
Dominance Rules for Three-Machine Flow-shop Scheduling Problem

With Unit Processing Times, Release Times and Chain Precedence

Relationships

by

Dogan Corus

A Thesis Submitted to the

Graduate School of Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Industrial Engineering

Koç University

August, 2012

ÖZETÇE

Akış tipi işlik problemleri, işlerin belirli bir sırayla makineleri ziyaret etmeleri gereken

çizelgeleme problemleridir. Bu tez üç makineli, birim işlem süreli, başlangıç zamanlı, zincir

yapılı öncüllük kısıtları olan akış tipi işliklerin en büyük geç kalma süresini enküçültmeyi

amaçlayan problemle ilgilidir. Her iş her makineda bir birim işlem görmektedir. şler verilen

başlangıç zamanlarından önce işleme başlayamaz. Her iş en fazla bir öncül ve bir ardıl işe

sahip olabilir ve işler öncüllerinin bütün işlemleri bitmeden işleme başlayamaz. Problemi

çözen kişinin amacı ise bütün işleri bitiş tarihlerine kadar tamamlamak, eğer gecikme olursa

da bütün işler içerisinde en fazla gecikenin gecikmesini en az hale getirmektir. Bu problem

hesaplama karmaşıklığı bakımından henüz sınıflandırılmamıştır.

Bu tezde yukarıdaki akış tipi işlik çizelgeleme problemi için polinom zamanlı bir algo-

ritma geliştirilmesi amaçlanmıştır. Problemin iki makineli benzeri ile ilişki kurularak olurlu

çizelgelerin bazı özellikleri belirlenmiştir. Yoğun zaman aralıkları incelenerek problemin

başlangıç zamanları ve bitiş zamanları olurlu çizelge dışlamayacak şekilde daraltılmıştır ve

bahsi geçen olurlu çizelge özellikleri polinom zamanlı algoritmalarla sağlanmıştır. özüm

için yeterli şartlar ispatlanmış ve bu şartları sağlayacak değişiklikleri yapması için polinom

zamanlı bir algoritma ispatsız bir şekilde önerilmiştir.

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my primary advisor,

Prof. Dr. Ceyda Oğuz whose sincerity and encouragement I will never forget. Her expertise

did not only accurately guide me to obtain the necessary knowledge of the field, but also

opened me various doors to extend the scope of this research. I also owe gratitude to

Dr. Emre Alper Yıldırım and Dr. Alptekin Küpçü, for their constructive and insightful

comments and for their time spent to read the thesis and give valuable comments for further

improvement. I would also like to thank to the kind people around me by stressing that it

would not have been possible to write this thesis without their help and support. Above

all, I would like to thank my family and friends. Their patience and encouragement have

provided me with the motivation I need to complete this thesis. And last but not the least,

I would like to deeply thank to Birce for always being there to drag me out of my misery.

ABSTRACT

A flow-shop problem is a scheduling problem where every job consists of a fixed number

of operations each of which to be processed on a different machine. The operations of each

job have to be processed in a fixed order, in other words every job visits the machines in the

same order. The problem of concern in this thesis is the three-machine flow-shop scheduling

problem with unit processing times, release times and chain precedence relationships. All

jobs have to spend unit time on each machine. The jobs are available to be initiated at

their release times. A partial order of jobs that allows at most one successor and one

predecessor for each job restricts the starting times so that every job can be initiated after

its predecessor is completed. Our objective is to construct a schedule that will minimize the

maximum lateness. The problem is currently open with respect to complexity classification.

In this thesis a polynomial algorithm to minimize the maximum lateness is sought for

the above flow-shop scheduling problem with unit processing times, release times and chain

precedence relationships. Several dominance rules for a feasible schedule are established

through the correspondence with the two-machine version of the problem. By considering

overloaded time intervals, given set of deadlines and release times are modified to find an

equivalent problem with the same set of solutions. Further dominance rules are presented

and shown to be achievable in polynomial time. Sufficient conditions for the solution are

proved and a polynomial time limited backtracking algorithm exploiting the above men-

tioned dominance rules is suggested for the problem without precise proof of completeness.

v

TABLE OF CONTENTS

List of Tables ix

List of Figures x

Nomenclature xi

Chapter 1: Introduction 1

1.1 Computational Complexity . 1

1.2 Complexity Classes . 3

1.3 Dominance Rules . 4

1.4 Scheduling Problems . 5

1.5 Outline of Thesis . 8

Chapter 2: Literature Review 9

2.1 Complexity Classes of Flow-shop Problems 9

2.2 F2|prec, ri, pij = 1|Lmax . 10

Chapter 3: Deadline Congestion 13

3.1 Dominance Rule . 13

3.2 Deadline Modification Algorithm (DMA) . 16

Chapter 4: Release Time Congestion 21

4.1 Dominance Rule . 21

4.2 Release Time Modification Algorithm (RMA) 22

4.3 Combining Deadline and Release Time Consistency 24

vii

Chapter 5: Disjunctive and Conjunctive Congestions 28

5.1 Dominance Rules . 29

5.2 Conjunctive Deadline Modification Algorithm (CDMA) 31

Chapter 6: Sufficient Conditions for a Feasible Solution 35

6.1 Proof of Sufficiency . 35

6.2 Disjunctive Deadline Modification Algorithm 37

6.3 Computational Evaluations . 40

Chapter 7: Conclusion 41

7.1 Contributions . 41

7.1.1 Dominance Rules . 41

7.1.2 Disjunctive Algorithm . 42

7.2 Future Research . 43

Bibliography 44

viii

LIST OF TABLES

2.1 List of NP-hard Flow Shop Problems . 9

ix

LIST OF FIGURES

1.1 Hierarchy of objective functions minimizing makespan Cmax, maximum late-

ness Lmax, sum of completion times
∑
Ci, sum of tardiness

∑
Ti, number of

late jobs
∑
Ui, sum of weighted completion times

∑
wiCi, sum of weighted

tardiness
∑
wiTi and sum of weighted number of tardy jobs

∑
wiUi 7

2.1 Type 1 congestion for two-machine problem 11

2.2 Type 2 congestion for two-machine problem 12

3.1 Type 1 congestion for three-machine problem 15

3.2 Type 2 congestion for three-machine problem 15

3.3 First deadline modification . 18

3.4 Second deadline modification . 19

3.5 Third deadline modification . 19

4.1 First release time modification . 23

4.2 Second release time modification . 23

4.3 Third release time modification . 24

4.4 Release time modifications after RMA . 25

4.5 Deadline modifications after DMA . 26

5.1 A conjunctive congestion . 30

5.2 First modification of CDMA . 33

5.3 Second modification of CDMA . 34

x

NOMENCLATURE

≺ Partial order of jobs

n Number of jobs

m Number of machines

s Number of stages in a pipelined processor

i, j, k, h Indices for jobs

xi ith variable in a combinatorial optimization problem

Di Domain of variable xi

C Set of constraints

c A single constraint

G Graphical representation of ≺

α|β|γ Three-field notation that specifies scheduling problems

F Flow-shop problems

prec Arbitrary precedence constraints

chains Chain structured precedence constraints

ri Release time of job i

pij Processing time of job i on machine j

Lmax Maximum lateness

Ji Job i

= Set of jobs

Si Starting time of job i

di Deadline of job i

intree Intree structured precedence relations

Cmax Makespan

xi

outtree Outtree structured precedence relations

Fm Flow-shop problem with m machines∑
Ci Sum of completion times∑
Ui Number of late jobs∑
Ci ∗ wi Sum of weighted completion times∑
Ti Sum of tardiness

r Beginning of a time interval

d End of a time interval

{ri} Set of release times

{di} Set of deadlines

(=,≺) A job system

S(i, r, d) The set of all jobs Jj (j 6= i) which have dj ≤ d and either r ≤ rj or Ji ≺ Jj

N(i, r, d) Number of jobs in S(i, r, d)

S′(i, r, d) The set of all jobs Jj (j 6= i) which have r ≤ rj and either dj ≤ d or Jj ≺ Ji

N ′(i, r, d) Number of jobs in S′(i, r, d)

S(i, j, r, d) The set of all jobs Jk (k 6= i ∧ k 6= j) which have dk ≤ d and either r ≤ rk or

Ji ≺ Jk or Jj ≺ Jk

N(i, j, r, d) Number of jobs in S(i, j, r, d)

{di}k Set of consistent deadlines obtained after modifying dk

{ri}k Set of consistent release times obtained after modifying dk

rhk Release time of hth job in release time set {ri}k

dhk Deadline of hth job in deadline set {ri}k

L An increasing list with respect to {di}

σ A schedule obtained by using list scheduling with respect to L

σ(Ji) Starting time of job i in schedule σ

t0 Largest positive integer less than σ(Ji) such that either no job is initiated at t0 or

the deadline of the job initiated at t0 is greater than di

U Set of jobs initiated at times t0 + 1, t0 + 2, . . . , σ(Ji)

xii

Chapter 1

INTRODUCTION

In this thesis a polynomial algorithm that minimizes the maximum lateness is sought for

the three-machine flow-shop scheduling problem with release times, unit processing times

and chain precedence constraints. A flow-shop problem in general is a scheduling problem

where every job consists of a fixed number of operations that each should be processed on a

different machine. The operations of each job have to be processed in a fixed order, in other

words every job visits the machines in the same order. Every operation must be processed

for a given processing time that might depend on the job and/or the machine however for

the problem of concern in this thesis the processing times are all equal to one. The jobs are

available from their distinct release times. A partial order ≺ of jobs that allows at most

one successor and one predecessor for each job restricts the starting times so that every job

can be initiated after its predecessor is completed. Our objective is to construct a schedule

that will minimize the maximum lateness.

