
Energy-Efficient and High-Performance Parallel Video

Decoding Techniques

by

Damla Kılıçarslan

A Thesis Submitted to the

Graduate School of Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Electrical and Computer Engineering

Koç University

May 2012

ii

Koc University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a master’s thesis by

Damla Kılıçarslan

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Date

A. Murat Tekalp, Ph. D. (Advisor)

Serdar Taşıran, Ph. D.

Çağatay Başdoğan, Ph. D.

iii

ABSTRACT

Emergence of high quality media applications results in larger data sizes as well as higher

bitrates of digital multimedia contents, and their significant share on the overall Internet

traffic. These lead to an increase in the energy consumption rates and performance

requirements for real-time video decoding. In this thesis, we propose parallel video

decoding solutions to provide real-time decoding performance with reduced energy

consumption on multi-core devices. Various approaches of parallelism at data and task

levels can be incorporated in video decoders, bringing efficiency in energy consumption

rates and/or performance. We offer and develop several approaches for the H.264 standard

including coarser-grained frame level and finer-grained macroblock level parallelism

approaches. The implementations were conducted on a shared memory multi-core platform

as an all software solution for real-time scalable video decoding. Faster real-time decoding

performance with reduced energy consumption on multi-core processors is achieved. As

future areas of research, further parallelization methods such as parallelism at slice level,

and parallel decoding of consecutive groups of pictures on the H.264/SVC decoder are

discussed.

iv

ÖZET

Yüksek çözünürlüklü video sistemlerinin yaygınlaşmasıyla sayısal çoklu ortam içerikleri,

daha büyük veri boyutları ve daha yüksek bit hızları gerektirmektedir. Bu durum çoklu

ortam oynatıcılarındaki güç tüketim oranlarının ve gerçek-zamanlı görüntü çözümleme

ihtiyacının artmasına sebep olmuştur. Bu yüksek lisans tezinde, çok çekirdekli cihazlarda

düşük güç tüketimi sağlamak amacıyla gerçek-zamanlı paralel görüntü çözümleme

yöntemleri önerilmektedir. Veri veya iş seviyesinde uygulanabilecek paralelleştirme

algoritmaları sayesinde video çözümlemedeki enerji verimliliğinin ve performansın

arttırılması mümkündür. Bu çalışmada paylaşımlı bellekte, çok çekirdekli bir platform

üzerinde koşan yazılım çözümlerinde daha hızlı gerçek-zamanlı çözümleme ve düşük

enerji tüketimi elde edilmiştir. İleriye dönük araştırma konuları olarak slice seviyesinde ve

ardışık görüntü grupları (GOP) seviyesinde paralel görüntü çözümleme yöntemleri de ele

alınmıştır.

v

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my advisor Prof. Murat Tekalp,

Dean of College of Engineering for his support and guidance during my M.Sc. study and

research. He has inspired me in many ways not only by helping me ground my research

efforts more firmly but also teaching me how to be passionate, focused and result-oriented

in what I do. I wish to express my sincere acknowledgement to Prof. Öznur Özkasap for

her guidance and advice throughout my studies. I am thankful for both of their

contributions in many different ways including ideas, time and funding to make my M.Sc.

experience more productive. I would also like to acknowledge Göktuğ Gürler, teaching and

research assistant at the Multimedia, Vision and Graphics Laboratory, for his ideas and

advice at the earlier stages of my thesis work.

I take this opportunity to acknowledge the funding sources that made my M.Sc. work

possible. I was funded by The Scientific & Technological Research Council of Turkey

(TÜBİTAK).

I am also greatly indebted to my employer Türk Telekom and my managers at Türk

Telekom Group R&D Directorate for supporting me as well as for giving me the valuable

time off from work to complete my studies. Without their understanding guidance and the

innovative environment offered at the workplace it would have been impossible to

accomplish this task.

Last but not least, I would like to thank my family; Emra Kılıçarslan and Adnan Kılıçarslan

for all their love, encouragement and patience from day one. To them, I dedicate this thesis.

vi

TABLE OF CONTENTS

List of Figures vii

Nomenclature viii

Chapter 1: Introduction 1

1.1 Motivation and Background on Parallel Video Decoding 1

1.2 Contributions of This Thesis 2

Chapter 2: Literature Review 4

 2.1 The H.264 Video Decoder 4

 2.2 Related Work on Multi-Threaded Video Encoding 6

 2.3 Related Work on Multi-Threaded Video Decoding 7

 2.4 Related Work on Low-Power Video Decoding 9

Chapter 3: Multi-Threaded Video Decoding Algorithms 10

 3.1 Macro-Block Level Parallelism 11

 3.2 Slice Level Parallelism 13

 3.3 Sequence Level Parallelism 13

Chapter 4: Energy-Efficiency and Performance Measurement Results 15

 4.1 Macroblock Level Parallelism Measurements 16

 4.2 Sequence Level Parallelism Measurements 18

Chapter 5: Conclusion 21

 5.1 Conclusion 21

 5.2 Future Areas of Research 22

Bibliography 23

Vita 25

vii

LIST OF FIGURES

Figure 1: Decoder Diagram of H.264 5

Figure 2: Hierarchical organization of H.264 video stream decomposition 6

Figure 3: Hierarchical structure of an encoded video sequence 10

Figure 4: Spatial dependencies between neighboring MBs 11

Figure 5: For a frame with MxN (width x height in MB) a) Decoding order for MBs and

