

Heuristic Approaches to Minimize the Number of Rehandlings

for Export Containers

FATMA VİRDİL

KOC UNIVERSITY

AUGUST 2012

Heuristic Approaches to Minimize the Number of

Rehandlings for Export Containers

by

Fatma Virdil

A Thesis Submitted to the

Graduate School of Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Industrial Engineering

Koc University

August 2012

ii

Koc University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a master’s thesis by

Fatma Virdil

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Date:

Prof. Dr. Ceyda Oguz, (Advisor)

Asst. Prof. Dr. Sibel Salman

Assoc. Prof. Dr. Tonguc Unluyurt

iii

ABSTRACT

In the growing international trade, the number of import, export and transit containers is

ever increasing. Therefore, the importance of the container terminals and their efficient

managements are highlighted. In this thesis, we study stacking policies in a container

terminal for export containers, due to their characteristics. Different than the literature, we

considered both the space allocations for containers arrived recently and the pick up

operations before the departure of the containers. We assume that an initial configuration

exists in the storage yards for already stored containers. The containers arrived recently are

allocated to the blocks in the storage yard based on this initial configuration by taking the

departure time of the containers into account, which are known beforehand since they are

export containers. Hence the retrieval sequences of the containers within blocks are known.

Another important aspect of our study is the inclusion of the remarshaling operation, which

is used to speed up the retrieval of the export containers. Throughout these stacking

operations (allocation, remarshaling, and pick up), some containers already stored in the

blocks might be moved into other positions and these moves are known as relocations.

These relocations cause major time and cost expenses in the container terminals since any

relocation may result in several rehandling operations. Hence the main focus of this thesis

is to deal with the rehandlings. We propose several heuristic approaches to estimate the

locations for the containers arrived recently and maybe relocated export containers in order

to minimize the number of rehandlings. We then analyze the performance of these

proposed heuristic algorithms with a set of randomly generated problem instances

considering different initial configurations under different container terminal scenarios.

Key words: container terminals, export containers, remarshaling, heuristic algorithms

iv

ÖZET

Büyüyen uluslararası ticarette, artan ithalat, ihracat ve transit konteynerlerin sayısı

konteyner terminallerin verimli yönetilmesinin önemini her geçen gün arttırmaktadır. Bu

çalışmada, ihracat konteynerlerinin konteyner terminallerindeki istifleme yöntemlerini

incelemekteyiz. Literatürden farklı olarak, hem yeni gelen konteynerlerin

yerleştirilmelerindeki hem de ayrılmalarındaki yerleştirme haraketleri ele alınmaktadır.

Konteynerlerin depolama alanına atanmaları sonucu bloklar oluşmakta ve bu nedenle

bilinen bir başlangıç konfigürasyonun olduğu varsayılmaktadır. Yeni gelen konteynerler

depolama alanındaki bloklara bu varsayılan konfigürasyona ve terminalden ayrılma

zamanlarına göre atanmaktadır. Bu ayrılma zamanları, ihracat konteynerleri ele alındığı

için bilinmektedir. Buna bağlı olarak herhangi bir bloktaki konteynerlerin terminalden

ayrılma sıraları bilinmektedir. Çalışmanın bir diğer özelliği de yeniden düzenleme

(remarshaling) operasyonunun ihracat konteynerlerinin terminalden ayrılmalarını

hızlandırmak amacıyla kullanılmasıdır. İstifleme operasyonları (atama, yeniden düzenleme

ve toplama) esnasında, blokta bulunan bazı konteynerlerin yeniden yerleştirilmeleri

(relocation), konteynerlerin yeniden elleçlenmesine (rehandling) yol açtığı için, büyük

ölçüde zaman ve para kaybına neden olmaktadır. Dolayısıyla, bu çalışmanın amacı

elleçleme sayılarının enazlanmasıdır. Bu amaca ulaşmak için tez çalışmasında yeni gelen

veya yeri değişen ihracat konteynerlerinin yerlerini hesaplamak için değişik sezgisel

yöntemler önerilmektedir. Daha sonra, geliştirilen yöntemlerin performansları, farklı

başlangıç konfigürasyonlarına sahip rastgele oluşturulmuş örnekler kullanılarak farklı

konteyner terminal senaryoları üzerinden karşılaştırılmıştır.

Anahtar kelimeler: konteyner terminalleri, ihracat konteynerleri, yeniden düzenleme,

sezgisel yöntemler

v

ACKNOWLEDGEMENTS

I would like to thank all the faculty members of the Industrial Engineering Department

at Koc University for their support, encouragement and excellent teaching during both my

undergraduate and graduate studies. I thank my advisor Prof. Dr. Ceyda Oğuz for her

guidance during both my senior project in undergraduate study and my research in graduate

study.

I gratefully acknowledge TUBITAK Graduate Scholarship Programme (Code: 2210)

for their financial support.

I appreciate the friendship and continuous support of Hacer Ayaz, İdil Su Göktan, Utku

Boz and Engin Çukuroğlu during whole my university and private life.

Most special thanks go to Mehmet Ayyıldız for his outstanding company, friendship,

support and patience.

Finally, I would like to thank my parents, Ahmet and Seyyare Virdil for being there

whenever I need them throughout my life. None of this would have been possible without

their love, patience and moral support.

vi

TABLE OF CONTENTS

TABLE OF CONTENTS .. vi

LIST OF TABLES .. viii

LIST OF FIGURES .. i

INTRODUCTION ... 1

1.1 Motivation .. 1

1.2 Container Terminals and Operations ... 2

1.2.1 International Container Terminals .. 7

1.2.2 National Container Terminals ... 9

1.3 General Approach .. 13

LITERATURE REVIEW .. 16

2.1 Container Terminal Systems .. 17

2.2 Shipping Planning .. 18

2.3 Transport Optimization .. 21

2.4 Storage and Stacking Logistics .. 22

2.4.1 Storage Allocation .. 23

2.4.2 Remarshaling .. 25

2.4.3 Retrieval .. 25

PROBLEM DEFINITION ... 28

3.1 Scenarios .. 36

3.1.1 Sequence Based Scenario (Scenario 1) ... 37

3.1.2 Group Based Scenario (Scenario 2) .. 39

3.1.3 Extra Stack, Sequence Based Scenario (Scenario 3) .. 41

3.1.4 Extra Stack, Group Based Scenario (Scenario 4) ... 43

vii

HEURISTIC ALGORITHMS ... 44

4.1 Allocation-Retrieval Relocation Heuristic Algorithms (Primary) 45

4.1.1 High Rank ... 46

4.1.2 Min Rank .. 48

4.1.3 High Rank Modified ... 51

4.1.4 Min Rank Modified .. 53

4.1.5 Random ... 55

4.1.6 Hybrid ... 58

4.2 Allocation-Retrieval Relocation Heuristic Algorithm (Improved) 59

4.3 Tabu Search Algorithm .. 62

4.4 Remarshaling Relocation Heuristic Algorithms .. 65

4.4.1 Remarshaling High ... 65

4.4.2 Remarshaling Min ... 67

4.4.3 Remarshaling Several ... 68

4.4.4 Remarshaling Smart .. 70

4.4.5 Remarshaling Smart_2 .. 72

RESULTS .. 74

5.1 Versions of Heuristic Algorithms .. 76

5.2 Data Generation ... 77

5.3 Comparison of Results ... 78

5.3.1 Comparison of Heuristic Algorithms .. 78

5.3.2 Comparison of Best Performing Algorithms .. 85

5.3.3 Comparison of Improved Allocation-Retrieval Relocation Heuristic 87

CONCLUSION AND FUTURE WORK .. 96

APPENDIX .. 102

viii

LIST OF TABLES

Table 1: Growth of container traffic and fleet size between 1990 and 2010. 2

Table 2: Rankings and container traffics of some major container terminals. 7

Table 3: Number of rehandled containers in Containers terminals in Turkey (TEU). 10

Table 4: Capacity of container terminals in Turkey. ... 10

Table 5: General information of Ambarlı container terminals. ... 11

Table 6: Container traffic in Ambarlı container terminals (TEU). 11

Table 7: Material handling equipment in Turkey container terminals. 12

LIST OF FIGURES

Figure 1: Operation areas and flow of transports in a container terminal [3]. 3

Figure 2: A schematic side view of a container terminal system (not in scale) [3] and [4]. . 3

Figure 3: Diagram of operations in a container terminal. .. 4

Figure 4: A berthed vessel. .. 5

Figure 5: A berthed vessel and a quay crane assigned to that vessel. 5

Figure 6: Storage yard area transportation. .. 6

Figure 7: Yard crane (rail tired gantry crane). .. 6

Figure 8: Straddle crane. .. 6

Figure 9: Loading of a container from truck to truck. ... 6

Figure 10: Truck loading by a top-lift type material handling equipment. 6

Figure 11: Hierarchical structure of operational decisions in a container terminal [6]. 15

Figure 12: A representation of a block and its components... 29

Figure 13: Front view of a bay and a yard crane. .. 30

Figure 14: Side view of a yard crane. .. 30

Figure 15: Movements of a yard crane within a block. ... 30

Figure 16: An illustration of a block, with a display of rank numbers. 33

Figure 17: The idea of updating rank numbers of the containers. 34

Figure 18: A view of a bay, which has an extra stack. .. 37

Figure 19: Retrieval under Scenario 1. .. 38

Figure 20: First trial of the retrieval sequence under Scenario 2 in period k. 40

Figure 21: Second trial of the retrieval sequence under Scenario 2 in period k. 40

Figure 22: An example for the application of Scenario 3. ... 42

Figure 23: Representation of a retrieval operation in a period by Scenario 4. 43

Figure 24: The High Rank Heuristic Algorithm during allocation operation. 47

Figure 25: The High Rank Heuristic Algorithm during pick-up operation. 47

file:///C:/Documents%20and%20Settings/virdif/Desktop/TEZ/Tez_v10.docx%23_Toc332812852
file:///C:/Documents%20and%20Settings/virdif/Desktop/TEZ/Tez_v10.docx%23_Toc332812853
file:///C:/Documents%20and%20Settings/virdif/Desktop/TEZ/Tez_v10.docx%23_Toc332812854
file:///C:/Documents%20and%20Settings/virdif/Desktop/TEZ/Tez_v10.docx%23_Toc332812862

ii

Figure 26: The Min Rank Heuristic Algorithm during allocation operation. 49

Figure 27: Pick-up operation performing by the Min Rank Heuristic Algorithm. 50

Figure 28: The High Rank Modified Heuristic Algorithm during allocation operation. 52

Figure 29: Pick-up operation with the High Rank Modified Heuristic Algorithm. 53

Figure 30: The Min Rank Modified Heuristic Algorithm during allocation operation. 54

Figure 31: The Min Rank Modified Heuristic Algorithm during pick-up operation. 55

Figure 32: The Random Heuristic Algorithm application during allocation operation. 56

Figure 33: Pick-up operation under the Random Heuristic Algorithm................................ 57

Figure 34: Application of the Hybrid Heuristic Algorithm during allocation operation. 58

Figure 35: The Smart Heuristic Algorithm during allocation of Containers {2} and {9}... 62

Figure 36: Neighborhood creation failure, Case 1. .. 63

Figure 37: Neighborhood creation failure, Case 2. .. 63

Figure 38: An example for the Remarshaling High Heuristic Algorithm. 66

Figure 39: Illustration of the Remarshaling Min Heuristic Algorithm. 67

Figure 40: Application of the Remarshaling Several Heuristic Algorithm. 69

Figure 41: A representation of the Remarshaling Smart Heuristic Algorithm application. 71

Figure 42: An illustration of the Remarshaling Smart_2 Heuristic Algorithm. 73

Figure 43: Detailed results for algorithm versions of six initial heuristic. 79

Figure 44: Results of Scenario 2 for primary allocation-retrieval relocation heuristic

algorithms. ... 81

Figure 45: Scenario 3’s results for the primary allocation-retrieval relocation heuristic

algorithm versions. ... 83

Figure 46: Primary allocation-retrieval relocation heuristic algorithm versions’ results for

Scenario 4... 84

Figure 47: Comparison of each best performing algorithm version for each scenario. 86

Figure 48: The Smart Heuristic Algorithm versions under each scenario. 87

Figure 49: The best performing Min Rank and Smart Heuristic Algorithm are compared for

each scenario. ... 88

iii

Figure 50: Improvements on the Smart Heuristic Algorithm by the Tabu Search Algorithm.

.. 90

Figure 51: The Aydin Heuristic Algorithm versions, under each scenario. 91

Figure 52: Comparison of the best performing results of the Aydin Heuristic Algorithm and

the Tabu Search Algorithms. ... 92

Figure 53: Comparison of Smart Heuristic Algorithm and Aydın Heuristic Algorithm under

each version. .. 94

Chapter 1: 1

1. Chapter 1

INTRODUCTION

1.1 Motivation

In recent years, the flow of cargo has increased steadily due to the growth of

international trade. Most of such international cargo use containers as the medium of

transportation. Since containers are solid structures with standard dimensions, they are easy

to carry and less prone to damages. In today’s container transportation generally 20, 40 and

45 feet sized containers are used. TEU (twenty-foot equivalent unit) is considered as a

comparison unit in container transportation. Containers of 20 feet are known as 1 TEU, 40

feet containers are known as 2 TEU and 45 feet containers are also considered as 2 TEU,

rather than 2.25 TEU. Hence, containers are accepted as standard unit loads for

international cargo globally.

Modern container shipping has started in 1956 and the usage of containers has

increased rapidly during years. The growth in world-wide container traffic is nearly 140%

between 1990 and 2000, and 433% between 1990 and 2010 [1]. As the international trade

increases, the importance of container transshipment also increases, which results in

building larger vessels and larger fleet sizes to accommodate the increasing volume of

Chapter 1: 2

containers to be transshipped. Fleet size growth is parallel with the growth of container

traffic, which has increased nearly 133% between 1990 and 2000, and 333% between 1990

and 2010 [2]. Table 1 gives the growth in container traffic and fleet size in detail.

Table 1: Growth of container traffic and fleet size between 1990 and 2010.

Year

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

World Container

Traffic (Million TEU)
31.3 34.1 37.1 41.9 46 49.1 54 56.3 61.6 68.3

End-Year Fleet Size

(Million)
6.9 7.6 8.1 8.8 9.73 10.6 11.5 12.4 13.5 14.9

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

World Container

Traffic (Million TEU)
70.7 78.9 91.9 105.3 115.5 127 142.4 149 134.6 153

End-Year Fleet Size

(Million)
15.5 16.6 18.1 20 21.4 23.3 26.2 28.1 27.1 27.6

It is apparent that the expanding number of containers and vessels necessitates an

efficient management of containers at container terminals for higher service levels.

1.2 Container Terminals and Operations

Container terminals include facilities at the sea-side (such as berths) and on the land

(such as storage yard area). Figure 1 gives a general top view of a container terminal and

flow of transportation [3]. Containers are transported into these terminals by vessels, trucks

or trains. Detailed descriptions and classifications of the main processes and operations in

container terminals are given in [3] and [4] and displayed in Figure 2.

Chapter 1: 3

Figure 2: A schematic side view of a container terminal system (not in scale) [3] and [4].

Figure 1: Operation areas and flow of transports in a container terminal [3].

Landside

Trucks, Trains
Vehicles

Stack
with RMG

Vehicles Quay Crane

Vessel

Quayside

Chapter 1: 4

The flow of containers and their related operations in a container terminal depend on

the type of the containers. There are three types of containers stored in the terminals:

import, export and transit. Import containers arrive by vessels to the terminals and are

stored in terminals until they are claimed by a truck or train for land transportation. On the

other hand, export containers follow the opposite route; they arrive by land transportation

and are stored in the terminal until they are loaded into vessels. Transit containers use only

sea transportation; they arrive at terminals by a vessel, and are stored in the terminal until

they are loaded onto another vessel.

Container terminals include several operations such as loading, unloading, storage and

handling. Operations for import and export containers occur both in quayside and

hinterland. On the other hand, operations for transit containers only include quayside

operations. Each container category type follows a similar operation route. This route starts

with the arrival of the container into container terminal followed by unloading operation.

Inter-transportation handling of containers into storage yard and stacking containers into

blocks is the following step. Any stored container is picked up from the blocks and

transported with inter-transportation handling and loaded on vehicles that claimed it.

Figure 3: Diagram of operations in a container terminal.

Operation flow direction for export containers

Operation flow direction for import containers

Unloading

vessels

Stacking

Plan

Pick-up

Plan

Loading

Trucks/

Trains

Loading

vessels

Pick-up

Plan
Stacking

Plan

Unloading

Trucks/

Trains

Quayside
Storage

Yard
Hinterland

Inter-

Transportation

Inter-

Transportation

Chapter 1: 5

Figure 3 shows a diagram of the main operations occurred in a container terminal. Each

operation in the container terminals is highly dependent on each other.

Figure 4 displays vessels assigned to berths for unloading import or transit containers

and loading export or transit containers. Quay cranes are assigned to vessels for these

loading and unloading operations occurred after they are positioned at a berth (Figure 5).

Figure 4: A berthed vessel.

Figure 5: A berthed vessel and a quay crane

assigned to that vessel.

Transportation between quayside and storage yard or hinterland and storage yard is

handled with vehicles (Figure 6). Containers which have arrived into the storage yard area

are stacked in the blocks by using yard cranes or straddle carriers (Figure 7 and 8).

Containers are stored in the blocks until they are claimed. If an export or transit container is

claimed by a vessel, it is picked up by yard cranes or straddle carriers, loaded on the trucks,

transported to the quayside and loaded on the vessels by quay cranes. On the other hand,

depending on the container terminal policy a claimed import container is either directly

loaded on the truck that has claimed the container or loaded on a transportation vehicle,

Chapter 1: 6

transported to the yard area and then loaded on the truck that claims it by transportation

trucks directly (Figure 9) or by top-lift handling equipments (Figure 10).

Figure 6: Storage yard area

transportation.

Figure 7: Yard crane

(rail tired gantry crane).

Figure 8: Straddle crane.

Figure 9: Loading of a container from truck

to truck.

Figure 10: Truck loading by a top-lift type

material handling equipment.

Chapter 1: 7

1.2.1 International Container Terminals

Vessels do not always travel on the same route during their transportations. Hence, both

the countries and the container terminals the vessels docked show diversity depending on

the type of container load they transport. Each container terminal in a country is localized

in a position based on geographic characteristics of the region. These characteristics affect

both the quayside and hinterland capacity of the container terminals. Moreover, storage

yards, material handling equipment and personnel depend on the capacity of those

container terminals.

Container terminals’ importance is increasing parallel with the growth of worldwide

container traffic. Major container terminals, which have higher transportation traffic, are

located on different continents. Table 2 shows some of the major container terminals

located in Asia or in Europe and their worldwide rankings between 2005 and 2009 [5].

Table 2: Rankings and container traffics of some major container terminals.

