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ABSTRACT

Heegaard Floer homology for a closed, oriented three-manifold Y is defined using

Heegaard diagrams and a certain holomorphic curve count in the spirit of Lagrangian

Floer homology. For each s ∈ Spinc(Y ), similar constructions give different versions

of homology groups ĤF (Y, s), HF∞(Y, s), HF−(Y, s), and HF+(Y, s), each of which

is an invariant of the underlying three-manifold Y . The theory also contains a knot

invariant, a smooth four-manifold invariant, and a contact three-manifold invariant

besides other things.

In this thesis, we focus on the definition of Heegaard Floer homology for a closed,

oriented three-manifold Y and the necessary topological tools to define it. The basics

of knot Floer homology, an invariant of oriented, nullhomologous knots and links in

closed, oriented three-manifolds are also discussed. In addition, we briefly mention

another invariant called Khovanov homology for oriented links L which seems to be

related to knot Floer homology.
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ÖZETÇE

Kapalı, yönlü, 3-boyutlu çokkatlılar için Heegaard Floer homoloji Heegaard diya-

gramlar ve bazı holomorf eğrilerin Lagrangian Floer homoloji teorisine benzer bir

sayım kullanılarak tanımlanır. Her s ∈ Spinc yapısı için benzer bir inşa ile farklı

homoloji grupları elde edilir: ĤF (Y, s), HF∞(Y, s), HF−(Y, s), HF+(Y, s) ve bun-

ların herbiri üzerinde çalışılan 3-boyutlu çokkatlı için birer değişmezdir. Bu teori aynı

zamanda düğüm değişmezi, düzgün 4-boyutlu çokkatlı değişmezi ve kontak 3-boyutlu

çok katlı değişmezini de içerir.

Tezde kapalı, yönlü, 3-boyutlu çokkatlılar için Heegaard Floer homoloji tanımı

ve bu tanımı verebilmek için gerekli topolojik kavramların üzerinde odaklanılmıştır.

Kapalı, yönlü 3-boyutlu çokkatlılarda yönlü ve homoloji sınıfı sıfır olan düğüm ve

linkler için bir değişmez olan düğüm Floer homolojinin temellerine değinilmiş ve ek

olarak da düğüm Floer homoloji ile benzer özellikler gösteren ve yönlü linkler için

tanımlanan Khovanov homolojiden bahsedilmiştir.

v



ACKNOWLEDGMENTS

I owe this thesis to my dear advisor Prof. Tolga Etgü to whom I would like to
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Chapter 1

INTRODUCTION

The aim of this thesis is to understand the Heegaard Floer homology for closed,
oriented three-manifolds. First we begin with the definition of Heegaard Floer ho-
mology following [29], [8], [28], and [23]. Then, we study the basics of knot Floer
homology which is defined similar to Heegaard Floer homology based on [32], [8].
Further, we briefly review Khovanov homology, following [3], which is also a knot
invariant which seems to be related to knot Floer homology.

Heegaard Floer homology is a three-manifold invariant introduced by Ozsváth and
Szabó in 2000. Any closed, oriented three-manifold Y can be decomposed into 2 han-
dlebodies sharing a common boundary, called Heegaard surface, which is a genus-g
surface Σ with two sets of attaching circles {α1, .., αg} and {β1, .., βg} where each set
is homologically linearly independent containing closed, embedded, disjoint curves
on Σ. The symmetric product Symg(Σ) associated to Σ is the space of unordered
g-tuple of points of Σ. The attaching circles induce a pair of smoothly embedded
g-dimensional tori in Sym(Σ) defined by Tα = α1 × ... × αg and Tβ = β1 × ... × βg,
then Heegaard Floer homology is defined using the finite set of intersection points
of the totally real tori Tα and Tβ as generators of the chain complex. With a fixed
generic complex structure over the Heegaard surface, the boundary map of this chain
complex is defined by counting the number of holomorphic disks in the moduli space
of holomorphic curves connecting the intersection points.

The remainder of this thesis is organized as follows: In Chapter 2, we define Hee-
gaard decomposition and Heegaard diagrams for closed, oriented three-manifolds. The
most important part of this chapter is the relation between two Heegaard diagrams
representing the same three-manifold via finite sequence of Heegaard moves. Chapter
3 reviews the necessary topological tools to define Heegaard Floer homology. It begins
with the symmetric product space, Symg(Σ) and its topology and also discusses Spinc

structures over three-manifolds. In Chapter 4 we give the analytic background includ-
ing Gromov’s compactness theorem and transversality and compectness theorems of
moduli space of holomorphic disks, and most of these statements are mentioned with-
out proof. Then in Chapter 5 we define Heegaard Floer homology groups for b1 = 0
and b1 > 0 separately since there are certain technical complications when b1 > 0.
Then we mention some properties of these homology groups and give some simple
examples. In Chapter 6 we study the dependence of Heegaard Floer homology groups
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on the coherent orientation system, complex structure over Σ, and the path of nearly
symmetric almost complex structure over Symg(Σ). In fact they are also independent
of the chosen Heegaard diagram and with this additional property they become an
invariant for closed oriented three-manifolds. Moreover, we define actions on these
homology groups when b1 = 0 and b1 > 0 separately which provide extra structures.
Chapter 7 includes the basics of knot Floer homology. We mention some properties
of these groups, for example its Euler characteristic is the Alexander-Conway polyno-
mial, it is sensitive to mutation move of knots, and it detects genus and fiberedness of
a knot in S3. We also review the definition of Khovanov homology, another invariant
for oriented knots in S3 and compare the two in certain cases.

Heegaard Floer homology is an active area of research and we were not able to
cover many parts of it. For example, there is a different description of Heegaard
Floer homology of three-manifolds given by Lipshitz in [20] where he defines Floer
homology groups using Σ× [0, 1]× R instead of symmetric product space Symg(Σ).
In this setting the invariance of the homology groups can also be proved and it is
equivalent to the original construction given by Ozsvath and Szabo that we discuss
in this thesis. There are generalizations of Heegaard Floer homology to compact,
oriented three-manifolds with boundary, [21], [15]. In addition, a contact structure
on a closed, oriented three-manifold has an invariant, Heegaard Floer homology of Y
which is described in [30].
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Chapter 2

HEEGAARD DECOMPOSITIONS AND HEEGAARD
DIAGRAMS

We study Heegaard decomposition and Heegaard diagrams for a closed, oriented
three- manifold Y . We prove that every closed, oriented three-manifold admits a
Heegaard decomposition into two pieces called handlebodies. We study that a Morse
function on the manifold f : Y → R also provides a Heegaard decomposition of the
three-manifold. These two handlebodies can be glued to obtain the three-manifold
back, however the key point is how to glue. Thus we define a set of attaching circles
for each handlebody which show how to glue two handlebodies to obtain the three-
manifold back. Then the triple which is called Heegaard diagram containing two sets
of attaching circles and the genus-g surface, called the Heegaard surface which is
the common boundary of these two handlebodies, determines a three-manifold. We
see then the same manifold can admit many different Heegaard decompositions but
they are related by three basic moves, called Heegaard moves: isotopy, handleslide,
and stabilization. We give some examples of Heegaard decompositions and diagrams
in the next section, and in the last section we see how to relate different Heegaard
decompositions of the same three-manifold by Heegaard moves which is the main
result.

2.1 Heegaard Decompositions and Diagrams

A genus-g handlebody U is diffeomorphic to a regular neighborhood of bouquet of
g circles in R3 with boundary genus-g surface Σg. Let ϕ : ∂U0 → ∂U1 be a home-
omorphism. By gluing two handlebodies U0 and U1 along their common boundary,
we mean to identify each point x ∈ ∂U0 with ϕ(x) ∈ ∂U1 , and we obtain a three
manifold Y. For every x ∈ ∂U0, x = ϕ(x) ∈ ∂U1 has a neighborhood in Y which
can be obtained by gluing two half balls, neighborhoods of x in U0 and ϕ(x) in U1

respectively, thus Y is a manifold without boundary. Heegaard decomposition of a
closed, oriented three manifold Y into two handlebodies U0, U1 is

Y = U0 ∪Σg U1

where Σg is closed, orientable surface of genus g and ∂U0 ' Σg ' ∂U1.

Let us consider the Heegaard decomposition of S3 into genus-0 handlebodies which
is done in a unique way. Genus-0 handlebody is just a solid ball with boundary S2, so
if we attach two solid balls along their common boundary we obtain get S3. Similarly,
genus-1 Heegaard decomposition of S3 is given by gluing two solid tori along T 2, since



Chapter 2: Heegaard Decompositions and Heegaard Diagrams 4

complement of a solid torus in S3 is also a solid torus.
Lens space, which is a closed, oriented three-manifold denoted as L(p, q) with

(p, q) = 1 and 1 ≤ q < p has a genus-1 Heegaard decomposition as follows. Lens
spaces can be described by a free Z/p action on S3 as follows. Consider S3 in C2 and
define the free Z/p action given by γ as Γ(z, w) = (e2π/pz, e2πq/pw). Solid tori in S3 are
preserved by the action, so they remain as solid tori in L(p, q) giving genus-1 Heegaard
decomposition of L(p, q). The detailed explanation of this and more examples will be
given next section.

Next we prove the existence of Heegaard decomposition for closed, oriented 3-
manifolds.

Theorem 2.1.1. Any orientable, closed three manifold Y admits a Heegaard decom-
position.

Proof. Take a triangulation K of Y . By a triangulation we mean the presentation of
a three manifold as a finite union of tetrahedra whose pairwise intersection is either
a common face, or a common edge, or a common vertex, or a void. We assume that
all three manifolds can be triangulated, see [4]. Let us describe barycentric subdi-
vision K ′ of K. A median of a triangle divides it into 6 small triangles. Medians
of each face of tetrahedron in the triangulation of Y divides the tetrahedron into 24
small tetrahedra. The tetrahedra are called the first barycentric subdivision K ′ of
K. Take barycentric subdivision of K ′ to obtain second barycentric subdivision K ′′

of K ′. Then define U0 as a union of tetrahedra of second barycentric subdivision
K ′′ of K having common points with the set of edges of K and U1 as the closure of
Y − U0. More explicitly, take a tetrahedron ∆ from K. The parts belonging to U1

can be visualized as 4 solid cylinders attached to a solid sphere along the boundary
such that on each face of ∆, the soles correspond to the following picture below.

Figure 2.1: Illustration of a piece of handlebodies and soles [34]

Attach those pieces along their soles to form U1. U0 corresponds to joining solid
spheres centered at vertices of K by solid cylinders along the edges of K. By the
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above description we obtain U0 and U1 by gluing solid spheres and cylinders. Note
that a cylinder joins parts of the same handlebody in oriented or nonoriented way
and if at some step we have a nonoriented gluing then three manifold Y will be
nonoriented. If we continue gluing step by step we will get the handlebodies U0 and
U1. Note that U0 and U1 are homeomorphic as they have the same boundary genus-g
surface Σg and the same number of handles.

Remark 2.1.2. Depending on the chosen triangulation K of Y , the same three
manifold admits different Heegaard decompositions.

Consider a Heegaard decomposition of Y into genus-g handlebodies. There is an
immediate question in mind how to obtain Y from these two handlebodies, and crucial
part is the gluing. Which three-manifold we obtain depends on how we attach the
handlebodies.

Definition 1. Let U be a genus-g handlebody. A set of attaching circles {γ1, .., γg}
for U is a collection of closed embedded curves in the Heegaard surface Σg = ∂U such
that

• γi are disjoint from each other

• Σg − γ1 − ..− γg is connected

• γi bound disjoint embedded disks in U

Proposition 2.1.3. Σ − γ1 − .. − γg is connected if and only if {[γ1], .., [γg]} are
linearly independent in H1(Σ,Z).

Definition 2. Take a genus-g Heegaard decomposition of Y with handlebodies U0

and U1. A compatible Heegaard diagram for Y is given by (Σg, α1, .., αg, β1, ..βg) such
that {α1, .., αg} is a set of attaching circles for U0, and {β1, .., βg} is a set of attaching
circles for U1.

Any diagram (Σg, α1, .., αg, β1, ..βg) with α and β curves satisfying the above defini-
tion determines in a unique way a Heegaard decomposition and thus a three-manifold.
We can obtain three-manifold back as follows. Consider Σg×I, where I is closed unit
interval. Attach solid cylinders to each attaching circles αi and do the same for βj,
then we will have two spherical regions as boundary of the resulting object. Add 2
solid balls to those boundaries, one to the boundary resulted in attaching handles to
αi and one to the other component of the boundary resulted in attaching handles to
βj. Then we get a three-manifold. In Section 2.3 we describe this construction like
building blocks via Morse Theory.

Heegaard diagrams are unique modulo some basic moves. Thus the same three-
manifold admits many different Heegaard diagrams. There are three Heegaard moves
which do not change the three manifold : isotopy, handleslide, and stabilization.
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• Isotopy: We can move the curves in the set of attaching circles {γ1, .., γg} in a
one-parameter family such that the curves remain disjoint.

• Handleslide: We can choose two of the attaching circles (wlog) γ1 and γ2 and
replace γ1 with γ′1, where γ′1 is a simple closed curve on Σg disjoint from the
set {γ1, .., γg} such that γ1, γ2, and γ′1 bound an embedded pair of pants in
Σg − γ3 − ..− γg, i.e., [γ1], [γ2], and [γ′1] are linearly dependent in H1(Σg,Z).

• Stabilization: First two moves do not change the genus of the Heegaard sur-
face. Stabilization move increases genus by 1 by taking the connected sum of
Σg with a genus-1 surface. We choose αg+1 and βg+1 on the genus-1 surface
intersecting transversally at a single point, and they are disjoint from the other
α and β-curves. Then {α1, .., αg, αg+1} and {β1, .., βg, βg+1} are the new set of
attaching circles on Σg#T

2.

Figure 2.2: A handleslide

Figure 2.3: The same handleslide with different diagram style
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In the following sections we will use pointed Heegaard diagrams where a basepoint
z ∈ Σg − α − β is chosen on the Heegaard surface disjoint from α and β-curves. For
pointed Heegaard diagrams (Σg, α, β, z) we can define pointed Heegaard moves as
follows. We require that during the move z remains disjoint from α and β curves. For
an isotopy z should be disjoint from the curves and for a handleslide z should not be
in the pair of pants region.

2.2 Some Examples

Example.1: Let us study Heegaard splitting of S3 into two solid tori. Consider
S3 ⊂ C2 and S3 = {(z, w) ∈ C2 : |z|2 + |w|2 = 1} with handlebodies:

U0 = {(z, w) ∈ S3 : |z| ≤ |w|}
U1 = {(z, w) ∈ S3 : |z| ≥ |w|}

Observe that by definition of S3, |z| ≤ |w| and |z| ≥ |w| are equivalent to |z| ≤ 1/2
and |z| ≥ 1/2 respectively. We will construct homeomorphisms to show that U0 and
U1 are solid tori. For x ∈ S3 ⊂ C2 it has coordinate representation x = (aeiα, beiβ)
with |x|2 = a2|eiα|2 + b2|eiβ|2 = a2 + b2 = 1. Note that U0 is determined by |z| ≤ 1/2,
i.e., a ≤ 1/2. Use coordinates (a, α, β) for the solid torus with 0 ≤ a ≤ 1/

√
2 then

the map from U0 to solid torus sending (aeiα,be
iβ

) 7→ (a, α, β) is a homeomorphism
which is easily seen to be one-to-one and continuous. Similarly the map sending
(aeiα,be

iβ
) 7→ (b, β, α) is a homeomorphism from U1 to solid torus. Note that the set

Σ1 = {(z, w) : |z| = |w| = 1/2}

corresponds to the Heegaard surface. For this decomposition the attaching circles are

α = {1/
√

2(eiα, 1) : α ∈ [0, 2π]}
β = {1/

√
2(1, eiβ) : β ∈ [0, 2π]}

with unique intersection point, namely α ∩ β = (1/
√

2, 1/
√

2).

Figure 2.4: A Heegaard diagram for S3
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Example.2: [34] In this example we will decompose Lens space, denoted as L(p, q),
into two solid tori. Consider discrete group action on S3 and let (p, q) = 1 with p ≥ 3
and S3 ⊂ C2 then there is a Z/pZ action on S3 as follows. Let Z/pZ =< σ > and

σ(z, w) = (e
2πi
p z, e

2πiq
p w)

It has no fixed points thus this is a free action on S3. Indeed, for 1 ≤ k ≤ p− 1,

σk(z, w) = (e
2πik
p z, e

2πiqk
p w) = (z, w)

we have e
2πik
p = 1 and this implies k/p ∈ Z which is not true, so only identity

element fixes points and the action is free. Therefore the quotient space S3/ ∼ is a 3-
manifold [12] called Lens space L(p, q). In order to understand genus-1 decomposition
of L(p, q), we need to understand what happens to two solid tori in the Heegaard
decomposition of S3 under the Z/pZ action. Thus, let us consider the following cell
decomposition of S3:

• 0-cell: (0, e
2πik
p ), 0 ≤ k ≤ p− 1

• 1-cell: (0, e2πiθ), k
p
< θ < k+1

p

• 2-cell: (ρe
2πik
p , w), 0 < ρ ≤ 1, |w| =

√
(1− ρ2)

• 3-cell: (ρe
2πiθ
p , w), 0 < ρ ≤ 1, |w| =

√
(1− ρ2),k

p
< θ < k+1

p
, 0 ≤ k ≤ p− 1

There are p-cells in each dimension and under the Z/pZ action same dimensional

cells permute with each other. Indeed, for 0-cells, σ(0, e
2πik
p ) = (0, e

2πi(q+k)
p w) but

(p, q) = 1 and for 0 ≤ k ≤ p − 1 we will obtain other 0-cells. Similarly for 1-cells,

σ(0, 2πiθ) = (0, e2πi(θ+ q
p

)) for k
p
< θ < k+1

p
implies k+q

p
< θ + q

p
< k+q+1

p
so we will get

other 1-cells as k changes. Continuing in this manner we will see under the action,
the same dimensional cells will permute each other. We identify each point x ∈ S3

with σx, σ2x, .., σp−1x in the quotient, so every cell in the same dimension will be
identified. It will induce a cell decomposition for L(p, q) from S3 containing one cell
in each dimension.

L(p, q) can also be obtained by taking one of the 3-cells and applying identifications
on the boundary according to Z/pZ action. Let us change coordinates from complex
to real, since 3-cell∈ R3 and use (x1, x2, x3). The complex coordinated 3-cell is given
as:

(ρe
2πiθ
p , w), 0 < ρ ≤ 1, |w| =

√
(1− ρ2), k

p
< θ < k+1

p
, 0 ≤ k ≤ p− 1

then let w = x1+ix2 and x3 = (2pθ−2k−1)ρ. Note that |x3| ≤ ρ and x1
2+x2

2+x3
2 ≤

1. Points on sphere if x3 > 0 are assigned to points for which θ = k+1
p

and if x3 < 0

are assigned to points for which θ = k
p
. Also points with θ = k

p
go to points with
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θ = k+1
p

under the action σ which corresponds to a rotation by 2πq/p angle about the
origin. This says that 2-cells of upper hemisphere are identified with 2-cells of lower
hemisphere producing L(p, q).

Solid torus U0 in S3 corresponding to |w|2 ≤ 1/2 intersects with 3-cell, from which
we obtain L(p, q) under identifications coming from the Z/pZ action, along a solid
cylinder whose bases are spherical, and this can be seen geometrically. So under the
Z/pZ action identifying upper and lower bases results a solid torus. Other handlebody
U1 in S3 corresponding to |w|2 ≥ 1/2 and intersects with 3-cell along a solid torus.
Under boundary identifications this intersection also remains a solid torus. Therefore
genus-1 handlebodies of S3 remain as solid tori in L(p, q) under the Z/pZ action and
this finishes the genus-1 Heegaard decomposition of L(p, q).

It is complicated to represent a Heegaard diagram as a genus-g surface with α
and β curves are drawn on it. To simplify, the following method is used. Consider
the plane as S2, the boundary of 0-handle. To obtain Heegaard surface draw g pairs
of small disks on the plane, which correspond to attaching regions of 1-handles, then
draw the α and β curves on plane. The convention is if a curve goes into one disk it
comes out of the other disk of the pair and there is nothing nontrivial happens on the
1-handle. With this description we draw the following diagrams first in the described
way then we attach 1-handles. Last we draw the genus-g surface with two sets of
attaching circles.

Figure 2.5: A Heegaard diagram for L(5, 1)
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Figure 2.6: Same Heegaard diagram for L(5, 1) drawn on torus

Example.3: Let us describe a Heegaard decomposition of S1 × S2. Consider a
genus-1 surface with chosen pair of standard meridian and parallel. Let ϕ be a home-
omorphism between two such tori such that ϕ send meridian to meridian and parallel
to parallel. This map can be extended to solid tori and it gives a homeomorphism
between two solid tori. Thus we attach two solid tori via this map. As meridian
bounds a disk in the solid tori, when we attach two disks along their boundary circle
we obtain a sphere. But meridian is homeomorphic to {p} × ∂D2 for any p ∈ S1.
Therefore, we get S1 × S2 as a three-manifold.

Figure 2.7: A Heegaard diagram for S1 × S2
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Different Heegaard diagrams for S3:

Figure 2.8: A Heegaard diagram for S3

Figure 2.9: Same Heegaard diagram for S3, drawn on torus
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Figure 2.10: A Heegaard diagram for S3 after stabilization move
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Figure 2.11: A Heegaard diagram for S3 with stabilization and handle slide
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Figure 2.12: A Heegaard diagram for L(3, 2)
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Figure 2.13: A genus-2 Heegaard diagram

2.3 Heegaard Decompositions Via Morse Theory

In this section we study Heegaard decompositions by using the techniques of Morse
theory. We give some basics of Morse theory which we need and mostly we follow [22].
For a detailed description of the theory see [22], [24], and [14].

Morse theory studies the relation between functions on a space and the shape of
the space by looking at critical points of a real-valued function and understand the
shape of the space from the information about critical points.

Let M be an n-dimensional smooth manifold, i.e., at each point of M there is
a smooth coordinate system (x1, .., xn) and let f : M → R be a smooth function,
p ∈M is a critical point of f is for a chosen local coordinates (x1, .., xn) for p we have
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∂f
∂xi

(p) = 0 for all 1 ≤ i ≤ n.

For a critical point p of f , consider the second partial derivatives and form the Hessian
at p, n×n matrix H(p) where Hij = ∂2f

∂xi∂xj
. Then a critical point is called nondegen-

erate if detH(p) 6= 0 i.e., H(p) is nonsingular, and called degenerate if detH(p) = 0.

Notice that H(p) is a symmetric matrix as f is smooth implying that ∂2f
∂xi∂xj

= ∂2f
∂xj∂xi

for all i, j.

Definition 3. Let f : M → R be a smooth function on an n-dimensional manifold
M . If every critical point of f is nondegenerate then f is called a Morse function.

Example: Height function on S2 is a Morse function f : S2 → R, f(x, y, z) = z with
x2 + y2 + z2 = 1. Here f has only 2 critical points (0, 0, 1) and (0, 0,−1) and both of
them are nondegenerate.

Theorem 2.3.1. Let p be a nondegenerate critical point of f : M → R. We can
choose a local coordinate system (x1, .., xn) centered at p such that the coordinate
representation of f with respect to these coordinates has the following form

f = −x2
1 − x2

2 − ..− x2
λ + x2

λ+1 + ..+ x2
n + c

where f(p) = c.

This theorem is called the Morse Lemma and the number of minus signs λ in the
standard form is the number of negative diagonal entries of H(p) after diagonalization
and by Sylvester Law λ is independent of the diagonalization of H [22]. λ called the
index of a critical point.

Corollary 2.3.2. A Morse function defined on a compact manifold admits only
finitely many critical points.

The following theorem shows the existence of Morse functions.

Theorem 2.3.3. Let M be a closed (compact without boundary) manifold and g :
M → R be a smooth function defined on M , there exists a Morse function f : M → R
arbitrarily close (C2-close) to g.

This says that Morse functions are dense in the set of smooth R-valued functions on
M and for detailed descriptions of above arguments, reader is referred to [22]and [24].

Definition 4. Let X be a vector field on M . A curve c(t) is called an integral curve
of X if

dc

dt
(t) = Xc(t) (2.1)

for every t where c(t) is defined. Note that dc
dt

(t) is the velocity vector of the curve at
time t and Xc(t) at c(t). So an integral curve of X is a flow line moving with X as its
velocity vector.
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If M is a compact manifold without boundary there is an integral curve cp(t) of
X for −∞ < t <∞ passing through p at t = 0, see [22]. By the equation (2.1) has a
unique solution so that two distinct integral curves do not meet.

A Morse function on a manifold induces a handle decomposition, so that it is
possible to rebuild the manifold by adding handles corresponding to each intersection
points. This is basically done by studying how the level sets f−1((∞, t) of a Morse
function f changes when t passing thorough a critical point. Moreover, if M is con-
nected, a Morse function on M can be chosen so that it has only one index-0 critical
point and one index-n critical point, where n is the dimension of M .

Let us consider a closed, oriented three-manifold M and a Morse function f on
it such that f has only one minimum and one maximum. The handle decomposition
corresponding to the Morse function f consist of a one 0-handle and one 3-handle
for maximum values, and same number of 1-handles and 2- handles, say g many. A
three dimensional i-handle is Di×D3−i, thus a 0-handle is a solid ball and we attach
1-handles along the attaching spheres to the belt sphere of the 0-handle. The handle-
body consisting of only 0-handle and g many 1-handles is a genus-g handlebody. The
2-handles and a 3- handle are dual to 0-handle and 1-handles, as they correspond to 0-
handle and 1- handles of the Morse function −f . Therefore, 2-handles and a 3-handle
also represent a genus-g handlebody. This decomposition is a Heegaard splitting of
the three-manifold M and as M is closed so there is no boundary component implies
that after attaching 2-handles and 3-handles to the handlebody there is no remaining
boundary. This briefly shows why the number of 1-handles and 2-handles should be
same.

Take a Morse function f on closed, oriented three-manifold M such that it is self-
indexing, which means f(p) = ind(p) for every critical point. This Morse function
induces a Heegaard decomposition via a handle decomposition. Consider the gradient
vector field of this Morse function on M . Then for every point on the Heegaard surface
Σg, consider the flow lines passing through these points. Let αi denote the set of flow
lines to index-1 critical points and let βi denote the set of flow-lines to index-2 critical
points. The integral curves flowing down to index-1 critical points and flowing up to
index-2 critical points. As f is self-indexing, the curves αi and βi are closed curves on
the Heegaard surface and they correspond to the attaching circles of the handlebodies
in the Heegaard splitting obtained from the handle decomposition. We say that this
Heegaard diagram is compatible with the Morse function f on M . The detailed
description of the theory can be found in the references stated at the beginning of
this section.

2.4 Relation Between Two Heegaard Diagrams for a Three-Manifold

In this section we study the relationship between two different Heegaard diagrams
representing the same three-manifold. For more detail see [8], [29], and [37].
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Definition 5. Two Heegaard diagrams (Σ, α, β) and (Σ
′
, α
′
, β
′
) are called diffeomor-

phic if there is a diffeomorphism φ : Σ→ Σ
′

preserving orientation such that φ takes
α to α

′
and β to β

′
.

We extend the set of attaching circles for the handlebody U . The stabilization
move is equivalent to introducing canceling pair of index-1 and index-2 critical points,
since in the handle decomposition it corresponds 2-handle intersecting transversally
at a single point with the belt sphere of the 1-handle, [22]. Introducing canceling pair
of index-0 and index-1 critical points is to add 1-handle to 0-handle such that one
of the attaching spheres of 1-handle, as there are two points ∂D1 × {0}, intersects
transversally at a single point with the belt sphere, {0} × ∂S3, of the 0-handle. Can-
celing pair index-3 and index-2 critical points is dual to canceling pair of index-0 and
index-1 critical points. Moreover, canceling pair of index-1 and index-2 critical points
increases the genus of the Heegaard surface by 1, therefore introducing canceling pair
of index-0 and index-1 critical points does no change the genus of the Heegaard sur-
face, but increases the number attaching circles for the handlebody U by 1. Canceling
pair of critical points corresponds to deleting one of the attaching circles. For example
in the below example the curve α2 bounds a surface so it is null-homologous in H1(Σ).

Figure 2.14: An illustration for canceling pair of index-1 and index-0 critical points

Remark 2.4.1 ( [12]). Relative homology groups Hn(X,A) for any pair (X,A) fit
into a long exact sequence

· · · −−−→ Hn(A) −−−→ Hn(X) −−−→ Hn(X,A)
∂−−−→ Hn−1(A) −−−→ · · ·

Definition 6. A set {α1, .., αd} containing pairwise disjoint embedded circles in Σ
which bound embedded disks in U and span the image of the boundary homomor-
phism ∂ : H2(U,Σ) → H1(Σ), is called an extended set of attaching circles for the
handlebody U.

Lemma 2.4.2. Let γ be a simple closed curve disjoint from a set of {α1, .., αg} at-
taching circles in Σ for handlebody U . Then γ is either null-homologous or for some
αi, orγ is isotopic to a curve obtained by handlesliding αi over some collection of αj
for i 6= j.
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Proof. Note that {α1, .., αg} is linearly independent in H1(Σ;Z) and let
{[α1], .., [αg], [b1], .., [bg]} be a basis of H1(Σ) such that bi’s are simple closed curves
on Σ around each genus. The curve γ homologically cannot contain bi’s in the linear
combination of the basis because γ does not intersect with α curves. Let us surger
out {α1, .., αg} from Σ then we have S2 with closed curve γ on it and g many pair of
marked points (pi, qi) to remember the places of αi’s on Σ, attaching spheres of the
1-handles to be attached.

We claim that γ does not separate any (pi, qi) if and only if γ separates Σ. First
assume that γ separates Σ which means it bounds a surface and γ is null-homologous
in H1(Σ;Z). If α

′
1 is obtained from handlesliding α1 over α2 then as they bound a

pair of pants on Σ, homologically the sum of them is trivial. Thus α
′
1 is homologically

linear combination of α1 and α2. If γ separates pi and qi for some i the coefficient ai
of [γ] =

∑
ai[αi] is nonzero. It contradicts with γ being null-homologous. Conversely,

assume that γ does not separate Σ then [γ] =
∑
ai[αi] is not zero, so at least one of

ai 6= 0 then γ separates (pi, qi), contradiction.

With this argument if γ does not separate any (pi, qi) then γ is null-homologous.
If it does then the homology class of γ is linear combination of [αi]’s, thus γ is isotopic
to a handleslide of αi over some αj’s with i 6= j.

Lemma 2.4.3. Let {α1, .., αd} be an extended set of attaching circles for handlebody
U . Take two subsets containing g-many curves such that each subset forms a set of
attaching circles for U . Then two sets can be related by isotopy and handleslide.

Proof. We prove the statement by induction on the number of genus g. If g = 1,
on torus as there is only one attaching circle for handlebody, thus any two different
attaching curves are homologically same and they are isotopic. Let us assume that
the statement is true for the genus g − 1 and prove for genus g. Let {α1, .., αd} be
extended set of attaching circles for U . Take any two subsets containing g-many
circles as {α1, .., αg} and {α′1, .., α

′
g}. Either two of these sets are disjoint or they

contain common elements. Let us assume that, wlog, α1 is a common element for
both sets. If we surger out α1 curve the the genus of the Heegaard surface is reduced
by 1 with (g− 1) many attaching circles for handlebody with 2 marked points. Thus
any isotopy on the Heegaard surface separating the two marked points is isotopic
to handlesliding over α1. After surgering out α1 we have two sets of g − 1 many
circles and by hypothesis they are related by isotopy and handleslide by the Lemma
(2.4.2). If two sets {α1, .., αg} and {α′1, .., α

′
g} are disjoint then as α

′
1 is not null-

homologous by Lemma (2.4.2) it is isotopic to a handleslide of some αi over some αj’s
with i 6= j. Then we are in the first case concuding two sets can be related by isotopy
and handslide.

Now we are ready to state the most important theorem of this chapter.

Theorem 2.4.4. If (Σ, α, β) and (Σ, α, β) are two Heegaard diagrams representing
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the same three-manifold Y then two diagrams are diffeomorphic after a finite sequence
of Heegaard moves.

Proof. Consider compatible Morse functions f and f ′ for these two Heegaard dia-
grams. Connect these Morse functions through generic family of functions ft. Except
for finitely many t, we get the induced Heegaard diagrams for Y such that the ex-
tended sets of attaching circles can be related via isotopy and handleslide. For the
finitely many t, there is a stabilization move corresponding to the canceling pair of
index-1 and index-2 critical points.

For a handlebody U , extend the two sets of attaching circles to {α1, .., αd} and
{α′1, .., α

′

d} such that they are related by isotopy and handleslide. (Wlog) let α
′
1 ob-

tained from α1 handlesliding over some αj’s. Consider the extended set {α1, .., αd, α
′
1},

then any two subsets of g-many curves can be related by isotopy and handleslide by
the Lemma(2.4.3). Continue this argument to conclude {α1, .., αg} and {α′1, .., α

′
g}

are related by isotopy and handleslide. Same argument is true for β and β
′

curves
proving the theorem.

There is a special argument about stabilization as follows, its proof can be found
in [37].

Theorem 2.4.5. Let (Σ, α, β) and (Σ
′
, α
′
, β
′
) be two Heegaard diagrams, with genus g

and g′ Heegaard surfaces respectively, representing the same three-manifold Y . Then
for some k large enough (k− g′)-fold stabilization of the first decomposition is diffeo-
morphic to (k − g)-fold stabilization of the second decomposition.

As an illustration think about genus-0 and genus-1 Heegaard decompositon of S3.
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Chapter 3

MORE TOPOLOGICAL BACKGROUND AND
NECESSARY TOOLS

In this chapter we study some necessary topological tools to define Heegaard
Floer homology. First we study symmetric product space and Whitney disks in this
space then we define domains and intersection numbers, and lastly we discuss Spinc

structures on three-manifolds.

3.1 Symmetric Product Space

In order to define Heegaard Floer homology, we study a configuration space rather
than a Heegaard surface. For a three-manifold Y , let (Σg, α1, .., αg, β1, .., βg, z) be a
pointed Heegaard diagram. The following configuration space

Symg(Σg) = Σg × ..× Σg/Sg

where Sg is symmetric group with g elements is called Symmetric product space,
denoted by Symg(Σg). It is the set of unordered g-tuple of points in Σg where same
points can appear more than once.

Proposition 3.1.1. Symg(Σg) is a smooth manifold of real dimension 2g.

Proof. Note that it is not a free action since there are elements other than identity
fixing elements of Σg× ..×Σg. Any element of Σg which is of the form {x1, .., xg} with
xi ∈ Σg can be thought of as the roots of a monic polynomial p(x) = (x−x1)..(x−xg)
of degree g over C. An open neighborhood of this point in Symg(Σg) is homeomorphic
to an open neighborhood of p(x). As monic polynomials over C are homeomorphic
locally to Cg, Symg(Σg) is a 2g dimensional smooth manifold.

Definition 7. Let (Σg, α, β) be a Heegaard diagram. The set of attaching circles
induce smoothly embedded g dimensional tori in Symg(Σg):

Tα = α1 × ..× αg
Tβ = β1 × ..× βg

Note that the set of attaching circles {α1, .., αg} are disjoint and different elements
of α1× ..×αg are not in the same orbit. Therefore Tα = α1× ..×αg is homeomorphic
to S1 × ..× S1, the g dimensional torus.

Definition 8. A complex structure on a vector space V is an automorphism J : V →
V such that J2 = −1, and with such a structure V becomes a complex vector space.
An almost complex structure on a real manifold is that its tangent bundle is equipped
with a complex structure.
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Definition 9. Let M be a complex manifold equipped with a complex structure J
and let S ⊂ M . S is called totally real submanifold if TpS ∩ JTpS = (0) for every
p ∈ S, i.e., any of its tangent spaces does not contain a J complex line.

Proposition 3.1.2. The tori Tα and Tβ as defined above are totally real submanifolds
of Symg(Σg).

