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ABSTRACT

Designing an appropriate closed loop supply chain is crucial not only due to the economic

value that can be gained from used products but also due to the environmental concerns

raising in popularity in last couple decades. In this paper, we address an inventory-location

and pricing problem for a closed-loop supply chain with the purpose of collection of the

used products and distribution of the newly produced ones simultaneously with the deci-

sion of price and incentive. We present a mixed integer nonlinear facility location allocation

model with inventory considerations to decide both optimal location of these collection

and distribution centers (CDC) and optimal values of price and incentive offered for new

and used products, respectively, in order to maximize the profit. To solve this NP-hard

problem, three different hybridized heuristic approaches are proposed throughout the pa-

per. The heuristics correspond to applications of Simulated Annealing, Tabu Search and

Genetic Algorithms which all are hybridized with Variable Neighborhood Search. Different

neighborhood structures are embedded in these heuristics to obtain better results. The per-

formances of the proposed algorithms are analyzed on extensive set of test instances up to

200 customers and 200 possible locations, and we compared it with the upper bound found

by a linearization technique. Finally, we compare the three proposed metaheuristics with

each other. In all comparisons, we report optimality gaps calculated with respect to the

upper bound. The results of our computational study show that the Tabu Search algorithm

hybridized with VNS(TSVNS) gives better results compared to solutions given by the other

two metaheuristics. The success of the TSVNS algorithm highly depends on its memory

structure while providing an effective diversification mechanism.
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ÖZETÇE

Etkili bir kapalı devre tedarik zinciri tasarlamak, kullanılmış ürünlerin toplanmasıyla

elde edilecek ekonomik değerlerin yanında son yıllarda artarak populerite kazanan çevresel

bilinç kavramı içinde oldukça kritiktir. Bu tezde, yeni üretilen ürünlerin dağıtımı ve aynı

zamanda kullanılmış ürünlerinde geri toplanması için gereken fiyat ve teşvik kararlarını

envanter ve lokasyon kararlarıyla perçinleyen bir problem ele alınmıştır. Kârı en yüksek

değere çıkarmak için açılacak toplama ve dağıtım merkezlerinin en uygun lokasyonları,

envanter, fiyat ve teşvik değerleri karışık tamsayılı doğrusal programlama modeli ile in-

celenmiştir. Bu modelde ürünlerin tüm lojistik işlemlerinin müşteriler ve kullanılmış ürün

tedarikçileri tarafından yapıldığı varsayıldığı için modelde nakliye ile alakalı bir gider bulun-

mamaktadır, fakat aradaki mesafenin talep ve geridönüş oranını olumsuz olarak etkilediği

gerçeği dikkate alınmıştır. Bu NP-zor problemi çözebilmek için üç farklı melez sezgisel algo-

ritma önerilmiştir. Melezleme yaparken Benzetimli Tavlama, Tabu ve Genetik algoritmaları,

Değişken Komşuluk algoritmasının içine yerleştirilmiştir. En iyi sonuçlara ulaşmak için

farklı komşuluk oluşturabilecek operatörler sezgisel metodların içine gömülmüştür. Önerilen

algoritmaların performansları 200 müşteri ve 200 lokasyon seçenekli problem

büyüklüklerine kadar olan kapsamlı kümeler için incelenip doğrusallaştırma tekniği yardımıyla

bulunan üst sınırlar ile kıyaslanmıştır. Son olarak, en iyi performansı bulmak amacıyla,

önerilen üç farklı melez sezgisel algoritma birbirleriyle kıyaslanmıştır. Tüm kıyaslamalar

sonucunda, üst sınırla olan sapmalar rapor edilmiştir. Yaptığımız sayısal deneylerin sonu-

cuna göre, TSVNS algoritması, amaç fonksiyonu açısından test edılen örneklerde kıyasladığımız

diğer iki sezgisel yöntemden çok daha iyi sonuçlar vermiştir. Önerilen sezgisel algorit-

manın başarısı, büyük ölçüde, etkili çeşitlendirme mekanizmaları önerirken kullandığı hafıza

yapısına bağlıdır.
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Chapter 1

INTRODUCTION

Nowadays, the growing concern for environment necessitates integrating some environ-

mentally sound solutions into existing supply chain management in practice. Hence, green

supply chain management (GrSCM) does not only gain increasing attention among society,

government, practitioners of operations but also gets researchers’ attention. Adding a green

component into supply chain management refers certain environmental consideration over

full product life cycle (1). In other words, GrSCM not only involves all logistics activities

from supplier to customer but also related to reverse logistics activities as remanufacturing

and refurbishing processes. Reverse logistics (RL) can be defined as the flow of goods from

their final destination in order to proper disposal or capturing the residual value. An ap-

propriate reverse logistics network results in more profit and draws a socially responsible

picture for companies.

Remanufacturing and recycling defines higher form than material recovery by empha-

sizing on value-added recovery in the forms of materials, energy and labor. Therefore,

remanufacturing has undeniable effect on overall profit because it reduces consumption of

the raw materials and provides cost reduction on waste treatment. Besides the economical

incentives, most countries’ recent legislations force the companies to accomplish take-back

responsibilities to reduce waste. The governmental concern creates strong legislative incen-

tives on why and how take back activities are organized for different classes of products.

Additionally, social and environmental interests that companies engaged in also direct the

managers to new techniques to design supply chains that are both economically and ecolog-

ically feasible. In other words, RL has been driven by high profitability, increasing number

of legislative incentives, and growing awareness for environment.
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Logistics network design is one of the most strategic decisions because whether opening

or closing a facility is very expensive, time consuming and infeasible to change in a short

time. Many tactical and operational decisions are limited by this strategic decision because

logistic network configuration is directly related to facility locations. Take-back activities

generate reverse flow of goods originated by product holders, also referred to as end users,

from the customer zones. Collected used product should be consolidated before shipping to

disassembly or remanufacturing facilities. To manage the reverse flow, RL is gaining more

interest in supply chain management.

The form of collecting end-of-life product is mainly related to green network design of the

company. After realizing the hidden value remaining in the used product, more profitable

collection strategy should be developed by the company. In many cases, take back activities

are carried out without any government pressure. If the value that will be recovered from

the used product can compensate the cost resulted from take-back activities, companies are

inclined to manage their RL activities to increase the overall profit. To achieve its profitabil-

ity goal, some companies offer incentives to product holders. Amount of offered incentive

plays the major role in this type of collection strategy so it must be critically analyzed.

Developing whether customer or company driven collection strategy is another impor-

tant decision that the company must have. In that respect, two main scenarios should

be taken into consideration. In the first scenario, collection can be done by establishing

collection centers (CC) and used products can be introduced to the CC by end users. On

the other hand, collection activities can also be done by company itself visiting each of end

user and taking products separately from their final destinations. To decide on the most

feasible return policy, the trade-off between transportation and fixed facility cost should be

figured out carefully by the company. Moreover, in the second scenario, customers should

return the used product. In this scenario, accessibility of the CC is the most important issue

when choosing the location of them. Therefore, many companies usually prefer to use their

existing structures of retail channels, also referred to as distribution centers (DC), to carry

their taking back activities not only to reduce transportation cost between manufacturing

and collection site, but also to address their customers to a known place.
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Another challenge of companies when managing their logistic network is to handle inven-

tory cost. In today’s competitive business world, the main focus of companies is to reduce

their overall operational cost while improving the customer service level. Some components

of the returned product can be directly used as a raw material in production. Therefore, the

RL inventory system should be organized and controlled appropriately to provide integrity

between producer’s material resource plans and the return flow amount of used products.

The interaction between the location of CC and inventory levels in such a RL network de-

sign mainly affects timing and amount of the products that are sent to remanufacturing

site. When the demand requirements in a given time period is known and lead times does

not vary, economic order quantity (EOQ) formulation can be applied for single item, fixed

order cost models. Modified EOQ models have been widely used in literature for RL net-

work design with deterministic return assumption.

In reality, customers’ response on price is very sensitive. To neutralize the effect of

pricing on demand, in many location based studies in literature, demand rate is assumed

to be constant. On the other hand, apart from location focused studies, many researchers

have reported large number of studies about price sensitivity of demand. The term price

sensitivity refers to the variation of customers’ purchases of a product as its price changes.

Interpreting the behavior of customers across price changing has become very interesting

area in the fields of marketing and psychology and also hard to estimate. According to the

Law of Demand mentioned by Clark (2) in 1917, customers tend to buy more of a good when

its price decreases. As a rule of thumb, exponential nature is assumed for the relationship

between demand and price in literature, generally. However, in the literature, there is not

much intention to study all these inventory location and pricing decisions together within

one model.

In this respect, the contribution of our study is two-folds. First, we develop a new

model where location, inventory and pricing decisions affect the design of reverse supply

chain network. To the best of our knowledge, this approach has not yet been suggested

in the literature. To establish a more feasible and profitable reverse network design, all



Chapter 1: Introduction 4

these decisions should be taken into consideration together, therefore our model optimize

them simultaneously and provides more realistic approach than previous models. Secondly,

we develop three hybrid metaheuristic algorithm to solve our model. Simulated Annealing

(SA), Tabu Search (TS) and Genetic Algorithms (GA) are studied as metaheuristics and

their hybrid algorithms with Variable Neighborhood Search (VNS) are compared in terms

of both solution quality and computational time. The novel characteristic of the proposed

solution approaches can be summarized as follows: When developing the hybrid algorithms,

the nested heuristic solution methodology is developed. The outer loop, which is related to

find the best locations of collection and distribution centers (CDCs) to collect the returns

and satisfy the orders among a set of candidate sites, is solved with metaheuristics. How-

ever, feasible financial values, price and incentive amounts, are seeking by local search to

gain maximum profit with the present location of CDCs in the inner loop.

The organization pattern of this thesis is as follows. In Chapter 2, we review studies related

to the reverse logistic network design location problems. In this chapter, we also review

the related studies which implemented SA, TS, GA as a solution method for reverse lo-

gistic models. Then in Chapter 3, we define our problem in detail and give some insights

on computational complexity. We also illustrate the mixed integer nonlinear programming

(MINLP) formulation of our problem. Next in Chapter 4, we describe the solution method

that can be used to find optimum values to reach the maximum profit and proposed meta-

heuristic algorithms are explained in detail. In Chapter 5, we give the details about data

generation and results of computational studies are interpreted. Finally in Chapter 6, we

give a general summary of the thesis and provide some future research directions.
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Chapter 2

RELEVANT LITERATURE

In the literature, there are a lot of studies related to facility location models because of

the fact that facility location is one of the most important element of strategic planning for

many private and public firms and gives advantage for competition. Many operational and

logistic decisions are associated with the facility location, therefore large capital outlays are

involved when decision maker selects the site which are executed in the long term. For this

reason, some of the models studied in literature are designed for optimizing the real supply

chain cases and they have received significant attention. Location decision is not a crucial

elements of a successful forward network design but also effects reverse network design.

That’s why model with location decisions are examined in reverse logistic design problems.

Pricing decision is as important as location decisions to develop a profitable supply chain

design. However, in the literature, not much has been written about models for competitive

location including price decisions.

Apart from the modelling the network design, various exact and heuristic approaches

have been developed as solution methods for the location problems. The most common so-

lution techniques used in the literature are metaheuristic algorithms due to computational

efficiency.

In this chapter, some of the related literature is discussed within three main categories.

In Section 2.1, we review the location model which is mostly related to our model. Then,

in Section 2.2, many of the reverse logistic network design problems are reviewed chrono-

logically. Finally, in Section 2.3 the metaheuristic approaches used in our study and reverse

logistic problems found in the literature are discussed.



Chapter 2: Relevant Literature 6

2.1 Facility Location and Allocation Model

Location allocation models have been studied for more than a century and started from

Weber’s location problem in 1909(3). In this simplest problem, he assumes that a single

server is to be located to meet a set of discrete demands while minimizing the transportation

cost.

Discrete facility location problem deals with the determination of the sites where new

facilities are to be established within a finite set of candidate locations. In general, there

are two common and widely used location allocation problems. The simplest and one of the

most studied location problem is p-median problem which is introduced by Hakimi(4). This

problem analyzes which p facility are to be selected among the potential locations to mini-

mize objective function while satisfying all customer demands. P-median problem is mostly

applied for public type of facilities like hospital, ambulance, firefighting, etc.In p-median

problem, facility setup costs are same through all potential location sites. Mladenovic et

al.(5) give a complete survey about metaheuristic approaches applied to p-median problem

which is classified as NP-hard. They survey classical heuristics and implementation of inter-

change local search as well as metaheuristics. Metaheuristic methods are briefly described

and analyzed in the study as Tabu search , Variable neighborhood search (VNS), Genetic

Algorithm, Scatter search, Simulated Annealing, Heuristic concentration, Ant colony opti-

mization, Neural Networks, Decomposition heuristics, Hybrid heuristics. As a result of the

survey, according to empirical results, metaheuristic approaches have been more successful

than the earlier used methods i.e constructive heuristics and local searches according to the

solution quality obtained in large instances. Moreover, the efficiency on computational time

when solving the p-median model with metaheuristics is stated in the study.

The other type of the location allocation model considers the fixed facility location costs,

therefore number of facilities to be established becomes an important decision. This prob-

lem is known as uncapacitated facility location problem (UFLP) and extensively studied

in literature. Facility location problem is similar to the p-median problem except that the

number of facilities to be located is originated within the problem. Revelle et al.(6) survey

a number of the important problems in facility location including UFLP. Moreover, an ex-
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tensive study can be reached in Mirchandani and Francis’s book(7).

Both type of the models are aimed to minimize the assignment costs by allocating each

customer to the nearest candidate sites and have common characteristics which are single

product, single-period planning horizon, same deterministic parameters like demand of each

customer, cost of the product and transportation costs, facility and location allocation

decisions. However, the both models are not sufficient to fulfill the needs of realistic location

allocation decisions. For this reason, recently many extensions to basic models have been

proposed. Therefore, the location allocation problem has grown with a lot of type and

classification.

2.2 Reverse Logistic Network Design

Increasing environmental, economic and legislative concerns lead to a wide recognition of

the remanufacturing of used products into new ones in literature and in practice. Reverse

logistics network design establishes the relationship between two markets: the market re-

leasing used product and the market producing and distributing new product. According

to market type, two main classes of papers have been studied about the network design

with product recovery. The first class only deals with the former market and seeks the most

efficient solution of the problem how to retrieve products from end users. This strategy is

known as reverse logistics. On the other hand, the second class manages the both streams

of products as flow through and back from the customers. This strategy is also known as

closed loop logistics and examines the relations and group of activities between these two

markets as a total system.