Year

2005 2006 2007 2008 2009

Terminal

R
a

n
k

in
g

C
o

n
ta

in
e

r

T
r

a
ff

ic

(T
E

U
)

R
a

n
k

in
g

C
o

n
ta

in
e

r

T
r

a
ff

ic

(T
E

U
)

R
a

n
k

in
g

C
o

n
ta

in
e

r

T
r

a
ff

ic

(T
E

U
)

R
a

n
k

in
g

C
o

n
ta

in
e

r

T
r

a
ff

ic

(T
E

U
)

R
a

n
k

in
g

C
o

n
ta

in
e

r

T
r

a
ff

ic

(T
E

U
)

Singapore 1 23,192,000 1 24,792,400 1 27,932,000 1 29,918,200 1 25,866,400

Hong Kong 2 22,602,000 2 23,538,580 3 23,881,000 3 24,248,000 3 20,983,000

Rotterdam 7 9,286,757 7 9,654,508 6 10,790,604 9 10,783,825 10 9,743,290

Hamburg 8 8,087,545 9 8,861,804 9 9,889,792 11 9,737,110 15 7,007,704

Chapter 1: 8

Singapore and Hong Kong, each has a major container terminal in Asia continent since

the container traffic is significantly higher in these cities. On the other hand, Rotterdam and

Hamburg have the major container terminals, which are located in the Western Europe.

These container terminals can be either managed by terminal management itself, in

which case are accounted as single terminals like in Hong Kong and in Rotterdam, or

managed by commercial terminal operators such as in Singapore and in Hamburg, in which

case are categorized based on their managements.

Singapore container terminals are managed by two commercial terminal operators. The

first operator, PSA Singapore, manages 44 berths with a quay length of 12,800 meters and

143 quay cranes are used in between. Additionally, the terminal area is 436 hectares, which

is designed to have a capacity of 24,700 kTEU. On the other hand, second operator, Jurong

terminal, manages 30 berths, where the total berth lengths are 5,629 meters. The terminal

areas, which are managed by Jurong terminal, are divided into two zones: free trade zone,

which is 124 hectares and non-free trade zone that is 28 hectares. In these zones in total 28

hectares area is designated as warehouse facilities, and number of the warehouses is 25.

Hong Kong container terminal is smaller than Singapore container terminals both in the

number of terminals, berths and terminal area. Hong Kong container terminal manages nine

terminals, which includes 24 berths in total and holds 279 hectares of land area in total.

Hamburg container terminal is another terminal that contains several container

terminals. The first container terminal is Eurogate, which includes six large-ship berths and

21 container cranes. HHLA Tollerort is another container terminal, which includes a

container rail station with a length of 720 meters of track, different than the others. This

container terminal manages four berths and uses eight container gantries as handling

equipment. HHLA Burchardkai container terminal has ten berths, which is higher in the

number than the other Hamburg container terminals. Hence the number of container

Chapter 1: 9

gantries used as material handling equipment increases and 27 container gantries are used

in this container terminal. Finally, HHLA Altenwerder container terminal includes four

berths for large container ships and uses fifteen container gantry cranes. The major

importance of this terminal is to use automated-driverless vehicles. On the other hand,

Rotterdam container terminal has a terminal area of 10,500 hectares in total. 5,000 hectares

is used as commercial site, 3,500 hectares is used in water and 2,000 hectares is used for

road and railways. Having a capacity like this, Rotterdam terminal has over 400 million

tons of goods per annum as goods throughput.

1.2.2 National Container Terminals

Turkey is a peninsula which is surrounded by four different seas: Blacksea, Marmara,

Aegean and Mediterranean. Therefore, there are several container terminals on its coats.

These terminals play an important role in the container traffic between parts of Europe and

Asia. Moreover the Bosporus connects countries which have terminals at the Blacksea to

the Mediterranean container traffic so each port of Turkey takes part in the global container

traffic.

Although Turkey has a great advantage of its geographical location and container

terminals, there is a decrease in the number of rehandled containers in years. Due to the

decrease in the number of containers rehandled in the ports, some of these terminals have

been privatized. This action is performed in order to increase the involvement of Turkey in

the container traffic sector. For example, Mersin terminal has been private after May, 2007

and named as MIP, while Samsun terminal is managed by private sector under the name of

Samsun terminal after April, 2010 and Bandırma terminal, which is now named as Çelebi,

is handled by a private terminal management company after mid-May, 2011. Table 3

Chapter 1: 10

provides information on the number of rehandled containers in the container terminals of

Turkey.

Table 3: Number of rehandled containers in Containers terminals in Turkey (TEU).

Year

Terminal 2004 2005 2006 2007 2008 2009 2010 2011

Haydarpaşa 316,982 340,629 400,067 396,637 356,272 187,365 176,468 63,752

Mersin 532,999 596,289 643,749 232,181 - - - -

İskenderun 607 0 52 603 0 0 115 11

Samsun 0 0 0 2 0 254 122 -

Derince 1,509 550 609 488 402 251 800 747

Bandırma 36 0 0 9 69 34 0 -

İzmir 804,563 784,377 847,926 898,217 884,906 826,645 727,443 219,356

Table 4: Capacity of container terminals in Turkey.

Terminal

Quay

Length

(m)

Terminal

Area

(*1000

m^2)

Maximum

Depth (m)

Capacity of

Vessel

Acceptance

(Vessel /Year)

Rehandling

Capacity

(*1000

Ton/Year)

Container

Stacking

Capacity (*1000

Ton/Year)

Haydarpaşa 2765 320 12 2651 5889 269

İzmir 3386 525 13 3640 6419 343

Derice 1092 366 15 862 2288 100

İskenderun 1426 750 12 640 3247 146

Mersin 4725 1097 14 4692 8606 371

Samsun 1756 338 12 1130 2380 50

Bandırma 2706 250 12 4280 2771 50

Chapter 1: 11

The capacities of these terminals depend on the area they are located and their

surroundings. The material handling equipments used in these terminals depend on both the

seaside and yard capacity. The capacities of the terminals managed by the government,

including the ones which are privatized, are given in Table 4.

Moreover, Ambarlı container terminal, which is located in European side of Istanbul, is

the biggest international container traffic gate of Marmara region. The main container

terminals, which are located within Ambarlı container terminal, are Marport (Main, West

and East), Mardaş and Kumport. These terminals’ general information is specified in Table

5 and their container traffic is given in Table 6.

Table 5: General information of Ambarlı container terminals.

Terminal

Quay

Length

(m)

Terminal

Area

(*1000 m^2)

Maximum

Depth

(m)

Number

of Reefer

Socket

Rehandling

Capacity

(*1000 Ton/Year)

Marport -Main 800 170 14,5 164 770

Marport -West 700 170 14,5 96 630

Marport -East 450 69 13,5 44 300

Martaş 910 194 15 150 550

Kumport 2080 400 15,5 144 1000

Table 6: Container traffic in Ambarlı container terminals (TEU).

Year

Terminal 2004 2005 2006 2007 2008

Marport (total) 770 791 963 1,298 1,541

Mardaş 137 162 198 276 360

Kumport 484 439 531 666 649

Chapter 1: 12

T
a
b

le
 7

:
M

at
er

ia
l

h
an

d
li

n
g
 e

q
u
ip

m
en

t
in

 T
u
rk

ey
 c

o
n
ta

in
er

 t
er

m
in

al
s.

Q
u

a
y

C
ra

n
e

1
5

:3
-

3
5

 t
o

n

9
:3

-

3
5

 t
o

n

8
:3

-

3
5

 t
o

n

1
7

:3
-

3
5

 t
o

n

7
:3

-

2
5

 t
o

n

1
6

:3
-

3
5

 t
o

n

1
9

:3
-

3
5

 t
o

n

- - - - -

M
o

b
il

e

C
ra

n
e

5
:5

-2
5

to
n

8
:5

-2
5

to
n

6
:5

-2
5

to
n

8
:5

-2
5

to
n

1
2

:5
-

2
5

 t
o

n

8
:5

-2
5

to
n

6
:5

-2
5

to
n

2

5

8

1
0

1
2

:5
5
-

1
0

0
 t

o
n

G
a

n
tr

y

C
ra

n
e

- -

4
:4

0

to
n

-

5
:4

0

to
n

3
:4

0

to
n

- 6

3
 - - -

P
a

le
tt

e

C
ra

n
e

3

1
 - 5
 - - - - - - -

R
T

G

C
ra

n
e

- -

1
8
:4

0

to
n

-

1
0
:4

0

to
n

1
4
:4

0

to
n

- 1
7

1
8

- 8

1
2
:4

5

to
n

S
p

re
a
d

er

- - - - - - - 1
3

1
1

1
1

1
4

1
1
:4

5
-5

0

to
n

C
o
n

ta
in

er

S
ta

c
k

in
g

E
q

u
ip

m
e
n

t

3
:2

5
-4

2
 t

o
n

4
:2

5
-4

2
 t

o
n

7
:2

5
-4

2
 t

o
n

2
:4

2
 t

o
n

1
9
:2

5
-4

2
 t

o
n

1
1
:4

0
-4

2
 t

o
n

3
:2

5
-4

2
 t

o
n

2

2

9
 -

1
3
:4

5
 t

o
n

E
m

p
ty

 C
o
n

ta
in

er

S
ta

c
k

in
g

E
q

u
ip

m
e
n

t

1
:8

 t
o
n

4
:8

-1
0
 t

o
n

7
:8

-1
0
 t

o
n

3
:1

0
 t

o
n

2
0
:8

-1
0
 t

o
n

1
2
:8

-1
0
 t

o
n

1
:8

 t
o
n

- - 7
 -

4
:8

-9
 t

o
n

T
h

ir
d

 P
a

rt
y

E
q

u
ip

m
e
n

t

-

1
 M

H
C

:1
0
0

to
n

1
 M

H
C

:6
5

to
n

-

2
 M

H
C

s:
1
0
0

to
n

2
 M

H
C

s:

1
0

0
 t

o
n

1
 Q

C
 w

it
h

d
ig

g
er

:8
 t

o
n

- - - - -

T
er

m
in

a
l

B
a

n
d

ır
m

a

D
er

in
ce

H
a

y
d

a
rp

a
şa

İs
k

en
d

er
u

n

İz
m

ir

M
er

si
n

S
a

m
su

n

M
a

rp
o

rt
 -

M
a

in

M
a

rp
o

rt
 -

W
es

t
M

a
rp

o
rt

 -

E
a

st

M
a

rt
a

ş

K
u

m
p

o
rt

Chapter 1: 13

Finally, Table 7 presents the material handling equipments used in the container

terminals of Turkey. These equipments are used for not only loading or unloading vessels,

trucks or trains but also for the transportation of containers between storage areas and

vessels, trucks or trains. Depending on the container terminal, some of the equipments’

capacity is also given in the table. An example for explaining some numbers which are

given in the table is like this: Quay Crane for Bandırma terminal is 15:3-35 ton means that

there are 15 quay cranes which have capacities ranging between 3 and 35 ton.

Material handling equipments used in the terminals show diversity based on the

location of the container terminal and the capacity of quay and yard sides of the container

terminal. Table 7 shows that while in some terminals empty containers are stacked by

special stacking equipments, in other terminals stacking for any type of containers are

accomplished by the same stacking equipments. Moreover, in most of the container

terminals which are managed by the government, equipments of third parties such as

Mobile Harbor Crane (MHC) and Quay Crane (QC) are included since the capacities or

equipments of those container terminals are not sufficient.

Consequently, each container terminal whether it is international or national, has a

common layout, operation processes and material handling equipments. Therefore, any

possible improvement at any level in a container terminal is applicable in others directly or

with some modifications.

1.3 General Approach

Container terminals include several operations and areas interacting with each other.

Each one of these operations and container terminal areas leads to a decision problem.

Hence, each decision made in a container terminal might be classified under two categories

Chapter 1: 14

depending on their levels, time periods that are done for and their consequences.

Depending on the length of the decision periods, they are categorized as either strategic

decisions, which are performed for longer periods, such as terminal location, material

handling equipment selection and the number of berths, or operational decisions, which are

applied for shorter periods like quay crane allocation to the vessels, storage space

allocation and yard crane deployment.

Zhang et al. [6] give the hierarchical levels of operational decisions in a container

terminal: berth allocation, schedule and stowage planning of vessels, quay crane (QC)

allocation, storage space allocation, location assignment and yard crane (rail tired gantry

crane, RTGC) and vehicle deployment. Figure 11 explains the hierarchical level between

these decision levels. Each decision level is applied continuously and has an effect on other

levels. In addition, while the decision level is getting lower, the frequency of the decision

making is increasing.

In this hierarchy, we focus on the operational decisions at the location assignment level,

which occur in the storage yard area. The operational decisions which are needed at this

level have to be applied continuously, so it is imperative to use methods that require less

computational time. The main problem that we study is to determine storage locations for

both arrived and relocated containers (which are rehandled during retrieval of several

containers or remarshaling) with the objective of minimizing the total cost, which is

obtained by minimizing the total number of rehandling.

Chapter 1: 15

The remainder of this thesis is organized as follows. In Chapter 2, a literature review

about all container terminal operations is given. Chapter 3 provides a definition of the

focused problem and lists the possible container terminal scenarios. Chapter 4 discusses the

idea of the proposed heuristic algorithms. Chapter 5 presents the performance results of the

heuristic algorithms. Conclusion and possible future studies are given in Chapter 6.

berth allocation (allocating

vessels to berths)

schedule and stowage

plan of vessels

QC allocation (allocating QCs to

(bays of) vessels)

storage space allocation (determining the numbers of

different types of containers of vessels to blocks)

location assingment (determining the exact locations of

containers in blocks)

RTGC deployment (deploying

RTGCs in real time)
IT deployment (deploying ITs

in real time)

HIGH

LOW

Figure 11: Hierarchical structure of operational decisions in a container terminal [6].

Chapter 2: 16

2. Chapter 2

LITERATURE REVIEW

Container terminal optimization is a very popular research area. There are several

decision levels; hence it is difficult to solve problems at these different decision levels with

an overall optimization model in a container terminal. Therefore, there are plenty of

researches focusing on each decision level separately, and there are some new researches

integrating two different levels of decisions.

In the literature, there are some review articles about container terminals [3], [4], [7],

and [8]. Steenken, Voβ, and Stahlbock [3] review the history of containers, container

services, structure of container terminals, types of handling equipment, logistics within the

container terminals, optimization methods for container terminals and operations in detail.

A literature update of [3] is given by Stahlbock and Voβ [4], in which the structure of the

article is basically same with the previous one but additional subtitles are added.

Vis and Koster [7] focuses on the operation sequences in the container terminal,

different than [3] and [4], and they review the literature based on optimization hierarchy.

Operations starting with arrival of a vessel, later based on container types unloading and

loading of a vessel, and finally stacking a container in the storage yard are until it is

Chapter 2: 17

claimed and any necessary transportation within container terminals are primary topics

which are focused in [7].

Vacca, Bierlaire and Salani [8] give an overview of decision problems which arise in

the management of a container terminal. Furthermore, they identify several critical issues

occurred in some of the busiest container terminals in the world and focuses on competition

and cooperation issues that arise between decision makers and market players.

The rest of the literature review in this thesis continues according to the general

research areas that are given in [4]. Since we will be dealing with storage allocation

problem, this section is discussed in more detail while other sections are reviewed

relatively brief.

2.1 Container Terminal Systems

In the literature, there are some studies explaining the container terminal systems in

detail. In these studies, researchers take the container terminals as a whole. For example the

following articles help us to understand the components of a container terminal with the

help of explaining the corresponding and correlated decisions which are made in a

container terminal.

Murty, et al. [9] describe a variety of interrelated decisions made during daily

operations in a container terminal. In their study, they focus on combining these decisions

with the objective of minimizing the overall workload and time during these daily

operations in the container terminal. They propose several mathematical models and

algorithms in their study and used support tools.

Chapter 2: 18

A heuristic approach is applied into container terminals’ integration problems by Kozan

and Preston [10]. In their research, they present a genetic algorithm (GA), a tabu search and

a tabu search/genetic algorithm hybrid to solve the integration problem between container-

transfer model and a container-location model to determine both optimal locations and the

corresponding handling schedule.

A simulation model of a container terminal and its components are given as a help tool

by Bielli, Boulmakoul and Rida [11]. They aim to increase the efficiency of the terminals

and the operations with this model. On the other hand, Lau, Chan and Wong [12] formulate

a simulation model which combines management and operation processes in the container

terminals with the aim of providing a flexible environment for logistics in the container

terminals.

2.2 Shipping Planning

The shipping operation starts with the allocation of the berth, which are locations used

for loading and unloading operations of vessels. Berth allocation is performed before the

arrival of the vessel to the container terminal. During this allocation, length of the vessel,

types of handling equipment and positions of containers that are assigned to that vessel are

considered. Whenever a vessel arrives to the container terminal later than the expected

arrival time, its previous berth allocation has to be modified. Nishimura and Papadimitriou

[13] focus on this dynamic problem. They develop a heuristic algorithm based on the

genetic algorithm to deal with the berth allocation problem. Moreover, in another study

[14], they study the same dynamic berth allocation problem at an extremely busy container

terminal in a developing country. This terminal is located in a developing country where

the berth capacity is very limited to handle a lot of calling ships. Under this case, they

Chapter 2: 19

consider berth allocation at the container terminal, which allocates some ships to another

container terminal with the objective of minimizing the total service time of ships at these

external container terminals. A genetic algorithm based heuristic is developed for this

problem and its well performance in reducing external terminal usage is displayed by

numerical experiments.

Bae, Park and Kim [15] study the same dynamic berth allocation problem by taking

account the real constraints and various dynamic situations. In their study, the main

objective is to minimize the cost and they show the similarities and differences between the

berth allocation problem, the median location problem and the facility layout problem.

Meanwhile, Ganji, Babazadeh and Arabshahi [16] take this NP-hard allocation problem

and solve it with branch and bound algorithm. They conclude that branch and bound

algorithm is not usable with large sized problems. Then they suggest a method, which uses

genetic algorithm as a base and compare the results of the method with results gathered

from the branch and bound part.

After the berth allocation problem is managed, the decision has to be made on the

stowage plan of the vessel. The vessel stowage planning is done according to the

information gathered from the vessel captain and characteristics of the containers that will

be unloaded from and loaded onto the vessel, such as their types and weights. The main

objective during the stowage planning is to maximize the utilization of the vessel, by

minimizing the number of shifts during loading and lowering the turn-around time of the

vessels. Ambrosino, Sciomachen and Tanfani [17] propose a model for the stowage

planning problem that they define as “Master Bay Plan Problem” with the aim of

minimizing the loading time of all containers. Then, they define a three-phased algorithm

as a solution procedure and propose methods to obtain stability in the stowage plan. The

same problem is formulated as a three-dimensional bin packing problem by Sciomachen

Chapter 2: 20

and Tanfani [18] for real test cases from the port of Genova, Italy. They propose a heuristic

approach with the aim of minimizing the total loading time during stowage planning in

these cases. The general idea behind the algorithm is considering containers as items and

the vessels as bin while working with stowage plans.