Proof. Consider the projection map π : Σg× ..×Σg → Symg(Σg). This is a holomor-
phic local diffeomorphism away from the diagonal D ⊂ Symg(Σg), which consists of
g-tuples of points in Σg such that at least two entries coincide. Note that Tα∩D = ∅.
Thus it suffices to prove that α1 × ..× αg is totally real submanifold of Σg × ..× Σg.
Any complex structure j on Σg induces a complex structure on Symg(Σg) and a prod-
uct complex structure J on Σg × .. × Σg. Take a vector v from a tangent space of
Σg × .. × Σg then J(v) = (v1, .., vg) = (j(v1), .., j(vg)). Now, take a vector w from a
tangent space of Tα, w = (w1, .., wg) where wi is tangent to αi but j(wi), if not zero,
is not tangent to αi, since tangent space of αi has dimension 1 and j2 = −1 implies
that it can not have a real eigenvector. So at least one of wi 6= 0 and J(w) is not
in the tangent space of Tα as none of its components is tangent to αi. Therefore,
α1 × ..× αg ⊂ Σg × ..× Σg is a totally real submanifold.

Definition 10. Let (Σg, α, β, z) be a pointed Heegaard diagram with the chosen
basepoint z we define the following subspace

Vz = {z} × Symg−1(Σg)

Note that z is disjoint from α and β curves, so it follows that Vz ∩ Tα = ∅ and
Vz ∩ Tβ = ∅. Intersection with Vz will be more important as we proceed.

Theorem 3.1.3. Let Σ be a genus g surface then

π1(Symg(Σ)) ' H1(Symg(Σ)) ' H1(Σ)

Proof. First let us prove the isomorphism between H1(Symg(Σ)) and H1(Σ). The
inclusion map Σ ↪→ Symg(Σ) induces an injective map on the level of the first ho-
mology

H1(Σ)→ H1(Symg(Σ))

sending basis elements [γ] of H1(Σ) to {[γ], x, .., x}. Let us define the inverse map
H1(Symg(Σ))→ H1(Σ). Diagonal D defined as before is codimension 1 in Symg(Σ),
because it is homeomorphic to the set of solutions of monic polynomials of degree
g of codimension 1 in Cg. Therefore, a generic circle intersects with the diagonal
in finitely many points. Take a generic curve in Symg(Σ), if it misses the diagonal
then we have a continuous map γ : S1 → Σ × .. × Σ where the image is a disjoint
union of g circles corresponding to a g-fold cover of S1 to Σ. If the curve intersects
with the diagonal then γ−1(D) 6= ∅ and S1 − γ−1(D) is union of arcs then we have
a continuous map γ : S1 − γ−1(D) → Σ × .. × Σ. For every point in γ−1(D) we
combine the corresponding coordinate functions and connect them; in other words we
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take a branch cover over a point. So we construct a continuous map where the circle
are arranged to form a single circle. This is not necessarily a g-fold cover of S1. But
as long as we obtain a map to a disjoint union of circles then we have a homology class.

The map defined here is well-defined, which means homologous curves γ and γ′

have homologous images. If γ and γ′ are homologous they bound an oriented surface
Z in Symg(Σ). If Z does not intersect with the diagonal, the map Z → Σ × .. × Σ
maps boundary to boundary which are the images of γ and γ′, thus the image is
homologous. Generically Z intersects with D in one dimensional subspaces like arcs
and curves . By a similar argument above it will give a branched cover Z̃ mapping
to Σ. Its boundary curves are images of γ and γ′. Therefore the map is well-defined
and these two maps are inverses of each other.

To prove the second isomorphism π1(Symg(Σ)) ' H1(Symg(Σ)), it suffices to show
that π1(Symg(Σ)) is Abelian. Indeed, the first homology group is the abelianization
of the fundamental group. If it is Abelian already the result follows. In order to
see this take a null-homologous curve γ : S1 → Symg(Σ) such that it does not
intersect with the diagonal. By the above argument, we can obtain a map γ̃ of g-fold
cover of S1 to Σ which is also null-homologous, so it bounds a surface F in Σ. Let
ı : F ↪→ Σ be injection such that ı|∂F = γ̃. Extend this g-fold covering of circle to
disk π : F → D. For any z ∈ D, z 7→ ı ◦ π−1(z) provides the nullhomotopy of γ.
Therefore, π1(Symg(Σ)) is Abelian.

Proposition 3.1.4. Let Y be a closed, oriented three-manifold with a Heegaard dia-
gram (Σ, α, β). Then we have the following:

H1(Symg(Σ))

H1(Tα)⊕H1(Tβ)
' H1(Σ)

[α1], .., [αg], [β1], .., [βg]
' H1(Y ;Z) (3.1)

Proof. The isomorphism on the right can be obtained using Mayer-Vietoris sequence.
By definition the attaching circles {[α1], .., [αg]} and {[β1], .., [βg]} are linearly inde-
pendent in H1(Σ). The two set can also be linearly independent and in that case
they generate H1(Σ) together. However they are not necessarily linearly independent
and the map H1(Σ) → H1(Y,Z) has kernel {[α1], .., [αg], [β1], .., [βg]}. The isomor-
phism on the right can be obtained by the previous theorem where we showed the
isomorphism between H1(Symg(Σ)) and H1(Σ). Note that Tα is smoothly embedded
in Symg(Σ) and H1(Tα) is generated by {[αi]} with 1 ≤ i ≤ g, and similar is true for
Tβ. Therefore isomorphism follows.

Let us continue with the topological properties of the symmetric product space,
Symg(Σ), and let us understand the holomorphic spheres in Symg(Σ). Thus we study
the second homotopy group. The fundamental group of a path-connected space X
acts on higher homotopy groups of the same space. To see this take a path γ : I → X
with γ(0) = x0 and γ(1) = x1 then to each map f : (In, ∂In) → (X, x1) associate a
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new map γf : (In, ∂In)→ (X, x0) by shrinking the domain of f to a smaller concentric
cube in In. This description formulates the action of π1 on πn as

π1(X, x0)× πn(X)→ πn(X, x0)

sending

([γ], [f ])→ [γf ]

The action is trivial if [γf ] ' [f ] for every [γ] ∈ π1(X). Let π′n denote the quotient of
πn under the action of π1. For more detailed description of this see [12].

Theorem 3.1.5. Let Σ be a Riemann surface of genus g ≥ 2 then

π′2(Symg(Σ)) ' Z

If g ≥ 3 action of π1(Symg(Σ)) on π2(Symg(Σ)) is trivial, in this case

π2(Symg(Σ)) ' Z

Proof. Let x be a generic point of Σ, by generecity we mean x ∈ Σ − α − β. Let
Vx = {x} × Symg−1(Σ) be subvariety and define the map

φ : π′2(Symg(Σ))→ Z

φ(u) = #(u ∩ Vx)

φ counts the number of coordinates of u which are x. Take an orientation preserving
hyper-elliptic involution τ : Σ→ Σ such that Σ/τ ' S2 call it S0 ⊂ Symg(Σ). With
S0 we can obtain sphere S = S0 × x3 × .. × xg ⊂ Symg(Σ) as the set of elements
S = {(y, τ(y)), z, .., z} ⊂ Sym2(Σ). Note that #(S ∩ Vx) = 1. Indeed the first coor-
dinate of S scans the points of Σ and it becomes x once so S and Vx intersects once
in one coordinate. Therefore, we can take S as positive generator of π′2(Symg(Σ)).

First let us show that this map is well-defined. We need to show that it is homo-
topy invariant. Let u and u′ be different elements in the homotopy class of u. Let ut be
a homotopy from u to u′. By continuity of the homotopy, the map φ(ut) = #(ut∩Vx)
changes continuously as 0 ≤ t ≤ 1. But the intersection number is integer so this
number must change continuously and it forces #(u ∩ Vx) = #(u′ ∩ Vx).

The map φ is a homomorphism. If we splice two spheres u1, u2 ∈ π′2(Symg(Σ)),
then intersection number is additive for u1 ∗ u2 and

#(u1 ∗ u2 ∩ Vx) = #(u1 ∩ Vx) + #(u2 ∩ Vx)

As we count the number of x appearing in coordinates attaching two spheres each
other in one point result in adding the number of intersection points of each sphere.
Intersection number will be discussed in more detail in next section.
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The map is clearly onto as there exists an element assigned to a generator of Z.
Thus we can get all other numbers by splicing and changing orientations.

Now let us show that the map is injective. We will show by proving the kernel is
trivial. Let Z ∈ Ker(φ) so φ(Z) = 0 which means either Z does not intersect with Vx
or its algebraic intersection adds up to 0. Generically Z meets with Vx in finitely many
points as Z has real dimension 2 and Vx is codimension 2. Splice homotopy trans-
lates of S with appropriate signs, at intersection points then we obtain Z ′ a sphere
whose geometric intersection with Vx is empty and homotopic to Z. As its algebraic
number adds up to 0, the number of positive and negative intersections is same and
by splicing even number of S we do not change the algebraic intersection number.
So Z ′ is a sphere in Symg(Σ− x). After the π1 action on π2 which provides freedom
to change basepoint, the splicing operation is not related to the basepoint, thus this
operation takes place in π′2(Symg(Σ)). We claim that Z ′ is trivial in Symg(Σ − x)
for g > 2. Note that Σ− x is homotopy equivalent to wedge sum of 2g circles. Con-
sider cell structure of Σ. Taking out a point is homotopy equivalent to taking out a
disk, therefore without a 2-cell the remaining is a 1-skeleton, which is a bouquet of
2g-circles. Σ− z is also homotopy equivalent to C−{z1, .., zg}. Symg(C−{z1, .., zg})
is the space of monic polynomials p of degree g such that p(zi) 6= 0 with 1 ≤ i ≤ 2g.
Coefficients of p are in Cg minus 2g generic hyperplanes. By a theorem of Hattori [29]
which says homology groups of the universal covering space of this complement are
trivial except in dimension 0 or g. This shows that π2(Symg(Σ − x)) is trivial. It
shows that for any element in Ker(φ) we can find a sphere Z ′ homotopic to Z living
in Symg(Σ− x) and homotopically trivial. So φ is injective.

This proves that π′2(Symg(Σ)) ' Z for g > 2. For g = 2, Symg(Σ) is diffeomor-
phic to blowup of T 4, see [29], [8].

What remains is to show that for g ≥ 3, the action of π1(Symg(Σ)) is trivial, so
that the map π1(Symg(Σ))× π2(Symg(Σ))→ π2(Symg(Σ)) sending ([γ], [σ]) to [γσ],
where γ : S1 → Symg(Σ) and σ : S2 → Symg(Σ) gives [γσ] ' [σ]. By the previous
theorem π1(Symg(Σ)) ' H1(Σ). Thus γ = γ′ × {x, .., x} for some γ′ : S1 → Σ and
{x, .., x} ∈ Symg−1(Σ) and replace σ with {x}× σ′ where σ′ : S2 → Symg−1(Σ). The
map γσ : S1∨S2 → Symg(Σ) takes p to {x, .., x}. Denote γσ by γ∨σ on S1∨S2 and
this can be extended to γ′ × σ′ : S1 × S2 → Symg(Σ) taking p to {x, .., x}. Action of
π1(S1×S2) on π2(S1×S2) is trivial, therefore the map γ∨σ : S1∨S2 → S1×S2 sending
(t, w) to (p, w) is homotopic to {p}× i and it maps to Symg(Σ) after composing with
γ′ × σ′, this gives

γ′ × σ′({p} × i) = γ′({p})× σ′(i) = {x} × σ′ ' σ

Thus the map γ ∨ σ : S1 ∨ S2 → Symg(Σ) is homotopic to σ as desired.

Remark 3.1.6. When g = 1 the map π2(x, y)→ Z⊕H1(Y ;Z) is injective.
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3.2 Disks in Symmetric Products

Let D ⊂ C be unit disk such that

e1 = {z ∈ D|Re(z) ≥ 0}
e2 = {z ∈ D|Re(z) ≤ 0}

an intersection point x ∈ Tα∩Tβ is unordered g-tuple {x1, .., xg} of intersection points
of αi’s and βj’s such that they intersect exactly at one point xk.

Definition 11. Let x, y ∈ Tα ∩ Tβ. A continuous map u : D → Symg(Σg) with
u(−i) = x and u(i) = y with u(e1) ⊂ Tα and u(e2) ⊂ Tβ is called a Whitney disk
connecting x and y in Symg(Σ).

Definition 12. π2(x, y) is the set of homotopy classes of Whitney disks connecting
x and y.

Remark 3.2.1. Let x, y, z ∈ Tα ∩ Tβ. Suppose we have a Whitney disk from x to y
and a Whitney disk from y to z. We can glue them to get a disk from x to z. Moreover,
there is a splicing action on π2(x, y). We can splice spheres from π′2(Symg(Σ)) to a
disk in π2(x, y) so that we attach a sphere to a disk in one point and as a result, it
is still a Whitney disk from x to y satisfying the definition. We take spheres from
π′2(Symg(Σ)), therefore the basepoint does not matter.

Let x, y ∈ Tα ∩ Tβ. Take two paths from x to y a : [0, 1]→ Tα and b : [0, 1]→ Tβ
then a− b is a loop in Symg(Σ). By the isomorphism in Equation(3.1), let ε(x, y) be
the image of a − b in H1(Y,Z). The definition is well-defined which means ε(x, y) is
independent of the paths chosen. Let a′ : [0, 1] → Tα and b′ : [0, 1] → Tβ be another
pair of paths connecting x and y. Note that a − a′ is a loop based at x in Tα and
similarly b− b′ is a loop based at x in Tβ. We need to show that (a− b)− (a′ − b′) is
nullhomologous in H1(Y,Z). As (a−b)−(a′−b′) = (a−a′)−(b−b′) is nullhomologous
in H1(Y,Z) under the map in Eqn. 3.1). By definition it follows that if ε(x, y) 6= 0
then π2(x, y) = ∅. Indeed if a chosen loop a − b is essential in H1(Y,Z) then it is
not in the kernel of the map in Eqn.(3.1). If there is a Whitney disk u ∈ π2(x, y) its
boundary is a loop in H1(Tα)⊕H1(Tβ). Thus π2(x, y) must be empty.

We can calculate ε(x, y) on Σ with the help of the isomorphism

π1(Symg(Σ)) ' H1(Σ)

Intersection points x and y are unordered g-tuples x = {x1, .., xg} and y = {y1, .., yg},
thus a path a : [0, 1]→ Tα is a collection of arcs α1∪..∪αg in Σ with ∂a =

∑
yi−

∑
xi,

and a path b : [0, 1]→ Tβ is also a collection of arcs β1∪..∪βg in Σ with same boundary.
This implies a− b is closed 1-cycle in Σ and the image of a− b in H1(Y,Z) is ε(x, y).

Proposition 3.2.2. ε(x, y) is additive as ε(x, y) + ε(y, z) = ε(x, z).
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Proof. Let a and b be two paths as above from x to y. Take a′ : [0, 1] → Tα and b′ :
[0, 1]→ Tβ be two paths from y to z. Choose paths c : [0, 1]→ Tα and d : [0, 1]→ Tβ
from x to z combining a with a′ and b with b′ respectively. Image of a− b in H1(Y,Z)
is ε(x, y) and image of a′ − b′ is ε(y, z). Then (a− b)− (a′ − b′) = (a + a′)− (b + b′)
is loop in Symg(Σ) whose image is ε(x, z) and result follows.

Proposition 3.2.3. For x, y ∈ Tα∩Tβ, x ∼ y if ε(x, y) = 0 is an equivalence relation.

Proof. x, y ∈ Tα ∩ Tβ, ε(x, y) = 0 implies π2(x, y) 6= ∅ so there exists a Whitney disk
connecting x and y. Let u : D → Symg(Σ) with u(i) = u(−i) = x and u(e1) ⊂ Tα
and u(e2) ⊂ Tβ. So u ∈ π2(x, x) 6= ∅ implies ε(x, x) = 0 and x ∼ x. Suppose x ∼ y
so ε(x, y) = 0. Take two paths a : [0, 1]→ Tα and b : [0, 1]→ Tβ connecting x and y.
Image of a− b is 0 in H1(Y,Z). But −a and −b are paths from y to x and image of
b− a is also 0 in H1(Y,Z). This shows ε(y, x) = 0 so y ∼ x and it is symmetric. Now,
suppose x ∼ y and y ∼ z then ε(x, y) = 0 and ε(y, z) = 0. ε(x, y) is additive implies
that ε(x, z) = ε(x, y) + ε(y, z) = 0 so x ∼ z. Thus, it is an equivalence relation.

Remark 3.2.4. The set of intersection points of Tα ∩ Tβ can be partitioned into
equivalence classes by above relation.

Example: Consider a genus-1 decomposition of L(p, q) and choose attaching curves
α and β, so that they intersect at p points. All intersection points lie in different
equivalence classes. Note that a Heegaard decomposition of L(p, q) as described in
Section 2.2 will look like below, which is for L(5, 3) :

Figure 3.1: A Heegaard diagram of the Lens space L(5, 3)

Choose α and β curves as such to have p intersection points. Choose x1 and x2

which can be connected by a path a in Tα and by a path b in Tβ. After attaching the
1-handle, b becomes a path from x1 to x2 in Figure(3.1). As Sym1(Σ1) ' Σ/S1 ' Σ1,
the loop a− b is homotopic to a standard parallel of the solid torus and by definition
it is not 0 ∈ H1(Σ1), so ε(x1, x2) 6= 0 implies x1 � x2. In general, using a similar
argument we see that loops obtained by connecting intersection points xi and xj with
i 6= j is homotopic to a standard parallel of solid torus and hence not equal to 0 in
H1(Σ1). Therefore, xi � xj for i 6= j.
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3.3 Domains and Intersection Numbers

In this section, we learn domains in Σg which is helpful to understand disks in
Symg(Σg).

Definition 13. Let A be a set of maps, Ax,y : π2(x, y)→ Z for every x, y ∈ Tα ∩ Tβ
such that Ax,y(φ) + Ay,z(ψ) = Ax,z(φ ∗ ψ), for every φ ∈ π2(x, y) and ψ ∈ π2(y, z), is
called an additive assignment.

Now, let x, y ∈ Tα ∩ Tβ and w ∈ Σg − α1 − ..− αg − β1 − ..− βg be a basepoint.
Define nw : π2(x, y)→ Z sending a homotopy class of a Whitney disk to its algebraic
intersection number

nw(φ) = #({w} ∩ Symg−1(Σg))

Remember that Vw = {w} ∩ Symg−1(Σg) and this map counts the number of coordi-
nates of image of φ which is w considering orientation.

As a first step let us show that this algebraic intersection number is finite. Note
that Vw = {w} ∩ Symg−1(Σg) is real codimension 2 in Symg(Σg). Therefore, generi-
cally image of a 2 dimensional object D intersects with Vw at points. Image of D and
vw is compact, therefore they intersect at finitely many points.

This map is well-defined, so it is independent of the representative chosen in each
homotopy class. Let φ1, φ2 be different representatives of φ ∈ π2(x, y). As they are
homotopic, let {φt} be a homotopy between φ1 and φ2. By definition φt is contin-
uous with respect to t, as the algebraic intersection number Vw with image of φt is
an integer and φt is continuous with respect to t imply #(φt(D) ∩ Vw) is constant.
Thus, #(φ0(D)∩Vw) = #(φ1(D)∩Vw) implies nw(φ1) = nw(φ2) and nw is well-defined.

Now, let us show that nw is additive. Take x, y, z ∈ Tα ∩ Tβ with φ ∈ π2(x, y),
ψ ∈ π2(y, z), and w ∈ Σg − α1 − .. − αg − β1 − .. − βg. φ ∗ ψ is a Whitney disk
connecting x and z so φ ∗ ψ ∈ π2(x, y). nw(φ ∗ ψ) = #(φ ∗ ψ(D) ∩ Vw) counts the
number of intersection points between Vw and (φ ∗ψ)(D). As φ ∗ψ is a disk obtained
by gluing φ and ψ, the algebraic intersection number is the sum of algebraic inter-
section numbers of φ(D)∩Vw and ψ(D)∩Vw. Thus, nw(φ∗ψ) = nw(φ)+nw(ψ) follows.

Definition 14. Let (Σ, α, β) be a Heegaard diagram and D1, .., Dm be closures of the
components of Σg−α1− ..−αg−β1− ..−βg. For any φ ∈ π2(x, y) we define domain
for φ as formal linear combination of D1, .., Dm as:

D(φ) =
m∑
i=1

nziDi

where zi ∈ int(Di) for 1 ≤ i ≤ m. We denote D(φ) ≥ 0 for all i.
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Remark 3.3.1. Note that the definition of domain for φ is independent of the rep-
resentative of the homotopy class of φ which follows by well-definedness of nw map.

Example: Consider a genus-1 decomposition of S3 where the Heegaard diagram has
α and β curves intersecting as in Example.1 in Section 2.2. There is only one region
D1 as Σ− α− β is an open disk.

Proposition 3.3.2. For x, y, p ∈ Tα ∩ Tβ with φ1 ∈ π2(x, y), φ2 ∈ π2(y, p). Then

D(φ1 ∗ φ2) = D(φ1) +D(φ2)

and in particular

D(S ∗ φ) = D(φ) +
m∑
i=1

Di

where S is positive generator of π
′
2(Symg(Σg)).

Proof. Above equalities follow easily from additivity of nw and note that φ1 ∗ φ2 ∈
π2(x, p).

D(φ1 ∗ φ2) =
m∑
i=1

nzi(φ1 ∗ φ2)Di =
m∑
i=1

[nzi(φ1) + nzi(φ2)]Di = D(φ1) +D(φ2).

For the second equality we use the fact that nzi(S) = 1 and result follows.

In the definition of domain, we have not mention a restriction for the interior
point zi ∈ int(Di) chosen. Let us show that this quantity is independent of the choice
of interior point zi and D(φ) depends only on the homotopy class. As nw(φ) counts
algebraically the number of components of image of D under φ which are w. Consider
the quotient of the surface Σ under identifying all α and β curves to points. This is
equivalent to saying that collapse the boundary of Di for all 1 ≤ i ≤ m into single
point getting wedge of m spheres in the end. There is a similar quotient in the do-
main D as its boundary maps to Tα and Tβ. After composing the projection of φ to
the surface with this quotient described above, φ : D → Symg(Σ) turns into a map
from S2 →

∨m
i=1 S

2. If in the image there is a point in any one of the spheres in the
wedge sum the other points of the same sphere must be in the image too. Therefore,
nzi(φ) = nzj(φ) for any zi, zj ∈ int(Dk) proving that the definition of domain asso-
ciated to φ ∈ π2(x, y) D(φ) is independent of the interior points chosen as basepoint
and it depends only on the homotopy class of φ.

The region Di without boundary are 2-cells, so we can see the domain D(φ) asso-
ciated to φ as a 2-chain, which is a formal linear combination of 2 simplices. Thus we
can study its boundary. Let x, y ∈ Tα∩Tβ be intersection points with x = {x1, .., xg},
y = {y1, .., yg} where xi ∈ αi ∩ βi and yi ∈ αi ∩ βσ−1(i) and σ is a permutation.

First, let us investigate the case g = 2, x = {x1, x2}, y = {y1, y2} and σ can be
identity or a transpose changing (1, 2) to (2, 1). If σ is the latter we have:
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
xi ∈ αi ∩ βi for i = 1, 2

y1 ∈ α1 ∩ β2

y2 ∈ α2 ∩ β1

Place these 4 points on the plane, we can connect x1 and y1 by α1 curve, x2 and y2

by α2 curve, x2 and y1 by β2 curve, and x1 and y2 by β1 curve.

Figure 3.2: Domains of disks in Sym2(Σ)

If σ is the identity permutation then we have xi, yi ∈ αi ∩ βi for i = 1, 2 and we have
the following figure.

For arbitrary g and φ ∈ π2(x, y), if we restrict boundary of D(φ) to αi it is a path
between xi and yi for all 1 ≤ i ≤ m. So this restriction is a 1-chain whose boundary
is yi− xi. Similarly, if we restrict boundary of D(φ) to βi it is a path between xi and
yσ(i) as yσ(i) ∈ ασ(i) ∩ βσ−1(σ(i)) = ασ(i) ∩ βi. It is also a 1-chain whose boundary is
xi − yσ(i). Thus we can say that ∂(D(φ)) connects x to y on α curves and y to x on
β curves.

Let us study a specific domain type called a periodic domain.

Definition 15. Let (Σ, α, β, z) be a Heegaard diagram with basepoint z. A periodic

domain is a 2-chain P =
m∑
i=1

aiDi such that its boundary is union of α and β curves

with nz(P) = 0. For any x ∈ Tα ∩ Tβ, if for φ ∈ π2(x, x), nz(φ) = 0 then φ is called
a periodic class and the domain associated to a periodic class is called a periodic
domain.

Remark 3.3.3. For x, y, z ∈ Tα ∩ Tβ, there is a generalized multiplication

∗ : π2(x, y)× π2(y, z)→ π2(x, z)

For x = y, π2(x, x) has a group structure, then the set of periodic classes, denoted as∏
x(z), is naturally a subgroup of π2(x, x).

Now let us state the main theorem of this section describing the topology of
π2(x, y).
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Theorem 3.3.4. Let g > 1, then for every x ∈ Tα ∩ Tβ,

π2(x, x) ' Z⊕H1(Y,Z)

In general, for every x, y ∈ Tα ∩ Tβ, if ε(x, y) 6= 0 then π2(x, y) = ∅; otherwise

π2(x, y) ' Z⊕H1(Y,Z)

We will prove this theorem by using short exact sequence of spaces giving long
exact sequences of homotopy groups. A short exact sequence of the form

A
i−−−→ X −−−→ X/A

gives long exact sequence of homology groups but not long exact sequence of homotopy
groups. However fiber bundle

F −−−→ E −−−→ B

is such a short exact sequence. Let us give some preliminary definitions and statements
for the proof of the Theorem (3.3.4).

Definition 16. A map p : E → B has homotopy lifting property with respect to a
space X if for a given homotopy gt : X → B and a map g̃0 : X → E lifting g0 such
that pg̃0 = g0 then there exists a homotopy g̃t : X → E lifting gt.

Definition 17. A fibration is a map p : E → B having homotopy lifting property
with respect to all spaces X.

Theorem 3.3.5 ( [12]). Suppose that the map p : E → B has the homotopy lifting
property with respect to disks Dk for all k ≥ 0. Choose basepoints b0 ∈ B and
x0 ∈ F = p−1(b0). Then the map p∗ : πn(E,F, x0)→ πn(B, b0) is an isomorphism for
all n ≥ 1. If B is path-connected then there is a long exact sequence:

· · · −−−→ πn(F, x0) −−−→ πn(E, x0)
p∗−−−→ πn(B, b0) −−−→ πn−1(F, x0) −−−→ · · ·

−−−→ π0(E, x0) −−−→ 0

Proof of this theorem uses relative form of homotopy lifting property and it will
not be discussed here.

A map p : E → B satisfying homotopy lifting property for disks is called a Serre
fibration. For detailed discussion of this topic and proofs, see fiber bundles in [12].

Proof of the Theorem 3.3.4. Let Ω(Tα,Tβ) be the space of paths in Symg(Σ) joining
Tα to Tβ. Consider the evaluation map p : Ω(Tα,Tβ) → Tα × Tβ sending paths γ
from a to b to its endpoints (a, b) ∈ Tα×Tβ. Fiber p−1(a, b) is all paths in Ω(Tα,Tβ)
from a to b, and take fiber as the path space ΩSymg(Σ). Then we have a fiber bundle:

ΩSymg(Σ) −−−→ Ω(Tα,Tβ) −−−→ Tα × Tβ
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First, let us show that this is a Serre fibration, so we need to prove the map p :
Ω(Tα,Tβ)→ Tα×Tβ has homotopy lifting property with respect to Dk for all k ≥ 0.
Let gt : Dk → Tα × Tβ be a homotopy. The image of the map g0 : Dk → Tα × Tβ
for every point can be seen as a path γ = p−1(g0(x)) in Ω(Tα,Tβ) between endpoints
g0(x) = (a, b). Thus we can extend it to g̃0 : Dk → Ω(Tα,Tβ) taking x to γ such that
pg̃0 = g0, then by homotopy lifting property we have a homotopy g̃t : Dk → Ω(Tα,Tβ).

Serre fibration induces a long exact homotopy sequence by above theorem and
using Tα × Tβ is path-connected then we have:

· · · −−−→ πn(ΩSymg(Σ), x0) −−−→ πn(Ω(Tα,Tβ), x0)
p∗−−−→ πn(Tα × Tβ, b0)

−−−→ πn−1(ΩSymg(Σ), x0) −−−→ · · · −−−→ π0(Ω(Tα,Tβ), x0) −−−→ 0

Note that the space π2(x, x) can be identified with the fundamental group of the
space Ω(Tα,Tβ) based at the constant path x0 = (x). Let x ∈ Tα∩Tβ then a constant
path (x) is a path joining Tα to Tβ. Such a path correspond to image of a Whitney
disk u : D→ Symg(Σ) such that u(i) = u(−i) = x with u(e1) ⊂ Tα and u(e2) ⊂ Tβ.
Homotopy of loops in Tα ∩Tβ based at constant path (x) correspond to homotopy of
Whitney disks joining x to x. Thus π2(x, x) can be identified with π1(Ω(Tα,Tβ)).

Consider the following part of the long exact homotopy sequence:

· · · −−−→ π2(Tα × Tβ, b0) −−−→ π1(ΩSymg(Σ), x0) −−−→ π1(Ω(Tα,Tβ), b0)
p∗−−−→ π1(Tα × Tβ, b0) −−−→ π0(ΩSymg(Σ), x0) −−−→ π0(Ω(Tα,Tβ), x0) −−−→ 0

We have the following isomorphisms:

• π2(Tα × Tβ) = π2(Tα)× π(Tβ) ' 0, (see [10])

• πi(ΩSymg(Σ)) ' πi+1(Symg(Σ)) for i = 0, 1, (see [10])

• π1(Symg(Σ)) ' H1(Σ) ' H1(Σ), last isomorphism comes from Poincare Dual-
ity.

• π1(Ω(Tα,Tβ, (x)) ' π2(x, x)

• π2(Symg(Σ)) ' Z as g ≥ 2 by Theorem 3.1.5

Consider the third isomorphism above, the images of π1(Tα) and π1(Tα) correspond
to H1(U0;Z) and H1(U1;Z), so we have the following sequence combined with above
isomorphisms:

0 −−−→ Z −−−→ π2(x, x) −−−→ H1(U0)⊕H1(U1) −−−→ H1(Σ)

−−−→ π0(Ω(Tα,Tβ), x0) −−−→ 0
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For the 3-manifold Y = U0∪U1 with Σ = U0∩U1, let us apply the Mayer-Vietoris
sequence for cohomology with Z coefficients:

· · · −−−→ Hn(Y ) −−−→ Hn(U0)⊕Hn(U1) −−−→ Hn(Σ) −−−→ Hn+1(Y ) −−−→ · · ·

and consider the following piece:

· · · −−−→ H1(Y ) −−−→ H1(U0)⊕H1(U1) −−−→ H1(Σ) −−−→ · · ·

As this is a chain complex composition of first two maps gives 0 and H1(Y ) is subset
of the kernel of the map H1(U0)⊕H1(U1)→ H1(Σ) and we obtain the following short
exact sequence:

0 −−−→ Z −−−→ π2(x, x) −−−→ H1(Y ;Z) −−−→ 0

The remaining part is to show that the sequence splits.

Lemma 3.3.6 (Splitting Lemma [12]). For a short exact sequence of Abelian groups

0 −−−→ A
i−−−→ B

j−−−→ C
j−−−→ 0

there is a homomorphism p : B → A such that pi = 1 : A → A if and only if
B ' A⊕ C.

The homomorphism nz : π2(x, x) → Z which counts intersection points alge-
braically provides a splitting for the sequence and π2(x, x) ' Z⊕H1(Y ;Z) follows for
g > 2. Moreover

∏
x(z) ' H1(Y ;Z) follows easily as

∏
x(z) set of φ ∈ π2(x, x) such

that nz(φ) = 0.

For g > 2 we use the fact that π2(Symg(Σ)) ' Z. Thus for g = 2 we need to
divide by the action of π1(Symg(Σ)).

For the case x 6= y and ε(x, y) = 0 which implies π2(x, y) 6= ∅, we can apply the
above reasoning to obtain the result.

3.4 Spinc Structures

In this section we will define Spinc structures over Y and present its properties and
its relation with the intersection points of Tα ∩ Tβ.

Proposition 3.4.1. Let Y be an oriented, closed 3-manifold then it has trivial Euler
characteristic.

Proof. Consider a Heegaard decomposition of Y into genus-g handlebodies. This
can be seen as a handle decomposition of Y with one 0-handle, g 1-handles and g
2-handles, and one 3-handle. By Corollary 4.19 in [22],

χ(Y ) =
3∑
0

(−1)iki
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where ki denotes the number of i-handles contained in Y . As the number of 1-handles
is the same as the number of 2-handles, we have

χ(Y ) =
∑

(−1)01 + (−1)1g + (−1)2g + (−1)31 = 0

as desired.

We will need the following information for the following proofs and statements in
this section.

Definition 18. [18] A vector field v is a continuous map v : Y → TY such that
π ◦ v = 1Y where π : TY → Y is projection map.

Definition 19. Let f : Sn → Sn be a continuous map and f∗ : H̃n(Sn) → H̃n(Sn)
be an induced homomorphism from infinite cyclic group to itself, so it must be of
the form f∗(α) = dα for some d ∈ Z depending only on f . This integer is called the
degree of f and denoted by degf .

Remark 3.4.2. If f ' g then degf =degg as f∗ = g∗. Converse of this statement is
a theorem due to Hopf.

Theorem 3.4.3. Maps between spheres of the same dimension are classified by their
degrees up to homotopy.

For a proof of this statement see [12].

Definition 20. [7] Let v be a vector field on an oriented surface S with isolated
zero p, index of v, an integer associated to p, is defined as: Let x : U → S be an
orthogonal parametrization at p = x(0, 0) compatible with the orientation of S and let
α : [0, l]→ S be a simple, closed, positively oriented, piecewise regular parametrized
curve such that α([0, l]) ⊂ x(U)is boundary of a simple region R containing p as its
only zero. Let v = v(t), t ∈ [0, l] be the restriction of v along α and let φ = φ(t) be
some determination of the angle from xu to v(t). As α is closed there is an integer I
defined as:

2πI = φ(l)− φ(0) =
∫ l

0
dφ
dt
dt.

I is called the index of v at p.

This definition is independent of the choices made, see [7] for details.

Proposition 3.4.4. Let Y be an oriented closed 3-manifold. As χ(Y ) = 0, Y admits
a nowhere vanishing vector field.

Proof. Choose a generic Morse function f and a generic metric g on Y . Consider the

gradient vector field
−→̀
f of f , which vanishes only on the critical points of f . Take

a path joining index-0 and index-3 critical points, and a path joining each index-
1 critical point to a unique index-2 critical point. Tubular neighbourhood of each
of these paths is homeomorphic to a 3-ball B2 ⊂ R3. Note that we have nowhere
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vanishing vector field on the closure of B3’s and on each B3 we have a vector field

which is zero at exactly two points. Choose one of B3’s and restrict
−→̀
f on ∂B3 and

normalize this to obtain a map S2 → S2 call it g. Note that g has no zeros, it is
a degree-0 map. By theorem of Hopf [12, 25], g is homotopic to constant map from

S2 → S2. So we can extend
−→̀
f |∂B3 to B3 as a nonvanishing vector field. Applying

the same argument to each B3 we obtain a nowhere vanishing vector field on Y as
wanted.

Definition 21. Let v1 and v2 be two nowhere vanishing vector fields on Y . We say
v1 homologous to v2 is there is a ball B in Y such that v1|Y−B is homotopic to v2|Y−B.

Proposition 3.4.5. v1 homologous to v2 is an equivalence relation.

Proof. Let v1, v2, v3 be nowhere vanishing vector fields on Y . v1 ∼ v1, indeed, for
and ball B in Y , v1|Y−B is homotopic to v1|Y−B via identity map as family of maps.
Suppose that v1 ∼ v2 so there is a ball B in Y and a homotopy {ft}0≤t≤1 such that
f0 = v1|Y−B and f1 = v2|Y−B. Take gt = f1−t for 0 ≤ t ≤ 1 then we obtain a homotopy
between v2|Y−B and v1|Y−B, so v2 ∼ v1. Now, suppose v1 ∼ v2 and v2 ∼ v3, then
there exist balls B1 and B2 in Y such that v1|Y−B1 homotopic to v2|Y−B1 and v2|Y−B2

homotopic to v3|Y−B2 . Let B ⊃ (B1 ∪ B2) be a ball in Y containing both B1 and
B2, then v1|Y−B homotopic to v2|Y−B and v2|Y−B homotopic to v3|Y−B, thus v1|Y−B
homotopic to v3|Y−B follows. This is an equivalence relation.