The well-known definition of reverse logistic is done by Roger (8)as:

”...the process of moving goods with cost effective flow of raw materials, from the point

of consumption to the point of origin for the purpose of capturing value otherwise unavail-

able or for the purpose of proper disposal.”

In the past years, many case studies have been analyzed and modelled comprehensively
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for reverse logistics network design including recycling problems. We review a few more

recent studies whose objectives and settings are related to ours chronologically as follows.

Recycling networks of iron and steel by-products in German industry have been analyzed

by Spengler et al (9) .They complete one of the earlier study addressing the reverse logis-

tic and propose a modified mixed integer linear programming (MILP) warehouse location

model in order to maximize the total marginal income by decision of location and capacity

level of selected recycling operations .

Sand recycling from construction waste in Netherlands is considered as an important

problem and has been studied by Barros et al.(10). The authors propose two-level capac-

itated facility location model analyzing multiple scenarios in order to minimize total fixed

and transportation costs. This problem is revisited under demand and supply uncertan-

ity by Listes and Dekker (11).They connect the idea of the uncertainty characteristics of

product recovery with reverse supply chain network design. Then, they establish a generic

multi-stage stochastic programming model for these two level network design to find the

optimum location of the storage and cleaning task and analyze the expected performance

of the scenarios with given probabilities in Netherlands. They use the branch and cut algo-

rithm to find the solution using the commercial software, GAMS. By this study, they find

the most suitable solution among alternative scenarios which are described by field expert.

Louwers et al. (12) study a facility location allocation model for reusing of carpet waste

as a case study and analyze its two applications, one in Europe and the other in the United

States of America.

Krikke et al.(13) concern the remanufacturing processes of copiers. Two possible loca-

tions, one in the Czech Republic and the other in Venlo, are discussed throughout the study

and the strategically most appropriate one is discussed for the processes preparation and

re-assembly processes. To optimize total operational cost of the reverse logistic network

design, they study three scenarios with a MILP model and compare them to re-design the

reverse logistic network.
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Product recovery is also important in electronics industry. Therefore, there are many pa-

pers that analyzed the logistic network design for original equipment manufacturer (OEM).

Jayaraman et al.(14) have examined the electronic equipment recovery closed loop network

design with multi-product capacitated warehouse location MILP to seek the optimal num-

ber and location of remanufacturing facilities while minimizing the total costs.

Fleischmann (15) emphasizes a continuous network design model using a MILP model

for product recovery. To solve the generic model, he develops an heuristic algorithm and

gets satisfactory results for larger size problems.

Shih(16) develops a MILP model to design the reverse network flow of computers and

home appliances in Taiwan.

Jayaramann et al. (17) study a MILP reverse distribution model for type of products

which can be end-of-life, commercial returns or other reverse functions i.e. recycling, re-

manufacturing, reuse, refurbishing to minimize the total transportation and fixed costs of

opening facilities. To solve this NP-hard problem, they develop a heuristic procedure and

optimal solutions are found for a significant proportion of generated test problems.

Schultmann et al.(18) examine reverse supply network of spent batteries in Germany.

They develop a conventional two level MILP facility location model for the closed loop

supply chain and develop a flow-sheeting system with a mathematical tool to simulate the

complex chemical reactions of spent batteries used in the steelmaking industry.

Kusumastuti et al.(19) study a reverse logistic network design. To reflect the real life con-

ditions, uncertainties are taken into account in the study and a multi-period, multi-objective

MIP model is proposed. To solve the complex problem, spanning-tree based genetic algo-

rithm is developed to find non-dominated solutions. Different scenarios are examined in the

study to determine the best-preferred reverse logistic network design.
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Shue et al.(20)consider the integrated logistics operational problems of green-supply

chain management. The model adds two important features to existing literature: Firstly

the model formulated a linear multi objective programming model to optimize the opera-

tions. In other words, it is not case specific. Secondly, the model contains the enforcement

of corresponding governmental regulations. They proposed a composite multi objective pro-

gramming model to maximize both manufacturing chain- and reverse chain- based profit

considering the their weighted average in a closed loop manner. The well known Taiwanese

notebook computer manufacturer’s data are used in numerical example part of the study.

Therefore applicability of the study is approved.

Nagurney et al. (21) develop a multitiered e-cycling network equilibrium model for re-

verse supply chain network of electronic waste and recycling. They analyze the optimizing

behavior and describe main equilibrium conditions. Moreover, the authors study on quali-

tative equilibrium pattern properties to indicate the convergence of algorithmic scheme and

study on numerical examples to support their algorithm.

Schultmann et al.(22) apply a symmetric capacitated vehicle routing problem (VRP)

formulation with one depot in order to design the reverse material flow of end-of-life ve-

hicle treatment in Germany. They propose a problem tailored model and analyze the real

case data with different scenarios due to uncertainties in the closed loop supply chain. The

results show the applicability of the model while comparing different scenarios in terms of

distance and cost.

Biehl et al.(23) focus on reverse logistics of the US carpet industry. They examine the

main factors that affect the design of carpet reverse logistic supply chain and exhibit the

impact of these factors as well as environmental factors. Designing a simulation model, they

analyze various scenarios’ performance and discuss the critcal factors for design of a carpet

reverse logistic supply chain.

Lu et al.(24) design a closed loop logistic system as two-level location problem with

three types of facilities to be located. They propose a MIP model for the closed loop prob-
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lem as an uncapacitated facility location model and develop a Lagrangian heuristic based

algorithm to minimize the total cost of the problem. Improving the lower bounds with

proposed model, they obtain quite good lower bounds for their model. The applicability of

the model is tested by conducting the numerical examples on data adapted from classical

test problems taken from OR-Library.

Ko et al.(25)propose a multi-period, two-echelon, multi commodity network design model

for designing an integrated logistic network for 3PLs. Their model considers forward and

reverse flow simultaneously and this creates the main difference as compared to the exist-

ing location models. Because the model is MINLP and NP-hard, they develop a genetic

algorithm based heuristic to find the minimum cost. In the proposed heuristic, simplex

transshipment algorithm is added to Genetic Algorithm procedure to allocate the customers

into open facilities with considering the capacity constraints. To illustrate the efficiency of

the proposed heuristic, an example problem is analyzed and numerical results are presented

at the end of the study.

Lieckens et al. (26) investigate on the extended version of the reverse logistic model

currently found in literature. They proposed a MINLP model concentrating on high de-

gree of uncertainties and some dynamic aspects. An improved version of the GA known

as Differential Evolution Technique is applyied to solve the problem using the queueing

relationships for interarrival and process time distribution.

Listes (27) designs a generic stochastic closed loop reverse logistic model and studies on

a decomposition approach to solve this model, which is based on the branch-and-cut pro-

cedure and known as the integer L-shaped method. Computational studies are performed

on alternative scenarios and also results show a consistent performance efficiency of the

proposed method.

Salema et al. (28) analyze the design of reverse logistic network under uncertainty on

demands and returns as a closed loop manner. They design the multi-product, capaci-

tated, forward and reverse recovery networks modelling as a MILP model and solve it using
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standard branch and bound techniques. The proposed model can be thought as an extend

version the model proposed by Fleischmann (15). The mentioned problem is uncertainty-

driven, therefore, scenario based approach is used. In the study, three different scenarios are

examined depending on the demand and return rate. Finally, applicability and performance

of the model is tested on an illustrative example.

Kusumastuti et al.(29) present a case study to redesign the service network for a com-

puter company in Singapore. They establish a multi-horizon facility location allocation

model to minimize total closed loop logistics cost. The result of the model clarifies the

locations of new distribution centers which are also used to collect and consolidate the parts

before sending out for repair.

Sheu (30) proposes a linear multi-objective programming (LMOP) model to optimizes

both flow and reverse supply chain operations of nuclear power generation. In addition to

literature, the model optimize both costs corresponding to nuclear power generation and

induced nuclear waste due to governmental regulation. The case of Taiwan nuclear power

generation is presented as the numerical illustration in this paper to evaluate the applicabil-

ity of the model. Moreover, the closed loop model also emphasize on the operational risks

induced in both forward and reverse supply chain processes.

The most relevant study with our problem is done by Aras et al. (31). They develop

a discrete facility location-allocation model to find the predetermined number of collection

centers and the optimal financial incentive values for different return types. For this reason,

they formulate the collection center location MINLP problem as well known p-median prob-

lem including the incentive decision to be offered for each quality. Because of the NP-hard

structure of their model, as similar to our solution methodology, they propose a heuristic

procedure using two nested loop to find the maximum net profit. In the outer loop, Tabu

Search algorithm is developed to find the optimal location of the collection centers in the

solution space. For each location set, in the inner loop, Nelder Mead Simplex Search is

called in the algorithm to obtain the best incentives resulting to net profit. Nelder-Mead

Simplex Search (1965) is a derivative-free direct search method which provides shrinking
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the simplex search towards desired point until reaching some desired bound. Finally, the

performance of the proposed heuristic is analyzed in terms of solution quality and compu-

tational time on randomly generated instances.

Pati et al. (32) discuss multiple objectives (economic, environmental and quality) of

waste management in reverse supply chain network. They propose a mixed integer goal

programming (MIGP) model to figure out the relationship between these objectives with

working on multi-item, multi-echelon and multi-facility environment. To assent the viability

of the model, paper recycling system of India is analyzed as a case study through the paper.

Kim et al. (33) apply a well-known vehicle routing approach for designing the reverse

logistic network of the end-of-life consumer electronic goods in South Korea. To find the

minimum distance of transportation for each of four regional recycling centers, an integer

programming model is formulated. Tabu Search algorithm is applied to find the optimum

solution for the recycling problem. The computational results of the study show that the

proposed method is more efficient and gives better results than the existing methods.

Min et al. (34)point out the problem about the location and allocation of repair facili-

ties for 3PLs. They provide a MINLP model for reverse logistics network design to provide

minimum total logistic costs solution. Similar to other studies, they develop a heuristic

procedure to solve this NP-hard problem. They generate the data for experiment and the

usefulness of the proposed GA is validated by its application to generated multi-period,

multi-commodity problem.

Elsayyed et al. (35) study on a multi-period, multi-echelon, forward-reverse logistics

network design under risk. To maximize the total expected profit, they develop a stochastic

MILP model. They assume that in the first customer zones the demand is stochastic and

second customer zones the demand is deterministic. The different model parameters are

used to analyze the effect of mean demand and return ratio. Various scenarios of the single

item model assures that mean demand and return ratio for a given capacity of the network

have significant effect on expected profit.
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Zhou et al. (36) design the reverse logistic network considering the repairing issue as

well as the mostly studied remanufacturing options. They propose their MILP model which

is the extended version of Fleishmann et al(15). To illustrate the model, they go on three

cases taking into account the repairing, remanufacturing and both of them simultaneously

using a standard MILP solver.

Du et al. (37) focus on the bi-objective optimization model for reverse logistic networks

that deal with the returns requiring repair service. The aim of the proposed MILP model

is minimization of both the overall costs and total tardiness of cycle time. The model opti-

mizes the facility arrangement among potential locations and transportation flow between

customer areas and service facilities. In the study a hybrid solution approach which is com-

posed of scatter search, the dual simplex method and the constraint method is used. Three

test data are generated for the computational study randomly. According to the computa-

tional results, they compare these two objective function served network structures, one of

is centralized and the other is decentralized.

Mutha et al. (38)designs a nine echelon network system for reverse logistic and reman-

ufacturing using new and old product modules. To illustrate the model, a single returned

product with ten modules are considered and test data are generated. The proposed model

is solved using GAMS software. The cost components of the model are carefully examined

and the most effective ones are pointed in the study to make the model more beneficial for

decision maker’s strategic decisions.

Cruz-Rivera et al. (39) point out the closed loop supply chain management of end-of-

vehicles in Mexico. For this purpose, they formulate an uncapacitated fixed charge facility

location problem to minimize the total cost resulting from fixed facility cost and transporta-

tion cost. According to the percentage of coverage, three different scenarios are discussed

through out the paper and Lagrangian relaxation is used to find the optimum number and

location of end-of-vehicle collection facilities.
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Xanthopoulos et al. (40) design a methodology named as ”Multi-criteria Matrix” to

help the manufacturers in terms of deciding the best end of life alternatives. This matrix

identifies the product by ranking the criteria such as environmental, economical, quality

and quantity. The use of methodology is demonstrated through the case of electronical and

electronic products.

Grunow et al. (41) focus on the waste of electrical and electronic equipment network

in Denmark. They present three MILP models to assist governmental agency to generate

alternative solutions. The constructed basic static model is extended to basic dynamic and

fairness models in order to satisfy further considerations.

G.Kannan et al. (42) study battery recycling because of governmental, environmental,

economical and social reasons and formulate a multi echelon, multi period, multi product

MILP model for closed loop supply chain of battery industry. With this model, they mini-

mize the total supply cost from raw material purchase cost to disposal and recycling costs.

They adapt the Genetic Algorithm to find the best solution of the larger sized problems.

To discuss the efficiency of the proposed algorithm, for smaller problem size, they compare

the results taken from GAMS and the proposed algorithm.

Kusumastuti et al.(43) formulate a multi-objective and multi-horizon reverse logistic

network design problem for product recovery. To solve their model including uncertainties,

spanning tree based Genetic Algorithm is proposed. Several scenarios are studied to reflect

real-life conditions and using simulation the best network design model is obtained.

Pishvaee et al. (44)deal with an integrated forward and reverse logistic network design.

They propose a bi-objective MILP model to minimize the total cost and maximize the

responsiveness of a logistics network. Different from the literature, to solve the proposed

multi objective MILP model, they use Memetic Algorithm which integrates the local search

into GA to improve the intensification of the local search. They compare their model with

the multi objective Genetic Algorithm models of Altiparmak et al. (45)who propose a new

solution procedure based on Genetic Algorithm to find the set of Pareto-optimal solutions
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for multi-objective SCN design problem. According to the results, the algorithm proposed

by Pishvaee (44)outperforms the algorithm proposed by Altiparmak et al.(45) in terms of

average ratio of Pareto-optimal solutions obtained.

