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ABSTRACT

In this thesis we present a new computational model for natural and believable

upper-body gesture synthesis in synchrony with speech using statistical learning tech-

niques over multimodal gesticulation data. The framework consists of four main tasks

for: i) unimodal clustering of gesture and intonational phrases, ii) multimodal anal-

ysis of gesture and intonational phrases, iii) speech driven gesture synthesis, and iv)

gesture animation. The first task consists of unimodal analysis of speech and upper

body motion to learn temporal patterns of gesture and speech prosody. Body motion

features, which are extracted from multi-channel synchronous video recordings, are

used to define gesture phrases with a semi-supervised temporal clustering scheme. On

the other hand prosody features, which are extracted from speech input, are used to

define intonational phrases with an unsupervised temporal clustering scheme. The

second task performs multimodal analysis to learn dependencies between gesture and

intonational phrases by utilizing a hidden semi-Markov model (HSMM). Third, we

perform gesture synthesis, that is extraction of gesture sequence and gesture dura-

tions, given the speech input. The final task is to perform gesture animation, where

the synthesized gesture sequence is mapped into body motion sequences to maintain

a natural looking animation. The performance of the proposed speech driven ges-

ture synthesis system is tested over our MVGL-MUB Database. Experimental results

demonstrate that our system is able to properly discover audiovisual correlations be-

tween speech and gesture thus it can synthesize realistic and natural body gestures

along with 3D human model animation.
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ÖZETÇE

Bu tez çalışmasında, çok kipli beden hareketi verisi üzerinde istatistiksel öğrenme

teknikleri kullanarak, konuşma ile eşzamanlı, doğal ve inandırıcı üst beden hareketleri

sentezi için yeni bir çatı yapısı ve sayısal model önerilmektedir. Önerilen çatı yapısı

4 ana kısımdan oluşmaktadır: i) üst beden hareketi ve prozodik bölütler üzerinde tek

kipli kümeleme, ii) jest ve prozodik bölütler üzerinde çok kipli analiz, iii) konuşma

güdümlü jest sentezi ve iv) beden jest animasyonu. İlk kısım, jestlerin ve konuşma

prozodisinin zamansal örüntülerini öğrenmek için konuşma ve beden hareketlerinin

tek kipli analizinden oluşmaktadır. Jest örüntülerinin belirlenmesi çok kanallı ve eş

zamanlı video kayıtlarından çıkarılan beden hareketlerinin yarı denetlemeli zamansal

kümelenmesi ile sağlanmıştır. Buna karşılık prozodi örüntüleri ise konuşma girdisin-

den çıkarılan prozodi özniteliklerinin denetimsiz zamansal kümelenmesiyle tanımlanmıştır.

İkinci kısım, konuşma ve jestler arasındaki bağıntıları öğrenmek için gizli yarı Markov

modellerine dayalı çok kipli bir analiz yöntemi kullanmaktadır. Üçüncü kısım beden

hareketi sentezi problemini ele alır; bu da konuşma girdisi verildiğinde jest sekansının

ve jest sürelerinin oluşturulmasına karşılık gelir. Son kısımda ise, sentezlenmiş hareket

dizisinden doğal görünümlü bir üst beden hareketi animasyonunun oluşturulması

hedeflenir. Önerdiğimiz konuşma güdümlü jest animasyon sisteminin başarımını oluşturmuş

olduğumuz MVGL-MUB veritabanı üzerinde ölçüyoruz. Elde ettiğimiz deney sonuçları,

önerdiğimiz sentez sisteminin, konuşma ile beden hareketleri arasındaki işitsel-görsel

bağıntıyı uygun şekilde modellediğini ve böylece gerçekçi ve doğal üç boyutlu insan

modeli animasyonları üretebildiğini göstermektedir.
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7.2 A comparison of histogram similarity and boundary distance between

various numbers of clusters (a) and states (b) for prosody patterns . . 48

ix



7.3 Duration model comparison of synthesized and original gesture sequences

(Actor #1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.4 Duration model comparison of synthesized and original gesture se-

quences (Actor #2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.5 Characteristic Gesture Frequency Comparison . . . . . . . . . . . . . 54

x



Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

In casual face to face communication, mutimodality is the irrevocable part among

the people. Human beings concurrently use verbal and non-verbal communication

ways such as kinesics, occulesics, haptics, vocalics and similar methods to convey

their thoughts and emotions in face to face. Ability of combining information from

different senses enables humans to extract information from and understand com-

plex environments. Similar examples can be observed in various HCI systems where

speech, gestures, haptics and other human communication channels in establishing

communicative interfaces. Multimodality provides us comprehension of environment

in most cases meanwhile unimodal channel is insufficient to interpret. Accordingly,

multimodal signal analysis and processing deals with the challenge of simultaneously

handling with multiple sources of information.

Multimodal signal processing takes advantage of analyzing the underlying mutual

relationship of signals of different sources which is a reinforcement that complements

the weakness or insufficiency of one modality by using the strengths of other modal-

ity. For instance, in recognizing ambiguous syllables in speech recognition, lip reading

algorithms to remove obscurity as an assistance. Moreover, this method can be used

to generate speech driven face avatar animation. Also additional study for the un-

derlying multimodal correlation of speech and facial expressions can lead to more

realistic and natural speech driven face avatar animations. Yet another example is

the integration of the visual information, robotics and haptics which can provide the

necessary infrastructure for medical applications such as remote surgery.