Definition 22. The space of Spinc structures over Y , denoted as Spinc(Y ), is the
set of equivalence classes of above relation of nowhere vanishing vector fields on Y .

Let TY be the tangent bundle of Y then it satisfies the local trivialization property
namely: For every p ∈ Y , there is a neighborhood p ∈ U ⊂ Y and a homeomorphism
φ : π−1(U)→ U ×R3 such that π1 ◦ φ = π, where π : TY → Y is the projection map
and π1 : U ×R3 → U is the projection onto the first factor. If there is a trivialization
over all of Y then TY is a trivial bundle homeomorphic to Y ×R3, see [18]. Moreover,
any closed oriented 3-manifold has a trivial tangent bundle which can be shown by
characteristic classes.

Proposition 3.4.6. In the light of above theorem we can fix a trivialization τ of the
tangent bundle TY of Y . Then there is a one-to-one correspondence between vector
fields v over Y and maps fv : S2 → S2.

Proof. τ : TY → Y × R3 is a homeomorphism and v : Y → TY a vector field.
Consider the following composition of maps. First, compose τ and v to get a map
τ ◦v : Y → Y ×R3 and compose it by π to project to R3. As v is nonvanishing we can
compose with the map η taking the norm. In the end we obtain a map fv = η◦π◦τ ◦v
from Y → S2. Note that fv depends on the vector field v so it is one-to-one. A map
f : Y → S2 ⊂ R3 sending every point p ∈ Y to v ∈ S2 living in R3 can be seen as a
vector at p. Therefore f correspond to a vector field on Y which is nonvanishing.
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Remark 3.4.7. We cam also define an equivalence relation on maps f : Y → S2 as:
f0, f1 : Y → S2 are homologous if they are homotopic in the complement of a 3-ball
B (or finitely many balls) in Y .

For a fixed generator µ of H2(S2;Z) ' Z and a trivialization τ of the tangent
bundle TY then there is a 1 − 1 correspondence depending on the trivialization as
follows

δτ : Spinc(Y )→ H2(Y ;Z)

v 7→ f ∗v (µ)

and Spinc(Y ) becomes an affine space, see [8, 29]
Now we will define a natural map from intersection points of totally real tori in

Symg(Σ) to Spinc structures, which is one of the main ingredients for the definition
of Heegaard Floer homology. Let (Σ, α, β, z) be a pointed Heegaard diagram. The
map

sz : Tα ∩ Tβ → Spinc(Y )

is defined as follows: Take a Morse function f on Y compatible with the α and β-
curves, and a Riemannian metric g on Y which gives and inner product on TY and

allows us to define the gradient vector field
−→̀
f on Y . Take x ∈ Tα∩Tβ, x = {x1, .., xg}

g-tuple elements and each one of xi determines a path joining an index-1 critical point
to an index-2 critical point by uniqueness of the Equation (2.1). We know via Morse
theory that, we can choose f so that it has only one index-0 critical point and one
index-3 critical point, so the basepoint z determines a path joining index-0 critical
point to index-3 critical point. Now we have g + 1 paths and each connects a pair of
critical points of f . Tubular neighborhood of each of those paths is homeomorphic
to a 3-ball, B3. On the complement of a tubular neighborhood we have nonvanishing

vector field
−→̀
f , as it vanishes only on the ciritical points of f which are in these

3-balls. By the same argument in the proof of the Theorem(3.4.4) we can extend this
nonvanishing vector field on the boundary sphere as a nonvanishing vector field on
B3 for each 3-ball. In the end, this gives a nonvanishing vector field over Y which can
be normalized to get a unit vector field over Y . Homology class of nowhere vanishing
vector field obtained in this manner is called a Spinc structure sx(x). Thus sz is a
map sending an intersection point x ∈ Tα ∩ Tβ to the corresponding Spinc structure
sz(x).

Remark 3.4.8. This map can be seen as a refinement of the equivalence classes given
by ε(x, y) ∈ H1(Y ;Z).

Next we will show that the map sz : Tα ∩ Tβ → Spinc(Y ) is well-defined. It is
independent of the choice of the compatible Morse function f and the extension of
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the gradient vector field
−→̀
f to 3-balls.

Let us take a different Morse function f1 compatible with α and β-curves. We
use the Morse function to determine the paths joining critical points of index-1 and 2
and critical points of index-0 and 3. Changing f to f1 can give different trajectories
but they will differ by an isotopy move on the Heegaard surface, as both compatible
Morse funcitons corresponding to the same Heegaard diagram. Thus, their gradient

vector fields
−→̀
f and

−→̀
f1 will be homotopic on the complement of finitely many

(g+ 1 precisely) 3-balls so the map is independent of the compatible Morse function.

sz(x) is also independent of the extension of
−→̀
f to 3-balls. A different extension

will give a different nonvanishing vector field v over Y , but the extension of
−→̀
f into

balls and v are same in the complement of finitely many 3-balls. So they are homol-
ogous and they correspond to the same Spinc structure.

Next let us see how sz(x) depends on x and the basepoint z.

Theorem 3.4.9. Let x, y ∈ Tα ∩ Tβ then

1. sz(y)− sz(x) = PD[ε(x, y)]

2. If z1, z2 ∈ Σ−α1− ..−αg−β1− ..−βg can be connected by an arc zt in Σ from
z1 to z2 staying disjoint from β such that intersection number #(αi ∩ zt) = 1
and #(αj ∩ zt) = 0 for i 6= j then for all x ∈ Tα ∩ Tβ,

sz2(x)− sz1(x) = α∗i

where α∗i ∈ H2(Y ;Z) Poincare dual to homology class in Y induced from a curve
γ in Σ with αi · γ = 1 and αj · γ = 0 for i 6= j.

Proof. Take a Morse function f : M → R compatible with α and β curves. For
x ∈ Tα ∩ Tβ, x = {x1, .., xg} is a g-tuple of points and each xi determines a path for
−→̀
f connecting index-1 to index-2 critical points passing through xi. The basepoint

z also determines a path for
−→̀
f joining index-0 to index-3 critical points. Thus we

have g + 1 trajectories γx and γz. For y ∈ Tα ∩ Tβ, y also determines g trajectories
γy and γx − γy is a closed loop in Y . From the intersection points x and y we ob-

tain Spinc structures sz(x) and sz(y) which can obtained from
−→̀
f modifying it in a

neighborhood of γx ∪ γz for x and γy ∪ γz for y.

Remember that Spinc(Y ) is an affine space, sz(x)−sz(y) ∈ Spin3(Y ) and there is
a 1−1 correspondance between Spinc(Y ) and H2(Y ;Z), so the difference sz(x)−sz(y)
can be represented by a cohomology class. Note that

H2(Y ;Z) ' H1(Y ;Z) ' H1(Σ)
[α1],..,[αg ],[β1],..,[βg ]
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where the first isomorphism comes from the Poincare duality. For the intersection
points x, y ∈ Tα ∩ Tβ we can choose Spinc structure sz(x) and sz(y) such that they
agree on the complement of γx ∪ γy. Therefore, the difference sz(x) − sz(y) can be
represented by a compactly supported cohomology class in a neighborhood of γx−γy.

If we assume that the curve is connected then sz(x) − sz(y) can be taken as a
multiple of PD(γx − γy), Poincare dual of γx − γy. Let us find the coefficient. Take
a disk D0 transversally intersecting with the closed loop γx − γy in Y . For xi ∈ x
such that xi /∈ y, D0 can be taken as a small neighborhood of xi on Σ. If there is no
such xi /∈ y then x = y and γx = γy so sz(x) − sz(y) = 0 follows easily. Now take a

representative vx of sz(x) such that vx =
−→̀
f near D0, similarly take representative vy

of sz(y) such that vy =
−→̀
f near D0. Fix a trivialization τ : TY → Y ×R3 to obtain

fx and fy : Y → S2 corresponding to vx and vy respectively such that fx|∂D0 = fy|∂D0 .
In order to see the difference, let us compare their degrees.

sz(x)− sz(y) = [degD0(vx)− degD0(vy)]PD(γx − γy)

Take another disk D1 with the same boundary of D0 such that D1 ∪ D0 bounds a
3-ball in Y . Index-1 critical point corresponding to, say x1 is in D1 ∪D0, but there is

no critical point inside. We can take vx =
−→̀
f over D1 so vx does not vanish inside

this 3-ball, therefore it has index-0. We have the following:

0 = degD0(vx) + degD1(vx) = degD0(vx) + degD1(
−→̀
f)

So degD0(vx) = −degD1(vx). As vy =
−→̀
f over D0 we have:

degD0(vx)− degD0(vy) = −degD1(
−→̀
f)− degD0(

−→̀
f) = 1

Last equality follows from that the index of
−→̀
f around index-1 critical point is −1.

Thus we have:

sz(x)− sz(y) = PD(γx − γy)

Let a be a path in Symg(Σ) from x to y in Tα, similarly b be a path in Symg(Σ)
from x to y in Tβ. So a ⊂ Tα is a collection of arcs a ⊂ α1∪ ..∪αg with the boundary
y−x, and b ⊂ Tβ is a collection of arcs b ⊂ β1∪ ..∪βg with the boundary y−x. Note
that ε(x, y) represents the image of a− b in H1(Y ;Z). Let us see the relation between
ε(x, y) and γx − γy. Take an arc ai ⊂ a connecting xi to yi, then ai is homotopic to
relative to endpoints to a piece of a loop in U1 connecting index-1 to index-2 critical
points. Similarly take an arc bi ⊂ b connecting xi to yi which is also homotopic relative
to endpoints to the rest of the loop in U0 connecting index-1 to index-2 critical points
in Y . Therefore the loop a− b in Y homologous to γy − γx and ε(x, y) is the image of
γy−γx in H1(Y ;Z). Thus sz(y)−sz(x) = PD[ε(x, y)] follows proving the first equality.

In order to understand how the map sz depends on the basepoint z we will proceed
as in the first case. Take two basepoints z1 and z2 on Σ away from α and β curves
such that z1 is connected to z2 on Σ by an arc zt as described in the hypothesis.
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Take x ∈ Tα ∩ Tβ, x will give g trajectories connecting index-1 critical points to
index-2 critical points. For z1 and z2, we have g + 1 trajectories γx and γz1 and
g+ 1 trajectories γx and γz2 . Corresponding Spinc structures sz1(x) and sz2(x) agree
on the complement of γz1 ∪ γz2 . The difference sz1(x) − sz2(x) is represented by a
cohomology class which is nonzero around γz1 − γz2 then it follows sz1(x) − sz2(x)
is some multiple of PD(γz1 − γz2). To find the coefficient, let us take a disk D0

transversally intersecting with γz1 positively such that D0 is disjoint from γz2 , and
take another disk D1 such that D0 ∪D1 bounds a 3-ball in Y containing the index-0

critical point. Take a representative vz1 of sz1(x) and vz2 of sz2(x) such that vz1 =
−→̀
f

over D1 and vz2 =
−→̀
f over D0. Note that vz1 does not vanish inside the 3-ball that

D0 ∪D1 bounds so it has index 0.

0 = degD0(vz1) + degD1(vz1)

so degD0(vz1) = −degD1(vz1) then

degD0(vz1)− degD0(vz2) = −degD1(vz1)− degD0(vz2)

= −degD1(
−→h
f)− degD0(

−→h
f)

= −1

As
−→̀
f has index 1 around index-0 critical points so sz1(x)−sz2(x) = −PD(γz1−γz2).

We need to understand the relation between γz1 − γz2 and α∗i . We know that zt
is an arc from z1 to z2. Take another arc z′ connecting z2 to z1 such that it lies on
Σ and does not intersect with and α curves. We have a curve γ = zt ∪ z′ on Σ with
#(αi∩γ) = 1 and #(αj ∩γ) = 0 for i 6= j. zt is homotopic to a piece of γz1−γz2 lying
in U1 relative to endpoints z1 and z2, and z′ is homotopic to the rest of γz1−γz2 lying
in U0 relative to endpoints. It follows then γz1 − γz2 homologous to γ, so they are
same in H1(Y ;Z). We call the Poincare dual of γ in H2(Y ;Z) as α∗i and γ satisfies
the desired properties stated in the hypothesis. Hence

sz2(x)− sz1(x) = α∗i

finishes the proof of the second statement. As a result we have the full understand-
ing of the map sz, its well-definedness and how it depends on the basepoints and
intersection points.

We can define a natural map on Spinc(Y ) which is an involution map sending
s ∈ Spinc(Y ) to s, called conjugate Spinc structure of s with s = −s. By using
Spinc(Y ) is an affine space and the 1 − 1 correspondence between Spinc(Y ) and
H2(Y ;Z) we can define a map c1 : Spinc(Y ) → H2(Y ;Z) sending s 7→ s − s, this
map is called the first Chern class which is one of the characteristic classes. Note
that c1(s) = s− (s) = −c1(s). For more detailed description of the Chern classes the
reader is referred to [25].
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Chapter 4

ANALYTICAL BACKGROUND

This chapter includes necessary analytic background which we need to build up
the theory. We mention the required statements and give references for the proofs
and detailed examination of the subject of the subject. The most important parts
are the theorems of transversality and compactness. Moreover we study the moduli
space of holomorphic disks, the Maslov index, and nondegenerate disks.

Definition 23. An almost complex structure (on M2n) is a complex structure on the
tangent bundle, J : TM → TM a differentiable map such that J preserves each fiber
and it is linear on each fiber with J2 = −1

Definition 24. 1. A symplectic form on a smooth manifold M is a closed, non-
degenerate 2-form.

2. Let M be a complex manifold with a complex structure J and a compatible
Riemannian metric g, the alternating 2-form η(X, Y ) = g(JX, Y ) is called the
associated Kähler form. [2]

3. (M,w) is a symplectic manifold with a symplectic form w. An almost complex
structure J tame w if w(ε, Jε) > 0 for every nonzero tangent vector ε ∈ TM .

A Kähler form η over Σ induces a Kähler form π∗(w0) over Symg(Σ)−D, where
w0 = n×g, π : Σ×g → Symg(Σ) the quotient map, andD ⊂ Symg(Σ) the diagonal. [29]

Definition 25. An almost complex structure J on Symg(Σ) is called (j, η, V )-nearly
symmetric for a fixed triple (j, η, V ), where j is an almost complex structure on Σ,
η is a Kähler form on Σ, {zi}mi=1 the set of points on Σ which elements are in the
connected components disjoint from α and β curves, and V is an open set such that

({zi}mi=1 × Symg−1(Σ) ∪D) ⊂ V ⊂ Symg

with

V ∩ (Tα ∩ Tβ) = ∅

if J tames π∗(w0) over Symg−1(Σ)− V and J = Symg(j) over V .

Let us assume αi and βj intersect transversally, then we say that Tα and Tβ
intersect transversally. For an infinite strip [0, 1] × iR in the complex plane, which
is clearly nonempty and not all of C can be changed to the unit disk D in C by
Riemann Mapping theorem. Fix a path of almost complex structures Js for s ∈ [0, 1]
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over Symg(Σ). For any x, y ∈ Tα ∩ Tβ the moduli space of homolorhic (pseudo-
holomorphic) strips connecting x and y is defined as follows:

MJs(x, y) =


u : D→ Symg(Σ)

∣∣∣∣∣∣∣∣∣∣∣∣

u({1} × R) ⊂ Tα
u({0} × R) ⊂ Tβ

limt→−∞ u(s+ it) = x

limt→+∞ u(s+ it) = y
du
ds

+ J(s)du
dt

= 0


For φ ∈ π2(x, y), MJs(φ) ⊂ MJs(x, y) is the space of representatives which are

holomorphic. Unit disk can be seen as an infinite strip where {1}× iR corresponds to
e1 and {0}× iR corresponds to e2. Vertical translations preserve e1 and e2. So for any
holomorphic disk u ∈ MJs(φ), if we precompose u with a vertical translation, it also
gives a holomorphic disk. These translations stand for the different parametrizations,
then under the R action, we get the unparametrized moduli space

M̂Js(φ) =
MJs (φ)

R

This R action is a free action, because other than the identity element there is no
element of R fixing any point. However, if φ ∈ π2(x, y) connects x to x and D(φ) = 0
then φ is a constant map and the action is not free.

Proposition 4.0.10. For any u ∈MJs(φ), D(u) ≥ 0.

Proof. We will give a sketch of the proof. D(u) =
m∑
i=1

nzi(φ)Di, we will show that

nzi(φ) ≥ 0 for every i which implies D(u) ≥ 0. Any u ∈ MJs(φ) is a pseudo-
holomorphic disk, so we have an almost complex structure and a canonical orientation.
The subvariety Vzi has an almost complex structure being a subspace of Symg(Σ),
so it also has a canonical orientation. The intersection sign will be +1 for every
intersection point if the frame obtained from u and Vzi matches with the frame of
Symg(Σ), as dimSymg(Σ) = dimu + dimVzi [22]. By the canonical orientation if u
and Vzi intersect they intersect non-negatively. Thus D(u) ≥ 0 finishing the proof.

Definition 26. The dimension of the moduli spaceMJs(φ) is called the Maslov index
and denoted by µ(φ).

Remark 4.0.11. The dimension of the unparametrized moduli space M̂Js(φ) is
µ(φ)− 1.

Proposition 4.0.12. The Maslov index has the following useful properties:

1. Let S ∈ π′2(Symg(Σ)) be the positive generator. Then for any φ ∈ π2(x, y),

µ(φ+ k[S]) = µ(φ) + 2k
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2. The Maslov index additive: µ(φ1 ∗ φ2) = µ(φ1) + µ(φ2).

The proof of the first statement is in [29] and of the second one is in [8].

Remark 4.0.13. If we add a topological sphere to a disk it changes the Maslov index
by at least two.

µ([Z]) = 2〈c1, [Z]〉

for the generator S, µ([S]) = 2 as 〈c1, [S]〉 = 1, [8]. Moreover, let φ ∈ π2(x, x) be the
homotopy class of the constant map then the moduli spaceMJs(φ) consists of single
element and µ(φ) = 0 then µ(φ+ k[S]) = 2k.

Let us now state the first important statement for the moduli spaces MJs(x, y),
the transversality theorem, a proof can be found in [29].

Theorem 4.0.14. Let (Σ, α, β) be a Heegaard diagram such that αi meets with βj
transversally and fix (j, η, V ). Then for a dense set of paths Js of (j, η, V )-nearly
symmetric almost-complex structures the moduli space MJs(x, y) becomes a smooth
manifold.

Remark 4.0.15. In this theorem we need a path Js of nearly symmetric almost-
complex structures rather than one J . However, in some cases we can take J =
Symg(j) induced from the complex structure j over Σ, so by definition J is nearly
symmetric. In that case we can reach the tranversality by putting α and β curves
in general position so that the dimensions of Tα and Tβ add up to the dimension
of Symg(Σ). The existence of isotopy of Symg(Σ) will guarantee that Tα and Tβ
intersect at finitely many points, [22](Theorem 4.25). But we do not take an arbitrary
almost-complex structure J on Symg(Σ) which is (j, η, V )-nearly symmetric.

Definition 27. For φ ∈ π2(x, y), we say that the domain D(φ) is α-injective if all of
its multiplicities (i.e., nzi(φ)) are 0 or 1, if its interior is disjoint from each αi for all
i and the boundary contains intervals from each αi.

We can reach the transversality theorem for a constant nearly symmetric-almost
complex structure as follows.

Theorem 4.0.16. For an α-injective homotopy class φ ∈ π2(x, y), fix a complex
structure j on Σ inducing a complex structure Symg(j) on Symg(Σ). For a generic
perturbations of the α curves, the moduli space M(φ) is a smooth manifold.

A proof of the statement can be found in [29].

For each path Js the moduli spaceMJ∫ (φ) for φ ∈ π2(x, y) is a manifold and it has
an orientation. However the orientation of each moduli space should be consistent,
thus we define coherent orientation systems on moduli spaces.
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Definition 28 ( [29]). Fix a Spinc structure s ∈ Spinc(Y ), then a coherent system of
orientations is a choice of nonvanishing sections o(φ) of the determinant line bundle
for every φ ∈ π2(x, y) and for each x, y ∈ S = {x ∈ Tα ∩ Tβ|sz(x) = s} such that the
sections are compatible with gluing as o(φ1)∧o(φ2) = o(φ1∗φ2) under the identification
coming from splicing, and o(u ∗ S) = o(u) under the identification coming from the
canonical orientation for the moduli space of holomorphic spheres.

The more detailed description of the coherent system of orientations and the reason
why we take sections of the determinant line bundle can be found in [29, 36]. Note
that when we define Whitney disks as a map from the unit disk D ⊂ C to Symg(Σ),
we fix an orientation on the disk and the convention is how we described it.

Definition 29. Take a nearly symmetric almost-complex structure J over Symg(Σ)
then for every intersection point x ∈ Tα∩Tβ, the moduli space of α- degenerate disks
is defined as:

NJ(x) =

u : [0,∞)× R→ Symg(Σ)

∣∣∣∣∣∣∣
u({0} × R) ⊂ Tα
limz→∞ u(z) = x
du
ds

+ J du
dt

= 0


We can interpret NJ(x) as the moduli space of J-holomorphic disks such that

the boundary ∂D is mapped into Tα and i is mapped to x. Similar to the Whitney
disks, for any x ∈ Tα ∩ Tβ, let π2(x) denote the homotopy classes of maps. As Tα is
embedded in Symg(Σ), π1(Tα)→ π1(Symg(Σ)) is injective. The map ϕ : π2(x)→ Z
sending u 7→ nz(u), the algebraic intersection number of u with Vz turns into an
isomorphism [29]. Let Ox ∈ π2(x) denote the generator of the set then any other
u ∈ π2(x) is of the form u = Ox + k[S], similar to π2(x, y) and isomorphic to Z.

For any u ∈ NJ(x), real dilation gives a reparametrization of u, similarly pure
imaginary translation also gives a different reparametrization. Then the unparametrized
moduli space N̂J(x) is obtained by taking the quotient ofNJ(x) with this 2-dimensional
action.

For the moduli space of α-degenerate disks we have the smoothness as follows.

Theorem 4.0.17. Let x ∈ Tα be such that it is not in any Symg(j)-holomorphic
spheres in Symg(Σ). Then there exists a contractible neighborhood U of Symg(j) in
the space of (j, η, V )-nearly symmetric almost-complex structures J (j, η, V ) such that

for a generic J ∈ U , the moduli space N̂J(Ox + k[S]) is compact and 0-dimensional
smooth manifold.

Theorem 4.0.18. Take a finite set of points {xi} ⊂ Symg(Σ) and a complex structure
j over Σ such that Symg(j)-holomorphic spheres misses the set {xi}. Then there
exists a contractible neighborhood of Symg(j), U ⊂ J (j, η, V ) such that for a generic

J ∈ U , the total signed number of points in N̂J(Ox + k[S]) is zero.
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The proofs of the last two important theorems can be found in the main arti-
cle [29]. In the last statement such a complex structure j over Σ for which there
exists a Symg(j)-holomorphic sphere containing at least one of the xi is real codi-
mension 2, see [29], thus we have sufficient complex structures over Σ which does not
contain any of these points. These last two theorems are important for boundary
degenerations while proving the map we define becomes a boundary map in the Hee-
gaard Floer chain complex.

The second most important theorem of this chapter is compactness of the un-
parametrized moduli space M̂(φ).

Theorem 4.0.19. Take a Heegaard diagram (Σ, α, β) such that the α and β curves are
in general position, then for any generic path Js of nearly symmetric almost-complex
structures there is no nonconstant Js-holomorphic disk u such that µ(u) ≤ 0 and for

every φ ∈ π2(x, y) with µ(φ) = 1, the unparametrized moduli space M̂(φ) = M(φ)
R is

compact and zero dimensional manifold.

Proof. We will give a sketch of the proof. First part of the statement that M̂(φ) is
a manifold follows from the transversality theorem (4.0.14). With the energy bound
in [29] we obtain the compactness via the Gromov Compactness theorem, see [11].
By [29], it says that a sequence of J-holomorphic curves with bounded energy has a
convergent subsequence whose limit is a union of J-holomorphic curves α and βj where
α is a holomorphic curve and βj’s are finite number of bubbles attached to the curve at
a point. By a bubble we mean a J-holomorphic sphere having a transverse intersection
with the rest of the curve α. Then by the compactness theorem, a sequence of
holomorphic disks in the moduli spaceM(φ) converges to broken flow-lines, boundary
bubbling, or sphere bubbling, as the bubbles can occur in the interior of the disk or
on the boundary. Remember that the Maslov index is additive by the Proposition
(4.0.12). Consider the limit of the sequence of disks limi→+∞ ui, and the Maslov index
of each ui is 1. If the limit can be expressed by a broken flow line namely φ = φ1 ∗ φ2

then µ(φ) becomes 2 which can not be the case. Similarly sphere bubbling off and
the boundary bubbling increase the Maslov index by at least two, this also can not
occur. Therefore the sequence converges to a disk implying M̂(φ) is compact.
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Chapter 5

HEEGAARD FLOER HOMOLOGY GROUPS

So far we have defined all the necessary tools that we need and now we are ready
to give the definition of the Heegaard Floer homology groups. The techniques come
from the Lagrangian Floer homology but in a little bit different way. The totally real
submanifolds Tα and Tβ become Lagrangian submanifolds in the symmetric product
space Symg(Σ) by fixing some auxiliary data, so it can be thought as we are studying
the Lagrangian Floer Homology on Tα and Tβ.

We will proceed as follows. We divide the construction into two steps with respect
to the first betti numberof the three-manifold we study: first the case b1(Y ) = 0 and

then the case b1(Y ) > 0. Then we give definitions of ĈF , CF∞ with the subcomplex
CF− and the quotient complex CF+ with the corresponding boundary maps, and we
prove that with these maps they become chain complexes whose homology groups are
ĤF ,HF∞, HF−, HF+ respectively. We continue with some immediate properties
and give some trivial examples.

5.1 The Definition of ĤF and HF∞ when b1(Y ) = 0

First we define the chain complex when b1(Y ) = 0 and in the next section we define
the chain complex when b1(Y ) > 0. By using the Universal Coefficient theorem if
b1(Y ) = 0 then Y is a rational homology three-sphere. In this case π2(x, y) ' Z and
there is no periodic domains. However when b1(Y ) > 0, by the Theorem (3.3.4) it is
π2(x, y) ' Z⊕H1(Y ;Z). By the presence of periodic domains we consider some spe-
cial Heegaard diagrams for compactness of the moduli spaces and relative Z grading
is well-defined modulo an indeterminacy. Therefore we separate into two cases based
on the first betti number of the manifold.

We need to fix some auxiliary data as follows:

• A pointed Heegaard diagram (Σ, α, β, z) for Y with genus at least 1, and α and
β curves are in general position so that Tα and Tβ intersect at finitely many
points.

• Choose a Spinc structure s ∈ Spinc(Y ) and let S = {x ∈ Tα ∩ Tβ|sz(x) = s}

• Choose a coherent orientation system, o.
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• A generic complex structure j over Σ so that every intersection point x ∈ Tα∩Tβ
is disjoint from Symg(j)-holomorphic spheres in Symg(Σ). Note that the j’s
for which Symg(j)-holomorphic spheres containing at least one such point has
real codimension 2.

• A generic path Js of nearly symmetric almost-complex structures over Symg(Σ)
contained in an contractible neighborhood U of Symg(j).

Let us define ĈF (α, β, s) as a free Abelian group which is generated by the inter-

section points x ∈ S ⊂ Tα ∩ Tβ. We give a relative grading on ĈF (α, β, s).

Definition 30. An Abelian group is called relatively graded if it is generated by
the elements partitioned into equivalence classes S with a relative grading function
gr : S × S → Z such that for every x, y, w ∈ S

gr(x, y) + gr(y, w) = gr(x,w)

The relative grading on ĈF (α, β, s) is given as

gr(x, y) = µ(φ)− 2nz(φ) (5.1)

for any φ ∈ π2(x, y).

First let us verify that it is a relative grading and then show that this grading is
well-defined.

Take x, y, w ∈ S ⊂ Tα∩Tβ with φ ∈ π2(x, y) and ψ ∈ π2(y, w) then φ∗ψ is a disk
connecting x and w so that φ ∗ ψ ∈ π2(x,w).

gr(x, y) + gr(y, w) = µ(φ)− 2nz(φ) + µ(ψ)− 2nz(ψ)

= µ(φ ∗ ψ)− 2nz(φ ∗ ψ)

= gr(x,w)

Remember that the Maslov index is additive and we showed that the intersection
number is also additive, therefore the grading defined is a relative grading.

Proposition 5.1.1. The relative grading defined above on ĈF (α, β, s) is indepen-
dent of the choice of the homotopy class of the Whitney disk φ ∈ π2(x, y) and the
representative of φ.

Proof. By the definition of µ(φ) it is independent of the representative of φ and in
Section 3.3 we showed that the intersection number nz(φ) is also independent of the
representative of φ. Thus, the relative grading is independent of the representative of
the homotopy class.
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As π2(x, y) ' Z⊕H1(Y ;Z) by the theorem (3.3.4) and Y is a rational homology
3-sphere, we have π2(x, y) ' Z. Thus for φ ∈ π2(x, y), any other homotopy class φ′ is
of the form φ ∗ k[S] where S is positive generator of π2

′(Symg(Σ)), then

µ(φ′)− 2nz(φ
′) = µ(φ ∗ k[S])− 2nz(φ ∗ k[S])

= µ(φ) + 2kµ([S])− 2nz(φ)− 2knz([S])

= µ(φ)− 2nz(φ) + 2k − 2k

= µ(φ)− 2nz(φ)

Therefore the relative grading is independent of the chosen φ ∈ π2(x, y).

Let us define the differential map on the generators when the intersection number
is zero as follows:

∂ : ĈF (α, β, s)→ ĈF (α, β, s)

sending

∂x =
∑

{y∈S|gr(x,y)=1}
#(M̂0(x, y)).y

where M̂0(x, y) = M̂(φ) for φ ∈ π2(x, y) with nz(φ) = 0 and µ(φ) = 1.

This is actually a double sum as

∂x =
∑
y∈S

∑
{φ∈π2(x,y)|nz(φ)=0,µ(φ)=1}

#(M̂(φ)).y

Y is a rational 3-sphere, therefore π2(x, y) ' Z⊕H1(Y ;Z) ' Z. Any other homotopy
class φ′ is of the form φ ∗ k[S] where S is positive generator of π2

′(Symg(Σ)). Thus
µ(φ′) = µ(φ ∗ k[S]) = µ(φ) + 2k = 1 implies k = 0 so we can not have a different
homotopy class than φ. There is at most one homotopy class with nz(φ) = 0 and
µ(φ) = 1. Actually there is exactly one such homotopy class. If we connect x to y
by a path a ⊂ Tα and b ⊂ Tβ then a − b gives a loop in Symg(Σ). Image of a − b
in H1(Y ;Z) is defined by ε(x, y). However, H1(Y ;Z) = 0 implies that ε(x, y) = 0, so
π2(x, y) 6= ∅, proving there is exactly one such homotopy class.

Note that M̂(φ) is 0-dimensional compact manifold so the boundary map is well-
defined and it counts the number of pseudo-holomorphic disks connecting x to y in
Symg(Σ). This counting is a signed count, so it depends on the orientation of the
moduli space that we fixed a coherent orientation system in the beginning. We will
study how the homology groups depend on the orientation later.

nz(φ) = 0 is a geometric intersection number because if two holomorphic disks
intersect the intersection number is positive, so it can not be zero. Rather than
counting holomorphic disks in Symg(Σ) connecting intersection points, equivalently
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we can count them in Symg(Σ − z). As we showed in the proposition (4.0.10) that
any u ∈ MJs(x, y) either does not intersect with the subvariety Vz or intersect non-
negatively.

Let us show that we actually obtain a chain complex.

Theorem 5.1.2. If b1(Y ) = 0 then (ĈF (α, β, s), ∂) is a chain complex, meaning
∂2 = 0.

Proof. We need to show that ∂2 = 0. This will follow from the compactification of
the 1-dimensional moduli space M̂(φ). From Floer’s theory, we need to consider the

ends of the moduli space M̂(φ) for φ ∈ π2(x,w) with µ(φ) = 2. By the Gromov
compactification, there are three kinds of ends:

1. Ends corresponding to the ”broken flow-lines”: we have a pair of disks u ∈
M(x, y) with µ(u) = 1 and v ∈M(y, w) with µ(v) = 1.

2. Ends corresponding to the ”sphere bubbling off”: a holomorphic sphere S ∈
Symg(Σ) meets with a holomorphic disk u ∈M(x,w).

3. Ends corresponding to the ”boundary bubbling”: for a v ∈M(x,w) there exists
a holomorphic map u : D → Symg(Σ) mapping the boundary into Tα or Tβ
meeting with the boundary at a point.

These point out that a sequence of disks in M(x,w), if it converges, converges to a
disk in the same moduli space, or to a broken flow-line, or to a disk with deformation.
By a deformation we mean in the limit a ”bubble” which is a holomorphic-sphere
attached to a disk at one point can occur. This bubble can be in the interior of the
disk or on the boundary.

Let us see that multiple degenerations can not occur at the same time. Without
loss of generality, assume that we have a broken flow-line and a sphere bubbling off at
the same time. As we want to understand ∂2 = 0, grading can differ by 2. However,
after a broken flow it decreases by 1 and by a sphere bubbling off it decreases also by
2. Thus grading differs by 3 rather than 2.

Moreover, if x′ ∈ Tα ∩ Tβ − S there is no Whitney disk connecting x to x′. Be-
cause sz(x

′) 6= s so the difference sz(x
′)− sz(x) = PD[ε(x, y)] 6= 0 is nontrivial where

the latter is a cohomology class in H2(Y ;Z) so ε(x, x′) 6= 0 in H1(Y ;Z) implying
π2(x, x′) = ∅.

Now let us show that there is no sphere bubbling off and boundary bubbling. Note
that we consider the case nz(φ) = 0, rather than taking spheres from Symg(Σ) we
can take from Symg(Σ− z). But we showed in the proof of the theorem (3.1.5) that
π2(Symg(Σ− z)) is trivial, so there is no nontrivial spheres in π2(Symg(Σ− z)). We



Chapter 5: Heegaard Floer Homology Groups 49

have no sphere bubbling off and boundary bubbling which is a degenerate disk whose
boundary lies entirely inside Tα or Tβ. Therefore only boundary components in the
compactification are broken flow-lines. The sum of the ends of the moduli space of
M̂(φ) is the following:∑

{ϕ∈π(x,y)|µ(ϕ)=1}

#M̂(ϕ)
∑

{ψ∈π(y,w)|µ(ψ)=1}

#M̂(ψ) = 0 (5.2)

where φ = ϕ ∗ ψ. As M̂(ψ) and M̂(ϕ) are 0-dimensional and compact spaces, they
consists of discrete points. Therefore the signed number of those points gives us 0.

Now let us see that how it is related to the boundary operator and show that
∂2 = 0. Apply ∂ on the generators of ĈF (α, β, s)

∂2x = ∂(
∑

{y∈S|gr(x,y)=1}

#(M̂0(x, y)).y)

=
∑

{y∈S|gr(x,y)=1}

#(M̂0(x, y)).y
∑

{w∈S|gr(y,w)=1}

#(M̂0(y, w)).w

where

M̂0(x, y) = M̂(ϕ) for ϕ ∈ π2(x, y) with nz(ϕ) = 0 and µ(ϕ) = 1

M̂0(y, w) = M̂(ψ) for ψ ∈ π2(x, y) with nz(ψ) = 0 and µ(ψ) = 1

as we mentioned there is exactly one homotopy class with the Maslov index is 1, and

gr(x,w) = gr(x, y) + gr(y, w)

= µ(ϕ)− 2nz(ϕ) + µ(ψ)− 2nz(ψ)

= µ(ϕ ∗ ψ)− 2nz(ϕ ∗ ψ)

= µ(φ)− 2nz(φ)

= 2

The coefficient in the composition corresponds to the signed count of the ends of the
moduli space of M̂(φ) with µ(φ) = 2, which only have broken flow lines and by the
above calculation (5.2)and we showed that it is 0. Thus for every w and y, ∂2x = 0 for

each generator x ∈ S implying ∂2 = 0. Hence (ĈF (α, β, s), ∂) is a chain complex.