In a very recent study, Salema et al. (46) formulate a multi-period, multi-product net-

work MILP model to simultaneously design forward and reverse networks. In the model,

strategic and tactical decisions are taken into account by modelling the time with manage-

rial perspective. The performance, adequacy and applicability of the model is verified by

the satisfactory results of the illustrative case.

Kara et al. (47) formulate a simulation model for reverse logistics network for collection

of end of life products in Sydney Metropolitan Area. Simulation model assists to present the

relationship between the activities in the network. Furthermore, the reverse supply chain

studies, and closed loop supply chain models are also introduced throughout the study.

In addition to reverse logistic case studies and quantitative models, closed loop logistics

design have been considerably studied in the literature.

Beamon and Fernandes (48) develop a closed loop supply chain model to determine the

location and sorting capability of warehouses and collection centers as well as deciding the

quantity of flow between the sites. For this purpose, they formulate a multi-period integer

programming to minimize investment and operational costs.

Chouinard et al. (49) demonstrate a new approach and information support system

to connect the reverse logistic activities with new systems. The new organization and

information system performance are evaluated on the warehousing problem of Quebec Re-

habilitation Center.

Inderfurth (50) studies a closed loop supply chain on product recovery system with ex-

istence of uncertainty. He proposes a multi-period stochastic programming logistic model

for reverse supply chain and observe the effects of cost efficient dynamic decision making
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on product recovery. Moreover, he supports his thesis by making sensitivity analysis on a

numerical example.

Kumar and Malegeant (51) study the reuse-a-shoe program of Nike to inspect the value

created by the partnership of manufacturer with an eco-non-profit community organiza-

tion. They focus on the business benefits in terms of service/market oriented or environ-

ment/ safety oriented. Furthermore, they analyze the benefits of strategic alliances between

manufactures and eco-non-profit community organization by creating a website as Throw-

place.com which connects both businesses and donors.

Srivastava (52) proposes a multi-product, multi-echelon, profit maximizing reverse lo-

gistics and value recovery network model to represent the real life situations from collection

to first stage of remanufacturing. The model focuses on the disposition decision for various

products in the Indian context and optimize the location-allocation and capacity decisions

for facilities using GAMS optimization tools.

Lee et al. (53) focus on the logistic network design for end-of-lease computer products

recovery. They formulate a deterministic mixed integer programming model and propose

a two-stage heuristic approach because of the computational complexity of the proposed

NP-hard model while minimizing the total logistics cost. The model is broken down and

analyzed into two subproblems as location allocation and revised network flow problem.

Tabu Search algorithm with short term memory is considered as a metaheuristic approach

to find the optimal shipping for the returned products. Finally, numerical studies are con-

structed to assent the capability of the model and efficiency of the algorithm in terms of

both solution quality and computational complexity and experiments result in high-quality

solutions.

Fuente et al. (54) deal with an integrated supply chain management which combines

the new processes taken from reverse supply chain into existing processes of forward supply

chain. The detailed analysis are done by working on a real case study of a metal-mechanic

company. The metal-mechanic company already has forward and reverse logistic, therefore,
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it is convenient to be analyzed under IMSCM. Through the study, the relationships between

manufacturers, suppliers and clients are carefully examined to coordinate the operations in

both chain.

2.3 Related Heuristic Algorithms

Heuristic algorithms has been widely used and successfully implemented for location prob-

lems due to NP-hardness of the problems. There are several references in literature that

describe the use of heuristic and metaheuristic methods in the location problems’ research

field. Since we use hybrid algorithm of SA, TS and GA with VNS, it is beneficial to briefly

present with the studies which are partly related to our problem and in which heuristic

procedures have been used as a solution procedure. We review the literature under two

subgroups: studies that metaheuristic have been implemented and studies that other type

of heuristic procedures are implemented.

2.3.1 Metaheuristic Algorithms implemented Location Problems

Because many of the combinatorial optimization (CO) problems are NP-hard, we can not

use the exact method to solve these problems completely in a polynomial time due to their

complexity. Without guaranteing optimality, heuristic methods seeks a good solution at a

reasonable computational time. Metaheuristic is a computational technique used to opti-

mize combinatorial optimization problems by iteratively improving the candidate solution

according to given measure of quality. Metaheuristic methods do not guarantee the opti-

mality or the solution can not be proven as optimal however, they usually converge to a

good solution. In our solution procedure, we focus on mainly three metaheuristics therefore,

the relevant literature are studied under three subgroups.

Location Problems analyzed by Simulated Annealing Algorithm

In literature, there are an extensive number of studies using SA as a metaheuristic algorithm

to solve NP-hard location problems. More relevant studies are analyzed as follows.

One of the earliest location problems solved by SA is studied by Selim et al. (55). They

focus on a clustering approach for a non-convex p-median problem and discuss the solution
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of the problem. SA approach, parameter settings, advantages and disadvantages of the

method are discussed in detail and successful results are obtained through the study. They

conclude the study by finding good results which converge to global optimal.

Another location problem solved by SA is studied by Murray et al. (56). They develop

three heuristic approaches SA ,TS and Interchange procedures to solve the operational for-

est planning problem based on the work of Nelson and Brodie (57). It is the first study

which discuss SA as a solution approach to a location problem. The results illustrate the

efficiency of the algorithms by finding near optimal solutions in relatively short amounts

of computer time. In the latter studies, Murray et al. (58) reanalyze SA approach with

p-median and maximal covering location problems. They integrate interchange heuristic

procedure to SA. Retrieving data from Beasleys OR-Library (59), the proposed algorithm

concludes better results in terms of solution quality and encourages further studies.

Kincaid (60) studies a discrete version of two noxious facility location problem. In the

study, TS and SA implementation for the proposed model is analyzed and as a result, it is

conclude that TS outperformed SA.

Chiyoshi et al. (61)join basic features of the vertex substitution method of Teitz and

Bart (62) with the general methodology of SA to solve the classical p-median problem. For

computational studies,the standard test data are retrieved from the Beasley’s OR-Library

(59). The results of the study reveals that the algorithm works well with the worst gap to

the optimum as 1.62%.

The classical NP-hard p-median problem is also analyzed by Levanova et al. (63). Ant

system(AS) and SA algorithm are proposed for the solution method. The results reveal

that the SA algorithm outperforms AS, however, both of the developed algorithms find

good solutions with less than 2% error margin.

Arostegui et al. (64) focus on various Facility Location Problems (FLP)under time-

limited, solution-limited, and unrestricted conditions. They search the dominant heuristic
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for each type of facility location problems by comparing the relative performance of TS, SA

and GA. According to the computational studies , performance of TS is better in most cases.

Location Problems by Tabu Search Algorithm

Tabu search(TS) was initially proposed by Glover (1977), evolved in Glover (1989, 1990)

and Glover et al. (1993). TS is a meta-strategy iterative procedure that search the optimal

solution by extending the neighborhood with a local search strategy and prevents getting

trapped in local optima. To avoid being caught, it prevents the moves that result to visit

previous solutions by naming them as ”tabu” throughout predetermined number of itera-

tions (tabu tenure). TS is a widely used metaheuristic method for location problems and

results in very accurate solutions. There are also a lot of studies which use TS to solve

location problems. Some of them can be analyzed as follows.

Rolland et al. (66)propose a new solution to p-median problem.They establish TS algo-

rithm and compare it with well-known interchange and a recent hybrid heuristics. According

to computational study, TS outperformes other heuristics.

Rosing et al. (67) compare the quality of two metaheuristic methods with a well-known

p-median problem. TS and Heuristic Concentration are examined throughout the study

and Heuristic Concentration discovers superior solutions.

Michel et al. (68)study on uncapacitated warehouse location problem and propose a

simple and robust TS algorithm. In the study, computational experiments reveal that the

TS algorithm outperforms the GA which is a heavily used method to solve this model.

Al-Sultan et al. (69)proposed TS to solve UFLP and tested their model on some standard

problems in literature. For all test problems, optimal solutions are found more quickly than

the existing models in literature.
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Location Problems by Genetic Algorithm

Genetic Algorithm is a metaheuristic that has been widely used extensively to optimize lo-

cation problems. The potential advantages of the GA over other heuristics are first studied

by Hosage and Goodchild (70)in 1986 and since then it has been applied to many problems

for three decades. The discrete space location problems,particularly well known p-median

problem is solved by GA in the study. Due to being first, the heuristic algorithm structure

and essential features are described, therefore the possibilities and applicability of GA to

location problems are studied in detail.

Genetic Algorithms and Evolutionary Strategy are combined to find the locations of

facilities and allocations of customers to facilities dealing with the service capacity of the

facilities by Gong et al. (71). The problem is considered in two levels to minimize the total

distance: Location part is optimized by proposed hybrid algorithm and for allocation part,

Lagrange Relaxation is adopted. The computational experiment are run with randomly

generated data and efficiency of the algorithm is demonstrated by comparing the result of

the alternative location allocation heuristics suggested by Cooper. (72)

A comprehensive set of location problems is extensively studied by Jaramillo et al. (73).

For the uncapacitated and capacitated fixed charge problems, the maximum covering prob-

lem, and competitive location models of medianoid and centroid problems are examined

with GA and results are compared in terms of the optimal value, the average CPU so-

lution time, the percentage of deviation from optimal for the best solution found by the

Lagrangean heuristic.Computational experiments reveal that for the first three class of lo-

cation problems, GA spends much more time but leads to better solutions than Lagrangean

heuristic. However, for competitive models, GA outperforms the Lagrangean with regards

to both computation time and solution quality. Moreover, they conclude the study that the

GA should not be used for the capacitated location problems with fixed cost.

The well known capacitated p-median problem is also studied by Correa et al. (74).

Unlike Hosage and Goodchild (70), they develop a new heuristic including hypermutation

operator and study on a real p-median problem. Hypermutation operator mutate the in-
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dividual gene resulting in the best fitness that it can possibly be by comparing all possible

combinations. The two version of the GA, with and without hypermutation operator, are

compared with the TS. The newly generated GA outperforms the TS algorithm in terms of

solution quality.

Optimal location search under complex situations is examined by Li et al. (75). They

propose GA to solve a spatial search problem to find optimal allocation of the n facili-

ties (hospitals) according to the population data and transportation conditions which are

retrieved from Geographical Information systems (GIS). A densely populated city, Hong

Kong,data is used to make computational analysis. The efficiency of the proposed algo-

rithm is tested by comparing the Neighborhood Search (Openshaw and Openshaw 1997)

and SA algorithms. The GA shows much better performance than Neighborhood Search

and SA to solve this multiple objective problem, where a site is searched to maximize the

population coverage, minimize the total transportation costs and minimize the proximity

to roads.

Neema et al. (76) consider p-median problem and develop two hybrid GA approaches

with different replacement procedures. To compare the efficiency of the proposed algorithms,

they compare the results with the traditional alternating location-allocation heuristics and

simple GA by numerical simulation. The numerical results indicate that the hybrid al-

gorithms always obtain the best solution than location allocation and simple GA for all

problem sizes and less computational efforts.

The most recent study about the GA based location modelling is done by Sasaki et

al. (77) to optimize current and future health planning. To reduce the response time and

contribute to higher survival rates, they design the model to optimize the location of public

health facilities in Niigata and solve the model using GA approach.
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2.3.2 Location Inventory Models

In the traditional approach, the inventory studies are likely to be ignored the location deci-

sions and its related costs. The cost of operational inventory, transportation and shortage

are likely to ignore in studies when demand uncertainty exists. However ,in reality, inven-

tory management is one of the most important component of reverse logistic network to

minimize cost while guaranteing the desired service level. Quality, quantity and timing of

the returned product can not be controlled by the producers and is the main difficulty of

inventory management. In addition, when take back activities are carried without legisla-

tive forces, the location of the CD mainly affects the incentive of product holder to return

their used product.

In literature, there are some studies that work on the relation between location deci-

sions and inventory management. The major classification can be made according to return

flow as deterministic versus stochastic model. In our study, we use the deterministic re-

turn rate approach and the deterministic EOQ type model is firstly offered Schrady (78) in

1967. U.S Naval Supply Systems Command stock holding problem with repairable items

are examined with his model.He assumes constant demand and return rates and fixed lead

times. Considering fixed setup cost for orders and remanufacturing process and linear hold-

ing costs, he offers the continuous supplement and substitution policies with fixed lot sizes

serving demand from remanufactured products as possible. The substitution policy provide

optimal procurement and repair service. Nahmias et al. (79) extend the Schrady’s model

for finite remanufacturing rate and conclude their work by determining optimal remanu-

facturing batch size depending on optimal ordering quantities. Another extension of the

Schrady’s model is studied by Mabini et al.(80). Multi-item system with stockout service

level constraints are proposed in Mabini’s model and numerical solution methods are mainly

focused on.

Camm et al. (81) develop an uncapacitated facility location formulation for Procter

and Gamble Company with integer programming framework to locate the DCs and assign

the selected DC’s to customer zones. The objective function is to minimize the total cost,

composed of material handling costs, inventory costs, transportation costs, duties associ-
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ated with border crossings, and so forth, with maintaining the maintain current levels of

customer service.

Another related study introduced by Daskin et al. (82) proposes a location inventory

model and its solution methodology. In this study, they consider DC location model which

includes working inventory and safety stock costs as well as the economies of scale that

exist in the transport costs from suppliers to DCs. An alternative solution procedure is

developed for the model which was previously proposed by Shen (83)and Shen et al. (84)

and solved by first recasting it as a set partitioning problem and then solving the resulting

model using column generation. Daskin et al. (82) develop a Lagrangian solution algorithm

and the efficiency of the algorithm is assented by numerical examples.

In the literature, the two most related studies to our research are done by Wojanowski

et al. (85) and Aras et al. (31). They mainly focus on pricing issue while designing an

optimal drop-off facility network. Wojanowski et al. (85) concentrate on the forward sup-

ply chain using continuous modelling approaches and they determine the sales price of the

product by focusing the deposit-refund policy to maximize firm’s profit. In this policy, the

sales price is known by the customers including the deposit amount which will be paid back

when customer takes back the used product to a collection facility. Therefore, customers’

willingness with regards to purchasing and returning product are related to a stochastic

utility choice model.

On the other hand, Aras et al. (31) concentrate on reverse supply chain and try to

optimize only the return decision of product holders rather than purchasing decision under

deposit-refund requirements. Another difference between these studies arises from their

proposed pick-up policies. In Wojanowski et al. (85), customers have to bring their used

products to the collection centers, however, Aras et al. (31) develop a pick-up policy with

vehicles of limited capacity.

