the year for EVs to have a share in market that will be 

enough to conduct a meaningful analysis on the impacts in assumed to be the end of this 

decade and all the market penetration scenarios used in this study are set to cover years 

from 2012 to 2020.  



 

 

Chapter 3: A Methodology to Analyze the Impacts of Electric Vehicle Charging   42 

The low scenario is the most likely scenario that is expected to be reached by 2020; 

because, the customer acceptance and the production levels are expected to be a barrier on 

fast market penetration of the EVs in the coming decade [21]. The low scenario assumes 

that BEVs reach 2% and PHEVs reach 5% share in passenger car market in 10 years. In the 

medium scenario, the shares increase to 5% for BEVs and 11% for PHEVs. This scenario is 

selected to see the effects of a wider acceptance level of the EV technology. The last 

scenario, which is named as the high scenario, is the most optimistic scenario and it is 

conducted to see the effects of an unexpected level of market penetration taking place in a 

relatively short period of time for the electricity market to react and increase capacity. In 

the high scenario, the BEVs take 10% and PHEVs take 25% share in passenger car market 

by 2020, which makes this scenario very unlikely to happen. The year by year market 

shares of the scenarios are given in table 3.1.   

 

Table 3.1: Assumed Market Shares of the EVs in Passenger Car Market from 2011 

to 2020 

  Year 

Scenario 
Car 

Type 
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

Low 
BEV 0.10% 0.20% 0.30% 0.40% 0.50% 0.75% 1.00% 1.30% 1.70% 2.00% 

PHEV 0.10% 0.15% 0.25% 0.50% 0.75% 1.50% 2.50% 3.50% 4.50% 5.00% 

Medium 
BEV 0.25% 0.45% 0.50% 0.75% 1.25% 1.75% 2.50% 3.00% 4.00% 5.00% 

PHEV 0.10% 0.30% 0.50% 1.00% 1.50% 3.00% 5.00% 7.00% 9.00% 11.00% 

High 
BEV 0.25% 0.75% 1.25% 3.00% 4.00% 5.00% 6.00% 7.50% 9.00% 10.00% 

PHEV 0.10% 0.60% 1.00% 2.00% 3.00% 6.00% 10.00% 14.00% 18.00% 25.00% 

 

For every market penetration scenario, the number of conventional vehicles that are 

expected to be replaced by the EVs can be found by applying these sale shares to regional 

passenger car market predictions until 2020. These numbers will be equal to number of 

conventional vehicles replaced. Gasoline and diesel vehicles have different efficiency and 
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emission rates; therefore, determining the numbers of gasoline and diesel vehicles that are 

expected to be replaced by the EVs is important. In EU-27 passenger car markets, diesel 

vehicle sales have passed gasoline vehicle sales in 2005 [47] and still remain over 50% in 

2011 [48]. In countries like Belgium and Spain, diesel shares climbed up to 80% in 2008 

[48]. Looking at the trend in sales it is concluded that the sale shares trends will continue to 

climb slightly in the next decade with wider acceptance of diesel technology. Therefore, it 

is assumed that 60% of the EVs are going to replace diesel and 40% of them are going to 

replace gasoline vehicles.  

 

3.2.2. Performance Measures 

As discussed in chapter 2, the major problems related to the ICEVs are energy 

inefficiency, high levels of GHG emissions and increasing energy costs. In order to 

compare the performance of the EVs in these fields, annual energy consumption, GHG 

emissions and cost of operation of conventional vehicles must be calculated.  

 

3.2.2.1. Annual Primary Energy Consumption 

 

Annual primary energy consumption (APEC) of a conventional vehicle is 

calculated using the following formula:  

 

                                                                       (3.1.) 

 

In the formula above,           is the fuel consumption of the vehicle which 

depends on the vehicle type (gasoline or diesel), given in litre/km,       is the energy 

content of the fuel used by the car, given in kWh/litre,   is annual kilometres driven under 
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urban conditions and   is the energy efficiency of well-to-tank operations carried out to fill 

the tank of a car.  

In order to calculate the energy consumption of the conventional vehicles, first data 

needed is the fuel consumption of vehicles. The first customers of the EVs are expected to 

be people living in big cities who use their cars for commuting. Commuting is defined as 

the action of transportation between one’s place of residence and place of work or study. 

Since this activity takes place under urban conditions, the comparison of the EVs will be 

made with urban consumption values of the conventional vehicles. However, as the 

vehicles sold in every market and average fuel consumption rate,          , is going to 

differ from country to country, it is not possible to give a universal fuel consumption figure 

here (Data used in Turkish Application is given and referenced in Section 4.1.). Second  

data which is a universal figure is the energy density of commercially sold gasoline and 

diesel fuels. Every litre of gasoline contains 34.2 MJ of energy and every litre of diesel fuel 

contains 38.6 MJ of energy [14]. Using the conversion factor of 0.277 from MJ to kWh, 

      is equal to 9.5 kWh / litre for gasoline and 10.72 kWh / litre for diesel.  

The third necessary data is the annual average kilometres driven by the drivers. 

Despite the fact that the driving habits change from region to region, surveys from different 

regions enables to make assumptions about the distances travelled. According to the U.S. 

Environmental Protection Agency passenger cars in the US travel an average of 12,000 

miles per year [50]. This average mileage is approximately equal to 52 kilometres per day. 

For studies conducted in the U.S.,   can be assumed as 19,000 km/year.  In the European 

Union driving distances are shorter than the U.S. According to the Panorama of Transport 

report published by the European Commission, average distances travelled on road ranged 

between 16 km and 43 km and the average daily passenger vehicle kilometres travelled is 

27 km for EU-25 countries [17]. According to Toyota, average weekday kilometre driven 

by passenger cars is approximately 30 kilometres [51]. Based on these assumptions,   can 
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set equal to 10,000-11,000 km/year for countries where driving habits are similar to Europe 

and Japan.  

The data introduced above is only sufficient to calculate the final energy 

consumption. In order to find the primary energy consumption, well-to-tank energy 

conversion efficiency must be known. Well-to-tank steps of the supply chain of 

conventional road transportation vehicle, extraction of crude oil, distillation processes and 

transportation of fuels to end users. In the studies explored, energy efficiency of well-to-

tank processes is assumed to be 83% [3],[5],[8],[14]. This means that for every unit of final 

energy consumed in the ICE, 0.17 units of primary energy is consumed in well-to-tank 

processes. For this reason, final energy consumption in the conventional cars is divided by 

the efficiency coefficient  , which is set equal to 0.83 throughout the study, to find the 

primary energy consumption of the conventional vehicles.  

 

3.2.2.2. Annual GHG Emissions 

 

Annual GHG emission (AGHG) of a conventional is calculated using the following 

formula:  

 

                                                                      (3.2.) 

 

In the formula (3.2.)           and   values have the same use in formula (3.1.). In 

the formula above,        is the amount of GHGs emitted when a litre of fuel is combusted, 

given in g/litre and   is the GHG emission coefficient of well-to-tank processes. Since the 

amount of carbon in a litre of gasoline and diesel is known, the amount of CO2 emitted into 

the atmosphere can be calculated easily. According to the fuel emissions data used by the 

U.S. Environmental Protection Agency, every litre of gasoline contains 639.5 grams of 
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carbon and every litre of diesel fuel contains 733.8 grams of carbon [48]. Since there is one 

atom of carbon in every CO2 molecule, the amount of CO2 emitted during the combustion 

of liquid fuels can be found by multiplying the amount of carbon to the ratio of molecular 

weight of CO2 and carbon, which is 44/12. Using this ratio, one litre of gasoline is found to 

emit approximately 2,350 grams of CO2 and one litre of diesel is found to emit 2,690 grams 

of CO2. In addition to the vehicle emissions, well-to-tank emissions must be taken into 

account to make a GHG comparison with the EVs. The reason is the GHGs emitted during 

the extraction, distillation and transportation processes of the energy supply chain. Well-to-

tank emissions are calculated in a similar way to primary energy consumption. According 

to the European Association for Battery Electric Vehicles, in order to find well-to-wheels 

emissions, tank-to-wheels emissions must be increased by 17% [47]. Therefore    is set 

equal to 1.17 for the rest of the calculations in the study. 

 

3.2.2.3. Annual Energy Costs 

 

Annual energy costs (AOC) of a conventional is calculated using the following 

formula:  

 

                                                                       (3.3.) 

 

In (3.3.),           and   are defined as the same as they were defined for formulas 

(3.1.) and (3.2.). The only necessary data needed to calculate annual energy costs is the cost 

of the fuel, which is defined as        and given in $/litre.       value changes for different 

stakeholders in the problem. If the energy costs are going to be calculated for the owners of 

the vehicles, than       is equal to the retail pump price of the fuel. Otherwise, to calculate 

the energy costs for the sector       is set equal to the refinery cost of the fuel itself, 
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excluding the taxes, transportation costs and the profits of the stakeholders in the supply 

chain. Since these costs change significantly from region to region (up to 67% in Turkey 

according to PETDER’s report on sector performance in 2010 [49], there is no general 

assumption for energy cost of fuels. It should be found before the application of the 

methodology. 

At the end of the first step, the decision makers know the approximate primary 

energy consumption, GHG emissions and energy costs of conventional vehicles by using 

the formulas described above. After finding the performance of the EVs for the same 

measures, competing technologies of ICEVs and EVs can be compared clearly.    

 

3.3 Step 2: EVs’ Impacts with Business as Usual Generation Decisions 

 

The purpose of the second step in the proposed methodology is to calculate the 

annual primary energy consumption, GHG emissions and energy costs of the EVs under 

business as usual generation decisions. In this subsection, model and data that are used to 

determine the impacts are introduced.  

The energy consumption, emissions and cost performance of the vehicles depend on which 

primary energy source supplies the energy that runs the vehicles. For ICEVs, the energy 

supply chains are relatively easier to analyze than that of the EVs because the primary 

energy source that runs the internal combustion engine, does not show significant variance 

as the region, time and magnitude of the demand changes. On the other hand, the primary 

energy source that generates the electricity to charge the EVs differs from region to region, 

time to time and shows variance as the magnitude of charging changes, which makes it 

difficult to calculate the impacts of the EVs. Therefore, it is necessary to find a 

methodology that can determine the sources of energy that generate electricity to charge the 

EVs and calculate the net impacts of the technology in different regions. 
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As stated in the second section, one of the main gaps in the literature is the 

calculation of impacts by using predetermined energy mix scenarios or average mixes. The 

methodology proposed in this step, aims to fill this gap by focusing on the marginal 

electricity generation. After the introduction of the EVs, the conventional electricity load 

profile in cities will change because of the charging activity. The conventional load profile 

on 19/07/2012 at Adapazarı region which also covers demand of Istanbul is given in blue 

bars in figure 3.1. [52]. To the top of the conventional demand, an estimated charge 

demand for 200,000 PHEVs being charged at peak hours are added and marked in red.  

 

Figure 3.1.: Marginal load representation on 19/07/2012 for Adapazarı Region  

 

This visualizes the amount of extra demand that needs to be supplied by the 

electricity network when EVs need to be charged. It is for sure that either existing 

generators will increase production or new generators, named as the marginal generators 

will be put in operation to satisfy the increasing demand. The idea behind the methodology 
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that focuses on marginal electricity generation is that, no matter if the electricity generated 

in these marginal generators are used to charge the batteries or not, primary energy 

consumption, GHG emissions and energy costs of the system will increase as new 

generators are put in operation. Since the EVs are the only root cause of the marginal 

increase, the net impacts of the EVs are equal to the amount of increase in the primary 

energy consumption, emissions and costs due to new generation. Therefore, it is necessary 

to find a method to determine the set of marginal generators that are put in operation when 

the EVs are added to the conventional electricity demand.  

The aim of the second step of the experiment is to find how the equal number of 

EVs to ICEVs performs for the same mileage in a region under business as usual electricity 

market operations. In order to accomplish this, a number of EVs found by market 

penetration scenarios are assumed to be charged from the electricity grid as a new demand 

and the effects on the electricity market are found. The following paragraphs give detailed 

information about the assumptions in the study. Some readers may find the assumptions too 

simplifying or unrealistic but the lack of real-world data and abundance of uncertainties 

force the study to be carried under many assumptions for this new technology.  

 

3.3.1. EV Fleet and Models 

 

 In order to compare the performance of EVs to an ICEV fleet, technical data about 

the vehicles to be used must be known clearly. Since there are not any widely available 

EVs in the market, the vehicles to be used for technical data cannot be determined with a 

similar method to ICEVs by creating a representative fleet. The vehicles to be used have 

been chosen among vehicles of comparable size and performance, which have been 

announced to be produced in short term by major automobile manufacturers. Another 

criterion for selection of vehicles was the availability and reliability of technical data, 
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which is very important for the reliability of the results. The details for some of the most 

recent EVs announced by manufacturers were given in Chapter 2.  

For the BEV to be used throughout the study, Renault’s Fluence Z.E. model has 

been chosen which has started to be produced in Renault’s Bursa plant in 2011. The PHEV 

to be used throughout the study is Toyota’s Prius PHEV model. Detailed technical data 

about these two vehicles about their energy consumption data are given briefly in Table 

3.2. 

 

Table 3.2.: Summary of BEV and PHEV Data Used in the Study 

Manufacturer Renault Toyota 

Model Fluence Z.E. Prius 

Characteristic BEV PHEV 

Production Started in 2011 2012 

Electric Motor Power 70 kW 60 kW 

Battery capacity 22 kWh 5.2 kWh 

All-electric range 160 km 23.4 km 

Fuel consumption - 3.27 lt/100 km 

Electricity consumption 
(Tank to Wheels) 

0.18 kWh/km 0.152 kWh/km 

 

3.3.2. Daily Energy Need and Charging Data 

 

Both of the models are assumed to be driven for 40 kilometres every day for 

commuting, similar to ICEVs in Step 1. The vehicles are than assumed to be plugged in to 

a regular EV charger which is powered by a conventional plug. Since the duration of 

charging changes from charger to charger, a charger model is assumed to be used for 

charging the vehicles to fill the battery that has been depleted during the 40 kilometres. 

Coulomb Technology holds a significant share of EV charging service providing market 

and has signed agreements with many countries in Europe, including Turkey [53]. The 
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company’s CT1500 charging stations provide 3.7 kW (230V at 16 A) charging and are 

applicable to standard plugs to provide regular charging service to EVs [54]. The efficiency 

of the CT 1500 charger is assumed to be 85% throughout the study, which is found to 

match the charger efficiency assumptions in similar studies [55].  

During the constant current phase the charger transfers the maximum capacity 

allowed by the power coming from the plug, but as the battery voltage saturates, the 

transfer slows down [18].  To show this effect, the amount of power needed by the charger 

is assumed to change from hour to hour, decreasing in time. For Renault Fluence which 

depletes 7.2 kWh of its battery capacity by travelling 40 kilometres a day, the total amount 

of energy demand increases to 8.7 kWh when charger efficiency of 85% is taken into 

account. As explained in the charger specifications used in the study, charger is able to load 

3.7 kWh in one hour. This value decreases as the battery saturates and full charge is 

reached after 4 hours. This is aligned with the technical specifications announced by the 

manufacturer [56]. With the same reason, 3.56 kWh demand of Toyota Prius for 23 

kilometres, which is the limit on full EV drive, increases to 4.2 kWh.  With the assumed 

charger capacity of 3.7 kW, this amount is charged in approximately 100 minutes to full 

charge. This information is also aligned with the data taken from the manufacturer [57].  

Figure 3.2. gives the amount of energy needed during the charging process by two vehicles 

and these values are used throughout the study to create the marginal demand estimations.   
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Figure 3.2.: Charge profiles of BEV and PHEV Batteries 

 

3.3.3. Charging Scenarios 

 

 The energy demand of ICEVs considered in this study is supplied by liquid 

hydrocarbons. The amount of primary energy used to produce the fuel and the amount of 

GHG particles emitted per litre are independent of the time of refilling. On the other hand, 

the energy mix of electricity generation changes from hour to hour, thus primary energy 

consumption and environmental performance of the energy source alters. In Figure 3.3., the 

energy mix of the Turkish electricity market from a representative day reported by TEİAŞ 

is shown. Early morning hours have a higher share of fossil fuels whereas peak hours have 

a more clean energy mix as the share of hydro generators increase. Therefore, the hour of 

battery charging has an impact on the performance measures of the EVs and it is very 

important for the decision makers to determine which hours are the most suitable for costs 

and environmental performance. Since there is lack of real world data about customer 
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charging behaviour, before going into optimization efforts, assuming charge scenarios has 

been determined as the best way of modelling the impacts of the EVs. 

 

Figure 3.3.: Primary Energy Sources of Generation on 23 July 2011 in Turkey 

 

 In the second step, the EV fleet is assumed to be charged according to 

predetermined charging scenarios. Charging scenarios show what percentage of vehicles 

start charging in every hour of the day. In the literature related to the impacts of the EVs, 

some charging scenarios have gained wider acceptance than others. First and the most 

accepted scenario is the uncontrolled charging scenario in which authorities has no 

influence on customers’ charging decision. In such a case, customers are expected to plug-
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in their vehicles when it is most convenient for them, especially at the end of each trip. 

Since the EV projects in the short term target commuters, the biggest percentage of 

charging will occur after customers turn back their homes after work, during peak hours of 

electricity use [39],[58]. This scenario is worth analyzing because it is the most likely 

scenario to occur unless authorities install necessary promoting regulations to shift 

charging to early morning hours where the conventional electricity demand is lower. The 

percentage of vehicles plugged in for charging at each hour according to uncontrolled 

scenario is given in Figure 3.4.  

The second charging scenario, which is named as delayed charging, is also 

considered as an option in the literature [34],[35]. In this scenario, it is assumed that the 

customers are encouraged to plug-in by themselves without any advanced technology like 

smart applications in hours where conventional load is less than peak hours in the evening. 

The vehicles are distributed evenly to hours between 20:00 and 01.00. This scenario gives 

the analyzers a chance to compare the results of a charge hour regulation policy with the 

expected case of uncontrolled charging. The percentage of vehicles charged in the delayed 

charging scenario is given in Figure 3.4.  

 The overall effect of EV charging can be better understood when the power demand 

of battery chargers and the charging scenarios are combined. In Figure 3.5. and 3.6., the 

electricity demand coming from the EVs under two different charging scenarios are given 

for the low market penetration case. As expected, in the uncontrolled charging case, the 

charging demand peaks during evening hours where the conventional demand is also very 

high whereas the delayed charging case better fills the valley of low demand hours by 

shifting the charging demand to late night hours. The medium and high penetration 

scenarios show the same distribution with higher values. Comparing results of these two 

different situations is expected to give valued insights to decision makers to support 

charging hour policies or not.   
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Figure 3.4: Percentage of Electric Vehicles Plugged in According to Two Scenarios 

  

 

Figure 3.5.: Marginal Load Profile Due to Uncontrolled Charging 
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Figure 3.6.: Marginal Load Profile Due to Delayed Charging 

 

3.3.4. Electricity Market Assumptions  

 

The electricity market settings, under which the EVs will be charged, need to be 

considered carefully before modelling the charging impacts on the network. In this study, 

the regions in which the EVs are charged are divided according to the electricity market 

operation borders. In each region, the EVs charged in cities increase the electricity demand 

and this increased demand is supplied by the generators which are decided by the region’s 

electricity market operations. EV fleets in different regions will be charged according to the 

same charging scenarios but the energy mix they will be charged will change from region 

to region. The regions can also import electricity from neighbouring regions if it is 

economical to do so. The best example to such a market structure is the United States 

where the states are shared among different distribution companies operating their own 

daily market operations. By doing so, the electricity trade among different regions can be 
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taken into account thus better charging results can be achieved by utilizing a larger set of 

generators. 

 Independent from the number of regions, all electricity markets considered in this 

study are day–ahead electricity markets, where the system regulator announces a demand 

forecast for 24 hours and collects bids from generators from different regions for every 

hour of the day. The dispatch algorithms used by the system regulators list those bids in 

increasing order of cost and dispatches the maximum amount possible to cheapest 

generators without violating technical constraints until the demand is satisfied for every 

hour. This method is called merit-order dispatch and the model used in this step of the 

methodology is built to represent this market structure. In this step of the methodology, the 

market is assumed to operate a merit order dispatch rule, therefore the step is named as the 

“Business as Usual Case”.  