their successor(s) b) Number of references for MBs 12

Figure 6: Splitting the original video in multiple threads to be decoded individually with

four threads 14

Figure 7: Power Meter used to measure Instantaneous Outlet Power Consumption

(WattsUp? PRO Meter) and a screenshot of its user interface 16

Figure 8: Net average power consumption rates in MB level parallelism 17

Figure 9: Net energy consumption amounts in MB level parallelism for decoding of

I-frames only 17

Figure 10: Speedups achieved in MB level parallelism for decoding of I-frames only 18

Figure 11: Net average power consumption rates in sequence level parallelism 19

Figure 12: Net energy consumption amounts in sequence level parallelism 20

Figure 13: Speedups achieved in sequence level parallelism 20

viii

NOMENCLATURE

AVC Advanced Video Coding

CMP Chip Multi-Processors

GOP Group of Pictures

HD High definition

MB Macroblock

MPEG Moving Picture Experts Group

MPI Message Passing Interface

NAL Network Abstraction Layer

P2P Peer-to-peer

RBSP Raw Byte Sequence Payload

SVC Scalable Video Coding

TLP Thread Level Parallelism

VCL Video Coding Layer

VOD Video on demand

Chapter 1: Introduction 1

INTRODUCTION

1.1 Background and Motivation on Parallel Video Decoding

Human beings are wired to take in the visual and dynamic content in their environment.

Our brains, anatomy and inborn sensory perception capabilities make us most easily drawn

to visible action. Video and similar multimedia applications consequently prove to be one

of the most effective, fast and pervasive ways to convey a message as part of the

communicative media environments we are exposed to everyday. The ubiquitous presence

of the Internet and digital content storage having defined the new age of connectivity led to

the rise of network streamed video and multimedia content. The sum of all forms of video

(TV, video on demand (VOD), Internet and Peer-to-Peer (P2P)) is expected to exceed 90

percent of global consumer traffic by 2014 [1]. With the emergence of high-definition

(HD) and multi-view video formats the quality and definitions of video contents are getting

more and more advanced as well. All these factors and the increasing end-user expectations

on multimedia technologies constitute higher performance and energy demands and bring

complexities to video codecs.

The increasing functionalities of embedded systems require higher power

consumptions. Similarly, increasing amount of information sent over network

communications results in enhanced compression algorithms to be applied to minimize the

amount of data transmitted. Enhanced video compression algorithms require more power

and computation complexity which in turn affects the overall performance of embedded

systems and thus end-user experience on mobile devices. In conjunction to this, chip

makers are constantly introducing multi-core chips for servers, desktops, laptops, post PC

devices and smartphones. Current transistor technology limits the power performance of

Chapter 1: Introduction 2

single-core processors in accordance with Moore’s law [2]. It is almost inevitable that

parallel computing will be dominant in most machines and models with the rising trend of

multi-core architectures. Every 3 years, the number of cores in chip multi-processors

(CMPs) is expected to be doubled [3]. Applying parallel coding techniques on video codecs

is only one aspect that comes along with the rising multi-threaded programming trend.

With the increasing complexities in video formats there is a great demand for better

performing, faster and less energy-demanding video encoders and decoders. Parallel

computing proves to be one of the most effective solutions in many ways. In addition to

providing extensive usage of processing power it also brings power saving and a smoother

video playback experience as well.

With the emergence of mobile technology platforms and devices battery life is

becoming a more crucial problem for designers. Applications that consume the least battery

on mobile devices are more preferable to others and the fact that playing videos consume a

significant amount of battery life on these devices makes it more critical to address this

problem.

1.2 Contributions of This Thesis

This thesis presents the various methods for achieving better performing, energy-

efficient video decoding by making use of multi-threaded architectures. Major

contributions involve analyzing the energy efficiency of different parallel decoding

algorithms. Existing parallel decoding algorithms either do not focus on the energy

efficiency of the proposed method or is not an all-software solution that runs on a multi-

core platform for the H.264/SVC video decoder.