Definition 31. The Floer homology groups ĤF (α, β, s) are the homology groups of

the chain complex (ĈF (α, β, s), ∂).

Remark 5.1.3. Note that there is a relative grading on the complex ĈF (α, β, s) thus

we can not see the homology grading explicitly as r-th chain group ĈF
r
(α, β, s) and

the r-th chain map ∂r.
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As a first step we consider the case where the intersection number is 0 and the
grading difference is 1. Now let us generalize and enrich the subject. Let us define
CF∞(α, β, s) as a free Abelian group generated by [x, i] where x ∈ S and i ∈ Z.
Similarly, we give a relative grading to CF∞(α, β, s) defined on the generators as:

gr([x, i], [y, j]) = gr(x, y) + 2i− 2j

Let us verify that this is a relative grading. Let [x, i], [y, j], [w, k] be generators of
CF∞(α, β, s). Then

gr([x, i], [y, j]) + gr([y, j], [w, k]) = gr(x, y) + 2i− 2j + gr(y, w) + 2j − 2k

= gr(x, y) + gr(y, w) + 2i− 2k

= gr(x,w) + 2i− 2k

= gr([x, i], [w, k])

Now define the boundary map ∂∞ : CF∞(α, β, s)→ CF∞(α, β, s) as:

∂∞[x, i] =
∑
y∈S

∑
{φ∈π2(x,y)|µ(φ)=1}

#(M̂(φ)).[y, i− nz(φ)] (5.3)

Remember that we consider the case b1(Y ) = 0, therefore π2(x, y) ' Z. Even though
we write the boundary map as a double sum, there is at most one homotopy class in
π2(x, y) with µ(φ) = 1.

Theorem 5.1.4. For b1(Y ) = 0, the pair (CF∞(α, β, s), ∂∞) is a chain complex.

Proof. We will prove that (∂∞)2 = 0. We will proceed similarly as in the hat homol-
ogy case. The proof is mainly based on the compactification of 1-dimensional moduli
space M̂(φ) with µ(φ) = 2. By the Gromov compactification ”ends” or equivalently
the limit of a sequence of disks inM(φ) can converge to a broken flow-line or to a disk
with a bubble which is either attached to the interiror or to the boundary of the disk.
By the same reasoning in the previous proof, we can not have multiple degenerations
at once.

A disk u ∈M(x,w) whose boundary lies entirely in Tα or Tβ has a corresponding
domain D(u) which is a multiple of the Heegaard surface Σ. u is homologically a
sphere in Symg(Σ) and π2

′(Symg(Σ)) ' Z generated by [S] where S is coming from
the hyperelliptic involution on Σ such that for a generic basepoint z on Σ disjoint
from α and β curves, [S] intersects with the subvariety Vz once so nz([S]) = 1. As
π2
′(Symg(Σ)) is cyclic so u must be a multiple of [S], say l then nz(u) = l.

D(u) =
m∑
i=1

nzi(u)Di

nzi(u) is same for each i, so D(u) = l[Σ] for some l ∈ Z.
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If u is pseudo-holomorphic then by the proposition (4.0.10) D(u) ≥ 0 so l ≥ 0.
If D(u) = 0 then u must be constant. Because let us take a sequence of disks
ui ∈ π2(x, y) such that µ(ui) = 2 for each i, then the limit limi→+∞ ui = u∞ + v
converges to a disk u∞ with a possible bubble v. Note that µ(limi→+∞ ui) = 2 and a
holomorphic sphere increases the Maslov index by at least two as µ(v) = 2〈c1, [v]〉. If
we have bubble in the limit then limi→+∞ ui = v is only a bubble with no disk u∞, in
that case u must be a constant and x = w should be the same points.

Figure 5.1: Convergence of holomorphic disks to a bubble in the limit

If there is a boundary bubbling it can occur only in the case x = w. For x 6= w
boundary bubbling is excluded. For x = w there is no sphere bubbling off because in
the limit we can only have a bubble not a bubble attached to a disk. Moreover, for
generic complex structure j on Σ, Symg(j)-holomorphic spheres miss the intersection
points of Tα ∩ Tβ so there is no sphere bubbling off.

For x 6= w there is only broken flow-lines and the signed count of the ends of the
moduli space M(φ):∑

y∈S

∑
{ϕ∈π2(x,y),ψ∈π2(y,w)|ϕ∗ψ=φ}

#(M̂(ϕ)).#(M̂(ψ)) = 0

with ϕ ∗ ψ = φ for each homotopy class ϕ ∈ π2(x, y) and ψ ∈ π2(y, w). M̂(ϕ) and

M̂(ψ) are both 0-dimensional and compact manifolds, there is only finitely many
points therefore the signed count gives us 0.

When x = w in addition to broken flow-lines, there is also boundary bubbling.
Therefore the signed count of the ends of the moduli space M(φ):

#N̂ α(x) + #N̂ β(x) +
∑
y∈S

∑
{ϕ∈π2(x,y),ψ∈π2(y,w)|ϕ∗ψ=φ}

#(M̂(ϕ)).#(M̂(ψ)) = 0
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Via the theorem (4.0.18) the signed count for N̂ α(x) and N̂ β(x) are both zero. This
implies the signed count for the broken flow-lines is also 0.

Let us compute the boundary map on the generators.

(∂∞)2[x, i] = ∂∞(
∑
y∈S

∑
{ϕ∈π2(x,y)|µ(ϕ)=1}

#(M̂(ϕ)).[y, i− nz(ϕ)])

=
∑
y∈S

∑
{ϕ∈π2(x,y)|µ(ϕ)=1}

∑
w∈S

∑
{ψ∈π2(y,w)|µ(ψ)=1}

#(M̂(ϕ))#(M̂(ψ)).[w, i− nz(ϕ)− nz(ψ)]

such that for the homotopy classes ϕ ∈ π2(x, y) and ψ ∈ π2(y, w) we have ϕ ∗ ψ ∈
π2(x,w).

In the discussion of the ends of the moduli space we can only have boundary bub-
bling which occurs in the case x = w. However the signed count of N̂ α(x) and N̂ β(x)
are both zero. Therefore in either of the case x = w or x 6= w:

∑
y∈S

∑
{ϕ∈π2(x,y),ψ∈π2(y,w)|ϕ∗ψ=φ}

#(M̂(ϕ))#(M̂(ψ)) = 0

implying (∂∞)2[x, i] = 0 for every generator [x, i]. Hence (∂∞) = 0 proving the pair
(CF∞(α, β, s), ∂∞) is a chain complex.

Definition 32. The Floer Homology groups are the homology groups of the chain
complex (CF∞(α, β, s), ∂∞).

There exists a chain map U : (CF∞(α, β, s)→ (CF∞(α, β, s) lowering the grading
by two. It is defined on the generators as

U [x, i] = [x, i− 1]

and

gr([x, i], [x, i− 1]) = gr(x, x) + 2i− 2(i− 1) = gr(x, x) + 2 = 2

Proposition 5.1.5. The map U defined above is a chain map. i.e., ∂∞ ◦U = U ◦∂∞
and the corresponding diagram is commutative.

Proof. It easily follows as:

U ◦ ∂∞[x, i] = U(
∑
y∈S

∑
{φ∈π2(x,y)|µ(φ)=1}

#(M̂(φ)).[y, i− nz(φ)]))

=
∑
y∈S

∑
{φ∈π2(x,y)|µ(φ)=1}

#(M̂(φ)).[y, i− nz(φ)− 1]))
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and similarly

∂∞ ◦ U [x, i] = ∂∞[x, i− 1]

=
∑
y∈S

∑
{φ∈π2(x,y)|µ(φ)=1}

#(M̂(φ)).[y, i− 1− nz(φ)])

proving the diagram commutes and the map U is a chain map.

If we restrict the generators [x, i] such that i < 0 then we obtain the subgroup
CF−(α, β, s) of CF∞(α, β, s) which is also a freely generated Abelian group. As
CF−(α, β, s) C CF∞(α, β, s) we can define the quotient

CF+(α, β, s) = CF∞(α, β, s)/CF−(α, β, s)

Proposition 5.1.6. CF−(α, β, s) is a subcomplex of CF∞(α, β, s) and there is a
short exact sequence of chain complexes as:

0 −−−→ CF−(α, β, s)
i−−−→ CF∞(α, β, s)

π−−−→ CF+(α, β, s) −−−→ 0

where the first map is injection and second map is the projection.

Proof. By definition CF−(α, β, s) is a freely generated Abelian group already. Re-
strict the differential map ∂∞ of CF∞(α, β, s) on CF−(α, β, s) as ∂− = ∂∞|CF−(α,β,s)

Then we need to show that (∂−)2 = 0. The proof follows easily from the same argu-
ments used in ∂∞ is a boundary map. Let us check that the map is well-defined.

∂−[x, i] =
∑
y∈S

∑
{φ∈π2(x,y)|µ(φ)=1}

#(M̂(φ)).[y, i− nz(φ)]

By the proposition (4.0.10) nz(φ) ≥ 0 then i − nz(φ) < 0 holds so [y, i − nz(φ)] is
a generator for CF−(α, β, s) and ∂− is well-defined map on CF−(α, β, s). Applying
the boundary map twice on the generators:

(∂−)2[x, i] = ∂−(
∑
y∈S

∑
{φ∈π2(x,y)|µ(φ)=1}

#(M̂(φ)).[y, i− nz(φ)])

=
∑
y∈S

∑
{φ∈π2(x,y)|µ(φ)=1}

∑
w∈S

∑
{ψ∈π2(y,w)|µ(ψ)=1}

#(M̂(φ))#(M̂(ψ)).[w, i− nz(φ)− nz(ψ)]

By the nonnegativity of nz(φ) and nz(ψ), i − nz(φ) − nz(ψ) < 0 follows. By
the ends of the 1-dimensional moduli space argument as in the proof of the theo-
rem (5.1.4) we obtain (∂−)2 = 0. Therefore, (CF−(α, β, s), ∂−) is a subcomplex of
(CF∞(α, β, s), ∂∞).
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The second part of the statement follow from that the first map is injective
and second map is projection. Im(i) = CF−(α, β, s) = Ker(π : CF∞(α, β, s) →
CF∞(α, β, s)/CF−(α, β, s).

Remark 5.1.7. If we restrict the chain map U : CF∞(α, β, s) → CF∞(α, β, s) to
CF−(α, β, s) it will give a morphism from CF−(α, β, s) to itself lowering the grading
by 2. Similarly it also induces a self morphism on the quotient complex CF+(α, β, s).
Let us denote this action U on CF−(α, β, s) (respectively CF+(α, β, s) ) by U− (re-
spectively U+).

Proposition 5.1.8. Let us define a map ι : ĈF (α, β, s) → CF+(α, β, s) on the
generators by:

ι(x) = [x, 0].

Then there exists a short exact sequence of chain complexes:

0 −−−→ ĈF (α, β, s)
ι−−−→ CF+(α, β, s)

U+

−−−→ CF+(α, β, s) −−−→ 0

Proof. It suffices to show that Im(ι) = Ker(U+).

Im(ι) = {[x, 0]|x ∈ Tα ∩ Tβ, sz(x) = s}

Under the map U , U [x, 0] = [x,−1], but in the quotient it is 0 so U+[x, 0] = 0. Thus
Im(ι) ⊂ Ker(U+). Conversely, let [x, i] ∈ Ker(U+), so [x, i] ∈ CF+(α, β, s) and
i can not be negative, as the map U+ maps [x, i] to 0 this forces i = 0. Ker(U+)
contains elements of the form [x, 0] where x ∈ S, then Ker(U+) ⊂ Im(ι) implying
Im(ι) = Ker(U+). Hence we have short exact sequence of chain complexes and we

can imbed ĈF (α, β, s) into CF+(α, β, s) and the U action on ĈF (α, β, s) is taken to
be trivial as a convention.

Definition 33. The Floer homology groupsHF∞(α, β, s), HF−(α, β, s), HF+(α, β, s)
are the homology groups of the chain complexes CF∞(α, β, s), CF−(α, β, s), and
CF+(α, β, s) respectively. By the U -action the homology groups become Z[U ]-modules.

Remark 5.1.9. The short exact sequence of chain complexes in the proposition
(5.1.6) induces a long exact homology sequence.

· · · −−−→ HF−(α, β, s)
i∗−−−→ HF∞(α, β, s)

π∗−−−→ HF+(α, β, s) −−−→ · · ·

5.2 The Definitions of Heegaard Floer Homology Groups When b1(Y ) >
0

The first betti number, b1(Y ) is the rank of the Abelian group H1(Y ) or equivalently
the vector space dimension of H1(Y ;Q). In Sections 5.1 we defined the Heegaard
Floer Homology groups when H1(Y ;Q) = 0. Now we will study the case b1(Y ) > 0,
i.e., when the rank of H1(Y ;Q) is nontrivial. We give relative grading on the complex
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which will differ slightly from Equation (5.1), we consider special kind of Heegaard
diagrams to obtain the compactness of the moduli spaces M(φ) with µ(φ) = 1, and
then we define the chain complex.

Let s ∈ Spinc(Y ) be a Spinc structure and S = {x ∈ Tα ∩ Tβ|sz(x) = s}. The
relative grading we defined in Equation (5.1) is true modulo some indeterminacy
which is given as

%(s) = gcd
ε∈H2(Y ;Z)

〈c1(s), ε〉 (5.4)

This definition makes sense, as c1(s) ∈ H2(Y ;Z) then we can evaluate a second
cohomology class on second homology class.

Remark 5.2.1. When b1(Y ) = 0, Y is a rational homology 3-sphere. H2(Y ;Z) is
trivial so there is no indeterminacy and in this case there exists Z grading rather that
Z/%(s).

We use the compactness of moduli spaces M(φ) with µ(φ) = 1 in order to have
this property, we use special Heegaard diagrams.

Definition 34. Take s ∈ Spinc(Y ) then

1. A pointed Heegaard diagram (Σ, α, β, z) is called strongly admissible for s if
every nontrivial periodic domain D with 〈c1(s), H(D)〉 = 2n ≥ 0 has some
coefficient > n.

2. A pointed Heegaard diagram (Σ, α, β, z) is called weakly admissible for s if
every nontrivial periodic domain D with 〈c1(s), H(D)〉 = 0 has both positive
and negative coefficients.

Proposition 5.2.2. We have the following two properties:

1. If s ∈ Spinc(Y ) is torsion Spinc structure then the strong and weak admissibility
coincide.

2. If a Heegaard diagram is strongly admissible for any torsion Spinc structure,
then it is weakly admissible for every Spinc structure.

Proof. If s ∈ Spinc(Y ) is torsion then for any nontrivial periodic domain D then
〈c1(s), H(D)〉 = 0 where H(D) is the corresponding homology class in H2(Y ;Z) for
D. Then:

1. If s is torsion, then by definition a pointed Heegaard diagram is strongly admis-
sible and weakly admissible at the same time. Thus for torsion Spinc structures
weak and strong admissibility conditions coincide.
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2. Suppose that a Heegaard diagram is strongly admissible for any torsion Spinc

structure, say for s. Then for any nontrivial periodic domain D, 〈c1(s), H(D)〉 =
0 then D has both positive and negative coefficients. This says every nontrivial
periodic domain D has both positive and negative coefficients implying that the
Heegaard diagram is weakly s-admissible for any Spinc structures.

Theorem 5.2.3. If a pointed Heegaard diagram (Σ, α, β, z) is weakly admissible for a
fixed Spinc structure s, then for fixed j, k ∈ Z and for each x, y ∈ S there are finitely
many homotopy classes φ ∈ π2(x, y) with µ(φ) = j, nz(φ) = k, and D(φ) ≥ 0.

Proof. Take some ϕ ∈ π2(x, y) with µ(φ) = j. Any other φ ∈ π2(x, y) with µ(φ) = j
is of the form

φ = ϕ+ Px −
〈c1(s), H(P )〉

2
[S] (5.5)

where Px ∈
∏

x is a periodic class, P is the domain associated to Px, and S is the
positive generator of π2

′(Symg(Σ)). This is because π2(x, y) ' Z ⊕H1(Y ;Z) by the
theorem (3.3.4). This isomorphism is not canonical and two elements ϕ, φ ∈ π2(x, y)
differ by a constant in Z and a cohomology class as

φ = ϕ+ P + k[S] for some k ∈ Z

where S is the positive generator of π2
′(Symg(Σ)). As we require µ(φ) = µ(ϕ) this

forces k in the equation to be as in (5.5).

Let us verify that µ(φ) = µ(ϕ):

µ(φ) = µ(ϕ) + Px −
〈c1(s), H(P )〉

2
[S])

= µ(ϕ) + µ(Px)− µ(
〈c1(s), H(P )〉

2
[S])

= µ(ϕ) + µ(Px)−
〈c1(s), H(P )〉

2
= µ(ϕ)

the last equality follows from the Theorem 4.9 of [29] which says that the Maslov in-
dex of each periodic class φ ∈

∏
x, µ(φ) = 〈c1(s), H(φ)〉, where H(φ) is the homology

class in H2(Y ;Z) corresponding to φ (remember the 1 − 1 correspondence between
periodic classes and H1(Y ;Z) via Theorem (3.3.4)).
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If in addition nz(φ) = nz(ϕ) observe that:

nz(ϕ) = nz(φ)

= nz(ϕ+ Px −
〈c1(s), H(P )〉

2
[S])

= nz(ϕ) + nz(Px)−
〈c1(s), H(P )〉

2

as nz(Px) = 0 this forces 〈c1(s), H(P )〉 = 0. Then for the associated domain of φ and
ϕ we have

D(φ) = D(ϕ) + P

where P is a periodic domain such that 〈c1(s), H(P )〉 = 0.

We also want D(φ) ≥ 0, so D(φ) = D(ϕ) + P ≥ 0 then P ≥ −d(ϕ). It turn out
now we need to show that for a fixed ϕ ∈ π2(x, y) there is only finitely many periodic
domains P in

Q = {P ∈
∏

x |〈c1(s), H(P )〉 = 0, P ≥ −D(ϕ)}

Assume that there are infinitely many periodic domains in Q. Every periodic domain

P is of the form P =
m∑
i=1

piDi where {Di}mi=1 components of Σ − α − β. As every

periodic domain can be expressed as a linear combination of Di, each elements can be
thought as an element in an m-dimensional vector space with basis {Di}mi=1. Then Q
becomes the set of lattice points in this space. Q has infinitely many points implies
that it is unbounded. We can define a Euclidean norm for each periodic domain

P =
m∑
i=1

piDi as

‖ P ‖= (
m∑
i=1

|pi|2)1/2

Q is unbounded so there exists a sequence {Pi} in Q such that ‖ Pi ‖→ ∞, otherwise
Q can not have infinitely many points. However the sequence Pi

‖Pi‖ converges to a
unit vector in the space of periodic domains. This sequence has a subsequence whose

limit is a unit vector P̃ =
m∑
i=1

pjDj such that pj ∈ R and 〈c1(s), H(P )〉 = 0. Note

that for every periodic domain in Q as P ≥ −D(ϕ), there is a lower bound for the

coefficients and {Pi} is divergent implies that each coefficients of P̃ is nonnegative.
The subspace of periodic domains in H2(Y ;Z) for which 〈c1(s), H(P )〉 = 0 with
nonnegative multiplicities has a nontrivial real vector, then it should have a rational
vector also. We can obtain a periodic domain P with nonnegative integer coefficients
if we cancel the denominators such that 〈c1(s), H(P )〉 = 0. This result contradicts
with the hypothesis that the Heegaard diagram is weakly admissible. Therefore, Q has
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finitely many lattice points. As a result for a given j, k ∈ Z there is only finitely many
homotopy classes φ ∈ π2(x, y) with µ(φ) = j and nz(φ) = k satisfying D(φ) ≥ 0.

We also have a similar statement for strongly admissible pointed Heegaard dia-
grams.

Theorem 5.2.4. If a pointed Heegaard diagram (Σ, α, β, z) is strongly admissible for
a fixed s ∈ Spinc(Y ), then for a fixed j ∈ Z there exists finitely many homotopy
classes φ ∈ π2(x, y) with µ(φ) = j and D(φ) ≥ 0.

Proof. Take ϕ ∈ π2(x, y) with µ(φ) = j then any other φ ∈ π2(x, y) with µ(φ) = j is
of the form

φ = ϕ− Px + 〈c1(s),H(P )〉
2

[S]

as in (5.5) in the previous theorem. In the statement there is no restriction about the
intersection numbers nz(φ) and nz(ϕ).

nz(φ) = nz(ϕ− Px +
〈c1(s), H(P )〉

2
[S])

= nz(ϕ) +
〈c1(s), H(P )〉

2

then the corresponding domain of φ:

D(φ) =
m∑
i=1

nzi(φ)Di

=
m∑
i=1

[nzi(ϕ) +
〈c1(s), H(P )〉

2
]Di

= D(ϕ) +
〈c1(s), H(P )〉

2
Di[Σ]− P

for some periodic domain P . We also require D(φ) ≥ 0 this forces

−P +
〈c1(s), H(P )〉

2
[Σ] ≥ −D(ϕ) (5.6)

Now as in the weak admissibility case we need to show that for each ϕ ∈ π2(x, y) with
µ(φ) = j

Q = {P ∈
∏

x | − P + 〈c1(s),H(P )〉
2

[Σ] ≥ −D(ϕ)}

has finitely many elements. By the same reasoning as in the previous theorem if
there exists finitely many elements in Q, we can obtain a periodic domain P with
real coefficients such that 〈c1(s),H(P )〉

2
[Σ] ≥ 0. This will imply there is also a periodic

domain satisfying the equation (5.6) with rational coefficients. From this it is easy to
obtain a periodic domain P with integral coefficients satisfying (5.6). But then for
〈c1(s), H(P )〉 = 2n ≥ 0, P can not have a coefficient grater than n. This contradicts
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with the stong admissibility of the pointed Heegaard diagram. Therefore there are
finitely many elements in Q and for fixed j ∈ Z, and there exists finitely many
homotopy classes φ ∈ π2(x, y) with µ(φ) = j and D(φ) ≥ 0.

These two theorems are the main reasons for defining the admissibility condition.
We will use admissible diagrams when b1(Y ) > 0 to prove the boundary map is a
finite sum so there is no convergence issue, and it will give a chain map.

Remark 5.2.5. We have introduced the admissibility criteria for the pointed Hee-
gaard diagrams and derived some important results. But the question in mind should
be is there admissible Heegaard diagrams. We will turn to this question later in
Section 6.4.

Let us define the chain complexes for b1(Y ) > 0. For a 3-manifold Y with b1(Y ) >
0, fix a pointed Heegaard diagram (Σ, α, β, z), a Spinc structure s ∈ Spinc(Y ), a
coherent orientation system o, and assume that the Heegaard diagram is strongly
s-admissible.

We will define ĈF (α, β, s, o) and CF∞(α, β, s, o) as in Section 5.1 with the same
boundary maps.

ĈF (α, β, s, o) is a free Abelian group generated by the elements x ∈ S = {x ∈
Tα ∩ Tβ|sz(x) = s} and CF∞(α, β, s, o) is a free Abelian group generated by the
elements [x, i] with x ∈ S and i ∈ Z. It has a subgroup CF−(α, β, s, o) generated by
[x, i] with i < 0 and the quotient group CF+(α, β, s, o). There is a relative grading

on ĈF (α, β, s, o) given as in the equation (5.1) as gr(x, y) = µ(φ) − 2nz(φ) for any
φ ∈ π2(x, y). When b1(Y ) > 0 this turns out to a Z/%(s)-grading with the indetermi-
nacy %(s) given by the equation(5.4).

Differential map on CF∞(α, β, s, o) is same as (5.3)

∂∞[x, i] =
∑
y∈S

∑
{φ∈π2(x,y)|µ(φ)=1}

#(M̂(φ)) · [y, i− nz(φ)]

an it induces a differential map on the quotient complex as:

∂+[x, i] =
∑
{y∈S

∑
φ∈π2(x,y)|µ(φ)=1,i≥nz(φ)}

#(M̂(φ)) · [y, i− nz(φ)] (5.7)

This map is well-defined. Note that for i ≥ nz(φ), i − nz(φ) ≥ 0. Otherwise if
i − nZ(φ) < 0 then as [y, i − nZ(φ)] is a generator of CF−(α, β, s, o), so the map
makes sense. Moreover, the Heegaard diagram is strongly s-admissible then for fixed
µ(φ) = 1 there exists finitely many homotopy classes φ ∈ π2(x, y) via the theorem
(5.2.4), then both maps ∂∞ and ∂+ are finite sums.

Let us state the main theorem in this section and see how the admissibility criteria
is involved.
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Theorem 5.2.6. Let Y be a 3-manifold with b1(Y ) > 0 and fix a Spinc structure
s ∈ Spinc(Y ). Then,

1. If the pointed Heegaard diagram (Σ, α, β, z) for Y is strongly s-admissible then
the pair (CF∞(α, β, s, o), ∂∞) is a chain complex with a subcomplex CF−(α, β, s, o)
and the quotient complex CF+(α, β, s, o).

2. If the pointed Heegaard diagram (Σ, α, β, z) for Y is weakly s-admissible then the

pair (CF+(α, β, s, o), ∂+) is a chain complex with a subcomplex ĈF (α, β, s, o).

Proof. We use the admissibility criterion to show that the boundary maps ∂ for ĈF ,
∂∞ for CF∞, ∂− for CF−, and ∂+ for CF+ are finite sums.

1. If the pointed Heegaard diagram is strongly s-admissible then the boundary
map ∂∞ is a finite sum. Because for µ(φ) = 1 and as we count the number of
pseudo-holomorphic disks meeting with Vz, nz(φ) ≥ 0 implying D(φ) ≥ 0. Thus
there are finitely many homotopy classes φ ∈ π2(x, y) with such conditions via
the Theorem (5.2.4). Then it is a chain map (∂∞)2 = 0 follows from the same
arguments used in Theorem (5.1.4) so (CF∞(α, β, s, o), ∂∞) is a chain complex.
The boundary maps ∂− for CF−(α, β, s, o), which is the restriction of ∂∞ to
CF−(α, β, s, o) and is well-defined, and ∂+ for CF+(α, β, s, o) are also finite
sums and (∂−)2 = 0 and (∂+)2 = 0 follows similarly as in the case b1(Y ) = 0.

2. Suppose that the pointed Heegaard diagram is weakly s-admissible. The dif-
ferential map for CF+(α, β, s, o) in (5.7), take a generator [x, i], for this i we
restrict nz(φ) where φ ∈ π2(x, y) to i ≥ nz(φ) ≥ 0 (the 2nd inequality is true
via the proposition (4.0.10)) and µ(φ) = 1. Then by the Theorem (5.2.3) there
exist finitely many φ ∈ π2(x, y), so the map ∂+ is a finite sum. There is an

embedding of ĈF (α, β, s, o) into CF+(α, β, s, o) via the map ι(x) = [x, 0] in the

proposition (5.1.8). If we restrict ∂+ onto ĈF (α, β, s, o) with nz(φ) = i = 0, it

is also a finite sum. The argument CF+(α, β, s, o) and ĈF (α, β, s, o) are chain
complex proved similarly as in the Theorem (5.1.4) and the Theorem (5.1.2).

5.3 Examples and Properties

In this section we give some basic properties of the Heegaard Floer homology groups
and some examples. Properties include finiteness of Spinc structures for nontrivial
homology, the difference between homology groups with the Spinc structure s and its
conjugate s′. In the examples part we focus on S3, and the general version L(p, q),
and S2 × S1. In this section we basically follow the paper [28] and for more detail
and calculations the reader is referred to this paper.

Let us begin with basic properties.
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Theorem 5.3.1. Let Y be a closed, oriented three-manifold and let (Σ, α, β, z) be a
pointed Heegaard diagram for Y , fix a Spinc structure s ∈ Spinc(Y ) and a coherent

orientation system o then ĤF (α, β, s) is nontrivial if and only if HF+(α, β, s) is
nontrivial.

Proof. By the proposition (5.1.8) there is a short exact sequence

0 −−−→ ĈF (α, β, s)
ι−−−→ CF+(α, β, s)

U−−−→ HF+(α, β, s) −−−→ 0

and it induces a long exact homology sequence:

· · · −−−→ ĤF (α, β, s)
ι∗−−−→ HF+(α, β, s)

U∗−−−→ HF+(α, β, s) −−−→ · · ·

Suppose that ĤF (α, β, s) is nontrivial then U is not an isomorphism as it can not be
1−1, so Ker(U) is not trivial implies that HF+(α, β, s) can not be trivial. Conversely,

if ĤF (α, β, s) is trivial then U is an isomorphism soKer(HF+(α, β, s)) = 0, but U is a
chain map lowering the grading by 1 soHF+(α, β, s) is not nontrivial. Moreover under
for sufficiently power of U , HF+(α, β, s) turns out to be trivial. In particular the rank

of ĤF (α, β, s) is nonzero if and only if the rank of HF+(α, β, s) is nonzero.

The next theorem is about the finiteness of Spinc structures with nontrivial Hee-
gaard Floer homology.

Theorem 5.3.2. For a closed, oriented three-manifold Y there exist finitely many
Spinc structures s ∈ Spinc(Y ) such that the homology groups HF+(α, β, s) is non-
trivial.

Proof. If s̃ ∈ Spinc(Y ) is a torsion Spinc structure then the pointed Heegaard diagram
(Σ, α, β, z) for Y is both weakly and strongly admissible for s̃. Moreover if a pointed
Heegaard diagram is strongly admissible for any torsion Spinc structure then it is
weakly admissible for every Spinc structures by the proposition (5.2.2). If a Heegaard
diagram (Σ, α, β, z) is weakly admissible then CF+(α, β, s) is a chain complex with

subcomplex ĈF (α, β, s) by the theorem (5.2.6). Then the corresponding homology

groups HF+(α, β, s) and ĤF (α, β, s) can be computed via this diagram (Σ, α, β, z)
for every Spinc structures. The α and β curves have finitely many intersections,
thus Tα ∩ Tβ has finitely many intersection points. From each intersection point
x ∈ Tα ∩ Tβ we can obtain a Spinc structures via the map sz : Tα ∩ Tβ → Spinc(Y ).
In the chain map we choose the intersection points such that sz(x) = s, for the chosen
Spinc structure s ∈ Spinc(Y ). There is only finitely many Spinc structures such that

the chain complexes CF∞(α, β, s) and ĈF (α, β, s) are nontrivial. Therefore there

exist finitely many Spinc structures such that HF+(α, β, s) and thus ĤF (α, β, s) are
nonzero.

Next we study how the Heegaard Floer homology groups change if we change the
Spinc structure s to s, the conjugate of s which can be thought of as −s.
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Theorem 5.3.3. Let Y be a closed, oriented three-manifold with a fixed s ∈ Spinc(Y ).
If we replace s with s, then the Heegaard Floer homology groups do not change un-
der this involution, i.e., there are Z[U ]⊗Z Λ∗(H1(Y ;Z)/Tors)-module isomorphisms
between the homology groups:

• HF∞(α, β, s) ' HF∞(α, β, s)

• HF+(α, β, s) ' HF+(α, β, s)

• HF−(α, β, s) ' HF−(α, β, s)

• ĤF (α, β, s) ' ĤF (α, β, s)

Proof. For a fixed s ∈ Spinc(Y ) assume that the pointed Heegaard diagram (Σ, α, β, s)
for Y is strongly s-admissible. Thus CF∞(α, β, s) is a chain complex with subcom-
plex CF−(α, β, s) and quotient complex CF+(α, β, s). The α and β curves in the
statement is from the Heegaard diagram (Σ, α, β, s). We did not prove that the Hee-
gaard Floer homology groups are invariant under the Heegaard diagrams representing
the same three-manifold Y , instead of using (Y, s) we insist on the notation as (α, β, s).

On the set of Spinc structures there is an involution, for any s ∈ Spinc(Y ) the
conjugate of s, s. Note that s corresponds to a nonvanishing vector field over Y , so
−s also corresponds to a nonvanishing vector field. If s is obtained from a Morse
function f compatible with the α and β curves, then −s can be obtained from −f ,
the negative Morse function. On the Heegaard surface Σ the effect of this change can
be seen by changing the roles of α and β curves and reverse the orientation of Σ. Let
U0 be the handlebody with α curves and U1 be the handlebody with β curves. The
orientation on the boundary of handlebodies are opposite. When we change the roles
of α and β curves, the roles of handlebodies U0 and U1 are changed. However to make
the underlying manifold Y unchanged, as the orientations of U0 and U1 are reversed,
we also need to change the orientation of Σ.

α and β curves are same in both cases, therefore the set of intersection points does
not change. For every φ ∈ π2(x, y), M(φ) is also the same for both. After the roles
of the handlebodies are reversed, the Morse function −f is compatible with the new
Heegaard diagram. For the intersection point x ∈ Tα ∩ Tβ for which sz(x) = s, with
the new diagram and the Morse function −f , under the map sz(x) = s, we obtain the
conjugate of Spinc structure. The new Heegaard diagram is also strongly s-admissible.

There are two chain complexes CF∞(α, β, s) and CF∞(α, β, s) with the same gen-
erators [x, i], where i ∈ Z. The corresponding boundary map of the chain complexes
are also the same. Therefore the homology groups are isomorphic

HF∞(α, β, s) ' HF∞(α, β, s)
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The same argument is true also for the homology groups of the subcomplex, quotient
complex, and ĈF (α, β, s) proving the desired isomorphisms.

Let us turn to some examples and computations starting with the homology 3-
sphere.

Example: Let Y = S3 be a 3-sphere, so b1(Y ) = 0. Consider the genus-1 Hee-
gaard decomposition of S3 described in Section 2.2 with the corresponding Heegaard
diagram.

Figure 5.2: Heegaard diagram for S3

Tα = α and Tβ = β in the Symmetric product space Sym1(Σ) ' Σ, and there is
only one intersection point corresponding to intersection of α and β curves. There
is a 1 − 1 correspondence between Spinc(S3) and H2(S3;Z), but the latter one is
trivial implies that there is only one Spinc structure on S3, call it s. Take a basepoint
z ∈ Σ − α − β then as ĈF (α, β, s) has only one generator, ĈF (α, β, s) ' Z. The
boundary map is as follows.

∂ : ĈF (α, β, s)→ ĈF (α, β, s)

∂(x) =
∑

{φ∈π2(x,x)|µ(φ)=1,nz(φ)=0}
#(M̂(φ)) · x

There is only one generator, so we consider homotopy classes φ ∈ π2(x, x) with
nz(φ) = 0, which means φ is a periodic class.

∏
z(x) ' H1(S3;Z) ' {0} implies that

the boundary map is trivial. Im∂ = 0 and Ker∂ = Z, then we have

ĤF (α, β, s) ' Z

CF∞(α, β, s) is generated by [x, i] for i ∈ Z and is a Z[U ]-module with the bound-
ary map ∂∞ is defined as

∂∞ : CF∞(α, β, s)→ CF∞(α, β, s)
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∂∞[x, i] =
∑

{φ∈π2(x,x)|µ(φ)=1}
#(M̂(φ)) · [x, i− nz(φ)]

The relative grading of two generators [x, i] and [x, i−1] in the free Abelian group
CF∞(α, β, s) is 2. It is a Z[U ]-module and these generators differ by a U -action
which lowers the grading by 2. However the boundary map lowers the grading by 1.
There are no elements differ by 1 in CF∞(α, β, s). Therefore the boundary map ∂∞ is
trivial implying the homology group HF∞(α, β, s) is a graded Z[U ]-module denoted
as Z[U,U−1], where U is the chain map lowering the grading by 2 (arbitrary power
Uk lowers the grading by 2k.)

CF−(α, β, s) is generated by [x, i] with i < 0 thus it is a submodule of Z[U ]-module
generated by elements of grading less than or equal to −2. As the grading difference
between [x, i] and [x, i− 1] is 2, the boundary map is trivial implying that the homol-
ogy groups HF−(α, β, s) is a free Z[U ]-module.The quotient complex CF+(α, β, s)
has the induced grading with a trivial boundary map by the same reasoning. As a
Z[U ]-module HF+(α, β, s) isomorphic to Z[U,U−1]/Z[U ].