Another problem occurred in container terminals is the assignment of the quay cranes to

the vessels that are waiting in the berth locations to be loaded or unloaded, which is named

as crane split problem in the literature. The general objective at this level is to minimize the

completion time of loading and unloading operations, so that the turnover times of the

vessels will be minimized. Conventional quay cranes have a lift capacity of one container

and each study in the literature is based on this fact. Kim and Park [19] study this problem

with the objective of minimization of the weighted sum of the makespan of the container

vessel and the total completion time of all quay cranes. They determine a branch and bound

algorithm in order to find an optimal solution to the problem. They also propose a heuristic

approach, which is named as greedy randomized adaptive search procedure, to deal with

the computational complexity of the branch and bound algorithm. Moccia et al. [20] deal

with the same problem and work on the instances generated by [19]. However, different

than [19], they propose a branch and cut algorithm, and concluded that it is better than the

branch and bound algorithm on the medium sized problems. Sammarra et al. [21] divide

the same problem into two problems: routing problem and scheduling problem. A tabu

search algorithm is suggested for the routing problem, which results with a local search for

the second problem. The results are compared with [19] and [20] to show that the tabu

search outperforms the others.

Chapter 2: 21

2.3 Transport Optimization

In the container terminals, containers that are incoming from hinterland are transferred

from vessels, trucks or trains to container storage yard areas. Moreover, import containers

which are stored in the storage yard area transferred from their positions to their assigned

vehicles, which might be vessels, trucks or trains. These transfers are named as inter-

transportation and are done by the material handling equipment such as internal trucks,

straddle carriers, and automated guided vehicles. In the review articles ([3], [4], [7], and

[8]) a detailed classification of this problem is given.

Loading containers to and unloading containers from vessels are called as the quayside

transportation. The main objectives are finding the schedules and sequences that minimize

the overall operation time. For this problem, Bierwirth and Meisel [22] provide a list of

applicable algorithms in the literature which are focusing on quayside transportation after

they review berth allocation problem.

The transportation occurred in the hinterland side, which contains transferring

containers to the trucks or trains from the storage yard, is known as landside transportation.

The aim of landside transportation is to allocate a given number of material handling

equipments to the operations that balance the workload and time requirements.

Crane transportation is another problem studied under this topic. Cranes used in the

container terminal transportation has to be optimized since the number of cranes is fewer

than the number of stacks in a storage yard area. Hence, yard cranes are moved between

stacks in order to allocate containers to their assigned stack and pick up containers from

their stored stacks. During these operations, the main aim is to minimize the waiting time

of the transport vehicles and travel times of the cranes, which will be resulted in reduced

time for the overall operations.

Chapter 2: 22

2.4 Storage and Stacking Logistics

Containers arrive to container terminals with vessels, trucks or trains and are assigned

into blocks in the storage yard area. These stored containers remain in their assigned blocks

between their arrival to the container terminal and their departure from the container

terminal, which is a temporary time period. Containers that are stored in the container

terminals might have different types: import, export or transit containers. According to the

type of the containers, the storage times and operation flow within the container terminals

will be different. However, regardless of their types, containers are stored in the blocks,

which are allocated areas in the storage area. A block might be holding different types and

number of containers depending on the container terminal characteristics. The assignment

of containers to these blocks is done based on their types, lengths and special requirements,

like needing electricity.

In a block two main operations are performed: allocation of a container into this block,

which occurs with the assignment of a new container into this block, and retrieval of a

container from this block, which starts when a container is claimed. Moreover, there may

be some remarshaling operations for the containers that are already stored at this block, and

rehandlings based on the relocations occurred during each operation. In order to move

containers less within a block, their initial assignments in the blocks are important. So, the

assignment of these containers to the storage locations within the blocks is another decision

problem in the container terminals, which is referred as the storage and stacking problem.

A detailed review about stacking problem in container terminals is given by Dekker,

Voogd and Asperen [23]. In this study, they focus on the stacking process within container

terminal operations. They examine several variants of container stacking policies in an

automated container terminal. They also consider the exchange of the containers during the

loading processes in the container terminal. A general introduction on the container

Chapter 2: 23

terminals, operations and trends are also given in their study. Then, they focus on the

stacking policies from different perspectives where they define different performance

measures and features.

2.4.1 Storage Allocation

The storage allocation problem has an important role in the container terminal

processes. Each type of containers arriving into the storage yard are brings different effect

into the container terminal. Export containers, for example, eliminate the uncertainty in the

departure times since whenever they arrive to a container terminal, their departure times are

known. Also whenever an export container assigned to a block, its position in the retrieval

sequence is known. On the other hand, arrival times of the import containers into the

container terminals are known even though their departure times are unknown.

Kim and Kim [24] study the storage allocation problem for import containers with the

aim of minimizing the expected total number of rehandlings. They suggest mathematical

models and solution procedures based on Lagrangian relaxation technique in order to

obtain an optimal storage allocation. They analyze the cases where the arrival rates of

import containers are constant, cyclic, or dynamic, while satisfying the space requirements.

In the study, the presented formulation shows the relationship between the stack height and

the number of rehandlings.

Kim, Park and Ryu [25] propose a dynamic programming model to find the storage

locations for export containers while considering their weights. Their objective is to

minimize the number of relocation movements expected for the loading operation. During

the study, they assume that all information is known before the export containers have

arrived, their departure times are affected by their arrival times, such as any container

Chapter 2: 24

which has arrived before that is received before. Finally, relocation for a container is not

allowed more than once in their system. The relocation is caused whenever a light

container is located on top of a heavy container, since the heavier containers are loaded on

the ships earlier. They also provide a decision tree for locating export containers in their

system.

The storage space allocation problem in the storage yards of container terminals with

the objectives of overall vessel berthing time is minimized and quay cranes throughput rate

is maximized are studied in [26]. In their study, the authors divide the problem into two

levels, which includes rolling horizon approach. In the first part they work with the

assignment of total numbers of containers to blocks. The second part is about allocation of

containers of each vessel to blocks. They focus on determining the number of import or

transient containers on ships before they are unloaded and allocated to the yard, and the

number of export containers before they are brought and stored in the storage yard area in

the container yard.

Kim, Ryu and Kim [27] focus on the storage allocation problem with export containers

and proposed a simulated annealing based methodology. In the study, the authors derive

stacking strategies for export containers while their weights are not known. With their

strategies, they aim to reduce the number of rehandlings compared to the traditional same-

weight-group stacking strategy. Kang, Ryu and Kim [28] then study the problem with the

import containers using the same approach and assumptions in [27]. For import containers,

including their dynamic system in departure times, Bazzazi, Safaei and Javadian [29]

formulate a mathematical model based on dynamic programming, and then develop a

genetic algorithm to solve an extended allocation problem. The solutions found in their

study are nearly five percent to the optimum.

Chapter 2: 25

2.4.2 Remarshaling

The idea of making arrangements within a block or bay in order to minimize the

rehandlings occurred during the retrieval processes is also a major work field. Kim [30]

presents a methodology having a dynamic characteristic with this objective where he only

assumes a single bay with no extra arrival container. In the same study, assumptions of no

other container arrive into that bay during pick-ups and each relocated containers remains

in the same bay are considered. Due to the complexity of the problem, he proposes several

regression equations and useful tables to estimate the number of rehandlings easily. Kim

and Bae [31] propose a methodology in order to provide a better, desirable layout from the

current layout of the block that will result in reduced turn-around times for vessels. The

transformation between layouts is done by remarshaling moves, which are performed in

fewer numbers and in shortest travel distances and defined as clearing moves in [30]. At

that point they divide the problem into three levels and solve them by using, respectively,

dynamic programming, transportation problem and traveling salesman problem.

On the other hand, Kang et al. [32] propose an intra-block remarshaling with the same

purpose where the arrangement is done within the same block in a way that containers to be

claimed earlier are placed on top of the other containers. They tried to minimize the time of

remarshaling and interference between cranes which are used during remarshaling while

avoiding rehandling moves. A simulated annealing algorithm is used for the problem to

generate an efficient crane scheduling in a reasonable time for remarshaling.

2.4.3 Retrieval

Kim and Hong [33] address finding pick-up sequences for the containers from a

specific bay and locations for relocated containers. They study only one bay and assume

Chapter 2: 26

that the precedence relations of pickups among blocks are known, relocations can only

occur during a pickup, and relocated containers remain in the same bay. They propose a

branch and bound algorithm to find the optimal solutions and then propose a heuristic rule

for the decision within the solutions. They conclude that the heuristic rule is exceeding the

optimal results not more than ten percent and also working less than two seconds in larger

cases, where branch and bound algorithm finds the optimal results within one to twenty

minutes. Aydin [34] uses a similar branch and bound algorithm for the problem proposed in

[33] with a single bay and with only the retrieval operation. He is able to solve about 91%

of the problem instances generated. He also proposes several heuristic algorithms and

reports an average optimality gap of 6% and 10% for two heuristics that performed the

best, respectively.

Lee and Lee [35] propose a three-phase optimization heuristic for a crane to retrieve all

the containers with the aim of minimizing the total number of container movements. Their

assumption on the initial layout and the retrieving order of containers is similar with that of

[33]. In their heuristic, first they generate a simple and feasible movement sequence for the

containers. Second, by movement reduction phase, they lower the number of movements in

that feasible sequence. Finally, they reduce the total working time by modifying the

sequence in the time reduction phase. They argue that examples which are given in [33] are

smaller than the usual number of containers in real life container terminals. Therefore they

generate new instances in which a total of between 70 and 720 containers can be stored in a

block and the blocks are approximately 75% full. Their heuristic algorithm is able to solve

even the instances of more than 700 containers, while the final movement numbers are

close to their lower bounds. Moreover, Lee and Lee [35] compare their results with that of

[33] for only one-bay yard and conclude that their heuristic resulted in fewer movements.

Additionally, they generate “upside-down” instances to prove that the number of

movements is much higher than that of the randomly generated instances. Unluyurt and

Chapter 2: 27

Aydın [36] only compare the results of the randomly generated single bay instances, in

total for ten instances, and they do not find the optimal solutions by using their proposed

branch and bound algorithm for these instances. They conclude that the heuristic provided

by Lee and Lee [35] outperforms the heuristic algorithms of [36] for these instances.

Caserta, Voβ and Sniedovich [37] work with a “blocks relocation problem” while

considering same assumptions of [33]. They point out that the layout of a bay is influenced

by the arrival of containers into the storage yard area. They propose a dynamic

programming algorithm and the corridor method, which enable to solve the large problem

instances, but not guarantee that the optimal solution is reached. They conclude that with

their solution methodology, fewer numbers of relocations are observed compared to [33].

Finally, a new extension of “lock relocation problem”, which is including the weights

of the containers, is given in [38]. Hussein and Petering [38] suggest “the global retrieval

heuristic” which is embedded in a genetic algorithm based optimization method. They

point out, based on the computational results, the importance of relocating heavy containers

and number of stacks/bays, in number of relocating and fuel consumption.

Chapter : 3 28

3. Chapter 3

PROBLEM DEFINITION

In this chapter, we will describe the problem considered in this thesis and establish its

importance within the container terminal operations. Most activities of container terminals

take place in container storage yard areas, where containers are stored temporarily after

they are discharged from vessels or before they are loaded onto vessels. The storage yard

area of a container terminal consists of multiple blocks. Each block has several bays, and

each bay is made up of several rows of container stacks. Generally a block of a container

yard is divided up to 30 bays, where each bay has between 3-7 stacks and each stack

contains 4-7 rows. While transfer cranes and trucks are used as container handling

equipment to move containers in and out of blocks, yard cranes are used for stacking

operations within the blocks and can move between bays.

Figure 12 presents a view of a single block, which is located in the storage area. In this

block, each container is stored in slots those are defined by using bay, stack, and row

numbers as (bay, stack, row). Moreover, while 20ft containers occupy a single bay, 40ft

containers occupy two consecutive bays. Therefore, in most container terminals, containers

Chapter : 3 29

of different sizes are not mixed in the same block because of the safety of containers and

the inefficiency in the container handling.

Figure 12: A representation of a block and its components.

Any container that is stored in the container terminal arrives to the side of the blocks by

a truck and stacked at a block by a yard crane. Figure 13 gives the schematic front view of

a bay with a yard crane while a truck arrives to the block which is loaded with a container

and Figure 14 gives the side view of the yard crane. These figures include the idea of the

monitoring system of these cranes in the block and the storage area. Sensors which are

located at A, B, C and D monitor actions within the block and prevent any contact between

containers and sensors which are located at E, F, and G that controls the movements

between bays in the storage area. These sensors are used to avoid a contact between two

cranes or a crane and vehicles.

row

stack

a single bay

(20 ft. container)

two consecutive bays

(40 ft. containers)

Chapter : 3 30

Figure 13: Front view of a bay and a yard crane.

Figure 14: Side view of a yard

crane.

Figure 15 is a representation of any possible movements of a yard crane within a block.

The yard cranes are not only used for these allocation operations in a block or picking up

operations from the block of a container. During the idle periods of the yard crane, it might

be used for remarshaling operations (relocating the existing containers within the block) to

have a more accurate system during the next allocation and pick-up operations.

Figure 15: Movements of a yard crane within a block.

Traverse travel

Hoist movement

Gantry

travel

Chapter : 3 31

Each crane movement is controlled by a crane operator and for any operation firstly,

gantry travel is performed to place the crane over the bay in which the operation will be

performed. For allocation operation, crane operator performs a traverse travel to position

the crane over the truck lane. Then crane is lowered by a hoist movement to reach the

container, which is located on the truck, and then lowered up with the container. The

container is lifted until it does not touch any other container while the traverse travel is

performed. Whenever the lifted container reaches to the required height, the traverse travel

occurs to position it on the selected stack and then it is lowered down and placed on that

selected stack.

In retrieval operation the movements follow a similar pattern. After the crane is moved

to the desired block by a gantry travel, the crane is positioned over the stack in which the

claimed container is stored. At that point, in order to access the claimed container, there

should not be any other container on it. If there are any containers on the claimed container,

some relocation movements should be performed to remove these containers. These

relocations cause rehandlings and they are also performed by the crane. Whenever a

claimed container is accessible by the crane, the crane is lowered down to pick it up by a

hoist movement. The picked up container is then lifted to a required height, moved over the

truck lane by a traverse travel and finally loaded on the truck which is waiting in the truck

lane.

Yard crane movements are elements of location assignment level, which is at the low

level in the decision hierarchy [6], and these movement decisions are made more

frequently. In busy container terminals this decision level becomes a holdup for other

operations as well. Decreasing the movements of the yard crane, which are usually

occurred due to the rehandling of containers, improves the overall system performance in

Chapter : 3 32

the container terminals. Therefore this decision level is an important working area for

researchers.

In most researches, the gantry travel movement is not considered since movements

between bays cost much higher than the other movements of the yard crane. But for

practitioners in the container terminals, the gantry travel is another significant movement.

Thus, during the decisions on yard crane movements, gantry level travel should not be

excluded and storage areas should be focused on dependent bays, or on blocks.

In the light of these facts, the related problem that we study in this thesis can be

summarized as follows: In a block, in which the initial configuration is known, we are

interested in finding the exact locations of the arrived or relocated containers while

minimizing the number of rehandlings. We work with the blocks in which only 20 ft.

export containers are stored, meaning that any container arrived recently into the block or

an already stored container in the block has a known position in the retrieval sequence and

occupies only one slot in the block. In this thesis, we consider rehandlings which are

occurred during each possible operation of allocation, remarshaling and retrieval. Moreover

we apply several different heuristic algorithms under different container terminal policies,

which are based on the location allocation decisions and named as scenarios.

Figure 16 illustrates the representation of a block and the first bay is magnified to show

how the initial configuration is seen in the block. The block is made of five bays, which are

filled with containers in up to six stacks and four rows, as in Figure 13 and 15, and the

truck lane is located on the left side. The numbers seen on the enlarged containers represent

the position of containers in their retrieval sequence of the container in the block and these

ranks have to be updated with the arrival of a new container or after the retrieval

operations. In Figure 16, the first stack includes containers those are numbered as {1, 14,

22, and 6}. Hence, the container that is numbered as {1} is going to be retrieved at first,

Chapter : 3 33

therefore Containers {6}, {22} and 1{4} will be relocated in order to make Container {1}

accessible by the yard crane.

6

22

16 8

14

7 54 11 5

1

30 42 63 17 35

Figure 16: An illustration of a block, with a display of rank numbers.

Chapter : 3 34

In Figure 17, the idea of updating rank numbers of containers within a block, before

allocation of a container arrived recently into the block or after the retrieval of a claimed

container from the block is given. In Figure 17, it is assumed that, in a specified time

period, only one container arrives at the block during the allocation operation, and similarly

only one container is claimed in the pick-up operation with no remarshaling. In Figure 17

(a), the initial configuration of a bay is given. The updated rank numbers of this

configuration with the allocation of a container arrived recently, Container {3}, to the

block, are seen in Figure 17 (b). Figure 17 (c) represents the same bay, after the retrieval of

Container {1} and this time period ends. The rank numbers for the remaining containers in

that bay is then updated (Figure 17 (d)).

1 3 1 4 4 3

2 4 5 2 3 5 6 2 3 5 6 1 2 4 5

(a) (b) (c) (d)

Figure 17: The idea of updating rank numbers of the containers.

In a system like this, we define the objective function for a time period k as in Equation

(3.1).

 (3.1)

Chapter : 3 35

where,

: Total cost in period

: Cost of each rehandling, which is taken as 0.8$ [39].

: Total number of rehandling in period .

Equation (3.2) expresses the details of the main causes of the rehandling that is given in

Equation (3.1).

 (3.2)

where,

: Total number of rehandling occurred during the

allocation operation in period

: Total number of rehandling occurred during

the remarshaling operation in period

: Total number of rehandling occurred during the

pick-up operation in period

Chapter : 3 36

Total number of rehandling occurred during allocation operation includes the number of

allocated containers into the block in that period. Additionally total number of rehandling

happened during the pick-up operation contains the number of retrieved container in that

period. Since the rehandling cost during any operation is considered as equal, we will be

using Equation (3.1) as the general objective function and the objective functions of each

scenario will be generated from it.

3.1 Scenarios

In Chapter 1, we remarked the physical capacities of several international and national

container terminals. As seen from their detailed descriptions, these capacity constraints

affect every decision in these container terminals such as the number of blocks in the

storage yard area or the material handling equipment which are used during stacking

operations in these blocks and the retrieval operations policies.

In the location allocation level, there are two main different policy variations. The first

variation depends on the rule of the retrieval operation, which is argued under two

scenarios: “Sequence Based” and “Group Based”. On the other hand, the storage yard

capacity is the second dependent factor depending on the storage yard area capacity. Extra

stacks are added in order to increase the capacity of the system only during rehandlings.

Figure 18 demonstrates a schematic view of a bay with an extra stack, which is located

next to it. The extra stack policy is combined with the first two scenarios and these are

referred to as “Extra Stack, Sequence Based” and “Extra Stack, Group Based”,

respectively.

Chapter : 3 37

Figure 18: A view of a bay, which has an extra stack.

3.1.1 Sequence Based Scenario (Scenario 1)

In this scenario, during the pick-up operation, a specific retrieval sequence is strictly

followed as a policy. In this respect, some of the claimed containers might not be accessible

by yard cranes since the containers on top of them could not be relocated within the block

because of the capacity of the block. For these cases, whenever a container, which is

positioned next in the retrieval sequence, fails to be retrieved, the remaining containers in

the retrieval sequence are also considered to be failed.