In this step of the methodology, the EV charging demand is added to conventional 

demand of regions. The bid data taken from the regional market operators are used in a 

mathematical model and the marginal generators which satisfy the increased demand 

coming from the EVs are determined under technical considerations described below. 

Availability of bid data from market operator is crucial at this step.  

The most important bid specification that shapes the behaviour of the system is the 

price of the bid per MWh electricity produced for each hour for each region and the upper 

bound of generation. The generators are allowed to give more than one bid to the market 

operator and increase the cost of electricity as the amount of generation increases. 

Generators are divided into two groups depending on their bid durations: hourly bids and 

block bids. Hourly bids can be accepted without any obligation to accept the bids from the 

same generators for the following hours, whereas block bids are either accepted for every 

hour or rejected completely. It is not possible to partially accept a block bid, therefore  
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accepting one hour means accepting all the remaining hours of the block bid given by the 

generator. 

 

3.3.5. Technical Considerations 

 

Hourly bids are separated into two groups according to their generator’s 

technology. Generators using fossil fuels such as coal, lignite, natural gas, fuel-oil and 

petroleum, and other thermal operating generators such as bio-fuel generators are named as 

thermal generators. These generators operate under very strict operation rules and change 

the generation level by switching generation units on or off with limited flexibility.  

Therefore, it is not possible to partially accept an hourly bid from a thermal generator. They 

are either accepted as a whole or rejected. The second group of generators consists of 

generators using renewable sources of primary energy such as hydro power, wind power or 

solar power. Since it is possible to adjust the amount of generation by changing the amount 

of primary energy intake, renewable generators operate more flexibly. Thus, bids coming 

from renewable generators are assumed to have the option to be accepted partially. For 

block generators all bids are accepted as a whole or rejected independent of their 

generation technology.  Renewable generators are allowed to give a lower bound for 

generation to the market operator in order to avoid uneconomical production volumes.   

There are ramp-up and ramp-down constraints especially in thermal generators. The 

increases and decreases in generation amounts must be within these limits to sustain safe 

operation of the generators. Therefore, the model in this step considers these limits. , 

Another technical consideration taken into account in this study is the amount of 

transmission and distribution losses. As the electricity travels in high voltage transmission 

lines and distributed in low voltage distribution lines, some of the electricity is lost due to 

technical and non-technical reason. Technical losses are mainly caused by the heating in 
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high voltage wires and the amount of loss increases as the distance travelled by the 

electricity increases. Therefore, generating electricity in generators that are geographically 

closer to the demand points is more efficient than generating electricity in remote regions, 

assuming that the generation and transmission technologies are identical. In the OECD 

countries an average of 6.5% of annual electricity generation is lost in transmission and 

distribution lines. The world average is higher than the OECD countries with a loss of 

8.7%. Turkey possesses one of the most inefficient transmission and distribution systems 

with an annual loss of 18.6%. [59]. These losses are too big to be neglected in the model 

therefore the model proposed for the second step, takes transmission losses into account in 

a simple way. Calculation of net transmission losses for every generator and load is out of 

the reach of industrial engineering education. Therefore, every generator is assigned a 

predetermined loss coefficient which changes according to the region the bid is offered for. 

The loss coefficients are set equal to the average transmission and distribution loss levels in 

the region unless more detailed data is available.   For example a coal power plant in 

Turkey is assumed to transmit and distribute electricity with an efficiency of 81.4% in 2012 

[59]. Since the trends show that the losses are decreasing every year, the average losses in 

2020 may be slightly lower than today’s levels.   

The second technical consideration about the transmission system is the 

transmission line capacities. Having enough generation capacity in a region may not be 

enough to be utilize the generators there because transmission lines have a capacity for 

electricity that can be carried through the wires in a certain period of time. The model in 

this step takes transmission line capacities into account and ensures that the transmission 

lines are not overloaded by the marginal electricity generators that are utilized to supply the 

EV charging demand. It is assumed that the generators and the generation levels that satisfy 

the conventional electricity demand are known prior to EV demand. By knowing the 

conventional generator and transmission line loads, the spare generation and transmission 
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capacities are known and the dispatch algorithm can output feasible results without 

violating transmission constraints.   

 

3.3.6. Business as Usual Mathematical Model 

 

According to the assumptions and technical considerations described above a 

mathematical model has been created to determine the set of marginal generators. For a 

predetermined market penetration and charging scenario the model satisfies the marginal 

demand coming from the EV charging with minimum cost without violating the technical 

constraints in a day-ahead electricity market applying a merit-order dispatch rule. 

 

3.3.6.1. Demand Balance Constraints 

 

The first constraint group in the model is the demand balance constraints. The 

constraints ensure that the conventional generation plus the marginal electricity that has 

been generated for the EVs are enough to supply the conventional electricity demand and 

the charging demand of the electric vehicles for every region and time period.  

 

                                ≥          
                

 
    

+     
                  

 
                                             (3.4) 

 

The decision variable used throughout the model is      , which is defined as the 

amount of marginal electricity generated at generator  , for region  , at time   according to 

the bid   of generator  . The variable can take any positive value. Time periods in this 

model correspond to hours of the day. Here   is the set of marginal generators which can 

submit bids to generate electricity for the increased demand.      is the set of bids 
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submitted by generator   for region   at time period  .     is the loss coefficient assigned to 

each generator-region pair which takes a value between 0 and 1. The loss coefficients are 

independent of the time of the day and the bid number and they are assumed to be equal to 

the average transmission and distribution losses in a region, unless more detailed loss data 

is available.      is the amount of conventional electricity generated at generator   for 

region   at time period  . The set of conventional generators which do not submit bids for 

the increased demand is symbolized by   . Summation for these two generator groups 

make up the total electricity supply for region   at time  . The supply must be greater than 

or equal to the electricity demand.  

The conventional electricity demand of region   at time   is known and it is 

symbolized by    . The EV charging demand is separated into two parts as the demand 

coming from BEVs and PHEVs. As stated above, BEVs are assumed to be plugged in for 4 

hours and PHEVs are assumed to be plugged in for 2 hours. Therefore at time  , the 

charging demand of BEVs is the sum of the demand of vehicles plugged-in at  ,    , 

    and     and the charging demand of PHEVs is the sum of the of the demand of 

vehicles plugged-in at   and    . In this constraint   is the indicator which shows the 

number of hours that the vehicle has been plugged in for. For example, a vehicle that has 

just been plugged-in is in the first hour of charging and   is equal to 1.   
    and   

     are 

the amount of power needed by the charger at charge state   by BEVs and PHEVs 

respectively.       and        are the numbers of battery electric vehicles and plug-in 

hybrid electric vehicles plugged in at time   at region   respectively. Equation (3.4.) 

ensures that the electricity generation is greater than or equal to the electricity demand for 

every region and time period.  
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3.3.6.2. Generation Bound Constraints 

 

Every bid submitted by the generators has lower and upper bounds of operation for 

a certain price interval. Since the amount of electricity generated in every generator should 

obey these bounds, a group of generation bound constraints are added to the model. 

 

                                                                                    (3.5) 

                                                                                        (3.6) 

                                                                                         (3.7) 

 

 The decision variable used to represent the bound of generation is     , which is a 

binary variable taking 1 when the bid   of generator   is accepted at time   .  For thermal 

generators, accepting a bid means that all of the available power capacity must be utilized. 

Therefore in equation (3.5) the amount of generation is set equal to the upper bound of the 

bid   submitted by generator   for region   at time  , symbolized by      .  For renewable 

generators, it is assumed that partially accepting a bid is possible. Therefore, the generation 

is bounded by inequality (3.6). It is possible for renewable generators to submit bids with 

lower bounds to ensure economical production. This lower bound relation is modelled with 

inequality (3.7).  

 

3.3.6.3. Ramp-Up and Ramp-Down Constraints 

 

It is not possible to immediately start and stop operations of large generators due to 

technical reasons such as heating and cooling times of boilers, mandatory acceleration and 

deceleration times of generator coils. Therefore, ramp-up and ramp-down constraints are 



 

 

Chapter 3: A Methodology to Analyze the Impacts of Electric Vehicle Charging   63 

added to the model to ensure that the difference of generation between one hour and the 

consequent hour is within secure limits of operation.  

 

           
                     ≤   

                   (3.8) 

                              ) ≤   
                                        (3.9) 

 

For every generator, inequality (3.8) ensures that the difference of generation 

amount between time period   and     is less than or equal to the ramp-up limit 

symbolized by   
 .Similarly, inequality (3.9) ensures that the difference of generation 

amount between time period     and   is less than or equal to the ramp-down limit 

symbolized by   
     

 

 3.3.6.4. Transmission Constraints 

 

 The transmission lines may be the limiting factor in an electricity grid, where the 

demand is increasing. In order to ensure the feasibility of solutions for the transmission 

infrastructure, transmission constraints have been added to the model. 

 

                                        +                   ≤                    (3.10) 

 

In inequality (3.10), the set of transmission lines is represented with set  . For 

every transmission line   at every time period  , the amount of electricity passing through 

the line must not be greater than the thermal capacity,   . In order to relate the generated 

electricity with the relevant transmission lines, a binary data symbolized by      is defined. 

Value of      is equal to 1 if the electricity generated at generator   must pass through 

transmission line   to be transferred to region   and 0 otherwise.  Multiplying the 
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transmission binary data with the amount of marginal and conventional generation, gives 

the total amount of electricity passing through line  , which must be less than the thermal 

capacity.  

 

3.3.6.5. Objective Function 

 

The objective of the model represents the assumptions about the electricity market 

and minimizes the total cost of marginal generation that occurred as a result of EV 

charging.  

 

min                                           (3.11) 

 

Every bid submitted by generators has a price per MW of generation capacity 

utilized, which is symbolized by     . The objective function minimizes the cost of 

marginal electricity under the technical constraints described above.  

  

3.3.7. Performance Measures 

 

In a similar manner to the first step, performance measures of the EVs must be 

identified to compare the technology with conventional vehicles technologies. The outputs 

of the mathematical model presented above, enable the calculation of primary energy 

consumption, GHG emissions and energy costs.  

 

3.3.7.1. Primary Energy Consumption 

 

Due to the losses in the energy supply chain, there is a difference between final 

energy consumption and primary energy consumption of road transportation vehicles. For 
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conventional vehicles, the losses occur during the conversion of crude oil to fuel products, 

in which approximately 13% of primary energy stored in crude oil is lost. For the 

electricity supply chain the main source of losses is the electricity generation and 

transmission process. Each generation technology has a different efficiency rate which is 

equal to the amount of electricity energy generated divided by the energy of primary 

energy sources consumed to generate electricity. For example, coal power plants consume 

100 units of primary energy stored in coal to produce 30-35 units of electric energy, which 

is equal to an efficiency of 30-35% [60]. Since the outputs of the model provide the amount 

of electricity generated by each generator, it is easy to calculate the primary energy 

consumed by dividing the electricity generated to the efficiency of the generation 

technology used by the generator. The efficiencies of the generation technologies might 

change from country to country therefore this data should be collected before the 

application rather than giving a universal assumption (Data used in Turkish Application is 

given and referenced in section 4.1.). The formula below is used to determine the amount 

of primary energy consumption of battery charging in a day.  

 

                    
  

       

  
                 (3.12) 

 

In the formula above       the amount of marginal electricity generated at generator 

 , for region  , at time   according to the bid   of generator  . The efficiency of generator 

  is symbolized by   . The formula gives the amount of primary energy consumed by 

battery charging in a day. Since the PHEVs consume gasoline when the battery depletes, 

the total primary energy consumption is calculated by the formula below. 

 

                                             (3.13) 
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  The second part of the formula gives the primary energy consumption of PHEVs 

as a result of gasoline combustion in their internal combustion engines. In formula (3.13)   

represents the daily kilometres driven by PHEVs. (The details of the formula can be found 

under subsection 3.2.2.1.). Calculation of the annual energy consumption depends on the 

availability of data and number of days the model is run for. In order to shorten the time of 

analysis, one day from each month or season to represent the general behaviour of the 

system in different times can be chosen as if all days in that month or season gives the 

same results and annual energy consumption can be calculated.  

 

3.3.7.2. GHG Emissions 

 

The second performance measure to be calculated for EVs is the amount of GHG 

emissions. Despite the fact that the BEVs have zero direct emissions, the net emissions 

depend on where the electricity that is used for battery charging is generated. Therefore, the 

GHG emissions of marginal electricity generation must be calculated. Each generation 

technology has a different GHG emission effect. In this study, life cycle emissions of 

different generation technologies have been taken into account to reach comparable results 

with conventional vehicles. 

Most of the emissions related to electricity generation occur during the generation 

process itself. For thermal generators, combustion of fossil fuels is biggest contributor to 

GHG emissions. Since the carbon content of fossil fuels are high, thermal generators such 

as coal, natural gas and fuel-oil generators emit more GHG particles than other sources. 

Emissions related to renewable energy sources are generally a result of construction, 

manufacturing and maintenance steps of the generation. Therefore, every generator has a 

life cycle emission per unit of electricity generated. GHG emission also show variance 

from location to location based on the technologies used. Therefore, a universal assumption 
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for emission cannot be done (Data used in Turkish Application is given and referenced in 

Section 4.1.). According to the emission data, the amount of daily GHG emissions of 

marginal electricity is calculated as follows.  

 

                    

  
                               (3.14) 

 

In (3.14),      gives the amount of life-cycle GHG emissions for generator   per 

unit electricity generated. Since the PHEVs emit GHG while operating on the internal 

combustion engine, the total GHG emissions of the electrified road transportation is equal 

to the sum of the GHG related to electricity generation and vehicles emissions of PHEVs 

given by the formula below:  

 

                                                                           (3.15) 

 

In (3.15), the emissions of PHEVs are given in the second term of the summation, 

where   is equal to the kilometres driven by the PHEVs every day on internal combustion 

engines. If it is not possible to run the model for 365 days, one day from every month or 

season can be chosen to run the model for, and reach annual results. 

 

3.3.7.3. Energy Costs 

 

Energy costs related to electrification of the road transport is separated into two 

parts. First is the cost reflected to the customers directly and the second is the energy cost 

to the energy supply chain. For conventional vehicles, the cost of gasoline and diesel at the 

pump is the cost reflected to customers and the refinery cost of gasoline is the cost to the 

energy supply chain. Similarly, retail price of electricity at the hour of charging is the cost 
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reflected to the customer and the bid price given by the generator is the cost to the energy 

supply chain. The marginal electricity cost of battery charging is given in the objective 

function of the business as usual mathematical model. Since PHEVs consume gasoline, the 

refinery price of gasoline must be added to the objective function value in order to find the 

total daily energy cost of EVs to the energy supply chain. The related formula is given 

below: 

 

                                                                   (3.16) 

 

In (3.16),   is the average daily kilometres driven by PHEVs on internal 

combustion engines and .           is the refinery price of gasoline. The cost of electric 

transport to the customers is calculated by using the formula below:  

 

                                                                  (3.17)  

 

In (3.17),     is the retail price of electricity at  th hour of the day. The first part 

gives the amount paid to the electricity consumed to charge the vehicles and the second 

part, in which           is the retail price of gasoline, gives the amount paid to gas stations.  

 

3.3.8. Comparison with Previous Steps 

 

The outputs of the business as usual model and calculation of the performance 

measures enable the decision makers to compare the conventional vehicle fleet with the EV 

fleet. Depending on the preferences of the stakeholders such as the governments, electric 

utilities, environmental agencies, the decisions to support introduction of EVs or not can be 

based on the economic, environmental or efficiency performance of the vehicle fleet. The 
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outputs also enable comparison of different charging patterns. If there is significant 

difference in the performance of EVs between charging patterns, the decision makers can 

take necessary precautions to promote charging of the EVs according to the charging 

pattern that are more economical and/or more environmental.   

 

3.4. Step 3: EVs’ Impacts with Bi-Objective Generation Decisions 

 

The purpose of the third step in the proposed methodology is to calculate the 

performance measures of the EVs under environmentally conscious electricity market 

decisions. In the second step, the market structure was assumed to follow the rules of merit-

order dispatch and satisfy electricity demand with minimum cost possible. However, the 

benefits of the introduction of EVs might be very attractive for governments or regional 

authorities since they can secure the energy supply, increase energy efficiency, decrease 

GHG emissions or remove air pollution in urban areas, so that decision makers may be 

willing to pay an economic offset to make use of these opportunities.  One of the biggest 

opportunities offered by the electrification of the road transportation is the GHG emission 

reduction. The governments are under pressure from international agreements such as the 

Kyoto Protocol and emissions over limits are subject to penalties. Hence, EVs might be an 

efficient way of decreasing emissions. For example, a regional authority that has to 

decrease the GHG emissions of the region would be willing to pay for the expensive 

electricity produced at renewable power plants that charge the electric vehicles to decrease 

GHG emissions of the transportation sector. Therefore, it is important for the decision 

makers to see a group of solutions, which perform better in the environmental performance 

with a higher cost than the merit-order solution.  

In order to reach comparable results with the first two steps, the assumptions of the 

EV penetration levels, technical data and charging patterns remain unchanged in the third 
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step. The changes in the market structure, which are explained above, are introduced to the 

methodology by making slight modifications in the mathematical model.   

 

 3.4.1. Modifications in the Model 

 

 The only difference with the business-as-usual mathematical model is the 

introduction of the second objective function. The second objective function in the model 

aims to minimize the amount of GHG emissions resulting from the marginal electricity 

generation. Introduction of this second objective function enables the model to output the 

set of efficient feasible solutions for marginal generator mix, among which the decision 

makers can choose to reach more economical or environmental solutions. The second 

objective function is as follows:  

 

               min                                                       (3.18) 

   

 The decision variable in (3.18) is the same decision variable used in the business-

as-usual model. The amount of GHG emissions emitted by generator   per unit of 

electricity generated is represented as   . The objective function sums the amount of GHG 

emissions resulting from marginal electricity. The constraints, decision variable definitions 

and the first objective function remain unchanged in the third step.  

 

3.4.2. Comparison with Previous Steps 

 

The output of the bi-objective model includes more than one solution set. The 

solution method used, brings out all the efficient solutions of the system and construct the 

efficient frontier of the problem. In Figure 3.7., an example of efficient frontier is given. 
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Every solution in the efficient frontier gives a different cost and emissions result. The 

cheapest solution in the efficient frontier is equivalent to the solution found by the 

business-as-usual model, whereas the most expensive and the least polluting solution is 

equivalent to the solution that could have been found when the model was run with the 

emission objective (    only. The solutions between these two extreme solutions are also 

efficient and create a set of compromising solutions between two objectives. In order to 

compare the performance of the solutions, performance measures must be calculated as 

shown for the second step and the decision makers must choose among the listed solutions 

depending on their preferences of being more economical or environmentally conscious.  

Since the model represents the behaviour of the model in one day, it is not possible 

to reach annual efficient solutions. The analysis must be carried out for as many days as 

possible to understand the behaviour of the region’s electricity market. For example, the 

electricity market for which the efficient frontier is given in Figure 3.7., it is possible to 

reach significant reductions in GHG emissions while the cost objective remains more stable 

in the region shown as region A in the figure. This is the result of the abundance of clean 

energy sources which has compatible price with more polluting sources of generation. 

 As opposed to region A, in region B no matter how much the cost increases the 

reductions in GHG emissions remain insignificant. This might be a result of the existence 

of expensive sources which bring small reductions in emissions. These frontier behaviours 

change from region to region and from time to time. Therefore, it is not possible to reach 

general conclusions by calculating annual performance measures as in the second step. 

Increasing the number of days analyzed would improve the success of the methodology to 

generate recommendations about the electricity market. 
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3.5. Step 4: EVs’ Impacts under Optimal Charging Patterns 

 

 The fourth and the last step of the proposed methodology to analyze the impacts of 

EVs, includes optimization of charging hours under environmentally conscious market 

operations. As stated in the literature review, one of the main gaps in the literature about 

the EV impact analyses is that none of the studies proposes a method to find the optimal - 

in this case cheapest and the least polluting- charging hours. Instead of optimizing the 

charging hours, the methods use predetermined charging scenarios to distribute the 

charging demand to hours of the day. Despite being a valid approach, using predetermined 

scenarios inhibit the opportunities to further reduce marginal generation costs and GHG 

emissions.  In addition to the predetermined scenarios used in the second and third steps, 

the fourth step defines charging hours as new decision variables and enables the model to 

find the most suitable hours for EV charging.  