Differently from literature, we combine the pricing and inventory decisions with closed

loop supply chain optimization. In other words, while Wojanowski et al. (85)and Aras et



Chapter 2: Relevant Literature 25

al. (31) considers only forward or reverse supply chain, we study both of them as integrated

forward and reverse supply chain. Therefore, beside the location and allocation decisions

in logistic network, our model optimizes the sales price and incentive amounts as well as

cycle time of orders, simultaneously. To the best of our knowledge, the proposed model

have not been studied in literature before. Moreover, to solve our NP-hard problem, we

develop three hybrid metaheuristics and compare their quality. Again, to the best of our

knowledge, such a detailed comparison about the hybrid metaheuristics performances has

not been studied in literature.
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Chapter 3

LOCATION AND PRICING PROBLEM

In this study, we aim to determine the optimal price for new products and optimal in-

centive amounts to collect the right amount of used product while designing an integrated

forward and reverse network. The details of the model is clarified in Section 3.1.

3.1 Problem Definition

In our problem, we have customer zones each with a certain population and various deter-

ministic demand rates. We also have a production facility at a certain location. Products

will to be sent to distribution centers (DCs) from the factory, and sold at a price P to the

customers. The end-of-life products’ owners (ELPO) return their used products to collec-

tion centers (CCs) and get incentive as R. In our problem, the forward and reverse supply

chain flows coincide at CC and DC, therefore, the two centers are integrated and work as

both collection and distribution centers (CDCs). Both used and new products are held at

CDC and shipping to and from the factory at a certain time intervals. Our aim is to decide

on where to open CDCs as well as the amount of P, R and collection cycle time.

In our model, we focus on a closed supply chain by receiving inspiration from UFLP. The

classical UFLP is formulated as a set covering model and composed of the set of potential

facilities V1 and the set of customers V2 and seeks the optimal location of the facilities to

be established in order to satisfy all customer demands for the corresponding product.

In this study, the model is constructed in a closed loop supply chain setting, therefore both

forward and reverse flows are taken into account. In literature, the first step of the forward

supply chain begins with procuring the related raw materials from the suppliers to perform

the production. Then, the finished goods are distributed by different channels in order to

meet the customer demands. Afterwards, to capture the remaining value after the products

lives end, the used products are collected from the final destination of the forward supply
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chain or customers bring the used products to CCs. Collection of used products forms the

first step of the reverse supply chain. Finally, they are sent to the centralized remanufac-

turing facility in order to gain their residual value and to use them in production process

of the new goods.

In our model, the end-of-life products’ owners (ELPO), who are the customers of their for-

ward supply chain, transport the products from her coordinates to the nearest opened CC.

Therefore, the tendency of customers leaving the used product to the the nearest opened CC

is associated with the distance between the CC and the ELPO’s location. In our model, this

tendency is directly proportional with distance between the ELPO and the CC. Even though

the popularity of using environmentally friendly products has been growing, many coun-

tries still lack any government legislation, social responsibility and environmental awareness

about taking back activities of the used products. For this reason, in our problem setting,

a financial incentive is offered to the ELPO to persuade them to return their products. The

incentive amount is restricted by an upper bound which is the value will be gained after the

remanufacturing process of a unit of used product. Despite the fact that the quality levels

of returned products depend on many different parameters,i.e usage rate, condition etc.,

in the model, we do not differentiate the returned products by its quality, and we assume

that quality levels of all returned products are the same. Therefore, we offer same incentive

value to all customers for a unit of returned product and assume that we gain same value

from a unit of return.

Like the relationship between the incentive value and distance in reverse flow, price and

accessibility of a new product have also significant connection in forward flow. It is ob-

vious that, in our competitive marketing world, the increase on price results the decrease

on demand rate. Similarly, the increase on distance between distribution center(DC) and

customer zone affects demand rate negatively.

Based on our problem settings, when a returned product is dropped to CDC, it can not

be sent quickly to the centralized recycling facility due to economical deficiencies. There-

fore, inventory holding cost of both new product and used product at CDCs take a part

in the model. In the light of this, the fixed ordering cost and total inventory holding cost

is balanced by using the well known EOQ framework. In the literature, EOQ is used to
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determine the optimal ordering quantity to meet the demand while minimizing total cost

associated with purchase, delivery and storage. Since we assume that the base demand and

return rates are constant over time and these parameters are affected only remoteness, price

and incentive values,i.e they are not stochastic, applying the EOQ model becomes suitable

to manage inventory part of the model.

3.2 MINLP Formulation of the Location and Pricing Problem

We present the MINLP formulation to maximize the total gain i.e profit, by determining

the optimal number and location of the CDCs as well as the amount of price and incentive

offered. The model parameters and decision values are defined as follows:

Parameters:

Dj =expected total demand of customer j∈ V2 in a cycle time

Bj =expected total used product of customer j∈ V2 in a cycle time

S =amount of gained from unit used product

Fi =fixed cost of a CDC located at candidate site i∈ V1

k =the multiplicative constant between price and demand

b =the multiplicative constant between incentive and return

Aio =fixed ordering cost of a CDC located at candidate site i∈ V1 from the factory

hpi =unit holding cost of new product in the CDC located at candidate site i∈ V1

hri =unit holding cost of used product in the CDC located at candidate site i∈ V1

tij =distance travelled from customer j∈ V2 to CDC located at candidate site i∈ V1

Decision variables:

In the model, we have financial, inventorial and location decisions, therefore, we can cate-

gorize the variables as follows:

Financial variables as:

P =optimum price value offered for unit product

R =optimum incentive value offered for unit used product
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Location variables as:

yi =

 1 if the CDC is opened at candidate site i∈ V1

0 otherwise
(3.1)

xij =

 1 if customer jε V2 is served by the CDC located at candidate site i∈ V1

0 otherwise
(3.2)

zij =

 1 if product holder in j∈ V2 is assigned to CDC located at candidate site iε V1

0 otherwise
(3.3)

Ti =returned product collecting cycle time from CDC located at candidate site i∈ V1

In our model, customers bring to products to CDC transportation costs. As a result

of this, demand and return rates are affected negatively by the distance. The correlation

between demand and the distance travelled by the customer is defined by a parameter,

namely αij . In the same way, the return amount is correlated by distances travelled by

ELPO with a parameter, βij . According to the modification explained, the problem is

modelled as follows:

Π = max
∑
iεV1

∑
jεV2

P (Dje
−kP )xijαij +

∑
iεV1

∑
jεV2

(S −R)(Bj(1− e−bR)zijβij −
∑
iεV1

Fiyi

−
∑
iεV1

[
Aio

Ti
+ (
∑
jεV2

[(Dje
−kP )xijαijTi

hpi
2

+Bj(1− e−bR)zijβijTi
hri
2

])]yi
(3.4)

subject to:
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∑
i∈V1

xij = 1 ∀j ∈ V2 (3.5)

∑
i∈V1

zij = 1 ∀j ∈ V2 (3.6)

xij ≤ yi i ∈ V1 jεV2 (3.7)

zij ≤ yi i ∈ V1 jεV2 (3.8)

The objective function (3.4), labelled as Π, consists of mainly two parts to maximize the

total profit. The first part calculates the sum of the net profit resulting from selling new

products and gaining the residual value of the collected end of life products. The net profit

is found by multiplying the amount of total customers’ demand with optimum price P and

amount of total return with net unit gain. The amount of payment given by the company

as incentive should be discounted from the value of the used product. As a consequence,

net unit gain of company becomes (S − R). In our problem, amount of demand decreases

proportionally by price as (Dje
−kP ). Likewise, amount of return collected from ELPO in-

creases by incentive amount as (Bj(1− e−bR)).

Besides the pricing outcome, due to transportation responsibilities, demand and return

amounts are negatively affected by αij and βij parameters.αij and βij parameters are used

as:

αij =
1

1 + tij
iεV1 jεV2 (3.9)

same as:

αij = βij =
1

1 + tij
iεV1 jεV2 (3.10)

However, they can also be different without effecting the model.

The second part of Π (3.4) is named as inventory part and composed of the total cost

related to fixed ordering and inventory holding. EOQ model is used to determine optimum

ordering and holding cost, therefore all EOQ assumptions are valid in our model. The only

difference arises from the rate of demand and return which are not constant, instead pro-
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portional to price and incentive. Moreover, UFLP allocation constraints are valid for our

model. For allocation decisions, constraints (3.5) and (3.7) guarantee that each customer

has to be served by only one of the opened CDCs. With the same logic, constraints(3.6) and

(3.8) guarantee that each product holder has to be assigned to only one of the opened CDCs.

The formulation of the problem is a mixed integer nonlinear model (MINLP ). Location

of the CDCs and allocation decisions in the model is similar to the well-known uncapaci-

tated facility location (UFLP )which makes our problem NP − hard. Additional incentive

and pricing variables enlarge and complicate the model.

3.3 The computational Complexity of the Problem

The proposed model can be considered as combination of the three subproblems as: lo-

cation, pricing and inventory. One of the subproblems of our model is well known UFLP

problem and it is a widely studied location problem in literature. UFLP has all typical dif-

ficulties of mixed integer programming therefore it is NP-hard.(86). Since UFLP is known

as NP-hard, with additional inventory and pricing decisions, our model is also NP-hard.

Exact algorithms for this problem is analyzed in some papers (87). In the exact methods,

it is needed to count all possible solutions to get optimal results. Therefore, solving UFLP

even for small problem instances is a very difficult procedure to handle. As the size of

the problem (N) increases the solution space including both feasible and infeasible solution

increases as n!. If problem is a simple p-median problem, solution space becomes narrower

and the total number of combinations to select p facility out of N candidate location reduces

to:

N !
p!(N − p)!

=
(
N

p

)
(3.11)

Inventory management decisions in EOQ part result in a convex behavior and our model

returns to a mixed integer nonlinear programming (MINLP) and gets additional complexity.

Additionally, our model consists price(P) and incentive(R) decisions. Assuming the price
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of the new product and incentive of the used product offered to ELPO are bounded by a

pre-specified interval, the solution space contains

∑
p

∑
r

N !× p× r (3.12)

solutions. In such a big solution space, finding the optimal solution will be a very time

consuming task.

Because of the computational complexity, in this study, we develop three hybrid meta-

heuristics method to find near optimal solutions with small deviations in a reasonable time

interval as described in the next chapter.
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Chapter 4

SOLUTION METHODOLOGIES

In this section, all the solution methods are discussed to find the optimum values of de-

cision variables to maximize the total profit. As stated in Section 3.3, our model is strongly

NP-hard. The problem can not be solved with an exact algorithm in reasonable time limits.

For this reason, three different heuristic methods are developed to produce high quality

solutions in reasonable time limits.

Before discussing the proposed algorithms, to take an advantage, we reduce the number

of decisions variables in Π 3.4 by substitution method. This simplification is explained using

EOQ formulation as below

Observation:

Optimum cycle time of each CC is estimated by using EOQ formulation. To determine

the optimum cycle time, Ti, the first derivative of the objective function is derived with re-

spect to Ti and the cycle time of each CDCs is found in terms of other parameters as follows:

Ti =

√
2Aio∑

jεV2
[(Dje−kP )xijαijh

p
i + (Bj(1− e−bR))zijβijhri ]

(4.1)

Because of computational complexity, embedding Tis found from (4.1) in the objective func-

tion (3.4)provides advantage by reducing the total number of variables in the model. After

inserting the Ti’s into the objective, number of variables in Π reduces to three independent

decision variables P , R , yi and two dependent decision variables xij and zij . Finally, ob-

jective function takes a form as:
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Π = max
∑
iεV1

∑
jεV2

P (Dje
−kP )xijαij +

∑
iεV1

∑
jεV2

(S −R)(Bj(1− e−bR)zijβij −
∑
iεV1

Fiyi

−
∑
iεV1

√√√√2Aio

(∑
jεV2

((Dje−kP )xijαijh
p
i +Bj(1− e−bR)zijβijhri )

) (4.2)

According to 4.2, the behavior of P and R in Π is observed as follows showing a uni-

modular property.

Figure 4.1: Profit function vs P and R

4.1 Exact Methods

4.1.1 Commercial Solver

In order to see how an exact method performs on our model, we try to solve all test

instances with a commercial user. Therefore, we analyze our model with MINLP solver in

ILOG CPLEX 11.2 and set a time limit of 3600 seconds (1h) for each run.

4.1.2 Enumeration Method

For small problem instances, enumeration method can provide the global optimum by visit-

ing all feasible solutions. In the formulation of the model, xij and zij variables are dependent

to yi decision which means a customer can only be served or assigned by a CDC if the CDC

is opened. For this reason, when the number and location of the opened CDCs are known,
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it is optimal to assign each customer to the nearest CDC because of minimizing the trans-

portation cost. In our model, we assume that the capacity of CDCs are enough to hold all

products and returns collected from assigned customers. Therefore, we consider the alloca-

tion part of the model as in UFLP and it is feasible and also optimal to assign customers

to nearest CDCs.

In the enumeration method, all possible combination of yi arrays is examined and optimal

assignment matrix are constructed as xij and zij . After determining of the location and

allocation, all combination of price and incentive values, in a predetermined interval, is

tried and optimal values are found which maximize the total profit. For our problem size,

enumeration method can be applied only for 10x10 data sets. As number of customers and

potential facility locations increase, the solution space of our problem increases rapidly with

2n where n is the number of candidate CDC location sites.

Due to computational complexity, none of the exact methods solves our model in rea-

sonable time limits. To overcome this computational complexity, we develop metaheuristic

algorithms which is described in the next sections to find near optimal solutions. To claim

the applicability and efficiency of the heuristics, an upper bound is found for each test

problem. Upper bounds are calculated by using piecewise linearization method as a result

of nonlinear behavior of the model.

4.2 Piecewise Linear Approximation

Optimum cycle time of each candidate CDC are restructured in terms of price and incentive

values as seen in 4.1 and take a quadratic form. To deal with nonlinearity, which results

in extra complexity in the objective, we suggest to use piecewise linear approximation for

quadratic part of our model. By this way, we find a lower bound for inventory part and this

results to an upper bound for objective value.

There are possible approximation schemes depending on the number of segments used in

the piecewise linear functions. As the number of segments increases, the error resulting from

the approximation decreases. However, as the number of segments increases, the computa-

tional complexity also increases. Therefore, we consider the trade off between complexity
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Figure 4.2: Piecewise linear approximation scheme

and allowable error range.