For Y = S3 we have

• ĤF (α, β, s) ' Z

• HF∞(α, β, s) ' Z[U,U−1]

• HF−(α, β, s) ' Z[U ]

• HF+(α, β, s) ' Z[U,U−1]/Z[U ]

Let us consider the stabiliazation of the Heegaard diagram in the above figure for
S3 as:

Figure 5.3: Heegaard diagram for S3 with stabilization move

where Tα = α1 × α2, Tβ = β1 × β2 with a unique intersection number Tα ∩Tβ = x =
{x1, x2} in the Symmetric product space. Then the chain complex CF∞(α, β, s) ' Z
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with HF∞(α, β, s) ' Z, and CF∞(α, β, s) generated by [x, i] as Z[U ]-module with
HF∞(α, β, s) ' Z[U,U−1]. The same results follow. If we continue stabilize the same
diagram we still have the same results.

Example: Let Y = L(p, q) be the Lens space which is a closed, oriented three-
manifold with p ≥ 3 and (p, q) = 1. In Section 2.2 we described a genus-1 Heegaard
decomposition of L(p, q) in detail, and see below the figure for L(3, 1).

Figure 5.4: A Heegaard diagram for L(3, 1)

Note thatH2(L(p, q);Z) ' Zp and there is 1−1 correspondence with Spinc(L(p, q)).
In the diagram there are three intersection points of Tα∩Tβ, in general the diagram of
L(p, q) can be arranged so that there are p intersection points. From each intersection
points we obtain different Spinc structures. Let x and y be two different intersection
points of Tα ∩Tβ then sz(x)− sz(y) = PD[ε(x, y)]. We can connect x and y on Σ by
an arc on the α curve and by an arc on the β curves so that the curve γ connecting
intersection points x and y is essential in H1(L(p, q);Z), so ε(x, y) 6= 0 implies that
sz(x) 6= sz(y). Thus for each Spinc structure s ∈ Spinc(L(p, q)) there is only one
intersection point x ∈ Tα ∩ Tβ such that sz(x) = s. CF∞(α, β, s) is generated by
[xj, i] where i ∈ Z and j ∈ {1, .., p} with the boundary map

∂∞[x, i] =
∑

{φ∈π2(x,x)|µ(φ)=1}
#(M̂(φ)) · [x, i− nz(φ)]

The boundary map is trivial because of the relative grading between the generator
differ by an even number which is at least 2. Therefore we obtain:

• ĤF (α, β, s) ' Z

• HF∞(α, β, s) ' Z[U,U−1] a graded Z[U ]-module.

• HF−(α, β, s) ' Z[U ]

• HF+(α, β, s) ' Z[U,U−1]/Z[U ]

Example: Let Y = S1× S2 be the next example. A genus-1 Heegaard decompo-
sition of S1 × S2 with the attaching curves is the following diagram (Σ, α, β), where
α is an embedded essential curve on Σ and β is isotopic translate of α.
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Figure 5.5: A Heegaard diagram for S1 × S2

According to this recipe we obtain three-manifold S1 × S2. Tα = α and Tβ = β and
as g = 1 then Symg(Σ) ' Σ with Tα ∩ Tβ = ∅. There is no intersection point in Σ.
Σ−α−β has 2 components which are both annuli. If we choose the basepoint z ∈ A1

then as the boundary of A2 is sum of α and β curves with the algebraic intersection
number 0 implies that A2 is a periodic domain. If the basepoint z ∈ A2 is chosen to
be in A2 then A1 is a periodic domain.

There is a 1 − 1 correspondence between Spinc(S1 × S1) and H2(S1 × S2;Z) '
H1(S1×S2;Z) ' Abπ1(S1×S1) ' Z. Thus there is only one torsion Spinc structure,
call it s0. The Heegaard diagram is not weakly admissible for s0 because periodic
domains does not have both positive and negative coefficients. Moreover, for any
Spinc structure it is not strongly admissible. Since for the torsion Spinc structure the
Heegaard diagram is not weakly admissible implies it is not strongly admissible. For
any Spinc structure different than the torsion one, as periodic domain is nontrivial
here, the evaluation 〈c1(s), H(P )〉 = 2n > 0 must imply P has coefficient greater
than 1, but it does not have. With these arguments we can not study with the given
Heegaard diagram. Thus we introduce canceling pair of intersection points between α
and β curves to make the diagram weakly admissible for the torsion Spinc structure
s0. This can be done by fixing one of the curves say α and move β in a one parameter
family so that they have two transverse intersection points, x+ and x− with a pair of
nonhomotopic homolorphic disks connecting them.

Let us denote the disks by D1 and D2, and let φ1, φ2 ∈ π2(x+, x−) be homotopy
classes such that D(φ1) = D1 and D(φ2) = D2. We begin with genus-1 Heegaard dia-
gram so that Symg(Σ) ' T 2 and the disks D1 and D2 are convex polygons which are
simply-connected then it follows µ(φ1) = µ(φ2) = 1, see the appendix of [35]. Note
that φ1 − φ2 ∈ π2(x4, x−) with nz(φ1 − φ2) = 0, so φ1 − φ2 is a periodic class which
generates the periodic classes in Symg(Σ) ' T 2. It follows two intersection points
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represent the trivial spinc structure, and the periodic domains have both positive and
negative coefficients. Therefore, the new Heegaard diagram is weakly admissible for
the torsion Spinc structure s0.

The moduli spaces M̂(φ1) and M̂(φ2) have unique solutions and if there is φ ∈
π2(x+, x−) with nz(φ) = 0 different from φ1 and φ2, the moduli space M̂(φ) = ∅,
because D(φ) has negative coefficients. We can choose the orientation such that the
signed count gives 0 and it implies that the boundary map is trivial. Therefore, with
2 generators and trivial boundary map ĤF (α

′
, β
′
, s0) ' H∗(S

1;Z).

Remark 5.3.4. [29] Consider the three-manifold #g(S1× S2) then by similar argu-

ments we have ĤF (α
′
, β
′
, s0) ' H∗(T

g;Z)
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Chapter 6

INVARIANCE, ACTION, AND ADMISSIBILITY

In Chapter 5 we gave the definition of Heegaard Floer homology groups which is
the main part of this thesis. In this chapter we deal with more specific and further
topics about the Heegaard Floer homology groups and we mainly focus on two major
topics in this chapter.

The first one is the dependence of the Heegaard Floer homology groups on the
coherent orientation system and, for a chosen complex structure j over the Heegaard
surface Σ, the path Js of nearly symmetric almost-complex structures and then the
complex structure j. These are very important two steps to see how Heegaard Floer
homology groups eventually become invariants for 3-manifolds. Moreover, these two
steps are the easiest and the shortest ones as compared to understand the dependence
of the homology groups on the Heegaard surface.

The second part is that we give some further information about the theory. There
is an action on the Heegaard Floer homology groups. When b1(Y ) = 0 we defined the
U -action and for b1(Y ) > 0 we define a new action on the Heegaard Floer homology
groups. Then we study the admissibility in more detail as promised in chapter 4.

Section 6.1 is about the dependence of the Heegaard Floer homology groups on
the coherent orientation systems. In Section 6.2, we define of a new action on the
homology groups. In Section 6.3 we study the dependence of the Heegaard Floer
homology groups on the path Js and the chosen complex structure j over the Heegaard
surface Σ. In Section 6.4 we show the existence of admissible Hegaard diagrams. As
we defined the Heegaard Floer homology groups for admissible Heegaard diagrams in
Chapter 5 when b1(Y ) > 0.

6.1 Dependence on the Coherent Orientation System

Before giving the definition of chain complexes we fixed a coherent orientation system
o, so that the orientations of the moduli spacesM(φ) are compatible with each other.
In this section we will study how the Heegaard Floer homology groups depend on the
coherent orientation system.

Take two coherent orientation system o and o′, the question is to understand the
difference between them. This difference is defined by

δ = δ(o, o′) =∈ Hom(H1(Y ;Z),Z/2Z)



Chapter 6: Invariance, Action, and Admissibility 69

as a map from H1(Y ;Z) to Z/2Z. Intuitively, if they are similar, they differ by 0,
if different, they differ by 1. Let φ ∈ π2(x, x) be a periodic class, using the 1 − 1
correspondance between the periodic classes and cohomology classes in H1(Y ;Z), φ
corresponds to a cohomology class H ∈ H1(Y ;Z). A coherent orientation system
is a choice of nonvanishing section o(φ) of the determinant line bundle over each
φ ∈ π2(x, y) which is compatible with the gluing. Then the nonvanishing section o
of the determinant line bundle over the component corresponding to φ is a positive
multiple of o′ or a negative multiple of o′. If positive we define δ(H) = 0, if negative
we define δ(H) = 1. We will see that it suffices to understand the difference between
two coherent orientation systems on periodic classes in π2(x, x). By the theorem
(3.3.4) we know that

∏
z(x) ' H1(Y ;Z). For each periodic class we obtain a coherent

orientation system.

Definition 35. Two coherent orientation systems o and o′ are said to be equivalent if
δ(H) = 0 for every H ∈ H1(Y ;Z), which means their difference vanishes on periodic
domains.

Remark 6.1.1. If the difference of two coherent orientation system is zero, this gives
an equivalence relation on the set of coherent orientation systems. Thus we obtain
equivalence classes of orientations.

Remark 6.1.2. There are 2b1(Y ) inequivalent choices of coherent orientation systems.
Note that as H0(Y ;Z) is free, by the Universal Coefficient Theorem

H1(Y ;Z) ' Hom(H1(Y ;Z),Z)

' Hom(Zb1(Y ))⊕Hom(T,Z)

' Zb1(Y )

where T is the torsion part of H1(Y ;Z). Therefore, there are 2b1(Y ) inequivalent
coherent orientation systems corresponding to each generator and choice.

Remark 6.1.3. When b1(Y ) = 0 there is only one class of coherent orientation sys-
tem. That is why we did not say much about orientation when defining the Heegaard
Floer homology groups in this case.

We will also see that there are 2b1(Y ) different chain complexes corresponding to
the variations of the equivalence classes of coherent orientation systems via the next
theorem where we will see the dependence of the Heegaard Floer homology groups
on the coherent orientation systems.

Theorem 6.1.4. If there are two equivalent coherent orientation systems o and o′

then the corresponding chain complexes CF∞(α, β, s, o) and CF∞(α, β, s, o′) are iso-

morphic. Similarly the corresponding chain complexes CF−, CF+, and ĈF .

Proof. We need to show that there is a chain isomorphism F : CF∞(α, β, s, o) →
CF∞(α, β, s, o′). As o and o′ are equivalent, they differ by δ(o, o′) = 0. Fix an
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intersection point x̃ ∈ S, for any other x ∈ S, a homotopy class of a Whitney disk
φ ∈ π2(x̃, x) can be thought as a path from x̃ to x. There is a sign σ(x) ∈ {+1,−1}
such that

o(φ) = σ(x) · o′(φ)

Note that as o and o′ are isomorphic coherent orientation systems, the sign σ(x) does
not depend on the chosen φ ∈ π2(x̃, x). First, σ(x) is independent of the represen-
tative of φ. A representative u of φ is homotopic to φ and σ(x) is an integer either
+1 or −1, thus by the continuity σ(x) is same for both. Moreover, for any other
ψ ∈ π2(x̃, x) their difference φ ∗ ψ is a periodic class and some multiple of [S], where
S is positive generator of π2

′(Symg(Σ)). By the definition of the coherent system of
orientation, Definition (28), [S] does not affect the sign as o(φ ∗ [S]) = o(φ), and as o
and o′ are equivalent their difference vanishes on the periodic classes. Therefore, the
sign σ(x) must be same for both ψ and φ.

Define a map F : CF∞(α, β, s, o)→ CF∞(α, β, s, o′) as F [x, i] = σ(x) · [x, i]. First
let us see F is a chain map, so it is compatible with the boundary maps:

CF∞(α, β, s, o)
F−−−→ CF∞(α, β, s, o′)y∂∞ y∂∞′

CF∞(α, β, s, o)
F−−−→ CF∞(α, β, s, o′)

For a fixed x̃ ∈ S, say σ(x) is the sign.

∂∞′ ◦ F [x, i] = ∂∞′(σ(x) · [x, i])

=
∑
y∈S

∑
{φ∈π2(x,y)|µ(φ)=1}

σ(x) ·#(M̂(φ)) · [y, i− nz(φ)]

F ◦ ∂∞′[x, i] = F(
∑
y∈S

∑
{φ∈π2(x,y)}

#(M̂(φ)) · [y, i− nz(φ)])

=
∑
y∈S

∑
{φ∈π2(x,y)}

σ(y) ·#(M̂(φ)) · [y, i− nz(φ)])

In the first composition we use the coherent orientation system o′ on the moduli
spaces and in the second composition we use the coherent orientation system o. On
periodic domains their difference vanishes. However on arbitrary homotopy classes in
π2(x, y) they differ by a sign. Thus, if we take into account this orientation argument
it follows that F is compatible with the boundary maps. It is already defined on
the generators, so F is 1 − 1 and onto. Therefore, F is a chain isomorphism and
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the Heegaard Floer homology groups depend on the equivalence classes of coherent
orientation system.

6.2 Actions on the Heegaard Floer Homology Groups

For b1(Y ) = 0 we defined a chain map U : CF∞(α, β, s)→ CF∞(α, β, s) which lowers
the grading by 2. Then U+ and U− are the corresponding (chain maps) actions on the
quotient complex CF+(α, β, s) and the subcomplex CF−(α, β, s). With this action
the Heegaard Floer homology groups becomes Z[U ]-modules. For b1(Y ) > 0, the map
U : CF∞(α, β, s, o) → CF∞(α, β, s, o) is still a chain map lowering the grading by 2
and induces also action on the subcomplex CF−(α, β, s, o) and the quotient complex
CF+(α, β, s, o). Thus, the Heegaard Floer homology groups become Z[U ]-modules.

Now for b1(Y ) > 0 we define a new action on the Heegaard Floer homology
groups. Let (Σ, α, β, z) be a pointed Heegaard diagram. Let Ω(Tα,Tβ) the space of
paths connecting Tα and Tβ. By the proof of the theorem (3.3.4) the space π2(x, x)
can be identified with the fundamental group of the path space Ω(Tα,Tβ) based at
the constant path. By the Universal Coefficient Theorem for cohomology (see [12])
we have:

H1(Ω(Tα,Tβ);Z) ' Ext(H0(Ω(Tα,Tβ);Z),Z)⊕Hom(H1(Ω(Tα,Tβ);Z),Z)

By using the properties of the Ext functor, H0(Ω(Tα,Tβ);Z) is free and π1(Ω(Tα,Tβ))
is Abelian we have:

H1(Ω(Tα,Tβ);Z) ' Hom(π1(Ω(Tα,Tβ)),Z) (6.1)

Remember the identification between π1(Ω(Tα,Tβ)) based at constant path x and
π2(x, x) then

Hom(π1(Ω(Tα,Tβ)),Z) ' Hom(π2(x, x),Z)

When g ≥ 3 we have π2(x, x) ' Z⊕H1(Y ;Z). Here Z corresponds to π2
′(Symg(Σ)) '

Z, thus in general we have:

π2(x, x) ' π2
′(Symg(Σ))⊕H1(Y ;Z)

Combining these with the equation (6.1) we have:

H1(Ω(Tα,Tβ);Z) ' Hom(π2
′(Symg(Σ))⊕H1(Y ;Z),Z) (6.2)

' Hom(π2
′(Symg(Σ)),Z)⊕Hom(H1(Y ;Z),Z)

' π2
′(Symg(Σ))⊕Hom(H1(Y ;Z),Z)
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Here we used the properties of the Hom functor which can be found in [13]. For
g > 2 we can take π2

′(Symg(Σ)) as π2(Symg(Σ)) as π1 action becomes trivial as in
the theorem (3.1.5). In the end we have the following isomorphisms:

H1(Ω(Tα,Tβ);Z) ' Hom(π1(Ω(Tα,Tβ)),Z)

' π2(Symg(Σ))⊕Hom(H1(Y ;Z),Z)

The aim of this section is to prove the following theorem. Let Σ(α, β, s, z) be a
Heegaard diagram for Y when b1(Y ) > 0.

Theorem 6.2.1. H1(Ω(Tα,Tβ);Z) acts on the Heegaard Floer homology groups HF∞(α, β, s),

HF+(α, β, s), HF−(α, β, s), and ĤF (α, β, s) as lowering grading by 1. Moreover this
action induces action of the exterior algebra Λ∗(H1(Y ;Z)/Tors) ⊂ Λ∗(H1(Ω(Tα,Tβ);Z);Z)
on each Heegaard Floer homology groups.

Let us study some preliminaries before attempting to prove the theorem. Re-
call from the basic algebraic topology, see [12], the qth chain group of X is given
by Cq(X) = {f |f : Cq → Z, f is a homomorphism} with the coboundary map
δq : Cq(X) → Cq+1(X) taking f 7→ f ◦ ∂q+1 where ∂q+1 : Cq+1 → Cq is bound-
ary map between chain groups in homology. Then Kerδq = Zq(X) ⊂ Cq(X) is the
cocycle group and Imδq−1 = Bq(X) ⊂ Cq(X) is the coboundary group.

Fix a pointed Heegaard diagram (Σ, α, β, s) for Y and let ξ ∈ Z1(Ω(Tα,Tβ),Z) ⊂
C1(Ω(Tα,Tβ),Z) be one-cocycle in the path space Ω(Tα,Tβ). The map between chain
complexes

Aξ : CF∞(α, β, s)→ CF∞(α, β, s)

is defined as

Aξ[x, i] =
∑
y∈S

∑
{φ∈π2(x,y)|µ(φ)=1}

ξ(φ) ·#(M̂(φ)) · [y, i− nz(φ)] (6.3)

lowering the grading by 1. Let us verify this first:

gr([x, i], [y, i− nz(φ)]) = gr(x, y) + 2i− 2(i− nz(φ))

= µ(φ)− 2nz(φ) + 2i− 2i+ 2nz(φ)

= 1

The map in (6.3) is well-defined, meaning the evaluation ξ(φ) is independent of the
representative of φ. Any representative of φ say φ′ is a path in Ω(Tα,Tβ) connecting
the constant paths x and y. As φ and φ′ are homotopic in Symg(Σ), the paths φ and
φ′ in Ω(Tα,Tβ) are homotopic too. As ξ is a cocycle the evaluation makes sense and
it is independent of the representative of φ. Note that the map Aξ is similar to the
boundary map ∂∞ of the chain complex CF∞(α, β, s).
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Proposition 6.2.2. Aξ : CF∞(α, β, s)→ CF∞(α, β, s) is a chain map.

Proof. Let us compute the mapsAξ◦∂∞ and ∂∞◦Aξ on the generators. At some point
the proof turns out to be similar to the proof of (∂∞)2 = 0. Suppose for φ ∈ π2(x,w)
with µ(φ) = 2, nz(φ) = k then

(Aξ ◦ ∂∞)[x, i] = Aξ(
∑
y∈S

∑
{ϕ∈π2(x,y)|µ(ϕ)=1}

#(M̂(ϕ)) · [y, i− nz(φ)])

=
∑
y,w∈S

∑
{ϕ∈π2(x,y)|µ(ϕ)=1}

∑
{ψ∈π2(y,w)|µ(ψ)=1}

ξ(ψ) ·#(M̂(ϕ)) ·#(M̂(ψ)) · [w, i− nz(φ)− nz(ψ)]

(∂∞ ◦ Aξ)[x, i] = ∂∞(
∑
y∈S

∑
{ϕ∈π2(x,y)|µ(ϕ)=1}

ξ(ϕ)#(M̂(ϕ)) · [y, i− nz(ϕ)])

=
∑
y,w∈S

∑
{ϕ∈π2(x,y)|µ(ϕ)=1}

∑
{ψ∈π2(y,w)|µ(ψ)=1}

ξ(ϕ) ·#(M̂(ϕ)) ·#(M̂(ψ)) · [w, i− nz(ϕ)− nz(ψ)]

Now for φπ2(x, y) with µ(φ) = 2 and nz(φ) = k, for the ends of the unparametrized

moduli space M̂(φ) we have:

#(ends of M̂(φ)) = 0 (6.4)

Note also that ξ is a cocycle so it is a homomorphism and it respects to the group
structure, therefore we have

ξ(ϕ ∗ ψ) = ξ(ϕ) + ξ(ψ)

Then we have

0 = ξ(φ) · [#ends of M̂(φ)]

= ξ(ψ ∗ ϕ) ·
∑

{ϕ∗ψ=φ|µ(ϕ)=µ(ψ)=1}

#(M̂(ϕ)) ·#(M̂(ψ))

=
∑

{ϕ∗ψ=φ|µ(ϕ)=µ(ψ)=1}

[ξ(ϕ) + ξ(ψ)]#(M̂(ϕ)) ·#(M̂(ψ))
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Then

(Aξ ◦ ∂∞ + ∂∞ ◦ Aξ)[x, i]

=
∑
y,w∈S

∑
{ϕ∈π2(x,y),ψ∈π2(y,w)|µ(ϕ)=µ(ψ)=1}

[ξ(ϕ) + ξ(ψ)]#(M̂(ϕ)) ·#(M̂(ψ))[w, i− k]

the right hand side gives 0. Thus Aξ is a chain map lowering the grading by 1. (Note
that the diagram here is anti-commutative.)

Proposition 6.2.3. If ξ is a coboundary then Aξ is chain homotopic to zero.

Proof. Suppose that ξ is a coboundary then ξ ∈ Imδ0 and in H1(Ω(Tα,Tβ)) ξ repre-
sents trivial element. There is a zero cochain B ∈ C0(Ω(Tα,Tβ),Z) such that if γ is an
arc in Ω(Tα,Tβ), which can also be seen as a disk connecting two intersection points as

ξ(γ) = B(γ(0))−B(γ(1))

Then we define a map H : CF∞(α, β, s)→ CF∞(α, β, s)

H[x, i] = B(x) · [x, i]

where B is a zero cochain and B(x) is calculated by taking x as a constant path from
Tα to Tβ. Then by definition it follows

Aξ = ∂∞ ◦H −H ◦ ∂∞

(∂∞ ◦H) = ∂∞(B(x) · [x, i])

=
∑
y∈S

∑
{φ∈π2(x,y)|µ(φ)=1}

B(x)#(M̂(φ))[y, i− nz(φ)]

(H ◦ ∂∞)[x, i] = H(
∑
y∈S

∑
{φ∈π2(x,y)|µ(φ)=1}

#(M̂(φ))[y, i− nz(φ)])

=
∑
y∈S

∑
{φ∈π2(x,y)|µ(φ)=1}

B(y)#(M̂(φ))[y, i− nz(φ)]
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(∂∞ ◦H −H ◦ ∂∞)[x, i] =
∑
y∈S

∑
{φ∈π2(x,y)|µ(φ)=1}

[B(x)−B(y)]#(M̂(φ))[y, i− nz(φ)]

=
∑
y∈S

∑
{φ∈π2(x,y)|µ(φ)=1}

ξ(φ)#(M̂(φ))[y, i− nz(φ)]

= Aξ[x, i]

We can think of φ ∈ π2(x, y) as an arc in Ω(Tα,Tβ) and ξ(φ) = [B(x) − B(y)]. We
verified on the generators and Aξ = ∂∞ ◦H −H ◦ ∂∞ follows. Let 0 denote the zero
chain map then

(Aξ − 0) = ∂∞ ◦H −H ◦ ∂∞

and by definition of chain homotopy this implies the desired result.

Now we can prove the theorem (6.2.1) stated at the beginning of the section.

Proof of the Theorem 6.2.1. We showed that Aξ is a chain map lowering the grading
by 1. Then Aξ descends to an action of H1(Ω(Tα,Tβ)) on HF∞. Because for each
cocycle Aξ gives a chain map lowering the grading by 1 and for each coboundary it is
chain homotopic to zero. This shows that Aξ is an action on the cohomology level. By
the Universal Coefficient Theorem H1(Y ;Z) ' Hom(H1(Y ;Z),Z) and the Equation
(6.2), this action can be considered as the action of H1(Y ;Z)/Tors on the homology
groups. Note that rather than taking Hom we can take the quotient by the torsion
to consider the free part.

Moreover, Aξ descends to an action of the exterior algebra Λ∗(H1(Y ;Z)/Tors).
In order to see this we need to show that Aξ ◦ Aξ = 0. We will prove this with
an alternate description of Aξ. Take a one-cocycle ξ ∈ Z1(Ω(Tα,Tβ),Z) and let
f : Ω(Tα,Tβ) → S1 be a map that represents ξ, by the correspondance between
cohomology classes and the homotopy classes of maps from Y → S1, see [12]. For a
generic point p ∈ S1, let V = f−1(p) similar to the definition of the subvariety Vz.
We define the action

Aξ[x, i] =
∑
y∈S

∑
{φ∈π2(x,y)|µ(φ)=1}

a(ξ, φ) · [y, i− nz(φ)]

where a(ξ, φ) = {u ∈M(φ)|u([0, 1]× {0}) ∈ V }.

Note that u is in the unparametrized moduli space. We can think of u as an
infinite strip [0, 1] × R. A parametrization of [0, 1] × {0} corresponds to translation
of the line segment in R direction as [0, 1] × {s} for s ∈ R. As it is fixed at 0 we do

not need to consider the unparametrized moduli space M̂(φ). Because the segment
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at [0, 1] × {s} of another parametrization of u stays in V not the 0th level. V is
codimension 1 so the elements in a(ξ, φ) is finitely many. Here we count the number
of homolomorphic disks such that image of u([0, 1]× {0}) under u stays in f−1(p).

If Aξ is applied twice we need to consider the ends of M(φ) where φ ∈ π2(x,w)
with µ(φ) = 2. For generic points p and p′, let V = f−1(p) and V ′ = f−1(p′) and
consider

M = {s ∈ [0,∞), u ∈M(φ)|u([0, 1]× {s}) ∈ V, u([0, 1]× {−s}) ∈ V ′}

If s = 0 then M has no ends. Because take a sequence of disks ui in M. For each ui
we have u([0, 1] × {0}) ∈ V, V ′ so if the limits exists it will be of this form too. The
ends occur as s → ∞. If boundary degeneration occur by the theorem (5.1.4) the
algebraic contribution of them vanishes and we have broken flow-lines

{u ∈M(ϕ)|u([0, 1]× {0}) ∈ V } × {u ∈M(ψ)|u([0, 1]× {0}) ∈ V ′} (6.5)

such that ϕ ∗ ψ = φ. In the proof of the theorem (5.1.4) the oriented count of the
points of these spaces gives 0. Let us see this by applying the map Aξ twice:

Aξ ◦ Aξ[x, i] = Aξ(
∑
y∈S

∑
{ϕ∈π2(x,y)|µ(ϕ)=1}

a(ξ, ϕ)[y, i− nz(ϕ)])

=
∑
y,w∈S

∑
{ϕ∈π2(x,y)|µ(ϕ)=1}

∑
{ψ∈π2(x,y)|µ(ψ)=1}

a(ξ, ϕ)a(ξ, ψ)[w, i− nz(ϕ)− nz(ψ)]

the coefficients a(ξ, ϕ)a(ξ, ψ) corresponds to the equation (6.5) and the sum gives 0.
Therefore, Aξ ◦ Aξ = 0 follows and the action of H1(Y ;Z)/Tors on HF∞(α, β, s)
descends to an action of the exterior algebra Λ∗(H1(Y ;Z)/Tors).

Remark 6.2.4. Aξ is a chain map on CF∞(α, β, s) lowering the grading by 1. There-
fore for each generator [x, i] of CF−(α, β, s) is preserved under the map Aξ by the
nonnegativity of the intersection number. Thus Aξ can be restricted to CF−(α, β, s).

This implies there is an induced action of Aξ on the homology groups ĤF (α, β, s),
HF+(α, β, s, and HF−(α, β, s).

Remark 6.2.5. By the isomorphism in the equation (6.2), for g > 2 as π1 acts on π2

trivially π2(Symg(Σ)) ' Z. The action of H1(Ω(Tα,Tβ)) can be seen as the action of
Z ⊕ Hom(H1(Y ;Z),Z). The action of Z is trivial on the Heegaard Floer homology
groups. In order to see this, one need to show the coefficients in ξ(φ) in the chain
map Aξ is zero.

The action of H1(Y ;Z)/Tors on HF∞(α, β, s) can be observed geometrically as
follows. This is the interesting part of the action. Let (Σ, α, β, s) be a pointed
Heegaard diagram for Y . Take a curve γ on the Heegaard surface such that it does
not meet with the intersection points of the α and β curves. There is an isomorphism
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H1(Σ)
[α1],..,[αg ],[β1],..,[βg ]

' H1(Y ;Z)

So γ can be realized as a homology class [γ] ∈ H1(Y ;Z). Then the action

A[γ][x, i] =
∑
y∈S

∑
{φ∈π2(x,y)|µ(φ)=1}

a([γ], φ)[y, i− nz(φ)]

where a([γ], φ) is defined similarly as before is a finite set:

a([γ], φ) = #{u ∈M()φ|u([0, 1]× {0}) ∈ (γ × Symg−1(Σ)) ∩ Tα}

V = f−1(p) is codimension 1 subspace of Ω(Tα,Tβ) which means the space of certain
paths connecting Tα and Tβ for a chosen point p ∈ S1. Thus here V corresponds
to γ × Symg−1(Σ) intersected with Tα, note that u({1} × R) maps into Tα. The

coefficient a([γ], φ) can be interpreted by using #(M̂(φ)). We multiply #(M̂(φ)) by
the the algebraic intersection number of the subvariety Vz with (γ×Symg−1(Σ))∩Tα.

6.3 Dependence on The Complex Structure and The Path

The aim of this section is to understand how the Heegaard Floer homology groups
depend on the choice of the complex structure j over Σ and the path Js of nearly
symmetric almost-complex structures. Remember that before giving the definition of
the chain complexes in the beginning of the Section 5.1, we fixed some auxiliary data
which contain a fixed coherent orientation system and a generic path Js of nearly
symmetric almost complex structure. In the first section we discussed the orientation
and now let us turn to j and the path Js.

The answer of the above question and the main part of this section is the following
theorem.

Theorem 6.3.1. For a closed, oriented 3-manifold Y , fix a Spinc structure s ∈
Spinc(Y ) and let (Σ, α, β, z) be a pointed strongly s-admissible Heegaard diagram
for Y with an equivalence class of coherent orientation system o. Then the Hee-
gaard Floer homology groups HF∞(α, β, s, o), HF−(α, β, s, o), HF+(α, β, s, o), and

ĤF (α, β, s, o) are independent(up to isomorphism) of the chosen complex structure j
over Σ and the path Js of nearly symmetric almost-complex structures.

Proof. First we will prove the statement for the case b1(Y ) = 0 and then for b1(Y ) > 0.
In the first case when Y is a rational homology three sphere, for a fixed complex struc-
ture j over Σ we will show that the Heegaard Floer homology groups are independent
of the path Js.

Let (Σ, α, β, z) be a pointed Heegaard diagram for Y and let j be a generic com-
plex structure over Σ such that the intersection points of Tα ∩ Tβ are disjoint from
Symg(j)-holomorphic spheres in the Symmetric product. Then by the definition of
nearly symmetric almost complex structure on the Symmetric product space in the
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Definition (25) obtained from the complex structure j, we obtain a path Js of (j, η, V )-
nearly symmetric almost complex structures such that the path Js is contained in a
contractible open neighborhood U of Symg(j) as in the Theorem (4.0.18) to handle
the boundary degenerations.

Take two paths Js(0) and Js(1) of nearly symmetric almost-complex structures con-
tained in the contractible open neighborhood U of Symg(j). U is contractible implies
U is simply-connected, thus Js(0) and Js(1) can be connected by a path in U . Take a
path Js : [0, 1] → U in U in parameter t such that Js(t) is a path for each t ∈ [0, 1].
This can be interpreted as a two parameter family of function J : [0, 1]× [0, 1]→ U ,
which is a path of paths. It is possible to arrange Js around the boundary points
t ∈ [0, 1] so that we can extend t to all real line R, see [29]. Corresponding to these two
paths there are two chain complexes (CF∞(α, β, s), ∂∞Js(0)) and (CF∞(α, β, s), ∂∞Js(1)).

We define a map between two chain complexes and show that this induces a chain
homotopy to the identity map, so that the corresponding homology groups become
isomorphic. This proves the independence of the homology groups from the choice of
the path of nearly symmetric almost complex structures.

The chain map described above is

Φ∞Js,t : (CF∞(α, β, s), ∂∞Js(0))→ (CF∞(α, β, s), ∂∞Js(1))

defined as

Φ∞Js,t [x, i] =
∑
y

∑
{φ∈π2(x,y)|µ(φ)=0}

#(MJs,t(φ)) · [y, i− nz(φ)]

for each t ∈ [0, 1], MJs,t(φ) is the corresponding moduli space of dimension 0 is
describes as

MJs,t(φ) =

u : D→ Symg(Σ)

∣∣∣∣∣∣∣
du
ds

+ J(s, t)du
dt

= 0

u({1} × R) ⊂ Tα, u({0} × R) ⊂ Tβ
limt→−∞ u(s+ it) = x, limt→+∞ u(s+ it) = y


for each t ∈ [0, 1] the moduli space MJs,t(φ) is 0 dimensional compact manifold by
the theorem (4.0.19) it has finitely many points, therefore the map Φ∞Js,t is a finite
sum and well-defined.

First observe that

gr([x, i], [y, i− nz(φ)]) = gr(x, y) + 2i− 2nz(φ)

= µ(φ)− 2nz(φ) + 2i− 2i+ 2nz(φ)

= µ(φ)

= 0
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so the map Φ∞Js,t does not change the grading. Let us show that Φ∞Js,t is a chain map
so it must commute with the boundary maps. We need the following diagram is
commutative

CF∞(α, β, s)
Φ∞Js,t−−−→ CF∞(α, β, s)y∂∞Js(0) y∂∞Js(1)

CF∞(α, β, s)
Φ∞Js,t−−−→ CF∞(α, β, s)

or equivalently Φ∞Js,t ◦ ∂
∞
Js(0)

= ∂∞Js(1) ◦ Φ∞Js,t .

The boundary maps change the grading by 1 therefore we consider the Whitney
disk of Maslov index 1.

Φ∞Js,t ◦ ∂
∞
Js(0)

= Φ∞Js,t(
∑
y

∑
{φ∈π2(x,y)|µ(φ)=1}

#(M̂(φ))[y, i− nz(φ)])

=
∑
y,w

∑
{φ∈π2(x,y)|µ(φ)=1}

∑
{ψ∈π2(y,w)|µ(ψ)=0}

#(M̂Js(0)(φ))#(MJs,t(ψ))[y, i− nz(φ)− nz(ψ)]

∂∞Js(1) ◦ Φ∞Js,t = ∂∞Js(1)(
∑
y

∑
{ψ∈π2(x,y)|µ(ψ)=0}

#(MJs,t(ψ))[y, i− nz(ψ)])

=
∑
y,w

∑
{ψ∈π2(x,y)|µ(ψ)=0}

∑
{φ∈π2(y,w)|µ(φ)=1}

#(MJs,t(ψ))#(M̂Js(1)(φ))[y, i− nz(ψ)− nz(φ)]

Now let us understand the coefficient of the difference below, which is complicated to
write.

Φ∞Js,t ◦ ∂
∞
Js(0)
− ∂∞Js(1) ◦ Φ∞Js,t (6.6)

The ends of the moduli spaceMJs,t(ϕ) with µ(φ) = 1 contains only broken flow lines.
If there is a bubble in the limit which is in the interior of a disk or on the boundary,
it changes the Maslov index by at least 2. This situation can not happen as µ(φ) = 1.
Thus we can only have broken flow-lines, with µ(φ) = 1 we can have ϕ = φ ∗ ψ
with µ(φ) = 1 and µ(ψ) = 0 or vice versa. The coefficients in the above map (6.6)
corresponds to the ends which has the following relation

(
∏

φ∗ψ=ϕ

MJs,t(ψ)× M̂Js(0)(φ))
∏

(
∏

φ∗ψ=ϕ

M̂Js(1)(φ)×MJs,t(ψ)) = 0

With the orientation on the moduli spaces we count with sign and obtain 0 which
corresponds to the coefficients of the desired relation (6.6). Thus Φ∞Js,t is a chain map.