 

3.5.1. Modifications in the Model 

 

 Optimization of charging hours requires a new decision variable to be introduced to 

the bi-objective mathematical model. Until this step, the number of vehicles being charged 

was given as an input to the model at the demand balance constraints but in this step the 

number of vehicles is determined by the model. In order to sustain the assumptions of 

linear programming the new decision variable is defined as the percentage of EVs being 

plugged in at region   and at time period  . The new decision variable is represented as 

      and the new demand balance constraint is defined as follows.  

 

                                ≥          
               

 
    

+     
                  

 
                                            (3.19) 
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 In (3.19), the supply side remains unchanged whereas the new decision variable 

changes the demand side of the inequality. Instead of a predetermined number of vehicles 

in region   plugged-in at time   represented by       and        in inequality (3.4), the 

number of BEVs is determined by multiplying the new decision variable       by the total 

number of BEVs to be charged in region   represented by      . The demand of PHEVs 

is found by using the same decision variable and multiplying it by        which is equal 

to the number of PHEVs to be charged in region  . In order to ensure that all vehicles are 

charged, the following constraint is added to the model 

 

                                                                    
                          (3.20) 

 

Equation (3.20) sums the decision variables for 24 hours of the day and sets the sum 

equal to 1, in order to ensure that all vehicles in the region are plugged-in during the day. In 

addition to (3.20) it is possible to introduce upper bounds on the new decision variable to 

prevent the model from reaching unrealistic solutions such as plugging-in all the vehicles 

during rush hours while the vehicles are on the roads and unable to be charged. These 

upper bounds depend on the driving behaviour of the drivers in the region and need 

intensive data collection to be identified before being used in the model. Upper bounds can 

be used in the model by introducing the following group of constraints. 

                                                                                                (3.21) 

 

 In (3.21),     is the maximum percentage of vehicles in region   that can be 

plugged-in at time  . 
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3.5.2. Comparison with Previous Steps 

 

Since the charging hours of EVs are defined as decision variables, the results of this 

step of the experiment will clarify the set of efficient solutions for charging hours. The 

results will give all the solutions between the cheapest and the least polluting charging 

options for EVs in a region. In order to compare the performance of the solutions, 

performance measures must be calculated as shown for previous steps and the decision 

makers must choose among the listed solutions depending on their preferences of being 

more economical or environmentally conscious. The decision makers can compare the 

results of this step with predefined charging scenarios and see how much the cost and 

emissions will differ. If the optimal charging hours are convenient (different than rush 

hours) for charging the EVs the regional policy makers must install necessary regulations 

to encourage the charging of EVs at optimal hours. The difference between predefined 

charging scenarios and optimal hour scenario shows how beneficial it can be to determine 

the optimal charging hours.  

.  

3.6 Solution Method  

 

The problem addressed in this thesis is one of many real world problems, in which 

more than one objective affects the decision making process. Branch of operations research 

that deals with problems where there is more than one objective is called multi-objective 

optimization. The model proposed in this thesis represents a special case of multi-objective 

optimization as it has two objective functions: one for minimization of the total electricity 

bid costs and one for minimizing the emissions released from marginal generators.  

Problem that deals with precisely two objective functions are called bi-objective 
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optimization problems. Another special case of the model is that it includes both 

continuous and discrete decision variables. 

 Before going into the application of the related bi-objective optimization 

techniques on the proposed model, some basic definitions about bi-objective optimization 

are given. The model created in this thesis can be stated as:  

 

                                         

                                                   (3.22) 

 

where x and y consists of discrete and continuous variables, respectively. X is the 

feasible set and        is a vector valued objective function. In order to connect the 

definitions with the model proposed, readers can assume that x is representing       and y 

is representing       as well as two objectives are    and     given in Eq. (3.11) and Eq. 

(3.18) respectively.  

 

Definition 1.  Let x and x   be two solutions of X.         weakly dominates        , if 

                    , similarly       dominates         if                      and 

                   ∃   ,       
Definition 2. A solution      of P is called weakly efficient if there does not exist any 

other feasible solution         such that       weakly dominates       . 

 

Definition 3. A solution      of P is called efficient or non-dominated point if there does 

not exist any other feasible solution         such that        dominates       . 

 

In general, multi-objective optimization tools try to develop procedures that 

generate efficient solutions that have the property that no improvement on any objective is 
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possible without sacrificing on the other objective. Specifically speaking for this study, the 

procedure that is used should search for solutions where it is not possible to decrease 

emissions further without sacrificing the financial objective and getting an increase in the 

marginal electricity costs. Once the efficient solutions are known the decision makers are 

able to choose among them based on their preferences or being more cost oriented or 

environmentally conscious. One important concept that is useful in these decision 

processes is the efficient frontier which can be defined as the set of all efficient solutions. 

As the nature of the problem studied in this thesis includes a compromise between costs 

and emissions it is important to create the efficient frontier and provide all possible 

solutions to decision makers.   

One of the most widely used solution approaches to multi-objective optimization is 

scalarization. Scalarization technique involves creating a single objective optimization 

problem that represents the multi-objective problem and enabling a solution procedure 

without disregarding the constraints of the original problem [65]. Weighted sum method is 

one of the simplest scalarization techniques; however in non-convex cases like the model in 

this study, it may fail to generate efficient solutions [65]. Hence, another popular multi-

objective optimization method, namely ε-constraint method, has been used in this study to 

generate the efficient solutions for the problem. As stated in the introduction, this study is 

not an attempt to improve any solution procedure in the literature or to suggest a new one 

rather it is an application study that uses the available solution methods in the literature. 

Therefore, only general concepts of the ε-constraint method will be given as a reference to 

clarify the solution approach applied. 

The ε-constraint method is a widely accepted technique to solve multi-objective 

optimization problems. In summary the procedure optimizes only one of the objectives at a 

time and transforms the rest of objective functions to constraints of the problem. In bi-

objective problems like the model in this study, this is equal to solving the problem for one 
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of the objectives at a time while the other objective is defined as a constraint to the new 

single objective optimization problem. The method was introduced by Haimes et al. [66]. 

Detailed discussion of the formula can be found in Chankong and Haimes [67]. With this 

method the bi-objective optimization problem can stated as follows:  

 

                            

                                         (3.23) 

 

where    . To justify the approach it is shown that optimal solutions of (3.23) are at least 

weekly efficient.  

 

Proposition 1. Let    be an optimal solution of (3.23) for      . Then is    weakly 

efficient. 

 

Proof. Assume         . Then there is an     such that,        <     
   for k=1,2 and 

in particular       <     
   . Since       <     

   <  , the solution   is feasible for (3.23). 

This is a contradiction to    being an optimal solution. Therefore    must be weekly 

efficient. [65] 

 

In order to strengthen Proposition 4.3 to obtain efficiency we require the optimal 

solution of (4.3) to be unique. 

 

Proposition 2. Let    be a unique optimal solution of (3.23) for      . Then        
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Proof: Assume there is some     with       <     
   <  . If in addition       ≤     

   

we must have        =     
   because    is an optimal solution for (3.23).Thus uniqueness 

of the optimal solution implies      and      [65] 

 

Efficiency of    is related to    being an optimal solution to (3.23) so if the 

optimality of    could be proven, it is also proved that by solving a sequence of ε-

constraint models efficient frontier can be found. This is given in Theorem 1.  

 

Theorem 1. The feasible solution       is efficient if and only if there exists an ε   R 

such that    is an optimal solution of (3.23) 

 

Proof:  => Let         . Assume that    is not an optimal solution of (3.23). Then there 

must be some      with       <     
   and       ≤         

  , that is         

<=  Suppose        Then there is a feasible solution      such that       < 

    
   and       ≤     

  . Therefore    cannot be an optimal solution of (3.23) for any   

for which it is feasible. Note that any such    must have     
   ≤  . [65] 

This proof shows that with appropriate choices of   all efficient solutions can be 

found and efficient frontier can be constructed by using this set of solutions in cases where 

the optimal solution is unique. As this cannot be guaranteed before solving the model, to 

deal with weakly efficient solutions a slight modification has been done in the solution 

method. As proposed in the work of Özlen and Azizoğlu [72] and similarly by Mavrotas 

[73], the formulation of bi-objective ε-constraint method can modified as follows to ensure 

that every solution gives an efficient solution:  

 

                                + ψ        

                                    (3.24) 
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Theorem 2. For ε   R and     optimal solution       of P3 also an efficient solution 

 

Proof: Let       be the optimal solution of P3. Suppose that    is not efficient. Than there 

exists a      such that             
   and             

  . There also exists an i for 

which            
   . This implies feasibility of   . Taking summation in both sides and 

multiplying one side with ψ implies that                      
          

    which 

contradicts optimality of    .Therefore    must be efficient.  

 

Using this argument, an algorithm that sets ψ to a small positive value is created. The 

algorithm starts by setting   to positive infinity and iteratively decreases   to obtain the 

efficient frontier. Details of the algorithm which has been written by C++ modeling 

language and solved with the help of CPLEX solvers can be found in Appendix B.  

By creating the efficient frontier, it is possible to visualize the general trends in 

cost-emission relation and see areas where it is very cost effective to decrease emissions or 

where it is very difficult to further decrease costs. A representative figure of efficient 

frontier for this study is given in Figure 3.7. As stated above it is possible to reach 

significant reductions in GHG emissions while the cost objective remains more stable in 

the region shown as region A in the figure. This is a result of the abundance of clean energy 

sources which has compatible price with more polluting sources of generation. As opposed 

to region A, in region B no matter how much the cost increases the reductions in GHG 

emissions remain insignificant. This might be a result of the existence of expensive sources 

which bring small reductions in emissions. These frontier behaviours change from region to 

region and from time to time. Therefore, it is not possible to reach general conclusions by 

calculating annual performance measures as in the second step. Increasing the number of 
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days analyzed improve the success of the methodology to generate recommendations about 

the electricity market. 

  

 

Figure 3.7.: An Example Efficient Frontier Obtained at the End of Step 3 
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Chapter 4 

 

APPLICATION OF THE METHODOLOGY IN TURKEY 

 

In this chapter the methodology and solution method that has been provided in the 

previous chapter is applied to the Turkish electricity market with real market bid data taken 

from Turkish Electricity Transmission Company (TEIAS) assuming a 10 year penetration 

period for electric vehicles in Turkish passenger car market. Results of two different 

scenarios have been analyzed in detail. This section starts with explaining the assumptions 

and providing references for the data used in the Turkey case, and results for low and 

medium market scenarios are given in Sections 4.2. and 4.3. respectively. As the high 

market scenario results only differed in the magnitude, only a short summary and comment 

was allocated to the scenario in Section 4.4. 

 

4.1. Assumptions and Setting of Turkey Case 

 

4.1.1. Electricity Sector Data 

 

As the methodology is created based on the operations of day-ahead electricity market, 

a brief introduction to day electricity market in Turkey will be made and data that is used in 

the application will be referenced in this section.  

Day-ahead electricity market is defined as the organized market structure where the 

suppliers (generators) of next day’s electricity energy demand is decided [1]. In Turkey, 

day ahead market is operated from Ankara by Piyasa Mali Uzlaştırma Merkezi (PMUM) 
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which is a governmental entity linked to TEIAS and centred in the headquarters of TEIAS. 

Turkish day ahead market operates as follows: Based on statistical models and market 

expertise, PMUM estimates the electricity demand per hour in Turkey for the next day. 

Output of this stage is the hour by hour electricity demand expectation in MWh. Once the 

production that is fixed by long term contracts, exports and import generations are 

subtracted from this demand PMUM announces the electricity demand that must be 

balanced by the generators in the market for each hour. At this step, every day electricity 

generation companies that are registered to the market inform their technical parameters 

(minimum and maximum operation capacities by hours, load increase rate, load decrease 

rate, start up time) and place their bids for the coming day’s electricity supply to PMUM 

for each of their generators until 10:30 am. PMUM takes all those bids and inputs these 

bids to a detailed electricity market optimization tool that takes the technical constraints 

into account and runs the model between 11:00-13:00 to determine next day’s supply. The 

model operates by merit order dispatch, which means that the cheapest bid in row is 

accepted until the demand estimated by PMUM is satisfied and the final bid that is 

accepted is announced as unconstrained market exchange rate (KPTF). After this step the 

planning tools compare the supply plan to transmission constraints and makes necessary 

adjustments. If no constraints are violated, KPTF is announced as the final market 

exchange rate (NPTF) or the new highest bid after making changes in the supply plan is set 

as the NPTF. (As the location information of the generators were not made available by 

PMUM data data collection stage for this application and the location of electricity demand 

due to electric vehicle charging is unclear, the methodology assumed that the marginal 

dispatch model operates under no transmission constraints and the final bid accepted will 

be equal to KPTF.) Once final price is set, PMUM announces the generators the production 

plan for next day. Balancing acts during the day are not managed by PMUM. These 

operations are managed by National Load Dispatch Centre (Milli Yük Tevzi Merkezi-
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MYTM) from operational centres at each regional in Turkey. MYTM controls if the 

generators are operating according to the plan decided by the day ahead market and gives 

orders to increase or decrease load based on the ramp ups and downs in the system.  

Most important data to be able to run the methodology is the day ahead market bids 

placed by generators. By having these data it is possible to run the model proposed in 

Section 3 and to determine the set of generators that would have been accepted to supply 

electricity which is the key driver of EV’s performance measures. In this application it was 

assumed that no matter if electric vehicles were in the system or not conventional demand 

(any other electricity demand other than EV charging) would have been supplied by the 

same set of generators as it was supplied on the same day so the necessary bid pool that 

should be taken into account consist of the bids that are more expensive than the final bid 

that was accepted. A limit of 2000 MW extra load was decided which covers all the market 

scenarios that has been analyzed in this application. In order to decrease the amount of time 

required from PMUM to prepare the data without losing the ability to have a good 

estimation of the annual performance it has been decided to use data from 6 representative 

days from the year 2010. In the reports of Turkish energy sector, second or third 

Wednesdays of the months are used to present monthly trends. In 2010 where data was 

available third Wednesdays were national holidays in two months therefore the following 

second Wednesdays have been chosen to run the model on: December 8
th

 and February 10
th

 

to model winter months, April 14
th

 to model spring months, June 9
th

 and August 11
th

 to 

model summer months and October 13
th

 to model fall months. After communication with 

PMUM, a meeting had been arranged and at the end of a visit to Ankara, an application 

according to law of accessibility to information (Bilgi Edinme Kanunu) has been made to 

get the bid data for the above mentioned days.  

As the market data are protected according to law, PMUM was not able to provide all 

details of the bids like company names and locations, which could be used to model 
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transmission constraints, or detailed technical information that was proposed to be used in 

the model such as Ramp up and Ramp down limits as these would reveal the company 

information which is protected by law according to the same law of accessibility to 

information. The data received was limited to : 

 Day and time every bid was valid for 

 Upper limit of load that can be generated with the bid (MW) 

 Type of the bid (Block or hourly bid) 

 Primary energy source of the generator (Coal, Natural gas etc.) 

 Cost of bid (TL/MW) 

A sample of the bids can be found below.  

 

Table 4.1.: Sample of Day-Ahead Bids Taken from PMUM 

Bid No 
Primary Energy 

Source 
Date and Time Type 

Upper 
Limit (MW) 

Bid Price 
(TL/MW) 

153875 Natural Gas 10.02.2010 Hourly 240 140.00 

153906 Large Hydro Dam 10.02.2010 Hourly 29 141.00 

153868 Natural Gas 10.02.2010 Hourly 59 145.00 

153797 Hard Coal 10.02.2010 Hourly 40 146.00 

153381 Natural Gas 10.02.2010 01:00:00 Hourly 10 130.00 

153399 Biogas 10.02.2010 01:00:00 Hourly 13 133.00 

153432 Natural Gas 10.02.2010 01:00:00 Block 50 135.00 

153386 Natural Gas 10.02.2010 01:00:00 Hourly 33 136.00 

153821 Hard Coal 10.02.2010 01:00:00 Hourly 40 140.00 

153322 Export Coal 10.02.2010 02:00:00 Hourly 30 130.00 

153321 Natural Gas 10.02.2010 02:00:00 Hourly 20 130.00 

153408 Natural Gas 10.02.2010 02:00:00 Block 50 135.00 

153432 Natural Gas 10.02.2010 02:00:00 Block 50 135.00 

153386 Natural Gas 10.02.2010 02:00:00 Hourly 33 136.00 

153883 Natural Gas 10.02.2010 02:00:00 Block 95 140.00 
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This data provides      which is the price of bid b placed by generator i at time t per 

MW of generation capacity and enable to attach technical data like emissions, energy 

efficiency to each bid according to its primary energy source. These data are explained in 

detail in the next subsection.  

 

4.1.2. Technical Assumptions for Turkey 

 

 First important assumption of the Turkey case is the transmission loss coefficients, 

which was defined as     in demand balance constraints in formula (3.4.). As this case 

assumed there is one single market, a coefficient between 0 and 1 needs to be assigned to 

each generator. According to 2010 Electricity Distribution and Consumption Statistics 

report published by Turkey Electricity Distribution Company, transmission losses have 

accounted for  18.6% of total consumption in Turkey in 2010 [4]. In the eastern cities 

losses go up to 77%, and the average losses in southeast region are 65%. As this is the 

region where most of the hydroelectricity capacity is concentrated, these sources are 

affected more compared to fossil fuel generators in the west. However the decreasing trend 

between 2000 and 2008 shows that the current high losses might be brought down. This is 

shown to be achievable by OECD countries which have an average loss rate of 6% 

according to Electricity Information report published by International Energy Agency [5].  

Therefore an optimistic assumption for the transmission losses has been made for 2020 

scenario in Turkey and     was assumed to be 0.93 for all primary energy sources except 

hydroelectricity sources and 0.9 for all hydroelectricity sources. By setting these 

coefficients, the demand balance constraints force the model to generate enough electricity 

that can overcome transmission losses to charge the electric vehicles.   

The second objective in the bi-objective model is the minimization of CO2 emissions 

resulting from electricity generation, which is dependent on the emission rate of generator, 
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defined as    in equation (3.18). Since it was not possible to get generator specific emission 

data from PMUM, it is assumed that all generators using the same primary energy source 

has constant emission rate. An extensive literature research has been conducted to find the 

life cycle emission estimation of generators with different primary energy sources. In Table 

4.2 the final assumption of CO2 emissions per MWh generation based on the average of 

emission rates taken from the literature [68],[69],[70],[71].  

In order to calculate the primary energy consumption, energy efficiency of generators 

must be estimated. In the literature as there was no specific work dedicated to calculating 

energy efficiency of Turkish generators a similar approach to emissions is followed and an 

energy coefficient, which was defined as     in equation (3.12), is assigned to each 

generator according to its primary energy source. As the application is looking at a 10 year 

horizon, a slight increase the energy efficiency was assumed for each source compared to 

the figures found in the literature [16],[6]. Assumptions are given in Table 4.2. 

 

Table 4.2.: Emissions and Energy Efficiency of Generators in Turkish Electricity Network 

Generator’s Primary Energy 
Source 

CO2 Emissions 
(kg/MWh) 

Efficiency 

Natural Gas 450 45% 

Coal 
Lignite 1100 40% 

Hard Coal 1000 40% 
Fuel Oil 800 40% 

Hydro 
Large Dam 15 90% 

Flow of River, Lake 5 90% 
Biogas 75 40% 

 

4.1.3. Market Scenarios 

 

Estimation of the number of electric vehicles on the road by 2020 was another 

challenging step in the application of the methodology. As explained in Section 3.2.1. three 
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market penetration scenarios have been decided to be used to model the behaviour of the 

system under different charge demand loads. In order to use these percentages, number of 

passenger car sales until 2020 must be estimated.  

First of all, a group of cities has been selected as the first target locations of electric 

vehicles in Turkey. This selection has been based on the size of passenger car market in 

recent years and on development of necessary infrastructure for electric vehicle charging 

and list was limited to 25 cities. The cities are as follows: Istanbul, Ankara, Izmir, Adana, 

Bursa, Antalya, Eskisehir, Kocaeli, Erzurum, Sakarya, Tekirdağ, Balıkesir, Manisa, Aydın, 

Denizli, Muğla, Gaziantep, Hatay, İçel, Konya, Kayseri, Samsun, Trabzon, Diyarbakir, and 

Şanlıurfa. Total of passenger car sales equals 89% of total sales in Turkey in 2010 [2]. 