1.1 Computational Complexity

Computational complexity is the quantitative measure of how much resource an algorithm

needs before completion. The complexity is measured, most commonly, in two different

dimensions, time and space. The basic notion behind computational complexity is best

illustrated via the Turing machine [11]. A Turing machine is the theoretical model of a

computer which has an infinite length of tape divided into cells one next to another and a

head which can read and alter the symbols on the tape one cell at a time. With a finite set

of symbols, once initiated with a blank tape, the Turing machine’s head reads the symbol

on the current cell, checks its internal state and, according to a fixed set of rules, alters

2 Chapter 1: Introduction

the internal state together with the symbol on the current cell and moves one cell to the

right or left. The machine halts when a predefined internal state and a current cell symbol

couple is reached. Since the rules can be set arbitrarily, it is possible to create a machine

that operates forever without halting but, even if the operation ever halts, two measurable

quantities can be observed. First is the number of moves made by the head, which is

called the time complexity since every move/read/write sequence is assumed to last a unit

time. The other is the number of different cells visited by the head, which corresponds to

the space complexity representing the amount of information stored during the operation.

Apparently, the time complexity is always at least as much as the space complexity since

at each step only one cell can be visited.

In a more practical sense, computational complexity is the number of simple arithmetic

operations (addition, multiplication, comparison, etc.) made and the size of the memory

needed for an algorithm to solve a given problem. The computational complexity of an

algorithm can be constant, which means that it completes in a constant number of the

steps regardless of the input. A simple and common example given for such an algorithm

is the one that determines whether a given number is divisible by two. Since it is only

the last digit of the number that is checked, the number of operations does not depend

on how large the given number is, therefore its time complexity is constant. However if

we consider the similar problem of determining whether a number is divisible by three, we

see that the complexity of the algorithm depends on the given number. That is because

when deciding on divisibility by three, the digits are added up and the number of addition

operations performed depends on the number of digits. Most interesting algorithms are

of at least linear complexity, since we generally at least want to read the whole input. If

the computational complexity is a function of the input size, conventionally only the term

that grows the fastest is used without any constant coefficient. For example if an algorithm

completes in 5n3 + 4n2 steps where n is the input size, it is said that the algorithm runs in

O(n3) time [5].

Since the number of necessary operations might depend on the order of certain possi-

bilities being checked, the computational complexity of an algorithm is based either on the

Chapter 1: Introduction 3

expected number of operations or the worst-case scenario where the right solution is always

at the last possible alternative checked.

1.2 Complexity Classes

With a quantitative measure on the performance of algorithms, a comparison between the

problems they solve is also possible and a measurable hardness for problems can be estab-

lished. Since an algorithm that requires less time to compute a given problem is preferable,

the problems can be classified according to the algorithm with least computational complex-

ity that can solve it. The problems that can be solved with algorithms of similar complexity

is said to form a“complexity class”.

One such complexity class is P , consisting of decision problems that can be solved by

polynomial time algorithms. Another class of problems that encompasses P is the class NP

which stands for“non-deterministic polynomial” and it includes all problems that can be

solved by a“non-deterministic Turing machine” in polynomial time. A non-deterministic

Turing machine is similar to a (deterministic) Turing machine except that it has multiple

alternative rules for a given symbol and an internal state tuple. The“non-deterministic

Turing machine” does not choose any of the alternatives but conducts all of them simul-

taneously, creating branches in the algorithm. Since it conducts all of the possible moves

simultaneously, the time complexity does not increase with each branch. In other words,

given a“certificate”, a set of choices among the alternative moves,“non-deterministic Turing

machine” can decide in polynomial time whether that certificate corresponds to a solution

for a problem in NP. It is apparent that any problem in P is also in NP but the more

challenging question is whether there are problems in NP that are not in P . To this day,

a proof for any problem in NP stating that it can never be solved by a polynomial algo-

rithm was not provided and this lack of proof is still one of the most prized mathematical

challenges in the world. However,“Cook’s Theorem” stated that any problem in NP can

be reduced to the “Satisfiability problem”, which is in NP itself, in polynomial time. This

means that if“Satisfiability problem” can be solved in polynomial time then all the problems

in NP can be solved in polynomial time and P =NP. By showing that Satisfiability problem

4 Chapter 1: Introduction

can be polynomially reduced to some other problems in NP, a complexity sub-class called

NP-complete problems consisting of the most difficult problems in NP is established.

Since the polynomial reduction is transitive, any problem that can be reduced in poly-

nomial time to an NP-complete problem is also NP-complete. This allowed an expansive

categorization of many combinatorial decision problems into NP-complete category which in

turn created the complexity class of NP-hard consisting of optimization versions of decision

problems which are NP-complete.

1.3 Dominance Rules

Every problem is characterized by a general description of its parameters and a statement of

what constitutes a solution for the problem. For example a“traveling salesman problem” is

characterized by the rules of the distance matrix and the definition of a Hamiltonian path.

Combinatorial optimization problems are defined by an n-tuple of variables (x1, x2, . . . , xn)

where each variable’s value belongs to a set Di, called the domain of xi, a set C of con-

straints on variables and an objective function z : D1×D2× . . . Dn → < which relates each

assignment to a real value. A combinatorial decision problem is almost always in class NP

since a non-deterministic Turing machine can represent every assignment of a combinatorial

optimization problem as a choice of moves that select certain values from a finite set.

A constraint belonging to C is a function c : ω = D1 × D2 × . . . Dn → P (ω) which

associates with ω a subset c(ω) ⊆ ω containing assignments satisfying the constraint. The

elements in c(ω) is said to be feasible with respect to constraint c and the complementary

set ω − c(ω) is said to be infeasible. The intersection of all c(ω) for all c ∈ C constitutes

the set of feasible solutions for the combinatorial optimization problem with constraint set

C. Each constraint in this sense provides a subset of solutions which allows the solver to

focus its attention in a smaller search space.

Dominance rules are an extension of constraints of a problem. A dominance rule provides

conditions under which certain potential solutions can be ignored. They can be considered

as inferred constraints that are not in the original description of the problem but must be

satisfied in a feasible solution. Similar to the constraints, dominance rules reduce the search

Chapter 1: Introduction 5

space and lead to an easier problem for a search algorithm that seeks a feasible solution.

There are small differences between various definitions of dominance rules in the litera-

ture. While in some cases a dominance rule is a rule which allows a set of infeasible solutions

to be omitted, in other cases it is a rule where a set of isomorphic solutions is rejected or

a subset of solutions which contains a subset of feasible solutions is chosen. In all these

cases, a dominance rule is used to eliminate uninteresting solutions or selecting interesting

solutions.

1.4 Scheduling Problems

Scheduling problems are combinatorial optimization problems which are characterized by

a machine environment, a set of jobs and an objective function. The objective is to find

a“schedule” with a set of start times that do not overlap, for each job and machine couple

that produces the best objective function value. The start times are restricted by the job

characteristics such as release times, setup times and precedence relationships. Release time

indicates the earliest time a job can be assigned to a machine. Precedence relationship is

an acyclic digraph G that has a vertex for every job and restricts a job j to start after the

completion of job i if the edge (i, j) ∈ G. The precedence relationships are further catego-

rized according to the characteristics of its representing graph G. The classes of precedence

commonly investigated in the literature are outtree, which allows a single incoming edge for

every vertex, intree which allows a single outgoing edge for every vertex, and chain which

allows at most one incoming and one outgoing edge for every vertex.

Machine environment defines the characteristics of the resources used for processing the

given jobs. Parallel machine problems involve multiple machines that can process any job.

Flow-shop problems consist of a set of machines that each job must visit in the same order.

Job shop problem generalizes the flow-shop and allows distinct routes for different jobs. A

relaxed version of job shop problems is the open shop problem where each job has a set of

machines to be visited but it is free to do it in any order.

A scheduling problem is further specified by the objective functions. One of the sim-

plest objective function is the completion time of the last job, also called the “makespan”.

6 Chapter 1: Introduction

With the addition of a new set of parameters called“deadlines” by which the jobs must be

completed, the lateness of a job is defined as the difference between the completion time

and deadline of a job. While minimizing the maximum “lateness” can be an objective func-

tion, “tardiness” which is the non-negative counterpart of lateness is also commonly used.

Minimizing the maximum lateness problem is always polynomially reducible to the problem

of finding a feasible schedule for a given deadline. More complicated objective functions

include minimizing weighted tardiness, sum of completion times and the number of late

jobs. A hierarchy of hardness among objective functions that is independent from the ma-

chine environment and job characteristics given given in Figure 1.1. In that hierarchy the

objective function in the bottom is the easiest and complexity increases as we go up the hi-

erarchy. The notation most commonly used for representing different scheduling problems is

the“‘three-field notation” which is written in the form α|β|γ. The α field gives information

about the machine environment, β field contains the characteristics of the jobs and γ field is

for indicating the objective function. The problem of minimizing the maximum lateness for

the three-machine flow-shop scheduling problem with unit processing times, release times

and chain precedence relationships is expressed as F3|chains, ri, pij = 1|Lmax in three-field

notation.