Next we need to show that the corresponding homology groups of the chain com-
plexes are isomorphic. We claim that the map Φ∞Js,t ◦Φ∞Js,1−t is chain homotopic to the
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identity map. the combination of Js,t with Js,1−t is a complex structure. Let Js,t,τ be
a family of maps connecting the juxtaposition of Js,t with Js,1−t at τ = 0 and Js,t(1)
at τ = 1. If we take Js,t(1) = Js(0) as the path corresponding to the identity, Js,t(1)
becomes independent of the parameter t. For each Js,t,τ there is a corresponding
moduli space, let for τ ∈ [0, 1]

MJs,t,τ (φ) =
⋃

τ∈[0,1]

MJs,t(τ)(φ)

be the moduli space. Note that MJs,t,τ (φ) is of dimension µ(φ) + 1. By using the
transversality theorem, Theorem(4.0.14) and for generic Js,t,τ , tha spaceMJs,t,τ (φ) is
a manifold of dimension µ(φ) + 1.

First we connect two paths Js(0) and Js(1) by one parameter family Js(t) in U .
Then we defined two parameter family Js,t(τ) for a fixed τ ∈ [0, 1] connecting the
paths Js(0) and the complex structures obtained by combining Js,t and Js,1−t. With
this new family we define the homotopy between the corresponding chain complexes.

H∞Js,t,τ [x, i] =
∑
y

∑
{φ∈π2(x,y)|µ(φ)=−1}

#(MJs,t,τ (φ)) · [y, i− nz(φ)]

Let us compare the grading difference between the generators:

gr([x, i], [y, i− nz(φ)]) = gr(x, y) + 2i− 2(i− nz(φ))

= µ(φ)− 2nz(φ) + 2i− 2i+ 2nz(φ)

= µ(φ)

= −1

Thus H∞Js,t,τ is a map changing the grading by −1. We want H∞Js,t,τ is a chain homo-
topy between Φ∞Js,t ◦ Φ∞Js,1−t and the identity map 1Js(0) , thus we need

Φ∞Js,t ◦ Φ∞Js,1−t + 1Js(0) + ∂∞Js(0) ◦H
∞
Js,t,τ +H∞Js,t,τ ◦ ∂

∞
Js(0)

= 0 (6.7)

Note that first two maps above does not change the grading whereas the boundary
map changes the grading by 1 and H∞Js,t,τ changes by −1, as a composition they do
not change the grading too. This is the reason why in the definition of H∞Js,t,τ we take
Whitney disks of Maslov index −1.

The coefficients of the relation in (6.7) corresponds to counting the ends of the
moduli space MJs,t,τ (φ) with µ(φ) = 1. The map H∞Js,t,τ is a family of maps indexed
by τ from the composition Φ∞Js,t ◦ Φ∞Js,1−t to 1Js(0) . Therefore for τ = 0 the ends
correspond to the coefficients of the composition Φ∞Js,t ◦ Φ∞Js,1−t :∑
y,w

∑
{ϕ∈π2(x,y)|µ(ϕ)=0}

∑
{ψ∈π2(y,w)|µ(ψ)=0}

#(MJs,1(ϕ))#(MJs,0(ψ))[w, i− nz(ϕ)− nz(ψ)]
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and for τ = 1 it corresponds to the map 1Js(0) . However for arbitrary τ ∈ (0, 1) the
ends correspond to the coefficient of the map

∂∞Js(0) ◦H
∞
Js,t,τ

+H∞Js,t,τ ◦ ∂
∞
Js(0)

which is the sum of the coefficients of the below maps.

∂∞Js(0) ◦H
∞
Js,t,τ =

∑
y,w

∑
{φ1∈π2(x,y)|µ(φ1)=−1}

∑
{φ2∈π2(y,w)|µ(φ2)=1}

#(MJs,t,τ (φ1))#(M̂Js,t,τ (φ2))[w, i− nz(φ1)− nz(φ2)]

H∞Js,t,τ ◦ ∂
∞
Js(0)

=

∑
y,w

∑
{φ2∈π2(x,y)|µ(φ2)=1}

∑
{φ1∈π2(y,w)|µ(φ1)=−1}

#(M̂Js,t,τ (φ2))#(MJs,t,τ (φ1))[w, i− nz(φ1)− nz(φ2)]

The ends of the moduli space MJs,t,τ (φ) with µ(φ) = 0 contains only broken flow-
lines. Because as an end there is no bubble attached to the interior or to the bound-
ary of a disk. A bubble increases the Maslov index by at least 2 but µ(φ) = 0
prevents the boundary degenerations. Therefore Φ∞Js,t ◦ Φ∞Js,1−t is chain homotopic
to the identity map 1Js(0) . The corresponding homology groups are isomorphic so
(HF∞(α, β, s), Js(0)) ' (HF∞(α, β, s), Js(1)).

The chain map Φ∞Js,t defined on the complex CF∞(α, β, s) induces a map on the
subcomplex CF−(α, β, s) and thus on the quotient complex CF+(α, β, s). For the

chain complex ĈF (α, β, s) we can consider the same map Φ∞Js,t with nz(φ) = 0 and it
will give the same result. This shows that the Heegaard Floer homology groups, for
a fixed complex structure j over Σ, do not depend on the choice of the path of nearly
symmetric almost complex structures.

Moreover the Heegaard Floer homology groups have Z[U ]-module structure. Thus
we need to chow that the map Φ∞Js,t commutes with the U action. (Similarly the
induced maps of Φ∞Js,t on the subcomplex and the quotient complex commute with
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U .) This follows easily from the definition

Φ∞Js,t ◦ U [x, i] = Φ∞Js,t [x, i− 1]

=
∑
y

∑
{φ∈π2(x,y)|µ(φ)=0}

#MJs,t(φ)[y, i− 1− nz(φ)]

= U(
∑
y

∑
{φ∈π2(x,y)|µ(φ)=0}

#MJs,t(φ)[y, i− nz(φ)])

= U ◦ Φ∞Js,t [x, i]

Thus Φ∞Js,t respects the Z[U ]-module structure of the Heegaard Floer homology groups.

So far we showed that the chain complex is invariant under small perturbation
of the path Js. If a complex structure j is close to other complex structure j′ over
Σ, we can approximate the path Js by the path Js

′ and the corresponding Heegaard
Floer homology groups are isomorphic. We choose special complex structures j over
Σ as mentioned in the auxiliary data in Section 5.1 and the set of allowed complex
structures are dimension 2 and it is connected, see [29]. Therefore for two complex
structures j1 and j2 over Σ there is a path j connecting j1 to j2. At each time t ∈ [0, 1]
J ts is the corresponding path. By invariance of the Heegaard Floer homology groups
(up to isomorphism) under small perturbations of the path, we obtain the correspond-
ing homology groups for j1 and j2 are isomorphic. This finishes the proof of the first
part of the statement. If Y is a rational homology three-sphere the Heegaard Floer
homology groups are independent of the path Js and te complex structure j over Σ.

Next, let us attempt to the proof of the case b1(Y ) > 0. In addition let us
assume that the pointed Heegaard diagram (Σ, α, β, z) representing Y is strongly s-
admissible, so that CF∞(α, β, s) is chain complex with the subcomplex CF−(α, β, s)
and the quotient complex CF+(α, β, s).

Fix a complex structure j over the Heegaard surface Σ and take two paths Js(0) and
Js(1) of nearly symmetric almost-complex structures contained in a contractible open
neighborhood U of Symg(j). Let us use the same map Φ∞Js,t : (CF∞(α, β, s), ∂∞Js(0))→
(CF∞(α, β, s), ∂∞Js(1))

Φ∞Js,t [x, i] =
∑
y

∑
{φ∈π2(x,y)|µ(φ)=0}

#(MJs,t(φ)) · [y, i− nz(φ)]

Note that the Heegaard diagram is strongly s-admissible and in the definition of the
map Φ∞Js,t we fix the Maslov index and by the Theorem (5.2.4) there exist finitely
many homotopy classes φ ∈ π2(x, y), thus Φ∞Js,t is a finite sum and it is well-defined.
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This map induces isomorphism on the Heegaard Floer homology groups as in the
same way in the first case b1(Y ) = 0. Independence of the complex structure j over
Σ of the homology groups is the same as in the first case too. We just need to show
that the map Φ∞Js,t respects the module structure when b1(Y ) > 0, Heegaard Floer
homology groups are modules over Z[U ] ⊗Z Λ∗H1(Y ;Z)/Tors. Thus we claim that
for ξ ∈ H1(Y ;Z)/Tors,

Φ∞Js,t ◦ Aξ = Aξ ◦ Φ∞Js,t

Let ξ ∈ H1(Ω(Tα,Tβ);Z) be an element such that it does not meet with any constant
path. An element of this space is a path connecting Tα and Tβ, or equivalently
corresponds to the intersection points of Tα and Tβ. Let f : Ω(Tα,Tβ) → S1 be a
map representing ξ and for a generic point p ∈ S1, let V = f−1(p) be codimension 1
subspace. Let us define a map h : CF∞(α, β, s)→ CF∞(α, β, s) as

h[x, i] =
∑
y

∑
{φ∈π2(x,y)|µ(φ)=0}

#{(r, u) ∈MJs,t | u([0, 1]× {r}) ∈ V } · [y, i− nz(φ)]

where r ∈ R and h is map which does not change the grading between the generators.
The space defined as

M = {(r, u) ∈ R×MJs,t(ψ) | u([0, 1]× {r}) ∈ V }

is a moduli space of dimension 2. The ends of this moduli space includes the broken
flow-lines and the boundary degenerations occur as r →∞ or r → −∞. A sequence
of disks ui in M where ψ ∈ π2(x,w) can have limits corresponding to the following
figures. The second figure corresponds to the composition ∂∞Js(1) ◦ h and the third one

corresponds to the composition h ◦ ∂∞Js(0) .

Figure 6.1: Illustration of the limit
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If r →∞ or r → −∞ this corresponds to a bubbling where the bubble is attached
to the disk at x or w. In that case the ends of the moduli space M correspond to
the commutator of Aξ and Φ∞Js,t , [Aξ,Φ∞Js,t ] = A−1

ξ ◦ Φ∞Js,t
−1 ◦ Aξ ◦ Φ∞Js,t , see [29] for

more detail. The ends where the bubble occurs correspond to the commutator of h
and the boundary maps ∂∞. We obtain then

Aξ ◦ Φ∞Js,t − Φ∞Js,t ◦ Aξ = ∂∞Js(1) ◦ h− h ◦ ∂
∞
Js(0)

The explanation of the equality is more like a sketch and the reader is referred to [29].
In the homology level the right hand side gives 0 implies that Φ∞Js,t commutes with
the action Aξ, so it respects to the module structure of the Heegaard Floer homology
groups when b1(Y ) > 0.

Hence in the end we proved that the Heegaard Floer homology groups are inde-
pendent of the path Js and the complex structure j over Σ.

6.4 Admissibility

For a three-manifold Y with b1(Y ) > 0 we defined the Heegaard Floer homology
groups by using admissible Heegaard diagrams for a given Spinc structure s. In
this section, we prove the existence of such admissible Heegaard diagrams. This
construction is a result of a simple trick which is called special Heegaard moves.

Definition 36. Let Σ be a genus-g surface and γ be a simple closed and oriented
curve on Σ. Winding along γ is diffeomorphism of Σ obtained by integrating a vector
field X supported in a tubular neighbourhood of γ such that d(θ) > 0 for the chosen
coordinate system (t, θ) ∈ (−ε, ε)× S1 as a tubular neighbourhood of γ = {0} × S1.

We can visualize this move as follows. Let (Σ, α, β) be a Heegaard diagram and
take a curve γ on Σ such that γ meets α1 transversally and γ is disjoint from other
α curves. Let φ be a diffeomorphism of Σ such that φ winds along γ. If the image
of α1 meets with α1 at 2k points in a tubular neighbourhood of γ then φ winds α1

along γ k-times. Image of α1under φ is isotopic to α1. More intuitively this is pushing
α1 in the direction of γ from the transverse intersection point of γ and α1 such that
the image of α1 winds around γ k-times resulting 2k intersection points. φ(α1) is
homologically same as α1 and via this winding move we increase the intersection
points by 2k, where k many intersection points occur on the left of the intersection
point and k many intersection points occur on the right of the intersection point as
illustrated below.

Definition 37. Let (Σ, α, β) be a pointed Heegaard diagram representing a three-
manifold Y . Take s ∈ Spinc(Y ) then the Heegaard diagram is called s-realized if
there is an intersection point x ∈ Tα ∩ Tβ such that sz(x) = s

Theorem 6.4.1. Let Y be a closed, oriented three-manifold with a fixed Spinc struc-
ture s, then there is an s-realized pointed Heegaard diagram representing Y .
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Figure 6.2: Winding α along γ

Proof. Let (Σ, α, β) be a Heegaard diagram for Y , choose a collection of closed, ori-
ented and pairwise disjoint curves γ on Σ such that

#(αi ∩ γj) =

{
−1 if i = j

0 otherwise

We can assume that Tβ ∩ Tγ is nonempty, if not by isotopy translates of β curves
we can arrange that Tβ ∩ Tγ is nonempty. Then choose a basepoint on Σ such that
z ∈ Σ − α − β − γ and it is also disjoint from the tubular neighbourhood of γ, the
winding region. As Tβ ∩ Tγ 6= ∅ take x ∈ Tβ ∩ Tγ such that x = {x1, .., xg} with
xi = βi ∩ γi. When αi winds along γi a pair of intersection points are created, one of
them is on the right of αi the other one is on the left. We name them as xi

+(1) and
xi
−(1). If we wind the new αi along γi then another pair of intersection points are

created xi
+(2) and xi

−(2).

Figure 6.3: Newly created intersection points after winding

Note that {x+
1 (i1), .., x+

g (ig)} ∈ Tα′ ∩ Tβ call it as x(i1, .., ig). If we connect xi to
xi(k + 1) by an arc in αi and by an arc in βi relative to endpoints we obtain a curve
homologically same as γi on the Heegaard surface Σ.

Take two intersection points x(i1, .., ig) and x(ji, .., jg) and consider the difference
of the corresponding Spinc structures. The theorem (3.4.9) and the image of the
curve joining each components of the intersection points in Symg(Σ) is defined by ε
imply

sz(x(i1, .., ig))− sz(x(j1, .., jg)) = ((i1 − j1)PD[γ1], .., (ig − jg)PD[γg])
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Note that the number ik’s correspond to the number of winding around γi, to compare
the difference we take the winding along each γi which corresponds to the difference
(ik − j − k) for each k.

For the intersection point x(1, .., 1), which is farthest from the intersection point,
consider the corresponding Spinc structure, it is independent of the number of times
αi winds along γi. Because winding αi along γi produces an isotopic copy of αi, and
under this isotopy nonvanishing vector field changes but the homology class remains
fixed under this isotopy. Call the Spinc structure corresponding to the intersection
number x(1, .., 1) as s0. Then for any Spinc structure corresponding to an intersec-
tion number differ from s0 by a nonnegative multiple of [γ1], .., [γg]. The coefficient is
nonnegative since the intersection point x(i1, .., ig) gives coefficients (1− i1), .., (1− ig)
depending on the place of x(i1, .., ig) to the reference intersection point, so 1− ik ≤ 0
for each k.

If we choose {γ−1 , .., γ−g } parallel copies of γi with opposite orientation and wind
along those γ−i ’s also we can obtain Spinc structures which differ from s0 by some
multiple of [γ1], .., [γg]. As the group H2(Y ;Z) is generated by Poincare duals of [γ],
it is possible to obtain all Spinc structures in this way. Thus we can have intersection
points for each Spinc structures.

With this winding argument we can reach the strong admissibility of the Heegaard
diagram.

Definition 38. Let s ∈ Spinc(Y ) be fixed. An s-renormalized periodic domain is a
two chain Q =

∑
aiDi on Σ such that the boundary of Q is sum of α and β curves

with intersection number nz(Q) = − 〈c1(s),H(Q)〉
2

Remark 6.4.2. The difference between s-renormalized periodic domains and periodic
domains is the intersection number. Thus there is a 1 − 1 correspondence between
them via taking a periodic domain P to P − 〈c1(s),H(Q)〉

2
[Σ] which is an s-renormalized

periodic domain.

Theorem 6.4.3. Given a closed, oriented three-manifold Y and s ∈ Spinc(Y ), there
exists a strongly s-admissible Heegaard diagram representing Y .

Proof. For this Spinc structure s there is a Heegaard diagram (Σ, α, β, s) such that
for some x ∈ Tα ∩ Tβ with sz(x) = s. We claim that each s-renormalized periodic
domain obtained from this pointed Heegaard diagram via using winding argument
has both positive and negative coefficients. A periodic domain P gives rise to an
s-renormalized periodic domain Q =

∑
(ai − 〈c1(s),H(Q)〉

2
)Di. Thus every nontrivial

periodic domain P if 〈c1(s), H(Q)〉 ≥ 2n, P has a coefficient > n follows. Then by
definition, the Heegaard diagram is strongly s-admissible.

If we choose to use rational coefficients for the homology and asQ is a field then the
first betti number for Y , b1(Y ) represents the vector space dimension of H1(Y ;Q).
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Let b = b1(Y ) and there is a 1 − 1 correspondence between periodic domains and
H1(Y ) ' Hom(H1(Y ),Z) ' H1(Y ) by the Universal Coefficient theorem. Also by
the above remark there is a 1 − 1 correspondence between periodic domains and s-
renormalized periodic domains. Thus we can choose {Q1, .., Qb} as a basis for the
vector space of s-renormalized periodic domains. An s-renormalized periodic domain
Q can be determined by α coefficients of its boundary uniquely, since by definition
Q =

∑
aiDi if we fix α parts of the boundary and it is a two-chain it follows that the

β coefficients of the boundary can be determined to give Q. For each basis element
Qi, the map sending each basis element to its α coefficients of the boundary induce
an injective map between vector spaces. For each basis element (if necessary reorder)

the boundary can be expressed as ∂Qi = αi +
g∑

j=b+1

ai,jαi + bi,jβj with rational coeffi-

cients. Choose closed, oriented γ curves which are pairwise disjoint on Σ and choose
basepoints on γ curves as wi ∈ γi for 1 ≤ i ≤ b such that wi is disjoint from each α
and β curves. Then let ci = maxj=1,..b |nwi(Qj)| and choose sufficiently large integer
N such that N > b(maxi=1,..,b ci)

We obtain new periodic domains {Q′1, .., Q
′

b} if we wind α curves {α1, .., αb} N
times around {γ1, .., γb} and N times in reverse direction along {γ−1 , .., γ−b }, the par-
allel copies of {γ1, .., γb}. The basepoints wi are on γi not on the parallel copies, thus
winding αi along γi N times increases the intersection number of Qi with the subva-
riety Vwi by N . The boundary of Qi contains αi and after winding we increase the
intersection number giving nwi(Q

′
i) = nwi(Qi) +N . By the definition of N , N > b · ci.

Now the sum

nwi(Qi)+b ·ci = nwi(Qi)+b ·maxj=1,..,b |nwi(Qj)| ≥ (b−1) ·maxj=1,.,i−1,i+1,.,b |nwi(Qj)|

Note that nwi(Qj) and nwi(Q
′
j) differ if i = j otherwise the basepoint wi ∈ γi and

boundary of Qj does not contain αi for i 6= j. Thus maxj=1,.,i−1,i+1,.,b |nwi(Qj)| =
maxj=1,.,i−1,i+1,.,b |nwi(Q

′
j)| If we combine the arguments above we have

nwi(Q
′

j) = nwi(Qi) +N

= nwi(Qi) + b · ci
= (b− 1) · max

j=1,.,i−1,i+1,.,b
|nwi(Qj)|

= (b− 1) · max
j=1,.,i−1,i+1,.,b

|nwi(Q
′

j)|

If we choose the basepoints w−i on the parallel copies γ−i of γ curves each argument
follows similarly but changes sign due to the orientation. As we wind along γ−i in
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reverse direction nwi(Q
′
i) = nwi(Qi)−N then we have:

nwi(Q
′

j) = nwi(Qi)−N
= nwi(Qi)− b · ci
= −(b− 1) · max

j=1,.,i−1,i+1,.,b
|nwi(Qj)|

= −(b− 1) · max
j=1,.,i−1,i+1,.,b

|nwi(Q
′

j)|

For each s-renormalized periodic domain Q express it using the basis elements {Qi}bi=1

then using the winding argument we obtain linear combination of {Q′i}bi=1 such that
we can find basepoints w with nw is positive and a basepoint w′ with nw′ is negative.
Thus each s-renormalized periodic domain has both positive and negative coefficients
and the new Heegaard diagram is strongly s-admissible.

If two strongly s- admissible Heegaard diagrams are isotopic via an isotopy such
that all the intermediate Heegaard diagrams are also strongly s-admissible are called
strongly s-isotopic. If two strongly s-admissible Heegaard diagrams are isotopic by an
isotopy which does not cross the basepoint z then they are strongly s-isotopic. The
similar argument for weakly s-admissible Heegaard diagrams is defined as follows. If
two weakly admissible Heegaard diagrams are isotopic such that the isotopy does not
cross the basepoint then they are called weakly s-isotopic. The important result is
the following.

Proposition 6.4.4. A weakly s-admissible Heegaard diagram is weakly s-isotopic to
a strongly s-admissible Heegaard diagram.

The detailed description and proofs of the statements about the admissibility
condition can be found in [29].

So far we only studied the dependence of Floer homology groups on the choice
of coherent orientation system and the choice of the complex structure over the Hee-
gaard surface and the path of nearly symmetric almost-complex structure over the
symmetric product space. Moreover Floer homology groups are also independent of
the chosen Heegaard diagrams. To prove the latter we need to study the dependence
of the Floer homology groups to the Heegaard moves, thus we can understand the dif-
ference between the homology groups corresponding to given two different Heegaard
diagrams representing the same three-manifold. This main result is in [29].
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Chapter 7

KNOT FLOER HOMOLOGY

So far we gave the definition of Heegaard Floer homology with some examples
and properties. In this chapter we study knot Floer homology whose definition is
very similar to Heegaard Floer homology. It is defined in general for oriented links L
in a closed, oriented three-manifold Y , but we continue on the subject with oriented
nullhomologous knots K in a closed, oriented three-manifold Y . First we define knot
Floer complex for oriented knots K in S3, then we study knot filtration. We mention
some important properties of knot Floer homology. Moreover, we introduce another
knot invariant Khovanov homology. First we briefly describe the the chain complex
and prove the invariance of the homology of the chain complex, which we is defined
as Khovanov homology. Then we present some basic similarities of these two knot
invariants. In this part we basically follow [32], [33], [8], and [3].

7.1 Preliminaries

Proposition 7.1.1. If we have an oriented, n-component link in Y then it represents
a knot in Y#n−1(S1 × S2)

Proof. We focus on knots in closed, oriented three-manifolds because by a simple
trick it is possible to pass from links to knots. We connect n-component link L by
1-handles on Y as follows. First take pairs of points {pi, qi} on L for i ≤ i ≤ n − 1
which are pairwise grouped. If the pair (pi, qi) is identified for each i then L becomes
connected. Let these points (pi, qi) represent the attaching spheres of a 1-handle to
be attached to Y . Thus if we attach 1-handle to Y for each pair of points then it
connects the components of the link which contains pi and the one contains qi by
a band such that the orientation of the band is compatible with the orientation of
the components of L. After attaching the 1-handles to Y this corresponds to taking
connected sum as Y#g−1(S1 × S2).

Therefore, this proposition justifies why it suffices to study with knots.

Let (Σ, α, β) be a Heegaard diagram for a closed, oriented three-manifold Y with
two base points z, w ∈ Σ − α − β. Let us connect z and w via an arc γ1 in Σ − α
and γ2 in Σ − β. If we push these two arcs into handlebodies U0 and U1, staying
disjoint from α and β curves, we have a closed embedded circle γ1 − γ2, a knot K in
Y . This tells that choosing a second base point automatically generates a knot in Y
and (Σ, α, β, w, z) is called a doubly pointed Heegaard diagram for the manifold Y
compatible with the knot K.
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We can have the above analogy using Morse theory. First choose a Morse-Smale
pair (f, g) for Y where f is a self-indexing Morse function and g is a Riemannian
metric on Y . Let (Σg, α, β) be a Heegaard diagram for Y with two base points z and
w. We can choose Morse function f on Y so that it has only one index-3 and index-0
critical points, then take two trajectories η1 and η2 connecting index-3 and index-0
critical points passing through the base points w and z respectively. Then we obtain
a closed, embedded circle η1 − η2 in Y which is a knot. Note that we can choose η1

and η2 disjoint from α and β curves. for each point we have unique flow line passing
through it and two distinct flow lines do no meet, for detailed description see [22]

Note that these two descriptions represent the same knot in three manifold. In
the second description push two flow lines η1 and η2 into the handlebodies remaining
disjoint from α and β curves gives us the knot in the first description.

Proposition 7.1.2. Every knot K in Y can be represented by a doubly pointed Hee-
gaard diagram.

Proof. Let us consider a height function from the knot K into R which is a Morse
function. We can choose it to have two critical points with image of maximum is 3
and minimum is 0. Then if we add 1 and 2 handles to tubular neighborhood of K
which is a solid torus, we obtain Heegaard decomposition for Y . Equivalently, we can
extend height function on K to a self-indexing Morse function on Y . K is disjoint
from α and β curves and it intersects with the Heegaard surface. Call these points as
w and z which are disjoint also from α and β curves so they really are base points.

For an oriented, embedded, null-homologous knot K in a closed, oriented three-
manifold Y , we associate to the pair (Y,K) a Heegaard diagram (Σg, α, β0, µ) where Σg

is Heegaard surface, α is set of attaching circles {α1, .., αg}, β0 is set of g−1 attaching
circles {β2, .., βg}, and µ is closed, embedded circle on Σg disjoint from β0 curves which
is meridian of knot K on the Heegaard surface. Note that (Σ, α, β0) represents the
knot complement Y − nd(K). Because if we attach 1-handles on the 0-handle along
α-curves then 2-handles along β0-curves, in order to obtain three manifold Y we need
to attach a 2-handle along µ and a 3-handle to cap off. We can think of a 3-handle
attached to a 2-handle as a solid torus, as they correspond to 0-handle and 1-handle
respectively and this is neighborhood of K. Thus for β = β0∪{µ}, we have a Heegaard
diagram (Σg, α, β) for Y .

Definition 39. A marked Heegaard diagram for a knot (Y,K) is (Σ, α, β0, µ,m)
where m ∈ µ ∩ (Σ− α1 − ..− αg) is on µ.

The difference between marked Heegaard diagram and pointed Heegaard diagram
is for the pointed Heegaard diagram, the base point is chosen on Σ disjoint from all
α and β curves, whereas for marked Heegaard diagram we insist m to be on µ and
disjoint from α and β0 curves.
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Remark 7.1.3. We can obtain doubly pointed Heegaard diagram for Y from a
marked Heegaard diagram for (Y,K). Choose an arc γ intersecting transversally
with µ at the marked point m, then call initial and terminal points as z and w re-
spectively. K is an oriented knot and longitude λ of K has the same orientation with
K. Choose an orientation of γ to agree with orientation of λ so that γ is an arc from
z to w.

There is no much difference studying with a Heegaard diagram for Y or a Hee-
gaard diagram for Y compatible with a null-homologous knot in it. In the latter, we
have a second base point and it specifies a knot in the three-manifold. We will use
doubly pointed Heegaard diagram for Y having in mind it comes from a marked Hee-
gaard diagram for (Y,K). In order to define Heegaard Floer homology for (Y,K) we
have the same ingredients as before. Let (Σ, α, β, w, z) be doubly pointed Heegaard
diagram for Y then Symg(Σ) is symmetric product space, Tα = α1 × .. × αg and
Tβ = β1 × ..× βg are totally real tori in Symg(Σ). For x, y ∈ Tα ∩ Tβ, π2(x, y) is the
set of homotopy classes of disks connecting x and y. For a base point υ ∈ Σ− α− β
the local multiplication number is nυ(φ) = #φ−1({υ}× Symg(Σ)). A complex struc-
ture j on Σ induces a complex structure Symg(j) on Symg(Σ) such that holomorphic
representatives of Whitney disks φ in the moduli space M(φ) has nυ(φ) ≥ 0 by the
Theorem (4.0.10).

Defining Heegaard Floer homology for a fixed s ∈ Spinc(Y ) we considered in-
tersection points x ∈ Tα ∩ Tβ such that sw(x) = s and we count the number of
pseudo-holomorphic disks intersecting with the basepoint w. However, in knot Floer
homology with a second base point we have filtration by the following arguments.

Let (Σ, α, β, w) be a Heegaard diagram for Y . We defined the map sw : Tα∩Tβ →
Spinc(Y ) in Section 3.4 where we obtain Spinc structures from intersection points.
Now we will try to understand the similar map for (Y,K) using surgery on (Y,K).

Definition 40. Consider ε-neighbourhood of null-homologous knot K in Y with
meridian µ. Take this neighbourhood of K which is a solid torus and repaste it by
identifying µ with the curve pµ+ qλ with (p, q) = 1 and λ is longitude of K.

Now consider zero surgery Y0(K). We identify meridian µ of the repasted torus with
λ and it will bound a disk in Y now.

Let (Σ, α, β0,m) be Heegaard diagram for (Y,K). Note that meridian µ of K is
on the Heegaard surface and we can view longitude λ of K lying on the Heegaard
surface as follows. Consider handle decomposition of Y . First we add 1-handles along
α-curves on the 0-handle, then we add 2-handles along β0-curves. The resulting man-
ifold represents the knot complement with boundary a torus. There is a longitude λ
of the knot on this boundary and it is disjoint from β0-curves. λ can lie on 2-handles
which we attach on β0-curves, so we can move λ down to the Heegaard surface re-
maining disjoint from β0-curves. Thus longitude is on the Heegaard surface, disjoint
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from β0-curves intersecting transversally at a single point with µ.

Let us study the map sm : Tα∩Tβ → Spinc(Y0(K)) where the set Spinc(Y,K) :=
Spinc(Y0(K)) denotes the relative Spinc structures for (Y,K).

Proposition 7.1.4. Spinc(Y,K) ' Spinc(Y )× Z

Proof. Let ϕ : Spinc(Y,K)→ Spinc(Y )×Z be a map. For x ∈ Tα ∩Tβ, sm(x) = t ∈
Spinc(Y,K), the restriction t|Y−K is same as restricting sw(x) to Y −K. Note that
nonvanishing vector field on Y −K can be extending uniquely to solid torus. Thus
t|Y−K can be extended uniquely to Y . Let ϕ maps t ∈ Spinc(Y,K) to the unique
extension of t|Y−K to Y , so ϕ is clearly 1 − 1. A surface F whose boundary is a

knot is called a Seifert surface. After a zero surgery, let F̂ be a surface in Y0(K)

corresponding to F capped off by a disk, and let [F̂ ] denote 2nd homology class in Y .

Then we define ϕ as sending t to
1

2
〈c1(t), [F̂ ]〉 on the 2nd factor. The question is if

〈c1(t), [F̂ ]〉 is an even number.

Let s′w : Tα ∩ Tβ → Spinc(Y,K) be a usual map associating Spinc structures to

intersection points. As [F̂ ] ∈ H2(Y0(K),Z) let P be a periodic domain representing

[F̂ ] with a basepoint w. Then by [28] we have 〈c1(s′w(y)), [F̂ ]〉 = χ(P ) + 2ny(P )
where ny is the generalization of local multiplicity ny(P ) in [28] such that as y is
in the interior of Di, we have ny(P ) = 1. By Lemma 7.3 in [28], χ(P ) is even in-
teger finishing the discussion. Thus we have the desired isomorphism in the statement.

Let (Σ, α, β0, µ,m) be a marked Heegaard diagram of (Y,K) and let us define the
map sm(x) : Tα ∩ Tβ → Spinc(Y0(K)). After a zero surgery on Y , meridian µ is
sent to longitude λ via µ → 0 · µ + λ, so we obtain Y0(K). Let us replace meridian
with a longitude λ such that λ winds along µ once without crossing the marked point.
With this isotopy, we increase the number of intersection points. A pair of intersection
points (x′, x′′) are created closest to x. Let γ = β0∪{λ} then (Σ, α, γ, w) is a Heegaard
diagram for Y0(K) after the zero surgery. Let s′w : Tα ∩ Tγ → Spinc(Y0(K)) be the
usual map from intersection points to Spinc structures and by the Theorem 3.4.9, we
have for any x′, x′′ ∈ Tα ∩Tγ, the difference is s′w(x′)− s′w(x′′) = PD[ε(x′, x′′)]. Let a
be an arc connecting x′ and x′′ on α curves and b be an arc connecting x′ and x′′ on
β curves, then the curve a − b already bounds a disk on Σg. Thus a − b being null
homologous in H1(Y0(K) : Z) implies ε(x′, x′′) = 0 and s′w(x′) = s′w(x′′). therefore
we define the map sm : Tα ∩ Tβ → Spinc(Y0(K)) as sending an intersection point to
sm(x) = s′w(x′) = s′w(x′′) giving a Spinc structure s′w(x′) over Y0(K).

We could have taken the point z rather than w. Note that in Figure (7.1) base-
points w and z are in the same component of Σ−α− γ. To obtain a Spinc structure
from intersection points, we use the basepoint to determine a trajectory connecting
index-3 and index-0 critical points. Instead of using such a trajectory passing from w
we can use the trajectory passing through z. The corresponding nonvanishing vector
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Figure 7.1: Marked point and creation of new intersection point by winding

fields are the same except finitely many 3-balls thus s′w(x′) = s′z(x
′) and the map

sm : Tα ∩ Tγ → Spinc(Y,K) is well-defined.

Let us understand how the map sw : Tα ∩ Tγ → Spinc(Y,K) depends on the
variable.

Theorem 7.1.5. Let K be an oriented knot in closed, oriented 3-manifold Y with a
marked Heegaard diagram (Σ, α, β0, µ,m). Let β = β0 ∪ {µ}, then given any x, y ∈
Tα ∩ Tβ and any φ ∈ π2(x, y) we have

sm(x)− sm(y) = [nz(φ)− nw(φ)] · PD[µ]

where [µ] is homology class of µ in H1(Y0(K) : Z) such that #(µ ∩ F ) = 1, where F
is a Seifert surface whose boundary is K.

Before the proof of the statement, we give preliminaries for Heegaard triple dia-
grams and holomorphic triangles. We basically follow Section 8 of [29].

Definition 41. A Heegaard triple diagram of genus g is an oriented two manifold
and 3 g-tuples α, β and γ complete sets of attaching circles for handlebodies Uα, Uβ
and Uγ respectively

Let

Yα,β = Uα ∪ Uβ
Yβ,γ = Uβ ∪ Uγ
Yα,γ = Uα ∪ Uγ

be the three-manifolds obtained gluing those handlebodies. A Heegaard triple dia-
gram naturally specifies a cobordism Xα,β,γ between these 3 manifolds which can be
described as a pair of pants connecting Yα,β, Yβ,γ, and Yα,γ with the induced orienta-
tion on boundary

∂Xα,β,γ = −Yα,β − Yβ,γ + Yα,γ
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Let ∆ be a 2 simplex with vertices vα, vβ and vγ labeled clockwise. Let eγ be an edge
between vα and vβ, eα be an edge between vβ and vγ, and eβ be an edge between vα
and vγ.

Definition 42. Let x ∈ Tα ∩ Tβ, y ∈ Tβ ∩ Tγ, and w ∈ Tα ∩ Tγ then a continuous
map u : ∆→ Symg(Σ) with the following conditions

u(vγ) = x u(eα) ⊆ Tα
u(vα) = y u(eβ) ⊆ Tβ
u(vβ) = w u(eγ) ⊆ Tγ

is called a Whitney triangle connecting x, y and w.

We say that two Whitney triangles are homotopic if the maps are homotopic
through maps which are all Whitney triangles.

Proof of the Theorem 7.1.5. Let (Σ, α, β, γ, w) be a Heegaard triple diagram of the
cobordism Xα,β,γ from Yα,β to Yα,γ which are Y and Y0(K) respectively. Note that we
begin with a marked Heegaard diagram for (Y,K) and from this we obtain doubly
pointed Heegaad diagram with two basepoints z and w, which are in the same com-
ponents of Σ− α− γ.

The manifold obtained from gluing Uβ∪Uγ represents the 3 manifold S3#g−1(S1×
S2) with β = β0 ∪ {µ}. Note that β = β0 ∪ {µ} and γ = β0 ∪ {λ} differ only by
one attaching circle. Thus the Heegaard diagram corresponds to the 3 manifold
S3#g−1(S1 × S2) with one intersection point, call it θ.