According to Automotive Industry Union (OSD) in Turkey, passenger car vehicle sales 

from 2012 to 2020 will follow the trend given in Table 4.3. This data can be used to 

estimate the number of BEVs and PHEV that will be on the roads in 2020 in Turkey. Year 

by year sales and resulting number of vehicles in 2020 can be seen in Table 4.4. 

 

Table 4.3: Passenger Vehicle Sales Estimations from 2012 to 2020 

Year  
 Passenger 
Car Sales  

 25 Cities  

2012     437,300         389,197     

2013     458,600         408,154     

2014     473,900         421,771     

2015     489,200         435,388     

2016     515,625         458,906     

2017     531,250         472,813     

2018     546,875         486,719     

2019     562,500         500,625     

2020     581,250         517,313     
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Table 4.4: 2012-2020 BEV and PHEV Sales Assumptions in Turkey 

Scenario Year 2012 2013 2014 2015 2016 2017 2018 2019 2020 

Low 

BEV Share in Sales 0.10% 0.20% 0.40% 0.50% 0.75% 1.00% 1.30% 1.70% 2.00% 

Number of BEVs sold 
       

383  
       

818  
    

1,690  
    

2,181  
    

3,448  
    

4,737  
    

6,339  
    

8,527  
    

10,366  

PHEV Share in Sales 0.10% 0.25% 0.50% 0.75% 1.50% 2.50% 3.50% 4.50% 5.00% 

Number of PHEVs sold 
       
383  

    
1,022  

    
2,113  

    
3,272  

    
6,897  

  
11,843  

  
17,068  

  
22,571  

    
25,915  

Medium 

BEV Share in Sales 0.25% 0.40% 0.75% 1.25% 1.75% 2.50% 3.00% 4.00% 5.00% 

Number of BEVs sold 
       

959  
    

1,636  
    

3,169  
    

5,453  
    

8,046  
  

11,843  
  

14,629  
  

20,063  
    

25,915  

PHEV Share in Sales 0.10% 0.50% 1.00% 1.50% 3.00% 5.00% 7.00% 9.00% 11.00% 

Number of PHEVs sold 
       

383  
    

2,045  
    

4,226  
    

6,543  
  

13,793  
  

23,686  
  

34,135  
  

45,142  
    

57,012  

High 

BEV Share in Sales 0.25% 1.00% 3.00% 4.00% 5.00% 6.00% 7.50% 9.00% 10.00% 

Number of BEVs sold 
       

959  
    

4,089  
  

12,677  
  

17,449  
  

22,989  
  

28,423  
  

36,573  
  

45,142  
    

51,829  

PHEV Share in Sales 0.10% 1.00% 2.00% 3.00% 6.00% 10.00% 14.00% 18.00% 25.00% 

Number of PHEVs sold 
       

383  
    

4,089  
    

8,451  
  

13,086  
  

27,587  
  

47,371  
  

68,270  
  

90,284  
  

129,574  

 

 As EVs will be compared with conventional vehicle fleet it is also necessary to 

know the percentage of gasoline powered and diesel powered vehicles that will be replaced 

by EVs. According to Turkish Statistical Institute the percentage of diesel vehicle sales in 

passenger car sales has increased from 19.5% in 2004 to 53.2% in 2010, which is the first 

year in history when diesel vehicle sales have exceeded gasoline powered vehicle sales [2]. 

Taking into account the recent developments in diesel technology it is assumed that this 

increasing trend will continue and mature at 60% level, similar to European passenger 

vehicle market. This assumption clarifies the application fleet data as seen in Table 4.5: 
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Table 4.5: EV and Conventional Fleet Assumptions by 2020 

Scenario 
New entries to 

market 

Replaced 
conventional 

vehicles Total 

BEV PHEV Gasoline Diesel 

Low 
     

40,000  
     

90,000  
     
52,000  

     
78,000  

   
130,000  

Medium 
     

90,000  
   

190,000  
   
112,000  

   
168,000  

   
280,000  

High 
   

225,000  
   

400,000  
   
250,000  

   
375,000  

   
625,000  

 

As explained in Section 3.2.2.1, EVs are expected to be used for commuting in the 

first years of introduction. Therefore, the fuel consumption (         ) that will be used to 

compare conventional vehicles’ performance with EVs is urban consumption figure. 

According to the distribution of passenger cars by segment in Turkish market a 

representative fleet of 14 vehicles, including 5 B class, 5 C class, 3 D class passenger cars, 

and one SUV,  has been created for both gasoline and diesel options.  

The average fuel consumption is 8.8 litre / 100 km for the gasoline fleet and 6.0 

litre / 100 km for the diesel fleet for these representative fleets and these figures have been 

used as           in the Turkish application. 

 

4.1.4. Other Data 

 

 In the literature, a study that investigates the average kilometres driven by Turkish 

drivers was not found.  As stated in Section 3.2.2.1., studies suggest that annual distances 

travelled are 19,000 kilometres in the US and 11,000 kilometres in EU-25 countries. 

Keeping in mind that the first target customers in Turkey will be commuters in big cities 

where the distance between commercial and industrial areas and residences are increasing 

it is assumed that EVs will be travelling higher than EU-25 average but still less than US 
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where driving habits are different than Europe. Therefore, in this study vehicles in Turkey 

are assumed to travel 40 kilometres per day which is equal to 14,600 kilometres per annum. 

 Price of gasoline and diesel changes from time to time but at the time of calculation 

of results of the methodology, barrel price of crude oil was $95 and pump price of gasoline 

and diesel vehicles in Turkey was 4.3 TL/lt and 3.68 TL/lt respectively. According to 

PETDER’s sector report the tax ratio on the gasoline and diesel pump prices are up to 67% 

in Turkey [3]. Therefore, in the calculation of cost of energy performance measure, end 

price to customers was multiplied by 0.4 to reflect an estimation of cost of fuel without 

taxes.  

 

4.2. Results of Low Market Penetration Scenario 

 

First scenario to be analyzed in the results section is the low market penetration 

scenario which assumes that BEVs and PHEVs will reach a market share of 2% and 5% 

respectively. This section focuses on the summary of these outputs from Step 1 to Step 4 

for low penetration scenario, which are followed by comments on the results.      

  

4.2.1. Step 1: Conventional Results 

 

According to the assumptions of low market penetration scenario 130,000 

passenger vehicles will be subject to comparison, 52,000 of which are gasoline powered 

vehicles and 68,000 of which are diesel powered vehicles. Four performance measures; 

annual CO2 emissions, primary energy consumption, annual cost of energy before taxes 

and annual purchase cost to end users are calculated as explained in section 3.1. and the 

summary of results are given in Table 4.6. 
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Table 4.6: Results of Step 1 for Low Market Penetration Scenario 

Performance Measure Result 

Annual Primary Energy Consumption 1,646 GWh 

Total Fuel Pathway CO2 Emissions 393,199 tons 

Total Cost of Purchase to End User 538,728,320 TL 

Total Energy Costs Before Taxes 215,491,328 TL 
 

4.2.2. Step 2: Uncontrolled and Delayed Charge Results in Business as Usual 

Market Operations Results 

 

In this subsector, results for the business as usual market operations will be given for 

two different charging scenarios for the low market penetration scenario. Under business as 

usual assumptions the marginal demand that occurs due to electric vehicle charging is 

supplied by accepting the cheapest bids in row at the time of demand and the energy mix 

and specifications of these marginal generators determine the performance measures of 

electric vehicle charging. Two scenario’s results are given separately below. 

 

4.2.2.1. Uncontrolled Charge Results 

  

In the uncontrolled charge scenario for low market penetration, it is assumed that 

40,000 BEV and 90,000 PHEV will be charged without any type of regulation in an 

uncontrolled environment. Resulting load profiles for the six representative days are given 

in Figure 4.1. where yellow bars show the conventional electricity load whereas black bars 

above are the marginal demand that is a result of electric vehicle charging. 130,000 electric 

vehicles being charged from the grid according to uncontrolled scenarios increases the peak 

demand and total electricity consumption with the values seen in Table 4.7.  
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With this scenario on average electricity consumption in Turkey rises by 0.14%, 

whereas the average peak increases by 0.21% with a maximum increase of 0.82% in 

December at 18:00. So it can be concluded even if the vehicles are charged in an 

uncontrolled way even the maximum peak increase does not put the overall electricity 

supply under threat in low penetration scenario, whereas local distribution affects are not 

considered in this study.   

 

Table 4.7: Affects of Low / Uncontrolled Charge on Conventional Load and Peak Demand 

Month 

Total 
Conventional 

Demand 
(MWh/day) 

Charging 
Demand before 
Transmission 
Losses (MWh) 

Increase 
percentage 

Peak 
without 

Charging 
(MWh) 

Peak with 
Uncontrolled 

Charging 
(MWh) 

Increase 
in Peak 

February 
            

598,677  
864 0.14% 

        
28,472  

             
28,517  

0.16% 

April 
            

570,353  
864 0.15% 

        
26,823  

             
26,826  

0.01% 

June 
            

566,940  
864 0.15% 

        
27,487  

             
27,490  

0.01% 

August 
            

688,521  
864 0.13% 

        
32,926  

             
32,926  

- 

October 
            

577,895  
864 0.15% 

        
27,083  

             
27,151  

0.25% 

December 
            

619,175  
864 0.14% 

        
30,114  

             
30,362  

0.82% 

Average 
            

603,594  
864 0.14% 

        
28,818  

             
28,879  

0.21% 

 

 In accordance with the daily bid data taken from TEİAŞ the details of the accepted 

bid pool for six representative days covering all seasons for the business as usual case are 

given in Table 4.8. At the bottom of the table an average value is also given which is the 

basis of annual results given at the end of this subsector.  
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Figure 4.1: Daily Load Profile in 6 Days for Low Market and Uncontrolled Charge 

Scenario 
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Table 4.8: Daily Results of Uncontrolled Charging with Low Market Scenario 

Month 

Cost of 
Electricity 
Per Day 

(TL) 

Daily CO2 
Emissions 

(kg) 

Daily 
Electricity 

(MWh) 

Marginal 
CO2 

(g/kWh) 

Marginal 
Bid Costs 

(TL) 

Primary 
Energy 
(GWh) 

February 158,339 273,608 943 290 161,008 1,621 

April 120,182 441,198 934 472 131,086 1,940 

June 97,511 403,732 936 431 109,375 1,881 

August 169,317 243,017 951 256 171,519 1,437 

October 150,774 226,855 945 240 154,344 1,558 

December 147,152 168,393 949 177 154,513 1,423 

Average 140,546 292,800 943 311 146,974 1,643 
 

In Table 4.9 energy mix for different months are seen. On average there is a 

balanced use between hydroelectricity sources and natural gas whereas coal takes only a 

total of 10% on average with help of two peaks in April (due to low cost of 

hydroelectricity, coal can win the bids only at higher prices) and in August (due to 

maximum utilization of other clean sources). This enables a low marginal CO2 emission 

rate (average 311 g/kWh with a maximum 472 g/kWh in April) and low primary energy 

consumption as hydroelectricity dams and natural gas powered plants are the most efficient 

sources in the system. As expected, hydroelectricity’s share in marginal supply decreases in 

April where the hydro capacity reaches its maximum and costs decrease to the lowest level. 

As the cost of hydroelectricity goes down it is consumed in the base load by the 

conventional demand and marginal demand is mostly supplied by natural gas plants which 

are down to the lowest utilization during hydroelectricity’s peak.  Other sources have 

negligible contribution to marginal demand generation in low scenario. 
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Table 4.9: Energy Mix of Marginal Demand for EVs in Low Scenario / Uncontrolled Charge 

Month 
Large 
Hydro 
Dams 

River 
Type 
Dams 

Lake 
Type 
Dams 

Natural 
Gas 

Hard 
Coal 

Lignite 
Export 
Coal 

Fuel 
Oil 

Biogas Diesel 

February 48% 0% 0% 44% 8% 0% 0% 0% 0% 0% 

April 16% 2% 0% 63% 17% 0% 0% 2% 0% 0% 

June 23% 0% 0% 64% 0% 4% 9% 0% 0% 0% 

August 67% 2% 0% 12% 0% 0% 19% 0% 0% 0% 

October 51% 2% 0% 45% 0% 3% 0% 0% 0% 0% 

December 63% 2% 0% 32% 0% 2% 0% 0% 0% 0% 

Average 44% 1% 0% 43% 4% 2% 5% 0% 0% 0% 

 

By using the average figures obtained by taking 6 different representative days in 6 

months that spread over the year it is possible to estimate the annual performance of 

uncontrolled charging scenario in order to compare with annual performance of 

conventional scenario. Formulas that have been used to calculate the performance measure 

are given in 3.3.7. Results are given in Table 4.10. 

 

Table 4.10: Results of Step 2 for Low Market Penetration Scenario with Uncontrolled Charge 

Performance Measure Result 

Annual Primary Energy Consumption 801 GWh 

Total Fuel Pathway CO2 Emissions  154,977 Tons  

Total Cost of Purchase to End User  199,543,605 TL  

Total Energy Costs Before Taxes  84,320,190 TL  
 

4.2.2.2. Delayed Charge Results 

 

In the delayed charge scenario for low market penetration, it is assumed that electric 

vehicles will be charged with a simple delayed approach starting at 22:00 when electricity 

costs without any type of regulation in an uncontrolled environment. Resulting load 
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profiles for the six representative days are given in Figure 4.2 where yellow bars show the 

conventional electricity load whereas black bars above are the marginal demand that is a 

result of electric vehicle charging. Charging with delayed scenario increases the peak 

demand and total electricity consumption with the values seen in Figure 4.2.  

As the total consumption does not change according to the charge scenario average 

electricity generation increases by 0.14%, similar to uncontrolled case. But delayed charge 

scenario avoids any peak increase in the system as the demand shifts from peak period to 

night time. Details can be seen in Table 4.11.  

 

Table 4.11: Affects of Low / Delayed Charge on Conventional Load and Peak Demand 

Month 

Total 
Conventional 

Demand 
(MWh/day) 

Charging 
Demand before 
Transmission 
Losses (MWh) 

Increase 
percentage 

Peak 
without 

Charging 
(MWh) 

Peak with 
Uncontrolled 

Charging 
(MWh) 

Increase 
in Peak 

February 
            

598,677  
864 0.14% 

        
28,472  

             
28,472  

0.00% 

April 
            

570,353  
864 0.15% 

        
26,823  

             
26,823  

0.00% 

June 
            

566,940  
864 0.15% 

        
27,487  

             
27,487  

0.00% 

August 
            

688,521  
864 0.13% 

        
32,926  

             
32,926  

0.00% 

October 
            

577,895  
864 0.15% 

        
27,083  

             
27,083  

0.00% 

December 
            

619,175  
864 0.14% 

        
30,114  

             
30,114  

0.00% 

Average 
            

603,594  
864 0.14% 

        
28,818  

             
28,818  

0.00% 

 

Details of the accepted bid pool for six representative days with the business as 

usual case with delayed charging are given in Table 4.12. 
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Figure 4.2: Daily Load Profile in 6 Days for Low Market and Delayed Charge Scenario 
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Table 4.12: Daily Results of Delayed Charging with Low Market Scenario 

Month 

Cost of 
Electricity 
Per Day 

(TL) 

Daily CO2 
Emissions 

(kg) 

Daily 
Electricity 

(MWh) 

Marginal 
CO2 

(g/kWh) 

Marginal 
Bid Costs 

(TL) 

Primary 
Energy 
(GWh) 

February 133,351 448,295 933 481 141,079 2,000 

April 107,066 353,951 945 375 118,370 1,881 

June 109,716 415,516 932 446 112,201 2,037 

August 164,516 361,035 945 382 165,799 1,632 

October 137,405 368,780 937 394 142,996 1,836 

December 113,249 394,411 933 423 119,397 1,950 

Average 127,551 390,331 937 417 133,307 1,889 
 

In Table 4.13 energy mix for different months are seen. Delayed charging energy 

mix shows significant variance compared to uncontrolled charge scenarios. The main 

reason is the availability of cheaper fossil fuel powered power plants at off-peak times. On 

average natural gas powered plants supply 68% of marginal electricity for EV charging, 

peaking at 94% at June where hydro capacity is low. Share of hydroelectric sources drop to 

21% on average.  This result is aligned with the expected emission increase in delayed 

charge scenarios as the fossil fuels share increases compared to uncontrolled case. On 

average marginal CO2 emission rate is 417 g/kWh with a maximum 481g/kWh in February. 

Coal plants are not getting a significant share which avoids electric vehicles to be more 

polluting than conventional cars.  

Estimation of annual performance of EVs charged under delayed charging scenario 

is given in Table 4.14:  
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Table 4.13: Energy Mix of Marginal Demand for EVs in Low Scenario / Delayed Charge 

Month 

Percentage of Primary Energy Source in Marginal Generation 

Large 
Hydro 
Dams 

River 
Type 
Dams 

Lake 
Type 
Dams 

Natural 
Gas 

Hard 
Coal Lignite 

Export 
Coal 

Fuel 
Oil Biogas Diesel 

February 11% 0% 0% 75% 13% 0% 0% 2% 0% 0% 

April 22% 0% 0% 76% 0% 3% 0% 0% 0% 0% 

June 1% 3% 0% 94% 0% 2% 0% 0% 0% 0% 

August 52% 0% 0% 20% 2% 0% 27% 0% 0% 0% 

October 25% 1% 0% 66% 0% 9% 0% 0% 0% 0% 

December 11% 2% 0% 80% 0% 2% 2% 2% 0% 0% 

Average 20% 1% 0% 68% 2% 3% 5% 1% 0% 0% 

 

Table 4.14: Results of Step 2 for Low Market Penetration Scenario with Delayed Charge 

Performance Measure Result 

Annual Primary Energy Consumption 889 GWh 

Total Fuel Pathway CO2 Emissions  190,088 Tons  

Total Cost of Purchase to End User  179,229,570 TL  

Total Energy Costs Before Taxes  79,399,939 TL  

 

4.2.2.3. Comments on Step 1 and Step 2 Results 

 

Literature related to EVs in Turkey has been missing a comparison that took 

different charge scenarios into account and which based calculation on real market data to 

determine marginal generators. At the end of Step 2, it is possible to compare the 

performance of the conventional fleet with the performance of EV’s that are charged based 

on two most likely charge scenarios without any optimization effort. 

Due to inefficiency of internal combustion engine powered vehicles, EV fleet 

surpasses conventional fleet’s primary energy consumption even though losses in 
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electricity supply chain such as losses in charger, transmission and distribution systems 

were taken into account. According to the low market scenario, a fleet consisting of 52,000 

gasoline powered and 68,000 diesel powered vehicles would consume a total of 1,646 

GWh of primary energy stored in crude oil in order to drive 14,000 kms annually. On the 

other hand EV fleet would consume 801 GWh if uncontrolled charge scenario happens and  

889 GWh if delayed charging is encouraged by price tariffs. The main reason of the energy 

consumption’s increase in delayed scenario is the increase in the percentage of fossil fuel 

powered plants’ share in marginal energy mix from an average of 54% to 79% as seen in 

Figure 4.3 and Figure 4.4. As the efficiency of these plants are lower than hydroelectcity 

dams the overall energy consumption increases but even in this case it is possible to save 

757 GWh annually by changing conventional vehicles with a fleet of BEVs and PHEVs. 

  

Figure 4.3: Energy Mix of Marginal Generators for Low Penetration/Uncontrolled Charge 
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Figure 4.4: Energy Mix of Marginal Generators for Low Penetration/Delayed Charge 

 

Second performance measure where EVs perform better than conventional fleet is 

CO2 emissions. Inefficiency coupled with carbon intensity of conventional fuels lead to a 

very high CO2 emission per kilometre for conventional vehicles. A conventional fleet of 

130,000 vehicles driving emit 393,199 tons of CO2 annually, which is equal to 207.2 g 

CO2/km. On the other hand EVs emit 154,977 Tons when charged with uncontrolled 

scenario and 190,088 Tons when charged with delayed scenario in Turkey which is equal 

to 73.9 and 91.5 g CO2/km emissions respectively. Similar to the primary energy 

consumption comparison uncontrolled scenario performs better in this performance 

measure as well due to higher share of clean sources of energy. Nevertheless, delayed 

scenario is shown to decrease the emissions as well, so the claim of performing worse than 

conventional vehicles when charged in late hours is not valid under the assumptions of this 

methodology. In Figure 4.5, life cycle emissions of three different scenarios are compared 

which clearly shows how clean EVs can be in Turkey even without any optimization effort. 