The research presented in this thesis was published in the conference proceedings of

ACM 2
nd

 International Conference on Energy-Efficient Computing and Networking (E-

Chapter 1: Introduction 3

Energy 2011) which took place in Columbia University, New York between May 31 - June

1, 2011 [4].

Chapter 1 introduces the background and motivation for this research and main

contributions of this thesis. Chapter 2 briefly summarizes the H.264 video decoding

standard, reviews current literature on video coding and multi-threaded architectures and

explains the overall structure and standards of a video sequence. It describes the general

video coding models that have been standardized including MPEG-4, AVC/H.264 and

Scalable Video Decoding (SVC) with key encoder/decoder parameters. Chapter 3 is

sectioned into parts which propose possible parallel decoding methods. Chapter 4 first

explains the testbed settings and benchmarks that are used to test and analyze the

performance and energy-efficiency of the parallel decoding methods that are developed as

part of this research. It then provides the test results for each algorithm and compares them

with the original sequential decoding algorithm and with prior work done in the field.

Finally, Chapter 5 draws conclusions out of the work accomplished in the dissertation and

poses upcoming problems to be explained as part of future work.

Chapter 2: Literature Review 4

LITERATURE REVIEW

Prior research conducted on parallel video codecs mainly focus on the performance

of the decoder rather than its energy efficiency. The speedup, overhead and latency criteria

were inspected more than the overall power consumption rate of the device running it. Part

of the prior research carried out in this topic focuses on H.264/AVC standard whereas part

of it is only MPEG-2 compatible. Following is a brief summary of the related literature

survey.

2.1 The H.264 Video Decoding Standard

H.264/AVC is the latest video coding standard that can achieve flexibility and

interoperability among different application areas of video transmission. It covers two

layers; Video Coding Later (VCL), which is designed to efficiently represent video content

and Network Abstraction Layer (NAL), which formats the VCL representation by adding

appropriate headers so that it can be transmitted easily over various transport layers [5].

The encoder processes an input frame in units of macroblock (rectangular picture area

of 16x16 samples of luma component and 8x8 samples of each of the chroma components)

where each macroblock can be encoded in inter or intra mode. Within a macroblock, each

block (subdivisions of a macroblock) is predicted from spatially neighboring samples. The

prediction is subtracted from current macroblock and the residual block is transformed and

quantized to give entropy encoded coefficients.

Chapter 2: Literature Review 5

Figure 1 Decoder diagram of H.264

The decoder uses the header information of NAL units to determine the type of the

payload (Raw Byte Sequence Payload – RBSP). It then does the entropy decoding to

produce a set of quantized coefficients which are then scaled and inverse transformed. An

in-loop deblocking filter within the motion compensation helps reduce the visual artifacts

as shown in Figure 1.

The decomposition hierarchy of a video stream in H.264 is arranged in 6 main layers in

the following order: Video Sequence, Group of Pictures (GOP), Picture, Slice, Macroblock

and Block.

Chapter 2: Literature Review 6

Figure 2 Hierarchical organization of H.264 video stream decomposition

2.2 Related Work on Multi-Threaded Video Encoding

One of the noticeable studies that have been carried out on H.264 standard focuses

on the encoder side rather than the decoder side. A coarser grain implementation carried

out at slice, GOP and frame levels for the H.264 encoder was presented by Rodriguez et al.

in [6]. They propose a hierarchical parallelization of H.264 encoders well suited to low cost

clusters using MPI message passing parallelization at GOP and frame levels. They show

that GOP level parallelism can provide a good speed-up but comes at a cost of relatively

high latency. The slice level parallelism on the other hand gets less efficiency but with

lower latency. An optimization compromising between speedup and latency by combining

both approaches is formed.

Chapter 2: Literature Review 7

2.3 Related Work on Multi-Threaded Video Decoding

One of the novice research areas on the decoder side was carried out in [7]. It

exploits both the coarse grained parallelism approach at GOP level and the fine grained

parallelism within the pictures at slice level on the MPEG-2 decoder. In this work, a

comparative evaluation of methods is provided and very good speedups and locality

properties are demonstrated.

A similar GOP level parallelization without a start-code scanner for the H.264

decoder is proposed in [8] GOP-level parallelism provides high scalability but requires

more memory resources. The threads running in parallel to decode separate GOPs do not

have to wait for each other since this proposal assumes a closed GOP structure meaning

there aren’t any references between consecutive GOPs. The tests on a cluster of 5 machines

each with 2 processors and 4 cores show a linear speedup if there is no memory shortage.

When all the processes run on the cores of the same machine the speed up can reach up to

around 2.5 on 8 cores. This is due to the effect of cash population on a shared memory

device.