Figure 7.2: A Heegaard diagram for #gS1 × S2
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Let ψ ∈ π2(x, θ, y) be a Whitney triangle, where θ ∈ Tα ∩ Tγ and s′w(y) : Tα ∩ Tγ →
Spinc(Y0(K)) is the natural map. Thus we have:

s′w(y) = sm(x) + [nw(ψ)− nz(ψ)]PD[µ] (7.1)

Take x ∈ Tα ∩ Tβ and k ∈ Z, and let

S(x, k) = {y ∈ Tα ∩ Tγ|ψ ∈ π2(x, θ, y) Whitney triangle, nw(ψ)− nz(ψ) = k}

The set S(x, k) contains only one Spinc equivalence class of intersection points of
Tα ∩ Tβ for Y0(K). If y1, y2 ∈ S(x, k) thus

s′w(y1)− s′w(y2) = sm(x) + [nw(ψ1)− nz(ψ1)]PD[µ]

− sm(x)− [nw(ψ2)− nz(ψ2)]PD[µ]

= 0

Thus they correspond to the same (up to homology) Spinc structure over Y0(K).
Moreover, if k = 0 then s′w(y) = sm(x). As nw(ψ) = nz(ψ), y corresponds to x′

or x′′ and sm(x) = s′w(y) follows. To show the Equation(7.1), it suffices to show for
holomorphic triangles staying inside the winding region, i.e. the region where λ winds
along µ sufficiently many times. If nw(ψk) − nz(ψk) = k ≤ 0, then wind λ along µ
sufficiently many times on one side of µ such that nw(ψk) = 0 and nz(ψk) = k. Then
ψk ∈ π2(x, θ, x′k), where x′k is newly created intersection points on Tα ∩ Tβ closest to
x. By [28] the difference is:

〈c1(s′w(xi), [F̂ ])〉 − 〈c1(s′w(xj), [F̂ ])〉 = χ(P ) + 2nxi(P )− χ(P )− 2nxj(P )

= 2(nxi(P )− nxj(P )) = 2(i− j)

This verifies the equation (7.1).

In order to obtain the desired equation in the statement, let ψ ∈ π2(y, θ, y′) be a
Whitney triangle where y′ ∈ Tα ∩ Tβ with nw(ψ) = nz(ψ) = 0, and φ ∈ π2(x, y) is
any Whitney disk. Then by juxtaposing the triangle ψ by φ, we obtain a Whitney
triangle ψ′ = φ ∗ ψ ∈ π2(x, θ, y′). Then,

nw(ψ′)− nz(ψ′) = nw(φ ∗ ψ)− nz(φ ∗ ψ)

= nw(φ) + nw(ψ)− nz(φ)− nz(ψ)

= nw(φ)− nz(φ)

and
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s′w(y′) = sm(x) + sm(x) + [nw(ψ)− nz(ψ)]PD[µ]

= sm(x) + [nw(φ)− nz(φ)]PD[µ]

By definition s′w(y′) = sm(y), thus sm(y)−sm(x) = [nw(φ)−nz(φ)]PD[µ] follows.

7.2 Filtration and Bigrading

In this section we give the definition of a filtered complex and bigrading on C(K), for
an oriented nullhomologous knot K in three-manifold Y .

Definition 43. Let S be a partially ordered set, i.e., reflexive, antisymmetric, and
transitive, then an S-filtered group C is a free Abelian group generated by a set of
generators G admitting a map F : G → S.

Elements of S-filtered group is of the form as a formal sum
∑
σ∈G

aσ · σ with integer

coefficients.

Let (C,F ,G) and (C ′,F ′ ,G ′) be two S-filtered groups with two elements a =∑
σ∈G

aσ · σ ∈ C and b =
∑
σ∈G′

bσ · σ ∈ C ′, we can compare these two elements as follows.

We say that a ≤ b if

max
{σ∈G|aσ 6=0}

F(σ) ≤ max
{σ∈G′ |bσ 6=0}

F ′(σ)

A morphism between S-filtered groups φ : (C,F ,G) → (C ′,F ′ ,G ′) is a group
homomorphism and for every a ∈ C we have φ(a) ≤ a.

Definition 44. An S-filtered chain complex is an S-filtered group and the boundary
map is an S-filtered morphism.

Definition 45. A chain map between S-filtered complexes is an S-filtered morphism.

Definition 46. If T ⊂ S is subset of a partially ordered set such that for b ∈ T , for
every a ∈ S with a ≤ b is also an element of T. Then if (C∗, ∂,F) is an S-filtered
chain complex, the subset T of S gives subcomplex of(C∗, ∂,F).

With given definitions consider the following. Let Y be a closed, oriented three-
manifold with a pointed Heegaard diagram (Σ, α, β, z) representing it. For a fixed
s ∈ Spinc(Y ), let CF∞(α, β, s) be a free Abelian group generated by elements of the
form [x, i] with x ∈ Tα ∩ Tβ such that sz(x) = s and i ∈ Z, so [x, i] ∈ (Tα ∩ Tβ)× Z.
Then we have the following:

Proposition 7.2.1. The map F [x, i] = i induce a filtration on the chain complex
CF∞(α, β, s) , therefore on the subcomplex CF−(α, β, s), and on the quotient complex
CF+(α, β, s).
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Proof. First CF∞(α, β, s) is a Z-filtered group. Note that Z is partially ordered
set and by definition CF∞(α, β, s) is a free Abelian group generated by elements in
(Tα ∩ Tβ) × Z and F [x, i] = i is a well-defined map on the set of generators. Every
element of CF∞(α, β, s) is of the form

∑
[x,i]

a[x,i][x, i] with a[x,i] ∈ Z. Thus CF∞(α, β, s)

is a Z-filtered group.

Next (CF∞(α, β, s), ∂∞) is a Z-filtered chain complex. We need to show that ∂∞

is a Z-filtered morphism, so for every a ∈ CF∞(α, β, s), ∂∞(a) ≤ a. It is sufficient to
show the latter on the generators. For any [x, i],

∂∞[x, i] =
∑
y

∑
{φ∈π2(x,y)|µ(φ)=1}

#(M̂(φ)) · [y, i− nz(φ)]

max
{y|#(M̂(φ))6=0}

F [y, i− nz(φ)] = max
{y|#(M̂(φ)) 6=0}

(i− nz(φ))

< i

= F [x, i]

which follows by the nonnegativity of the intersection number of pseudo-holomorphic
disks. Thus ∂∞[x, i] ≤ [x, i] and ∂∞ is a Z-filtered morphism. Therefore, the map
F : (Tα ∩Tβ)×Z→ Z induces a filtration on the chain complex (CF∞(α, β, s), ∂∞).

Let T ⊂ Z be the set of negative integers. Thus for any b ∈ T , for any a ∈ Z with
a ≤ b is also in T . The by definition T gives rise to a filtration on the subcomplex of
(CF−(α, β, s), ∂−) and on the quotient complex CF+(α, β, s).

Let K be a knot in 3-sphere and let (Σ, α, β, z, w) be a doubly pointed Heegaard
diagram for (S3, K) and let C(K) be free Abelian group generated by x ∈ Tα ∩ Tβ.
As there is only one Spinc structure s over S3, thus every intersection point gives rise
to the same equivalence class Spinc structure. On C(K) let us define two gradings
corresponding to the function F,G : Tα ∩ Tβ → Z.

Definition 47. Let x, y ∈ Tα ∩ Tβ be any two intersection points, then define

f(x, y) = nz(φ)− nw(φ)

for any φ ∈ π2(x, y).

Proposition 7.2.2. The map f defined above is well-defined. i.e., f is independent
of representative of φ and the chosen φ ∈ π2(x, y).

Proof. We discussed that the algebraic intersection number is independent of the
representative of the homotopy class φ. Let ψ ∈ π2(x, y) be another homotopy class.
As π2(x, y) ' Z ⊕ H1(S3Z) ' Z. Then ψ = φ ∗ k[S] for some k ∈ Z where S is
positive generator of π

′
2(Symg(Σ)), then
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nz(ψ) = nz(φ ∗ k[S]) = nZ(φ) + knz([S]) = nz(φ) + k

and

f(x, y) = nz(ψ)− nw(ψ) = nz(φ) + k − nw(φ)− k = nz(φ)− nw(φ)

Thus f is independent of the chosen φ ∈ π2(x, y) and it is well-defined.

Proposition 7.2.3. For any x, y, p ∈ Tα ∩ Tβ, f(x, y) + f(y, p) = f(x, p)

Proof. Let φ ∈ π2(x, y) and ψ ∈ π2(y, p) then as ψ ∗ ψ ∈ π2(x, p) the result follows
easily from the definitions.

Proposition 7.2.4 ( [8]). The map f can be lifted to a function F : Tα ∩Tβ → Z in
a unique way such that F satisfies two properties:

1. F (x)− F (y) = f(x, y)

2. #{x ∈ Tα ∩ Tβ | F (x) = i} = #{x ∈ Tα ∩ Tβ | F (x) = −i}(mod2) for every
i ∈ Z

where the second property is called the additional symmetry.

Another map H satisfying the same properties with F differ from F by a constant.
The description can be found in [8] and the second property of F is follows from
the symmetry of the coefficients of the Alexander polynomial and the number of
intersection points at each level i corresponds to aith coefficient of the Alexander
polynomial which follows from the Fox calculus, see [35]. F is called the Alexander
grading on C(K) which correspond to the filtration. The map G : Tα ∩ Tβ → Z is
called the Maslov grading and it corresponds to the homolgoy grading on the chain
complex.

Definition 48. Let x, y ∈ Tα ∩ Tβ then define g(x, y) = µ(φ)− 2nw(φ)

The map g is relative grading definition which is also called the Maslov grading and
it is well-defined, i.e., it is independent of representative and the chosen φ ∈ π2(x, y).
For any ψ ∈ π2(x, y) ' Z is of the form ψ = φ∗k[S] for some k ∈ Z, and by definition
it follows that g(x, y) = µ(ψ)− nw(ψ) = µ(φ)− nw(φ).

Proposition 7.2.5 ( [8]). Let (Σ, α, β, w) be a pointed Heegaard diagram for S3,

then the chain complex is ĈF (α, β, z) ' Z with homology group ĤF (α, β, z) ' Z.
The homology group is supported in grading 0 then the map g can be lifted to a map
G : Tα ∩ Tβ → Z in a unique way.

We give the definition of knot Floer chain complex for an oriented, nullhomologous
knot K in S3. Let (Σ, α, β, z, w) be a doubly pointed Heegaard diagram for (S3, K).
Then define C(K) as a free Abelian group generated by x ∈ Tα ∩ Tβ. From each
intersection point we obtain the same class of Spinc structure as there is only one.
Choose a generic complex structure j over Σ and a path Js of nearly symmetric
almost-complex structure over Symg(Σ). Then define the boundary map
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∂K : C(K)→ C(K)

∂K(x) =
∑
y

∑
{ψ∈π2(x,y)|µ(φ)=1,nz(φ)=nw(φ)=0}

#(M̂(φ)) · y

Theorem 7.2.6. (C(K), ∂K) is a chain complex. i.e., ∂K
2 = 0

Proof. The difference between knot Floer complex and Heegaard Floer complex is
the choice of a second basepoint w and we take into account the second algebraic
intersection number nw(φ). The proof of ∂K

2 = 0 follows from counting the ends of
the moduli spaceM(φ) with µ(φ) = 2. The proof is same as the proof of the Theorem
(5.1.2).

For example let U be an unknot in S3, where its regular neighbourhood is a solid
torus. Let (Σ, α, β, z, w) be a Heegaard diagram for S3 as in the figure (2.2) with the
second basepoint w. Then there exists only one generator giving C(K) ' Z and as
the boundary map is trivial ∂K is trivial. Thus H(U) ' Z.

Definition 49. With two grading F,G on C(K), let Ci,j be the Abelian group gen-
erated freely by the intersection points x ∈ Tα∩Tβ such that F (x) = i and G(x) = j.

Theorem 7.2.7. Let K be a knot in S3 with a doubly pointed Heegaard diagram for
(S3, K). Then the free Abelian group C(K) can be decomposed as

C(K) =
⊕
i,j

Ci,j

giving ∂K(Ci,j) ⊂ Ci,j−1.

Proof. Let x ∈ Ci,j be a generator so F (x) = i and G(x) = j. Consider the image
under the boundary map

∂K(x) =
∑
y

∑
{φ∈π2(x,y)|µ(φ)=1,nw(φ)=nz(φ)=0}

#(M̂(φ)) · y

Then

F (x)− F (y) = f(x, y) = nz(φ)− nw(φ) = 0

G(x)−G(y) = g(x, y) = µ(φ)− nw(φ) = 1

giving

F (x) = F (y) = i

G(y) = G(x)− 1 = j − 1

implies y ∈ Ci,j−1 showing Ci,j ⊂ Ci,j−1

Remark 7.2.8. The decomposition of C(K) =
⊕
i,j

Ci,j implies that we can decompose

H(K) as H(K) =
⊕
i,j

Hi,j(K). At each i-th level G corresponds to the homology grad-

ing and we have a chain complex Ci(K) implies the decomposition on the homology
groups.
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7.3 Knot Filtration

In previous section we study knots in S3 and give bigrading on C(K). In this section
we generalize this to oriented, nullhomologous knots in an oriented, closed three-
manifold and define knot filtration.

Let K be an oriented null homologous knot in Y and let (Σ, α, β, w, z) be a doubly
pointed Heegaard diagram for (Y,K). Fix an auxiliary data described in Section 5.1.
A generic allowed complex structure j over Σ and a generic path Js of nearly sym-
metric almost complex structure over Symg(Σ). Fix a coherent orientation system o.
Then we give a Z× Z filtration on the chain complex.

Let CF∞(α, β, w, z) be an Abelian group generated freely by [x, i, j] where x ∈
Tα ∩ Tβ and i, j ∈ Z with a differential map

∂∞[x, i, j] =
∑
y

∑
{φ∈π2(x,y)|µ(φ)=1}

#(M̂(φ))[y, i− nw(φ), j − nz(φ)]

Theorem 7.3.1. (CF∞(α, β, w, z), ∂∞) is a chain complex i.e. (∂∞)2 = 0

Proof. The proof is similar to the proof of the Theorem 5.1.4 based on counting the
ends of the moduli space M(φ) with µ(φ) = 2.

There exists a U action on the chain complex defined as

U : CF∞(α, β, w, z)→ CF∞(α, β, w, z)

U [x, i, j] = [x, i− 1, j − 1]

The map U is a chain map so it commutes with the boundary maps ∂∞ which
can be verified easily and it gives a Z[U ]-module structure on the chain complex
CF∞(α, β, w, z).

Definition 50. We define the filtration on CF∞(α, β, w, z) as

F : (Tα ∩ Tβ)× (Z× Z)→ Z× Z

F [x, i, j] = (i, j)

The partial ordering on (Z × Z) is given by (i, j) ≤ (i′, j′) if i ≤ i′ and j ≤
j′. Then it follows by definition, CF∞(α, β, w, z) is a Z × Z-filtered group and the
boundary map ∂∞ is a Z×Z-filtered morphism. It suffices to show on the generators
of CF∞(α, β, w, z) that ∂∞[x, i, j] ≤ [x, i, j] for every [x, i, j]. This is true because

max
y∈Tα∩Tβ

F [y, i− nw(φ), j − nz(φ)] = max
y∈Tα∩Tβ

(i− nw(φ), j − nz(φ))

≤ (i, j)

= F [x, i, j]
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by the nonnegativity of nw(φ) and nz(φ) which follows from the Proposition 4.0.10.
Thus the map F : (Tα ∩ Tβ) × Z2 → Z2 induces a filtration on the chain complex
(CF∞(α, β, w, z), ∂∞).

Let CFK∞ denote the chain complex CF∞(α, β, w, z). Then the complex CFK∞

can be also decomposed into a sum of complexes. For example, the generators [x, i, j]
and [y, l,m] are contained in the same summand if there is a homotopy class of a
Whitney disk φ ∈ π2(x, y) such that nw(φ) = i− l and nz(φ) = j−m. Because [x, i, j]
maps to [y, l,m] under the differential map ∂∞ as

∂∞[x, i, j] =
∑
y

∑
{φ∈π2(x,y)|µ(φ)=1}

#(M̂(φ))[y, i− nw(φ), j − nz(φ)]

=
∑
y

∑
{φ∈π2(x,y)|µ(φ)=1}

#(M̂(φ))[y, l,m]

The decomposition of the complex CFK∞ into a sum of complexes can be inter-
preted via Spinc structures. We begin with a doubly pointed Heegaard diagram, how-
ever we know that from a marked Heegaard diagram for (Y,K) we can obtain a doubly
pointed Heegaard diagram for a null homologous knot K in Y . Let s ∈ Spinc(Y ) be
a Spinc structure then by the isomorphism

Spinc(Y,K) ' Spinc(Y )× Z

in the Proposition (7.1.4). Let t ∈ Spinc(Y,K) be the Spinc structure such that t
projects to s. Then for the Spinc structure t ∈ Spinc(Y,K), the subset CFK∞(α, β, t) ⊂
CF∞(α, β, w, z) is generated by [x, i, j] such that

sw(x) = s and sm(x) + (i− j)PD[µ] = t

where µ is meridian of K a closed curve in Y0(K) and [µ] ∈ H1(Y0(K)) is the corre-
sponding homology class.

Proposition 7.3.2. CFK∞(α, β, t) is a subcomplex of CF∞(α, β, w, z)

Proof. We need to show that, image of each generator of CFK∞(α, β, t) under the
boundary map is contained in CFK∞(α, β, t) and (∂∞)2 = 0 implies that restriction
of ∂∞ on CFK∞(α, β, t) also gives a chain complex, thus CFK∞(α, β, t) is a sub-
complex of CF∞(α, β, w, z).

Let [x, i, j] be a generator of CFK∞ then sw(x) = s where s is the projection of
t of the map in Proposition 7.1.4 and sm(x)− (i− j)PD[µ] = t

∂∞[x, i, j] =
∑

{y∈Tα∩Tβ |sw(y)=s}

∑
{φ∈π2(x,y)|µ(φ)=1}

#(M̂(φ))[y, i− nw(φ), j − nz(φ)]
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Apply the Theorem 7.1.5 then for φ ∈ π2(x, y)

sm(x)− sm(y) = [nz(φ)− nw(φ)]PD[µ]

t− (i− j)PD[µ]− sm(y) = [nz(φ)− nw(φ)]PD[µ]

then

sm(y) + [i− nw(φ)− j + nz(φ)]PD[µ] = t

as desired. Thus [y, i− nw(φ), j − nz(φ)] ∈ CFK∞(Y,K, t) and CFK∞(Y,K, t) is a
subcomplex.

Theorem 7.3.3. Let t1 and t2 be Spinc structures over Y0(K) extending the same
Spinc structure then the corresponding chain complexes

CFK∞(Y,K, t1) and CFK∞(Y,K, t2)

are isomorphic as chain complexes.

Proof. Let s ∈ Spinc(Y ) be the Spinc structure such that it is the restriction of both
t1 and t2. The complex CFK∞(Y,K, t1) is generated by [x, i, j] such that

sw(x) = s and sm(x) + (i− j)PD[µ] = t1

and CFK∞(Y,K, t2) is generated by [x, l,m] such that

sw(x) = s and sm(x) + (l −m)PD[µ] = t2

Note that the intersection points of Tα ∩ Tβ giving the same Spinc structure s is
same for both CFK∞(Y,K, t1) and CFK∞(Y,K, t2).

Define a map ϕ : CFK∞(Y,K, t1)→ CFK∞(Y,K, t2) sending

[x, i, j]→ [x, l,m]

such that nw(φ) = i− l and nw(φ) = j −m. Then it easily follows that ϕ commutes
with the boundary maps and H gives the desired chain isomorphism.

Remark 7.3.4. We can split CFK∞ using Spinc structures over Y0(K) then two
isomorphic chain complexes CFK∞(Y,K, t1) and CFK∞(Y,K, t2) differ only by a
shift in the Z× Z filtration.

Fix t0 ∈ Spinc(Y,K) and let s ∈ Spinc(Y ) such that t0 projects to s under the
isomorphism in Theorem 7.1.5. The complex CFK∞(Y,K, t0) gives a Z-filtration on
CF∞(α, β, s) via the map∏

1
: CFK∞(Y,K, t0)→ CF∞(α, β, s)∏

1[x, i, j] = [x, i]
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The map
∏

1 is an isomorphism which follows easily as it is defined on the generators.
The map

F [x, i, j] = j

gives a Z-filtration on CFK∞(Y,K, t0).

The subset CFK−,∗(Y,K, t0) ⊂ CFK∞(Y,K, t0) generated by elements [x, i, j]
with i < 0 gives a subcomplex, as the boundary map ∂∞ restricted to CFK−,∗(Y,K, t0)
is well defined and it has a quotient complex CFK+,∗(Y,K, t0). CFK∞(Y,K, t0)
induce a Z-filtration on CF∞(Y, s). Therefore, the subcomplex CFK−,∗(Y,K, t0)
and the quotient complex CFK+,∗(Y,K, t0) induce filtration on CF−(α, β, s) and
CF+(α, β, s) respectively.

Consiter the U -action on CFK+,∗(Y,K, t0) then

Ker(U) : CFK+,∗(Y,K, t0)→ CFK+,∗(Y,K, t0)

is the set of elements [x, 0, j] with all i = 0 gives the subcomplex CFK0,+(Y,K, t0)

of CFK+,∗(Y,K, t0) which induces filtration on ĈF (α, β, s). Fix a Spinc structure
t0 ∈ Spinc(Y,K) then the map,

CFK0,∗(Y,K, t0)→ ĈF (Y, s)

sending [x, 0, j]→ [x, 0]

gives Z-grading.
Similar to the chain complex defined in Section 7.2 for a fixed t ∈ Spinc(Y0(K))

and (Σ, α, β,m) be a marked Heegaard diagram for (Y,K) define ĈFK(α, β, t) be a
free Abelian group generated by x ∈ Tα ∩Tβ with sm(x) = t with the boundary map

∂̂ : ĈFK(α, β, t)→ ĈFK(α, β, t) defined as

∂̂x =
∑
y

∑
{φ∈π2(x,y)|µ(φ)=1,nw(φ)=nz(φ)=0}

#(M̂(φ)) · y

gives a chain complex. Then the complex CFK0,∗(Y,K, t0) which is graded by Spinc

structures over Y0(K) can be expressed as,

CFK0,∗(Y,K, t0) =
⊕

{t∈Spinc(Y0(K))|t extends s}

ĈFK(α, β, t)

A generator [x, 0, j] ∈ CFK0,∗(Y,K, t0) corresponds to an element of ĈFK(Y,K, t)
for some t extending s. The generator has the properties

sw(x) = s and sm(x) = s and
sm(x) + (i, j)PD[µ] = t as i = 0 and t0

extends s thus sm(x) = t0. Thus [x, 0, j] corresponds to an element x in ĈFK(Y,K, t)
such that t0 − jPD[µ] = t
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7.4 Properties of Knot Floer Homology

In this section for an oriented n-component link L in a closed, oriented three-manifold
Y , or in particular an oriented knot K in Y , we briefly review the basic properties of
knot Floer homology, which highlights its importance. The proofs and more details
with calculations can be found in [32], [31], [33],and [35]. In knot theory to distinguish
two knots is very important and there are many tools like polynomials and invariants
such as Jones polynomial, Alexander polynomial, Kauffman polynomial, HOMFLY
polynomial, and Vassiliev invariants, see [34] and [19].

The one of the most important results of the knot Floer holomogy groups is the
following theorem whose proof can be found in [32] and [8].

Theorem 7.4.1. For an oriented knot K in a closed, oriented three-manifold Y , fix
t ∈ Spinc(Y,K). The filtered chain homotopy type of the chain complex CFK∞(Y,K, t)
is a topological invariant for the oriented knot K in Y and the Spinc structure t.
Therefore, it is independent of the chosen admissible marked Heegaard diagram.

Thus the knot Floer homology groups ĤFK(Y,K, t) = H∗(ĈFK(Y,K, t)) are
topological invariants of the oriented knot K in Y and t ∈ Spinc(Y,K). The ho-
mology groups are independent of the chosen complex structure j and the path Js of
nearly symmetric almost-complex structures, [8].

We mentioned in Section 7.1 that if we have an oriented n-component link L in Y .
Then by adding 1-handles to Y , it corresponds to an oriented knot K̃ in Y#(S1×S2)

call it Ỹ . For a fixed t ∈ Spinc(Ỹ , K̃) the corresponding homology groups is defined
as

CFK∞(Y, L, t) = CFK∞(Ỹ , K̃, t)

Then for an oriented n-component link L in closed, oriented three-manifold Y and
fixed t ∈ Spinc(Y,K), CFK∞(Y, L, t) is a link invariant.

Let us assume that Y = S3 is a three-sphere. Then we have the following prop-
erties. The proofs can be found in the major papers about the subject as [32], [31],
[33],and [35]. We give these properties for the completeness of the subject, to empha-
size the importance of knot Floer homology groups.

Let L be an oriented link in Y = S3 then the graded Abelian groups ĤFK(L, i)

where i ∈ Z can be given rational coefficients with ĤFK(L, i,Q) ' ĤFK(L, i)⊗ZQ
following from the Universal Coefficient theorem.

For an oriented link L, consider the skein moves for each crossing with L+, L−, L0

which are link diagrams obtained after resolving a crossing. Then the Alexander-
Conway polynomial in one variable is defined by the skein relation as:
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∆(L+)−∆(L−) = (t1/2 − t−1/2)∆(L0)

Then the Euler characteristic is related to the Alexander-Conway polynomial of L,
∆L(T ) by ∑

χ(ĤFK(L, i,Q)) · T i = (T−1/2 − T 1/2)n−1 ·∆L(T )

where n is the number of components of the link diagram L.

If we take the mirror image of the link projection L we change under crossing
(resp. over crossing) with over crossing (resp. under crossing) then the difference
between the corresponding knot Floer homology groups of L and its mirror image L
is

ĤFKd(L, i,Q) ' ĤFK−d(L,−i,Q)

Alexander polynomial is symmetric which is ∆K(T ) = ∆K(T−1) for every knot
K, see [26], then the knot Floer homology groups have the conjugation symmetry as

ĤFKd(L, i,Q) ' ĤFKd−2i(L,−i,Q)

Let L1 and L2 be two disjoint oriented link diagrams. Consider the connected
sum L1#L2 of two links such that they can be separated by S2 the the knot Floer
homology groups of L1#L2 respects the KÃ1

4
nneth principle giving

ĤFK(L1#L2, i,Q) '
⊕

i1+i2=i

ĤFK(L1, i1,Q)⊗Q ĤFK(L2, i2,Q)

Definition 51. [9] Let L be an oriented link in S3. L is called a fibered link if the
complement S3−L is a surface bundle over the circle such that its fiber F over 1 ∈ S3

is the interior of a compact oriented surface F whose boundary is L.

Let L be an oriented n-component link in S3 and let the degree of the Alexander-
Conway polynomial of L is of degree d then

ĤFK(L, d+ n−1
2

) ' Z

Definition 52. Let K be an oriented knot in S3 then an embedded, oriented surface
S in S3 such that ∂S = K is called a Seifert surface for K. The minimal genus of
any Seifert surface for K is called the Seifert genus of K, denoted as g(K).

Note that if K is an unknot the surface admitting the unknot as boundary is of
genus 0, conversely if a Seifert surface is of genus 0 then its boundary corresponds to
the unknot. Moreover we have the following whose proof can be found in [27]

Theorem 7.4.2. Let K be an oriented knot in S3 then let degHi,j = max{i ∈ Z |⊕
j

Hi,j(K) 6= 0} be the degree of the knot Floer homology then the Seifert genus

g(K) = degHi,j(K)
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Remark 7.4.3. The above theorem shows that knot Floer homology groups detects
whether or knot a given knot is different from the unknot.

Moreover, by [32] we have that Knot Floer homology groups of left handed trefoil
(considered in S3) and right handed trefoil are different. As left handed trefoil and
right handed trefoil are not isotopic to the right handed trefoil whose Jones polyno-

mial, even Kauffman polynomial are different, see [34]. Thus ĤFK distinguishes right

handed trefoil from the left handed trefoil. In addition ĤFK distinguishes Pretzel
knots, whose definition is given in next section, of the form P (2a + 1, 2b + 1, 2c + 1)
from the unknot.

There is a move on the link diagrams called mutation move, see [19] , which
is described in next section. The famous example is Kinoshita-Terasaka knot and
Conway knot pair such that one is obtained from the other by a mutation move.

ĤFK is sensitive to Conway mutation. However, the knot invariants like Alexander
polynomial, Jones polynomial, and Kauffman polynomial are mutation invariant, [34],
[32], [33], so they can not detect for example the difference between the Kinoshita-
Terasaka knot and Conway knot which are nonisotopic knots, see [19]. For more

details for the sensitivity of ĤFK for mutation move and detailed calculation see [33].



Chapter 7: Knot Floer Homology 107

7.5 Khovanov Homology

7.5.1 Introduction

Classification of knots lies in the heart of Knot Theory. We want to determine when
given two knots present the same knot, and in particular to determine a given knot
to represent the unknot. To achieve this goal we use invariants which are algebraic
objects assigned to a knot diagram depending only on the isotopy class of the knot.
We discussed knot Floer homology as such an invariant for oriented, nullhomologous
knots in three-manifolds, and in this section we introduce another knot invariant
called Khovanov homology.

We begin by discussing Jones polynomial. We define it using Kauffman bracket
and state diagrams then show that it is a invariant and provide examples to demon-
strate how it detects nonisotopic knots. Next, we discuss its weakness and study some
examples of nonisotopic links having the same Jones polynomial which alerts the need
for more powerful invariant.

In the next section we provide some background information for Khovanov Ho-
mology including graded vector spaces, height and degree shifts, and graded Euler
characteristic. In Subsection 7.5.4 we describe the construction of Khovanov Homol-
ogy and prove that it is a link invariant generalizing the Jones polynomial. Therefore
Khovanov Homology is a stronger link invariant than Jones polynomial. Then by def-
inition and some properties of Khovanov homology we see some similarities between
knot Floer homology and Khovanov homology.

7.5.2 Jones Polynomial

Jones Polynomial, which was discovered by V. F. R Jones in 1984, is a Laurent poly-
nomial in integer coefficients associated with an oriented link diagram L. It is a link
invariant therefore isotopic knots have the same Jones polynomial and it does not
change under three Reidemeister moves and plane isotopies.

Jones polynomial, even though inadequate, is related to statistical mechanics and is
useful to see the difference between a link diagram and its mirror image [16]. More-
over, Jones polynomial is generalized developing into a theory and it gives invariants
for three dimensional manifolds via the help of quantum theory [19].

We will construct Jones polynomial from the Kauffman bracket using states of a link
diagram. Then in a similar way we will construct Khovanov Homology.
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7.5.2.1 Kauffman Bracket

The Kauffman bracket is a polynomial for nonoriented links and it is described by
the following relation

(7.2)

where we resolve every crossing into A-smoothing (or 0-smoothing) or
A−1-smoothing (or 1-smoothing). If we resolve every crossing of a link diagram then
we obtain a disjoint union of closed cycles. Label every crossing with respect to how
we smooth them into A or A−1, then we have a sequence s of A’s or A−1’s. s is called
a state or a smoothing of a link diagram L. Note that we have 2c(L) many states for
L, where c(L) denotes the number of crossing of the link diagram. Then we define
the state expansion of bracket polynomial as

〈L〉 =
∑
s

〈L|s〉(−A2 − A−2)‖s‖

where ‖s‖ is the number of loops obtained after smoothing every crossing of L ac-
cordingly to the state s and 〈L|s〉 is the crossing weight as we label every crossing of
a L as A or A−1.

Remark 7.5.1. Kauffman bracket polynomial is invariant under R2 and R3 but not
R1, for details see [34].

Remark 7.5.2. Instead of using relation (7.2) we will make a change of variable [16]
for practical purposes. Let c(L) be the number of crossing in a links diagram L,
then multiply 〈L〉 by A−c(L) and replace A2 by −q−1 in resulting polynomial, so (7.2)
becomes:

(7.3)

Now assign every smoothing α of L to a vertex of the n-cube {0, 1}n with α =
(α1, .., αn) where αi is the smoothing type for the i-th crossing. The Height of a
smoothing α is the number of 1’s in the sequence. To every smoothing associate a
polynomial Vα(L) = (q + q−1)k(−q)r, where k is the number of cycles obtained after
smoothing every crossing and r is the height of α. Then we define Kuffman bracket
as follows:

〈L〉 =
∑

α∈{0,1}n
Vα(L)

Kauffman bracket satisfies the following defining relations:

1. 〈∅〉 = 1

2. 〈, t L〉 = (q + q−1)〈L〉
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3.

We can easily deduce that Kauffman bracket of unknot is (q + q−1).

As we mentioned before Kauffman bracket is not a link invariant, but a slight
modification of it gives a link invariant.

Definition 53. For oriented link diagram L, let n+ (respectively n−) be the number
of positive (respectively negative) crossing according to the right hand rule.

Definition 54. Unnormalized Jones polynomial of L is defined as

Ĵ(L) = (−1)n−qn+−2n−〈L〉

and the normalized Jones polynomial of L is

J(L) = Ĵ(L)�(q + q−1)

Theorem 7.5.3. Jones polynomial is isotopy invariant for links, i.e., it is invariant
under Reidemeister moves and plane isotopies.

For the proof of the above statement, reader is referred to [34] or [1]

Examples: Consider Hopf link with the orientation in the [34] and left trefoil then
the normalized Jones polynomial of those two knots are:

J(H) = −q − q−5 and J(T ) = q−2 + q−6 − q−8 , see [34]

consider the change of variable as described above. They are nonisotopic links as one
of them is link the other one is knot.

7.5.2.2 Weakness of the Jones Polynomial

We will study two examples to demonstrate why Jones polynomial is not adequate.
One of the problems arise from connected sum of links with more than one compo-
nents. The connected sum operation is not well defined for links with more than one
component, because depending on which components we connect two links, we can
have non-isotopic links as a result of different choices see the examples in [34].

Example: The next problem is related to knots. Consider the following nonisotopic
knots whose Jones polynomials match. In the figure below, the one on the left is
Kinoshita-Terasaka knot and the one on the right is the Conway knot.

These are nonisotopic knots which can be determined by their knot groups [19] and
they also have different knot genus, knot genus of the Conway Knot is 3 but knot genus
of the Kinoshita-Terasaka is 2. However, these two knots can be obtained from each
other by a mutation move. Consider a solid ball whose boundary intersects one of the
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Figure 7.3: Kinoshita-Terasaka and Conway Knots ( [34])

Figure 7.4: Pretzel link P (−2, 3, 7)

knots in four points. Remove this part and rotate it by an angle π and then replace
it. We then obtain the other knot and they have the same Jones polynomial [19,34].

A simple mutation move can be seen on Pretzel links as in the figure above,
P (p1, .., pn) where there are pi left handed crossings in the i-th tangle. A mutation on
Pretzel link changes pi and pi+1, but Jones polynomial does not change even though
we obtain nonisotopic links. Moreover, as the number of crossings of a link diagram
increases, it gets more difficult and impractical to calculate Jones polynomial.

7.5.3 Background Information

In this section we briefly review some necessary materials for the construction of
Khovanov Homology.
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Definition 55. A graded vector space W =
⊕
m

Wm with homogenous components

Wm is a vector space with a grading on it, so that W can be expressed as direct sum
of its subspaces. Graded dimension of W is a power series:

qdimW =
∑
m

qmdimWm

If we choose a basis for each component Wm of W then we end up with a basis for W .
If we have vector space W = V ⊗k then choosing a basis for W induces a grading on
it as follows. First assign degrees to basis elements of V and then define the degree
of a basis element of V ⊗k to be sum of degrees of tensor factors. Then the span of
the basis elements of degree m is a subspace Wm of W and we have: W =

⊕
m

Wm.