Figure 19 displays an example for this scenario on a bay, in which the retrieval

operation is started for three containers. Since the policy of this scenario is forcing to

follow the retrieval sequence strictly, Container {1} will be retrieved at first. Since

Container {1} is accessible by yard crane, Figure 19 (a), it is picked up without any extra

relocation and Container {2} is listed next in the retrieval sequence. As seen in Figure 19

Extra Stack

Chapter : 3 38

(b), Containers {14}, {9}, and {8} should be relocated in order to make Container {2}

accessible by the yard crane. Unfortunately, the capacity of the bay, which is two slots, is

not sufficient for these relocations. Therefore Container {2} is marked as failed to be

retrieved. In Figure 19 (c), the final container in this period’s retrieval sequence is seen but

even the capacity of the bay is enough for making Container {3} accessible by the yard

crane, with the relocation of Container {15}, it is considered as failed to be retrieved since

Container {2} has failed to be retrieved.

 14 15 11 14 15 11 14 15 11

1 9 3 13 9 3 13 9 3 13

12 8 10 5 12 8 10 5 12 8 10 5

6 2 7 4 6 2 7 4 6 2 7 4

 (a) (b) (c)

Figure 19: Retrieval under Scenario 1.

In this respect, Equation (3.3) represents the objective function for this scenario, which

is a modification of the general objective function, Equation (3.1), by adding a penalty cost

for those containers that failed to be retrieved:

 (3.3)

where,

Chapter : 3 39

: Cost of each container that failed to be retrieved,

: Total number of containers which are considered failed to be

retrieved in period .

The penalty cost, , depends on the contracts between the container terminals and the

vessel or transportation companies. In our computational experiments is taken as 160$ in

order to see the effect of failed containers within the system.

3.1.2 Group Based Scenario (Scenario 2)

In this scenario, the claimed containers in a period’s pick-up operation are considered as

a group. This consideration formats the pick-up operation policy of the container terminals;

such as whenever a container fails to be picked-up, it is skipped and considered later within

the same period. At the end of the period, there might be still some claimed containers

which are failed to be retrieved.

Figure 20 explains the initial iteration of Scenario 2 with an example, in which three

containers are asked to be retrieved in the focused period. Container {1} is not accessible

by the yard crane and the capacity of the bay is not enough (Figure 20 (a)). In this scenario,

policy skips to the next container in the retrieval, which is Container {2} (Figure 20 (b)).

After relocation of Container {18}, Container {2} is picked-up, and next container in the

retrieval sequence, which is Container {3} is tried to be retrieved. Since Container {3}

cannot be accessible due to capacity constraints (Figure 20 (c)), the first round on the

retrieval sequence is completed with one successful container retrieval, Container {2}, and

two failed container retrieval trials, Containers {1}, and {3}. Therefore, a second trial for

these failed containers is performed as in Figure 21.

Chapter : 3 40

19 18 8 19 18 8 19 8 18

17 2 9 13 17 2 9 13 17 9 13

1 10 16 5 1 10 16 5 1 10 16 5

15 7 6 4 15 7 6 4 15 7 6 4

11 12 3 14 11 12 3 14 11 12 3 14

(a) (b) (c)

Figure 20: First trial of the retrieval sequence under Scenario 2 in period k.

In the second round, the containers which failed to be retrieved are considered in order.

In Figure 21 (a), Container {1} now becomes accessible by relocation of Containers {19}

and {17}. Finally Container {3} is tried to be removed again (Figure 21 (b)), but due to the

capacity constraint of the bay, it will remain as failed to be retrieved. At the end, while

Container {1} and Container {2} are successfully retrieved, Container {3} is failed to be

retrieved.

19 8 18 17 8 18

17 9 13 19 9 13

1 10 16 5 10 16 5

15 7 6 4 15 7 6 4

11 12 3 14 11 12 3 14

(a) (b)

Figure 21: Second trial of the retrieval sequence under Scenario 2 in period k.

Chapter : 3 41

Despite the containers to be retrieved in a period are considered as a group, there might

be still some containers which will fail to be retrieved. In this respect, the objective

function of Scenario 2 will be the same with Scenario 1’s objective function, that is,

Equation (3.3).

3.1.3 Extra Stack, Sequence Based Scenario (Scenario 3)

In some container terminals, depending on the policy of storage yard, there are extra

stacks for each bay, as displayed in Figure 18. The combination of this policy with the

sequence based retrieval policy is discussed as Scenario 3. These extra stacks are used

during stacking operations in each period. Moreover, at the end of each period, if there is

any container stored in the extra stack, they are relocated back into the block. Therefore,

depending on the capacity of the bay, any relocation is initially performed within the bay, if

possible.

Figure 22 represents an application of Scenario 3, with the same bay configuration

given in Figure 19. With this scenario, Containers {2} and {3}, which were failed to be

retrieved under Scenario 1, are successfully retrieved. Container {1} is directly picked up

due to its position in the bay (Figure 22 (a)). In Figure 22 (b), it is seen that Container {2}

is only accessible by relocating containers those are located on top of it. In this scenario, to

relocate the containers, initially the available capacity of the bay is used, and then, if

needed, extra stack is used. After Container {2} is successfully retrieved, (Figure 22 (c)),

Container {3} is considered as the final container in the retrieval operation in this period.

Container {15} is relocated within the bay in order to make Container {3} available. After

the retrieval of Container {3}, the bay looks like as in Figure 22 (d). Since the current

period ends with the removal of Container {3}, the extra stack must be emptied, so

Chapter : 3 42

Container {8} should be relocated back in the bay. Therefore, with the help of extra stack,

each container, which is listed in the retrieval sequence in a period, is successfully picked-

up from the bay.

Figure 22: An example for the application of Scenario 3.

The objective function of Scenario 3 which is given in Equation (3.4) is formulated by

modifying the general objective function (Equation (3.1)). The modification is caused by

the additional cost, which is due to the extra stack and this fixed cost depends on the

land cost of each container terminal. On the other hand, since each claimed container will

be successfully retrieved, the variable is going to be equal to zero, so it

is not considered in the objective function of Scenario 3 (Equation (3.4)).

 (3.4)

where,

: Fixed cost of extra stack.

 14 15 11 14 15 11 9 15 11 9 11

1 9 3 13 9 3 13 14 3 13 14 13

12 8 10 5 12 8 10 5 12 10 5 12 10 5

6 2 7 4 6 2 7 4 6 7 4 8 6 15 7 4 8

(a) (b) (c) (d)

Chapter : 3 43

3.1.4 Extra Stack, Group Based Scenario (Scenario 4)

Scenario 4 is the extra stack added version of Scenario 2. This scenario applies group

based retrieval policy within the container terminals, which have extra stacks next to each

bay in the blocks. Hence, like Scenario 3, all of the claimed containers become accessible

by the yard crane, which makes variable equal to zero during the pick-

up operation. Moreover, similar to Scenario 3, extra stacks add a fixed cost to the objective

function, and as a result Scenario 4 also uses Equation (3.4) as its objective function.

19 18 8 18 8 19 8 19 9 6 19

17 2 9 13 2 9 13 9 13 8 16 13

1 10 16 5 10 16 5 18 10 16 5 18 10 5

15 7 6 4 15 7 6 4 15 7 6 4 15 7 4

11 12 3 14 11 12 3 14 17 11 12 3 14 17 11 12 14 17

(a) (b) (c) (d)

Figure 23: Representation of a retrieval operation in a period by Scenario 4.

Figure 23 is used to represent the application of Scenario 4 on the same example that is

used for Scenario 2. In this scenario, each claimed container could be retrieved in the first

round of the retrieval sequence. Container {1} is accessible by both using the capacity of

the bay and the extra stack (Figure 23(b)). Later, Container {2} and {3} are retrieved by

relocating containers which are stored over them within the bay. Figure 23 (d) displays the

final bay configuration after the removal of all claimed containers. Since the pick-up

operation is ended for that period, Container {17} is the only container that will be

relocated back into the block before the next period.

Chapter 4: 44

4. Chapter 4

HEURISTIC ALGORITHMS

In this chapter, we present several heuristic algorithms to solve the problem described

in Chapter 3. The heuristic algorithms are categorized under two topics, which are

allocation-retrieval relocations heuristic algorithms and remarshaling relocations heuristic

algorithms. Allocation-retrieval relocations heuristic algorithms are used during the

allocation and pick-up operations, while remarshaling relocations heuristic algorithms are

used during the remarshaling operations.

The main idea behind each algorithm depends on the feasible position selection criteria.

In allocation-retrieval relocations heuristic algorithms, algorithms are divided into two

main groups. The first group uses the differences between the rank numbers of the

containers for the feasible position selection (High Rank, Min Rank, High Rank Modified,

Min Rank Modified, Smart Heuristic Algorithms, and Tabu Search Algorithm), while the

second group selects positions randomly (Random, and Hybrid Heuristic Algorithms) to

see the effect of the first group. On the other hand, remarshaling relocations heuristic

algorithms are only based on the differences between container rank numbers.

Chapter 4: 45

The following notations will be used for explaining the proposed algorithms.

 : Bay number.

 : Stack number in the selected bay.

 : The minimum ranked container that is placed at stack s of

 bay b.

 : The number of available slots in stack s of bay b.

 : A big number, which is equal to 10,000.

 : The first container to be accessed at stack s of bay b.

4.1 Allocation-Retrieval Relocation Heuristic Algorithms (Primary)

In this section, the heuristic algorithms proposed for both the allocation operations and

pick-up operations will be presented. A period in a block starts with the arrival of new

containers into that block and the update of the rank numbers of the containers already

stored in this block. The position for each arriving container will be the output of the

allocation-retrieval relocation heuristic algorithm. If any container is needed to be

rehandled during these allocations, their position within the same block will be determined

by the same allocation-retrieval relocation heuristic algorithm.

The following algorithms are straightforward and can be easily applied in practice. In

describing the algorithms, a container waiting to be positioned in the block, either an

arriving or a rehandled one, is defined as the waiting container.

Chapter 4: 46

4.1.1 High Rank

This algorithm starts with by finding stacks in the block which have a min_rank that is

equal to zero. These stacks’ min_rank are then equaled to for the future usage

within the algorithm. In the next step, algorithm arranges an available stack list, which

includes the stacks of the focused block which have at least one available slot.

The stack with the highest min_rank is selected among the available stack lists. If there

is more than one possible stack to be selected then the one with the minimum b is selected.

If they are in the same bay then the one with the minimum s is selected. The main idea in

this algorithm is to select the empty stacks first as the feasible slot and then locate the

waiting containers on the higher ranked containers to make the lower ranked containers

easily accessible by the yard crane. The pseudo code for the algorithm is given in Appendix

C for allocation operation and in Appendix J for pick-up operation.

Figure 24 illustrates how the algorithm iterates during the allocation operation. Figure

24 (a) displays the initial configuration; while Figure 24 (b) displays the updated

configuration after Container {4} and Container {5} have arrived to the block. At that

point, each stack is listed in the available stack list since the ava_slots are (3, 1, 3 and 4)

with the corresponding min_ranks (6, 1, 7, and 10,000). Stack (4) has the highest min-rank,

because it stores no container, and it is selected to locate Container {4} (Figure 24 (c)).

After the allocation of Container {4}, feasible slots for Container {5} are searched within

the updated available stack list. Despite the list contains the same stacks, their

corresponding min_ranks are updated as (6, 1, 7, and 4). At this time, Stack (3) is selected

for Container {5} to be allocated. Figure 24 (d) demonstrates the final configuration after

the allocation operation ends. The effect of this operation into the objective function is two

rehandlings, which is equal to the number of containers arrived recently, since their

allocation did not cause any additional rehandling.

Chapter 4: 47

1

1

1

1

3

3

3

3 5

4 2 5

6 2 7

6 2 7 4

6 2 7 4

(a)

(b)

(c)

(d)

Figure 24: The High Rank Heuristic Algorithm during allocation operation.

1

3 5

3 5

3 5

1

3

6 2 7 4

6 2 7 4

6 7 4

4

5 2

(a)

(b)

(c)

(d)

Figure 25: The High Rank Heuristic Algorithm during pick-up operation.

Additionally Figure 25 displays the same algorithm application during the pick-up

operation. Starting with the initial configuration (Figure 25 (a)) and two containers in the

pick-up list in that period, yard crane is able to remove Container {1}. In order to make

Container {2} accessible, Container {3} needs to be rehandled (Figure 25 (b)). The High

Rank Heuristic Algorithm lists each stack in the available stack list with min_ranks (6, 2,

5, and 4), respectively. Hence, Container {3} is relocated to the available slot in Stack (1)

and Container {2} is picked up by the yard crane (Figure 25 (c)). After reaching the end of

Chapter 4: 48

the pick-up list for this period, the ranks of the remaining containers are updated as in

Figure 25 (d). Total effect of this operation to the objective function is three in total, which

indicates two rehandlings from the claimed containers and one rehandling for relocating a

container to reach a claimed container.

4.1.2 Min Rank

This algorithm starts with by forming the available stack lists and then divides this list

into two sets depending on the relation between their min_ranks and the rank number of the

waiting container. The first set is named as the higher stack list, since it includes the

containers having a higher min_rank than the waiting container’s rank number and the

second set is called as the lower stack list, since it includes the ones having a lower

min_rank than the waiting container’s rank number.

 After dividing available stacks into two sets, algorithm is performed in two steps. In

the first step, algorithm searches the minimum min_ranked stack within the higher stack

list. If it exists, the corresponding stack is selected and the second step of the algorithm is

skipped. On the other hand, if the first step fails to find a stack within the higher stacks,

then the second step is used. This second step basically applies the High Rank Heuristic

Algorithm within the lower stack list, which initially equals empty stack’s min_ranks

to and then chooses the highest min_ranked stack within the lower stack list.

This algorithm tries to locate the near rank numbered containers on top of each other, to

eliminate future relocations. Appendix D gives the steps of the algorithm for the allocation

operations while Appendix K presents the pseudo code for the pick-up operation. The

Chapter 4: 49

following examples demonstrate the steps of the algorithm during allocation (Figure 26)

and pick-up operations (Figure 27).

 5 4 7 5 3 7 5 3 7 5

3 2 1 4 2 1 4 2 1 4 2 1 6

(a) (b) (c) (d)

Figure 26: The Min Rank Heuristic Algorithm during allocation operation.

Initial configuration of a bay is given (Figure 26 (a)) with the assumption of incoming

containers are ranked as {3}, and {6} during that period’s allocation operation. Rank

numbers of already stored containers in the bay are updated before the allocation operation

starts (Figure 26 (b)). With the update of the rank numbers, all stacks are positioned in the

available stack list, since each of them has at least one ava_slot, and their corresponding

min_ranks are (4, 2, 1, and 0). Later, for allocation of Container {30}, Stack (1) is listed in

the higher stack list, and the remaining stacks in the available stack list are positioned in

the lower stack list. Later, a search within the higher stack list is completed and since Stack

(1) is the only container in that list, it is selected and Container {3} is located at this stack

(Figure 26 (c)). For allocation of Container {6}, the available stack list is updated but it

remains the same, since each stack still has empty slots. However, their min_ranks are

updated as (3, 2, 1, and 0), which are lower than Container {6}. Therefore, for the next

allocation each stack is listed in the lower stack list, which means that none of the stacks is

listed in higher stack list. Hence, algorithm skips the first step that is the search within the

Chapter 4: 50

higher stack list, and updates the min_rank numbers of the lower stack list, where the

updated min_ranks become (3, 2, 1, and 10,000). Stack (4), which has the highest min_rank

in the lower stack list, is then selected for the allocation of Container {6}. Figure 26 (d)

represents the final configuration of the bay after this allocation operation is completed.

The total effect of the algorithm to the objective function is two rehandlings, which are

only caused by the allocation of two containers arrived recently.

3 7 5

3 7 5 3 5 1 3

4 2 1 6

4 2 6 4 7 6 2 5 4

(a) (b) (c) (d)

Figure 27: Pick-up operation performing by the Min Rank Heuristic Algorithm.

Figure 27 is an example for the application of the Min Rank Heuristic Algorithm during

the pick-up operation. In this period, we assume that only two containers are claimed.

Figure 27 (a) shows the initial configuration before the pick-up period, in which claimed

containers are not accessible by the yard crane. Container {5} is the first rehandled

container, for which each stack is listed in the available stack list. These stacks’ min_ranks

are (3, 2, 1, and 6), hence only Stack (4) is listed in the higher stack lists and others are

included in the lower stack list. Since only one stack is listed in the higher stack list, it is

selected as Container {5}’s new stack. With the pick-up of Container {1}, Container {7}

has to be rehandled to reach Container {2} (Figure 27 (b)). New arranged available stack

list also includes all stacks, where min_ranks are (3, 2, 0, and 5), which means that all of

Chapter 4: 51

the available stacks are listed in the lower stack list. Therefore, updated min_ranks are (3,

2, 10,000, and 5) for these stacks and Stack (3) is selected for the rehandled Container {7}

(Figure 27 (c)). The updated rank numbers for the remaining containers in the bay is given

in Figure 27 (d). By using the Min Rank Heuristic Algorithm during the pick-up operation,

four rehandlings are added into the objective function, where two of these rehandlings are

caused by the retrieval of the claimed containers and the other two rehandlings are

performed during making these claimed containers accessible by the yard crane.

4.1.3 High Rank Modified

A modified version of the High Rank Heuristic Algorithm is applied in this algorithm.

Stack selection for a waiting container is performed by the same rules; which are defined in

the High Rank Heuristic Algorithm. However an extra step is applied in this algorithm if

the container on top of the selected stack has a lower rank number than the waiting

container. This step is added in order to eliminate the future rehandling, which will occur

because of locating a higher ranked container over a lower ranked one.

Application of the additional step requires an extra empty slot, rather than the slot that

is reserved for the waiting container. This extra slot is used to relocate the container on top

temporarily. If the High Rank Modified Heuristic Algorithm requires an extra slot like this

and there exists such a slot then the container on top is removed until the waiting container

is located into the block. The waiting container is placed into the slot, which is emptied by

the relocation of the container on top, and then the container on top is moved over the

waiting container. If there is no extra slot, the waiting containers are directly stored over

the container on top. The pseudo code for allocation and pick-up operations are given in

the Appendix E and Appendix L, respectively.

Chapter 4: 52

2 6

2 7

2 7 4

3 5 l 4

3 6 l 4

3 6 l 5

(a) (b) (c)

Figure 28: The High Rank Modified Heuristic Algorithm during allocation operation.

Figure 28 demonstrates the application of the High Rank Modified Heuristic Algorithm

during the allocation operation. With the given initial configuration (Figure 28 (a)),

Container {5} is assumed to be the only container that is arrived recently. In the updated

configuration (Figure 28 (b)), each stack is listed in the available stack list with the

min_ranks as (3, 2, 1, and 4) and Stack (4) is selected for locating Container {5} based on

the High Rank Heuristic Algorithm. Therefore the rank number of the container on top of

this stack, which is Container {4}, is compared with the container arrived recently. Since

Container {4} has a lower rank than Container {5} and there is an extra slot for temporary

relocation, Container {4} is removed. Container {5} is located at that slot and Container

{4} is relocated over it, which is seen in Figure 28 (c). The effect of the allocation to the

objective function is three rehandlings, where two rehandlings are occurred by relocating

the container on top and one by allocating the container arrived recently.