For the H.264 decoder finer grain approaches at MB level were examined in [9],

[10] and [11]. [9] Jikes et al. point out the inherently sequential nature of the control

intensive front end of the H.264 decoder and that preparsing could be a functional

parallelization technique to resolve this bottleneck. They propose two novel methods to

enhance the efficiency of this technique: (i) a custom preparsing technique to resolve

control dependencies in the input stream and expose MB level data parallelism, (ii) an MB

level scheduling technique to allocate and load balance MB rendering tasks. They managed

to achieve up to 60% speedup over dynamic scheduling and up to 15% speedup over static

compile time scheduling for more than four processors.

Chapter 2: Literature Review 8

In [10], Mesa et al. bring a closer perspective on the scalability of the MB level

parallel decoding techniques. They present a quantitative analysis of the main bottlenecks

of the application and estimate the acceleration levels that are required to make the MB-

level parallelism scalable. The strategy involves three steps: (i) creating a model for

predicting the maximum performance that can be obtained taking into account the variable

processing times and thread synchronization overhead, (ii) implementing the model on a

real multi-processor machine including a comparison of different scheduling strategies and

a profiling analysis for identifying the performance bottlenecks and (iii) identifying the

performance driven bottlenecks by making use of a trace-driven simulation methodology.

Another study that specializes in the scalability of MB-level parallel decoding is

[11]. In this study Meenderinck et al. propose a novel strategy, called 3D-Wave, which is

mainly based on the observation that inter-frame dependencies have a limited spatial range,

which allows certain MBs of consecutive frames to be decoded in parallel.

In [12] authors propose a way for better efficient coordination of parallel threads in

H.264/AVC decoder. The experimental results shows that the H.264/AVC decoder

proposed parallelization technique achieves 25% speedup compared to existing

parallelization techniques.

Baaklinni et.al. explore the natural existence of parallelism in H.264 decoder

software without modifying the encoder part. They propose a way for decoding the

luminance and chrominance signals in parallel. The results indicate that using 2 cores to

decode the luma and the chroma signals in parallel gives a gain of 15-20% of the decoding

processing time and their combination in a functional pipeline over four cores or more can

result in a gain of 60% compared to the original sequential execution [13].

Two new approaches are proposed by Samsung Electronics; software memory

throttling and fair load balancing. Software memory throttling limits the number of cores

involved in the parallel motion compensation to achieve power-saving and better speedup.

Chapter 2: Literature Review 9

The fair load balancing is applied on deblocking filter reduces the load imbalance due to

the original static partitioning method. This allows up to 24% speedup on two different

symmetric multicore platforms[14].

In the paper “Adaptive multithreaded H.264/AVC decoding”, Richter et. al.

examine two variants of multithreaded video decoding with distributed synchronization.

First one is optimized for minimum latency decoding and the latter maximizes the

throughput at the cost of higher latency. Experimental results demonstrate scaling abilities

of up to factor 3.5 on a quad-core machine and show that a 4k resolution decoding is

feasible in real-time on a mid-range PC hardware of that time (2009) [15].

2.4 Related Work on Low-Power Video Decoding

A study carried out by Soner Yaldiz, Alper Demir and Serdar Tasiran make use of

stochastic modeling and optimization for energy management in multi-core systems[16]. In

this study they capture spatial and temporal correlations among work load tasks and use

them in novel mathematical formulations to obtain energy efficiency. By making use of

dynamic voltage scaling, this method is applied on MPEG-2 video decoding and

experimental results show significant energy savings.

Contrary to the many all-software approaches listed above, there has been a

hardware based implementation that focuses on the power efficiency of the H.264 decoder

as well. An application-specific integrated circuit architecture was presented in [17]. In his

Ph.D. dissertation Finchelstein implemented several architecture optimizations that reduce

the system power of a high-definition video decoder.

Chapter 3: Multi-Threaded Video Decoding Algorithms 10

MULTI-THREADED VIDEO DECODING ALGORITHMS

The ubiquity of super high resolution and 3D video content demand high

computational power in video decoders. Task-level parallelism and data-level parallelism

offer solutions to this problem in different ways. Although task-level parallelism has

reached to saturation, data-level parallelism offers many different granularity levels. An

encoded video structure is composed of a hierarchical structure which includes

independently decodable parts namely; GOP, frame, slice, MB and block levels. Each

level has its own challenges and advantages.

Figure 3 Hierarchical structure of an encoded video sequence

Chapter 3: Multi-Threaded Video Decoding Algorithms 11

3.1 Macroblock Level Parallelism

H.264/AVC performs block-based video coding approach in which frames are

partitioned into rectangular areas, known as macroblocks (MB). The size of a MB is 16x16

pixels for luma layer and 8x8 for chroma layers for source sequences in 4:2:0 YUV format.

A MB is either spatially or temporally predicted depending on the type of the frame [5].