Proposition 7.5.4. For graded vector spaces W1 and W2 we have the following:

1. qdim(W1 ⊕W2) = qdimW1 + qdimW2

2. qdim(W1 ⊗W2) = (qdimW1)(qdimW2)

Proof. Let W1 =
⊕
i

W1i and W2 =
⊕
j

W2j. Let us prove the first statement, W =

W1 ⊕W2 is also a graded vector space where the m-th graded component is direct
sum of m-th graded components of W1 and W2. As

dim(W1m ⊗W2m) = dimW1m + dimW2m

then it follows

qdimW1 ⊕W2 =
∑
m

qmdimWm =
∑
m

qm(dimW1m + dimW2m) = qdimW1 + qdimW2

Now prove the second statement, W = W1⊗W2 is a graded vector space whose m-th
graded component is Wm =

⊕
i+j=m

W1i ⊗W2j. As

dimWm =
∑

i+j=m

dim(W1i ⊗W2j) =
∑

i+j=m

(dimW1i)(dimW2j)

then it follows

qdimW =
∑
m

gmdimWm =
∑
m

∑
i+j=m

(dimW1i)(dimW2j) = (qdimW1)(qdimW2)

Definition 56. Degree shift by .{l} of a graded vector space W =
⊕
m

Wm is a graded

vector space W{l} where W{l}m = Wm−l.
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Remark 7.5.5. We have the following:

qdimW{l} =
∑

qmdimW{l}m

=
∑

qmdimWm−l

= ql
∑

qm−ldimWm−l

= qlqdimW.

Definition 57. Let (C, d) be a chain complex

· · · −−−→ Cr dr−−−→ Cr+1 dr+1

−−−→ · · ·

then a height shift by .[s] of (C, d) is a chain complex (C[s], d[s]) where C[s]r = Cr−s

and shifting differential maps accordingly.

Definition 58. Let (C, d) be a chain complex of vector spaces where each chain group
Cr is also a graded vector space Cr =

⊕
i

Cr
i , then differential map is of degree k if

dr(Cr
i ) ⊂ Cr+1

i+k .

Remark 7.5.6. If such a chain complex (C, d) has degree 0 differential map then for
fixed i, Ci is a subcomplex

· · · −−−→ Cr−1
i −−−→ Cr

i −−−→ Cr+1
i −−−→ · · ·

where differential maps dr are restricted to Cr
i as a map from Cr

i to Cr+1
i .

Definition 59. For a chain complex (C, d), Euler characteristic of C is

χ(C) =
∑
n

(−1)ndimHn(C)

Proposition 7.5.7. If only finitely many chain groups are nonzero in a chain complex
and they are finite dimensional then Euler characteristic of C can be expressed as:

χ(C) =
∑
n

(−1)ndimCn

Definition 60. Graded Euler characteristic of a chain complex (C, d) is

χq(C) =
∑
n

(−1)nqdimHn(C)

Proposition 7.5.8. If the differential map is of degree zero of a chain complex (C, d)
and C has finitely many nonzero chain groups which also are finite dimensional then

χq(C) =
∑
n

(−1)nqdimCn

We skip the proofs of the last two propositions which can be seen easily.
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7.5.4 Khovanov Homology

Khovanov suggested associating a chain complex of graded vector spaces to a link
diagram called Khovanov bracket JLK, where grading is chosen appropriately so that
the Jones polynomial transforms into a homological object.

7.5.4.1 Construction

Let L be an oriented link diagram and let χ be a set of crossings with n = |χ|, n+ (re-
spectively n−) is the number of positive (respectively negative) crossings. Let V be a
vector space over Z, spanned by two basis elements v+ and v− whose degrees are cho-
sen to be +1 and −1 respectively. Thus V is a graded vector space as V = V+1⊕V−1

where V+1 = 〈v+〉 and V−1 = 〈v−〉, then qdimV = qdimV+1 + q−1dimV−1 = q + q−1.
Note that two generators of V correspond to two labelings of a crossing.

Let us express every smoothing α of L as a sequence of {0, 1}. Then for every
smoothing there is a corresponding vertex in the n-cube {0, 1}χ organized such that
vertices at the same height stand in the same column. To every vertex α of the n-cube
{0, 1}χ we associate a graded vector space Vα(L) = V ⊗k{r} where k is the number of
cycles obtained after the smoothing α and r is height of it. Then define r-th chain
group

JLKr =
⊕
|α|=r

Vα(L)

for 0 ≤ r ≤ n which is also a graded vector space. then JLK with a differential
map which we will define soon will be a chain complex. Let us define another chain
complex as C(L) = JLK[−n−]{n+ − 2n−}. The figure below demonstrates what we
have defined so far on a right trefoil.
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Figure 7.5: Right Trefoil and cube Diagram

Next let us see how Jones polynomial is getting involved:

Theorem 7.5.9. The graded Euler characteristic of C(L) is equal to the unnormalized
Jones polynomial of L.

Proof. C(L) is a finitely supported graded chain complex with finite dimensional
chain groups. We will show that the differential map is of degree zero, then χq(C(L))
is equal to the alternating sum of the graded dimensions of chain groups of C(L).
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As C(L) = JLK[−n−]{n+ − 2n−} we have:

χq(C(L)) =
n∑
r=o

(−1)rqdimC(L)r

=
n∑
r=o

(−1)rqdim(JLKr+n−{n+ − 2n−})

=
n∑
r=o

(−1)rqn+−2n−qdimJLKr+n−

=
n∑
r=o

(−1)rqn+−2n−qdim(
⊕

|α|=r+n−

Vα(L))

=
n∑
r=o

(−1)rqn+−2n−
∑

|α|=r+n−

qdimVα(L)

=
n∑
r=o

(−1)rqn+−2n−
∑

|α|=r+n−

dimV ⊗k{r + n−}

=
n∑
r=o

(−1)rqn+−2n−
∑

|α|=r+n−

(q + q−1)kqr+n−

= qn+−2n−

n∑
r=o

∑
|α|=r+n−

(−1)rqr+n−(q + q−1)k

= qn+−2n−(−1)−n−
n∑
r=o

∑
|α|=r+n−

(−1)r+n−qr+n−(q + q−1)k

= qn+−2n−(−1)n−
∑

α∈{0,1}n
(q + q−1)k(−q)r

= Ĵ(L)

Note that height shift [−n−] corresponds to (−1)n− factor in the Jones polynomial.

7.5.4.2 Khovanov and Cube Categories

Before defining the differential map for JLK let us pause and think about how to define
the differential map such that homology becomes a link invariant. In this part we will
basically follow [16].

For a link diagram L, the set of states form a category in the shape of a cube.
Then a functor from a cube category to a module category induces a homology theory
in a natural way as follows. First let S(L) be the category of states for L, where the
objects are states and a morphism is an arrow from a state with a given number of
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0’s to a state with fewer number of 0’s. Next let Dn = {0, 1}n be n-cube category
with objects are n-element sequences of {0, 1} and a morphism is an arrow from a
sequence with given number of 0’s to a sequence with fewer number of 0’s. Let us see
the correspondence between S(L) and Dn.

Let F1 : Dn → S(L) be a functor where the link diagram has n crossings and each
of them is labeled 1 through n. Then F1 maps sequences to states where i-th term
in the sequence matches with the smoothing of i-th crossing. It is clearly one-to-one,
so we can define F2 : S(L) → Dn as F2 takes each state to a sequence whose terms
match with smoothings in corresponding crossing. Therefore the composition of two
morphisms are identity maps on their category.

LetM be a category of modules of finite sums containing 0 element. Let F : Dn →
M be a functor taking sequences with n terms to some tensor powers corresponding
to a state α of L. For any α ∈ Dn, α = (α1, .., αn) where αi = 0 or 1 and a morphism

di : (α1, .., αi, .., αn)→ (α1, .., αi, .., αn)

with αi = 1 if αi = 0. Let us define

∂i : C(α1, .., αi, .., αn)→ C(α1, .., αi, .., αn)

if di is defined. Then r-th chain group of C is Cr =
⊕
α

C(α1, .., αn) where every

sequence α has r 1’s. We can define the differential map as

∂(v) =
n∑
r=0

(−1)c(α,i)∂i(v) for v ∈ C(α1, .., αn)

and c(α, i) is the number of 0’s in the sequence α preceding αi. As we need ∂◦∂ = 0 to
turn C into a chain complex, by the construction this is equivalent to ∂i ◦ ∂j = ∂j ◦ ∂i
as long as the composition and maps are defined. If we can set this relation in cube
category, which is same as state category, then the functor F will induce a chain
complex and homology.

7.5.4.3 Differential Maps

We need to define the differential map to make JLK and C(L) into chain complexes.
First let us define edge maps for edges of the state diagram cube {0, 1}χ. Label each
edge of the cube via elements of {0, 1, ?} where ? = 0 corresponds to tail of the edge
and ? = 1 corresponds to head of the edge. So each edge map is from a vertex at
height r to a vertex at height r + 1. Height of an edge ε, denoted as |ε|, is height of
the vertex corresponding to the tail of ε. Then r-th differential map

dr =
∑
|ε|=r

(−1)εdε
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is the sum of all maps from graded vector spaces at height r to graded vector spaces
at height r+ 1. Now we need d◦d = 0 and we will see that it is sufficient if all square
faces of the state diagram cube are anti-commutative. To obtain anti-commutativity
of faces, we first establish dε’s so that faces will be commutative and multiply some
of the edges by (−1) for anti-commutativity.

Proposition 7.5.10. If we multiply each edge map dε by (−1)ε = (−1)

∑
i<j

εi
then all

faces will be anti-commutative. Here εi is the i-th term of ε and j is the location of ?
in ε.

Proof. Remember that each edge map dε is a map from a space at height r to a space
at height r + 1, for every face we have the following picture:

So the following hold:

• d?0(−1)ε = d?0(−1)i1+...+in

• d0?(−1)ε = d0?(−1)i1+...+in+j1+...+jm

• d1?(−1)ε = d1?(−1)i1+...+in+1+j1+...+jm

• d?1(−1)ε = d?1(−1)i1+...+in+j1+...+jm

If the sum j1 + ... + jm is even (respectively odd) the first two edge maps have
the same (respectively different) sign. Therefore, the last two edge maps have the
opposite (respectively same) sign. Only one of those four maps has a different sign
from the other three which implies for each face we have an odd number of negative
signed edge maps which gives d?1 ◦ d1? ◦ d?0 = 0. This proves the statement.

Two vertices corresponding to the head and tail of an edge map dε have the fol-
lowing difference: either the number of cycles increases by one from tail to head or
decreases by one. We then have two linear maps m and ∆ corresponding to merging
of two cycles into one cycle and splitting one cycle into two cycles respectively. We
assigned graded vector spaces Vα(L) to each vertex α and we will assign certain tensor
factors to each cycle to define m and ∆.
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Let us define m : V ⊗ V → V and ∆ : V → V ⊗ V to be identity on cycles
which does not contribute to merging or splitting. As there is no order for cycles
in the vertex α, m should be commutative and ∆ to be co-commutative. By those
arguments we define m and ∆ as follows:

m : V ⊗ V → V, m :


v+ ⊗ v+ 7→ v+

v+ ⊗ v− 7→ v−

v− ⊗ v+ 7→ v−

v− ⊗ v− 7→ 0

∆ : V → V ⊗ V, ∆ :

{
v+ 7→ v+ ⊗ v− + v− ⊗ v+

v− 7→ v− ⊗ v−
Note that the maps m and ∆ are degree −1 by their definition. With these maps
all faces commute. Indeed, we can merge first or split and vice versa, merge and
merge, or split and split. By considering matrix representation of those maps the
faces commute.

Theorem 7.5.11. Sequences JLK and C(L) are chain complexes.

Proof. Let us first show that (JLK, d) is a chain complex. By definition JLK is a graded,
free abelian group. we need to show that d2 = 0. We have the following sequence:

· · · dr−1

−−−→ JLKr dr−−−→ JLKr+1 dr+1

−−−→ JLKr+2 dr+2

−−−→ · · ·

Now take any v ∈ JLKr =
⊕
|α|=r

Vα(L), v = (v1, .., vn) such that vi ∈ Vα(L) for some α

at height r. Let us first understand dr+1 ◦ dr(0, .., vi, .., 0).

dr+1◦dr takes α to each states where 2 0-smoothing of α changes into 1-smoothing.
Let β be one of such states. By the above diagram [diagram-3] there are two ways to
go from α to β. All faces are commutative via edge maps dε, but we multiplied them
by (−1)ε such that they become then anti-commutative, then sum of two maps are
0. Then sum of two maps from α at height r to any β at height r + 2 is 0. It fol-
lows then sum of all maps from smoothing at height r to smoothing at height r+2 is 0.

This shows that dr+1 ◦ dr(0, .., vi, .., 0) = 0 for all i, but the map is linear so we
can extend it to v then we have dr+1 ◦ dr(v) = 0 for all v ∈ JLKr. Thus d2 = 0 follows
proving that (JLK, d) is a chain complex.

The sequence C(L) = JLK[−n−]{n+ − 2n−} has shifts in degree and height then
by definition it also becomes a chain complex, by changing the boundary maps ac-
cordingly.
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Let us denote by (H)r(L) the rth cohomology group of C(L). It is a graded vector
space and depends on the link projection. We define Kh(L) as the graded Poincare
polynomial of the chain complex C(L) in variable t as:

Kh(L) =
∑
r

trqdimHr(L)

where by a Poincare polynomial of an n dimensional M we mean a polynomial in vari-
able t such that P (M, t) =

∑
r

bq(M)tq where the coefficients are the Betti numbers

of the manifold so they contain information about homological and/or cohomologi-
cal properties of the manifold. For detailed information of Poincare polynomial the
reader is referred to the appendix of [6].

The following theorem is the main statement and purpose of this term paper.

Theorem 7.5.12. The graded dimension of the homology groups Hr(L) are link in-
variants. Therefore, Kh(L), a polynomial in variable t and q, becomes a link invari-
ant.

Before the proof of the statement let us remark the followings.

Remark 7.5.13. Note that at t = −1, Kh(L) is simply the unnormalized Jones
polynomial

Kh(L) =
∑
r

(−1)rqdimHr(L)

Remark 7.5.14. Even though this subject is called Khovanov Homology, by defini-
tions above and by the information given so far, it is actually a cohomology theory.

7.5.5 Invariance

In this section we will prove the main theorem stated at the end of the previous sec-
tion. Before that we will give some homological algebra background that we need in
the steps of the proof.

Khovanov himself uses cobordism in an elegant way for the invariance part where his
techniques are beyond the scope of this thesis and his construction is more general
than we studied here. As he uses a polynomial ring of degree 2 variable as the coeffi-
cient ring. For the original proof we refer the reader to [17].

We will proceed as follows for the proof. We will show that rth cohomology group of
C(L) is invariant under Reidemeister moves. Then as diagrams of isotopic links can
be connected via Reidemeister moves and plane isotopies, this will show that isotopic
links have isomorphic homology groups Hr(L). But let us introduce some necessary
tools.
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7.5.5.1 Some Homological Algebra

Proposition 7.5.15. Let C be a chain complex and let C ′ ⊂ C be a subcomplex.
Then

1. If C ′ is acyclic (all homology groups are trivial) then H(C) ' H(C/C ′).

2. If C/C ′ is acyclic then H(C) ' H(C ′).

Proof. Consider the following short exact sequence:

0 −−−→ C ′
i−−−→ C

π−−−→ C/C ′ −−−→ 0

where the 2nd map is injection and 3rd map is projection. Then we have the following
long exact homology sequence:

· · · −−−→ Hr(C ′) −−−→ Hr(C) −−−→ Hr(C/C ′) −−−→ Hr+1(C ′) −−−→ · · ·

First suppose that Hr(C ′) is trivial for every r then we have:

· · · −−−→ 0 −−−→ Hr(C)
f−−−→ Hr(C/C ′) −−−→ 0 −−−→ Hr+1(C) −−−→ · · ·

Note that f is injective and Im(f) is the kernel of the next map which is all of
Hr(C/C ′) thus f is onto. It follows then f is an isomorphism and H(C) ' H(C/C ′)
proving the first statement.

Similarly, if Hr(C/C ′) is trivial for every r then we have:

· · · −−−→ 0 −−−→ Hr(C ′)
f−−−→ Hr(C) −−−→ 0 −−−→ Hr+1(C ′) −−−→ · · ·

Ker(f) is trivial so f is 1− 1 and Im(f) is all of Hr(C) being the kernel of the next
map, so f is surjective. Thus, H(C) ' H(C ′) follows proving the second statement.

Let (B, dB), (C, dC) be chain complexes and f : B → C be a chain map. We
can obtain a new chain complex called mapping cone by using this chain map f . We
will basically follow the material in [38]. The mapping cone of f is a chain complex
Cone(f) such that its nth chain group is:

Cone(f)n = Bn−1 ⊕ Cn

with the differential map d(b, c) = (−d(b), d(c) − f(b)) which can be given via the
matrix [

−dB 0

−f dC

]
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With this differential map Cone(f) becomes a chain complex. Indeed d2 = 0 as:[
−dB 0

−f dc

][
−dB 0

−f dc

]
=

[
d2
B 0

fdB − dcf d2
C

]
=

[
0 0

0 0

]

We can define Cone(f) for cochain complexes also. For a cochain map f : B → C
of cochain complexes, the mapping cone Cone(f) is a cochain complex whose nth
cochain group is:

Cone(f)n = Bn+1 ⊕ Cn

The coboundary map can be given by the same matrix as in the homology case.

Remark 7.5.16. Here the diagrams are commutative, but the diagrams(faces) we
consider in Khovanov Homology are anti-commutative. Thus in our case, to have
a chain complex the differential map has the following matrix representation. the
matrix [

dB 0

f dC

]
Similarly, with this differential map Cone(f) is a chain complex i.e., d2 = 0 :[

dB 0

f dc

][
dB 0

f dc

]
=

[
d2
B 0

fdB + dcf d2
C

]
=

[
0 0

0 0

]

where the 0 in lower left corner comes from anticommutativity.

Consider the following short exact sequence of chain complexes:

0 −−−→ C[1] −−−→ Cone(f) −−−→ B −−−→ 0

We use the height shift in the first complex to match the grading, as without height
shift we have:

0 −−−→ Cr−1 −−−→ Cone(f)r −−−→ Br −−−→ 0

but with the shift we have:

0 −−−→ C[1]r −−−→ Cone(f)r −−−→ Br −−−→ 0

where the second map from C[1]→ Cone(f) sends c 7→ (0, c) and the third map from
Cone(f)→ B[1] sends (b, c) 7→ b so that the first one is injective and the second one
is surjective at each grading r showing this is really a short exact sequence of chain
complexes.
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Note that by definition of the height shift Hn(B[1]) ' Hn−1(B) then we have the
long exact sequence:

· · · −−−→ Hn(C[1]) −−−→ Hn(Cone(f)) −−−→ Hn(B) −−−→ · · ·

which equals to the following by the above isomorphism:

· · · −−−→ Hn−1(C) −−−→ Hn(Cone(f)) −−−→ Hn(B) −−−→ · · ·

Definition 61. A cochain (respectively chain) map f : B → C is called a quasi-
isomorphism if the induced homomorphismsHn(B∗)→ Hn(C∗) (respectivelyHn(B∗)→
Hn(C∗)) are isomorphisms for all n.

Proposition 7.5.17. Cone(f) is acyclic if and only if f : B → C is quasi-isomorphism.

Proof. If Cone(f) is acyclic then f : B → C is quasi-isomorphism follows easily :

· · · −−−→ Hn−1(C) −−−→ 0 −−−→ Hn(B) −−−→ Hn(C) −−−→ 0 · · ·

from the long exact sequence. Conversely if f : B C is quasi-isomorphism then by
the isomorphism on the homology levels we have Hn(Cone(f)) ⊂ Ker(Hn(B) →
Hn(C)) = {0} implies Hn(Cone(f)) is trivial for all n.

7.5.5.2 Relations for the Khovanov Bracket

In section 2.1 we gave defining relations for the Kauffman bracket. Likewise, we can
give some relations also for the Khovanov bracket JLK for a link diagram L which is
a chain complex of graded vector spaces whose graded dimension is 〈L〉.

If we have nothing as a link projection but an empty set then the chain complex
associated with the empty set is not a complex of graded vector spaces, as there is no
crossing in the diagram which is empty set. In this case we only have the coefficient
ring which is Z in our case. So we associate the complex

0 −−−→ Z −−−→ 0

to the Khovanov bracket of the empty set.

Let L be a link projection. suppose that we take disjoint union of L with an
unknot ,. Let us see how the Khovanov bracket of JLK of L changes. We have

JLKr =
⊕
|α|=r

Vα(L)

where Vα(L) = V ×k{r} and k is the number of cycles. With the disjoint union Lt,
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we increase the number of cycles by 1. Thus

JL,Kr =
⊕
|α|=r

Vα(Lt,) =
⊕
|α|=r

(V ⊗(k+1){r})

=
⊕
|α|=r

(V ⊗ V ⊗k{r}) = V ⊗ (
⊕
|α|=r

(V ⊗k{r}))

= V ⊗ JLKr

for every r.

Now let us consider resolving the complex analogous to 7.3. Let us resolve

into 0 and 1 smoothing, and then consider the chain complexes , ,

and .

Let us rename A = , B = , and C = for the sake of simplicity.

Note that rth chain group of A includes all smoothings of Br and Cr−1. The last one
has grading r− 1 because it corresponds to 1-smoothing which increases the grading
by 1. Therefore as vector spaces we have the following:

(7.4)

Let be a chain map (here it is taken as differential map).
Then by using the cone construction discussed in previous section we obtain a chain
complex, Cone(d) whose rth chain group is:

We need to show that the differential map d̃ of is compatible with the differential
map dCone(d) of Cone(d). It is sufficient to compare two maps on the basis elements.
Take a basis element v ∈ Ar then if it is in Br or Cr−1 then under the differential
map d̃r it is mapped to a smoothing at height r + 1 by merging m or splitting map
∆. It will correspond to the restriction of the boundary map d̃r to boundary maps of
Br or Cr−1. Moreover,it has a compatible image under the differential map dCone(d)

of Cone(d) namely either

dCone(d)(v) = (dB(v), d(v)) or dCone(d)(v) = (0, d(v) + dC(v))

We need to consider the case if v ∈ Br then after 1-smoothing it may be an element
of Cr−1{1} which can be understood via the map d(v). Note that the degree shift
{1} is necessary as differential maps are sums(considering sign) of merging m and/or
splitting maps ∆ which are of degree 1. If we consider these complexes A, B, and
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C as cube diagrams. We described here how to turn double complexes into a single
complex by taking direct sums of each complexes and then flatten these cubes to have
the rth chain group from each column. As a result we obtain:

therefore the relation for the Khovanov bracket can be summarized as:

1. J∅K = 0 −→ Z −→ 0

2. JL,K = V ⊗ JLK

3.

7.5.5.3 Invariance Under the R1

We want to compare H( ) and H( ) under the first Reidemeister move. Con-

sider the complex and resolve into and . For the second one
1-smoothing increases the height by 1. By previous discussions, as vector spaces we
have:

(7.5)

From to the number of cycles increases which corrresponds to the merging
map m,

between complexes.

First let us show that m is a chain map. In order to express in an easy way let us
rename

L0 = and L1 =

Then at rth grade we have

Lr0
m−−−→ Lr1{1}

We need to consider the degree shift by 1 because when we define edge maps, we
mentioned m is a map of degree −1, so to have a degree 0 map we shift by 1.

Lr0 is itself a graded vector space Lr0 =
⊕
i

L0
r
i and similarly Lr1 =

⊕
j

L1
r
j . Note also

that Lr1{1}i = Lr1(i−1). And we have the following diagram:
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Then at the rth level diagram is anti-commutative:

Lr0
m−−−→ Lr1{1}ydr0 ydr1

Lr+1
0

m−−−→ Lr+1
1 {1}

To see this take an element v ∈ Lr0, for simplicity take v ∈ Lr0i then by diagram
chasing we see that the diagram is anti-commutative similar to anti-commutativity
of faces in the cube diagram. Therefore, m is a chain map of degree 0.

We claim that

is a cone construction Cone(m) with the differential map dCone(m) and also as vector
spaces we have the equality (7.5). The differential map dCone(m) sends

(v, w) 7→ (dL0(v),m(v) + dL1(w))

This is a chain map as we discussed in section 5.1 but let us verify that d2
Cone(m) = 0.

d(d(v, w)) = d(dL0(v),m(v) + dL1(w))

= (dL0dL0(v),mdL0(v) + dL1(m(v) + dL1(w)))

= (dL0dL0(v),mdl0(v) + dL1m(v) + dL1dL1(w))

= 0

the 0’s comes from L0 and L1 are chain complexes and the diagram above is anti-
commutative.
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Boundary maps of the cone Cone(m) and the complex are comptatible. A

basis element v in the rth chain group of goes to d(v) =
∑
|ε|=r

(−1)εdε(v). If it

is already in Lr0 then d(v) is restriction to dL0(v) but we also need to consider m(v).
Because by a 1-smoothing we may end up a vertex belonging to the cube diagram of
L1. Similarly if v ∈ Lr1 we need to consider m(v) too. Therefore compatible boundary
maps result isomorphic homology groups. So rather than working with the chain

complex we will work with the cone of m:

The complex Cone(m) has a subcomplex C ′ which is also a cone defined naturally
as

Remember that the complex JLK is direct sum of JLKr such that JLKr =
⊕
|α|=r

(V ⊗k{r})

where each tensor factor corresponds to a cycle in the smoothing. Mark each of
these cycles by an element of V and remember that V is a vector space generated by

{v+, v−}. Then denotes the subspace of with the cycle on the top
in the bracket is labeled by v+. Thus C ′ is a subcomplex of Cone(m). Note also that
by definition of the merging map m, v+ is a unit for m.

Let us denote L0+ = for simplicity. Now as v+ is unit for m, it then follows
m : L0+ → L1{1} is a quasi-isomorphism, so by the proposition 7.5.17 C ′ is acyclic
and by the proposition 7.5.15 we have H(Cone(m)) ' H(Cone(m)/C ′).

Define a map ϕ : Cone(m) → (L0/L0+ → 0). As Cone(m)r = Lr0 ⊕ Lr−1
1 so

that at the rth level it is ϕr : Lr0 ⊕ Lr−1
1 → Lr0/L0

r
+ ⊕ 0 as target space of ϕ is

also a cone. ϕr(v, w) = (v, 0), where v is the image in the quotient. this map is
a homomorphism and surjective at each r which can be seen easily. Take (v, w) ∈
Ker(ϕr) so ϕr(v, w) = (0, 0). For every w ∈ Lr−1

1 maps to 0 and v maps to 0 if
v ∈ Lr0+. So Kerϕr = Lr0+ ⊕ L

r−1
1 . Then it follows:

Cone(m)/C ′ ' (L0/L0+ → 0) ' L0/L0+ ' L1{1}

Note that V/v+ is generated only by v− and has + crossing (i.e., writhe number

of the crossing is +1). Thus when we change into C( ) we make height
and degree shifts as

[−n−]{n4−2n−}−−−−−−−−−→ C( )
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And for we have: J K[−n−]{n+ − 2n− − 1}{1} = J K[−n−]{n+ − 2n−}.

J K
[−n−]{n+−2n−}−−−−−−−−−→ C( )

Thus we will get isomorphic homologies from complexes Cone(m)/C ′ and L1{1}.
Moreover, we also have the isomorphism H(Cone(m)) ' H(Cone(m)/C ′). Then

under the first Reidemeister move we proved that H( ) ' H( ).

7.5.5.4 Invariance Under the R2

We want to see the difference in the homology H( ) under the 2nd Reidemeister
move. All diagrams from now on from the paper of Bar-Natan [3].

Let us compare the complexes J K and J K If we resolve every crossing
of C = J K we have:

If we rotate the diagram clockwise by an angle π/2 we will obtain a cube diagram.
For example direct sum of lower right and upper left corners correspond to the first
chain group. We can take a subcomplex of C ′ of C as

Note that m induce an isomorphism on the homology levels as v+ is unit for m.
Therefore C ′ is acyclic implying H(C) ' H(C/C ′). Let us consider the quotient
complex C/C ′

with subcomplex
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The quotient complex (C/C ′)/C ′′ is acyclic.

where the map ∆ is as isomorphism as v+ = 0 in the quotient. ∆ induces an isomor-
phism on homology then it follows (C/C ′)/C ′′ is acyclic.

By the proposition 7.5.15 we have H(C ′′) ' H(C/C ′). If we combine what we have
so far we get H(C) ' H(C/C ′) ' H(C ′′) where H(C ′′) corresponds to the homology of

the complex if we flatten the cube diagram of C ′′. By shifting degrees and
height accordingly as in the case of R1 we will have C( ) ' C( ) and they
will induce isomorphic homologies proving that H( ) ' H( ).

Second Proof: We will prove the invariance of H under the R2 in a different way.
This proof will be the key ingredient for the invariance of H under the R3. Rather
than using the edge maps of the cube diagram we will define a new map on the diag-
onal of the cube diagram to conclude the proof. Let us use the same notation.

Consider the complex C/C ′ :

The map ∆ on the left column is an isomorphism as v+ = 0 in the quotient.
We define a new map τ = d∗0 ◦ ∆−1 composing the edge map with ∆−1. con-

sider then the subcomplex C ′′′ of C/C ′ containing all α ∈ and all pairs

(β, τβ) ∈ ⊕

The map ∆ becomes bijective in the subcomplex C ′′′ implying C ′′′ is acyclic and
H(C/C ′) ' H((C/C ′)/C ′′′) follows. If we show that (C/C ′)/C ′′′ is isomorphic to C ′′ it
will finishes the proof. In the quotient (C/C ′)/C ′′′ lower left corner becomes trivial.
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Note that for every β in the upper left corner is identified with τβ in the lower right
corner. Then C ′′ is isomorphic to (C/C ′)/C ′′′ follows and the rest of the proof is same
in the first one.

7.5.5.5 Invariance Under the R3

We will prove the isomorphism of H under the R3 as a last part. It will be a sketch
basically, the result will follows by combining the techniques in 5.3 and 5.4. Let

us first consider the cube diagrams of and obtained by resolving every
crossing.

The bottom layers are isomorphic corresponding to the plane isotopy and the top
layers are also isomorphic by using the invariance under the R2. Let us reduce the
top layers to C ′′ subcomplex as in section 5.4. But we can not continue from here.
Even though the bottom and the top layers are isomorphic the maps connecting the
bottom and the top parts are not. So we can not conclude that the cube diagrams
are isomorphic. Let us use the second proof for the invariance under the R2.

We use the same notation as in the previous section. Reduce the top layers of
both cubes to the subcomplexes C ′ and C ′′′ and then consider the quotient complex
(C/C ′)/C ′′′. WE know the isomorphism on the homologies H(C) ' H((C/C ′)/C ′′′).
Then we have the following cubes

We claim that the two cubes are isomorphic. Define a map φ between two cubes
such that as the bottom layers are isomorphic φ does not change anything on the
bottom layers but let it transpose the top layers such that φ(β1, γ1) = (β2, γ2). This
will induce an isomorphism on complexes because the maps between the bottom and
the top levels are compatible such that the composition τ1 ◦ d1∗01 in the first cube
is same as the edge map d2∗10 in the second cube. By degree and height shifts in
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the complexes J K and J K they will be isomorphic. therefore under the R3 H
does not change and the proof of the main theorem is complete now. Note that other
versions of the Reidemeister moves like left twist version of R1, other resolving of R2,
and moving over for R3 can be proved similarly.

7.5.6 Example

So far we have developed the theory part of the Khovanov homology, now let us
see how all these machinery works on an example. We will compute the Khovanov
homology for the Hopf link for the chosen orientation as in the figure below. Let
L denote the diagram of the Hopf link. After resolving every crossing we have the
following cube diagram

and the following chain complex:

0 −−−→ V ⊗2 d0−−−→ V {1} ⊕ V {1} d1−−−→ V ⊗2{2} −−−→ 0

d0 is the map as a sum of merging maps m: d0 =
∑
|ε|=0

(−1)εdε = d∗0 + d0∗. Let us

understand the map on the basis elements.

0 −−−→ V ⊗ V d0−−−→ V {1} ⊕ V {1}

d0 :


v+ ⊗ v+ 7→ (v+, v+)

v+ ⊗ v− 7→ (v−, v−)

v− ⊗ v+ 7→ (v−, v−)

v− ⊗ v− 7→ (0, 0)

At first compute homology without degree and height shifts. Now let us find the
kernel of d0. Note that it is generated by v− ⊗ v− and v+ ⊗ v− − v− ⊗ v+. Thus

Kerd0 = 〈v− ⊗ v−, v+ ⊗ v− − v− ⊗ v+〉
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Image of the first map is 0 so

H0(JLK) = Kerd0/{0} = 〈v− ⊗ v−, v+ ⊗ v− − v− ⊗ v+〉

H0(JLK) = W0 ⊕W−2

where W0 = 〈v+ ⊗ v− − v− ⊗ v+〉 and W−2 = 〈v− ⊗ v−〉 then

qdimH0(JLK) = q0dimW0 + q−2dimW−2 = q0 + q−2

Let us now understand the first boundary map d1.

d1 =
∑
|ε|=1

(−1)εdε = (−1)εd1∗ + (−1)εd∗1 = (−1)0+1d1∗ + (−1)0d∗1 = d∗1 − d1∗

on the basis elements we have

V {1} ⊕ V {1} d1−−−→ V ⊗ V {2}

d1 :


(0, v+) 7→ v+ ⊗ v− + v− ⊗ v+

(0, v−) 7→ v− ⊗ v−
(v+, 0) 7→ −(v+ ⊗ v− + v− ⊗ v+)

(v−, 0) 7→ −(v− ⊗ v−)

Im(d0) = 〈(v−, v−), (v+, v+)〉

Ker(d1) = 〈(v+, 0) + (0, v+), (v−, 0) + (0, v−)〉
= 〈(v+, v+), (v−, v−)〉

H1(JLK) = Ker(d1)/Im(d0) = 〈(v+, v+), (v−, v−)〉/〈(v+, v+), (v−, v−)〉 ' {0}

qdimH1(JLK) = 0

Im(d1) = 〈v+ ⊗ v− + v− ⊗ v+, v− ⊗ v−〉 and d2 : V ⊗ V {2} → 0 maps everything to 0
then Ker(d2) = 〈v+ ⊗ v+, v+ ⊗ v−, v− ⊗ v+, v− ⊗ v−〉.

H2(JLK) = Ker(d2)/Im(d1) ' 〈v+ ⊗ v+, v+ ⊗ v− − v− ⊗ v+〉

Say W2 = 〈v+, v+〉 and W0 = 〈v+ ⊗ v− − v− ⊗ v+〉 then

qdimH2(JLK) = (q2dimW2 + q0dimW0)q2
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We should multiply via q2 asKer(d2) = V ⊗k{2} has degree shift by 2 then qdimH2(JLK) =
(q2 + q0)q2 = q4 + q2.

Note that C(L) = JLK[−n−]{n+ − 2n−} then observe:

Kh(L) =
∑
r

trqdimHr(C(L))

=
∑
r

trqdimC(L)r

=
∑
r

trqdim(JLK[−n−]{n+ − 2n−})

=
∑
r

trqn+−2n−qdimJLKr+n−

= qn+−2n−
∑
r

tr+n−t−n−qdimJLKr+n−

= qn+−2n−t−n−
∑
r

tr+n−qdimJLKr+n−

= qn+−2n−t−n−
∑
r

trqdimHr(JLK)

Therefore for L is the Hopf link after degree and height shifts and the chosen orien-
tation in the figure we have n− = 2 and n+ = 0.

Kh(L) = q−4t−2[t0(q0 + q−2) + t(0) + t2(q2 + q4)]

= q−4t−2[(1 + q−2) + t2q2 + t2q4]

= q−4t−2 + q−6t−2 + q−2 + 1

at t = −1 the Poincare polynomial becomes q−6 + q−4 + q−2 + 1 which is the unnor-
malized Jones polynomial of the Hopf link.

Remember that Ĵ(L) = (−1)n−qn+−2n−〈L〉 is the unnormalized Jones polynomial
where 〈L〉 =

∑
α

Vα(L) =
∑
α

(q + q−1)k(−q)r. If L is the diagram of the Hopf link

〈L〉 = q4 + q2 + 1 + q−2

Ĵ(L) = 1 + q−2 + q−4 + q−6

mathcing with our result above.

7.5.7 Further Remarks

There should be a question in mind about Khovanov homology. Is it a sufficient
link invariant? Can two nonisotopic links have the same homology groups? We
mentioned that Jones polynomial is not sensitive to mutation move, but Khovanov
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distinguishes mutations that swap arcs between link components [5]. However, odd
Khovanov homology and Khovanov homology over Z/2Z are mutation invariant [5].
On the other hand, knot Floer homology is sensitive to Conway mutation where
Khovanov homology fails in some cases. Euler characteristic of knot Floer is related
to Alexander polynomial and Euler characteristic of Khovanov homology is related
to Jones polynomial.
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