20% 

1% 

68% 

2% 
 3%  5% 

1% 
Large Hydro Dams 

River Type Dams 

Lake Type Dams 

Natural Gas 

Hard Coal 

Lignite 

Export Coal 

Fuel Oil 

Biogas 

Diesel 



 

 

Chapter 4: Application of the Methodology in Turkey   102 

 

Figure 4.5: Comparison of Emissions per Kilometre for Step 1 and 2 
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Figure 4.6: Comparison of Primary Energy Consumption and Costs for Step 1 and Step 2 

for Low Market Penetration Scenario 

 

 

Figure 4.7: Comparison of Annual Emissions and Costs for Step 1 and Step 2 for Low 

Market Penetration Scenario 
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In summary, independent of the charging scenario, electric vehicles are shown to 

consume approximately half the primary energy of conventional vehicles, while emitting 

39% (uncontrolled) to 48% (delayed) less CO2 in the end-to-end view for a smaller 

purchase cost to the end user with the market structure as of 2012 in Turkey.  

 

4.2.3. Step 3: Uncontrolled and Delayed Charge Results with Bi-Objective 

Optimization Results 

 

Steps 2 did not include any different decision making method other than business as 

usual dispatching, which works with the merit order method, accepting the bid that is the 

cheapest. In Step 3, by applying bi-objective optimization, it is analyzed if a significant 

decrease in emissions might be achieved by introducing CO2 emissions as an objective 

function to the model. The assumptions of the size of the fleet and charging scenarios and 

technical charging parameters are equal to those used in step 2 and the only change is the 

rule set of the dispatch problem.  

The solutions picked up by the merit order method, which were the results analyzed in 

Step 2, are always the cheapest solutions but by accepting more expensive orders from 

cleaner sources it is possible to decrease the emissions further. For each month bi-objective 

optimization is run for two different charge scenarios and the solutions creating the 

efficient frontier are analyzed in detail. As the number of solution makes it impossible to 

compare each of them and as there is a necessity to compare performance of different 

months and compare the results with first two steps a rule to pick certain solutions was set. 

First of two comparison points is the solution where the share of coal generators drop to 

0%. The reason is the speed of decrease in emissions by interchanging coal generators 

which emit 1000-1100 g CO2/kWh with clean sources that were not accepted because of 



 

 

Chapter 4: Application of the Methodology in Turkey   105 

their bid price in merit order dispatch. This will be referred as solution A and related 

solution in   graphs will be pointed A in the graphs. 

Second solution that will be analyzed is the cleanest possible solution which is feasible 

at the time of charging. This is analyzed to see how the system would perform in a case 

were environmental objective function dominates the economic one. Related solution will 

be referred as solution B in the text and graphs will be marked with a B to show were the 

solution falls in the efficient frontier.  

Model was run for 6 days in 6 different months similar to Step 2 and all solutions were 

analyzed. Efficient frontiers of 6 months for two different scenarios are shown in Figures 

4.8 to 4.13 where solutions A and B are clearly marked.  

 

 

Figure 4.8: Efficient frontier on February 10 for Low Market Scenario  
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Figure 4.9: Efficient frontier on April 14 for Low Market Scenario  

 

 

Figure 4.10: Efficient frontier on June 9 for Low Market Scenario  
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Figure 4.11: Efficient frontier on August 11 for Low Market Scenario  

Figure 4.12: Efficient frontier on October 13 for Low Market Scenario  

A 

B 

A 

B 0 

50 

100 

150 

200 

250 

300 

350 

400 

163.000 165.000 167.000 169.000 171.000 

To
n

s 
o

f 
C

O
2

 E
m

is
si

o
n

s 
p

e
r 

D
ay

 

Total  Cost of Marginal Bids 

August 

Uncontrolled 

Delayed 

A 

B 

A 

B 0 

50 

100 

150 

200 

250 

300 

350 

400 

130.000 135.000 140.000 145.000 150.000 155.000 160.000 165.000 

To
n

s 
o

f 
C

O
2
 E

m
is

si
o

n
s 

p
e

r 
D

ay
 

Total Cost of Marginal Bids 

October 

Uncontrolled 

Delayed 



 

 

Chapter 4: Application of the Methodology in Turkey   108 

 

Figure 4.13: Efficient frontier on December 8 for Low Market Scenario  
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Figure 4.14: Change of marginal energy mix in Step 3 solutions for February delayed 

charging 

 

Figure 4.15: Change of marginal energy mix in Step 3 solutions for October delayed 

charging 
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Depending on the season of the year, the marginal energy mix shows variance which 

changes the performance of EVs. This variance is reflected into end to end CO2 emissions 

of EVs as shown in Figure 4.16. The case where EVs perform worst in CO2 emissions is 

February delayed charging where coal power generators have a share of 12% and natural 

gas has 74%. Even with this worst case scenario, EVs outperform conventional vehicles by 

emitting approximately half the CO2. Cleanest possible charging energy mix occurs in 

solution B of delayed charging cases where 100% of the marginal mix can be supplied by 

hydroelectricity generators.  This case can only be achieved in the expense of an increase in 

the energy costs in the daily electricity market. Effects are visible in Figure 4.17 and 4.18 

where every scenario’s primary energy and daily total CO2 emissions are compared against 

the cost performances. The purchase cost for end users stay stable whereas the purchase 

cost varies from 7,6 million liras to 5,8 million liras depending on the market conditions.  

Detailed numerical results are given in Appendix A. 

A comparison with first two steps can be achieved by taking the average of solution A 

and B for every month and approximating annual performance of electric vehicles. CO2 

emissions per kilometre can be decreased down to 58 g CO2/km in uncontrolled scenario 

and to 72 g CO2/km in delayed scenario by interchanging coal bids with more clean sources 

at the time of charging. Similar to Step 2 results delayed charging is more polluting than 

uncontrolled charge scenario but both cases outperform conventional vehicles. The cleanest 

possible option to charge the electric vehicles under the assumptions of this methodology is 

to charge the vehicles with delayed scenario and then apply solution B which selects the 

cleanest possible energy mix lying on the efficient frontier. By doing so it is possible to 

reach an energy mix that only uses hydroelectricity and CO2 emissions from operations can 

be taken down to 26 g CO2/km compared to a lowest level of 29 g CO2/km in solution B 

average of uncontrolled scenario. The reason for this is the increased number of 

hydroelectricity sources that are available in the bid pool at delayed hours where the 
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conventional load is lower than peak hours of uncontrolled charging when hydro capacity 

is consumed by conventional load. Figure 4.19 visualizes the comparison of CO2 per km. 

 

 

Figure 4.16: Comparison of End to end CO2 emissions for different charging 

scenarios/months 
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Figure 4.17: Primary energy consumption compared against cost measures for all scenarios 

           

 

Figure 4.18: Monthly CO2 emissions compared against cost measures for all scenarios 
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Figure 4.19: Comparison of Emissions per Kilometre for Step 1, 2 and 3 

 

Performance measures for different steps of Uncontrolled and Delayed charging 

scenarios are compared in Tables 4.15 and 4.16.  

 

Table 4.15: Comparison of annual performance of Step 3 results for Uncontrolled Scenario 

  Step and Solution 

Performance Measure Conventional Uncontrolled  Uncontrolled A Uncontrolled B 

Annual Primary Energy Consumption 1,646 GWh 801 GWh  754 GWh   609 GWh  

Total Fuel Pathway CO2 Emissions 393,199 tons  154,977 Tons   121,004 Tons   61,912 Tons  

Total Cost of Purchase to End User 538,728,320 TL  199,543,605 TL   199,543,605 TL   199,543,605 TL  

Total Energy Costs Before Taxes 215,491,328 TL  84,320,189 TL  85,325,230 TL 88,981,671 TL 

 

 Application of bi-objective optimization to the marginal dispatch model, clarifies 

the possibilities to decrease emission further by increasing the cost. In controlled scenario, 

merit order dispatch used to decrease primary energy consumption by 52%, annual CO2 

emissions by 61% and purchase costs to end users by 63%. When the second objective 

function is introduced and all coal powered generators are taken out of marginal energy 
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mix, it is possible to have an extra 33,973 tons decrease in annual CO2 emissions in 

expense of a 1,005,041 TL. This is equal to a 29.5 TL/ ton CO2 cost addition to decrease 

emissions. A further decrease can be achieved by accepting cleaner solutions in the 

efficiency set and in order to reach the cleanest possible solution. This option (solution B) 

would increase the costs by 3,656,441 TL compared to solution A, and decrease the 

emission by 59,092 tons. As it becomes less cost efficient to decrease emissions after 

removing coal generators from the system, costs to save one ton of CO2 increase to 61.8 

TL/ ton CO2 from point A to B.  

 

Table 4.16: Comparison of annual performance of Step 3 results for Delayed Scenario 

  Step and Solution 

Performance Measure Conventional Delayed Delayed A Delayed B 

Annual Primary Energy Consumption 1,646 GWh 889 GWh  822 GWh   598 GWh  

Total Fuel Pathway CO2 Emissions 393,199 tons  190,088 Tons   149,941 Yons   57,030 Tons  

Total Cost of Purchase to End User 538,728,320 TL  179,229,570 TL   179,229,570 TL   179,229,570 TL  

Total Energy Costs Before Taxes 215,491,328 TL  79,399,938 TL  80,002,773 TL 83,161,099 TL 

 

 The same relation applies to delayed scenario’s results with different parameters. 

From Step 2 results of delayed charging it is possible to decrease the emissions by 40,147 

tons by increasing the annual costs by 602,834 TL. This decrease is even sharper than the 

drops in uncontrolled case because cost to decrease one ton of CO2 drops to 15 TL/ ton 

CO2. If the emissions are required to be decreased further, the total costs can be increased 

by 3,158,326 TL to enable a 92,911 tons savings in annual CO2 emissions. This is equal to 

a 33.9 TL/ton CO2 decrease cost. 

 In summary, delayed charging starts with an emission disadvantage over 

uncontrolled charging for a cheaper cost but it enables to decrease emissions more 

effectively than uncontrolled charge as the clean sources become abundant. Comparison of 

annual performance measures for Step 3 with previous steps is in Figures 4.20 and 4.21. 
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Figure 4.20: Annual primary energy consumption comparison of Steps 1-2-3 

 

Figure 4.21: Annual CO2 emissions comparison of Steps 1-2-3 
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4.2.4. Step 4: Hour Optimization Results 

 

The fourth and last step of the methodology includes running the dispatch models 

with the charging hours defined as decision variables instead of predefined scenarios that 

limit the feasible set of solutions. Once the hours are defined as variables in the bi-

objective model, solutions picked up show efficient frontier from the cheapest solution to 

the cleanest one. Only limitations on the charging hours are the rush hour constraints which 

limit the percentage of vehicles that can be charged in rush hours as the cars will most 

likely be on the roads. All other parameters are constant compared to previous steps.  

Efficient frontiers are seen in Figures 4.22 to 4.27 where the comparison with Step 

3 results is clearly visible. In majority of the months, Step 4 solutions start from the most 

polluting but the cheapest solution by moving the charging hours to hours where the 

conventional consumption is the lowest. By doing so, the dispatch model utilizes cheap 

energy sources such as coal to charge the EVs but the emissions climb to higher levels 

compared to previous steps.   

In order to compare the results with previous steps, average of cheapest results 

(merit order) in 6 months and least polluting results in 6 months are taken.  In the cheapest 

hours average contribution of fossil fuels climb up to 84% in the marginal energy mix (with 

a maximum of 99% in October) due to high share of fossil fuels in cheapest hours 

compared to 54% in uncontrolled scenario and 79% in delayed scenario. Therefore the CO2 

emissions in hour optimization model gives the maximum emission level compared to 

results of step 2 and 3. Nevertheless as it can be seen in Figure 4.28, EVs still emit less 

CO2 compared to conventional vehicles. 

Hours for cheapest charging are found to be hours from 03:00 am to 07:00 am. For 

the case of Turkey, this means if policies that encourage charging in early morning hours 

can be installed, any impact due to extra load of electric vehicles can be avoided, with a 
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lower cost and emissions that still outperform conventional vehicles. If those emission 

levels are found to be high, than results of bi-objective optimization shows that it is 

possible to further decrease emission for an average CO2 decrease cost of 64 TL/ton CO2. 

There are some cases where a very efficient drop of emissions is possible. April efficient 

frontier is a very good example of this case (Figure 4.23). Although total emissions start 

from a higher point that uncontrolled and delayed scenarios, a very fast drop in emissions 

can be achieved by interchanging  hard coal and natural gas bids with large hydro bids that 

are very close in bid prices. The cost to decrease one ton of CO2 drops to 0.8 TL / ton of 

CO2. This is a very efficient drop level which can be missed if only merit order dispatch is 

used. Therefore, these results highlight the necessity of tools that are able to track and 

determine those fast decreasing efficient frontiers and change the decision making 

procedure to benefit from the opportunity to decrease emissions in a cost effective way.  

 

 

Figure 4.22: Efficient frontier on February 10 for Low Market Scenario Step 4  
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Figure 4.23: Efficient frontier on April 14 for Low Market Scenario Step 4  

 

Figure 4.24: Efficient frontier on June 9 for Low Market Scenario Step 4  
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Figure 4.25: Efficient frontier on August 11 for Low Market Scenario Step 4  

 

Figure 4.26: Efficient frontier on October 13 for Low Market Scenario Step 4  
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Figure 4.27: Efficient frontier on December 8 for Low Market Scenario Step 4 

 

Figure 4.28: Comparison of Emissions per Kilometre for Step 1, 2, 3 and 4 
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 Comparison of remaining performance measures are given in Figures 4.29 and 4.30.  

As described earlier, cheapest option starts with the maximum or primary energy 

consumption and CO2 emissions compared to previous steps. But due to abundance of 

cheap and clean sources in night hours where the hour optimization model suggests, it is 

possible to decrease emissions and energy consumption to a level below all other scenarios 

investigated for the minimum cost of all scenarios. This clarifies that coupling EV 

introduction with a structured charging policy has the potential to save money in the supply 

chain and decrease emissions.  

 

 

Figure 4.29: Annual primary energy consumption comparison of Steps 1-2-3-4 
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Figure 4.30: Annual CO2 emissions comparison of Steps 1-2-3-4 
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4.3.1. Step 1: Conventional Results 

 

 Performance measures are calculated as explained in Section 3.1. and the summary of 

results are given in Table 4.17. 

 

Table 4.17: Results of Step 1 for Medium Market Penetration Scenario 

Performance Measure Result 

Annual Primary Energy Consumption 3,544 GWh 

Total Fuel Pathway CO2 Emissions 846,890 tons 

Total Cost of Purchase to End User 1,160,337,920 TL 

Total Energy Costs Before Taxes 464,135,168 TL 
 

4.3.2. Step 2: Uncontrolled and Delayed Charge Results in Business as Usual 

Market Operations Results 

 

4.3.2.1. Uncontrolled Charge Results 

 

 In the uncontrolled charge scenario for low market penetration, it is assumed that 

90,000 BEV and 190,000 PHEV will be charged without any type of regulation in an 

uncontrolled environment. 280,000 electric vehicles being charged from the grid according 

to uncontrolled scenarios increase the peak demand and total electricity consumption with 

the values seen in Table 4.18.  

With this scenario on average electricity consumption in Turkey rises by 0.31%, 

whereas the average peak increases by 0.73% with a maximum increase of 1.77% in 

December at 18:00.   
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Table 4.18: Daily Results of Uncontrolled Charging with Medium Market Scenario 

Month 

Total 
Conventional 

Demand 
(MWh/day) 

Charging 
Demand before 
Transmission 
Losses (MWh) 

Increase 
percentage 

Peak 
without 

Charging 
(MWh) 

Peak with 
Uncontrolled 

Charging 
(MWh) 

Increase 
in Peak 

February 
            

598,677  
1,864 0.31% 

        
28,472  

             
28,803  

1.16% 

April 
            

570,353  
1,864 0.33% 

        
26,823  

             
26,830  

0.03% 

June 
            

566,940  
1,864 0.33% 

        
27,487  

             
27,494  

0.02% 

August 
            

688,521  
1,864 0.27% 

        
32,926  

             
32,926  

0.00% 

October 
            

577,895  
1,864 0.32% 

        
27,083  

             
27,460  

1.39% 

December 
            

619,175  
1,864 0.30% 

        
30,114  

             
30,648  

1.77% 

Average 
            

603,594  
1,864 0.31% 

        
28,818  

             
29,027  

0.73% 

 

Marginal energy mix sources for different months can be seen in Table 4.19. Hydro 

electricity and natural gas’ share remained almost stable compared to low market scenario 

and they are equal at 46%. Coal’s share is significant only in April and August, and this is 

also parallel with low market scenario. This energy mix enables a low marginal CO2 

emission rate of an average 277 g CO2/kWh and a maximum 451 g CO2/kWh in April 

where fossil fuels have a high share.  

 

Table 4.19: Energy Mix of Marginal Demand for EVs in Medium Scenario / Uncontrolled Charge 

Month 

Percentage of Primary Energy Source in Marginal Generation 
Large 
Hydro 
Dams 

River 
Type 
Dams 

Natural 
Gas 

Hard 
Coal 

Lignite 
Export 
Coal 

Fuel 
Oil 

Biogas Diesel 

February 55% 0% 41% 4% 0% 0% 0% 0% 0% 

April 10% 2% 78% 8% 0% 0% 2% 0% 0% 

June 30% 2% 68% 0% 0% 0% 0% 0% 0% 

August 76% 1% 5% 9% 0% 9% 1% 0% 0% 

October 62% 1% 34% 0% 3% 0% 0% 0% 0% 

December 45% 1% 51% 0% 1% 0% 2% 0% 0% 

Average 46% 1% 46% 3% 1% 1% 1% 0% 0% 
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Performance measures calculated based on average of 6 months based on formulas 

given in Section 3.3.7 are given in Table 4.20. 

 

Table 4.20: Results of Step 2 for Medium Market Penetration Scenario with Uncontrolled Charge 

Performance Measure Result 

Annual Primary Energy Consumption 1,702 GWh 

Total Fuel Pathway CO2 Emissions 307,618 Tons  

Total Cost of Purchase to End User 426,543,403 TL  

Total Energy Costs Before Taxes  177,005,257 TL  

 

4.3.2.2. Delayed Charge Results 

 

In the delayed charge scenario for low market penetration, it is assumed that electric 

vehicles will be charged with a simple delayed approach starting at 22:00 when electricity 

costs without any type of regulation in an uncontrolled environment. Delayed charging 

scenario’s affects on total consumption and the peak demand are seen in Table 4.21. 

Similar to low scenarios peak demand is not affected as the load is concentrated in off peak 

hours. Total consumption rises by 0.31%. 