MBs of predictive (P) or bi-direction predictive (B) frames can be both spatially or

temporally predicted whereas the prediction for MBs in intra coded (I) frames is restricted

to spatial prediction.

Figure 4 Spatial dependencies between neighboring MBs

A certain decoding order was applied for spatially predicted MBs, as depicted in

Figure 4. Since encoding is performed in raster scan order, MBs can be decoded in the

same order. However, it is possible to decode the MBs in a different order as long as all the

dependent MBs are decoded prior to the current MB. Note that if MBs are temporally

predicted, there are no such restrictions for the decoding order of the remaining MBs.

Chapter 3: Multi-Threaded Video Decoding Algorithms 12

a) b)

Figure 5 For a frame with MxN (width x height in MB)

a) Decoding order for MBs and their successor(s)

b) Number of references for MBs

The dependency hierarchy enables decoding of multiple MBs simultaneously. One

such possibility is depicted in Figure 3(a), revealing that if MBs with decoding order 1 and

2 are processed then two MBs (numbered as 3) can be decoded simultaneously. Note that

the number of MBs that can be processed in parallel increases in the later stages of the

decoding process.

In contrast to the sequence level parallelism (described in Section 3.3), macroblock

level parallelism is a lot finer grain and requires considerable modifications on the decoder

source code. The Intel Thread Building Blocks (TBB) library was chosen to implement the

parallel algorithm [18]. Due to the dependencies shown in Figure 4 left, top-left, top and

top-right MBs should be fully decoded before the current MB can be started. The decoding

of MBs can be represented as a directed acyclic graph with each node of the graph

representing the corresponding decoding of that MB by one processor.

Decoding of each MB is considered as a task and the numbers in Figure 5(b)

represents the number of references required to start processing that task. Consequently, the

upper left most MB can be initiated as the first MB. Since it is the only MB with no

Chapter 3: Multi-Threaded Video Decoding Algorithms 13

requirements, its reference count is set to zero. Upon completion of a task, the reference

count of the successor MB(s), which are represented with the arrows in Figure 5(a), is

decremented. Thus, once the first MB is decoded, the second task (the MB next to it)

becomes available. Likewise, upon completion of the second MB, reference count of two

successor MBs is decremented making them available parallel decoding. The process

continues until all MBs are decoded in that frame.

3.2 Slice Level Parallelism

Macroblocks of a picture are organized in slices, each of which can be parsed

independently of other slices in a picture. This approach makes use of that arcthiecture to

offer parallel decoding of the slices of a picture.

The implementation was carried out by modifying the Open SVC H.264/AVC

decoder by using the Boost C++ Parallel Libraries.

3.3 Sequence Level Parallelism

In this approach, the YUV format of the original video sequence is split into n

threads. This splitting pattern allows load balancing over threads that perform the decoding

process later on. Each individual split YUV sequence is encoded using the MPEG-4,

AVC/H.264 or SVC standard and decoded separately on different cores simultaneously as

depicted in Figure 6.

Chapter 3: Multi-Threaded Video Decoding Algorithms 14

Figure 6 Splitting the original video in multiple threads to be

decoded individually with four threads

During the decoding process, a size 30 GOP buffer is used. Each independently

decodable stream is merged into one video sequence inside the frame buffer during the

course of decoding. When the buffer is full, the threads are put to sleep for one second

since there is no need to decode more frames until the previous ones are played. This

method allows the decoding process to slow down whenever it goes over the speed of the

actual display rate. Therefore, it avoids unnecessary CPU usage allowing further decrease

in the overall energy consumption. This approach trades off increased parallelism with the

encoding efficiency because consecutive frames are distributed over different cores. On the

other hand, if frame level parallelism is ordered according to the levels of hierarchy in

hierarchical B-pictures encoding, then the encoding efficiency will not be affected at the

cost of slightly reduced parallelism.

Chapter 4: Energy-Efficiency and Performance Measurement Results 15

ENERGY-EFFICIENCY AND PERFORMANCE MEASUREMENT RESULTS

The performance and energy consumption measurement tests were carried out on a

laptop running on Intel® CoreTM i7 720-QM quad-core processor at 1.60 GHz with 6M

cache. The Enhanced Intel Speedstep® Technology (EIST), Turbo Boost Technology and

the Intel® Hyper-Threading Technology offered with this processor provide the

adjustability on the processor performance to observe the changes in the energy

consumption for a given task.

Tests were conducted on input videos Iceberg (video with still background and

moving camera), Race (video with fast-moving objects and moving camera) and Rena

(video with still camera and background with moving figure) for the frame level and MB

level parallelism approaches.

In order to measure the overall energy consumption of the whole device, its

instantaneous outlet power consumption was measured over the time span while the

decoding takes place by making use of a commercially available power meter called

WattsUp PRO power meter [19]. The timing measurements were carried out by the

tick_count class of the Intel TBB library.