For a F3|chains, ri, pij = 1|Lmax problem with job set = = {J1, J2, . . . , Jn}, a feasible

schedule consists of start times Si for job set where Si ≥ ri, Si + 3 ≤ di and ∀(i, j) ∈

{1, 2, . . . , n} × {1, 2, . . . , n} if Ji ≺ Jj then Sj ≥ Si + 3 which means that every job must

wait for its predecessor to exit the third machine in the system. Even though a job that

completes its operation on a machine can initiate its operation on next machine in any later

time, every feasible schedule has another corresponding feasible schedule with no pause

between operations of the same job and such that no job completes at a later time than it

does in the original schedule. Because if we consider the first job in schedule that does not

initiate its operations right after another, we can see that there are no other available jobs

to be initiated at the omitted machine and the rest of the schedule will be no better than the

case where every operation is scheduled right after the completion of the previous operation

of the same job. Hence this problem and other flow-shop problems with unit processing

Chapter 1: Introduction 7

Figure 1.1: Hierarchy of objective functions minimizing makespan Cmax, maximum lateness
Lmax, sum of completion times

∑
Ci, sum of tardiness

∑
Ti, number of late jobs

∑
Ui,

sum of weighted completion times
∑
wiCi, sum of weighted tardiness

∑
wiTi and sum of

weighted number of tardy jobs
∑
wiUi

8 Chapter 1: Introduction

times can be analyzed as single pipelined (or multi-stage) processor problems with s = m

stages where m is the number of machines. In a pipelined processor setting, one job with

processing time s can be initiated at every time slot and a second job can start just after

the first one [2].

1.5 Outline of Thesis

This thesis contributes a set of dominance rules that are necessary or sufficient for a feasible

solution to the F3|chains, ri, pij = 1|Lmax problem. These dominance rules are then ex-

ploited by a proposed algorithm which outputs a set of deadlines which provides a feasible

schedule when a list scheduling algorithm is applied to them. The next chapter will consider

the complexity classification of flow-shop problems in the literature. In Chapter 3 a formal

definition of the dominance rules that are adjusted to three-machine environment will be

provided. Chapter 4 will cover other dominance rules. In Chapter 5 the reason why this

simple dominance rule yields a feasible schedule for two-machine problem while it is not

sufficient for the three-machine is discussed and an algorithm that exploits the dominance

rules to find a feasible schedule for F3|chains, ri, pij = 1|Lmax will be suggested.

Chapter 2

LITERATURE REVIEW

2.1 Complexity Classes of Flow-shop Problems

If we consider multi-stage single machine problems in the literature which are proved to

be NP-hard, we see that most of the reductions are dependent on the number of machines,

transportation or setup times which can take arbitrary integer values. In other problems the

objective functions are either weighted or hierarchically harder than Lmax. The easiest flow-

shop problems which are proved to be NP-hard can be seen in Table 2.1 with corresponding

works that establish their classification.

Table 2.1: List of NP-hard Flow Shop Problems

Problem Reference

F |intree, ri, pij = 1|Cmax [1]
F |prec, pij = 1|Cmax [8],[10]
F2|chains|Cmax [7],
F2|ri|Cmax [7]
F3||Cmax [6]
F |outtree, pij = 1|Lmax [1]
F2||Lmax [7]
F2||

∑
Ci [6]

F2|chains, pij = 1|
∑
Ci ∗ wi [9]

F2|chains, pij = 1|
∑
Ui [1]

F2|chains, pij = 1|
∑
Ji [1]

A polynomial time algorithm for F3|chains, ri, pij = 1|Lmax problem is noteworthy

since the complexity class of the problem is not determined and such an algorithm would

establish that the problem is in the class P . The problem F2|prec, ri, pij = 1|Lmax is in P

[2] while F |prec, ri, pij = 1|Lmax is NP-hard [10]. This means that F3|prec, ri, pij = 1|Lmax

sits at a critical point in problem hierarchy where a constant number of machines might

10 Chapter 2: Literature Review

still be the breaking point if proved to be NP-hard. Considering that it is in a sense

“closer”’ to the problems that are known to be in P , seeking a polynomial algorithm for

F3|prec, ri, pij = 1|Lmax is a better starting point for finding such a breaking point rather

than seeking a polynomial reduction that will yield an NP-hardness result. At this point,

the problem F3|chains, ri, pij = 1|Lmax which is still open and hierarchically easier than

F3|prec, ri, pij = 1|Lmax is the initial interest.

It should be noted that minimizing maximum lateness in polynomial time is possible by

using an algorithm that either provides a feasible schedule or proves that no such schedule

exists in polynomial time. With an algorithm that solves the decision problem in polynomial

time we can check whether there exists a schedule with zero maximum lateness. If there

exists no such schedule then we can add a constant c to all deadlines and check whether

there exists a feasible schedule which means that there exists a schedule for the original

problem such that the maximum lateness is less than c. Using a binary search to find

the smallest positive integer c that should be added to each deadline in order to achieve

a feasible schedule actually provides the minimized maximum lateness [4]. Because of this

property, in the remaining part of the thesis, our main concern will be finding a feasible

schedule for a given set of deadlines. Moreover, most (if not all) necessary rules of a feasible

schedule that will be discussed are valid for the arbitrary precedence constraints and for

problems with a fixed number of machines m since the main inspiration is that solution

of F2|prec, ri, pij = 1|Lmax that is given in [2] can be extended to problems with more

machines and the long term objective is to find a solution for F3|prec, ri, pij = 1|Lmax and

Fm|prec, ri, pij = 1|Lmax .

2.2 F2|prec, ri, pij = 1|Lmax

In [2], the deadlines given in the problem F2|prec, ri, pij |Lmax are modified through the

dominance rules that restrict the deadline of jobs around congested time frames. A con-

gested time frame is a time interval [r, d] in the scheduling horizon where the number of jobs

that are both released and must be completed during that interval is so large that other jobs

which are released before that interval and due in that interval must start before that inter-

Chapter 2: Literature Review 11

Figure 2.1: Type 1 congestion for two-machine problem

val begins. Figure 2.1 demonstrates a congestion for an instance of the F2|prec, ri, pij |Lmax

problem defined by the parameters:

{ri} = {0, 4, 4}

{di} = {6, 7, 7}

≺= {}

If we consider the interval [4, 7] we can see that for a feasible schedule J2 and J3 must

begin processing at 4th and 5th time slots in any order. In the figure, the white shaded jobs

are the ones that creates the congestion in the interval. Since this means that J1 cannot

start in times slots 4 and 5, there cannot be a feasible schedule where J1 completes in 6.

This allows us to reduce the deadline of J1 to 5 and obtaining an equivalent problem with

a more restricted solution space. Extension of this rule [2] proposes a second dominance

rule to modify deadlines. To illustrate this second rule, consider the problem in Figure 2.2

where the problem is characterized by the following parameters.

{ri} = {0, 2, 4, 4}

{di} = {5, 7, 7, 7}

≺= {(1, 2)}

12 Chapter 2: Literature Review

Figure 2.2: Type 2 congestion for two-machine problem

In this second example we see that the interval [4, 7] is not only occupied by the jobs

that are released and due in that interval but also by the jobs that succeed J1. With regards

to the previous dominance rule we discussed, since J3 and J4 must start in time slots 4 and

5, J1 can start at 3. But if we consider the implications of its successor J2, which will by

definition start after J1’s completion, J1 cannot complete at 5 or 4. Since if it does, not only

J3 and J4 but also J2 will be in the interval [4, 7], and obtaining a feasible schedule will be

impossible. The dominance rule inferred by this restriction, since we have to choose a job to

decide which other jobs create a congestion, requires a deadline modification algorithm that

searches the scheduling horizon and the job list to find triples (i, r, d) that allow deadline

modifications. In Figure 2.2 the chosen job is shaded with black so that it is distinguishable.

Chapter 3

DEADLINE CONGESTION

3.1 Dominance Rule

In this section the known results for m = 1 and s = 2 [2] are extended to the case m = 1

and s = 3. This mainly consists of a deadline inference scheme where a job’s given deadline

is decreased if any period of time between its release time and its current deadline has just

enough or more jobs that must start in that period. This consists of the jobs that are

released and must be finished in that period and the job’s successor.

The formal development here will follow [2]. Let (=,≺) be a job system with chain

precedence relationship, {ri} a set of positive integer release times, and {di} a set of positive

integer deadlines. The goal is to construct a feasible schedule for (=,≺) on three-machine

flow-shop environment(F3) or on the corresponding single multi-stage processor with three

stages (m = 1 and s = 3).

For any job Ji and integers r, d satisfying ri ≤ r ≤ di ≤ d; S(i, r, d) is defined to be the

set of all jobs Jj (j 6= i) which have dj ≤ d and either r ≤ rj or Ji ≺ Jj . Let N(i, r, d) denote

the number of jobs in S(i, r, d). Now an important rule necessary for a feasible schedule

which justifies certain deadline modifications can be stated and proved.

Lemma 1. Let (=,≺) be a job system with m = 1, s = 3, and σ be a feasible schedule.

Then for any job Ji and integers r, d satisfying ri ≤ r ≤ di ≤ d the following holds:

1) If N(i, r, d) = d− r − 2, then Ji must be completed by d−N(i, r, d).