The formulation and additional constraints of the piecewise linearization are as follows:

∑
iεV1

2Aio

(∑
jεV2

((Dje
−kP )xijαijh

p
i +Bj(1− e−bR)zijβijhri )

)
=

∑
kεN

wk × 2Aio

(∑
jεV2

((Dje
−kP )αijh

p
i +Bj(1− e−bR)βijhri )

) (4.3)

where;

wk ≤ vk + vk−1 ∀k ∈ K (4.4)

∑
k∈K

wk = 1 ∀k ∈ K (4.5)

∑
k∈K−1

vk = 1 ∀k ∈ K − 1 (4.6)
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w1 = v0 = 1 (4.7)

4.3 Metaheuristics Method

In literature Neighborhood Search, Tabu Search and Lagrangian Relaxation heuristics are

successfully applied for solving UFLP. Besides the similarities between our model and UFLP,

including the inventory part makes our model unique in literature. For this reason, we hy-

brid three well-known metaheuristic methods which are Simulated Annealing, Tabu Search

and Genetic Algorithm with Variable Neighborhood Search as a solution procedure in this

study and named as SAVNS, TSVNS and GAVNS.

All algorithms are composed of two nested loops. At the outer loop of our heuristic, we use

metaheuristic methods to find the best locations of CDCs that will be opened to maximize

the profit when decreasing the inventory costs. Location of the CDCs are also important for

customers whose demand and return rate are negatively affected by distance and the impact

is clearly observed on total profit. In the inner loop, the best price and incentive values

are searched within a bounded set by using nonlinear optimization gradient search methods.

Before describing the algorithms in detail,we explained the solution representation used

in all solution procedure below.

4.3.1 Solution representation

In the proposed algorithms, the optimum locations of opened CDCs (yi) are determined.Therefore,

a solution of yi is represented as a binary vector in which the ith entry shows the activity

position of the ith CDC. For example, the representation of a solution with possible CDC

locations i= 1, 2, 3, ... ,10 as [1, 0, 0, 1, 0, 0, 1, 0, 1, 1] denotes that the CDCs located in 1,

4, 7, 9 and 10 are selected to established CDCs and all customers have to be satisfied with

these 5 centers.

4.3.2 Proposed SAVNS Algorithm

Simulated annealing algorithm is one of the the most popular local search metaheuristic

because of being easy to implement, having powerful convergence properties and allowing
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downhill moves in order to escape from local optima. Using the basic principles of thermo-

dynamics, it searches global optimum for discrete optimization problems based on a random

local search technique.

In the proposed hybridization, Simulated Annealing algorithm is embedded in Vari-

able Neighborhood Search algorithm. VNS causes explorative search and diversification

by swapping between different neighborhood structures. In algorithmic framework, VNS

changes a little bit due to the fundamental idea of SA in which the solution can be ac-

cepted even its objective function value is worse than the current solution to avoid being

trapped in local maxima. Basically, SA is memoryless which means the neighborhood is

created depending only on the current solution in given neighborhood structure. In each

iteration, within a defined neighborhood structure, the best solution is sought. Possibility

of accepting a nonimproved solution depends on a special probability function based on

”Boltzmann” distribution. The optimization of the model is based on Physical Annealing

analogy. Temperature of the system reduces in each step to reach thermal equilibrium.

The cooling rule is appropriately selected with the aim of tuning the balance between di-

versification and intensification. When the algorithm stops, i.e termination conditions are

met, the best solution found so far within the previous neighborhood is moved to the next

neighborhood. The next neighborhood should also yield progressive diversification of the

search. Therefore, good strategies should be used carefully to exploit different properties

and characteristics of search space.

The proposed SAVNS algorithm steps are as follows:

Notation:

yo: the initial solution of yi array with dimension as |V1|,

y: the current solution of yi array ,

yiter: the best solution of yi array in the iteration

y∗: the best known solution for yi array,

fy: total profit gained by location array y.

nonimpK : number of consecutive nonimproved solution in neighborhood K.

maxnonimpK :maximum allowable number for consecutive nonimproved solution in neigh-
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borhood K.

iterK :iteration number in neighborhood K.

maxiterK :maximum allowable number iteration in neighborhood K.

Algorithm 1: SAVNS

Inputs:Dj , Bj , Ai, Fi, hpi, hri, αi,j , k, b.

0 : Select a cooling schedule, initial temperature To, final temperature Tf ,
the set of neighborhood structures N(K) for K = 1, ..,Kmax.
1 : Set f(y∗) = 0 .
2 : Generate initial solution yo. � Initialization
3 : y← yo.
4 : Construct xi,j and zi,j

5 : Determine optimal P and R values by using exhaustive search.
6 : Calculate f(y).
7 : f(y*)← f(y) and y* ← y. � Initialization ends
8 : Set k=1.
9 : while (K < Kmax) do
10 : Set iterK = 0 and nonimpK = 0.
11 : while (iterK < maxiterK) and

(nonimpK < maxnonimpK) do
12 : Construct N(y).
13 : Find yiterε N(y) as with the optimal P and R values

using exhaustive search.
14 : δ = f(yiter)− f(y∗).
15 : if( δ > 0) do
16 : f(y*)← f(y) and y*← y.
17 : nonimpK = 0
18 : K = 1.
19 : else
20 : Generate random n uniformly in the range (0,1).
21 : if(n < exp(−δ/T )) do
22 : f(y*)← f(y) and y*←y.
23 : end if
24 : nonimp+ +
25 : end if
26 : Update T depend on cooling schedule.
27 : end while
28 : K++;
29 : end while

Output: Return the incumbent which serves maximum profit found by the algorithm for given
instance as f(y*), y*,optimal P and R values.

Initial Solution

For the proposed model, initial solution is generated randomly within the candidate

location sites. The upper bound of the number of opened nodes (CDC) is not restricted.

However, to satisfy the demand of all customers, in other words not to violate the demand

constraints, it is ensured that at least one CDC must be opened in initial solution and this
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facility serves all customers because it can produce and ship unlimited quantities of the

commodity.

Neighborhood Structure

The neighboring solutions are generated applying combinations of add, drop or swap

moves to current solution. The proposed SAVNS has three neighborhoods to visit different

solution spaces. In the first neighborhood, as a move operator,we apply 1-0 exchange to

current solution. In other words, an add move which opens node i if the node is not opened

or a drop move if the node is opened is assigned to the current solution. By changing

the status of ith coordinate, n different solutions are visited. The second neighborhood is

composed of changing status of two randomly selected coordinates simultaneously,i.e ap-

plying twice 1-0 exchange in the same iteration. Neighborhood is generated by applying

a predetermined number of 1-0 exchanges to two randomly selected nodes. Finally,in the

third neighborhoods, status of randomly selected three nodes are changed by applying 1-0

exchange to them. All neighborhood in SAVNS provide different solutions and they are

arranged adequately in terms of diversification manner.

Cooling Schedule

Cooling schedule designates the reduction in the rate of temperature and it is important

for the success of SA. Keeping rate of nonimproved solution acceptance high or low at

the beginning is one of the most critical decision for SA. Moreover, deciding the trend

of temperature reduction is related to whether demanding diversification or not in search

space. To compromise, various schedules are tried as linear, exponential and hyperbolic

ones. The formulation of these schedules used in experiments are as follows.

Notation:

i:cycle that the algorithm runs within

ti =temperature of cycle i

to =initial temperature

N :maximum cycle number
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Figure 4.3: SAVNS neighborhood move operators

To observe the effect of linear reduction, the following cooling schedule is used:

ti = to − i×
to − tN
N

(4.8)

This cooling schedule reduces the temperature in each step by decreasing it with a fixed

value ∆t = to − tN/N . In other words, linear cooling schedule has same rate of cooling

through the search.

To observe the effect of temperature reduction as exponentially, the following cooling

schedule is used:

ti = to × exp
− 1

N
to
tN

) (4.9)
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This cooling schedule spends less time at higher temperatures. It decreases at lower

temperatures rapidly and spend more time in there.

Additionally, we use an hyperbolic cooling schedule using a function as follows:

ti =
to − tN

2
x(1− tanh(

10 ∗ i
N
− 5)) + tN (4.10)

If we compare the Eqn. 4.9 and 4.10, Eqn.4.10 spends more time at higher temperatures,

decrease gradually and spends less time in lower temperatures.

All the schedules described above balance between diversification and intensification of

the search space. For example, at the beginning of search, the reduction might be rapid

and then show a behavior being nearly constant in order to make the algorithm converge

to a local maximum at the end of search.

The initial and final temperatures are also adapted to particular problem instances.

Termination Criteria

In the proposed algorithm, we use two different stopping criteria. The first one is the

maximum number of iterations allowed in a neighborhood. This number should be adjusted

according to the size of the neighborhood. The second one is the maximum number of

allowable iterations that incumbent solution does not improve. Both criteria are used at

the same time and reaching one of them is enough to terminate the current neighborhood

and to move to the next one. In each neighborhood, the allowable number of non-improved

solutions determined again with respect to the size of the neighborhood. Non-improved

solutions are accepted to allow diversification and escape from local maxima. However, new

neighborhood begins with a solution that is the best solution in the previous neighborhood

up to now. In other words, best found solution is also kept in each neighborhood when

allowing to move toward a worse solution.

The flow chart of the SAVNS algorithm is given in Figure 4.8
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Figure 4.4: Linear Cooling Schedule

Figure 4.5: Exponential Cooling Schedule

Figure 4.6: Hyperbolic Cooling Schedule

Figure 4.7: Various Cooling Schedules used in SAVNS Algorithm
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4.3.3 Proposed TSVNS Algorithm

Tabu Search algorithm implements an explorative search by using the history to escape

from local maxima. In the proposed algorithm, we embed TS into VNS algorithm. This

hybridization helps the solutions trapped at a local optima and allow it to visit larger neigh-

borhoods with systematical change. Deterministic search is used to expand neighborhoods

by finding the best neighbor of incumbent solution in sequential order. Basically, VNS

jumps from the incumbent solution to a new one if and only if a better solution has been

found and does not forbid any moves. However, Tabu Search employs tabu restrictions to

prevent visiting earlier selected solutions throughout the iterations. In tabu list, short term

memory is implemented to keep track of most recently visited solutions. At each iteration,

the best solution which has the maximum profit is sought by applying local search within

allowed set in the current neighborhood. Then, the best solution is added to the tabu list

and one of the solutions that were already in the tabu list is removed in a FIFO order.

Thereafter, the search continues around the best solution. When the termination criteria

are met, the algorithm stops and the best solution found so far within the previous neigh-

borhood is moved to the next neighborhood the same way as SAVNS.

Notation:

yo: the initial solution of yi array with dimension as |V1|,

y: the current solution of yi array ,

yiter: the best solution of yi array in the iteration

y∗: the best known solution for yi array,

fy: total profit gained by location array y.

nonimpK : number of consecutive nonimproved solution in neighborhood K.

maxnonimpK :maximum allowable number for consecutive nonimproved solution in neigh-

borhood K.

iterK :iteration number in neighborhood K.

maxiterK :maximum allowable number iteration in neighborhood K.
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Algorithm 1: TAVNS

Inputs:Dj ,Bj ,Ai,Fi,hpi,hri,αi,j , k, b.
0 : Select tenureK , the set of neighborhood structures N(K) for K = 1, ..,Kmax.
1 : Set f(y∗) = 0 .
2 : Generate initial solution yo. � Initialization
3 : y← yo.
4 : Construct xi,j and zi,j .
5 : Determine optimal P and R values by using exhaustive search.
6 : Calculate f(y).
7 : f(y*)← f(y) and y*← y. � Initialization ends
8 : Set k = 1.
9 : Set iterK = 0, nonimpK = 0, tabulistK = 0. 10 : while (K < Kmax) do
11 : while(nonimpK < maxnonimpK) do
12 : Construct N(y).
13 : Find yiter ε N(y) as with the optimal P and

R values i using exhaustive search.
14 : Calculate f(yiter).
15 : if(f(yiter) ≤ f(y∗) do
16 : nonimpK + +
17 : if(nonimpK ≥ maxnonimpK) do
18 : K++
19 : Set nonimpK+1 = 0, iterK+1 = 0, tabulistK=0.
20 : end if
21 : Control tabulistK .
22 : Select the best y that is not flagged as tabu.
23 : f(y*)← f(y) and y* ← y
24 : Update tabulistK . 25 : else
26 : Control tabulistK
27 : Select the best y that is not flagged as tabu
28 : f(y*)← f(y) and y∗ ← y.
29 : Update tabulistK .
30 : end if
31 : end while
32 :end while
Output: Return the incumbent which serves maximum profit found by the algorithm for given
instance as f(y*), y*,optimal P and R values.

Initial Solution

For TSVNS, initial solution is again constructed randomly as in SAVNS.

Neighborhood Structure

To find the best neighborhood structure, we compare three different neighborhood struc-

tures for TSVNS. The first structure has two neighborhoods. In the first neighborhood, as

in SAVNS algorithm, 1-0 exchange is applied to current solution and all possible neighbors

are visited. The number of opened facilities increases or decreases by one with the help of

1-0 exchange. The second neighborhood structure is composed of 1-swap moves. 1-swap

move relocates a closed facility with an opened one in the current solution. All pairs of

candidate locations that generate a different solution from current one is visited through
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the local search to change the sequence of the facility positions. The possible neighbors

that provide the same order i.e.if both of the candidate locations in a pair are opened or

closed, are prevented to visit in the proposed algorithm. By this way, each solution in a

neighborhood assures a different combination of the opened CDCs. This heuristic is named

as TSV NS2NS .

The second structure ,TSV NS2NL, is like the TSV NS2NS . It also has 2 neighborhoods

and the first neighborhood establishment and move is same with TSV NS2NS as 1-0 ex-

change. However, in the second neighborhood, 3-swap moves relocates the 3 consecutive

facilities. All 3 combinations of current solution are visited in this neighborhood, therefore

second neighborhood size is much bigger than the second neighborhood of TSV NS2NS .By

the 3-swap moves, the number of opened facility number remains constant, however, loca-

tions of the opened facilities change.

Unlike TSV NS2NS and TSV NS2NL, the third structure is composed of three neigh-

borhood and named as TSV NS3N . The first two neighborhood is same with TSV NS2NS .

However, in the third neighborhood, twice 1-0 exchange is applied to the current solution.

By this way, unlike the others, the number of opened facilities can be increased or decreased

by two.