Figure 7 Power Meter used to measure Instantaneous Outlet Power Consumption (WattsUp? PRO Meter)

and a screenshot of its user interface

Chapter 4: Energy-Efficiency and Performance Measurement Results 16

4.1 Macroblock Level Parallelism Measurements

The three input videos Iceberg, Race and Rena were encoded using the SVC

extension of the H.264/AVC encoder with base and enhancement layers. The frame rate

was set to 30 fps and quantization parameters of level 0 and 1 were 46 and 34 respectively.

Figure 8 shows the power consumption of the decoding process measured using a power

meter when the player is switched off.

The macroblock level parallelism approach offered a relatively smaller energy

efficiency difference compared to frame level parallelism since the overall effect of the

region parallelized in decoding of MBs (I-frames only) had a minor impact on the overall

decoding performance. When compared to previous work carried out in MB level parallel

decoding methods the speedups are consistent with the static scheduling average speedup

results up to 8 cores presented in [9] and [10]. This resulted in a smaller improvement on

percentage changes of the energy consumption rates of the decoder.

The timing measurement sets carried out in this section observe the performance

change introduced with parallel MB decoding. Speedups calculated with respect to the

original Open SVC decoder running of sequential MB decoding algorithm for 2, 4 and 8

threads are shown in Figure 10.

Chapter 4: Energy-Efficiency and Performance Measurement Results 17

Figure 8 Net average power consumption rates in MB level parallelism

Figure 9 Net energy consumption amounts in MB level parallelism for decoding of I-frames only

20

22

24

26

28

30

32

0 2 4 6 8 10

N
e

t
P

o
w

e
r

C
o

n
su

m
p

ti
o

n
 (

w
at

ts
)

Number of threads

iceberg

race

rena

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10

N
e

t
En

e
rg

y
C

o
n

su
m

p
ti

o
n

 (
Jo

u
le

)

Number of Threads

iceberg

race

rena

Chapter 4: Energy-Efficiency and Performance Measurement Results 18

Figure 10 Speedups achieved in MB level parallelism for decoding of I-frames only

4.2 Sequence Level Parallelism Measurements

The three input videos Iceberg, Race and Rena were encoded from n split video

sequences using the MVC mode with a quantization parameter of 22 and frame rate of 30

fps. The power consumption rate measurements were carried out by a power meter over the

course of the whole decoding process as the decoded frames were being played at the same

time.

The average idle power consumption rate of the laptop was taken to be 30 watts

throughout the measurements. Figure 11 shows net power consumption rates per number of

threads that are calculated by subtracting the idle power from the average instantaneous

power consumption rates throughout the decoding process.

This approach trades off increased parallelism with the encoding efficiency since

consecutive frames of the original video sequence need to be distributed over different

cores. However, this approach offers better load balancing among threads. Since similar

frames are decoded over different cores, each core gets a balanced amount of tasks bringing

0,5

1

1,5

2

2,5

3

3,5

0 2 4 6 8 10

Sp
e

e
d

u
p

Number of threads

iceberg

race

rena

Chapter 4: Energy-Efficiency and Performance Measurement Results 19

a more efficient parallelism approach. The energy measurement results indicate that with 8

threads 20% power efficiency can be achieved using this technique and elapsed times for

the complete decoding process decrease considerably.

To observe the true effect of parallelism, the elapsed times included only the time

span for the decoding portion of the whole process excluding the frame buffer storage time

and display times. Speedups computed for decoder running on 2, 4 and 8 threads are shown

in Figure 13.

Figure 11 Net average power consumption rates in sequence level parallelism

20

22

24

26

28

30

32

34

36

0 2 4 6 8 10

N
e

t
P

o
w

e
r

co
n

su
m

p
ti

o
n

 (
w

at
ts

)

Number of threads

iceberg

race

rena

Chapter 4: Energy-Efficiency and Performance Measurement Results 20

Figure 10 Net energy consumption amounts in sequence level parallelism

Figure 13 Speedups achieved in sequence level parallelism

20

70

120

170

220

270

0 2 4 6 8 10

N
e

t
En

e
rg

y
C

co
n

su
m

p
ti

o
n

 (
Jo

u
le

s)

Number of threads

iceberg

race

rena

0,90

1,10

1,30

1,50

1,70

1,90

0 2 4 6 8 10

Sp
e

e
d

u
p

s

Number of threads

iceberg

race

rena

Chapter 5: Conclusion 21

CONCLUSION

5.1 Conclusion

Frame level and macroblock level parallelization techniques described in this work

are at the two extremes of granularity scale of parallelism for video decoding. The frame

level approach is based more on data-level parallelism, which is coarse-grained, and

relatively simpler compared to other task-based parallelism techniques. On the other hand,

the macroblock level parallelism approach is a lot finer grain and thus requires more

complicated algorithms to achieve similar or better performance speed-up and energy

savings.