The pick-up operation is performed similarly for only one container in this period

(Figure 29 (a)). In order to reach the claimed container by the yard crane, Container {7}

has to be relocated and becomes the waiting container. Since every stack is included in

available stacks and their min_ranks are listed as (3, 2, 1, and 4). Stack (4) is selected for

Chapter 4: 53

the waiting container, since it has the highest min_rank. In this stack, the container on top,

which is Container {4} has a lower rank than Container {7} and there is an extra slot; thus

Container {7} is located in Container {4}’s slot and Container {4} is located over it. Next,

accessible Container {1} is retrieved and the system is updated (Figure 29 (b) and (c)).

During this operation, three rehandlings are added into the objective function. While one of

these rehandlings is caused by the retrieval of the claimed container and the remaining ones

are due to the relocation of the container on top to eliminate its future rehandling.

 4

 3

 2 7 4

 2 7

 1 6

3 6 l 5

3 6 5

2 5 4

(a) (b) (c)

Figure 29: Pick-up operation with the High Rank Modified Heuristic Algorithm.

4.1.4 Min Rank Modified

This algorithm is the modification of the Min Rank Heuristic Algorithm with the

addition of the extra step which is given in the High Rank Modified Algorithm. The stack

for any waiting container is selected by the similar rules as in the Min Rank Heuristic

Algorithm. Moreover, there is an extra step to compare the rank numbers of the container

on top, of the selected stack, and waiting container. Appendix F includes a pseudo code for

allocation operation of this algorithm and Appendix M for pick-up operations. In Figure 30

and 31, examples are given for the allocation and pick-up operations.

Chapter 4: 54

In the focused period, application of the Min Rank Modified Heuristic Algorithm

during the allocation operation is given in Figure 30. With the given initial configuration in

Figure 30 (a), Container {6} is assumed to be the container arrived recently into the bay.

According to this arriving container, the rank numbers of the configuration are updated

before the allocation (Figure 30 (b)). For the allocation, the available stack list includes all

stacks of the bay and these stacks’ min_ranks are (3, 2, 1, and 5). Since the higher stack list

is empty, the highest min_ranked stack of the lower stack list, which is Stack (4), is

selected. Meanwhile, the container on top’s rank is checked, which is lower than the rank

of the container arrived recently. Under this condition the extra step is applied, by which

slot of Container {5} is temporarily relocated and this slot is occupied by Container {6}

and Container {5} is stored over it. Through this operation, three rehandlings are occurred,

where one rehandling is happened during the allocation of Container {6} and the other two

rehandlings are occurred with the relocation of the container on top, Container {5}.

3 6

3 7

3 7 5

4 2 1 5

4 2 1 5

4 2 1 6

(a) (b) (c)

Figure 30: The Min Rank Modified Heuristic Algorithm during allocation operation.

For the given configuration in Figure 31 (a), Container {7} has to be rehandled, while

all of the stacks are listed in the available stack list. Min_ranks for these stacks are (3, 2, 1,

and 5), in which there is no stack that can be listed in the higher stack list. Therefore, Stack

Chapter 4: 55

{4}, which has the highest rank number within the available stack list, is selected. For the

selected stack, Container {7} has a higher rank number than the container on top,

Container {5}, which results in the relocation of the container on top temporarily. At that

point, Container {7} is located at the container on top’s slot and the container on top is

relocated over it (Figure 31 (b)). After these relocations, the claimed container is removed

from the bay. The final version of the system is given in Figure 31 (c) after updating the

remaining containers’ rank numbers. This period’s pick-up operation also increases the

rehandling numbers of the objective function by three rehandlings. Two of these

rehandlings are caused by the relocation of the container on top, while the remaining one

rehandling is due to the retrieval of the claimed container.

5

4

3

7 5

3

7

2

6

4 2 1 6

4 2

6

3 1

5

(a) (b) (c)

Figure 31: The Min Rank Modified Heuristic Algorithm during pick-up operation.

4.1.5 Random

Different than the heuristic algorithms defined up to this section, this algorithm selects

the slot randomly to place waiting containers and containers arrived recently. Since the

selection is done randomly, a stack with no empty slots might also be selected by the

Random Heuristic Algorithm. Whenever a stack with no empty slot is selected, the

container on top of this stack is relocated permanently by using the Min Rank Heuristic

Chapter 4: 56

Algorithm. Then if there are containers stored at or over the selected slot, the Random

Heuristic Algorithm first relocates them temporarily. After these relocations, the waiting

container is located into the randomly selected slot. With locating the waiting container,

algorithm returns the temporarily relocated containers back to the selected stack. If there is

no container that is stored in the selected slot the waiting container is located on the top of

that stack. Allocation and pick-up operations are both explained in the following two

figures, Figure 32 and Figure 33), and also in the pseudo codes, which are represented in

the Appendix G and Appendix N, respectively.

 5

 6

 2

 2

 2

 5

4 3

4 3

4 3 6

1 6 7

1 7 8

1 7 8

(a) (b) (c)

Figure 32: The Random Heuristic Algorithm application during allocation operation.

Container {5} is the container arrived recently into the initial configuration given in

Figure 32 (a). The updated configuration of the bay is given in Figure 32 (b), and the

randomly selected position for the waiting container is Stack (2)-Row (2). Since the

ava_slots is zero in the selected stack, the container on top of Stack (2), that is Container

{6}, is relocated by the Min Rank Heuristic Algorithm. Later, Container {2} is temporarily

relocated, Container {5} is stored in the selected position and Container {2} is returned to

the selected stack (Figure 32 (c)). Total rehandling added to the objective function is four

rehandlings. While one of these rehandlings is caused by the allocation of the container

Chapter 4: 57

arrived recently, the reason of the other three rehandlings is the relocation of Container {2}

and Container {6}.

In the pick-up operation, in which only one container is claimed, Container {4} has to

be relocated to reach the claimed container. The randomly selected position for it is Stack

(3)-Row (3). Since the selected stack has at least one empty slot but the selected position is

not empty, the container that is stored in the selected slot, that is Container {6}, is

temporarily relocated and Container {4} is located in this slot and later Container {6} is

moved back into the selected stack (Figure 33 (b)). Figure 33 (c) represents the updated

configuration of the bay after the claimed container is retrieved. This relocation operation

adds four rehandlings into the general objective function; only one of these rehandlings is

occurred as the retrieval of the claimed container and the other three rehandlings are caused

by the relocation of the container that was stored in the randomly selected position and

relocation of Container {4}, which was stored over Container {1}.

 2

 2

 1

 5

 5 6

 4 5

4 3 6

 3 4

 2 3

1 7 8

 7 8

 6 7

(a) (b) (c)

Figure 33: Pick-up operation under the Random Heuristic Algorithm.

Chapter 4: 58

4.1.6 Hybrid

In this algorithm, the ideas of the previous heuristics are merged. The algorithm selects

the slots randomly for only containers arrived recently. Other than that all of the slot

selections are completed by using the Min Rank Heuristic Algorithm.

As a result, the allocation operation differs from the previously proposed heuristic

algorithms, for which an example is given in Figure 34. On the contrary of the allocation

operation, the pick-up operation is exactly like the pick-up operation of the Min Rank

Heuristic Algorithm, which is explained in Figure 27. The pseudo codes for the Hybrid

Heuristic Algorithm are given in Appendix H for the allocation operation and in Appendix

O for the pick-up operation.

 6 3

 7 3

3 7 5

4 2 1 5

4 2 1 6

4 2 1 6

(a) (b) (c)

Figure 34: Application of the Hybrid Heuristic Algorithm during allocation operation.

In Figure 34, the application of the Hybrid Heuristic Algorithm during the allocation

operation is given. The initial bay configuration of the focused period is given in Figure 34

(a), while the container arrived recently is Container {5}. The randomly selected position

for Container {5} that is Stack (4)-Row (3), and the updated configuration is given in

Figure 34 (b). As in the Random Heuristic Algorithm, if the selected slot is not empty, the

Chapter 4: 59

containers stored at that slot or over it should be relocated but this time they are moved by

using the Min Rank Heuristic Algorithm. Hence, Container {3} that is in the selected

position is relocated into Stack (1), by the Min Rank Heuristic Algorithm and Container

{5} is located into its position (Figure 34 (c)). In this operation two rehandlings are

occurred, where one of these rehandlings is reasoned by allocation of the container arrived

recently and the other rehandling is reasoned for the relocation of the container that is

stored previously in the randomly selected stack.

4.2 Allocation-Retrieval Relocation Heuristic Algorithm (Improved)

In this section, we proposed an additional allocation-retrieval relocation heuristic

algorithm, the Smart Heuristic Algorithm. This algorithm is described under a new title,

since it does not suggest any different stack selection algorithm than the Min Rank

Heuristic Algorithm. Differently, this new algorithm adds some steps to be applied within

the focused period.

In the Smart Heuristic Algorithm, smart relocations during the allocation operation are

added into the algorithm. This algorithm takes the Min Rank Heuristic Algorithm’s stack

selection rule as a basis, modifies and adds new rules into it. This modification is

performed during allocation operations by adding smart relocations before relocating any

waiting container while the removal operation remains exactly the same as in the Min

Rank Heuristic Algorithm. The main reason for taking the Min Rank Heuristic Algorithm

as a base is the outperforming results of the Min Rank Heuristic Algorithm for which the

detailed results are given in Chapter 5.

Chapter 4: 60

Position selection for any waiting container is decided under two steps. The first step is

performed by listing stacks under the available stack list, and then the higher stack list as in

the Min Rank Heuristic Algorithm. In the second step, any available stack in the higher

stack list is searched. If any stack is successfully selected, each other available stack’s

container on top is investigated. If any container on top’s rank is higher than the min_rank

of its stack in which it is stored, then it is listed in the check list. In the next step, the

arranged check list is searched in order to find containers which have lower rank numbers

than the min_rank of the selected stack. Also these containers should have higher rank

numbers than the rank number of the waiting container. If such containers are found, they

are sorted in descending order in the possible inter-relocation list. If the selected stack has

more than one available slot, the first container of the sorted possible inter-relocation list is

relocated into the selected stack. Later a new check list and possible inter-relocation list are

formed and if possible a similar relocation is done under the same conditions. These

relocation processes are implemented until either the possible inter-relocation list is empty

or the selected stack has only one empty slot. Then the waiting container is stored in the

selected stack.

On the other hand, if the algorithm is unable to select a stack in the first step, a stack,

which is defined to be a control stack, has to be modified in order to be selected. Then the

waiting container is assigned into that stack. In order to decide on which stack will be the

control stack, the stacks are listed in descending order based on their empty slots. By

forming a list like this, those stacks storing less number of containers are listed as first

stacks to be modified. In this list, which is named as the control list, whenever two or more

stacks have equal number of empty slots, the one with the highest min_rank is modified

first within this group. The first stack in the control list is selected if its min_ranked

container is stored at the bottom row of its stack or any container that are stored under

min_ranked container has a higher rank number than the waiting container. The main

Chapter 4: 61

reason behind this selection is finding an available slot for the waiting container by making

few relocations and causing few future relocations. Any container in the control stack can

be relocated within the block by causing no additional rehandling in future. This can be

achieved by relocating these containers into stacks, which have higher min_ranks than the

relocated containers. This algorithm is described in a pseudo code and is given in Appendix

I and in Figure 35.

Allocation operation under the Smart Heuristic Algorithms is illustrated in Figure 35.

For the initial configuration of a bay given in Figure 35 (a), a container arrives into the bay,

which has a rank number of 6. First of all, the rank numbers are updated (Figure 35 (b)),

and stack selection is performed by following the previously defined steps. Stack (4) is

selected based on the rules defined in the Min Rank Heuristic Algorithm. Later Containers

{4} and {7} are included in the check list but only Container {7} is included in the possible

inter-relocation list. Having more than one empty slot in the selected stack enables the

algorithm to relocate Container {7} into the selected stack. After this relocation, the

possible inter-relocation list becomes empty indicating the end of the relocation process.

Then the allocation of Container {6} into Stack (4) is completed (Figure 35 (c)). At that

point, the arrival of Container {9} starts and the first step fails to find a stack within the

block to allocate it since no stack is listed in the higher stack list. Hence the second step is

applied, which sorts the stacks as Stack (1, 3, 2, and 4) under control list and Stack (1) is

selected as the control stack. With successful relocation of Container {2}, which was

stored in the control list, the control stack becomes the selected stack and Container {9} is

allocated into it (Figure 35 (d)). In the same figure, the relocation of Container {2} is

shown. For the stack selection for Container {2} available stacks which are different than

the stack that was storing Container {2} are searched, and they have the following

min_rank numbers (1, 3, and 6). Later the stacks having higher min_rank numbers are

investigated, which are Stack (3) and Stack (4) with the corresponding min_ranks 3 and 6.

Chapter 4: 62

Finally, the one with the lowest min_rank, which is Stack (3), is selected and the relocation

is completed. With the completion of the allocation, four rehandlings are added into the

general objective function. Two of these rehandlings are added by allocation of Container

{6} and Container {9} and the remaining two rehandlings are added by the additional smart

relocations occurred during these allocation operations.

 6

 7

 6 2 6

 4 5

 4 5

 4 5 7 4 5 7

2 1 3 7

2 1 3 8

2 1 3 8 9 1 3 8

(a) (b) (c) (d)

Figure 35: The Smart Heuristic Algorithm during allocation of Containers {2} and {9}.

4.3 Tabu Search Algorithm

In this algorithm, the basic tabu search algorithm is applied for the arrangement of the

initial configuration in a period, in which the Smart Heuristic Algorithm is applied. The

Tabu Search Algorithm uses a neighborhood search procedure to move iteratively from the

initial configuration of a block to another configuration until the stopping criterion is

satisfied. During the search, explored configurations are not searched recurrently through

the use of memory structures of the algorithm, which stores explored configurations.

The Tabu Search Algorithm, at first, calculates the initial layout configuration’s

objective function value, which is named as initial_cost. Meanwhile, during the application

Chapter 4: 63

of this algorithm, each configuration’s objective function is calculated by the Smart

Heuristic Algorithm. Then neighborhoods are defined as configurations, which are resulted

by all possible relocations. These relocations are resulted by relocating each container that

is located on top of a stack into each other stack in the block. At this point, there are two

possible cases where a neighborhood is not created. The first case, Case 1, occurs whenever

a stack contains no container. The second case, Case 2, arises whenever a container has to

be relocated into a stack with no empty slot. For example, a bay with four stacks has 12

possible neighborhoods, which is a permutation of the number of stacks in groups of two.

 6

 4 5 2

 1 3 7

Figure 36: Neighborhood creation failure,

Case 1.

 9

6

5 2

4 1 3 7

Figure 37: Neighborhood creation failure,

Case 2.

Figure 36 displays an example of Case 1. In bay of four stacks, three of the stacks have

containers and at least one empty slot, while the remaining stack contains no containers. In

this configuration, there are nine neighborhoods, where three possible neighbors are

eliminated since no containers can be relocated from Stack (1) to others. In Figure 37, an

example of Case 2 is given, in which again three of the stacks contain containers with at

least one empty slot but the last stack has no available slots. Therefore there are again nine

neighborhoods, but this time the reason is that any container that has to be relocated from

Stack (1), (2), and (3) are unable to located into Stack (4).

Chapter 4: 64

After deciding on the neighborhoods, the Tabu Search Algorithm calculates the

objective function values of each successfully generated neighborhood. Later the

neighborhood search starts within these objective function values, by finding the one with

the minimum objective function value, which is named as min_neighborhood. The

algorithm performs its steps with this selection depending on the possible scenarios. These

scenarios are depending on the objective function values of the recently selected

neighborhood and the initial configuration. In the first scenario, algorithm faces with a

min_ neighborhood which has a cost lower than or equal to initial_cost. The Tabu Search

Algorithm checks whether this move is in the tabu list or not. If it is not in the tabu list,

algorithm assigns the min_neighborhood’s cost as the new initial_cost, places this

neighborhood into tabu list with defined tabu tenure, which is initialized as the number of

stacks in the block. On the other hand, if the move is in the tabu list, the aspiration criterion

is checked, which states that if the objective function value of min_neighborhood is lower

than initial_cost then, accept this value as the new initial_cost. With the acceptance of this

move, the tabu tenure of this neighborhood is set because of the memory structure of the

Tabu Search Algorithm. Whenever the aspiration criterion is not valid, the next minimum

neighborhood is considered as the new min_neighborhood, and new neighborhood is

analyzed under the possible scenarios. The second scenario is the termination step of the

Tabu Search Algorithm and this happens when the min_neighborhood is higher than the

initial_cost. The termination of the algorithm means that the configuration of the

initial_cost, at that level, is taken as the initial configuration of the block and the operations

of the period performed on it. Any relocation occurred while achieving this configuration is

also added into the general objective function.

Chapter 4: 65

4.4 Remarshaling Relocation Heuristic Algorithms

In a period, during the idle times of the yard cranes these remarshaling relocation

heuristics are applied. The idea of these heuristics is to reorganize the containers which are

stored in the block to make the min_ranked containers accessible. This idea is established

by relocating the containers which have higher rank numbers and are currently stored over

the lower rank numbered containers, into other stack to prevent future relocations. All of

the following remarshaling algorithms are based on the differences between rank numbers

of the containers and processed either at the beginning of a period, before any allocation

operation, or between allocation and pick-up operations within the same period.

4.4.1 Remarshaling High

In this remarshaling heuristic algorithm, each stack’s container on top is checked to see

whether its rank number is higher than the corresponding stack’s min_rank or not. When it

is higher, the container on top is relocated by the High Rank Modified Heuristic

Algorithm, if it does not cause any more future rehandling.

The remarshaling algorithm is applied into each stack depending on their stack and bay

numbers. Lower ranked stacks and bays have to be arranged at first since they are assumed

to be closer to the truck lane. Moreover, each stack’s container on top is only visited once

during this heuristic algorithm. Figure 38 and the pseudo code in Appendix P, are given to

describe the algorithm in detail.

In Figure 38 (a), an initial configuration is given during the idle time of the yard crane,

before either an allocation or removal operation. Therefore stacks, starting from small rank

numbers, are explored to see whether there is a remarshaling movement or not.

Chapter 4: 66

3

 6

4 6 7

4 6 7

4 7

1 5 2

1 5 2 3

1 5 2 3

(a) (b) (c)

Figure 38: An example for the Remarshaling High Heuristic Algorithm.

At first, Stack (1) is searched and Container {3} is selected since its rank number is

higher than the stack’s min_rank, which is 1 (Figure 38 (a)). Later, Container {3} is located

into the empty stack, which is selected by the High Rank Modified Heuristic Algorithm.

Figure 38 (b) displays the relocation of Container {3} into Stack (4). Later the next stack’s

container on top, that is Container {6}, which also has the higher rank number than its

corresponding stack’s min_rank, is considered. But since there is not any stack that has a

higher min_rank number than Stack (2), Container {6} is not relocated into another stack.

