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ABSTRACT 

 

Emergence of high quality media applications results in larger data sizes as well as higher 

bitrates of digital multimedia contents, and their significant share on the overall Internet 

traffic. These lead to an increase in the energy consumption rates and performance 

requirements for real-time video decoding. In this thesis, we propose parallel video 

decoding solutions to provide real-time decoding performance with reduced energy 

consumption on multi-core devices. Various approaches of parallelism at data and task 

levels can be incorporated in video decoders, bringing efficiency in energy consumption 

rates and/or performance. We offer and develop several approaches for the H.264 standard 

including coarser-grained frame level and finer-grained macroblock level parallelism 

approaches. The implementations were conducted on a shared memory multi-core platform 

as an all software solution for real-time scalable video decoding. Faster real-time decoding 

performance with reduced energy consumption on multi-core processors is achieved. As 

future areas of research, further parallelization methods such as parallelism at slice level, 

and parallel decoding of consecutive groups of pictures on the H.264/SVC decoder are 

discussed. 
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ÖZET 

 

Yüksek çözünürlüklü video sistemlerinin yaygınlaşmasıyla sayısal çoklu ortam içerikleri, 

daha büyük veri boyutları ve daha yüksek bit hızları gerektirmektedir. Bu durum çoklu 

ortam oynatıcılarındaki güç tüketim oranlarının ve gerçek-zamanlı görüntü çözümleme 

ihtiyacının artmasına sebep olmuştur. Bu yüksek lisans tezinde, çok çekirdekli cihazlarda 

düşük güç tüketimi sağlamak amacıyla gerçek-zamanlı paralel görüntü çözümleme 

yöntemleri önerilmektedir. Veri veya iş seviyesinde uygulanabilecek paralelleştirme 

algoritmaları sayesinde video çözümlemedeki enerji verimliliğinin ve performansın 

arttırılması mümkündür. Bu çalışmada paylaşımlı bellekte, çok çekirdekli bir platform 

üzerinde koşan yazılım çözümlerinde daha hızlı gerçek-zamanlı çözümleme ve düşük 

enerji tüketimi elde edilmiştir. İleriye dönük araştırma konuları olarak slice seviyesinde ve 

ardışık görüntü grupları (GOP) seviyesinde paralel görüntü çözümleme yöntemleri de ele 

alınmıştır.  
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INTRODUCTION 

 

1.1 Background and Motivation on Parallel Video Decoding 

 

Human beings are wired to take in the visual and dynamic content in their environment. 

Our brains, anatomy and inborn sensory perception capabilities make us most easily drawn 

to visible action. Video and similar multimedia applications consequently prove to be one 

of the most effective, fast and pervasive ways to convey a message as part of the 

communicative media environments we are exposed to everyday. The ubiquitous presence 

of the Internet and digital content storage having defined the new age of connectivity led to 

the rise of network streamed video and multimedia content. The sum of all forms of video 

(TV, video on demand (VOD), Internet and Peer-to-Peer (P2P)) is expected to exceed 90 

percent of global consumer traffic by 2014 [1]. With the emergence of high-definition 

(HD) and multi-view video formats the quality and definitions of video contents are getting 

more and more advanced as well. All these factors and the increasing end-user expectations 

on multimedia technologies constitute higher performance and energy demands and bring 

complexities to video codecs.   

The increasing functionalities of embedded systems require higher power 

consumptions. Similarly, increasing amount of information sent over network 

communications results in enhanced compression algorithms to be applied to minimize the 

amount of data transmitted. Enhanced video compression algorithms require more power 

and computation complexity which in turn affects the overall performance of embedded 

systems and thus end-user experience on mobile devices. In conjunction to this, chip 

makers are constantly introducing multi-core chips for servers, desktops, laptops, post PC 

devices and smartphones. Current transistor technology limits the power performance of 
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single-core processors in accordance with Moore’s law [2]. It is almost inevitable that 

parallel computing will be dominant in most machines and models with the rising trend of 

multi-core architectures. Every 3 years, the number of cores in chip multi-processors 

(CMPs) is expected to be doubled [3]. Applying parallel coding techniques on video codecs 

is only one aspect that comes along with the rising multi-threaded programming trend. 