In order to make an accurate comparison of both techniques the decoding of B-

frames have to be parallelized in addition to the parallelization of I-frames in macroblock

level parallelization approach. Only then graphs 8, 9, 10 and 11, 12, 13 will be truly

comparable. However since the decoding of I-frames are the most computationally

demanding portion of the video sequence the results are still effective enough to outline a

few major differences between the two approaches. One of these differences is that

speedups in macroblock level are more likely to reach saturation faster than in frame level

approach as the number of threads increases. This is due the overhead introduced by

parallelization at such finer-grained levels like macroblocks.

Parallelization of video decoders at the software level requires careful

synchronization between the dependent tasks in a video decoder. Most of the time, high

level implementations are not sufficient and major modifications on the original video

decoder source code are required. The key strategy for determining the regions to

parallelize inside the decoder relies on careful assessment of the function declarations and

the execution flow of the program.

Chapter 5: Conclusion 22

A careful optimization between the choice of level at which parallelism will be

applied and the overhead caused after it, can lead to great impacts both in terms of

performance and energy efficiency in video decoders. Since video applications have

become a major part of the global Internet traffic, developing better performing and more

energy efficient video decoders will lead to a more fulfilling playback experience at the

user-end, longer battery life sustained on mobile devices and, most importantly, massive

amounts of energy saving on the global video traffic per user each year.

5.2 Future Areas of Research

Further enhancements on the macroblock level of parallelism may include

parallelizing B-frames’ macroblock decoding functionality. Since B- frames are not intra-

predictable frames, the dependencies of MBs on other frames will be more challenging

than parallel MB decoding on I-frames only. This feature will surely bring additional

performance and energy efficiency when implemented with low overhead and careful load

balancing. Moving on to higher levels from the macroblock decoding region, slice level

parallelism and GOP level parallelism are other intriguing areas of research multi-threaded

video decoding techniques.

Scalability of slice level approach is limited since the number of slices is decided by

the encoder. Additionally, increased number of slices within a frame increases the bit rate

as well. GOP level on the other hand do not require synchronization between threads since

GOPs are entirely independent. This approach may offer higher scalability however it

requires considerable amount of memory and thus may result in latency during real-time

play back.

Bibliography 23

BIBLIOGRAPHY

[1] Cisco Visual Networking Index: Forecast and Methodology, 06 02, 2010.

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/whit

e_paper_c11-481360_ns827_Networking_Solutions_White_Paper.html

[2] D. Geer, Industry trends: Chip makers Turn to Multicore Processors, Computer, vol.

38, no. 5 (2005), 11-13.

[3] P. Stenstrom, Chip-multiprocessing and beyond, The Twelfth International Symposium

on High-Performance Computer Architecture (2006), 109.

[4] D. Kılıçarslan, C. G. Gürler, Ö. Özkasap, A. M. Tekalp, Energy Efficient Video

Decoding on Multicore Devices, ACM 2nd International Conference on Energy-

Efficient Computing and Networking (e-Energy) (2011).

[5] T. Wiegand, G. J. Sullivan, G. Bjontegaard and A. Luthra, Overview of the H.264 /

AVC Video Coding Standard, IEEE Transactions on Circuits and Systems for Video

Technology, (2003), 560-576.

[6] A. Rodriguez, A. Gonzalez, M. P. Malumbres, Hierarchical Parallelization of an

H.264/AVC Video Encoder Parallel Computing in Electrical Engineering, PAR ELEC,

(2006), 363-368.

[7] A. Bilas, J. Fritts, J. Pal, and S. Paper, Real-Time Parallel MPEG-2 Decoding in

Software, 11th International Parallel Processing Symposium (IPPS) (1997).

[8] A. Gurhanli, C. C. P. Chen, S. H. Hung; Grad. Inst. of Electron. Eng., Nat. Taiwan

Univ., Taipei, Taiwan Signal Processing Systems (ICSPS), (2010), 627-630.

[9] C. Jike, N. Satish, B. Catanzaro, K. Ravindran, K. Keutzer, Efficient Parallelization of

H.264 Decoding with Macro Block Level Scheduling, IEEE International Conference

on Multimedia and Expo, (2007), 1874-1877.

[10] M. Mesa, A. Ramirez, X. Martorell, E. Ayguade and M. Valero, Scalability of

Macroblock-level Parallelism for H.264 Decoding, ACACES. (2008).

Bibliography 24

[11] C.H. Meenderinck, A. Azevedo, M. Alvarez, B.H.H. Juurlink, A.Ramirez. Parallel

Scalability of H.264, Proceedings of the first Workshop on Programmability Issues for

Multi-Core Computers, Geteborg, Sweden (2008).