After the investigation of Stack (2) is completed, Stack (3) is searched and Container {7} is

selected because of its rank number, which is higher than the min_rank of the

corresponding stack. Stack (2) is selected for this container’s relocation by the High Rank

Modified Heuristic Algorithm, but the container on top at the selected stack, that is

Container {6}, has a smaller rank number than Container {7}. In a position like this, the

algorithm stores them in the reserve order in order to eliminate future rehandling of

Container {7}, which will occur while making Container {6} accessible. With these

relocations, the arranged configuration results in as in Figure 38 (c) and then the next

operation, either allocation or pick-up, is applied. This remarshaling operation adds four

rehandlings into the objective function value for the period it is applied. One of these

Chapter 4: 67

rehandlings occurs for relocating Container {3} and the remaining three rehandlings occur

during the relocation of Container {7}, where one rehandling is incurred while placing

Container {7} into Stack (2) and the other two rehandlings are caused by removing

Container {6} from its current slot and positioning it back into the selected stack.

4.4.2 Remarshaling Min

This heuristic follows the same rules with the Remarshaling High Heuristic Algorithm

about which containers on top are going to be remarshaled and in which order containers

on top of the stacks are searched. The only difference is the relocating of the container on

top, if necessary. In this algorithm, the remarshaling operations are performed by using the

Min Rank Modified Heuristic Algorithm. An example for the application of this

remarshaling heuristic algorithm is given in Figure 39 and the pseudo code of the heuristic

algorithm is presented in Appendix Q.

3

 3

 3

4 6 7

4 6 7

4 6

1 5 2

1 5 2

1 5 2 7

(a) (b) (c)

Figure 39: Illustration of the Remarshaling Min Heuristic Algorithm.

Figure 39 (a) illustrates the same configuration that is given in Figure 38 (a), and Figure

39 (b) displays the remarshaling of Container {3}. Stack (2) is selected as the new stack for

Chapter 4: 68

Container {3} by the Min Rank Modified Heuristic Algorithm and it is relocated there.

Container {3} now becomes the container on top of Stack (2), which means that Container

{6} is not included in the algorithm and since Container {3} is already relocated this stack

is skipped during this remarshaling operation. Later, Stack (3) is investigated and Container

{7} is relocated into the empty stack, which is Stack (4). Container {7} is removed from

Stack (3) since it has a higher rank number than Container {2}, which is min_rank of Stack

(3), and there is a stack for it to be stored in without causing any future rehandling. Since

each stack is scanned for a single time during the remarshaling operation for this period,

the algorithm ends. As a result, the Remarshaling Min Heuristic Algorithm adds only two

rehandlings into the objective function value, which are caused by the relocation of

Container {3} and Container {7}.

4.4.3 Remarshaling Several

This remarshaling algorithm is a modification of the Remarshaling Min Heuristic

Algorithm. In this algorithm only the search of the container on top differs from the

Remarshaling Min Heuristic Algorithm. The search starts similar, in which the lower

numbered stacks and bays are searched for once, but then it continues to search the same

stacks in the same order. The search loop is continued until there is no possible relocation

during the remarshaling operation of this period.

Figure 40 demonstrates the application of this algorithm on the same example given for

the Remarshaling Min Heuristic Algorithm in order to see the difference in the search

procedure. Moreover, the Remarshaling Several Heuristic Algorithm is given in Appendix

R.

Chapter 4: 69

3

 3

 3

 3

4 6 7

4 6 7

4 6 6 4

1 5 2

1 5 2

1 5 2 7 1 5 2 7

(a) (b) (c) (d)

Figure 40: Application of the Remarshaling Several Heuristic Algorithm.

Since the layout given in Figure 40 is same with the layout given in Figure 39 for the

Remarshaling Min Heuristic Algorithm , configurations which are given in Figure 40(a),

(b) and (c) are exactly the same with Figure 39 (a), (b) and (c). These steps are performed

during the first search of the stacks by the Remarshaling Several Heuristic Algorithm as

they are completed in the Remarshaling Min Heuristic Algorithm. Later, a second search is

performed in the Remarshaling Several Heuristic Algorithm which has the layout as in

Figure 40 (c). In this search, Container {4} is specified as the one to be relocated, and the

algorithm selects Stack (4) for this relocation. With this final relocation, there is no

container on top in the block that needs to be relocated, which means that the remarshaling

operation is completed (Figure 40 (d)). Subsequently, the number of rehandling added to

the objective function value by the Remarshaling Several Heuristic Algorithm is three,

where first two rehandlings are reasoned by the relocations of Container {3} and Container

{7} as in the Remarshaling Min Heuristic Algorithm which are occurred in the first search

and the final rehandling is caused by the additional rehandling of Container {4} that is

done during the second search.

Chapter 4: 70

4.4.4 Remarshaling Smart

Different than previously defined three remarshaling algorithms, this algorithm forms a

remarshaling list. This list includes all the containers on top which have higher rank

numbers than the min_rank of the stack they are stored in. Later these containers which are

listed in the remarshaling list are sorted in descending order. Each container that is stored

in the sorted remarshaling list is a candidate for remarshaling, and is referred to as the

remarshaling container during the remarshaling operation. Through the remarshaling

operation of each remarshaling container, the stack selection is completed by forming

initially the available stack list and then the higher stack list. If there is any stack in the

higher stack list, the one which stores the minimum min_ranked container is selected. On

the other hand, if there is not a higher stack, an empty stack is searched. At that level, if

such an empty stack exists then it is selected. In the case of finding more than one empty

stack, the one with the smaller bay number is selected. If they are in the same bay then the

one with the smaller stack number is selected. Throughout the stack selection for the

remarshaling container, there are two possible scenarios: a stack is successfully selected

for the relocation of the remarshaling container, so it is relocated into the selected stack or

the stack selection is failed, hence the remarshaling container remains in its own position.

Regardless of the output of the stack selection, each remarshaling container is removed

from the remarshaling list after stack selection is performed as described above.

The Remarshaling Smart Heuristic Algorithm is performed until the remarshaling list is

emptied. The example given in Figure 41 explains the application of the Remarshaling

Smart Heuristic Algorithm. Besides, the pseudo code defining this remarshaling algorithm

is given in Appendix S.

Chapter 4: 71

3

3

3

4 6 7

4 6

4 6

4 3 6

1 5 2

1 5 2 7

1 5 2 7

1 5 2 7

(a) (b) (c) (d)

Figure 41: A representation of the Remarshaling Smart Heuristic Algorithm application.

To show the difference of the Remarshaling Smart Heuristic Algorithm, the same initial

configuration that is given for the previously defined remarshaling heuristic algorithms is

used (Figure 41 (a)). First, the remarshaling list is achieved by including Containers {3},

{6}, and {7}. Later this list is sorted and becomes Containers {7}, {6}, and {3}, where

Container {7} becomes the first remarshaling container. Meanwhile, each stack in the bay

is listed in the available stack list, but none of them is listed in the higher stack list.

Therefore, an empty stack is searched and Stack (4) is found, which is then selected for the

relocation. Container {7} is relocated into Stack (4) and removed from the remarshaling

list. With the removal of this container from the remarshaling list, Container {6} becomes

the new remarshaling container (Figure 41 (b)). The available stack list is updated for the

stack selection for Container {6}’s relocation, which includes all stacks. Stack (4) is then

listed in the higher stack list and since it is the only stack in this list, it is selected for the

relocation of Container {6}. After relocating Container {6} into Stack (4), it is removed

from the remarshaling list and the remaining container, Container {3}, is named as the

final remarshaling container (Figure 41 (c)). For Container {3} while all of the stacks are

included in the available stack list, only Stack (2) and Stack (4) are listed in the higher

stack list, since their min_ranks are higher than Container{3}. The stacks in the higher

Chapter 4: 72

stack list have the min-ranks of 5 and 6, respectively; therefore because of having the

minimum min_rank, Stack (2) is selected. Container {3} is relocated into the selected stack

and removed from the remarshaling list (Figure 41 (d)). The remarshaling list is emptied

and the remarshaling operation ends. This operation added one rehandling for each

relocated containers, which means that in total three rehandlings are added into the general

objective function value by the Remarshaling Smart Heuristic Algorithm.

4.4.5 Remarshaling Smart_2

Remarshaling Smart_2 Heuristic Algorithm is a modified version of the Remarshaling

Smart Heuristic Algorithm. The only difference between these heuristic algorithms is that

the remarshaling list is updated in the Remarshaling Smart_2 Heuristic Algorithm. The

Remarshaling Smart_2 Heuristic Algorithm forms the remarshaling list to decide which

container on top will be relocated first within the bay, as it is formed in the Remarshaling

Smart Heuristic Algorithm. Moreover, this remarshaling list is updated after any container

is removed from this list. During the update process, any container that is removed from the

remarshaling list is not listed in this list again. The pseudo code for this heuristic algorithm

is given in Appendix T and Figure 42 demonstrates the application of the Remarshaling

Smart_2 Heuristic Algorithm.

In the given initial configuration (Figure 42 (a)), Containers {4} and {6} are listed in

the remarshaling list. After sorting this list in the descending order, Container {6} is

selected as the remarshaling container. Despite each stack is listed in the available stack

list, none of them is listed in the higher stack list. Therefore, the only empty stack, that is

Stack (4), is selected for the relocation; Container {6} is moved into this stack and removed

from the remarshaling list (Figure 42 (b)). Following the removal of a container from the

Chapter 4: 73

remarshaling list, this list is updated. In the updated list, Container {4} and Container {5}

are included, and after sorting these containers, Container {5} is selected as the

remarshaling container. Therefore, the new available stack list and the new higher stack

list are formed. Stack (4) is now becomes the only stack in the higher stack list and is

selected for the relocation of Container {5}, which is removed from the remarshaling list

(Figure 42 (c)). At that point, the updated the remarshaling list includes only Container

{4}, for which again all stacks are in the available stack list but only Stack (4) is in the

higher stack list. Figure 42 (d) represents the relocation of the remaining remarshaling

container, which is Container {4}, into the selected stack that is Stack (4). The effect of the

Remarshaling Smart_2 Heuristic Algorithm for the general objective function is three

additional rehandlings due to the relocation of the remarshaling containers.

 6

4

4 5

4 5

4 5

 5

1 3 2

1 3 2 6

1 3 2 6

1 3 2 6

(a) (b) (c) (d)

Figure 42: An illustration of the Remarshaling Smart_2 Heuristic Algorithm.

Chapter 5: 74

5. Chapter 5

RESULTS

In this chapter, we will first describe the computational experiments designed to test the

performance of the heuristic algorithms presented in Chapter 4. Then we will present and

discuss the results of these computational experiments. For our computational experiments,

each primary heuristic algorithm is arranged in a way such that several versions of the

algorithms are formed. The formulations of these versions are defined in Section 5.1. Later,

all of these versions were run for each scenario, which are previously defined in detail in

Chapter 3. For these runs, several initial configurations are generated, based on some

attributes, which are explained during Data Generation in Section 5.2.

For each scenario, first of all versions of each primary heuristic algorithm are compared

with each other. After finding the best performing version of each primary heuristic

algorithm, their performances under each scenario are examined. Later, the Smart Heuristic

Algorithms’ versions are compared under each scenario, and then a comparison under each

scenario is performed between the best performing Smart Heuristic Algorithm version and

the best performing primary heuristic algorithm version. Next, the best-performed

algorithm of this comparison and the corresponding Tabu Search Algorithm are compared.

Finally, the best performing algorithm (primary, Smart or Tabu) and the Aydin Heuristic

Chapter 5: 75

Algorithm, which is based on difference heuristic algorithm and stack selection rule, for

which the main idea is given by Aydin [34], are compared under each scenario. The

detailed comparisons and the discussions of the results are given in Section 5.3.

The following notations are used while defining the algorithms.

H : High Rank Heuristic Algorithm,

M : Min Rank Heuristic Algorithm,

H_M : High Rank Modified Heuristic Algorithm,

M_M : Min Rank Modified Heuristic Algorithm,

R : Random Heuristic Algorithm,

Hy : Hybrid Heuristic Algorithm

S : Smart Heuristic Algorithm,

T : Tabu Search Algorithm

A : Aydin Heuristic Algorithm

Re_H : Remarshaling High Heuristic Algorithm,

Re_M : Remarshaling Min Heuristic Algorithm,

Re_Se : Remarshaling Several Heuristic Algorithm,

Re_Sm : Remarshaling Smart Heuristic Algorithm,

Re_Sm2 : Remarshaling Smart_2 Heuristic Algorithm,

Chapter 5: 76

5.1 Versions of Heuristic Algorithms

Each of the primary allocation-retrieval relocation heuristic algorithms is modified by

including each remarshaling heuristic algorithms. All five types of remarshaling heuristic

algorithms are used either before any containers arrive recently, which is the allocation

operation, or before any container is claimed, which is the retrieval operation. Moreover, a

version is given in which there is not any remarshaling heuristic algorithm. In total, eleven

different versions are proposed for each heuristic algorithm. The following list clarifies the

version numbers:

(Algorithm name) – 0 : No remarshaling heuristic algorithm,

(Algorithm name) – 1 : Re_H is used before allocation operation,

(Algorithm name) – 2 : Re_H is used before retrieval operation,

(Algorithm name) – 3 : Re_M is used before allocation operation,

(Algorithm name) – 4 : Re_M is used before retrieval operation,

(Algorithm name) – 5 : Re_Se is used before allocation operation,

(Algorithm name) – 6 : Re_Se is used before retrieval operation,

(Algorithm name) – 7 : Re_Sm is used before allocation operation,

(Algorithm name) – 8 : Re_Sm is used before retrieval operation,

(Algorithm name) – 9 : Re_Sm2 is used before allocation operation,

(Algorithm name) – 10 : Re_Sm2 is used before retrieval operation.

Chapter 5: 77

5.2 Data Generation

In the computational experiments, the data set generated by Aydin [34] forms the basis

of our data. We added to this data set the arrival rates for the containers arriving recently

and removal rates for the claimed containers. Moreover, an additional level for the initial

layout density was used to reflect better the characteristics of our problem. Therefore the

data sets for our computational experiments have the following factors and the levels:

Stored containers: balanced or unbalanced (containers in stacks are near in number or

not),

Number of rows in a stack: 4, 5, 6, or 7,

Number of stacks in a bay: 3, 4, 5, 6 or 7,

Initial layout density: 55%, 60%, 65%, 70%, 75% and 80%,

Arrival Rate: 30%, 50%, and 70% (depending on the available slots in the block),

Removal Rate: 30%, 50%, and 70% (depending on total number of containers, which

are stored in the block),

A total of 40 instances were generated for each combination. Hence a total of 86,400

instances were run by using previously defined 11 different heuristic algorithm versions for

each scenario and their objective function value is calculated. Then, the same instances

were also run for the Smart Heuristic Algorithm, the Tabu Search Algorithm and the Aydin

Heuristic Algorithm for each scenario and the results were compared.

Chapter 5: 78

5.3 Comparison of Results

Objective function of the first two scenarios, which have no extra stack to help possible

rehandlings, include two main variables. These variables form the bases of the changes in

the objective function values of the heuristic algorithm versions. The first variable is the

number of rehandlings and the second one is the number of containers failed to be retrieved

during pick up operations. On the other hand, for the remaining two scenarios, all of the

claimed containers are successfully retrieved in each case and cost for the extra stack is

fixed, therefore only the number of rehandlings occurred in a given period affects the

objective function value of the algorithm version.

In order to make comparisons between versions of the heuristic algorithms, the average

of the objective function values for each instances run for the heuristic algorithm versions

are evaluated. This objective function values are accepted as the objective function value

for that algorithm version in each scenario and compared.

5.3.1 Comparison of Heuristic Algorithms

In this section, we present the results of our computational experiments designed for the

heuristic algorithms by plotting the objective function value of each algorithm version in a

graph. We first give the results of our comparisons for different versions of each heuristic

algorithm to identify the best performing one for that heuristic algorithm under each

scenario. Then we present the comparison of the best performing heuristic algorithms.

Chapter 5: 79

SCENARIO 1

High Rank Heuristic Algorithm

Min Rank Heuristic Algorithm

High Rank Modified Heuristic Algorithm

Min Rank Modified Heuristic Algorithm

Random Heuristic Algorithm

Hybrid Heuristic Algorithm

Figure 43: Detailed results for algorithm versions of six initial heuristic.

255

260

265

270

275

280

H
_0

H
_1

H
_2

H
_3

H
_4

H
_5

H
_6

H
_7

H
_8

H
_9

H
_1

0

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

255

260

265

270

275

280

M
_0

M
_1

M
_2

M
_3

M
_4

M
_5

M
_6

M
_7

M
_8

M
_9

M
_1

0

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

265

270

275

280

285

H
_M

_0

H
_M

_1

H
_M

_2

H
_M

_3

H
_M

_4

H
_M

_5

H
_M

_6

H
_M

_7

H
_M

_8

H
_M

_9

H
_M

_1
0

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

266
268
270
272
274
276
278
280

M
_M

_0

M
_M

_1

M
_M

_2

M
_M

_3

M
_M

_4

M
_M

_5

M
_M

_6

M
_M

_7

M
_M

_8

M
_M

_9

M
_M

_1
0

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

315

320

325

330

335

R
_0

R
_1

R
_2

R
_3

R
_4

R
_5

R
_6

R
_7

R
_8

R
_9

R
_1

0

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

270

275

280

285

290

H
y_

0

H
y_

1

H
y_

2

H
y_

3

H
y_

4

H
y_

5

H
y_

6

H
y_

7

H
y_

8

H
y_

9

H
y_

1
0

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

Chapter 5: 80

Figure 43 presents the graphs of the average objective function values of primary

allocation-retrieval relocation heuristic algorithms for Scenario 1. It is clearly seen that

version 3 dominates the other versions in all six heuristics except the High Rank Modified

Heuristic Algorithm, which results better in version 5. The main reason for having better

objective functions when used remarshaling is the lowered number of failed containers,

since the cost of these failed containers is relatively higher than the remarshaling operation.

Figure 44 depicts the results for Scenario 2. By the graphs it is seen that overall

objective functions are significantly lower than Scenario 1. The main reason for that is the

decrease in the number of containers failed to be picked-up because of group-based

retrieval is allowed, which indicates that the remarshaling operations have lost their effect

on the objective function. In this scenario, Min Rank, Min Rank Modified and Hybrid

Heuristic Algorithms’ initial versions (versions 0), which have no remarshaling operation,

resulted in the lowest costs within their versions. On the other hand, High Rank, High Rank

Modified and Random Heuristic Algorithms attained the minimum objective function value

when the remarshaling operation is used because of the allocation and retrieval rules of the

heuristic algorithms. The best performing versions are H_10, H_M_9 and R_10

respectively for these heuristic algorithms, since the efficiency of the layout in a bay is

improved by adding smart remarshaling operations within the heuristic algorithms’ basic

rules.

Chapter 5: 81

SCENARIO 2

High Rank Heuristic Algorithm

Min Rank Heuristic Algorithm

High Rank Modified Heuristic Algorithm

Min Rank Modified Heuristic Algorithm

Random Heuristic Algorithm

Hybrid Heuristic Algorithm

Figure 44: Results of Scenario 2 for primary allocation-retrieval relocation heuristic

algorithms.