Marginal energy mix sources for different months can be seen in Table 4.22. Hydro 

electricity’s share drops to 31% on average and natural gas’ share increases to 63% when 

compared with uncontrolled case. This is similar result to low market case. This energy 

mix gives and average CO2 emission rate of an average 345 g CO2/kWh and a maximum 

422 g CO2/kWh in April. 
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Table 4.21: Affects of Medium / Delayed Demand on Conventional Load and Peak Demand 

 
Month 

Total 
Conventional 

Demand 
(MWh/day) 

Charging 
Demand before 
Transmission 
Losses (MWh) 

Increase 
percentage 

Peak 
without 

Charging 
(MWh) 

Peak with 
Uncontrolled 

Charging 
(MWh) 

Increase 
in Peak 

February 
            

598,677  
1864 0.31% 

        
28,472  

             
28,472  

0.00% 

April 
            

570,353  
1864 0.33% 

        
26,823  

             
26,823  

0.00% 

June 
            

566,940  
1864 0.33% 

        
27,487  

             
27,487  

0.00% 

August 
            

688,521  
1864 0.27% 

        
32,926  

             
32,926  

0.00% 

October 
            

577,895  
1864 0.32% 

        
27,083  

             
27,083  

0.00% 

December 
            

619,175  
1864 0.30% 

        
30,114  

             
30,114  

0.00% 

Average 
            

603,594  
1864 0.31% 

        
28,818  

             
28,818  

0.00% 

 

Table 4.22: Energy Mix of Marginal Demand for EVs in Medium Scenario / Delayed Charge 

Month 

Percentage of Primary Energy Sources in Marginal Generation 

Large 
Hydro 
Dams 

River 
Type 
Dams 

Lake 
Type 
Dams 

Natural 
Gas 

Hard 
Coal 

Lignite 
Export 
Coal 

Fuel 
Oil 

Biogas Diesel 

February 15% 0% 0% 81% 4% 0% 0% 0% 1% 0% 

April 17% 1% 0% 72% 4% 5% 0% 0% 0% 0% 

June 20% 3% 0% 77% 0% 0% 0% 0% 0% 0% 

August 54% 0% 0% 33% 1% 0% 12% 0% 0% 0% 

October 49% 1% 0% 51% 0% 0% 0% 0% 0% 0% 

December 27% 1% 0% 64% 0% 1% 6% 1% 0% 0% 

Average 30% 1% 0% 63% 1% 1% 3% 0% 0% 0% 

 

Performance measures calculated based on average of 6 months are given in Table 

4.23. 
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Table 4.23: Results of Step 2 for Low Market Penetration Scenario with Delayed Charge 

Performance Measure Result 

Annual Primary Energy Consumption 1,811 GWh 

Total Fuel Pathway CO2 Emissions 354,148 Tons  

Total Cost of Purchase to End User  379,739,374 TL  

Total Energy Costs Before Taxes 165,531,297 TL  

 

4.3.2.3. Comments on Step 1 and Step 2 Results 

 

Medium scenario results have very similar characteristics to low market scenario. 

With a higher rate of market penetration, EVs still do not lose advantage against 

conventional vehicles in all performance measures. In this scenario a conventional fleet of 

280,000 vehicles would emit 846,890 tons of CO2, which is equal to 207 g CO2/km, 

whereas EVs would emit 307,618 tons with uncontrolled charging and 354,148 tons with 

delayed charging. Uncontrolled scenario performs better like low scenario, due to having a 

larger share of hydroelectricity sources in marginal mix and decreases emissions by 63% 

whereas delayed scenario can decrease emissions by 58%. Effects on costs to end users 

also have a similar trend to low scenario. EV chargers would pay 426,543,403 TL for 

uncontrolled charge and 379,739,374 TL for delayed charge whereas conventional fleet 

would need 1,160,337,920 TL for gasoline and diesel consumption. Comparisons of 

performance measures are given together with other steps’ solutions in Figures 4.37 – 4.39. 

These results show that without any optimization effort, medium market penetration 

of electric vehicles is a cheaper option that emits less CO2 and consumes less energy 

compared to conventional vehicles in both charging scenarios.  
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4.3.3. Bi-Objective Optimization Results 

 

 In this section, results of Step 3, which is the bi-objective optimization with 

charging scenarios and Step 4, which is bi-objective optimization with charging hours as 

decision variables are given. Efficient frontiers of 6 representative days can be seen in 

Figure 4.31 to 4.36. Like first two steps, results are very similar to low scenario results, 

only in a different magnitude due to fleet sizes. On average, uncontrolled scenario results 

begin with an expensive but less polluting solution compared to delayed scenario but 

application of bi-objective dispatch enables delayed scenario to end up with a cleaner 

result. Hour optimization forces the system to charge the vehicles in early morning hours 

but this leads to an increased CO2 emission compared to previous steps. Even in this case 

the maximum charging CO2 emission per kilometre (96.3 g CO2/km due to 92% fossil 

contribution in marginal mix) still outperforms emission performance of conventional 

vehicles which is 207 g CO2/km. Average of cheapest hour charging scenarios emit 88 g 

CO2/km.  With hour optimization, it is possible to decrease emissions down to 25-30 g 

CO2 /km levels with comparable costs to other charging scenarios. From Figures 4.37 to 

4.39, performance measure comparisons for all steps under medium market penetration 

case can be seen. Details of the results and summary tables can be found in Appendix A.  
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Figure 4.31: Efficient frontiers on February 10 for Medium Market Scenario 

 

Figure 4.32: Efficient frontiers on April 14 for Medium Market Scenario 
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Figure 4.33: Efficient frontiers on June 9 for Medium Market Scenario 

 

Figure 4.34: Efficient frontiers on August 11 for Medium Market Scenario 
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Figure 4.35: Efficient frontiers on October 13 for Medium Market Scenario 

 

Figure 4.36: Efficient frontiers on December 8 for Medium Market Scenario 
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Figure 4.37: Comparison of Emissions per Kilometre for Step 1, 2, 3 and 4 

 

Figure 4.38: Annual CO2 emissions comparison of Steps 1-2-3-4 
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Figure 4.39: Annual primary energy consumption comparison of Steps 1-2-3-4 
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625,000 electric vehicles on the road. The reason to investigate results of this scenario is to 

see how the system reacts when the market penetration rates exceed expectations and reach 

very high numbers, putting the supply of electricity under threat. 

Similar to medium scenario results, this section only gives summarized result 

comparison figures and comments for the same steps as low and medium scenarios. Low 

scenario results section can be used as a reference where the reader needs to follow each 

step’s details.  

 

4.4.1. Step 1: Conventional Results 

 

 Performance measures are calculated as explained in Section 3.1. and the summary of 

results are given in Table 4.24. 

Table 4.24: Results of Step 1 for Medium Market Penetration Scenario 

Performance Measure Result 

Annual Primary Energy Consumption 7,911 GWh 

Total Fuel Pathway CO2 Emissions 1,890,380 tons 

Total Cost of Purchase to End User 2,590,040,000 TL 

Total Energy Costs Before Taxes 1,012,656,000 TL 
 

4.4.2. Step 2: Uncontrolled and Delayed Charge Results in Business as Usual Market 

Operations Results 

 

4.4.2.1. Uncontrolled Charge Results 

 

 In the uncontrolled charge scenario for low market penetration, it is assumed that 

225,000 BEV and 400,000 PHEV will be charged without any type of regulation in an 

uncontrolled environment. 625,000 electric vehicles being charged from the grid according 
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to uncontrolled scenarios increases the peak demand and total electricity consumption with 

the values seen in Table 4.25.  

With this scenario on average electricity consumption in Turkey rises by 0.69%, 

whereas the average peak increases by 2.04% with a maximum increase of 4.02% in 

October at 19:00.   

Table 4.25: Daily Results of Uncontrolled Charging with High Market Scenario 

Month 

Total 
Conventional 

Demand 
(MWh/day) 

Charging 
Demand before 
Transmission 
Losses (MWh) 

Increase 
percentage 

Peak 
without 

Charging 
(MWh) 

Peak with 
Uncontrolled 

Charging 
(MWh) 

Increase 
in Peak 

February 
            

598,677  
4,180 0.70% 

        
28,472  

             
29,456  

3.46% 

April 
            

570,353  
4,180 0.73% 

        
26,823  

             
26,840  

0.06% 

June 
            

566,940  
4,180 0.74% 

        
27,487  

             
27,504  

0.06% 

August 
            

688,521  
4,180 0.61% 

        
32,926  

             
33,157  

0.70% 

October 
            

577,895  
4,180 0.72% 

        
27,083  

             
28,171  

4.02% 

December 
            

619,175  
4,180 0.68% 

        
30,114  

             
31,301  

3.94% 

Average 
            

603,594  
4,180 0.69% 

        
28,818  

             
29,405  

2.04% 

 

The most important finding in this scenario is the infeasible result reached in 

December. According to the data taken from TEİAŞ, the amount of available bids at 18:00 

is 760 MW, whereas according to the uncontrolled charge scenario 1187 MW of new load 

is needed to supply the charging demand from EVs. Due to this shortage, the model ends 

up in an infeasible solution, where it is not possible to supply the new demand. In the next 

subsections it is shown that it is still feasible to charge the same amount of EVs by 

changing the charge hours but this is an important finding to show that uncontrolled charge 

might end up in a case where the network is not able to supply the new demand. In order to 

reach general results, February results have been used to approximate the annual results.  
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Marginal energy mix sources for different months can be seen in Table 4.26. 

Hydroelectricity’s share in the marginal mix increases compared to low and medium 

market scenario due to the increased peak demand where peak load hydroelectric 

generators are abundant. Coal’s share climbs to its maximum in the study in April where 

hydroelectricity supplies shift to base load as the prices fall due to high availability of 

Hydroelectricity generation capacity. This increases per kilometre emissions up to 139 g 

CO2/km which is comparable with hybrid vehicles. However the average energy mix 

enables a low marginal CO2 emission rate of an average 299 g CO2/kWh and a maximum 

704 g CO2/kWh in April where fossil fuels have a high share.  

 

Table 4.26: Energy Mix of Marginal Demand for EVs in High Scenario / Uncontrolled Charge  

Month 

Percentage of Primary Energy Source in Marginal Generation 

Large 
Hydro 
Dams 

River 
Type 
Dams 

Natural 
Gas 

Hard 
Coal Lignite 

Export 
Coal Fuel Oil Biogas Diesel 

February 68% 0% 29% 3% 0% 0% 0% 0% 0% 

April 6% 1% 48% 3% 42% 0% 1% 0% 0% 

June 10% 0% 84% 0% 0% 5% 1% 0% 0% 

August 78% 1% 8% 6% 0% 5% 3% 0% 0% 

October 74% 1% 23% 0% 2% 0% 0% 0% 0% 

December 68% 0% 29% 3% 0% 0% 0% 0% 0% 

Average 51% 1% 37% 3% 7% 2% 1% 0% 0% 
 

Performance measures calculated based on average of 6 months based on formulas 

given in Section 3.3.7 are given in Table 4.27. 
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Table 4.27: Results of Step 2 for Low Market Penetration Scenario with Uncontrolled Charge 

Performance Measure Result 

Annual Primary Energy Consumption 4,034 GWh 

Total Fuel Pathway CO2 Emissions 798,100 Tons  

Total Cost of Purchase to End User 987,451,222 TL 

Total Energy Costs Before Taxes 426,543,403 TL 

 

4.4.2.2. Delayed Charge Results 

 

Delayed charging scenario’s affects on total consumption and the peak demand for 

high market scenario are seen in Table 4.28. Similar to low and medium scenarios peak 

demand is not affected as the load is concentrated in off peak hours. Total consumption 

rises by 0.69% 

 

Table 4.28: Affects of High Scenario / Delayed Charge Demand on Conventional Load and Peak 

Demand 

Month 

Total 
Conventional 

Demand 
(MWh/day) 

Charging 
Demand before 
Transmission 
Losses (MWh) 

Increase 
percentage 

Peak 
without 

Charging 
(MWh) 

Peak with 
Uncontrolled 

Charging 
(MWh) 

Increase 
in Peak 

February 
            

598,677  
4,180 0.70% 

        
28,472  

             
28,472  

0.00% 

April 
            

570,353  
4,180 0.73% 

        
26,823  

             
26,823  

0.00% 

June 
            

566,940  
4,180 0.74% 

        
27,487  

             
27,487  

0.00% 

August 
            

688,521  
4,180 0.61% 

        
32,926  

             
32,926  

0.00% 

October 
            

577,895  
4,180 0.72% 

        
27,083  

             
27,083  

0.00% 

December 
            

619,175  
4,180 0.68% 

        
30,114  

             
30,114  

0.00% 

Average 
            

603,594  
4,180 0.69% 

        
28,818  

             
28,818  

0.00% 
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Marginal energy mix sources for different months can be seen in Table 4.29. Hydro 

electricity’s share drops to 45% on average and natural gas’ share increases to 52% when 

compared with uncontrolled case. However, when these figures are compared with low and 

medium scenarios it is clearly visible that there is an increase in the share of hydroelectric 

sources. The reason is the following: as the demand increases and natural gas resources in 

the peak hours decrease, more peak hydro generator bids are accepted. This energy mix 

gives and average CO2 emission rate of an average 278 g CO2/kWh and a maximum 385 g 

CO2/kWh in April. 

 

Table 4.29: Energy Mix of Marginal Demand for EVs in High Scenario / Delayed Charge 

Month 

Percentage of Primary Energy Source in Marginal Generation 

Large 
Hydro 
Dams 

River 
Type 
Dams 

Natural 
Gas 

Hard 
Coal Lignite 

Export 
Coal Fuel Oil Biogas Diesel 

February 34% 0% 63% 3% 0% 0% 0% 1% 0% 

April 27% 1% 62% 4% 6% 0% 0% 0% 0% 

June 27% 1% 71% 0% 0% 0% 0% 0% 0% 

August 71% 0% 23% 0% 0% 5% 0% 0% 0% 

October 56% 0% 43% 0% 1% 0% 0% 0% 0% 

December 48% 0% 47% 0% 0% 3% 0% 0% 0% 

Average 44% 1% 52% 1% 1% 1% 0% 0% 0% 
 

Performance measures calculated based on average of 6 months are given in table 4.30. 

 

Table 4.30: Results of Step 2 for Low Market Penetration Scenario with Uncontrolled Charge 

Performance Measure Result 

Annual Primary Energy Consumption 3,764 GWh 

Total Fuel Pathway CO2 Emissions 672,471 Tons  

Total Cost of Purchase to End User  831,408,656 TL  

Total Energy Costs Before Taxes 343,223,740 TL  
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4.4.2.3. Comments on Step 1 and Step 2 Results 

 

High scenario results show similar characteristics to low and medium market 

scenario, however due to the increase in demand, hydroelectricity sources find more share 

in the marginal mix especially in uncontrolled charge hours. With this maximum rate of 

market penetration, EVs still perform better than conventional vehicles in all performance 

measures. In this scenario a conventional fleet of 625,000 vehicles would emit 1,890,380 

tons of CO2, which is equal to 207 g CO2/km, whereas EVs would emit 798,100 tons with 

uncontrolled charging and 672,471 tons with delayed charging. Uncontrolled scenario, 

performs better like low and medium scenarios, due to higher share of renewable sources in 

marginal mix and decreases emissions by 57% whereas delayed scenario can decrease 

emissions by 64%. Effects on costs to end users also have a similar trend to low scenario. 

EV chargers would pay 987,451,222 TL for uncontrolled charge and 831,408,656 TL for 

delayed charge whereas conventional fleet would need 2,590,040,000 TL for gasoline and 

diesel consumption. This means that on average EV charges would pay 39% of what they 

pay for fuel in uncontrolled charge and 32% in delayed charge. Comparisons of 

performance measures are given together with other steps’ solutions in Figures 4.46 – 4.48. 

These results show that even in worst case of an extreme market introduction, 

electric vehicles are a cheaper option that emits less CO2 and consumes less energy 

compared to conventional vehicles in both charging scenarios without any optimization 

effort. The only negative impact was the overload of December case where the system was 

not able to supply the charging demand. This could be overcome by charge hour 

regulations if such an aggressive penetration occurs.  
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4.4.3. Bi-Objective Optimization Results 

 

 In this section, results of Step 3, which is the bi-objective optimization with 

charging scenarios and Step 4, which is bi-objective optimization with charging hours as 

decision variables are given for high market penetration scenario. Efficient frontiers of 6 

representative days can be seen in Figures 4.40 to 4.45. Efficient frontiers show a similar 

trend to low and medium scenario results; however, uncontrolled scenarios in the high 

market penetration scenario tend to have an increased emission due to necessity of coal 

generation support in heavily loaded hours of peak hour charging. In some extreme cases, 

coal contribution climbs up to 46% in April and fossil fuel contribution climbs up to 93% 

in June. This is due to increased consumption in summer days which couples with the lack 

of hydroelectricity sources. In February and October cases uncontrolled scenario shows the 

expected trend of being more expensive but less polluting than delayed case. On average 

uncontrolled scenarios enable a decrease from 59 g CO2/km to 53 g CO2/km by removing 

coal generators and further down to 41 g CO2/km by changing natural gas sources with 

renewable. Delayed scenarios start from a higher average of 67 g CO2/km but using bi-

objective optimization enables a first decrease to 57 g CO2/km by removing coal and a 

further decrease down to 38 g CO2/km. This shows that by having a larger feasible set 

delayed case gives opportunity to decrease emissions more than uncontrolled case.  

Hour optimization forces the system to charge the vehicles in early morning hours 

but this leads to an increased CO2 emission compared to previous steps. Even in the worst 

case EVs emit 95 g CO2/km which is less than half of average conventional vehicle 

emissions. Average of cheapest hour charging scenarios emits 80 g CO2/km. With hour 

optimization, it is possible to decrease emissions down to 25-30 g CO2 /km levels with 

comparable costs to other charging scenarios. This highlights the opportunity to utilize the 

clean sources in off-peak hours where they also have low cost.  
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In high scenario hour optimization case, bi-objective optimization tools enable very 

efficient decreases in emissions by interchanging coal generators with hydroelectricity 

sources which have bid prices that are very close to those of coal generators. For example 

cost of saving a ton of CO2 is found to be as low as 19 TL/ton of CO2 in December. In high 

market penetration, independent of the charging scenario, cost advantage of EVs to end 

users remains significant over conventional vehicles. Even in the most expensive case to 

end users which is the uncontrolled charging, driver would have paid 33% of the total 

amount of gasoline and diesel purchase price.  

From Figures 4.46 to 4.48, performance measure comparisons for all steps under 

medium market penetration case can be seen. Details of monthly results for all steps and 

months can be found in Appendix A. 

 

Figure 4.40: Efficient frontiers on February 10 for High Market Scenario 
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Figure 4.41: Efficient frontiers on April 14 for High Market Scenario 

 

 

Figure 4.42: Efficient frontiers on June 9 for High Market Scenario 
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Figure 4.43: Efficient frontiers on August 11 for High Market Scenario 

 

 

Figure 4.44: Efficient frontiers on October 13 for High Market Scenario 
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Figure 4.45: Efficient frontiers on December 8 for Medium Market Scenario 

 

Figure 4.46: Comparison of Emissions per Kilometre for Step 1, 2, 3 and 4 for High Penetration 
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Figure 4.47: Annual CO2 emissions comparison of Steps 1-2-3-4 for High Penetration 

 

 

Figure 4.48: Primary Energy Comparison of Steps 1-2-3-4 for High Penetration 
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4.5. Comparison of Average Case with Marginal Energy Mix Results 

 

One of the major contributions of this study is the emphasis put on marginal energy 

mix instead of assuming that EVs will be charged by the average mix. In order to prove 

that there is a significant variance between these two, one performance measure that is 

easier to compare for average mix is selected and results are compared.  

According to annual energy figures by TEİAŞ monthly average CO2 emissions per 

kWh has shown variance during the year according to availability of hydroelectric capacity 

and had an average of 492 g CO2/kWh emission in 2010. Monthly trend is presented in 

Figure 4.49 whereas average annual energy mix is given in Figure 4.50. 

 

 
Figure 4.49: Monthly Average and Marginal CO2 emissions in Turkey 

 

 

0 

100 

200 

300 

400 

500 

600 

g 
C

O
2
 /

 k
W

h
 

Average CO2 Emissions from Electricity Generation 

Conventional 
Average Load 

Marginal Low 
Uncontrolled 

Marginal Low 
Delayed 

Hour 
Optimization  



 

 

Chapter 4: Application of the Methodology in Turkey   147 

When the marginal energy mix emissions are compared in the same graph with the 

average conventional mix, one of the most interesting results of this study becomes visible: 

In months where the average emissions are low, marginal mix emission are high. As 

explained in the scenario result analysis sections, this is strongly dependent on the hydro 

capacity availability and costs. In months where hydroelectricity in abundant (for example 

April) average emissions decrease by supplying a large share of demand by cheap 

renewable sources. However, this leaves the peak hours without any hydro option and any 

extra demand on the system can only be supplied by fossil fuel powered thermal 

generators. Therefore, emission rates increase. When hydro power is less abundant and 

expensive, hydro bids are only accepted when the bid prices go up. This means that peak 

demand is supplied with expensive renewable sources and emissions drop. This proves that 

the performance of the EVs is strongly dependent on the marginal mix which shows 

significant variance depending on the season. Also this graph shows how single objective 

driven decisions might end up in the worst environmental performance. Hour optimization 

proves to be more pollutant than uncontrolled and delayed cases and gives the worst 

emission rates in the study in April case, where the share of fossils climbs up to 73%. 