[12] S. H. Jo, S. Jo and Y. H. Song, Efficient Coordination of Parallel Threads of

H.264/AVC Decoder for Performance Improvement (2010).

[13] E. Baaklini, H. Sbeity, S. Niar, and N. Amaneddine, H.264 Color Components

Video Decoding Parallelization on Multi-core Processors. In Proceedings of the 2010

13th Euromicro Conference on Digital System Design: Architectures, Methods and

Tools (DSD '10). IEEE Computer Society, Washington, DC, USA (2010), 785-790.

[14] K. H. Sihn, H. Baik, J.T. Kim, S. Bae and H. J. Song, Software Lab., Samsung

Electron. Acoustics, Speech and Signal Processing, ICASSP (2009), 2017 – 2020.

[15] H. Richter, B. Stabernack, and E. Müller, Adaptive multithreaded H.264/AVC

decoding, In Proceedings of the 43rd Asilomar conference on Signals, systems and

computers IEEE Press, Piscataway, NJ, USA (2009), 886-890.

[16] S. Yaldiz, A. Demir and S. Tasiran, Stochastic Modeling and Optimization for

Energy Management in Multi-Core Systems: A Video Decoding Case Study, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, (2008).

[17] D. F. Finchelstein, Low-Power Techniques for Video Decoding, Ph.D. Thesis, MIT,

2009.

[18] Intel ® Threading Building Blocks Tutorial

 http://www.threadingbuildingblocks.org/documentation.php

[19] WattsUp Products.

 https://www.wattsupmeters.com/secure/products.php?pn=0

DAMLA KILIÇARSLAN
Türk Telekom Ar-Ge, İTÜ Ayazağa ARI-4 Binası, Maslak İstanbul TURKEY

+90532 - 236 - 4814 • damlakilicarslan@gmail.com

Birthday: June 25
th

 1988

Experience
R&D Engineer, Türk Telekom – Istanbul, Turkey May 2011 – Present
▪ Assisting in the transfer of developed technology to business units including software,

documentation and results within the University Collaboration Team

▪ Managing multiple R&D projects; reorient the projects based on business perspective

Intern, Ericsson – Ankara, Turkey June 2009

▪ Assistance for the sales and management department of the regional office

Intern, Southern California Edison – Santa Ana, CA June – Sep. 2008

▪ Assistance for Asset Management & System Reliability department

Intern, Likom Defense Mechanisms and Programming Co., Ankara, Turkey June – July 2007

▪ Database construction and technical report preparation for product development department

Education
Koç University, İstanbul, Turkey 2009 – 2011

▪ M.Sc. in Electrical and Computer Engineering / GPA: 3.67

▪ TUBITAK scholarship and Koç University M.Sc. Graduate scholarship

▪ Researcher at Multimedia Vision and Graphics Lab for Dean Professor Murat Tekalp

▪ Teaching Assistant for Signals and Systems, Advanced Programming, Network Security classes

▪ Publication: Kılıçarslan, D. Gürler, C. G., Özkasap, Ö., Tekalp, A. M. 2011. Energy Efficient

Video Decoding on Multi-Core Devices. In Proceedings of the 2nd International Conference on

Energy-Efficient Computing and Networking (e-Energy '11). ACM, New York, NY, USA.

Université Paris – Sorbonne Paris IV, Paris, France summer 2009

▪ French language courses (Cours de Civilisation Française de la Sorbonne Certificat)

Bilkent University, Ankara, Turkey

2005 – 2009

▪ B.Sc. in Electrical and Electronics Engineering / GPA: 3.47

▪ 80% Merit Scholarship - High Honor Student

University of California, Los Angeles 2007 – 2008

▪ Exchange Student in Electrical Engineering - Dean’s Honor List /GPA: 3.48

▪ Lab assistant at Center of High Frequency Electronics

▪ Teaching Assistant for Engineering Physics class and summer researcher at Innovate Lab

Istituto Italiano di Cultura di Ankara, Ankara, Turkey 2006 – 2008

Europass, Florence, Italy and Cultura Italiana, Bologna, Italy summer 2006 & 2007

▪ Advanced level Italian language courses (Certificato di Italiano come Lingua Straniera)

TED Ankara College Private High School Foundation Ankara, Turkey 2002 – 2005

▪ Turkish Ministry of Education High School Diploma: 4.98/5.00

▪ International Baccalaureate Bilingual Diploma

Computer Skills
Programming languages: C, C++, Objective-C, Java, J2ME, MATLAB

Other: Microsoft Office, Linux OS, Mac OS, iOS, Adobe Photoshop, iPhone application

development

Languages
 English (bilingual), Turkish (native), Italian (fluent), French (intermediate)