0
5

10
15
20
25
30
35

H
_0

H
_1

H
_2

H
_3

H
_4

H
_5

H
_6

H
_7

H
_8

H
_9

H
_1

0

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

0
5

10
15
20
25
30
35

M
_0

M
_1

M
_2

M
_3

M
_4

M
_5

M
_6

M
_7

M
_8

M
_9

M
_1

0

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

28

30

32

34

36

38

H
_M

_0

H
_M

_1

H
_M

_2

H
_M

_3

H
_M

_4

H
_M

_5

H
_M

_6

H
_M

_7

H
_M

_8

H
_M

_9

H
_M

_1
0

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

26

28

30

32

34

36

38

M
_M

_0

M
_M

_1

M
_M

_2

M
_M

_3

M
_M

_4

M
_M

_5

M
_M

_6

M
_M

_7

M
_M

_8

M
_M

_9

M
_M

_1
0

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

75

80

85

90

95

R
_0

R
_1

R
_2

R
_3

R
_4

R
_5

R
_6

R
_7

R
_8

R
_9

R
_1

0

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

0

10

20

30

40

50

H
y_

0

H
y_

1

H
y_

2

H
y_

3

H
y_

4

H
y_

5

H
y_

6

H
y_

7

H
y_

8

H
y_

9

H
y_

1
0

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

Chapter 5: 82

In Figures 45 and 46 results for Scenario 3 and Scenario 4 are given, respectively. In the

graphs fix cost of adding an extra stack is not reflected since with the use of these extra

stacks, it is ensured that each container is successfully picked up. Hence the penalty cost in

the objective function does not have any effect, and only the number of rehandlings in each

algorithm version has an influence on the objective function. As a result, the general

objective function values are lower than that of Scenario 1 and Scenario 2 only in terms of

the cost of rehandlings.

The results for the versions of primary allocation-retrieval relocation heuristic

algorithms under Scenario 3 are given in detail in Figure 45. The trend in the results is

same as Scenario 2 for each algorithm. Only the results for the Random Heuristic

Algorithm show some differences, which is based on the random position selection rule of

the heuristic algorithm.

In Scenario 3, for the High Rank and the High Rank Modified Heuristic Algorithms,

like in Scenario 2, remarshaling operations improve the objective function by lowering the

number of rehandlings. Moreover, while in Scenario 2, the Random Heuristic Algorithm

gives a better objective function value in version 10, in Scenario 3 version 6 dominates

other Random Heuristic Algorithm versions. However, still each Random Heuristic

Algorithm has relatively higher objective function value compared to any other algorithm

versions. For the remaining heuristic algorithms, we observe that the initial version of the

algorithms outperforms the other versions.

Chapter 5: 83

SCENARIO 3

High Rank Heuristic Algorithm

Min Rank Heuristic Algorithm

High Rank Modified Heuristic Algorithm

Min Rank Modified Heuristic Algorithm

Random Heuristic Algorithm

Hybrid Heuristic Algorithm

Figure 45: Scenario 3’s results for the primary allocation-retrieval relocation heuristic

algorithm versions.

0
5

10
15
20
25
30
35

H
_0

H
_1

H
_2

H
_3

H
_4

H
_5

H
_6

H
_7

H
_8

H
_9

H
_1

0

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

0
5

10
15
20
25
30
35

M
_0

M
_1

M
_2

M
_3

M
_4

M
_5

M
_6

M
_7

M
_8

M
_9

M
_1

0

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

28

30

32

34

36

38

H
_M

_0

H
_M

_1

H
_M

_2

H
_M

_3

H
_M

_4

H
_M

_5

H
_M

_6

H
_M

_7

H
_M

_8

H
_M

_9

H
_M

_1
0

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

26

28

30

32

34

36

M
_M

_0

M
_M

_1

M
_M

_2

M
_M

_3

M
_M

_4

M
_M

_5

M
_M

_6

M
_M

_7

M
_M

_8

M
_M

_9

M
_M

_1
0

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

80

85

90

95

100

R
_0

R
_1

R
_2

R
_3

R
_4

R
_5

R
_6

R
_7

R
_8

R
_9

R
_1

0

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

0

10

20

30

40

H
y_

0

H
y_

1

H
y_

2

H
y_

3

H
y_

4

H
y_

5

H
y_

6

H
y_

7

H
y_

8

H
y_

9

H
y_

1
0

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

Chapter 5: 84

SCENARIO 4

High Rank Heuristic Algorithm

Min Rank Heuristic Algorithm

High Rank Modified Heuristic Algorithm

Min Rank Modified Heuristic Algorithm

Random Heuristic Algorithm

Hybrid Heuristic Algorithm

Figure 46: Primary allocation-retrieval relocation heuristic algorithm versions’ results for

Scenario 4.

0
5

10
15
20
25
30
35

H
_0

H
_1

H
_2

H
_3

H
_4

H
_5

H
_6

H
_7

H
_8

H
_9

H
_1

0

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

0
5

10
15
20
25
30
35

M
_0

M
_1

M
_2

M
_3

M
_4

M
_5

M
_6

M
_7

M
_8

M
_9

M
_1

0

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

28

30

32

34

36

38

H
_M

_0

H
_M

_1

H
_M

_2

H
_M

_3

H
_M

_4

H
_M

_5

H
_M

_6

H
_M

_7

H
_M

_8

H
_M

_9

H
_M

_1
0

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

26

28

30

32

34

36

M
_M

_0

M
_M

_1

M
_M

_2

M
_M

_3

M
_M

_4

M
_M

_5

M
_M

_6

M
_M

_7

M
_M

_8

M
_M

_9

M
_M

_1
0

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

70

75

80

85

90

R
_0

R
_1

R
_2

R
_3

R
_4

R
_5

R
_6

R
_7

R
_8

R
_9

R
_1

0

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

0

10

20

30

40

H
y_

0

H
y_

1

H
y_

2

H
y_

3

H
y_

4

H
y_

5

H
y_

6

H
y_

7

H
y_

8

H
y_

9

H
y_

1
0

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

Chapter 5: 85

Finally, Figure 46 provides the objective function values calculated for each version of

the primary allocation-retrieval relocation heuristic algorithms under Scenario 4. The

results follow the same behavior with Scenario 2, where the Min Rank, the Min Rank

Modified and Hybrid Heuristic Algorithms result in lower objective function values in the

initial version than the other versions. On the other hand, the High Rank, the High Rank

Modified and Random Heuristic Algorithms results in lower costs when remarshaling

operation is included, which is depending on the decreased number of rehandlings while

using the remarshaling operation.

Moreover, average costs calculated by the objective function based only on the number

of rehandlings are lower in Scenario 2 and Scenario 4 than Scenario 1 and 3. The main

reason for this domination in the objective function values is two-fold: the number of

containers, which are successfully rehandled, is increased and the total rehandling number

is lower in the group based scenarios than the sequence based scenarios.

5.3.2 Comparison of Best Performing Algorithms

In Figure 47, the best performing algorithm versions under each scenario are compared.

This comparison is performed in order to select the best performing primary allocation-

retrieval relocation heuristic algorithm. So that this primary allocation-retrieval relocation

heuristic algorithm can be enhanced to obtain the improved allocation-retrieval relocation

heuristic algorithm that is the Smart Heuristic Algorithm.

In each scenario, the graphs show clearly that the Random Heuristic Algorithm gives

the worst objective function values. On the other hand, the objective function values of the

High Rank Heuristic Algorithm and the Min Rank Heuristic Algorithm are almost equal.

Chapter 5: 86

However, the Min Rank Heuristic Algorithm results in a better objective function value

because its allocation and relocation decision rule results in better layouts for the following

operations within the period. For Scenario 1 and Scenario 2, the Min Rank Heuristic

Algorithm has lower rehandling numbers and the number of containers failed to be

retrieved compared to the High Rank Heuristic Algorithm. On the other hand, in Scenario 3

and Scenario 4, each algorithm is able to remove each container when they are claimed,

which means that there is no unsuccessful pick-up operation. Therefore, the only difference

between the Min Rank Heuristic Algorithm and the High Rank Heuristic Algorithm is the

rehandling number, which is lower in the Min Rank Heuristic Algorithm.

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Figure 47: Comparison of each best performing algorithm version for each scenario.

0
50

100
150
200
250
300
350

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

0

20

40

60

80

100
A

ve
ra

ge
 C

o
st

($
)

Version of Algorithm

0

20

40

60

80

100

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

0

20

40

60

80

100

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

Chapter 5: 87

5.3.3 Comparison of Improved Allocation-Retrieval Relocation Heuristic

The Smart Heuristic Algorithm is also run with all five remarshaling rules, which is

resulted in again 11 versions. For each scenario, the performance of algorithm versions is

compared in Figure 48. According to this figure, it is seen that remarshaling movements

helped to improve the objective function values only for Scenario 1. On the other hand,

Scenarios 2, 3, and 4 outperforms when no relocation operation is considered or only smart

relocations are included, since the number of containers that are failed to be retrieved are

either zero or less than that of Scenario 1. These results are parallel to the results of the Min

Rank Heuristic Algorithm.

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Figure 48: The Smart Heuristic Algorithm versions under each scenario.

0
50

100
150
200
250
300

S_
0

S_
1

S_
2

S_
3

S_
4

S_
5

S_
6

S_
7

S_
8

S_
9

S_
1

0

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

0
5

10
15
20
25
30
35

S_
0

S_
1

S_
2

S_
3

S_
4

S_
5

S_
6

S_
7

S_
8

S_
9

S_
1

0

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

0
5

10
15
20
25
30

S_
0

S_
1

S_
2

S_
3

S_
4

S_
5

S_
6

S_
7

S_
8

S_
9

S_
1

0

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

0
5

10
15
20
25
30

S_
0

S_
1

S_
2

S_
3

S_
4

S_
5

S_
6

S_
7

S_
8

S_
9

S_
1

0

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

Chapter 5: 88

Since the Min Rank Heuristic Algorithm is the outperforming algorithm within the

primary allocation-retrieval relocation heuristic algorithms and the Smart Heuristic

Algorithm is an upgrade of the Min Rank Heuristic Algorithm, the comparison of their

results for each scenario is given in Figure 49.

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Figure 49: The best performing Min Rank and Smart Heuristic Algorithm are compared

for each scenario.

For each scenario, the improvement movements, which are achieved by adding

additional relocation operations by the Smart Heuristic Algorithm, show their effect in the

0

50

100

150

200

250

300

M_3 S_5

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

23,1
23,15

23,2
23,25

23,3
23,35

23,4
23,45

23,5

M_0 S_0
A

ve
ra

ge
 C

o
st

($
)

Version of Algorithm

21,65
21,7

21,75
21,8

21,85
21,9

21,95
22

22,05

M_0 S_0

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

21,6
21,65

21,7
21,75

21,8
21,85

21,9
21,95

M_0 S_0

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

Chapter 5: 89

objective function. The main reason is the increased efficiency of the layout caused by

smart relocations applied at each level during the allocation operation in the Smart

Heuristic Algorithm. Therefore, in Scenario 1 and Scenario 2 both the rehandling numbers

and the number of unsuccessful pick up trials are decreased, which results in having better

objective function values. On the other hand, for Scenarios 3 and 4, despite the number of

containers failed to be retrieved remaining zero, for each heuristic algorithm the number of

rehandlings is decreased because of the increased efficiency of the layout.

After demonstrating that the Min Rank Heuristic Algorithm is improved by adding the

smart relocation movements as in the Smart Heuristic Algorithm, Figure 50 displays that

the Smart Heuristic Algorithm is also improved by modifying the initial configuration

which is done in the Tabu Search Algorithm. The average cost, which is calculated with the

objective function value both for the Smart Heuristic Algorithm and the Tabu Search

Algorithm are graphed under each scenario.

For each scenario, the best-resulted versions of the Smart Heuristic Algorithm are

formulated with previously defined tabu rules (tabu tenure and aspiration criterion) in the

Tabu Search Algorithm. The results show that there exist still some improvements in the

configurations so the objective function values are successfully lowered in the Tabu Search

Algorithm. A significant upgrade in the objective function value is seen in Scenario 1,

which is achieved by lowering the number of rehandlings but their effect becomes

negligible while the number of containers failed to be retrieved is lowered considerably.

For other scenarios, the number of containers failed to be picked up does not change but the

Tabu Search Algorithm effectively decreases the number of rehandlings occurs in these

scenarios.

Chapter 5: 90

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Figure 50: Improvements on the Smart Heuristic Algorithm by the Tabu Search

Algorithm.

Finally, the Tabu Search Algorithm is compared with the results of the Aydin Heuristic

Algorithm. We modified the difference rules defined in difference heuristic by Aydin [34]

by including the allocation operations to obtain the Aydin Heuristic Algorithm. This

change is successfully implemented into the algorithm by making the stack selection for the

containers arrived recently by using the same difference rules defined in difference

heuristic by Aydin [34]. Meanwhile, the retrieval operation is remained exactly the same in

135

140

145

150

155

160

165

170

S_5 T

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

22

22,2

22,4

22,6

22,8

23

23,2

23,4

S_0 T

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

20,6

20,8

21

21,2

21,4

21,6

21,8

22

S_0 T

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

20,4
20,6
20,8

21
21,2
21,4
21,6
21,8

S_0 T

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

Chapter 5: 91

difference heuristic by Aydin [34]. Similarly, each version of this algorithm includes the

same remarshaling operations with the other heuristic algorithms that we defined.

Figure 51 presents the objective function values of all versions of the Aydin Heuristic

Algorithm under each scenario. Similar to other algorithms, due to the penalty cost of

unhandled containers, the overall objective function value is high only in Scenario 1. Also

only in this scenario, remarshaling operations improves the objective function value.

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Figure 51: The Aydin Heuristic Algorithm versions, under each scenario.

255

260

265

270

275

280

A
_0

A
_1

A
_2

A
_3

A
_4

A
_5

A
_6

A
_7

A
_8

A
_9

A
_1

0

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

0
5

10
15
20
25
30
35

A
_0

A
_1

A
_2

A
_3

A
_4

A
_5

A
_6

A
_7

A
_8

A
_9

A
_1

0

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

0
5

10
15
20
25
30
35

A
_0

A
_1

A
_2

A
_3

A
_4

A
_5

A
_6

A
_7

A
_8

A
_9

A
_1

0

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

0
5

10
15
20
25
30
35

A
_0

A
_1

A
_2

A
_3

A
_4

A
_5

A
_6

A
_7

A
_8

A
_9

A
_1

0

A
ve

ra
ge

 C
o

st
($

)

Version of Algorithm

Chapter 5: 92

However, it is obviously seen in Figure 52 that the Smart Heuristic Algorithm

outperforms the Aydin Heuristic Algorithm in terms of the objective function under each

scenario.

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Figure 52: Comparison of the best performing results of the Aydin Heuristic Algorithm

and the Tabu Search Algorithms.

0

50

100

150

200

250

300

Aydın Smart Tabu

A
ve

ra
ge

 C
o

st
 (

$
)

Version of Algorithm

21,8

22

22,2

22,4

22,6

22,8

23

23,2

23,4

23,6

Aydın Smart Tabu
A

ve
ra

ge
 C

o
st

 (
$

)

Version of Algorithm

20,4

20,6

20,8

21

21,2

21,4

21,6

21,8

22

22,2

Aydın Smart Tabu

A
ve

ra
ge

 C
o

st
 (

$
)

Version of Algorithm

20,4

20,6

20,8

21

21,2

21,4

21,6

21,8

22

Aydın Smart Tabu

A
ve

ra
ge

 C
o

st
 (

$
)

Version of Algorithm

Chapter 5: 93

Moreover, additional runs are performed by using some of the layouts given in [35].

These selected layouts are the ones which are suitable for our setting. Since these layouts

store more containers than the layouts given by [34], depending on the initially defined

arrival and removal rates, more containers are rehandled in each period. For each layout

category, layouts with one bay and two bays are considered during these runs under each

version of Smart and Aydın Heuristic Algorithm. Different than data sets of [34], since in

each data set of [37], empty slot number is higher than the height of a stack, scenarios loss

their effects in the objective functions. Therefore, the results of each algorithm version are

identical to each other under each scenario.

Figure 53 gives the average cost of each algorithm version of these data sets for any

scenario. In “random layouts”, the Smart Heuristic Algorithm performs better than the

Aydın Heuristic Algorithm in each algorithm version. On the other hand, in the “upside-

down layouts”, in half of the versions, Aydın Heuristic Algorithm performs better than the

Smart Heuristic Algorithm, which is observed by the decreased objective function costs

between 0.4% and 2.3%. For the other versions, the Smart Heuristic Algorithm achieves

0.1 – 14.9% better objective functions than Aydın Heuristic Algorithm.

As a result, we can conclude that the primary allocation-retrieval relocation heuristic

algorithms, without any remarshaling operation, might work for any defined scenario.

However, in some cases, we were able to improve them by adding remarshaling. Among

these heuristics, we have seen that the Min Rank Heuristic Algorithm dominates, which is

later improved by adding additional relocation movements during the allocation operations,

given as the Smart Heuristic Algorithm. After we applied the Tabu Search Algorithm based

on the best performing Smart Heuristic Algorithm version for each scenario, the results of

these algorithm versions are improved.

Chapter 5: 94

Random Layout

Upside-down Layout

Figure 53: Comparison of Smart Heuristic Algorithm and Aydın Heuristic Algorithm

under each version.

Finally, our outperforming heuristic, that is the Tabu Heuristic Algorithm, was

compared with the Aydin Heuristic Algorithm, which is based on the difference heuristic

[34], and it was seen that the Tabu Heuristic Algorithm is the most successful heuristic

algorithm for the defined problem by including all the improvements in its structure.

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 C
o

st
 (

$
)

Version of Algorithm

Smart

Aydın

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 C
o

st
 (

$
)

Version of Algorithm

Smart

Aydın

Chapter 5: 95

Besides, depending on the handling capacity of a yard crane, that is stated in [40] and [41],

in a container terminal during a workday (24 hours), approximately 12 periods of

operations are valid in primary allocation-retrieval relocation heuristic algorithms. The

average numbers of periods are improved as 19 and 20 periods in a working day for Aydin

Heuristic Algorithm and Smart Heuristic Algorithm, respectively. Finally, in the Tabu

Search Algorithm the number of periods is around 22, in a working day. In the view of this

number of periods, applying the proposed heuristic algorithms within a container terminal

is viable since the algorithms take very little time to run for each time period due to the

simple rules they include.

Chapter 6: 96

6. Chapter 6

CONCLUSION AND FUTURE WORK

In this thesis, we studied the storage allocation problem, which is encountered in

container terminals. The distinguishing aspects of our study are the consideration of

different scenarios for the container terminal setting, and the inclusion of the rehandlings,

which occur during the allocation of containers arriving recently, the remarshaling

operation and the retrieval of the claimed export containers. Due to these characteristics of

the system, the aim of this study is to minimize the cost of the storage allocation operation

by reducing the number of rehandlings. Since rehandlings may occur due to any operation

within a block, several heuristic algorithms are suggested separately for the operations.