2) If N(i, r, d) > d− r − 2, then Ji must be completed by d−N(i, r, d)− 2

Proof. 1) Suppose N(i, r, d) = d − r − 2 and let σ be any feasible schedule. Since all the

jobs in S(i, r, d) have deadlines that do not exceed d and s = 3, all jobs in S(i, r, d) must

start before d− 2. If all the jobs in S(i, r, d) start no sooner than r then Ji starts no later

14 Chapter 3: Deadline Congestion

than time r − 1 = d − N(i, r, d) − 3 and finishes no later than d − N(i, r, d). Otherwise

some job Jj in S(i, r, d) starts before r. By the definition of S(i, r, d), Ji ≺ Jj and thus Ji

is completed by r = d−N(i, r, d)− 2.

2) Suppose N(i, r, d) > d − r − 2. Then at least N(i, r, d) − d + r + 2 jobs in S(i, r, d)

start before r. By the definition of S(i, r, d), Ji precedes each of these jobs and thus Ji is

completed by time r − (N(i, r, d)− d+ r + 2) = d−N(i, r, d)− 2. �

Lemma 1 can be extended to any fixed number of machines by simply replacing −2

with −s + 1, s being the number of machines (or number of stages in pipelined processor

framework). As a consequence of Lemma 1, if N(i, r, d) = d− r− 2 and di > d−N(i, r, d),

then di can be set to d −N(i, r, d), or if N(i, r, d) > d − r − 2 and di > d −N(i, r, d) − 2,

then di can be set to d −N(i, r, d) − 2; and these changes will not alter the set of feasible

schedules. The instance in Figure 3.1 with the following parameters can illustrate the

congestion and the subsequent changes.

{ri} = {0, 3, 3}

{di} = {6, 7, 7}

≺= {}

Much like the case in two-machine problem, there are two jobs which are both released

and due in the interval [3, 7]. Since the operations takes 3 unit times to complete the jobs J2

and J3 must start either on time slot 3 or time slot 4 so that they can make their deadlines.

J1 in that scenario cannot initiate in any of those time slots and cannot be completed just

at its deadline. Since N(i, r, d) = 2 for i = 1, r = 3 and d = 7 which is equal to d− r − 2,

J1 must be completed by d−N(i, r, d) = 5 effectively reducing its deadline by one.

An example corresponding to the second part of Lemma 1 would be as the following

and shown in Figure 3.2.

{ri} = {0, 3, 4, 4}

{di} = {5, 8, 8, 8}

≺= {1, 2}

Like the two-machine counterpart, when the number of jobs in an interval is more than

that can be processed in the given time, the deadline modification is performed to ensure

Chapter 3: Deadline Congestion 15

Figure 3.1: Type 1 congestion for three-machine problem

Figure 3.2: Type 2 congestion for three-machine problem

16 Chapter 3: Deadline Congestion

that the successor in the interval can start before the time slot r. While the first part of

Lemma 1 pushes the deadline for the same amount in two-machine and three-machine cases,

a deadline change originating from the second part is larger for three-machine problem since

the successor must wait for the completion of the predecessor, not its initiation.

Following [2] we say that {di} and {ri} are internally consistent with respect to Lemma

1 whenever the following conditions hold for every job Ji ∈ = :

1. di ≥ ri + 3;

2. for every pair of integers r, d satisfying ri ≤ r ≤ di ≤ d

(a) if N(i, r, d) = d− r − 2, then di ≤ d−N(i, r, d);

(b) if N(i, r, d) > d− r − 2, then di ≤ d−N(i, r, d)− 2

Lemma 1 consistency is a necessary condition for a feasible schedule and its correspond-

ing condition in F2|prec, ri, pij = 1|Lmax is also sufficient for a simple list scheduling with

respect to deadlines giving a feasible schedule. The proof for that sufficiency will not be

provided here but the algorithm that is used to establish such consistency will be given in

detail. The motivation for this algorithm is to find a subset of the possible schedules that

does not exclude any feasible solution.

3.2 Deadline Modification Algorithm (DMA)

First we describe and discuss the preprocessing that must be done as described in [4]. The

first step is to sort and re-index the jobs so that r1 ≤ r2 ≤ . . . ≤ rn. Next we compute the

transitive closure of the partial order so that, in constant time, we can determine whether

or not Ji ≺ Jj , 1 ≤ (i, j) ≤ n. Then we perform the preliminary deadline and release time

modifications to ensure that di ≤ dk − 3 and rk ≥ ri + 3 whenever Ji ≺ Jk. After that

we initialize variable d to a value that exceeds the largest deadline. The algorithm then

proceeds as follows:

Chapter 3: Deadline Congestion 17

1. If any job Ji has di ≤ ri, halt (no feasible schedule is possible). If no job has a deadline

less than d, halt (the current deadlines are internally consistent). Otherwise set d to

the largest job deadline less than d and set i to the least job index for which di is less

than or equal to the new value of d.

2. Scan the job list to compute N(i, ri, d). Set COUNT ← N(i, ri, d), r ← ri, and k ←

least j such that rj = ri.

3. If COUNT = d − r − 2 and di > d − COUNT , set di ← d − COUNT and for each

Jj ≺ Ji whose deadline exceeds di − 3, set dj ← di − 3.

4. If COUNT > d− r− 2 and di > d−COUNT − 2, set di ← d−COUNT − 2 and for

each Jj ≺ Ji whose deadline exceeds di − 3, set dj ← di − 3.

5. If r ≥ di, go to Step 6. Otherwise increment k by 1 until either k > n or rk > r.

During this scan, decrease COUNT by one for each Jj (original k ≤ j < new k) which

is not a successor of Ji and which satisfies (dj ≤ d ∧ rj = r ∧ j 6= i). If k = n + 1 or

rk > di, set r ← di and go to Step 4. Otherwise set r = rk and go to Step 4.

6. Find the least j > i such that dj ≤ d. If such a j exists, set i ← j and go to Step 2.

If no such j exists and some job has current deadline d, go to Step 1. Otherwise halt

(no feasible schedule is possible).

The complexity of the above algorithm is bounded by O(n3). The full proof can be found

in [4] but a partial proof can be insightful. We must first denote that every triple {i, r, d} is

only considered once. Secondly to ensure that we do not miss any deadline modification, we

consider the loop structure where the values for d is selected in the outermost loop. We first

observe that the value of N(i, r, d) and the new deadline that might be imposed on job Ji

if N(i, r, d) ≥ d− r− 2 do not depend on the value of di itself. What concerns that specific

deadline modification is the value of N(i, r, d). Extra considerations of the triple (i, r, d)

cannot lead to modifications that were not made the first time that triple was considered

18 Chapter 3: Deadline Congestion

Figure 3.3: First deadline modification

as long as N(i, r, d) remains the same. Next, we observe that the value of N(i, r, d) changes

only when a job Jj with deadline dj > d has its deadline modified to be less than or equal

to d. However, dj can be so modified only when examining N(j, r, d) for some d ≥ dj > d.

As long as we consider values of d in decreasing order, all such modifications affecting the

value of N(i, r, d) are made before N(i, r, d) is examined. Thus we never need to consider a

triple {i, r, d} more than once when using our loop structure [4].

Now to illustrate the mechanics of the algorithm, let’s consider the following problem

instance:

{ri} = {0, 1, 1, 5, 6}

{di} = {4, 5, 6, 9, 9}

≺= {3, 4}

Since we start from the largest d and wit the job having smallest ri, the first congestion

that the algorithm encounters is the triple (3, 6, 9) (Figure 3.3). With the J3’s predecessor

in the interval, the value N(i, r, d) = 2 and N(i, r, d) > d−r−2 = 1. So J3 is pushed to 5 so

that J4 can start processing before 6. The second congestion (Figure 3.4)is (4, 6, 9) where

Chapter 3: Deadline Congestion 19

Figure 3.4: Second deadline modification

Figure 3.5: Third deadline modification

20 Chapter 3: Deadline Congestion

J4 is pushed back to allow J5 to begin processing at time slot 6. The last modification is

(Figure 3.5) for the triple (1, 1, 5) which was not visible with the initial deadlines of the

instance and emerged after the deadline of J3 is decreased. The deadline of J1 is set to 3

so that J2 and J3 can be completed in time.

Chapter 4

RELEASE TIME CONGESTION

4.1 Dominance Rule

Since Lemma 1 consistency is not sufficient to provide a feasible schedule, we will continue to

find other such rules that might allow us to limit the solution space. We can see that a similar

condition that restricts the release times can also be devised if we were to implement our

algorithm in a slightly modified manner. The lemma that establishes the second necessary

now can be established.

For any job Ji and integers r, d satisfying r ≤ ri ≤ d ≤ di; S
′(i, r, d) is defined to be

the set of all jobs Jj (j 6= i) which have r ≤ rj and either dj ≤ d or Jj ≺ Ji. Let N ′(i, r, d)

denote the number of jobs in S′(i, r, d). Now Lemma 2 which justifies certain release time

modifications can be stated and proved.

Lemma 2. Let (=,≺) be a job system with m = 1, s = 3, and σ be a feasible schedule.

Then for any job Ji and integers r, d satisfying r ≤ ri ≤ d ≤ di the following holds:

If N ′(i, r, d) = d− r − 2, then Ji must start after r +N ′(i, r, d).