Tabu definition

When a facility, named as facility i, is involved in obtaining a new solution which can either

be added or removed, ith node position can not be changed again for a certain number of

iterations, i.e.labeled as tabu moves and will not be allowed for a certain number of iterations

such as the size of tabu tenure. Using dissimilar neighborhood structures result in keeping

tabu restrictions in different ways. In the 1-0 exchange type moves, keeping the one node

position, the exchanged, is sufficient as tabu move. In the second kind of neighborhood, a

pair of different positioned coordinates are swapped. The coordinates resulting in the best

solution in the whole neighborhood are labelled as tabu moves and in tabu list, the pair of
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coordinates are kept. Therefore, the 1-swap move using the coordinates used previously can

not be applied until they are non-active in tabu list. Recency-based memory is used in

the TS heuristic which forbids moves towards the most recent visited solution. Size of tabu

tenure is also selected according to the problem size.

Aspiration Criteria

Aspiration criteria are algorithmic devices that cancel the status of a move and allow to

revisit the solution even though this move is restricted by the algorithm. We also use the

classical aspiration criteria of allowing a move even if it is tabu, if it results in a solution

which provides a profit value better than the incumbent one.

Termination Criteria

One of the most difficult decisions in the proposed algorithm is to determine the termination

criteria. Like SAVNS, we use two termination criteria at same time as maximum number

of iterations and the maximum number of allowable non-improved solution.

The flow chart of the TSVNS algorithm is given in Figure 4.10
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4.3.4 Proposed GAVNS Algorithm

Unlike the trajectory methods discussed above as Simulated Annealing and Tabu Search,

Genetic algorithm is a population based method which deals with a set (i.e. a population) in

every iteration of algorithm rather than with a single solution. Studying different and a lot of

solutions at the same time explores the search space and results in a parallel random search

with centralized control. As the name of the algorithm suggests, the sexual reproduction

inspire the algorithm which combines two parent strings into an offspring. Each parent,

or actually named as chromosome, represents a solution of the problem. Combination

of the genes form the chromosomes and N combinations of the chromosomes generate a

population. Biological evolution operators, mainly crossover and mutation are used to

create a new generation from current population. Selection of new population depends

on their fitness values. Fitness values are calculated upon the objective values of the

chromosomes. As we observe in the nature, the creatures, which adapt themselves to the

changing environmental conditions, are more likely to survive compared to others. This

also holds for the Genetic Algorithm with solutions of higher fitness values having greater

probability to get selected in the next generation. Integrating the VNS into GA also causes

diversification in search space of each neighborhood by changing the formation of new

generations while affecting the crossover and mutation structures. As mentioned in previous

algorithms, in each iteration within a defined neighborhood structure, we firstly generate

the offsprings (i.e new generation) using genetic operators. Then, using fitness values of the

chromosomes a new population is selected deterministically. When the termination criterion

of one neighborhood is met, the algorithm jumps to next neighborhood to diversify and

explore the search space. Neighborhoods are designed in nested strategy and enlarges as

proceeded to the end of the algorithm.

Notation:

nonimpK : number of consecutive nonimproved solution in neighborhood K.

maxnonimpK :maximum allowable number for consecutive nonimproved solution in neigh-

borhood K.

iterK :iteration number in neighborhood K.
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maxiterK :maximum allowable number iteration in neighborhood K.

cp:crossover probability.

mp:mutation probability.

popsize:population size.
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Algorithm 1: GAVNS

Inputs:Dj , Bj , Ai, Fi, hpi, hri, αi,j , k, ba.
0 : Select popsize, crossover cpK and mutation mpK probabilities
k and b values,arrange neighborhood structures N(k) as k = 1, .., k′max4 according to
numnonimpiterk.
1 : Generate an initial population of size popsize. � Initialization
2 : while (numiter < maxiter) and
(nonimp < maxnonimp) do
3 : Construct xi,j and zi,j matrix for each individual
4 : Determine optimal P and R values for each individual by using exhaustive search.
5 : Compute f(y) for each individual and find the best individual as y* and f(y*)
6 : if (nonimpK < maxnonimpK) do
7 : for(popsize/2) do
8 : Select two parents randomly
9 : Generate cp randomly (cp=U[0,1])
10 : if( cp > cpK) do
11 : Recombine the two parents depends on

crossover operator of neighborhoodK .
12 : else
13 : Duplicate the two parents as offsprings 14 : end if
15 : end for
16 : for(popsize) do
17 : Generate mp randomly for each offspring (mp=U[0,1])
18 : if( mp > mpK) do
19 : Mutate the offspring depends on

mutation operator of neighborhoodK .
20 : else
21 : Keep the offspring as unchanged
22 : end if
23 : end for
24 : Construct matingpool from parents and offsprings
25 : for(popsize*2) do
26 : Construct xi,j and zi,j matrix for each individual in matingpool
27 : Determine optimal P and R values for each individual by using exhaustive search.
28 : Compute f(y) for each individual and find the best individual as yiter and f(yiter)
29 : if( f(yiter > f(y∗)) do
30 : Set nonimpk = 0.
31 : else
32 : Set nonimpk = nonimpk + 1.
33 : if(nonimpk >= maxnonimpk) do
34 : Set k = k + 1.
35 : end if 36 : Set nonimpk = nonimpk.
37 : end if
38 : end for
38 : Construct the new generation according to

fitness values.
39 : iter = iter + 1.
40 : end if
41 :end while
Output: Return the incumbent which serves maximum profit found by the algorithm for given
instance as f(y*), y*,optimal P and R values.

Initial Population Generation

A population of individuals are created randomly from candidate solutions. Generation

of initial population is really important in order to find better solutions. Sometimes, ini-
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tial population can be found by other heuristic methods to reach more quickly to global

optimum rather than using a random start. However there is a possibility to get trapped

in premature convergence, therefore we construct the initial population randomly. Another

important decision for starting GA is adjusting the population size. Population size should

be determined according to the size of the problem at hand. If population size is too small,

the algorithm may not explore enough. On the other hand, a large population can cause a

highrate of changein population and prevent to concentrate on better solutions.

Crossover Operators

In molecular biology and genetic, offsprings are generated by crossover which exchanges

genetic information between parents to transfer the best gene that they inherently have. In

molecular biology and genetics ,crossover is made in order to generate offsprings by exchang-

ing genetic information between parents. Instead of move operators in SA and TS, GA uses

crossover and mutation operators. The crossing over provides mechanism for transferring

the characteristics of parent chromosomes to their offspring. It is hoped that some of the

offsprings will be produced through properly selected crossover operations and will have

the best characteristics of the parents, and that will most likely to be retained for further

generations.

Similarly SAVNS and TSVNS, three different crossover operators are used to visit different

solution spaces in GAVNS and diversify the search. In the first neighborhood, uniform

crossover mask is generated randomly as the same length of the chromosomes. Parts of

chromosome or namely parents, to be exchanged is determined by the mask. The offspring1

is produced by taking the bit from parent1, if the corresponding mask bit is equal to 1, or

taken from parent2 if the corresponding mask is equal to 0. After the crossing over, two

offsprings will be created from mated parents.

In the second neighborhood, 1-point crossover is applied to mated parents in which parents

are cut from a randomly selected position and their chromosome strings are swapped from

their tails. By this way, two offsprings are generated and partly similar to their parents.

In the third and last neighborhood 2-point crossover is used. The pair of parents’ chro-
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mosomes are cut from the randomly selected two point and the middle segments of the

parents’ strings are swapped. Different crossover probabilities are tried during the tuning.

If crossover probability of the mated parents is less then the set value, in other words, if

crossover is not applied, the selected parents are duplicated in order to generate the two

offsprings.

The working manner of these crossover operators can be seen in Figure 4.11, 4.12 and 4.13.

Mutation Operators

Mutation operator changes one or more genes value in a corresponding chromosome and

results in a new one. Like crossover operators, in GAVNS, we apply different mutation op-

erators to different neighborhoods. After applying crossover, some genes of offsprings with

small probability (i.e.mutation probability) are altered in order to diversify the search space.

For each offspring, a mutation probability is created randomly and determined whether it

undergoes a mutation or not. If randomly generated probability is less than the mutation

probability of the neighborhood in which the algorithm runs, the offspring is exposed to

mutation.

The solution representation , also chromosomes, are composed of binary genes. There-

fore, flip-bit operator is suitable for GAVNS. In the first neighborhood, a random number

is generated between 1 and n, and that much of randomly selected gene status are ex-

changed from ”1” to ”0” or vice versa. In the second neighborhood, inversion mutation

technique is applied to the chromosomes which will be mutated. The sub-tour is selected

randomly. In the third neighborhood, head and tail of the chromosome is changed from a

randomly selected gene position. The mutation probability of the neighborhoods increases

so as to diversify the search space by the end of the algorithm to escape from local maximum.

The working manner of these mutation operators can be seen in Figure 4.14

Formation of the next generation

After the generation of mating pool, the chromosomes that will form the next generation

is selected according to their fitness value. As fitness value, we use the total profit that can
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be generated by the chromosome. The survival of the chromosomes depends on the selec-

tion strategy used through the algorithm. In literature, three different selection strategies

as fitness ranking, tournament selection and roulette wheel selection are described as follows:

Fitness Ranking (FR):

FR sorts the individuals according to their fitness values and selects the parents having

best fitness until the pool is full. By this way, next generation is composed of only strong

individuals and this may lead to premature convergence.

Tournament selection (TR):

Similar to fitness ranking, TR selects the individuals by generating tournament between

randomly selected two individuals and copied the better (winner) one to the pool. The

difference between TR and FR is that while TR compares only two individuals, FR compares

all the individuals’ fitness values. Randomizing in TR provides divergency in the algorithm.

Roulette wheel selection(RWS):

Unlike FR and TR, RWS creates next generation with a stochastically selection process.

In this process, fittest individuals will tend to have a greater chance of survival than weaker

ones and form the mating pool for the next generation. In other words, fittest individu-

als has larger share of the roulette wheel. Size of the population is equal to the number

of times the roulette wheel spanned. The individuals are sorted according to their fitness

values and based on the randomly selected point, an individual is selected to form the next

generation. After each selection, the probabilities are calculated again in order to provide

greatest chance to fittest individuals among remaining.

Through the GAVNS, the population of next generation is selected in enlarged sampling

space using roulette wheel selection. Enlarged sampling space is composed of both parents

and offspring and the basic idea of selection depends on the fitness values. Parents and

offsprings are ranked according to their chance of competing for survival and this creates

their fitness values in population. Using roulette wheel selection, we give a small chance to
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weakest individual to be selected therefore prevent the risk of premature convergence. The

flow chart of the GAVNS algorithm is given in Figure 4.15
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Termination Criteria

Like SAVNS and TSVNS, we use two termination criteria at same time as maximum num-

ber of iterations and the maximum number of allowable non-improved solution.
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Figure 4.8: Flowchart of the SAVNS Algorithm
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Figure 4.9: TSVNS neighborhood move operators
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Figure 4.10: Flowchart of the TSVNS Algorithm
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Figure 4.11: Crossover operation using crossover mask

Figure 4.12: 1-point crossing over operation
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Figure 4.13: 2-point crossing over operation

Figure 4.14: Mutation operators
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Figure 4.15: Flowchart of the GAVNS Algorithm
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Chapter 5

COMPUTATIONAL STUDIES

In this chapter, computational experiments are examined to analyze the performance of

proposed hybrid heuristics in terms of the solution quality and computation time. In Section

(5.1) and (5.2.1), we describe how the test instances are generated and parameters are set.

Then, in Section(5.3), results of the computational experiments are given and finally, in

Section (5.4), results are discussed in detail.

5.1 Data Generation

Because our model has not been studied before, we generate new test instances in varying

problem sizes and parameter values. To generate a test instance, we need the parameters

mentioned in (3.2)as: demand and return rate of each customer location, respectively Dj

and Bj , fixed ordering cost and fixed operation cost of each candidate CDC, Ai and Fi,

transportation cost between potential CDC sites and customers, tij , unit holding cost of

product and return (hpi)and (hri), the multiplicative price and return constant k and b. In

the test bed, there are 32 test instances of varying sizes as ixj=(10x10),(50x50),(100x100)

and (200x200) where i is the number of candidate CDC sites and j is the number of customer

zones. In all test instances, the customer zones are used as candidate location for poten-

tial CDCs. In original test data, the demand of each customer is generated using discrete

uniform distribution in the interval [0,300]. Return amounts of each customer is correlated

with demand of the customer with formula B=D*U [0,1]. Fixed ordering and operation

costs for each candidate CDCs are generated using discrete uniform distribution between

[500,1000] and [1000,10000] respectively. Distance between CDC and customer locations

are generated using a continuous uniform distribution between [0,3]. (hpi) and (hri), are

set as 0.5 and 0.25, respectively, and assumed as constant for all candidate CDC locations.
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Table 5.1: Parameter setting for original test data

Parameter Abbreviation Value

Demand rate Dj U [0;300]

Return rate Bj D*U [0;1]

Fixed Ordering Cost Ai U [500;1000]

Holding Cost of product at location i hpi 0.5

Holding Cost of return at location i hri 0.25

Fixed Operating Cost Fi U [1000;10000]

Distance tij U [0;3]

In order to understand the effect of the parameters used in data generation, 7 different

instances are created for all problem sizes. In this procedure, while creating an instance,

we change only one parameter value and use same data for all remaining parameters as in

theoriginal setting. In Table 5.2, the varying parameters and their generation rule are given.

Table 5.2: Parameter setting for different test instances

Instance Changed parameter Abbreviation Value

a Demand rate Dj U [0;600]

b Return rate Bj Da*U [0;1]

c Fixed Ordering Cost Ai U [1000;2000]

d Holding Cost of product at location i hpi 1

e Holding Cost of return at location i hri 0.25

f Fixed Operating Cost Fi U [2000;20000]

g Distance tij U [0;6]

The other algorithm specific parameters are explained in following sections.

5.2 Parameter Settings for the Algorithms

One of the main difficulties of applying an heuristic algorithm is setting the parameter

values correctly. The parameter setting is critical, because it controls the balance between

diversification and intensification in the search area. In this section, in order to observe the

best performance of three hybrid metaheuristics, specific parameters and their final values

are given with the methodology used through the parameter tuning. We select a special

test instance for each problem size, named it as ”original”, and use it through the tuning.
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Moreover, through experiments, discrete values of parameters are used when searching the

best value of each parameter.