 
Figure 4.50: Average Energy Mix of Turkish Electricity Network in 2010 
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When a comparison with average mix is done, the magnitude of the variance is 

clearly visible. Due to high share of coal in base load, coal generators (hard coal, export 

coal and lignite are considered in this category) climb up to a contribution of  25% if 

average mix is used, whereas coal’s share has never exceeded 11% in average for any 

scenario considered in the study. If the policy decisions were to be based on this average 

EVs would be considered as emitting 105 g CO2/km whereas in reality they emit around 80 

g CO2/km according to the average of all business as usual models. This means that 23% of 

environmental benefits of EVs are neglected when average mix is used to calculate the 

impacts. This variance shows the importance of using marginal energy mix in impact 

analysis studies.   
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Chapter 5 

 

CONCLUSIONS 

  

This thesis presented a high level methodology to analyze the impacts of EVs 

introduction to the passenger transportation market in short term, which can be used to 

estimate the performance of the technology in any region before the introduction takes 

place by using a mathematical model.  Despite the fact that impacts of EV introduction was 

extensively analyzed in the literature the following gaps were found: (1) impact analyzes 

were based either on determined energy mix scenarios or average energy mix, (2) there was 

no effort to optimize charging hours, (3) single objective models were dominantly used to 

generate set of decisions and (4) none of the studies analyzed the impacts on Turkish 

electricity market.  In order to address these gaps, a methodology which works on a mixed-

integer bi-objective optimization model was created. This model focuses on determining 

the set of marginal generators under technical constraints. It enables decision makers to see 

full set of options that can be used as marginal generators by including a second objective 

function in the model. Additionally, it is possible to introduce charging hours as decision 

variables to the system thus analyses are not limited to charging scenarios only. By 

applying this model to Turkish electricity market and analyzing results, it can be concluded 

that an attempt to fill all four gaps defined above is made.   

Conclusions can be separated into two groups: universal conclusions and Turkish 

market specific conclusions. First and most important universal conclusion of this study is 

that it demonstrates how application of bi-objective optimization tools provide decision 

makers a greater set of options and enables the system to get more environmental benefits 
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from EVs. In regions where EVs are already performing cleaner that ICEVs this tools only 

enable to increase the advantage of EVs over ICEVs, whereas in regions where EVs 

operate with higher emissions compared to ICEVs due to carbon intense electricity 

generation, it proves to be an essential tool in the efforts to avoid this promising technology 

to end up in a worse result than the current technology. Without this approach, it would be 

impossible for decision makers to see the full set of options which include more expensive 

but cleaner energy mixes that could charge EVs and the system would get stuck in cost 

effective charge solutions in exchange for environmental benefits. In such cases, the 

efficient frontier gives the set of all feasible and efficient set of options for marginal 

generators and enables decision makers to choose among these based on their level of 

environmental consciousness and make EVs perform better than ICEVs with correct 

policies on electricity generation.  

This study also proves that cost minimization objective can bring the system to 

solution where the emissions are maximized. Therefore, decision makers should take both 

economic and environmental aspects of the problem into account to avoid ending up in a 

case where the environmental benefits are minimized in expense of economic benefit.  The 

specifications of the network should be analyzed in detail and both objectives should be 

considered before placing charging incentives that will encourage vehicle owners to charge 

at specific times of the day.  

Hour optimization’s importance is also seen in the results of the application. By 

applying hour optimization and bi-objective solution at the same time, and encouraging 

drivers to charge at right hours of the day proposed by the model it is possible reach the 

same environmental performance with a less cost compared to pre determined scenarios.   

By conducting the analysis on different seasons and days it is shown how the 

performance of the vehicles varies from time to time. This proves that there is no policy 

that can be the best solution for all months and all regions, therefore technologies to get 



 

 

Chapter 5: Conclusions    151 

real time information like Smart Grid is essential to get the best benefits from the EV 

technology. This will enable the system to gather enough data to run the methodology 

proposed in the study for as many days as possible and create different sets of decision, 

especially for charging hour policies for different time of the year. Increased share of 

renewable energy sources makes this even more important because only by using Smart 

Grid applications and accompanying optimization tools, it is possible to utilize the 

renewable energy sources at right times by charging the batteries with clean sources.   

Another universal conclusion that can be reached is the variance of the marginal 

mix and its specifications from the average energy mix. Due to long term agreements and 

technical constraints some generators need to operate at constant levels of service 

throughout the year, hence they do not have any chance to react on demand increases. In 

short term, as it was assumed that the electricity network will not be able to add new 

generation capacity to the system in accordance with the EV charging demand, this 

increases the importance of tools that can determine the marginal generators. This 

methodology achieves this and the Turkish example has shown how significant the 

variance can be. If the decisions are based on average mix, wrong outcomes could be 

obtained and EV strategies might be misled. This result must encourage decision makers to 

focus their attention on using studies that calculate the marginal mix.    

Turkish case results are also important to understand the performance of this 

emerging technology in Turkish market. EVs have outperformed ICEVs in every 

performance measure that was tracked in the study. First of all in all charge and market 

penetration scenarios dominant technologies that are determined by the model are either 

natural gas or hydro electric sources. This proves that coal generators are not taking part in 

the marginal generation in Turkey and EVs provide a great opportunity to decrease 

emissions. This result is further validated in CO2 emission comparison. Even without 

applying any bi-objective optimization it is shown that EVs can decrease CO2 emissions by 
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56% in delayed charging and 64% in uncontrolled charging. Primary consumption is 

decreased by more than 50% whereas costs to end users drop to 30% of what they would 

have paid to conventional vehicles.  These figures charge slightly for different market 

penetration and charging scenarios but in all EVs outperform conventional vehicles.  

The important finding about Turkey is that on average uncontrolled charge scenario 

has a better environmental performance compared to delayed charging. The reason is the 

share of peak demand hydro generators in peak hours. The methodology outputs a good 

representation of the efficient frontier so decision makers are able to choose among many 

options depending on their preferences of being more environmentally or economically 

oriented in charge policy decisions. Despite the fact that EVs already perform better than 

ICEVs without bi-objective optimization, this methodology shows that it is possible to save 

one ton of CO2 for an 15 TL increase in costs for delayed scenario and 29.5 TL for 

uncontrolled scenario. This information will be valuable when the pressure on 

transportation sector increases to further decrease emissions. Charge hour optimization step 

has shown the optimal charging hours to be the off-peak hours between 02:00 and 06:00.  

This is the first piece of work that has analyzed impacts of EVs in this level of 

detail in Turkey; therefore there are some future directions for improvement. As it was very 

difficult to obtain all data for such a large system and due to lack of real world data for EV 

technology which did not reach significant market share in any part of the world many 

simplifying assumptions were made to conduct this analysis. Once data is available these 

new findings should be included in the methodology by changing scenarios, technical 

assumptions or even by modifying the constraints and objectives of the model. One 

possible improvement in the model that is highlighted by the analysis of the results in 

Turkey is the necessity to constraint certain types of primary energy sources like 

hydroelectricity or other renewable which might have natural boundaries in generation 

capacity due to availability of resources like water supplies. As it is clearly visible in 
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Turkey results, the bi-objective model maximizes the use of hydroelectricity but it does not 

take limits on water supplies into account. Therefore a new set of constraints could be 

added to the model to improve the ability to model real world system. Such water 

availability data could be found from governmental agencies regulation water supplies. 

Although it was not possible to apply the regional structure of the model due to 

market specifications in Turkey (all country is treated as a single region in the day-ahead 

market), differences in energy mix depending on the regional availability of supplies is an 

important feature of the proposed methodology. If the demand will be concentrated in one 

specific region, it is possible that only generators nearby will be used to supply the demand 

in order to minimize transmission losses or balance inter regional energy transfers. This 

would dramatically change the results as the energy mix will only include locally available 

sources. Thus, regional structure of the model should be applied with maximum level of 

technical details to model where possible to ensure providing correct results. 

 Local impacts of EV charging were not analyzed here but they can be included 

with a large set of local distribution constraints in the model if data can be reached. As the 

smart grid technology advances and applications and data structures become clearer this 

model can be modified to support necessary decision with right data according to the needs 

of Smart Grid. Another direction for improvement would be use of different charge 

technologies like fast charging stations. 

As the technology matures more data will be available for EV market and related 

energy supply chains and the study can be improved by using this data in the above 

mentioned directions. However it is possible to utilize an important tool in operations 

research to have a better understanding of the results in the unclear environment. By 

conducting sensitivity analysis on parameters which are unclear (charging patterns, energy 

consumption of EVs, CO2 emissions and efficiency of primary energy sources etc.), it is 

possible to obtain intervals for which the results are valid. This study has not conducted 
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such a sensitivity analysis and this is a room for future improvement of the methodology to 

ensure that the results obtained by applying the model will be correct for the real world 

applications as well.    
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Appendix A 

 

SUPPORTIVE RESULTS 

 

Table A.1: Detailed results for Low Market Scenario-1 

 

Scenario: Low 

Monthly 
CO2 

Emissions 
(Kg) 

Monthly 
Primary 

Energy Use 
(GWh) 

Monthly 
Cost of 

Energy (TL) 

Monthly 
Purchase 
Cost (TL) 

Operation 
Emissions 

(g/km) 

Total LCA 
Emissions 

(g/km) 

Conventional 32,318 135 17,711,616 44,279,040 207 242 

February Uncontrolled 2 12,195 65 7,447,693 16,631,434 70 111 

February Delayed 2 17,436 77 6,849,819 14,892,572 102 142 

April Uncontrolled 2 17,223 75 6,550,028 16,534,777 100 141 

April Delayed 2 14,605 73 6,168,547 15,003,352 84 125 

June Uncontrolled 2 16,099 73 5,898,709 16,554,329 93 134 

June Delayed 2 16,452 78 5,983,473 14,890,297 96 137 

August Uncontrolled 2 11,277 60 7,763,022 16,711,195 64 105 

August Delayed 2 14,818 66 7,591,439 15,001,296 85 126 

October Uncontrolled 2 10,793 64 7,247,786 16,647,939 62 102 

October Delayed 2 15,050 72 6,907,324 14,930,270 87 128 

December Uncontrolled 2 9,039 59 7,252,856 16,692,128 51 92 

December Delayed 2 15,819 75 6,199,368 14,896,997 92 133 

February Uncontrolled 3A 9,963 63 7,439,109 16,656,386 57 92 

February Uncontrolled 3B 4,436 49 7,582,398 16,807,496 24 59 

April Uncontrolled 3A 13,533 71 6,807,741 16,563,289 78 119 

April Uncontrolled 3B 5,659 52 7,504,938 16,773,031 32 67 

June Uncontrolled 3A 12,744 69 5,816,977 16,584,354 73 108 

June Uncontrolled 3B 7,538 57 6,261,650 16,722,294 43 78 

August Uncontrolled 3A 5,961 53 7,700,786 16,775,347 33 68 

August Uncontrolled 3B 4,508 49 7,656,071 16,815,086 25 60 

October Uncontrolled 3A 9,914 62 7,160,593 16,657,561 57 92 

October Uncontrolled 3B 4,396 49 7,516,398 16,807,958 24 59 

December Uncontrolled 3A 8,387 59 7,190,694 16,699,256 48 83 

December Uncontrolled 3B 4,419 49 7,422,667 16,807,599 24 59 
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Table A.2: Detailed Results for Low Market Scenario- 2 

 

Scenario 

Monthly 
CO2 

Emissions 
(Kg) 

Monthly 
Primary 

Energy Use 
(GWh) 

Monthly 
Cost of 

Energy (TL) 

Monthly 
Purchase 
Cost (TL) 

Operation 
Emissions 

(g/km) 

Total LCA 
Emissions 

(g/km) 

February Delayed 3A 14,495 74 6,785,232 14,910,484 84 119 

February Delayed 3B 5,433 52 7,183,689 15,114,581 30 65 

April Delayed 3A 13,016 70 6,211,902 14,940,613 75 110 

April Delayed 3B 4,393 49 6,703,001 15,137,558 24 59 

June Delayed 3A 15,600 77 5,891,423 14,900,774 91 126 

June Delayed 3B 4,389 49 6,219,533 15,137,557 24 59 

August Delayed 3A 9,115 60 7,516,940 15,036,087 52 87 

August Delayed 3B 4,419 49 7,524,272 15,137,557 24 59 

October Delayed 3A 10,121 63 6,925,274 15,006,960 58 93 

October Delayed 3B 4,419 49 7,012,215 15,137,498 24 59 

December Delayed 3A 12,623 68 6,123,901 14,966,073 73 108 

December Delayed 3B 5,463 52 6,391,125 15,112,585 30 65 

February 4 A 14,916 74 5,413,715 13,325,355 87 122 

February 4 B 4,423 49 7,108,344 13,577,053 24 59 

April 4 A 19,817 74 4,287,802 12,935,658 115 150 

April 4 B 4,419 49 4,301,062 13,562,920 24 59 

June 4 A 17,288 73 5,030,065 12,458,795 100 135 

June 4 B 4,312 49 6,028,563 13,518,606 24 59 

August 4 A 16,559 77 6,896,097 10,566,854 97 132 

August 4 B 4,419 49 7,248,448 12,789,647 24 59 

October 4 A 16,499 79 5,305,571 12,167,843 96 131 

October 4 B 4,386 50 6,209,537 13,338,905 24 59 

December 4 A 14,267 73 5,051,731 13,310,938 83 118 

December 4 B  4,341 50 5,831,789 13,492,526 24 59 
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Table A.3: Detailed results for Medium Market Scenario-1 

 

Scenario 
Annual CO2 
Emissions 

(Kg) 

Annual 
Primary 

Energy Use 
(GWh) 

Annual Cost of 
Energy (TL) 

Annual Purchase 
Cost (TL) 

Operation 
Emissions 

(g/km) 

Total LCA 
Emissions 

(g/km) 

Conventional 69,607  291  38,148,096  95,370,240  207  242  

February Uncontrolled 2 22,665  135  16,099,521  35,172,258  60  101  

February Delayed 2 32,954  161  14,498,628  31,366,953  89  130  

April Uncontrolled 2 35,646  163  14,949,051  34,846,575  96  137  

April Delayed 2 33,988  159  13,696,187  31,385,023  92  132  

June Uncontrolled 2 27,313  149  12,617,501  34,986,287  73  114  

June Delayed 2 29,555  155  12,954,387  31,411,067  79  120  

August Uncontrolled 2 21,659  123  16,523,397  35,347,510  57  98  

August Delayed 2 26,121  137  16,113,917  31,591,870  70  110  

October Uncontrolled 2 20,211  129  15,777,020  35,209,394  53  94  

October Delayed 2 22,829  138  14,846,654  31,565,344  61  101  

December Uncontrolled 2 25,614  148  16,869,689  36,598,557  65  106  

December Delayed 2 30,925  153  13,126,322  31,438,309  83  124  

February Uncontrolled 3A 14,549  118  16,111,825  35,331,890  38  79  

February Uncontrolled 3B 9,349  105  16,401,577  35,477,761  24  65  

April Uncontrolled 3A 28,213  150  14,795,404  34,979,691  76  116  

April Uncontrolled 3B 18,932  129  16,186,610  35,214,738  50  91  

June Uncontrolled 3A 27,313  149  12,617,501  34,986,287  73  114  

June Uncontrolled 3B 22,414  137  13,360,061  35,120,126  60  100  

August Uncontrolled 3A 12,890  111  17,078,140  35,455,482  33  74  

August Uncontrolled 3B 12,034  110  18,306,186  35,457,489  31  72  

October Uncontrolled 3A 17,972  126  15,926,093  35,241,827  47  88  

October Uncontrolled 3B 9,331  105  16,201,748  35,477,763  24  65  

December Uncontrolled 3A 24,976  147  16,872,577  36,605,328  64  104  

December Uncontrolled 3B 11,633  117  20,807,902  37,894,432  29  70  

February Delayed 3A 27,799  151  14,498,337  31,451,392  75  115  

February Delayed 3B 11,693  111  15,479,938  31,823,204  30  71  

April Delayed 3A 28,373  152  13,791,801  31,438,139  76  117  

April Delayed 3B 12,735  113  14,903,468  31,795,548  33  74  

June Delayed 3A 22,008  136  13,542,576  31,583,839  58  99  

June Delayed 3B 12,022  112  14,061,303  31,811,776  31  72  
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Table A.4: Detailed results for Medium Market Scenario-2 

 

Scenario 
Annual CO2 
Emissions 

(Kg) 

Annual 
Primary 

Energy Use 
(GWh) 

Annual Cost of 
Energy (TL) 

Annual Purchase 
Cost (TL) 

Operation 
Emissions 

(g/km) 

Total LCA 
Emissions 

(g/km) 

August Delayed 3A 16,497  122  16,103,984  31,716,427  43  84  

August Delayed 3B 9,349  105  16,130,794  31,874,027  24  65  

October Delayed 3A 22,829  138  14,846,654  31,565,344  61  101  

October Delayed 3B 9,346  105  15,225,013  31,874,029  24  65  

December Delayed 3A 22,812  138  13,224,108  31,569,755  61  101  

December Delayed 3B 12,605  113  13,973,210  31,798,831  33  73  

February 4 A 33,039  164  11,953,994  27,128,097  89  124  

February 4 B 9,349  105  15,460,860  29,459,840  24  59  

April 4 A 28,749  140  9,232,884  27,916,148  77  117  

April 4 B 9,349  105  9,577,555  26,971,357  24  65  

June 4 A 34,929  160  11,074,851  26,779,694  94  135  

June 4 B 9,242  105  13,450,343  30,534,713  24  64  

August 4 A 20,988  96  9,703,137  17,356,656  96  137  

August 4 B 8,849  67  10,055,488  19,579,449  24  65  

October 4 A 35,276  169  12,132,540  25,565,974  96  136  

October 4 B 9,286  108  13,502,880  28,274,272  24  64  

December 4 A 28,989  154  11,506,620  27,727,688  78  119  

December 4 B  9,335  108  12,314,488  29,490,198  24  65  
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Table A.5: Detailed results for High Market Scenario-1 

 

Scenario 
Annual CO2 
Emissions 

(Kg) 

Annual 
Primary 

Energy Use 
(GWh) 

Annual Cost of 
Energy (TL) 

Annual Purchase 
Cost (TL) 

Operation 
Emissions 

(g/km) 

Total LCA 
Emissions 

(g/km) 

Conventional 155,374  650  85,152,000  212,880,000  207  242  

February Uncontrolled 2 28,168  221  27,370,992  55,442,414  51  86  

February Delayed 2 46,887  270  24,469,882  47,004,173  74  109  

April Uncontrolled 2 132,145  429  36,010,030  71,139,542  139  174  

April Delayed 2 56,395  280  22,747,114  46,923,181  86  121  

June Uncontrolled 2 74,186  361  23,349,433  64,181,894  94  129  

June Delayed 2 49,127  277  20,988,083  46,919,984  77  112  

August Uncontrolled 2 43,469  279  47,999,209  80,846,825  49  84  

August Delayed 2 41,240  274  35,567,197  69,253,864  49  84  

October Uncontrolled 2 36,507  268  35,539,299  77,315,082  43  78  

October Delayed 2 46,964  295  33,522,087  69,050,200  56  91  

December Uncontrolled 2 Infeasible 

December Delayed 2 52,948  306  29,732,213  68,950,047  63  98  

February Uncontrolled 3A 17,951  201  27,474,398  55,645,886  39  74  

February Uncontrolled 3B 6,077  172  28,163,063  55,974,235  24  59  

April Uncontrolled 3A 127,392  420  36,121,435  71,230,244  134  169  

April Uncontrolled 3B 117,543  396  36,336,847  71,502,356  125  160  

June Uncontrolled 3A 65,811  349  23,486,584  64,292,022  85  120  

June Uncontrolled 3B 57,894  328  24,189,697  64,105,163  77  112  

August Uncontrolled 3A 43,469  279  47,999,207  80,846,822  49  84  

August Uncontrolled 3B 35,571  268  48,068,847  80,950,342  40  75  

October Uncontrolled 3A 32,700  262  35,533,806  77,375,964  38  73  

October Uncontrolled 3B 20,949  233  36,194,372  77,696,722  24  59  

December Uncontrolled 3A 
Infeasible 

December Uncontrolled 3B 

February Delayed 3A 40,088  257  24,597,873  47,108,620  66  101  

February Delayed 3B 13,969  192  25,624,131  47,709,885  34  69  

April Delayed 3A 46,207  267  23,433,247  47,018,966  73  108  

April Delayed 3B 28,026  226  24,366,524  47,389,504  51  86  

June Delayed 3A 45,992  271  21,374,801  46,996,965  73  108  

June Delayed 3B 33,433  240  22,025,196  47,265,741  57  92  
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Table A.6: Detailed results for High Market Scenario-2 