If N ′(i, r, d) > d− r − 2, then Ji must start after r +N ′(i, r, d) + 2

Proof. 1) Suppose N ′(i, r, d) = d − r − 2 and let σ be any feasible schedule. Since all the

jobs in S′(i, r, d) have release times that are larger than r−1 and s = 3, all jobs in S′(i, r, d)

will complete after r + 2. If all the jobs in S′(i, r, d) finish no later than d then Ji finishes

no sooner than time d + 1 = N ′(i, r, d) + r + 3 and starts no later than N ′(i, r, d) + r .

Otherwise some job Jj in S′(i, r, d) finishes after d. By the definition of S′(i, r, d), Jj ≺ Ji

and thus Ji can only start after d = r + 2 +N(i, r, d).

2) Suppose N ′(i, r, d) > d− r − 2. Then at least N ′(i, r, d)− d+ r + 2 jobs in S′(i, r, d)

ends after d. By the definition of S′(i, r, d), Ji succeeds each of these jobs and thus Ji must

start after d+ (N ′(i, r, d)− d+ r + 2) = N ′(i, r, d) + r + 2. �

22 Chapter 4: Release Time Congestion

This lemma can be extended to m machine case as follows:

Let (=,≺) be a job system with m = 1, s = x, and σ be a feasible schedule. Then for

any job Ji and integers r, d satisfying r ≤ ri ≤ d ≤ di the following holds:

1) If N ′(i, r, d) = d− r − x+ 1, then Ji must must start after r +N ′(i, r, d).

2) If N(i, r, d) > d− r − x+ 1, then Ji must start after r +N ′(i, r, d) + x− 1

As a consequence of Lemma 2, if N ′(i, r, d) = d− r − 2 and ri < N ′(i, r, d) + r, then ri

can be set to N ′(i, r, d) + r, or if N ′(i, r, d) > d − r − 2 and ri > N ′(i, r, d) + r + 2,then ri

can be set to N(i, r, d) + r+ 2; and these changes will not alter the set of feasible schedules.

4.2 Release Time Modification Algorithm (RMA)

The algorithm that establishes the Lemma 2 consistency is fairly similar to our deadline

modification algorithm. It is practically the application of the deadline modification al-

gorithm to the corresponding problem where all the deadlines and release times are in-

terchanged, in the sense that r′i = max({di}) − di, d′i = max({di}) − ri and T ′i ≺ T ′k if

Jk ≺ Ti. The full algorithm is provided in the appendix. Following problem instance will

demonstrate how the algorithm works.

{ri} = {0, 0, 3, 4, 4}

{di} = {3, 4, 8, 8, 9}

≺= {3, 4}

Similar to DMA, release time modification algorithm considers triples (i, r, d) but since

the modifications will be made to release times, we start by the minimum release time

among all jobs in our outermost loop. Considering the jobs in decreasing order with respect

to their deadline, we start with J2 and move to J4 or J5 since their deadlines are the same.

Our first congestion is at the triple (4, 0, 4). Figure 4.1, Figure 4.2 and Figure 4.3 shows

the jobs in the congestions and release time modifications made in consecutive steps of the

algorithm in the order they are handled by the algorithm. Like the deadline modification

counterpart, congestions that are not initially apparent can arise as the algorithm runs its

course.

Chapter 4: Release Time Congestion 23

Figure 4.1: First release time modification

Figure 4.2: Second release time modification

24 Chapter 4: Release Time Congestion

Figure 4.3: Third release time modification

4.3 Combining Deadline and Release Time Consistency

For any job system (=,≺), deadline and release time modification algorithms are shown to

run in polynomial time. The algorithms’ main idea is to ensure that the Lemmas presented

hold for all deadline and release time values. Each algorithm makes the corresponding set

of parameters consistent without ruling out any feasible schedule. The question is whether

the application of release time modification algorithm can end with inconsistent deadlines

and vice versa. The doubt stems from the fact that a once consistent deadline value can

become inconsistent if a job which starts earlier is postponed by the release time modification

algorithm so that it becomes mandatory that it is initiated after our job. A similar problem

also arises for the once consistent release times after the deadlines force a job to be initiated

before another. A more elaborate example might be necessary for the illustration of this

issue.

Consider the instance with 13 jobs and following {ri},{di} and ≺.

Chapter 4: Release Time Congestion 25

Figure 4.4: Release time modifications after RMA

{ri} = {0, 3, 6, 0, 3, 6, 3, 2, 1, 0, 9, 9, 9}

{di} = {9, 12, 16, 9, 12, 16, 6, 5, 4, 3, 16, 16, 16}

≺= {{1, 2}, {2, 3}, {4, 5}, {5, 6}}

We can check that the deadlines are initially consistent but the release times are not.

During the release time algorithm first congestion is for triple (5, 0, 6) or (2, 0, 6) since their

deadlines are equal. This congestion moves r2 and r5 to the value of 4 since the time slots

0, 1, 2 and 3 are reserved for J10, J9, J8 and J7. A similar modification then occurs at the

next congestions for the triples (1, 0, 6) and (4, 0, 6). Since r1 and r4 are also moved to 4

their predecessors must start after 7. After the necessary release time changes are made

to comply with precedence relations, the new release times at the end of the release time

modification algorithm are (Figure 4.4):

{ri} = {4, 7, 10, 4, 7, 10, 3, 2, 1, 0, 9, 9, 9}

With the modifications in the release time now for the integers r = 9 and d = 16,

N(i, r, d) = 6 ∀i = {1, 4} since d − r − 2 = 5, deadlines of J1 and J4 have to be reduced

to 8 (Figure 4.5). This modification was not visible before the release time modification

26 Chapter 4: Release Time Congestion

Figure 4.5: Deadline modifications after DMA

algorithm ran its course.

As we can see in the example, the infeasibility which is not visible in the first application

of deadline and release time algorithms (in that order) becomes visible when we apply them

consecutively. However, unless a bound is set for how many times these algorithms must

be applied consecutively we cannot establish a bound on getting a problem consistent for

both Lemma 1 and Lemma 2.

Fortunately such a bound can be devised. If we consider any deadline or release time

modification move, we see that every time a deadline is modified, it means that all the jobs

in corresponding S(i, r, d) are to be initiated after job i. Now consider the changes done to

these jobs that constitute S(i, r, d), since we always decrease deadlines and increase release

times, we can say that none of those jobs (except for those that succeed job i which are

bound to be initiated after job i) will leave the set S(i, r, d) because of a deadline or release

time modification. So a new modification to job i will only happen when a job that is not in

S(i, r, d) or any other sets that caused a deadline modification to job i is set to be initiated

after i. Establishing a loose but sufficient bound is then possible since every job can have its

Chapter 4: Release Time Congestion 27

deadline modified in at most n runs of the deadline modification algorithm. Since the same

argument is valid for release time modification, release time and deadline modification can

be run at most O(n2) times before one of them completes without making any changes, thus

leaving a set of deadlines and release times that are consistent for Lemma 1 and Lemma 2.

For the rest of the thesis, the consecutive applications of release and deadline modification

algorithms until no change occurs will be referred to as ’Consistency Algorithm’ (CA).

Apparently Lemma 1 and Lemma 2 consistency, even when established simultaneously is

not enough for a feasible schedule. Example in the following chapter illustrates a job system

which is consistent but has no feasible solution.

Chapter 5

DISJUNCTIVE AND CONJUNCTIVE CONGESTIONS

Before contemplating on what is sufficient for a feasible solution, it is beneficial to

consider the similar problem F2|prec, ri, pij = 1|Lmax once again. We previously mentioned

that Lemma 1 consistency is sufficient for this problem but did not discuss why. Now

consider a problem F2|prec, ri, pij = 1|Lmax whose deadlines are Lemma 1 consistent and

suppose that there is a job that is late after we initiate them according to the earliest due

date rule. If there were no open time slots before the first late job it is obvious that the

first job initiated had to have its deadline reduced to a number less than the minimum

release time among all jobs. If there were an open time slot before our first late job, now

we can consider the job that is initiated just before that opening. The time slot remains

open in a list schedule either if there are no released jobs or the predecessor of the released

jobs is not complete. In a two-machine environment, we can clearly say that the job that

is initiated just before the open time slot must be the predecessor of such jobs that are

already released. So all the jobs initiated up until the late job create a congestion that

should push that predecessor job to an earlier deadline which means that it is late and

creates a contradiction by making it the first late job. Now the complexity of the three-

machine setup might be more apparent. In a similar case with three-machines, we cannot

say that the job that starts before the empty slot is the predecessor of all the released but

not initiated jobs since they can be also preceded by the job that is initiated two time slots

before the opening. However, another necessary condition can be stated that would solve

our problem and actually is sufficient for a feasible schedule by using the list scheduling.

Chapter 5: Disjunctive and Conjunctive Congestions 29

5.1 Dominance Rules

In this dominance rule we will determine what a more inclusive version of set S(i, r, d)

would imply about the di. By more inclusive, we consider building a new set of solution

with respect to a time interval that combines successors of two jobs instead of job. So

our notation will transform into S(i, j, r, d), and the implications of a congestion will affect

either Ji or Jj For any couple of jobs (Ji, Jj) and integers r, d satisfying ri ≤ r ≤ di ≤ d

and rj ≤ r ≤ dj ≤ d; S(i, j, r, d) is defined to be the set of all jobs Jk (k 6= i ∧ k 6= j) which

have dk ≤ d and either r ≤ rk or Ji ≺ Jk or Jj ≺ Jk. Let N(i, j, r, d) denote the number

of jobs in S(i, j, r, d). Now a lemma which justifies certain deadline modifications can be

stated and proved.