5.2.1 Parameter Settings for SAVNS

Basically, the parameters of the Simulated Annealing algorithm is initial and final temper-

ature values, cooling schedule, maximum iteration and maximum non-improved iteration

numbers. Throughout the tuning experiments, the parameters are initially set as follows:

Table 5.3: Initial value of parameters in SAVNS

To 100

Tf 0.01

cooling schedule linear cooling schedule in Eqn4.8

maximum iteration number (N) 100

maximum number of consecutively nonimproved solution 25

To allow almost free exchange in neighboring solutions and to heat system rapidly, To

value should be selected high enough. To decide the best, we examined the effects of four

different temperature values for each population size. We tested the following temperatures

as initial temperature shown in Table 5.4.

Table 5.4: Candidate values used as To for SA

Problem Size Candidate Initial Temperature Values

10x10 100, 500, 1000 ,5000

50x50 100, 500, 1000 ,5000

100x100 100,500,1000,5000

200x200 100,500,1000,5000

The effects of different To’s according to problem size can be seen in Table 5.5. Each

value presented in Table 5.5 are averaged over 30 experiments with the selected case as

Tf=To/4,To/2,To/10 and 0,01.

By observing the effects of initial temperatures on objective value, it can be easily seen

that when To increases, the performance of the SAVNS increases. Hence, we set To as 5000
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Table 5.5: Preliminary test results for To and Tf setting

Tf = To/2 Tf = To/4 Tf = To/10 Tf = 0.01
Problem Size To Result Runtime Result Runtime Result Runtime Result Runtime

10x10

100 23451.80 0.90 23519.41 0.58 23451.80 0.59 23519.41 0.88
500 23519.41 0.67 23519.41 1.10 23519.41 1.04 23519.41 0.63
1000 23519.41 0.75 23519.41 1.16 23519.41 0.88 23519.41 0.77
5000 23519.41 0.60 23519.41 0.61 23519.41 0.74 23519.41 0.69

50x50

100 181945.56 5.86 181033.94 6.12 182261.32 4.63 180738.95 4.11
500 181608.23 3.26 181268.96 4.25 181119.88 4.24 181434.48 4.94
1000 181429.45 5.60 182101.96 5.76 181127.65 5.07 182560.95 3.82
5000 182703.67 3.54 182180.08 5.41 181616.70 4.33 182703.67 3.54

100x100

100 421863.48 18.17 422104.33 22.16 422110.47 22.19 420410.39 512.91
500 421537.84 23.72 421849.36 16.51 421995.38 18.12 422130.04 555.93
1000 422071.14 15.67 422090.46 15.88 421658.85 25.09 420467.98 588.51
5000 422071.14 15.67 422090.46 15.88 421658.85 25.09 420467.98 588.51

200x200

100 1726776.58 85.58 1726539.84 88.04 1725638.32 93.99 1727086.04 88.12
500 1726845.22 76.84 1726689.53 80.21 1727586.91 72.16 1726899.19 82.50
1000 1726773.02 86.70 1726671.46 71.09 1726676.82 80.37 1727542.45 95.67
5000 1727866.63 88.89 1727651.96 99.03 1726414.23 87.46 1728088.76 86.99

for all problem sizes.

On the other hand, the decrease in Tf does not effect significantly computational efficiency

or CPU time. As seen from Table 5.5 there is not purely a dominant Tf value, therefore,

when the number of iterations increases, to prevent the acceptance of non-improving moves,

we suggest to set Tf as 0.01.

Termination Criterion: As termination criteria, we use two bounds, the total number of

iterations performed and maximum number of consecutive iterations while the best solution

(incumbent) does not improve. To select the best values, both parameters are analyzed

based on the problem size. In Table 5.6, values used for tuning can be seen. Moreover,

the values presented in Table 5.6 are the average run times and average objective function

values of solutions obtained by the SAVNS algorithm over 30 experiments.
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From Table5.6 it can be easily observed that the increase in maximum iteration number

results in an increase on CPU time. However, increase in maximum iteration number does

not always provide better objective function values. When we focus on the results, the

most efficient and effective results are gained with max iteration number as 100 and max

nonimproved iteration number is 20.

5.2.2 Parameter Settings for TSVNS

As mentioned before, the parameters are initially set as follows in the experiments:

Table 5.7: Initial values of parameters in TSVNS

tenure 7

maximum iteration number (N) 100

maximum number of consecutively nonimproved solution 20

Determination of the tabu tenure is one of the most critical decision in TS because it

controls the memory of the search. While larger tabu tenure explores the search and avoid

to revisit high number of solutions, smaller ones cause algorithm to cycle. Therefore to

decide the best value as tabu tenure, different tabu sizes are examined for each problem size

as stated in Table 5.8

Table 5.8: Candidate Tabu Tenure values

Tenure size

problem size Neighborhood1 Neighborhood2

10x10 5, 10, 20 5, 10, 20

50x50 5, 10, 20 5, 10, 20

100x100 7, 15, 30, 50 7, 15, 30, 50

200x200 7, 15, 30, 50 7, 15, 30, 50

The effect of the different tabu tenures on solution quality and run time can be seen in

Table 5.9. The run time and objective values seen in Table 5.9are the output of the TSVNS

algorithm, averaged over 30 experiments for each problem size.
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Table 5.9: Preliminary test results for Tabu Tenure Setting

Problem Size tenure1 tenure2 Runtime Result

10x10

3 3 23519.41 0.04
3 5 23519.41 0.10
3 7 23519.41 0.07
5 3 23519.41 0.20
5 5 23519.41 0.08
7 3 23519.41 0.24
7 5 23519.41 0.32
7 7 23519.41 0.27

50x50

3 5 183031.57 3.06
3 7 183236.58 3.21
7 3 182683.49 4.51
7 5 182139.10 6.34
7 7 181140.46 5.25
7 15 181780.07 6.40
7 30 181229.68 7.29
15 7 182046.32 6.37
15 15 181728.42 7.21
15 30 180685.69 5.29

100x100

7 7 423692.31 102.83
7 15 423692.31 92.83
7 30 423714.74 82.52
7 50 423562.78 81.11
15 7 423638.98 94.39
15 15 423724.71 101.22
15 30 423871.39 100.57
15 50 423443.09 124.00
30 7 423726.09 100.48
30 15 423545.26 124.65
30 30 423797.55 114.56
30 50 423473.87 124.60

200x200

7 7 1730412.23 227.41
7 15 1729907.94 706.12
7 30 1729858.70 783.91
7 50 1729858.70 798.91
15 7 1730148.09 789.55
15 15 1730761.70 898.74
15 30 1731127.82 801.89
15 50 1730048.78 872.62
30 7 1729434.79 772.24
30 15 1730204.37 835.42
30 30 1731112.88 960.53
30 50 1730431.94 1021.72
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According to the observed results in Table 5.9,the best performances of tenure size are

achieved in terms of solution quality and CPU times for 50x50 problem size as 3 and 7 and

100x100 and 200x200 problem size 15, 30. For the problem size 10x10, neither smaller or

larger tenure effects the solution quality so we set the tenure as 3 and 7 for latter runs.

We observed that increasing tabu tenure size after a value does not produce better results

and increase the CPU time redundantly.

Two termination criteria are also used in TS like SA as the total number of iterations per-

formed and maximum number of iterations during which the incumbent does not improve.

Both values are examined according to the problem size as follows:

Table 5.10: Candidate values for Termination criteria

Neighborhood1 Neighborhood2

problem size max iteration max nonimp max iteration max nonimp

10x10 10,20,50,100 5,10,25 10,20,50,100 5,10,25

50x50 10,20,50,100 5,10,25 10,20,50,100 5,10,25

100x100 20,50,100 10,20,50 10,20,50,100 10,20,50

200x200 20,50,100 10,20,50 10,20,50,100 10,20,50

The effect of different termination criteria on solution quality and run time can be seen

in Table 5.11. Through the experiments, tabu tenures are selected as 7, 10, 20, 25 for

10x10, 50x50, 100x100 and 200x200 respectively and the maximum iteration number set in

Neighborhood1 and Neighborhood2 are 50 and 100 respectively.

By observing the effects of these different values, for smallest problem size(10x10) so-

lution quality is same for all termination value so we choose the value that results in the

smallest CPU time. Therefore, maximum iteration number is set as 10 for problem size

10x10 and we eliminate the second termination criteria. For 50x50, 100x100 and 200x200

problem sizes, maximum iteration and maximum nonimproved solution numbers are set as

50,5 ;50,10 and 50,10 respectively. Final parameter values of TSVNS are summarized as

shown in Table 5.13.
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Table 5.11: Preliminary test results for Termination Criteria

problem size max iteration max nonimp Runtime result

10x10

10 5 23519.41 0.138
10 10 23519.41 0.05
20 5 23519.41 0.088
20 10 23519.41 0.139
50 5 23519.41 0.067
50 10 23519.41 0.08
50 25 23519.41 0.092
100 10 23519.41 0.128
100 25 21861.35 0.155
100 50 23519.41 0.198

50x50

10 5 183107.26 2.12
10 10 182168.25 1.727
20 5 183200.401 2.32
20 10 182652.64 2.68
50 5 183237.64 1.97
50 10 183076.97 3.87
50 25 182020.54 4.47
50 50 181356.45 5.18
100 5 182124.58 1.65
100 10 181107.81 2.21
100 25 181764.14 4.491
100 50 181924.67 6.849

100x100

20 10 423418.83 32.451
20 20 422661.94 35.784
50 10 423684.24 56.509
50 20 422878.72 60.981
50 50 422399.50 66.714
100 10 422177.53 59.88
100 20 422969.19 67.38
100 50 422924.94 75.51

200x200

20 10 1729680.55 367.46
20 20 1727753.97 402.93
50 10 1730287.33 515.89
50 20 1729242.14 554.44
50 50 1729237.84 603.91
100 10 1727694.44 495.01
100 20 1728014.44 510.76
100 50 1727271.85 604.59

Table 5.12: Final values used as termination criteria for TAVNS

Neighborhood1 Neighborhood2

problem size max iteration max nonimp max iteration max nonimp

10x10 10 - 10 -

50x50 50 5 50 5

100x100 50 10 50 10

200x200 50 10 50 10
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5.2.3 Parameter Settings for GAVNS

For parameter tuning, the parameters are initially set as follows:

Table 5.13: Initial value of parameters in GAVNS

population size 20

pc 0.9

pm 0.1

max iteration 20

max nonimp 10

For all problem sizes, 3 different population sizes are applied with 20, 40 and 80 chro-

mosomes. In other words, like many other parameters, we do not specify the population

size according to problem size.

Performance of the Genetic Algorithm also depends on the crossover probability (pc)

and mutation probability (pm), therefore these parameters have to be chosen carefully. To

decide on the best pc, 0,50, 0.65, 0.8, 0.95 and 1.0 are tried for all problem sizes. The effect

of different pc and pm on solution quality and run time can be seen in the Table 5.14 and

Table 5.15.

According to the observed results in Table5.14,the best pc performances are achieved in

terms of solution quality and CPU times with 0.95 for all problem sizes.

To decide on the best pm, values of 0.001, 0.01, 0.1, 0.2 and 0.5 are analyzed for all

neighborhoods. The effect of different pm on solution quality and run time can be seen in

Table 5.15.

According to the observed results in Table 5.15, the best pm performance are achieved

in terms of solution quality and CPU times with 0.2 for all problem sizes.

Termination Criterion Setting:

Like SA and TA, two termination criteria are also used in GA as in the total number of
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Table 5.14: Preliminary test results for pc

Problem Size pc Result Runtime

10x10

0.5 23316.58 2.19
0.65 23451.80 2.83
0.85 23451.80 2.04
0.95 23451.80 2.98
1.00 23326.85 2.34

50x50

0.5 1183130.37 42.94
0.65 183160.87 45.21
0.85 183168.59 39.83
0.95 183205.05 46.61
1.00 183109.68 47.52

100x100

0.5 423588.12 307.73
0.65 423632.07 322.37
0.85 423672.54 305.74
0.95 423787.81 347.08
1.00 423597.71 309.72

200x200

0.05 1730597.90 1373.60
0.65 1730487.71 1155.15
0.85 1730844.51 1296.53
0.95 1731026.99 1068.11
1.00 1730277.76 1177.57

Table 5.15: Preliminary test results for pm

Problem Size pm Runtime Result

10x10

0.001 22556.66 2.34
0.01 22710.22 2.88
0.1 23316.58 1.72
0.2 23519.41 1.84
0.5 23519.41 1.63

50x50

0.001 183191.74 42.98
0.01 183087.22 49.46
0.1 183095.46 42.11
0.2 183087.22 49.46
0.5 183191.74 42.98

100x100

0.001 423588.75 325.50
0.01 423530.85 370.24
0.1 423519.45 348.05
0.2 423631.21 355.80
0.5 423643.64 376.52

200x200

0.001 1730230.59 1091.88
0.01 1730000.99 1086.94
0.1 1730449.62 1061.66
0.2 1730581.21 1073.66
0.5 1730255.47 1056.72
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iterations performed and maximum number of iterations during which the incumbent does

not improve. For each problem size, effects of different values can be seen in Table 5.16.
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According to the observed results in Table 5.16, the best performance are achieved

in terms of solution quality and CPU times with maximum iteration number as 20 and

maximum non-improved solution number as 10 for 10x10 problem sizes. For other sizes,

maximum iteration number is set as 100 and maximum non-improved solution number is

set as 20.

5.3 Results of Computational Experiments

In this section, we explain the results of our numerical experiments with hybrid metaheuris-

tics. We compare the results of proposed algorithms with upper bounds in terms of solution

quality and tabulate run times.

5.3.1 Computational Platform

All of the runs throughout the computational experiments are performed on a workstation

with an Intel(R) Core(TM)2 Duo processor, 2.53 GHz speed, and 2GB of RAM. All of the

metaheuristic algorithms are coded in C. Furthermore, the relaxed model used to find upper

bound is solved in ILOG CPLEX 11.2.

For smallest problem size, 10x10, using MINLP with CPLEX, optimal solutions are

found as follows:

Table 5.17: For 10x10 problem size, the optimal results found by CPLEX

Size Test instance Result Runtime

10x10

original 23519.40 308.2
a 87284.17 323.5
b 27641.52 317.9
c 23256.74 347.1
d 23259.04 326.0
e 23500.86 340.2
f 16995.80 321.7
g 18380.83 330.8
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5.3.2 Upper Bounds

Due to the failure of exact computational methods when solving large sized instances, we

use an upper bound UB, to compare the quality of the solutions obtained by proposed

heuristic algorithms mentioned in Section 4.3.2, Section 4.3.3 and Section 4.3.4. The upper

bound is found by the methodology explained in Section 4.2.