With the increasing complexities in video formats there is a great demand for better 

performing, faster and less energy-demanding video encoders and decoders. Parallel 

computing proves to be one of the most effective solutions in many ways. In addition to 

providing extensive usage of processing power it also brings power saving and a smoother 

video playback experience as well.  

With the emergence of mobile technology platforms and devices battery life is 

becoming a more crucial problem for designers. Applications that consume the least battery 

on mobile devices are more preferable to others and the fact that playing videos consume a 

significant amount of battery life on these devices makes it more critical to address this 

problem.  

1.2 Contributions of This Thesis 

 

This thesis presents the various methods for achieving better performing, energy-

efficient video decoding by making use of multi-threaded architectures. Major 

contributions involve analyzing the energy efficiency of different parallel decoding 

algorithms. Existing parallel decoding algorithms either do not focus on the energy 

efficiency of the proposed method or is not an all-software solution that runs on a multi-

core platform for the H.264/SVC video decoder.  

The research presented in this thesis was published in the conference proceedings of 

ACM 2
nd

 International Conference on Energy-Efficient Computing and Networking (E-
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Energy 2011) which took place in Columbia University, New York between May 31 - June 

1, 2011 [4]. 

Chapter 1 introduces the background and motivation for this research and main 

contributions of this thesis. Chapter 2 briefly summarizes the H.264 video decoding 

standard, reviews current literature on video coding and multi-threaded architectures and 

explains the overall structure and standards of a video sequence. It describes the general 

video coding models that have been standardized including MPEG-4, AVC/H.264 and 

Scalable Video Decoding (SVC) with key encoder/decoder parameters. Chapter 3 is 

sectioned into parts which propose possible parallel decoding methods. Chapter 4 first 

explains the testbed settings and benchmarks that are used to test and analyze the 

performance and energy-efficiency of the parallel decoding methods that are developed as 

part of this research. It then provides the test results for each algorithm and compares them 

with the original sequential decoding algorithm and with prior work done in the field. 

Finally, Chapter 5 draws conclusions out of the work accomplished in the dissertation and 

poses upcoming problems to be explained as part of future work. 

 

 

 



 

 

Chapter 2: Literature Review    4 

 

 

LITERATURE REVIEW  

 

Prior research conducted on parallel video codecs mainly focus on the performance 

of the decoder rather than its energy efficiency. The speedup, overhead and latency criteria 

were inspected more than the overall power consumption rate of the device running it. Part 

of the prior research carried out in this topic focuses on H.264/AVC standard whereas part 

of it is only MPEG-2 compatible. Following is a brief summary of the related literature 

survey.  

 

2.1 The H.264 Video Decoding Standard  

 

H.264/AVC is the latest video coding standard that can achieve flexibility and 

interoperability among different application areas of video transmission. It covers two 

layers; Video Coding Later (VCL), which is designed to efficiently represent video content 

and Network Abstraction Layer (NAL), which formats the VCL representation by adding 

appropriate headers so that it can be transmitted easily over various transport layers [5]. 

The encoder processes an input frame in units of macroblock (rectangular picture area 

of 16x16 samples of luma component and 8x8 samples of each of the chroma components) 

where each macroblock can be encoded in inter or intra mode. Within a macroblock, each 

block (subdivisions of a macroblock) is predicted from spatially neighboring samples. The 

prediction is subtracted from current macroblock and the residual block is transformed and 

quantized to give entropy encoded coefficients.  
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Figure 1 Decoder diagram of H.264 

 

The decoder uses the header information of NAL units to determine the type of the 

payload (Raw Byte Sequence Payload – RBSP). It then does the entropy decoding to 

produce a set of quantized coefficients which are then scaled and inverse transformed. An 

in-loop deblocking filter within the motion compensation helps reduce the visual artifacts 

as shown in Figure 1. 