 

Scenario 
Annual CO2 

Emissions (Kg) 

Annual 
Primary 

Energy Use 
(GWh) 

Annual Cost 
of Energy (TL) 

Annual 
Purchase Cost 

(TL) 

Operation 
Emissions 

(g/km) 

Total LCA 
Emissions 

(g/km) 

August Delayed 3A 16,497  122  16,103,984  31,716,427  43  84  

August Delayed 3B 9,349  105  16,130,794  31,874,027  24  65  

October Delayed 3A 22,829  138  14,846,654  31,565,344  61  101  

October Delayed 3B 9,346  105  15,225,013  31,874,029  24  65  

December Delayed 3A 22,812  138  13,224,108  31,569,755  61  101  

December Delayed 3B 12,605  113  13,973,210  31,798,831  33  73  

February 4 A 33,039  164  11,953,994  27,128,097  89  124  

February 4 B 9,349  105  15,460,860  29,459,840  24  59  

April 4 A 28,749  140  9,232,884  27,916,148  77  117  

April 4 B 9,349  105  9,577,555  26,971,357  24  65  

June 4 A 34,929  160  11,074,851  26,779,694  94  135  

June 4 B 9,242  105  13,450,343  30,534,713  24  64  

August 4 A 20,988  96  9,703,137  17,356,656  96  137  

August 4 B 8,849  67  10,055,488  19,579,449  24  65  

October 4 A 35,276  169  12,132,540  25,565,974  96  136  

October 4 B 9,286  108  13,502,880  28,274,272  24  64  

December 4 A 28,989  154  11,506,620  27,727,688  78  119  

December 4 B  9,335  108  12,314,488  29,490,198  24  65  
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Figure A.1: Change in Marginal Mix for February Low Uncontrolled 

 

 

 
Figure A.2: Change in Marginal Mix for February Low Delayed 
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Figure A.3: Change in Marginal Mix for February Low Hour Optimization 

 

 
Figure A.4: Change in Marginal Mix for April Low Uncontrolled 
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Figure A.5: Change in Marginal Mix for April Low Delayed 

 

 
Figure A.6: Change in Marginal Mix for April Low Hour Optimization 
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Figure A.7: Change in Marginal Mix for June Low Uncontrolled 

 

 

 
Figure A.8: Change in Marginal Mix for June Low Delayed 
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Figure A.9: Change in Marginal Mix for June Low Hour Optimization 

 

 
Figure A.10: Change in Marginal Mix for August Low Uncontrolled 
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Figure A.11: Change in Marginal Mix for August Low Delayed 

 

 
Figure A.12: Change in Marginal Mix for August Low Hour Optimization 
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Figure A.13: Change in Marginal Mix for October Low Uncontrolled 

 

 
Figure A.14: Change in Marginal Mix for October Low Delayed 
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Figure A.15: Change in Marginal Mix for October Low Hour Optimization 

 

 

 
Figure A.16: Change in Marginal Mix for December Low Uncontrolled 
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Figure A.17: Change in Marginal Mix for December Low Delayed 

 

 
Figure A.18: Change in Marginal Mix for December Low Hour Optimization 
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Appendix B 

 

COMPUTER MODEL 

 

 

#include "Epsilon.h" 

 

#include <fstream> 

#include <iostream> 

#include <string.h> 

#include <numeric> 

#include <math.h> 

 

using namespace std; 

 

Epsilon::Epsilon(void) 

{  

 counter=0; 

 number = 0; 

 int i; 

  

 try 

 { 

   

  //Cplex object 

  cplex= IloCplex(env); 

 

  //cplex parameters 

  cplex.setParam(IloCplex::NodeLim, 1000000000); //MIP node limit  

  cplex.setParam(IloCplex::TreLim, 1000000000); //tree memory limit 

  cplex.setParam(IloCplex::EpGap, 0.0); //relative MIP gap tolerance 

  cplex.setParam(IloCplex::ItLim, 1000000000); //absolute MIP gap 

iteration limit 

  cplex.setParam(IloCplex::MIPDisplay, 2); //Dislay option 

  cplex.setParam(IloCplex::Threads, 8);   //number of threads 

  cplex.setParam(IloCplex::ParallelMode, -1); 
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  //Expressions 

  obj1=IloExpr(env); 

  obj2=IloExpr(env); 

     

  //set of constraints 

  cons=IloConstraintArray(env); 

 

   

  //lower and upper bound 

  zint=new double[2]; 

  zend=new double[2]; 

   

  //initial model solutions 

  zint[0]=numeric_limits<double>::infinity(); 

  zint[1]=numeric_limits<double>::infinity(); 

   

  //number of rows 

  m= 115; 

   

  //number of hours 

  n=24; 

   

  // 

  s1=4; 

  s2=2; 

   

  //Decision Variables 

  x=NumVarMatrix(env, m); 

  y=NumVarMatrix(env,m); 

  for(i = 0; i < m; i++) 

  { 

   x[i] = IloNumVarArray(env, n, 0, IloInfinity, IloNumVar::Float); 

   y[i] = IloNumVarArray(env, n, 0, 1, IloNumVar::Bool); 

  } 

   

  w=IloNumVarArray(env, n, 0, IloInfinity, ILOFLOAT);  
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  c=new double[m]; 

   

  p=new double* [m];  

  u=new double* [m];  

  for (i=0; i<m; i++) 

  { 

   p[i]=new double[n]; 

   u[i]=new double[n]; 

 

  } 

   

  EV=new double[n]; 

  PEV=new double[n]; 

  bbeta = new double[m]; 

   

   

  delta = new double[s1]; 

  delta[0]=3.5/1000; 

  delta[1]=2.2/1000; 

  delta[2]=1.0/1000; 

  delta[3]=0.5/1000; 

   

   

  alpha = new double[s2]; 

  alpha[0]=3.7/1000; 

  alpha[1]=2.7/1000; 

   

 

  EV[0]=0; 

  EV[1]=0; 

  EV[2]=0; 

  EV[3]=0; 

  EV[4]=0; 

  EV[5]=0; 

  EV[6]=0; 

  EV[7]=0; 

  EV[8]=2000; 

  EV[9]=2000; 

  EV[10]=0; 
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  EV[11]=0; 

  EV[12]=0; 

  EV[13]=0; 

  EV[14]=0; 

  EV[15]=0; 

  EV[16]=10000; 

  EV[17]=14000; 

  EV[18]=12000; 

  EV[19]=0; 

  EV[20]=0; 

  EV[21]=0; 

  EV[22]=0; 

  EV[23]=0; 

   

  PEV[0]=0; 

  PEV[1]=0; 

  PEV[2]=0; 

  PEV[3]=0; 

  PEV[4]=0; 

  PEV[5]=0; 

  PEV[6]=0; 

  PEV[7]=0; 

  PEV[8]=4500; 

  PEV[9]=4500; 

  PEV[10]=0; 

  PEV[11]=0; 

  PEV[12]=0; 

  PEV[13]=0; 

  PEV[14]=0; 

  PEV[15]=0; 

  PEV[16]=22500; 

  PEV[17]=31500; 

  PEV[18]=27000; 

  PEV[19]=0; 

  PEV[20]=0; 

  PEV[21]=0; 

  PEV[22]=0; 

  PEV[23]=0; 
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  //beta 

  beta=new double[2]; 

 } 

 catch (IloException& ex) 

 { 

  cerr << "Error: " << ex << endl; 

 } 

 catch (...)  

 { 

  cerr << "Error" << endl; 

 } 

  

} 

 

Epsilon::~Epsilon(void) 

{ 

 //cout<<"destruct"<<endl; 

 cplex.end(); 

 env.end(); 

 delete[] zint; 

 delete[] zend; 

} 

 

void Epsilon::getParameters(char* fileName) 

{  

  

 //outfile name 

 name=fileName; 

  

 int i,j,k; 

 char str[256]; 

  

 ifstream inFile1("Cit.txt"); 

 for (i=0; i<m; i++) 

 { 

  inFile1 >> str; 

  c[i] = atof(str);  

 } 
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 inFile1.close(); 

  

  

 ifstream inFile2("Pit.txt"); 

 for (i=0; i<m; i++) 

 { 

  for (j=0; j<n; j++) 

  { 

   inFile2 >> str; 

   p[i][j] = atof(str);  

    

   if (p[i][j] == -1) 

   { 

    p[i][j] = 1000; 

   } 

  } 

 } 

 inFile2.close(); 

  

  

 ifstream inFile3("Uit.txt"); 

 for (i=0; i<m; i++) 

 { 

  for (j=0; j<n; j++) 

  { 

   inFile3 >> str; 

   u[i][j] = atof(str);  

  } 

 } 

 inFile3.close(); 

  

 ifstream inFile4("Betai.txt"); 

 for (i=0; i<m; i++) 

 { 

  inFile4 >> str; 

  bbeta[i] = atof(str);  

 } 

 inFile4.close(); 
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 //objective function-1 

 for (j=0; j<n; j++) 

 { 

  obj1 += w[j];  

 } 

  

 //objective function-2 

 for (i=0; i<m; i++) 

 { 

  for (j=0; j<n; j++) 

  { 

   obj2 += c[i] * x[i][j]; 

  } 

 } 

 //cout<<obj1<<endl; 

 //cout<<obj2<<endl; 

  

 /* 

 //set-1 

 for (j=0; j<n; j++) 

 {  

  IloExpr constraint(env); 

  for ( 

  for (j=0; j<cols; j++) 

  { 

   inFile>>val; 

    

   val=val-1; 

   constraint += x[val]; 

  }   

   

  cons.add(constraint >= 1); 

  constraint.end(); 

 

  number = number +1; 

 } 

 */ 
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 //Set-1 

 for (i=0; i<m; i++) 

 { 

  for (j=0; j<n; j++) 

  { 

   cons.add(w[j] >= p[i][j]*y[i][j]); 

   number = number +1; 

  } 

 } 

  

  

 //set-3 

 for (i=0; i<m; i++) 

 { 

  for (j=0; j<n; j++) 

  { 

   cons.add(x[i][j] <= u[i][j]*y[i][j]); 

   number = number +1; 

  } 

 } 

  

 //set-2 

  

  

 double expr2, expr3; 

 for (j=0; j<n; j++) 

 { 

 

  IloExpr expr1(env); 

   

  expr2 = 0; 

  expr3 = 0; 

   

  for (i=0; i<m; i++) 

  { 

   expr1 += bbeta[i] * x[i][j]; 

  } 

   

  if (j==0) 
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  { 

   expr2 = delta[0] * EV[0] + delta[1] * EV[23] + delta[2] * EV[22] + 

delta[3] * EV[21]; 

   expr3 = alpha[0] * PEV[0] + alpha[1] * PEV[23]; 

  } 

  else if (j==1) 

  { 

   expr2 = delta[0] * EV[1] + delta[1] * EV[0] + delta[2] * EV[23] + 

delta[3] * EV[22]; 

   expr3 = alpha[0] * PEV[1] + alpha[1] * PEV[0]; 

  } 

  else if (j==2) 

  { 

   expr2 = delta[0] * EV[2] + delta[1] * EV[1] + delta[2] * EV[0] + 

delta[3] * EV[23]; 

   expr3 = alpha[0] * PEV[2] + alpha[1] * PEV[1]; 

  } 

  else 

  { 

   for (k=0; k<s1; k++) 

   { 

    expr2 += delta[k] * EV[j-k]; 

   } 

    

   for (k=0; k<s2; k++) 

   { 

    expr3 += alpha[k] * PEV[j-k]; 

   } 

  } 

   

  cons.add(expr1 >= expr2 + expr3); 

 

  number = number +1; 

   

   

  expr1.end(); 

   

 } 

 cout<<number<<endl; 
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} 

 

 

void Epsilon::initialModel(double* beta, double* obj) 

{ 

 

 int i, j; 

 

 IloExpr objFunc(env); 

 IloModel epsilonM(env);  

  

 //Weighted objective function 

 objFunc = beta[0] * obj1 + beta[1] * obj2; 

 epsilonM.add(IloMinimize(env, objFunc)); 

  

 //bound for the objective function 

 epsilonM.add(obj1 <= zint[0]); 

 

 //constraints 

 for (j=0; j<number; j++) 

 { 

  epsilonM.add(cons[j]); 

 } 

 

 //extract the model 

 cplex.extract(epsilonM); 

 

 if (cplex.solve()) 

 { 

  obj[0] = cplex.getValue(obj1); 

  obj[1] = cplex.getValue(obj2); 

   

  for (i=0; i<m; i++) 

  { 

   for (j=0; j<n; j++) 

   { 

    cout<<cplex.getValue(y[i][j])<<"\t"; 

   } 

   cout<<endl; 
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  } 

 } 

 else 

 { 

  obj[0]=-numeric_limits<double>::infinity(); 

  obj[1]=-numeric_limits<double>::infinity(); 

 } 

   

 epsilonM.end(); 

 

} 

 

 

void Epsilon::epsilonModel(double *z, double* obj) 

{ 

  

 int j; 

 

 IloExpr objFunc(env); 

 IloModel epsilonM(env);  

  

 //Weighted objective function 

 objFunc = (z[1]-zend[1]) * obj1 + obj2; 

  

 epsilonM.add(IloMinimize(env, objFunc)); 

  

 epsilonM.add(obj2 <= z[1]-0.001); 

 

 //Capacity constraint 

 for (j=0; j<number; j++) 

 { 

  epsilonM.add(cons[j]); 

 }  

  

 //extract the model 

 cplex.extract(epsilonM); 

   

 IloNumArray vals(env); 

 if (cplex.solve()) //solve the model 
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 { 

  obj[0] = cplex.getValue(obj1); 

  obj[1] = cplex.getValue(obj2); 

 } 

 else 

 { 

  obj[0]=-numeric_limits<double>::infinity(); 

  obj[1]=-numeric_limits<double>::infinity(); 

 } 

   

 epsilonM.end(); 

  

  

} 

 

void Epsilon::mainLoop(void) 

{ 

  

 int i; 

 Eff effTemp; 

  

 double* obj=new double[2];  

 double* z=new double[2]; 

  

 //Step 0.1: Solve problem for the first objective function 

 beta[0]=1; 

 beta[1]=0; 

           

  

 initialModel(beta, z); 

 counter=counter+1; 

 cout<<z[0]<<"\t"<< z[1]<<endl; 

 

  

 //Optimize second objective function 

 beta[0]=0; 

 beta[1]=1; 

   

 //optimal for f2(x,y) -- zend 
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 initialModel(beta, zend); 

 counter=counter+1; 

 cout<<zend[0]<<"\t"<< zend[1]<<endl; 

  

  

 //Obtain first efficient solution 

 //optimal for f1(x,y) 

 zint[0]=z[0]; 

 zint[1]=z[1]; 

  

 initialModel(beta, z); 

 counter=counter+1; 

 cout<<"zzz "<<z[0]<<"\t"<< z[1]<<endl; 

 

   

 effTemp.e1=z[0]; 

 effTemp.e2=z[1]; 

  

 eff.push_back(effTemp); 

 cout<<"ttt\t"<<z[0]<<"\t"<< zend[1]<<endl; 

  

 /* 

 while ( z[1] > zend[1]) 

 { 

  epsilonModel(z, obj); 

  counter++; 

   

  effTemp.e1=obj[0]; 

  effTemp.e2=obj[1]; 

    

  eff.push_back(effTemp); 

   

  z[0]=obj[0]; 

  z[1]=obj[1]; 

 

 } 

  

  

 char outName[50]; 



 

 

Appendix B: Computer Model    190 

  

 strcpy(outName, "EffSet_"); 

 strcat(outName, name.c_str()); 

  

 ofstream outFile(outName); 

  

 for (i=0; i<(int)eff.size(); i++) 

 { 

  outFile<<i+1<<"\t"<<eff[i].e1<<"\t"<<eff[i].e2<<endl; 

 } 

  

 cout<<eff.size()<<endl; 

 cout<<"counter\t"<<counter<<endl; 

  

 outFile.close(); 

  

*/ 

 

} 
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Appendix C 

 

RESULT STATISTICS 

 

Table C.1: Result statistics 1 

 

Step  Name of Scenario 
Market 

Scenario 
Number of 
Solutions 

Real 
Time 

User 
Time 

Step 3 February Uncontrolled  Low 124 70.1 75.3 

Step 3 February Delayed  Low 237 148.4 173.7 

Step 3 April Uncontrolled  Low 321 226.4 245.8 

Step 3 April Delayed  Low 281 202.5 213.4 

Step 3 June Uncontrolled  Low 174 124.5 352.1 

Step 3 June Delayed  Low 272 131.1 143.0 

Step 3 August Uncontrolled  Low 50 20.0 21.3 

Step 3 August Delayed  Low 76 34.6 36.5 

Step 3 October Uncontrolled  Low 144 81.7 86.5 

Step 3 October Delayed  Low 221 161.8 168.4 

Step 3 December Uncontrolled  Low 83 35.4 37.8 

Step 3 December Delayed  Low 266 178.9 201.4 

Step 4 February Hour Low 266 128.4 142.3 

Step 4 April Hour Low 52 25.7 27.6 

Step 4 June Hour Low 302 129.6 140.2 

Step 4 August Hour Low 241 120.4 127.4 

Step 4 October Hour Low 300 180.1 190.9 

Step 4 December Hour Low 265 148.8 162.7 

Step 3 February Uncontrolled  Medium 248 120.0 130.3 

Step 3 February Delayed  Medium 491 323.3 424.0 

Step 3 April Uncontrolled  Medium 78 24.7 25.5 

Step 3 April Delayed  Medium 142 60.1 61.8 
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Table C.2: Result Statistics 2 

 

Step  Name of Scenario 
Market 

Scenario 
Number of 
Solutions 

Real 
Time 

User 
Time 

Step 3 June Uncontrolled  Medium 34 8.0 8.1 
Step 3 June Delayed  Medium 51 11.5 11.6 
Step 3 August Uncontrolled  Medium 126 61.5 65.6 
Step 3 August Delayed  Medium 180 89.8 95.9 
Step 3 October Uncontrolled  Medium 249 144.3 153.4 
Step 3 October Delayed  Medium 76 29.9 29.9 
Step 3 December Uncontrolled  Medium 289 137.8 147.8 
Step 3 December Delayed  Medium 424 251.1 272.3 
Step 4 February Hour Medium 532 240.5 265.8 
Step 4 April Hour Medium 111 56.4 58.7 
Step 4 June Hour Medium 578 228.3 278.0 
Step 4 August Hour Medium 274 119.7 125.4 
Step 4 October Hour Medium 487 274.2 284.5 
Step 4 December Hour Medium 574 350.4 382.9 
Step 3 February Uncontrolled  High 467 228.9 248.4 
Step 3 February Delayed  High 88 25.2 25.6 
Step 3 April Uncontrolled  High 37 11.6 11.6 
Step 3 April Delayed  High 199 67.6 68.9 
Step 3 June Uncontrolled  High 37 9.1 9.0 
Step 3 June Delayed  High 107 25.4 26.8 
Step 3 August Uncontrolled  High 97 48.8 51.2 
Step 3 August Delayed  High 257 119.7 126.3 
Step 3 October Uncontrolled  High 120 43.4 43.9 
Step 3 October Delayed  High 265 98.7 98.9 
Step 3 December Uncontrolled  High Infeasbile 
Step 3 December Delayed  High 95 26.0 26.1 
Step 4 February Hour High 747 273.4 287.6 
Step 4 April Hour High 686 373.3 401.7 
Step 4 June Hour High 1051 330.9 339.2 
Step 4 August Hour High 222 81.8 82.3 
Step 4 October Hour High 740 386.7 393.6 
Step 4 December Hour High 534 218.9 228.8 

 