In the specified time limit (3600sec.), the upper bounds found by the CPLEX are given in

Table 5.18.

Table 5.18: Upper bound of the test instances found by GAMS

Probleminstances
problem size original a b c d e f g
10x10 24683.85 90963.20 28591.24 23894.67 23981.70 24002.84 17369.71 18729.88
50x50 188510.69 520122.24 216820.17 189383.67 185394.06 189413.56 177989.11 189329.55
100x100 433186.42 981370.48 473590.26 427155.79 436440.43 438301.26 420677.67 302250.39
200x200 1830315.01 2263992.50 2040801.80 1886922.29 1882225.57 1918459.91 1834869.32 1852555.39

5.3.3 Performance Indicator Parameters

We use two different parameters to measure the performances of the proposed heuristic

algorithms as deviation from upper bound and computational time.

Deviation from Upper Bound

For each problem instance, the percentage deviation of objective function values from upper

bounds is used as one of the performance indicator parameter. The average magnitude of

deviations are calculated as follows:

%averageUBdeviation =

n∑
i=0

UB −Objectivevalue
UB

n
(5.1)

where n represents the number of replication done for each problem size.
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Computation Times

In literature, another performance indicator parameter is the average computation time,

therefore for making comparison and discussion, average computation times are also con-

sidered.

In the following, we conduct the results and performance indicator parameters of all test

problems in Table 5.19, Table 5.20 and Table 5.21.
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5.4 Analysis of the Results

According to the results presented in Table 5.22, Table 5.23 and Table 5.24 the most effective

and efficient algorithm seems to be Tabu Search Algorithm hybridized with VNS for all

problem sizes. The detailed analysis can be seen as follows.

5.4.1 Analysis and comparison of SAVNS, TSVNS and GAVNS

According to Tables 5.19 and 5.22, it is observed that SAVNS outperforms the other heuris-

tic methods in terms of CPU time. On the other hand, from Table 5.22 we observe that

when the problem size increases, SAVNS is not as efficient as GAVNS and TSVNS in terms

of solution quality.

From Table 5.22, we observe that for n=10x10, SAVNS with the linear cooling schedule

(SAV NSLIN ) finds the best solutions 80 times out of 80 runs, whereas the SAVNS with

exponential cooling schedule (SAV NSEXP )and the SAVNS with hyperbolic cooling

schedule(SAV NSHY P ) finds the best solutions less than 80.(78 and 67 respectively)

The differences in results can be explained as follows. Temperature reduces gradually

in the linear cooling schedule, therefore, possibility of accepting a nonimproved solution

decreases gradually. However, in exponential cooling schedule, acceptance rate of a nonim-

proved solution decreases more rapidly, because the trend of schedule goes rapidly to lower

temperatures than linear schedule, since the probability function based on ”Boltzmann”

distribution restricts the approval of nonimproved solutions at lower temperatures. For this

reason, diversification of search is prevented. Unlike the exponential cooling schedule, the

hyperbolic schedule spends more time at higher temperatures. Therefore it has more chance

to accept a nonimproved solution at the beginning of the search. This extends the search

area and may direct to the far-optimal solutions in the rest of search.

Acoording to Table 5.22, the average runtime of SAVNS is less than a second whereas
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the average run time of TSVNS and GAVNS are 1.20 seconds and 5.19 seconds. Even

though, the average CPU time of TSV NS2NS and TSV NS3N are less than a second, the

average CPU time of TSV NS2NL is 3.26 seconds and increases the value on average. In

the same manner, when population size increases, CPU times increase for GAVNS. While

the GAV NS20 runs in 0.11 seconds on average, GAV NS60 runs 7.30 seconds on average.

According to average CPU times and results, TSV NS2NS and TSV NS3N outperforms the

other metaheuristics for n=10x10.

When we compare the optimum results found by CPLEX with TSV NS2NS and TSV NS3N ,

it is obvious that for n=10x10, TSVNS presents optimum results with much more smaller

runtime.

When the problem size increases to n=50x50; on average, the deviation between the

upper bounds and the average results of all instances found by SAVNS, increases to 3.81%.

When we compare the average results, SAV NSLIN still outperforms SAV NSEXP and

SAV NSHY P . While in SAV NSLIN , the average deviation from the upper bound is 3.71%,

SAV NSEXP and SAV NSHY P has the deviation 4.01%and %3.81. TSVNS gives 3.31%

deviation on average of all problem instances. In TSVNS, TSV NS3N has 3.16% deviation

on average and outperforms TSV NS2NS and TSV NS3N . On the other hand, GAVNS

gives 3.48% deviation on average. The increase of deviation for GAVNS comes from the

GAV NS20 and GAV NS60 as 3.55 % and 3.45% on average. The GAV NS40 runs with

3.44% deviation however it is still not enough to catch up the performance of TSVNS.

The average run time of SAVNS is 4.62 seconds on average. In TSVNS, TSV NS2NS

runs 3.20 seconds on average and has the shortest CPU time in all metaheuristics. The

average run time of TSV NS2NL and TSV NS3N increases to 130.91 seconds and 26.84

seconds respectively. The sharp increase on average run time of TSV NS2NL results from

the increase in neighborhood size. In TSV NS2NL, if the status are different, consecutive 3

facility status are changed, therefore, the increase in problem size affects deeply the average
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run time. The average run time of GAVNS is 254.87 seconds. While GAV NS20 runs 52.30

seconds on average, the average run time of GAV NS40 and GAV NS60 is 117.71 seconds

and 594.60 seconds respectively. It is easily observed that the increase in population number

linearly increases the average run time.

According to the results in terms of both deviation and average run time, TSV NS3N still

outperforms the other metaheuristics for n=50x50.

For n=100x100; the deviation from the upper bounds on average with SAVNS is 2.845%.

SAV NSLIN outperforms the SAV NSEXP and SAV NSHY P and has 2.731% deviation.

Like n=10x10 and n=50x50; TSVNS finds better solution and has 2.07 % deviation on

average for all problem instances. In TSVNS, the larger deviation from the upper bounds

results from TSV NS2NS as 2.21% on average. TSV NS2NL and TSV NS3N runs with

0.121% and 0.092% deviation on average. The GAVNS, like SAVNS, also does not run

as efficient as TSVNS. The average deviations from the upper bounds are 2.88%, 2.51%

and 2.84% for GAV NS20, GAV NS40 and GAV NS60, therefore on average GAVNS runs

with 2.74% error. The increase on population size does not result the better solution, for

n=50x50, GAV NS40 gives better results than GAV NS60.

The average run time of SAVNS is still shorter than TSVNS and GAVNS and it is 17.83

seconds on average. TSV NS2NSoutperforms TSV NS2NL and TSV NS3N in terms of CPU

time. While TSV NS2NS runs in 61.72 seconds on average, TSV NS2NL and TSV NS3N

run in 742.88seconds and 186.97 seconds on average. GAVNS is still the slowest algorithm

and the average run time increases to 680.51 seconds. The average run times of GAV NS20,

GAV NS40 and GAV NS60 are 358.81 seconds, 577.04 seconds, 1105.69seconds.

When we compare the SAVNS, TSVNS and GAVNS for n=100x100; TSV NS3N pro-

vides better results without much longer run times.

When the population size increases to n=200x200; the deviation from the upper bound

and run times increase a bit more for SAVNS. On average, SAVNS has 9.03 % deviation.
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The average deviation with SAV NSLIN is 8.98% whereas SAV NSEXP and SAV NSHY P

are 9.04% and 0.908% on average. TSVNS still outperforms SAVNS and GAVNS and

has 7.56% deviation on average. In TSVNS, the average deviations of TSV NS2NS and

TSV NS2NL are 7.84% and 7.42%. On the other hand, the average deviation from UB is

7.42 for TSV NS3N and still beats the others. GAVNS has 0.316% on average. The average

deviations of GAV NS20, GAV NS40and GAV NS60 are 8.58% 8.75% 0.254% respectively.

Even though, the average run time of SAVNS increases to 89.48seconds, it is still faster

than TSVNS and GAVNS. In SAVNS, the faster algorithm is SAV NSHY P and runs in

95.74 seconds on average. SAV NSLIN and SAV NSEXP run in 88.05 seconds and 84.65

seconds on average. TSV NS2NS runs in 568.82 seconds on average, while TSV NS2NL and

TSV NS3N run in 9697.76 seconds and 12547.75 seconds on average. GAVNS is still the

slowest algorithm and average run time reaches to 5704.75seconds. From Table 5.21 the

results show that the problem is getting harder and being time consuming as problem size

increases. In GAVNS, the average run time of GAV NS20, GAV NS40and GAV NS60 are

1069.75 seconds, 2028.44 seconds and 8098.57 seconds respectively.

Throughout all the experiments and analysis, the results presented above indicate that

the TSVNS, especially TSV NS3N ,is competitive with GAVNS for n=10x10 and outper-

forms all others for n= 50x50, 100x100 and 200x200. Run times presented in Tables 5.19-

5.21 also support the efficiency of the TSVNS algorithm.

5.4.2 Effect of Parameters on test instances

To examine the effect of the parameters on data generation, we create 7 different problem

instances. In these instances, we keep all parameters constant except the one whose effects

are analyzed. In each instances, the effect of parameter change on the solution can be seen

for 10x10 and 50x50 in the Figure 5.1 and 5.2.

In instance ”a”, we concentrate on the demand rate. When the demand rate is dou-
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Figure 5.1: Location of the opened CDC for problem size 10x10

Figure 5.2: Location of the opened CDC for problem size 50x50

bled, the result increases more than twice for n=10x10 and n=50x50. Also, the number of

opened facilities increases in instance ”a”. The opened facilities in the original case are still

opened, moreover, new facilities are used to served the customers. But when the problem

size increases, the effect of the doubled return rate decreases. For n=200x200, the doubled

return rate can not double the profit on average.

In instance ”b”; the return rate is doubled by keeping the demand rate constant. Unlike

instance ”a”, the increase on the results is not doubled. This explains that the effect of

return rate on the total profit is much smaller than the demand rate effect. In instance ”b”,

the number of opened facilities and locations remain the same with the original case.
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In instance ”c”; the fixed ordering costs are doubled on average. However, the results

remain nearly constant. Like instance ”b”; the results present that the effect of the doubled

fixed ordering cost on total profit is not so big as doubled return rate. When we analyze

the facility status, the number of opened facilities number and locations are the same with

the original case.

In instance ”d” and ”e”; the holding cost of products and returns are doubled. However,

like instance ”b” and ”c” the results remain constant. Like instance ”b”; the results present

that the effect of the doubled fixed ordering cost on total profit is not so big as doubled

return rate.When we analyze the facility status, the opened facility number and location

is same with the original case. When we compare the effects of hpi and hri, it is observed

that the effect of hpi is more on total profit.

In instance ”f”; the fixed operation costs(F) are doubled on average. For n=10x10, the

results decrease nearly 70% from the original case. However, when the problem sizes are

larger, the effect of ”F” decreases on total profit.

Finally, in instance ”g”; the transportation costs are doubled on average. Like instance

”f”; the results decrease nearly 80% for n=10x10. Again, when the sizes are larger, the

effects of the transportation costs are smaller.

From the results of all the experiments, according to our generated data, the change on

demand rate affects the profit more than any other parameter.
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Chapter 6

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

6.1 Conclusion

Growing environmental awareness leads to increase the number of scientific publications in

the field of reverse supply chain. In this thesis, we study on a mixed integer location and

pricing model for closed loop supply chain. The differentiating aspect of our model is that

the pricing and location decisions are done simultaneously while optimizing the total profit.

Under the name of pricing decision, differently from the literature, optimum incentive value

of a return is also analyzed. The model is strongly NP-hard and was not studied in the

literature before.

We provide three hybrid metaheuristic algorithms to solve the model. The most well-

known three metaheuristics, Simulated Annealing, Tabu Search and Genetic Algorithm are

hybridized with Variable Neighborhood Search and named as SAVNS, TSVNS and GAVNS.

We generate new data set for our new model that can be used in further studies. To eval-

uate the effects of the parameters used in the data set, we provide different types of test

instances with different problem sizes.

Using different neighborhood structures, we study with wider neighborhoods and we

compare the performances of the SAVNS, TSVNS and GAVNS. Since the optimal solution

is not found by using any commercial program like GAMS, we try to find an upper bound

to measure the quality of the solutions. Using a linearization technique for inventory part

of the model, we achieve the upper bounds by the help of commercial solver, GAMS.

Our computational study shows that the TSVNS gives better result than SAVNS and
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GAVNS in terms of revenue gained for all instances. Despite of the fact that the run time

of SAVNS is slightly shorter than TSVNS, the deviation of SAVNS from the best found

solution is larger than TSVNS.

The success of TSVNS may resulted from the following factors: Firstly, TSV NS3N finds

better results than other metaheuristic methods. The different neighborhood structure (3-

swap) found in TSV NS3N creates a wider neighborhood. Consequently, the extensive

solution space can be searched and the algorithm has more chance to find a better solution

without being trapped. Secondly, accepting a nonimproved solution strategy in TSVNS

is more systematic than SAVNS. SAVNS decides any rejection with a random probability,

TSVNS choose the solution by controlling the history.

Despite of the complexity of the model, TSVNS gives better results in terms of solu-

tion quality and runs fast. For this reason, the proposed algorithm yields a viable solution

method and can be used in real life problems.

6.2 Future Research

6.2.1 Exact Method Development

As mentioned in the previous section, the model has not been found in literature before and

ia strongly NP-hard. For this reason, an exact method may be time consuming for solving

the problem. However, a well-developed branch and bound algorithm may be proposed to

solve the problem at optimality.

6.2.2 Upper Bound Improvement

We analyze the effectiveness of any metaheuristic by comparing the average results with the

best found solution. Therefore, more effective upper bounds may be found using relaxation

techniques for further studies.
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6.2.3 Limitations to the Model

In our model, some characteristics of the real problem have not been considered such as

CDC capacity limits, multiproduct production, quality differentiation for return type and

uncertainty in demand and return rate. For further studies, the model may be extended to

cover these limitations.
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