The decomposition hierarchy of a video stream in H.264 is arranged in 6 main layers in 

the following order: Video Sequence, Group of Pictures (GOP), Picture, Slice, Macroblock 

and Block. 
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Figure 2 Hierarchical organization of H.264 video stream decomposition 

 

2.2 Related Work on Multi-Threaded Video Encoding 

 

One of the noticeable studies that have been carried out on H.264 standard focuses 

on the encoder side rather than the decoder side.  A coarser grain implementation carried 

out at slice, GOP and frame levels for the H.264 encoder was presented by Rodriguez et al. 

in [6]. They propose a hierarchical parallelization of H.264 encoders well suited to low cost 

clusters using MPI message passing parallelization at GOP and frame levels. They show 

that GOP level parallelism can provide a good speed-up but comes at a cost of relatively 

high latency. The slice level parallelism on the other hand gets less efficiency but with 

lower latency. An optimization compromising between speedup and latency by combining 

both approaches is formed.   
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2.3 Related Work on Multi-Threaded Video Decoding 

 

One of the novice research areas on the decoder side was carried out in [7]. It 

exploits both the coarse grained parallelism approach at GOP level and the fine grained 

parallelism within the pictures at slice level on the MPEG-2 decoder. In this work, a 

comparative evaluation of methods is provided and very good speedups and locality 

properties are demonstrated. 

A similar GOP level parallelization without a start-code scanner for the H.264 

decoder is proposed in [8] GOP-level parallelism provides high scalability but requires 

more memory resources. The threads running in parallel to decode separate GOPs do not 

have to wait for each other since this proposal assumes a closed GOP structure meaning 

there aren’t any references between consecutive GOPs. The tests on a cluster of 5 machines 

each with 2 processors and 4 cores show a linear speedup if there is no memory shortage. 

When all the processes run on the cores of the same machine the speed up can reach up to 

around 2.5 on 8 cores. This is due to the effect of cash population on a shared memory 

device.  

For the H.264 decoder finer grain approaches at MB level were examined in [9], 

[10] and [11]. [9] Jikes et al. point out the inherently sequential nature of the control 

intensive front end of the H.264 decoder and that preparsing could be a functional 

parallelization technique to resolve this bottleneck. They propose two novel methods to 

enhance the efficiency of this technique: (i) a custom preparsing technique to resolve 

control dependencies in the input stream and expose MB level data parallelism, (ii) an MB 

level scheduling technique to allocate and load balance MB rendering tasks. They managed 

to achieve up to 60% speedup over dynamic scheduling and up to 15% speedup over static 

compile time scheduling for more than four processors.  
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In [10], Mesa et al. bring a closer perspective on the scalability of the MB level 

parallel decoding techniques. They present a quantitative analysis of the main bottlenecks 

of the application and estimate the acceleration levels that are required to make the MB-

level parallelism scalable. The strategy involves three steps: (i) creating a model for 

predicting the maximum performance that can be obtained taking into account the variable 

processing times and thread synchronization overhead, (ii) implementing the model on a 

real multi-processor machine including a comparison of different scheduling strategies and 

a profiling analysis for identifying the performance bottlenecks and (iii) identifying the 

performance driven bottlenecks by making use of a trace-driven simulation methodology.  

Another study that specializes in the scalability of MB-level parallel decoding is 

[11]. In this study Meenderinck et al. propose a novel strategy, called 3D-Wave, which is 

mainly based on the observation that inter-frame dependencies have a limited spatial range, 

which allows certain MBs of consecutive frames to be decoded in parallel. 

In [12] authors propose a way for better efficient coordination of parallel threads in 

H.264/AVC decoder. The experimental results shows that the H.264/AVC decoder 

proposed parallelization technique achieves 25% speedup compared to existing 

parallelization techniques.   

Baaklinni et.al. explore the natural existence of parallelism in H.264 decoder 

software without modifying the encoder part. They propose a way for decoding the 

luminance and chrominance signals in parallel. The results indicate that using 2 cores to 

decode the luma and the chroma signals in parallel gives a gain of 15-20% of the decoding 

processing time and their combination in a functional pipeline over four cores or more can 

result in a gain of 60% compared to the original sequential execution [13].  

Two new approaches are proposed by Samsung Electronics; software memory 

throttling and fair load balancing. Software memory throttling limits the number of cores 

involved in the parallel motion compensation to achieve power-saving and better speedup. 
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The fair load balancing is applied on deblocking filter reduces the load imbalance due to 

the original static partitioning method. This allows up to 24% speedup on two different 

symmetric multicore platforms[14].   

In the paper “Adaptive multithreaded H.264/AVC decoding”, Richter et. al. 

examine two variants of multithreaded video decoding with distributed synchronization. 