Lemma 3. Let (=,≺) be a job system with m = 1, s = 3, and σ be a feasible schedule.

Then for any couple of jobs (Ji, Jj) and integers r, d satisfying ri ≤ r ≤ di ≤ d and

rj ≤ r ≤ dj ≤ d, the following holds:

1) If N(i, j, r, d) = d− r− 2, then either Ji or Jj must be completed by d−N(i, j, r, d).

2) If N(i, j, r, d) > d− r− 2, then either Ji or Jj must be completed by d−N(i, r, d)− 2

Proof. 1) Suppose N(i, j, r, d) = d− r − 2 and let σ be any feasible schedule. Since all the

jobs in S(i, j, r, d) have deadlines that do not exceed d and s = 3, all jobs in S(i, j, r, d) must

start before d − 2. If all the jobs in S(i, j, r, d) start no sooner than r then neither Ji nor

Jj starts no later than time r− 1 = d−N(i, r, d)− 3. Otherwise some job Jk in S(i, j, r, d)

starts before r. By the definition of S(i, j, r, d), either Ji ≺ Jk or Jj ≺ Jk and thus either

Ji or Jj is completed by d−N(i, r, d) = r + 2.

2) Suppose N(i, j, r, d) > d−r−2. Then at least N(i, j, r, d)−d+r+2 jobs in S(i, j, r, d)

start before r. By the definition of S(i, j, r, d), either Ji or Jj precedes each of these jobs and

thus either Ji or Jj must be completed by time r−(N(i, j, r, d)−d+r+2) = d−N(i, j, r, d)−2.

�

Before establishing the concept of Lemma 3 consistency, a corollary must be added for

future use.

30 Chapter 5: Disjunctive and Conjunctive Congestions

Figure 5.1: A conjunctive congestion

Corollary 1. Let (=,≺) be a job system with m = 1, s = 3, and σ be a feasible schedule.

Then for any couple of jobs (Jk, Jj) and integers r, d satisfying rk ≤ r ≤ dk ≤ d, rj ≤ r ≤

dj ≤ d and N(k, j, r, d) ≤ d − r − 2, consider the two set of deadlines and release times

{di}k {ri}k and {di}j {ri}j, obtained by modifying the deadline of Jk and Jj to comply with

Lemma 3 respectively and then using CA to establish Lemma 1 and Lemma 2 consistency.

Then the following holds ∀ h ∈ {1 . . . n} :

1. rh = min {rhk, rhj},

2. dh = max {dhk, dhi}.

The above corollary refers to the fact that since either Jk or Jj will have to have their

deadlines reduced, coinciding deadline and release time changes can be implemented per-

manently. In Figure 5.1, disjunctive modifications are shown in blue while the conjunctive

modification which is the deadline change that occurs no matter which alternative is chosen

in disjunctive congestion, is shown in purple shaded green. Even if the actual values of

the new deadlines and release times are different, the modification that caused the smaller

Chapter 5: Disjunctive and Conjunctive Congestions 31

change holds for any feasible schedule. Moreover, all the deadlines can be modified in poly-

nomial time to comply with this corollary. The following algorithm only considers deadline

changes that can be made permanently and propagates them as it visits different congested

pairs sequentially.

5.2 Conjunctive Deadline Modification Algorithm (CDMA)

1. If any job Ji has di ≤ ri, halt (no feasible schedule is possible). If no job has a deadline

less than d, halt (the current deadlines are internally consistent). Otherwise set d to

the largest deadline less than d and set i and j to the least job index for which di is

less than or equal to the new value of d.

2. Scan the job list to compute N(i, j, rj , d). Set COUNT ← N(i, j, rj , d) r ← rj , and

set k ← least index k such that rk = rj .

3. If COUNT = d− r − 2 and di > d− COUNT and dj > d− COUNT :

(a) If(ri ≥ d−COUNT −2) ∧ (rj ≥ d−COUNT −2) then halt, no feasible schedule

is possible.

(b) If(ri ≥ d − COUNT − 2) XOR (rj ≥ d − COUNT − 2) set dk = d − COUNT

such that k ∈ {i, j} ∧ rk < d − COUNT − 2. Run DMA to achieve Lemma 1

consistency and perpetuate the new deadlines.

(c) If (ri < d−COUNT −2) ∧ (rj < d−COUNT −2) then store current deadlines,

set di = d − COUNT and run DMA to obtain {dk}i. Set all deadlines to their

stored values so that the other alternative can be evaluated, set dj = d−COUNT

and run DMA to obtain {dk}j . Once these two set of deadlines are obtained, set

all dk = max {dki, dkj}

4. If COUNT ≥ d− r − 2 and di > d− COUNT − 2 and dj > d− COUNT − 2:

(a) If (ri ≥ d−COUNT−4) ∧ (rj ≥ d−COUNT−4) then halt, no feasible schedule

is possible

32 Chapter 5: Disjunctive and Conjunctive Congestions

(b) If (ri ≥ d−COUNT −4) XOR (rj ≥ d−COUNT −4) set dk = d−COUNT −2

such that k ∈ {i, j} ∧ rk < d − COUNT − 4. Run DMA to achieve Lemma 1

consistency and perpetuate the new deadlines. If DMA returns infeasible, the

problem is infeasible.

(c) If (ri < d−COUNT −4) ∧ (rj < d−COUNT −4) then store current deadlines,

set di = d − COUNT − 2 and run DMA to obtain {dk}i. Set all deadlines

to their stored values so that the other alternative can be evaluated, set dj =

d−COUNT − 2 and run DMA to obtain {dk}j . Once these two set of deadlines

are obtained, set all dk = max {dki, dkj}

5. If r ≥ di or r ≥ dj then go to Step 6. Otherwise increment k by 1 until either k > n

or rk > r. During this scan, decrease COUNT by one for each Jh (original k ≤ h <

new k) which is not a successor of Ji or Jj and which satisfies (dh ≤ d ∧ rh = r ∧ h 6=

i ∧ h 6= j). If k = n + 1 or rk > di or rk > dj , set r ← min(di, dj) and go to Step 4.

Otherwise set r = rk and go to Step 4.

6. Find the least h > j such that dh ≤ d. If such a h exists, set j ← h and go to Step 2.

If no such h exists find the least h > i such that dh > d. If such a h exists set i← h

j ← h and go to Step 2. If no such h exists either and some job has current deadline

d, go to Step 1. Otherwise halt (no feasible schedule is possible).

Since every quadruple (i, j, r, d) is considered only once and at the worst-case DMA is called

for each quadruple, time complexity of CDMA is bounded by O(n7).

The following problem, which is consistent with respect to Lemma 1 and Lemma 2 is

actually infeasible and this infeasibility can be detected by conjunctive deadline modification

algorithm. In the first step of the algorithm (Figure 5.2), J1 and J2 are determined to be

in a disjunctive congestion over the time interval [10, 14]. Since either of them will have

their deadline to be decreased to 9, considering the interval [6, 9] the deadline of J10 must

be decreased to 8. In the second step of the algorithm (Figure 5.3) the job couple J5 and

J7 is in a disjunctive congestion over the interval [5, 8] and their modified deadline will be

Chapter 5: Disjunctive and Conjunctive Congestions 33

Figure 5.2: First modification of CDMA

7 which in turn pushes back the deadline of their predecessors J5 and J7 to 4. Since the

interval [0, 4] is now congested no matter which job is selected to relieve the disjunctive

congestion, J9 has its deadline reduced to 2, which makes the problem infeasible.

Conjunctive deadline modification algorithm runs in polynomial time like the original

DMA algorithm since the changed deadlines do not affect the previously visited congestions.

However, we cannot make such a claim for a version of CDMA which uses CA instead of

DMA since the changed release times would effect the consistency of all the jobs. Even

though we have not discussed the release time equivalent of Lemma 3, it can be seen that

such a necessary condition can also be established by combining the predecessors of two

jobs and finding a release time restriction that must be complied by at least one of them.

Respectively, a conjunctive algorithm for release times can be implemented with the use of

RMA instead of DMA. Similarly these two algorithms can be implemented consecutively

until no further change occurs, leaving the problem Lemma 3 consistent for both deadlines

and release times. Such an algorithm, as its simple counterpart CA does, finishes in poly-

nomial number of implementation of release and deadline counterparts since the changes

34 Chapter 5: Disjunctive and Conjunctive Congestions

Figure 5.3: Second modification of CDMA

they make are permanent and limited in number by O(n2). This combined algorithm will

henceforth be referred as “Conjunctive Consistency Algorithm” (CCA).

Chapter 6

SUFFICIENT CONDITIONS FOR A FEASIBLE SOLUTION

In this chapter, we will establish that a problem whose jobs are all Lemma 3 consistent

can be solved by a list scheduling method. Moreover, an algorithm which uses previous

algorithms to establish Lemma 3 consistency will be provided without proof of completeness.