Six basic heuristic algorithms, an improved version of the most successful basic

heuristic and a Tabu Search Algorithm were proposed for dealing with the rehandlings

which occurs during the allocation and pick-up operations. Moreover, five remarshaling

heuristic algorithms were included to be used during the idle time of the yard cranes.

The performance of the heuristic algorithms was tested with respect to the problem

characteristics and several scenarios. A total of 86,400 instances were created and tested

Chapter 6: 97

during the computational experiments. The results provided valuable insights regarding the

scenarios created and heuristic algorithms suggested.

When the results are investigated, the importance of locating the min_ranked container,

on top of stacks can be observed in any scenario. Therefore, the Min Rank Heuristic

Algorithm is the dominating heuristic algorithm among the six basic heuristic algorithms.

In sequence based scenario, with no extra stack (Scenario 1), since there are claimed

containers which are failed to be retrieved, the Min Rank Heuristic Algorithm using the

remarshaling operations before the allocation operations decreased the number of

containers that are failed to be retrieved. Different than the literature, focusing on not only

the retrieval operation but also the allocation operation has improved the value of the

objective function. In other scenarios, since containers are successfully retrieved when they

are claimed, the Min Rank Heuristic Algorithm with no remarshaling operation is selected

for lower costs in container terminals, since the number of rehandling is decreased.

In each scenario, adding smart relocations before any allocation or retrieval operation,

as in the Smart Heuristic Algorithm, results in an efficient block. In this block, min_ranked

containers are kept as accessible by relocating containers on top of stacks during each

operation. Even though additional relocations are added, since the overall number of

rehandling is decreased, the objective function is improved. Finally, with the Tabu Search

Algorithm, additional improvements in the objective functions for each scenario are

observed, since efficiency of the block is measured at each allocation or retrieval operation

and then the slot selection is performed.

We plan to perform a detailed analysis on the cost elements to measure the sensitivity

of the objective function as a future study. Furthermore, better remarshaling rules can be

developed and heuristic algorithms can be modified to deal with unknown retrieval.

Chapter 6: 98

BIBLIOGRAPHY

[1] World Container Traffic - Drewry Annual Reports (2010).

[2] End Year Fleet Size - Container Leasing Market Analysis (2010).

[3] D. Steenken, S. Voβ, and R. Stahlbock, Container Terminal Operation and Operations

Research – A Classification and Literature Review, OR Spectrum, 26 (2004), 3-49.

[4] R. Stahlbock and S. Voβ, Operations Research at Container Terminals: A Literature

Update, OR Spectrum, 30 (2008), 1-52.

[5] From Hamburg Port Website, http://www.hafen-hamburg.de/en/content/container-port-

throughput-global-comparison.

[6] C. Zhang, J. Liu, Y. Wan, K. G. Murty, and R.J. Linn, Storage Space Allocation in

Container Terminals, Transportation Research Part B, 37 (2003), 883-903.

[7] F. A. Vis and R. Koster, Transshipment of Containers at a Container Terminal: An

Overview, European Journal of Operational Research, 147(1) (2003), 1-16.

[8] I. Vacca, M. Bierlaire and M. Salani, Optimization at Container Terminals Status ,

Trends and Perspectives, Proceedings of the Swiss Transport Research Conference

(STRC), (2007).

[9] K. G. Murty, J. Liu, Y. Wan, and R. Linn, A Decision Support System for Operations

in a Container Terminal, Decision Support Systems, 39 (2005), 309-332.

[10] E. Kozan and P. Preston, Mathematical Modelling of Container Transfers and Storage

Locations at Seaport Terminals, OR Spectrum, 28 (2006), 519-537.

[11] M. Bielli, A. Boulmakoul and M. Rida, Object Oriented Model for Container Terminal

Distributed Simulation, European Journal of Operational Research, 175 (2006), 1731-1751.

Chapter 6: 99

[12] Y. K. H. Lau, L. K. Y. Chan and H. K. Wong, A Virtual Container Terminal Simulator

for the Design of Terminal Operation, International Journal on Interactive Design and

Manufacturing, 1(2) (2007), 107-113.

[13] E. Nishimura, A. Imai and S. Papadimitriou, Berth Allocation Planning in the Public

Berth System by Genetic Algorithms, European Journal of Operational Research, 131

(2001), 282-292.

[14] A. Imai, E. Nishimura and S. Papadimitriou, Berthing Ships at a Multi-user Container

Terminal with a Limited Quay Capacity, Transportation Research Part E, 44 (2008), 136-

151.

[15] M. K. Bae, Y. M. Park and K. H. Kim, A Dynamic Berth Scheduling Method,

International Conference on Intelligent Manufacturing and Logistics, (2007).

[16] S. R. Seyedalizadeh Ganji, A. Babazadeh and N. Arabshahi, Analysis of the

Continuous Berth Allocation Problem in Container Ports Using a Genetic Algorithm,

Journal of Marine Science and Technology, 15(2) (2010).

[17] D. Ambrosino, A. Sciomachen and E. Tanfani, A Decomposition Heuristics for the

Container Ship Stowage Problem, Journal of Heuristics, 12 (2006), 211-233.

[18] A. Sciomachen and E. Tanfani, A 3d-bpp Approach for Optimising Stowage Plans and

Terminal Productivity, European Journal of Operational Research, 183 (2007), 1433-1446.

[19] K. H. Kim and Y. M. Park, A Crane Scheduling Method for Port Container Terminals,

European Journal of Operational Research, 156(3) (2004), 752-768.

[20] L. Moccia, J. F. Cordeau, M. Gaudioso and G. Laporte, A Branch-and-Cut Algorithm

for the Quay Crane Scheduling Problem in a Container Terminal, Naval Research

Logistics, 53 (2006), 45-59.

[21] M. Sammarra, J. F. Cordeau, G. Laporte and M. F. Monaco, A Tabu Search Heuristic

for the Quay Crane Scheduling Problem, Journal of Scheduling, 10 (2007), 327-336.

Chapter 6: 100

[22] C. Bierwirth and F. Meisel, A Survey of Berth Allocation and Quay Crane Scheduling

Problems in Container Terminals, European Journal of Operational Research, 202(3)

(2009), 615-627.

[23] R. Dekker, P. Voogd and E. Asperen, 2007, Advanced Methods for Container

Stacking, In: Container Terminals and Cargo Systems – Design, Operations Management,

and Logistics Control Issues, K. H. Kim and H. O. Günther (editors), Springer-Verlag

Berlin Heidelberg, (2007), 131-154.

[24] K. H. Kim and H. B. Kim, Segregating Space Allocation Models for Container

Inventories in Port Container Terminals, International Journal of Production Economics, 59

(1999), 415-423.

[25] K. H. Kim, Y. M. Park and K. R. Ryu, Deriving Decision Rules to Locate Export

Containers in Container Yards, European Journal of Operational Research, 124 (2000), 89-

101.

[26] C. Zhang, J. Liu, Y. Wan, K. G. Murty and R. J. Linn, Storage Space Allocation in

Container Terminals, Transportation Research Part B: Methodological, 37(10) (2003), 883-

903.

[27] J. Kang, K. R. Ryu and K. H. Kim, Deriving Stacking Strategies for Export Containers

with Uncertain Weight Information, Journal of Intelligent Manufacturing, 17 (2006a), 399-

410.

[28] J. Kang, K. R. Ryu and K. H. Kim, Determination of Storage Locations for Incoming

Containers of Uncertain Weight, In: Proc. IEA/AIE, M. Ali and R. Dapoigny (editors),

Springer-Verlag Berlin Heidelberg, 4031 (2006b), 1159-1168.

[29] M. Bazzazi, N. Safaei and N. Javadian, A Genetic Algorithm to Solve the Storage

Space Allocation Problem in a Container Terminal, Computers & Industrial Engineering,

56 (2009), 44-52.

[30] K. H. Kim, Evaluation of the Number of Rehandles in Container Yards, Computers &

Industrial Engineering, 32(4) (1997), 701-711.

Chapter 6: 101

[31] K. H. Kim and J. W. Bae, Re-marshaling Export Containers in Port Container

Terminals, Computers & Industrial Engineering, 35(3-4) (1998), 655-658.

[32] J. Kang, M. Oh, E. Y. Ahn, K. R. Ryu and K. H. Kim, Planning for Intra-Block

Remarshalling in a Container Terminal, In: Proc. IEA/AIE, M. Ali and R. Dapoigny

(editors), Springer-Verlag Berlin Heidelberg, (2006), 1211-1220.

[33] K. H. Kim and G. Hong, A Heuristic Rule for Relocating Blocks, Computers &

Operations Research, 33 (2006), 940-954.

[34] C. Aydin, Improved Rehandling Strategies for Container Retrieval Process, M. Sc.

Thesis, Sabanci University, (2006).

[35] Y. Lee and Y. Lee, A Heuristic for Retrieving Containers from a Yard, Computers &

Operations Research, 37 (2010), 1139-1147.

[36] T. Unluyurt and C. Aydın, Improved Rehandling Strategies for Container Retrieval

Process, Journal of Advanced Transportation, (2012) (in press, DOI: 10.1002/atr.1193).

[37] M. Caserta, S. Voβ and M. Sniedovich, Applying the Corridor Method to a Blocks

Relocation Problem, OR Spectrum, 33 (2011), 915-929.

[38] M. Hussein and M. E. H. Petering, Genetic Algorithm-Based Simulation Optimization

of Stacking Algorithms for Yard Cranes to Reduce Fuel Consumption at Seaport Container

Transshipment Terminals, IEEE world Congress on Computational Intelligence, (2012).

[39] W. C. Huang and C. Y. Chu, A Selection Model for In-terminal Container Handling

Systems, Journal of Marine Science and Technology, 12 (2004), 159-170.

[40] M. E. H. Petering and K. G. Murty, Effect of Block Length and Yard Crane

Deployment Systems on Overall Performance at a Seaport Container Transshipment

Terminal, Transportation Research Part E, 36 (2009), 1711-1725.

[41] M. E. H. Petering, Effect of Block Width and Storage Yard Layout on Marine

Container Terminal Performance, Transportation Research Part E, 45 (2009), 591-610.

Chapter 6: 102

APPENDIX

A Feasible_stacks ()

Available stack list is null.

if (ava_slot(b, s) > 0)

Stack (b, s) listed in available stacks;

end

B Stack_selection_without_rehandle(CONTAINER NAME);

Available stack list is divided into two.

if(min_rank of the stack is higher than CONTAINER NAME)

 Stack is listed in Higher stacks

else if (There exists an empty)

 Stack is listed in Empty stacks

end

if(Number of Higher stacks>0)

 Lowest min_ranked stack is selected as selected_stack

else if (Number of Empty stacks>0)

 First stack in the Empty stack list is selected as selected_stack

end

C High Rank Heuristic Algorithm – Allocation Operation

 while (There is a container to be allocated)

 Feasible_stacks ();

 if (There exists an empty stack in the available stack list)

 min_rank(empty stack) = big_M;

 end

 The highest min_rank(b, s) is selected among the available stack list as

selected_stack

 Allocate NEW in the selected stack

end

Chapter 6: 103

D Min Rank Heuristic Algorithm – Allocation Operation

 while (There is a container to be allocated)

 Feasible_stacks ();

 Available stack list is divided into two.

 if(min_rank of the stack is higher than NEW)

 Stack is listed in Higher stacks

 else

 Stack is listed in Lower stacks

 end

 if(Number of Higher stacks>0)

 Lowest min_ranked stack is selected as selected_stack

 else if (There exists an empty)

 Empty stack is selected as selected_stack

 else

 Stack that has the highest min_rank is selected as selected_stack

 end

 Allocate NEW in the selected stack

end

E High Rank Modified Heuristic Algorithm – Allocation Operation

 while (There is a container to be allocated)

 Feasible_stacks ();

 if (There exists an empty stack in the available stack list)

 min_rank(empty stack) = big_M;

 end

 The highest min_rank(b, s) is selected among the available stack list as

selected_stack

 if (Container on top in selected stack is lower than NEW)

 An extra slot is searched in the bay

 if (There exists such a slot)

 Relocate container on top into that empty slot temporarily

 Allocate NEW in the selected stack

 Relocate container on top back into selected stack

 else

 Allocate NEW in the selected stack

Chapter 6: 104

 end

 else

 Allocate NEW in the selected stack

 end

end

F Min Rank Modified Heuristic Algorithm – Allocation Operation

 while (There is a container to be allocated)

 Feasible_stacks ();

 Available stack list is divided into two.

 if(min_rank of the stack is higher than NEW)

 Stack is listed in Higher stacks

 else

 Stack is listed in Lower stacks

 end

 if(Number of Higher stacks>0)

 Lowest min_ranked stack is selected as selected_stack

 else if (There exists an empty)

 Empty stack is selected as selected_stack

 else

 Highest min_ranked stackis selected as selected_stack

 end

 if (Container on top in selected stack is lower than NEW)

 An extra slot is searched in the bay

 if (There exists such a slot)

 Relocate container on top into that empty slot temporarily

 Allocate NEW in the selected stack

 Relocate container on top back into selected stack

 else

 Allocate NEW in the selected stack

 end

 else

 Allocate NEW in the selected stack

 end

end

Chapter 6: 105

G Random Heuristic Algorithm – Allocation Operation

 while (There is a container to be allocated)

 Selected stack is chosen randomly

 A row in the selected stack is chosen randomly

 if(selected slot is empty)

 Allocate NEW in the selected stack

 else

 if (ava_slot(b, s)=0)

 Relocate container on top by Min Rank Algorithm

 end

 Relocate containers that are on the selected slot or above temporarily

 Allocate NEW in the selected slot

 Relocate temporarily removed containers in the selected stack

 end

end

H Hybrid Heuristic Algorithm – Allocation Operation

 while (There is a container to be allocated)

 Selected stack is chosen randomly

 A row in the selected stack is chosen randomly

 if(selected slot is empty)

 Allocate NEW in the selected stack

 else

 Relocate containers that are on the selected slot or above by using Min

Rank

 Allocate NEW in the selected slot

 end

end

Chapter 6: 106

I Smart Heuristic Algorithm – Allocation Operation

 while(There is a container to be allocated)

 Feasible_stacks ();

 Stack_selection_without_rehandle(New Container);

 if(A stack is selected)

while (there is possible movements)

for (Each stack in the bay)

 if (container on top (b, s) is not listed in Trial List)

 if (Container on top(b, s) > min_rank(b, s))

 Container on top(b, s) is listed in the

Remarshaling list

 end

 end

end

Containers in the Remarshaling list are sorted in descending

order

First container in the list is listed in Trial List

if(First container’s rank >min_rank of the selected stack &&

First container’s rank <NEW’s rank&& Empty slots>1)

 Allocate First container in the selected stack

end

end

Allocated NEW in selected stack

 else

 Stacks are sorted in ascending order based on their ava_slots , and

listed in Sorted List

 if(There are more than one stack with same empty slots)

 These stacks are sorted in descending order based on their

min_ranks

 end

 while (There is not a selected stack)

 Next stack in the Sorted List is selected

 if(If a stack is selected)

 if(min ranked container is stored at the bottom of the

selected stack || containers that are stored under min_ranked container>NEW)

 Min_ranked container and containers stored

above it tried to be relocated into other stacks

Chapter 6: 107

 if(Relocation is done)

 NEW is located in that stack

 end

 end

 else

 Min_ranked stacked is selected as Selected Stack

 end

 end

 end

end

J High Rank Heuristic Algorithm – Pick-up Operation

 while (There is a container to be retrieved)

 if (Claimed container is accessible)

 Remove the claimed container

 else

 Containers which are stored over the claimed container are relocated

by High Rank

 Remove the claimed container

 end

end

K Min Rank Heuristic Algorithm – Pick-up Operation

 while (There is a container to be retrieved)

 if (Claimed container is accessible)

 Remove the claimed container

 else

 Containers which are stored over the claimed container are relocated

by Min Rank

 Remove the claimed container

 end

end

Chapter 6: 108

L High Rank Modified Heuristic Algorithm – Pick-up Operation

 while (There is a container to be retrieved)

 if (Claimed container is accessible)

 Remove the claimed container

 else

 Containers which are stored over the claimed container are relocated

by High Rank Modified

 Remove the claimed container

 end

end

M Min Rank Modified Heuristic Algorithm – Pick-up Operation

 while (There is a container to be retrieved)

 if (Claimed container is accessible)

 Remove the claimed container

 else

 Containers which are stored over the claimed container are relocated

by Min Rank Modified

 Remove the claimed container

 end

end

N Random Heuristic Algorithm – Pick-up Operation

 while (There is a container to be retrieved)

 if (Claimed container is accessible)

 Remove the claimed container

 else

 Containers which are stored over the claimed container are relocated

by Random

 Remove the claimed container

 end

end

Chapter 6: 109

O Hybrid Heuristic Algorithm – Pick-up Operation

 while (There is a container to be retrieved)

 if (Claimed container is accessible)

 Remove the claimed container

 else

 Containers which are stored over the claimed container are relocated

by Min Rank Modified

 Remove the claimed container

 end

end

P Remarshaling High Heuristic Algorithm

 Remarshaling High:

for (Each stack in the bay)

 if (Container on top(b, s) > min_rank(b, s))

 Container on top(b, s) is relocated by High Rank Modified Algorithm

 end

end

Q Remarshaling Min Heuristic Algorithm

 for (Each stack in the bay)

 if (Container on top(b, s) > min_rank(b, s))

 Container on top(b, s) is relocated by Min Rank Modified Algorithm

 end

end

Chapter 6: 110

R Remarshaling Several Heuristic Algorithm

 while (there is more possible movements)

for (Each stack in the bay)

 if (Container on top(b, s) > min_rank(b, s))

 Container on top(b, s) is relocated by Min_Modified Algorithm

 end

end

end

S Remarshaling Smart Heuristic Algorithm

 for (Each stack in the bay)

 if (Container on top(b, s) > min_rank(b, s))

 Container on top(b, s) is listed in the Remarshaling list

 end

end

Containers in the Remarshaling list are sorted in descending order

for(Each container in the Remarshaling List)

 Available stack list is null.

 if (ava_slot(b, s) > 0)

 if((b, s) is different than container on top’s (b, s))

 Stack (b, s) listed in available stacks;

 end

 end

 Stack_selection_without_rehandle(Container on top);

 if(A stack is selected)

 Allocate Container on top in the selected stack

 end

end

Chapter 6: 111

T Remarshaling Smart_2 Heuristic Algorithm

 while (there is possible movements)

for (Each stack in the bay)

 if (container on top (b, s) is not listed in Trial List)

 if (Container on top(b, s) > min_rank(b, s))

 Container on top(b, s) is listed in the Remarshaling list

 end

 end

end

Containers in the Remarshaling list are sorted in descending order

First container in the list is listed in Trial List

 Available stack list is null.

 if (ava_slot(b, s) > 0)

 if((b, s) is different than container on top’s (b, s))

 Stack (b, s) listed in available stacks;

 end

 end

 Stack_selection_without_rehandle(Container on top);

 if(A stack is selected)

 Allocate Container on top in the selected stack

 end

end