First one is optimized for minimum latency decoding and the latter maximizes the 

throughput at the cost of higher latency. Experimental results demonstrate scaling abilities 

of up to factor 3.5 on a quad-core machine and show that a 4k resolution decoding is 

feasible in real-time on a mid-range PC hardware of that time (2009) [15]. 

2.4 Related Work on Low-Power Video Decoding  

 

A study carried out by Soner Yaldiz, Alper Demir and Serdar Tasiran make use of 

stochastic modeling and optimization for energy management in multi-core systems[16]. In 

this study they capture spatial and temporal correlations among work load tasks and use 

them in novel mathematical formulations to obtain energy efficiency. By making use of 

dynamic voltage scaling, this method is applied on MPEG-2 video decoding and 

experimental results show significant energy savings.   

Contrary to the many all-software approaches listed above, there has been a 

hardware based implementation that focuses on the power efficiency of the H.264 decoder 

as well. An application-specific integrated circuit architecture was presented in [17]. In his 

Ph.D. dissertation Finchelstein implemented several architecture optimizations that reduce 

the system power of a high-definition video decoder. 

 



 

 

Chapter 3: Multi-Threaded Video Decoding Algorithms   10 

 

 

MULTI-THREADED VIDEO DECODING ALGORITHMS  

 

  

 

  

The ubiquity of super high resolution and 3D video content demand high 

computational power in video decoders. Task-level parallelism and data-level parallelism 

offer solutions to this problem in different ways.  Although task-level parallelism has 

reached to saturation, data-level parallelism offers many different granularity levels. An 

encoded video structure is composed of a hierarchical structure which includes 

independently decodable parts namely; GOP, frame, slice, MB and block levels.  Each 

level has its own challenges and advantages.  

 

 

Figure 3 Hierarchical structure of an encoded video sequence 
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3.1 Macroblock Level Parallelism  

  

H.264/AVC performs block-based video coding approach in which frames are 

partitioned into rectangular areas, known as macroblocks (MB). The size of a MB is 16x16 

pixels for luma layer and 8x8 for chroma layers for source sequences in 4:2:0 YUV format. 

A MB is either spatially or temporally predicted depending on the type of the frame [5]. 

MBs of predictive (P) or bi-direction predictive (B) frames can be both spatially or 

temporally predicted whereas the prediction for MBs in intra coded (I) frames is restricted 

to spatial prediction. 

 

Figure 4 Spatial dependencies between neighboring MBs  

 

A certain decoding order was applied for spatially predicted MBs, as depicted in 

Figure 4. Since encoding is performed in raster scan order, MBs can be decoded in the 

same order. However, it is possible to decode the MBs in a different order as long as all the 

dependent MBs are decoded prior to the current MB. Note that if MBs are temporally 

predicted, there are no such restrictions for the decoding order of the remaining MBs. 
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a)     b) 

Figure 5 For a frame with MxN (width x height in MB) 

a) Decoding order for MBs and their successor(s) 

b) Number of references for MBs 

 

The dependency hierarchy enables decoding of multiple MBs simultaneously. One 

such possibility is depicted in Figure 3(a), revealing that if MBs with decoding order 1 and 

2 are processed then two MBs (numbered as 3) can be decoded simultaneously. Note that 

the number of MBs that can be processed in parallel increases in the later stages of the 

decoding process. 

In contrast to the sequence level parallelism (described in Section 3.3), macroblock 

level parallelism is a lot finer grain and requires considerable modifications on the decoder 

source code. The Intel Thread Building Blocks (TBB) library was chosen to implement the 

parallel algorithm [18]. Due to the dependencies shown in Figure 4 left, top-left, top and 

top-right MBs should be fully decoded before the current MB can be started. The decoding 

of MBs can be represented as a directed acyclic graph with each node of the graph 

representing the corresponding decoding of that MB by one processor. 

Decoding of each MB is considered as a task and the numbers in Figure 5(b) 

represents the number of references required to start processing that task. Consequently, the 

upper left most MB can be initiated as the first MB. Since it is the only MB with no 
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requirements, its reference count is set to zero. Upon completion of a task, the reference 

count of the successor MB(s), which are represented with the arrows in Figure 5(a), is 

decremented. Thus, once the first MB is decoded, the second task (the MB next to it) 

becomes available. Likewise, upon completion of the second MB, reference count of two 

successor MBs is decremented making them available parallel decoding. The process 

continues until all MBs are decoded in that frame. 