6.1 Proof of Sufficiency

We say that {di} and {ri} are Lemma 3 consistent whenever the following conditions hold

for every job (Ji, Jj) ∈ = × = :

For every pair of integers r, d satisfying ri ≤ r ≤ di ≤ d and rj ≤ r ≤ dj ≤ d

1. di ≥ ri + 3 and dj ≥ rj + 3;

2. if N(i, j, r, d) = d− r − 2, then either di ≤ d−N(i, j, r, d) or dj ≤ d−N(i, j, r, d);

3. if N(i, j, r, d) > d−r−2, then either di ≤ d−N(i, j, r, d)−2 or dj ≤ d−N(i, j, r, d)−2.

Theorem 1. Let (=,≺) be a job system with m = 1, s = 3. Let {di} and {ri} be internally

consistent with respect to Lemma 3 and L be an increasing list with respect to {di}. Then

every schedule obtained by applying list scheduling with respect to L is feasible.

Proof. Assume {di} and {ri} are internally consistent and L is an increasing list with respect

to {di}. Let σ be a schedule obtained by using list scheduling with respect to L. Choose

a job Ji which exceeds its deadline and such that σ(Ji) is as small as possible. Let t0 be

the largest positive integer less than σ(Ji) such that either no job is initiated at t0 or the

36 Chapter 6: Sufficient Conditions for a Feasible Solution

deadline of the job initiated at t0 is greater than di. If t0 does not exist, set t0 = 0. Let U

be the set of jobs initiated at times t0 + 1, t0 + 2, . . . , σ(Ji). Set d = σ(Ji) + 2; then di ≤ d.

If we assume that the release times of all the jobs in U are greater than or equal to t0 +1

then we can use Lemma 1 to show that {di} and {ri} could not be internally consistent

(simply consider N(k, t0 + 1, d) where σ(Jk) = t0 + 1).) Otherwise, suppose there is a job

Jk ∈ U with a release time less than t0 + 1. Then, Jj ≺ Jk, where either σ(Jj) = t0 − 1 or

σ(Jj) = t0 − 2. In this step we divide our proof into two cases:

1. There are two jobs Jj and Jm scheduled to start at t0 − 1 and t0 − 2:

U ⊆ S(j,m, t0 + 1, d) and thus N(j,m, t0 + 1, d) ≥ |U | ≥ d− t0 − 2 > d− t0 − 3. By

Lemma 3 either dj ≤ d−N(m, j, t0+1, d)−2 < to+1 or dm ≤ d−N(m, j, t0+1, d)−2 <

to+ 1, which contradicts the assumption that Ji is the earliest job that does not meet

its deadline.

2. There is only one job Jj scheduled to start at t0 − 1 or t0 − 2:

U ⊆ S(j, t0 + 1, d) and thus N(j, t0 + 1, d) ≥ |U | ≥ d− t0− 2 > d− t0− 3. By Lemma

1 dj ≤ d−N(j, t0 + 1, d)− 2 < to+ 1, which contradicts the assumption that Ji is the

earliest job that does not meet its deadline.

�

This proof of sufficiency is applicable for any fixed number of machines. However, the

generalized version requires consistency with respect to the following lemma instead of

Lemma 3.

For any x-tuple of jobs J∗ = (J ′1, J
′
2, . . . , J

′
x) and integers r, d satisfying ri ≤ r ≤ di ≤ d

∀i = 1 . . . x; S(J∗, r, d) is defined to be the set of all jobs Jk J(k) /∈ J∗ which have dk ≤ d

and either r ≤ rk or ∃Ji ∈ J∗ such that Ji ≺ Jk . Let N(J∗, r, d) denote the number of jobs

in S(i, j, r, d).

Lemma 4. Let (=,≺) be a job system with m = 1, s = x, and σ be a feasible schedule.

Then for any (x− 1)-tuple of jobs J∗ = (J ′1, J
′
2, . . . , J

′
x−1) such that J ′i ∈ = and integers r,

Chapter 6: Sufficient Conditions for a Feasible Solution 37

d satisfying r′i ≤ r ≤ d′i ≤ d ∀i = 1 . . . (x− 1) where r′i and d′i are release time and deadline

of job J ′i respectively.:

1) If N(J∗, r, d) = d− r − x+ 1, then at least one member J ′i of J∗ must be completed

by d−N(J∗, r, d).

2) If N(J∗, r, d) > d− r − x+ 1, then at least one member J ′i of J∗ must be completed

by d−N(J∗, r, d)− x+ 1.

6.2 Disjunctive Deadline Modification Algorithm

With this algorithm we seek to find a closure on rule stated in Lemma 3. Our problem

now involves only one disjunction for every N(i, j, r, d) and this disjunction is characterized

by the choice of which job’s deadline will be modified to comply with Lemma 3. The

algorithm does not only update the deadlines but also creates choice points whenever we

choose any job involved in a congested disjunction to satisfy the deadline requirements. Our

assumption is that a constant number of backtracking move along these choice points will be

enough to determine whether the problem is infeasible or not. The backtracking algorithm

is inspired by the solution of the 2− SAT problem. In [3], a search algorithm that assigns

truth values to literals and checks whether the assignment causes any clause to be false is

used to come up with a truth assignment literal by literal for the 2-SAT problem. The idea

of limiting the backtracking is of importance since if every combination of alternatives is to

be checked, the algorithm would be exponential in time. This means that every time the

deadline of a job is updated to satisfy the requirements of Lemma 3, we will check whether

our choice triggers an inevitable inconsistency by running a CDMA and when that is the

case we will reverse our choice at the last choice point created. When we cannot find such an

inconsistency, we will skip to the next congested disjunction and create a new choice point

and the previous choice will be permanent. Since we will consider all quadruples (i, j, r, d)

and at worst-case will run CDMA for each of them, DDMA’s time complexity is bounded

by O(n11). Same preprocessing done in DMA is used and the main body of the algorithm

is assumed to start after the completion of CCA. d is reset to a number larger than largest

38 Chapter 6: Sufficient Conditions for a Feasible Solution

deadline.

Whenever a choice point is created, the current values for the variables i, j, r, d,

COUNT , CONG and all deadline values are stored, and when a reverse is invoked all

the variables are set to their stored values except for dj which is set to the value of the

stored variable CONG and the variable reverse is set to 1 in order to signify that a back-

tracking has occurred and a further inconsistency will mean that the problem is infeasible.

After dj is set to CONG, deadlines of the jobs in = which precedes Jj are also updated to

ensure that all of them are smaller than dj − 3. The algorithm skips to Step 5 regardless of

where the reversing occurred in the algorithm.

1. If any job Ji has di ≤ ri and reverse = 1, halt (no feasible schedule is possible). If

any job Ji has di ≤ ri, and reverse = 0, set reverse← 1 and reverse all the deadline

changes made since the last choice point and go to Step 5. If no job has a deadline

less than d and reverse = 0, set reverse ← 1 and set d to a value greater than the

largest deadline and set i and j to the least job index for which di is less than or equal

to the new value of d. If no job has a deadline less than d and reverse = 1, halt (the

current deadlines are internally consistent). Otherwise set d to the largest deadline

less than d and set i and j to the least job index for which di is less than or equal to

the new value of d.

2. Scan the job list to compute N(i, j, rj , d). Set COUNT ← N(i, j, rj , d) r ← rj , and

set k ← least k such that rk = rj .

3. If COUNT = d− r − 2 and di > d− COUNT and dj > d− COUNT :

(a) If (ri ≥ d−COUNT − 2) ∧ (rj ≥ d−COUNT − 2) ∧ reverse = 1 then halt, no

feasible schedule is possible.

(b) If (ri ≥ d − COUNT − 2) ∧ (rj ≥ d − COUNT − 2) ∧ reverse = 0 then

reverse = 1 and set dCj = CONG. For each Jk ≺ Jh whose deadline exceeds

Chapter 6: Sufficient Conditions for a Feasible Solution 39

dh − 3, set dk ← dh − 3. Run CDMA. If CDMA returns infeasible, halt the

problem is infeasible.

(c) If only one of (ri ≥ d − COUNT − 2) and (rj ≥ d − COUNT − 2) is true, set

dk = d− COUNT such that k ∈ {i, j} ∧ rk < d− COUNT − 2. Run CDMA. If

CDMA returns infeasible, the problem is infeasible.

(d) If (ri < d−COUNT − 2) ∧ (rj < d−COUNT − 2) ∧ reverse = 1 then create a

choice point. Set Cd← d, Cr ← r, Ci← i, Cj ← j, Cdm ← dm ∀Jm ∈ =, di ←

d − COUNT , reverse ← 0, CCOUNT ← COUNT , CONG = d − COUNT .

For each Jk ≺ Ji whose deadline exceeds di − 3, set dk ← di − 3.

4. If COUNT > d− r − 2 and di > d− COUNT − 2 and dj > d− COUNT − 2:

(a) If (ri ≥ d−COUNT − 4) ∧ (rj ≥ d−COUNT − 4) ∧ reverse = 1 then halt, no

feasible schedule is possible.

(b) If (ri ≥ d − COUNT − 4) ∧ (rj ≥ d − COUNT − 4) ∧ reverse = 0 then

reverse = 1 and set dCj = CONG For each Jk ≺ J whose deadline exceeds

di − 3, set dk ← di − 3.

(c) If only one of (ri ≥ d − COUNT − 4) and (rj ≥ d − COUNT − 4) is true, set

dk = d − COUNT − 2 s.t. k ∈ {i, j} ∧ rk < d − COUNT − 4. Run CDMA. If

CDMA returns infeasible, the problem is infeasible.

(d) If (ri < d−COUNT − 4) ∧ (rj < d−COUNT − 4) ∧ reverse = 1 then create a

choice point. Set Cd← d, Cr ← r, Ci← i, Cj ← j, Cdm ← dm ∀Jm ∈ =, di ←

d−COUNT , reverse← 0, CCOUNT ← COUNT , CONG = d−COUNT −2.

For each Jk ≺ Ji whose deadline exceeds di − 3, set dk ← di − 3.

5. If r ≥ di, go to Step 6. Otherwise increment k by 1 until either k > n or rk > r.

During this scan, decrease COUNT by one for each Jh(original k ≤ h < new k) which

is not a successor of or Jj and which satisfies (dh ≤ d ∧ rh = r ∧ h 6= i ∧ h 6= j). If

k = n+ 1 or rk > di or rk > dj , set r ← min(di, dj) and go to Step 4. Otherwise set

r = rk and go to Step 4.

40 Chapter 6: Sufficient Conditions for a Feasible Solution

6. Find the least h > j such that dh ≤ d. If such a h exists, set j ← h and go to Step 2.

If no such h exists, find the least h > i such that dh > d. If such a h exists, set i← h

j ← h and go to Step 2. If no such h exists either and some job has current deadline

d, go to Step 1. Otherwise, if reverse = 0, reverse changes since last choice point, if

reverse = 1, halt (no feasible schedule is possible).

6.3 Computational Evaluations

Due to the lack of theoretical proof for the completeness of DDMA algorithm, the algorithm

is run against random instances of the problem. With this experiments we wanted to point

out that the cases where CDMA turns out to be feasible and DDMA turns out to be

infeasible are very rare or none existent. 5000 instances of 25, 30 and 35 jobs each are used.

Since their infeasibility results are binding, DMA and CDMA was implemented before

DDMA and DDMA is used only for instances that both DMA and CDMA found to be

feasible.

While creating the instances, we first determined the number of chains. Then we de-

termined the release times of the first jobs in the chains according to the number of its

successors. Succeeding jobs’ release times are created consecutively regarding the number

of remaining jobs in the chain. Deadlines then generated according to a jobs release time

and its immediate predecessors deadline.

Unfortunately, during the computational experiments that span 15000 instance we have

seen that 92% percent of the instances are found to be infeasible in the first stage (DMA

check). The remaining instances were found to be feasible by both CDMA and DDMA.

This results form computational experiments showed that a random instance generation

is not a valid method for assessing the performance of the algorithms since even though

DMA feasible instances can be CDMA infeasible, no such instances were observed during

experimentation. This absence in return makes the results we obtain from computational

experiments unreliable though the results are in favor of the DDMA algorithm.

Chapter 7

CONCLUSION

In this thesis we analyzed the F3|pij = 1, chains, ri|Lmax problem since its classification

status with respect to computational complexity is open. Our analysis resulted in several

necessary and sufficient conditions for obtaining a feasible schedule for the decision version

of the problem. These conditions are then developed to a limited backtracking algorithm

whose output is a set of deadlines that can be used to find a feasible schedule.ped to a

limited backtracking algorithm whose output is a set of deadlines that can be used to find

a feasible schedule.

7.1 Contributions

The contributions of this thesis can be given under the two following heading:

7.1.1 Dominance Rules

In this thesis several dominance rules to construct a feasible solution to the decision version

of F3|chains, ri, pij = 1|Lmax are proposed. The concept of congested time intervals that are

used in [2] to restrict deadlines is adjusted for the three-machine case. We further observe

that release times of the jobs are also subject to similar restrictions. The idea of congestion

is then extended to the case where successors of two jobs are combined to find additional

deadlines that must comply by at least one of the jobs. The idea of disjunctive congestion has

lead to the conjunctive disjunctions where any choice made resolving disjunctive congestions

causes the same deadline or release time modifications that can be perpetuated without

ignoring possible feasible solutions.

Apart from being a general analysis of the problem, the dominance rules have further

significance since F3|chains, ri, pij = 1|Lmax is still an open problem. Given an instance of

42 Chapter 7: Conclusion

the problem, it is possible to find in polynomial time, an equivalent instance that complies

with all the dominance rules mentioned in the thesis (except for disjunctive congestions).

Since that new instance has the same set of feasible solutions, finding a feasible solution

or proving that none exists is sufficient for solving the original problem. So, these dom-

inance rules can constitute the basis of a polynomial algorithm that will be devised for

F3|chains, ri, pij = 1|Lmax.

7.1.2 Disjunctive Algorithm

Among the dominance rules discussed only one is sufficient for finding a polynomial algo-

rithm that provides a feasible solution. Disjunctive congestions, however, are intrinsically

harder to satisfy throughout the problem since alternative choices add up and the num-

ber of alternatives to check becomes exponential with respect to the number of jobs. We

have devised a limited backtracking algorithm that in each step chooses one disjunctive

congestion and creates a choice point by arbitrarily choosing one of the jobs involved in the

congestion to be modified. If that particular choice satisfies other dominance rules then its

new value becomes permanent. If an infeasibility occurs, we simply reverse our choice and

go to another disjunction to create a new choice point.

This algorithm completes with a set of deadlines that can be used in a list scheduling

algorithm and provides a feasible schedule. Since the number of times a backtracking can

occur is restricted by the number of job pairs, this algorithm completes in O(n11). This

algorithm if proven to cover all possible feasible solutions places F3|chains, ri, pij = 1|Lmax

in P .

However, such a proof cannot be devised during the research phase of this thesis. A

counter-example cannot be constructed either. The reason is either because the algorithm

works effectively or because finding counter-examples becomes increasingly difficult with the

addition of conjunctive deadline modification algorithms to the verification of choices. A

possible counter-example now must contain a disjunctive congestion such that modification

of any of the job leads to an infeasibility, but it does so through affecting different jobs

in the system. If such an example does not exist, it must be noted that the conjunctive

Chapter 7: Conclusion 43

deadline modification algorithm is actually enough to assess whether there exists a feasible

schedule or not and the disjunctive algorithm is only used to modify the deadlines so that

a list schedule is feasible.

7.2 Future Research

The next step for classifying F3|chains, ri, pij = 1|Lmax is to find a counter-example for

the disjunctive algorithm or proving that it covers all solutions. However, if such a proof

is achieved then it can be extended to F3|prec, ri, pij = 1|Lmax if any restriction of chain

precedence relation is not used for the proof. In that case the natural next step will be

F4|chains, ri, pij = 1|Lmax. Even though all the dominance rules will have a counterpart

for the four-machine version, since the sufficient condition will now involve a disjunctive

congestion that involves three jobs, the problem will be harder. In that case a limited back-

tracking might not be sufficient since limited backtracking, while sufficient for a polynomial

solution of 2− SAT problem, fails to find a solution for 3− SAT problem. Moreover since

3−SAT problem is NP-complete, three-machine case might very well be the breaking point

for the classification where problems with larger number of machines are intractable for

pipelined processor with chain constraints and release times.

In the case that a counter-example is found, some effort might be put in finding an NP-

completeness result. A starting point for that research might be a polynomial reduction to

the weighted 2−SAT problem. Weighted 2−SAT problem is a relatable problem since to

resolve the necessary disjunctions in our problem we bring forward deadlines and there might

be a instance structure that only allows a limited number of jobs to be brought forward. If

the NP-hardness result for the F3|chains, ri, pij = 1|Lmax problem can be achieved, then

the depth of backtracking has also the potential to be used as an approximation scheme

since it is actually what causes a complete algorithm to be exponential.

BIBLIOGRAPHY

[1] P. Brucker and S. Knust. Shortest path to nonpreemptive schedules of unit-time jobs

on two identical parallel machines with minimum total completion time. Computing,

63:299 – 316, 1999.

[2] J. Bruno, J. W. Jones, and K. So. Deterministic scheduling with pipelined processors.

IEEE Transactions on Computers, C-29(4), 1980.

[3] S. Even, A. Itai, and A. Shamir. On the complexity of time table and multi-commodity

flow problems. SIAM Journal on Computing, 5(4), 1976.

[4] M. R. Garey and D. S. Johnson. Two-processor scheduling wit start-times and dead-

lines. SIAM Journal of Computing, 6(3):416 – 425, 1977.

[5] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman, 1979.

[6] M.R. Garey, D.S. Johnson, and R. Sethi. The complexity of flowshop and jobshop

scheduling. Math. Oper. Res., 1(2):117 – 129, 1976.

[7] J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker. Complexity of machine scheduling

problems. Ann. of Discrete Math., 1:343 – 362, 1977.

[8] J.Y.-T. Leung, J.D. Witthoff, and O. Vornberger. On some variants of the bandwidth

minimization problem. SIAM Journal of Computing, 13(13):650 – 667, 1984.

[9] V.S. Tanaev, Y.N. Sotskov, and V.A. Strusevich. Scheduling theory. multi-stage sys-

tems. Mathematics and its Applications. Kluwer Academic Publishers Group, Dor-

drecht, 1994.

Bibliography 45

[10] V.G. Timkovsky. Identical parallel machines vs. unit-time shops and preemptions vs.

chains in scheduling complexity. European J. Oper. Res., 149(2):355 – 376, 2003.

[11] A.M. Turing. On computable numbers, with an application to the entscheidungs prob-

lem. Proceedings of the London Mathematical Society, 2(42):230 – 265, 1936.