3.2 Slice Level Parallelism  

 

Macroblocks of a picture are organized in slices, each of which can be parsed 

independently of other slices in a picture. This approach makes use of that arcthiecture to 

offer parallel decoding of the slices of a picture. 

The implementation was carried out by modifying the Open SVC H.264/AVC 

decoder by using the Boost C++ Parallel Libraries.  

 

3.3 Sequence Level Parallelism  

 

In this approach, the YUV format of the original video sequence is split into n 

threads. This splitting pattern allows load balancing over threads that perform the decoding 

process later on. Each individual split YUV sequence is encoded using the MPEG-4, 

AVC/H.264 or SVC standard and decoded separately on different cores simultaneously as 

depicted in Figure 6. 
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Figure 6 Splitting the original video in multiple threads to be 

decoded individually with four threads 

 

During the decoding process, a size 30 GOP buffer is used. Each independently 

decodable stream is merged into one video sequence inside the frame buffer during the 

course of decoding. When the buffer is full, the threads are put to sleep for one second 

since there is no need to decode more frames until the previous ones are played. This 

method allows the decoding process to slow down whenever it goes over the speed of the 

actual display rate. Therefore, it avoids unnecessary CPU usage allowing further decrease 

in the overall energy consumption. This approach trades off increased parallelism with the 

encoding efficiency because consecutive frames are distributed over different cores. On the 

other hand, if frame level parallelism is ordered according to the levels of hierarchy in 

hierarchical B-pictures encoding, then the encoding efficiency will not be affected at the 

cost of slightly reduced parallelism.  
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ENERGY-EFFICIENCY AND PERFORMANCE MEASUREMENT RESULTS 

 

The performance and energy consumption measurement tests were carried out on a 

laptop running on Intel® CoreTM i7 720-QM quad-core processor at 1.60 GHz with 6M 

cache. The Enhanced Intel Speedstep® Technology (EIST), Turbo Boost Technology and 

the Intel® Hyper-Threading Technology offered with this processor provide the 

adjustability on the processor performance to observe the changes in the energy 

consumption for a given task. 

Tests were conducted on input videos Iceberg (video with still background and 

moving camera), Race (video with fast-moving objects and moving camera) and Rena 

(video with still camera and background with moving figure) for the frame level and MB 

level parallelism approaches. 

In order to measure the overall energy consumption of the whole device, its 

instantaneous outlet power consumption was measured over the time span while the 

decoding takes place by making use of a commercially available power meter called 

WattsUp PRO power meter [19]. The timing measurements were carried out by the 

tick_count class of the Intel TBB library. 

 

Figure 7 Power Meter used to measure Instantaneous Outlet Power Consumption ( WattsUp? PRO Meter) 

and a screenshot of its user interface 



 

 

Chapter 4: Energy-Efficiency and Performance Measurement Results   16 

 

 

4.1 Macroblock Level Parallelism Measurements 

The three input videos Iceberg, Race and Rena were encoded using the SVC 

extension of the H.264/AVC encoder with base and enhancement layers. The frame rate 

was set to 30 fps and quantization parameters of level 0 and 1 were 46 and 34 respectively. 

Figure 8 shows the power consumption of the decoding process measured using a power 

meter when the player is switched off. 

The macroblock level parallelism approach offered a relatively smaller energy 

efficiency difference compared to frame level parallelism since the overall effect of the 

region parallelized in decoding of MBs (I-frames only) had a minor impact on the overall 

decoding performance. When compared to previous work carried out in MB level parallel 

decoding methods the speedups are consistent with the static scheduling average speedup 

results up to 8 cores presented in [9] and [10]. This resulted in a smaller improvement on 

percentage changes of the energy consumption rates of the decoder.  

The timing measurement sets carried out in this section observe the performance 

change introduced with parallel MB decoding. Speedups calculated with respect to the 

original Open SVC decoder running of sequential MB decoding algorithm for 2, 4 and 8 

threads are shown in Figure 10. 
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Figure 8 Net average power consumption rates in MB level parallelism  

 
Figure 9 Net energy consumption amounts in MB level parallelism for decoding of I-frames only 
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Figure 10 Speedups achieved in MB level parallelism for decoding of I-frames only 

4.2 Sequence Level Parallelism Measurements 

 

The three input videos Iceberg, Race and Rena were encoded from n split video 

sequences using the MVC mode with a quantization parameter of 22 and frame rate of 30 

fps. The power consumption rate measurements were carried out by a power meter over the 

course of the whole decoding process as the decoded frames were being played at the same 

time.  

The average idle power consumption rate of the laptop was taken to be 30 watts 

throughout the measurements. Figure 11 shows net power consumption rates per number of 

threads that are calculated by subtracting the idle power from the average instantaneous 

power consumption rates throughout the decoding process. 

This approach trades off increased parallelism with the encoding efficiency since 

consecutive frames of the original video sequence need to be distributed over different 

cores. However, this approach offers better load balancing among threads. Since similar 

frames are decoded over different cores, each core gets a balanced amount of tasks bringing 
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a more efficient parallelism approach. The energy measurement results indicate that with 8 

threads 20%  power efficiency can be achieved using this technique and elapsed times for 

the complete decoding process decrease considerably. 

To observe the true effect of parallelism, the elapsed times included only the time 

span for the decoding portion of the whole process excluding the frame buffer storage time 

and display times. Speedups computed for decoder running on 2, 4 and 8 threads are shown 

in Figure 13. 

 

Figure 11 Net average power consumption rates in sequence level parallelism 
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Figure 10 Net energy consumption amounts in sequence level parallelism 

 

Figure 13 Speedups achieved in sequence level parallelism 
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CONCLUSION 

5.1 Conclusion  

 

Frame level and macroblock level parallelization techniques described in this work 

are at the two extremes of granularity scale of parallelism for video decoding. The frame 

level approach is based more on data-level parallelism, which is coarse-grained, and 

relatively simpler compared to other task-based parallelism techniques. On the other hand, 

the macroblock level parallelism approach is a lot finer grain and thus requires more 

complicated algorithms to achieve similar or better performance speed-up and energy 

savings.  

In order to make an accurate comparison of both techniques the decoding of B-

frames have to be parallelized in addition to the parallelization of I-frames in macroblock 

level parallelization approach. Only then graphs 8, 9, 10 and 11, 12, 13 will be truly 

comparable. However since the decoding of I-frames are the most computationally 

demanding portion of the video sequence the results are still effective enough to outline a 

few major differences between the two approaches. One of these differences is that 

speedups in macroblock level are more likely to reach saturation faster than in frame level 

approach as the number of threads increases. This is due the overhead introduced by 

parallelization at such finer-grained levels like macroblocks.  

Parallelization of video decoders at the software level requires careful 

synchronization between the dependent tasks in a video decoder. Most of the time, high 

level implementations are not sufficient and major modifications on the original video 

decoder source code are required. The key strategy for determining the regions to 

parallelize inside the decoder relies on careful assessment of the function declarations and 

the execution flow of the program. 
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A careful optimization between the choice of level at which parallelism will be 

applied and the overhead caused after it, can lead to great impacts both in terms of 

performance and energy efficiency in video decoders. Since video applications have 

become a major part of the global Internet traffic, developing better performing and more 

energy efficient video decoders will lead to a more fulfilling playback experience at the 

user-end, longer battery life sustained on mobile devices and, most importantly, massive 

amounts of energy saving on the global video traffic per user each year. 

5.2 Future Areas of Research  

 

Further enhancements on the macroblock level of parallelism may include 

parallelizing B-frames’ macroblock decoding functionality. Since B- frames are not intra-

predictable frames, the dependencies of MBs on other frames will be more challenging 

than parallel MB decoding on I-frames only. This feature will surely bring additional 

performance and energy efficiency when implemented with low overhead and careful load 

balancing. Moving on to higher levels from the macroblock decoding region, slice level 

parallelism and GOP level parallelism are other intriguing areas of research multi-threaded 

video decoding techniques.   

Scalability of slice level approach is limited since the number of slices is decided by 

the encoder. Additionally, increased number of slices within a frame increases the bit rate 

as well. GOP level on the other hand do not require synchronization between threads since 

GOPs are entirely independent. This approach may offer higher scalability however it 

requires considerable amount of memory and thus may result in latency during real-time 

play back.  
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