The aim of this research is to investigate methods for combining different audio-
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visual of information for applications in human computer interaction (HCI). Main

motivation of this thesis is modeling the joint correlation between speech and upper

body gestures, thereafter generating 3D human body animations driven by speech.

We have formed a multimodal database to analyze, learn and synthesize audiovisual

models and to generate of body gesture animations. The joint correlation model

can be considered as a bidirectional mapping between speech and body gesture pat-

terns. In gesture synthesis, this mapping can be used to estimate upper body gesture

patterns from speech patterns.

Speech and gesture are two different ways of expressing human thoughts and emo-

tions. As a verbal and non-verbal human communication, they co-exist in time with

a tight synchrony and reveal information on verbal semantics and speaker emotions.

Moreover, gesticulation is an essential component of face to face communication, and

it contributes significantly to the natural and affective perception of human conversa-

tions. Human-centered HCI designs increasingly use interactions in virtual environ-

ments, where a natural, affective and believable gesticulation is often missing in virtual

character animations. Automatic synthesis of gesticulation in synchrony with speech

is expected to make non-verbal communication a natural part of virtual character

animation, which can find wide range of applications in human-centered HCI, game

industry and film industry. In this paper we present a new computational model for

natural and believable upper-body gesture synthesis in synchrony with speech using

statistical learning techniques over multimodal gesticulation data.

In one of the pioneering studies on gesture and speech relationship, Kendon pro-

posed a widely accepted hierarchical model for gesture. In this model the core gestural

element is defined as gesture phase. Gesture phases are further divided into active

and passive phases. Active gesture phase includes strokes (the short and dynamic

peak movement) and retractions. Passive gesture phase consists of gestures like hold,

in which hand stays motionless. When a gesture phase is preceded by preparation, in

which hand goes to the position of the gesture phase, it constitutes a gesture phrase.

Furthermore, a combination of gesture phrases forms gesture units. In this hierarchi-
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cal model, semantic expressiveness of hierarchy levels increases as we move further

away from the core. In other words, gesture units are semantically more expressive

than gesture phrases and gesture phrases include more semantic contents than gesture

phases.

Synchrony between gestural and phonological structures has been studied. Kendon

stated the synchrony between strokes and stressed syllables, later McNeill proposed

the widely accepted phonological synchrony rule stating that the stroke of the gesture

precedes or ends at, but does not follow, the phonological peak syllable of speech. In

a recent study, Loehr presents a detailed investigation of temporal and structural

synchrony between intonation and gesture. His findings verify the alignment of the

pitch accents with the gestural strokes; furthermore he presents evidences of the

synchrony between gesture phrases and intermediate intonational phrases.

There are four widely referred types of gestures, which were proposed by McNeill

[3]: iconics, metaphorics, deictics and beats. Iconic gestures illustrate images of an ob-

ject or action, metaphoric gestures represent abstract ideas, deictic gestures relatively

locate entities in physical space, and beat gestures are simple repetitive movements

to emphasize speech. In a later study, McNeill [4] points out Tuites proposal [5] that

in every gesture there is a rhythmical beat-like pulse to carry significance beyond its

immediate setting, and he suggests taking metaphoricity, iconicity, deixis, and em-

phasis as the dimensions of gesture rather than types of gesture. Hence nonverbal

communication channel is expected to articulate a mixture of gesture dimensions for

natural human-to-human communication. Similarly, automatic synthesis of gesture

dimensions for animated characters (avatars) in virtual worlds would create natural

and believable interactions over the nonverbal communication channel.

Human-computer interaction (HCI) is expected to benefit largely from human-

centered designs rather than computer-centered designs. Human-centered designs

should establish human-like information retrieval and information transfer to attain

natural, affective and believable interactions. The extend and number of studies on

affect recognition methods for human-like information retrieval have been growing
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in the recent literature, an extensive survey on affect recognition technologies and

methodologies can be found in (Zhihong). On the other hand, human-like information

transfer, as well, poses many important research problems. Development of concepts

and methodologies for human-like avatars appears as the challenging problems of

human-like information transfer, which will eventually provide synthesis of full-body

gestures in synchrony with emotion and speech.

1.1 Related Work

Previous literature on gesture and speech is governed by studies from psychology, com-

puter vision, speech processing, linguistics, and machine learning. Full-body gesture

synthesis can deliver valuable solutions for human-like information transfer. We can

classify gesture synthesis into rule-based and data-driven approaches. The Embod-

ied Conversational Agents (ECAs) of Cassell [1] is a pioneering rule-based full-body

gesture synthesis system, which performs animations over a pre-defined gesture tree.

Data-driven approaches either use gesture statistics from audiovisual data or 3D mo-

tion capture and animation technologies. Annotation of audiovisual data is commonly

used to define gesture phase, phrase and unit statistics, as well as lexical and intona-

tional characteristics of the accompanying text/speech. The VirtualHuman research

project [2] and the probabilistic approach of Neff et al. [3] are examples of audiovisual

data-driven approaches for full-body gesture animation. The VirtualHuman project

aims to develop interactive virtual characters with a personality profile. Neff et al. [3]

presents a probabilistic approach to produce full-body gesture animation for given

input text in the style of a particular performer. They have a tool assisted anno-

tation process over audiovisual data to define statistical style model of a particular

performer. We shall further note that the focus of the ECAs and the VirtualHuman

project is on iconic and deictic gestures where speech and gesture relationship is well

defined. On the other hand the focus in [3] is on metaphoric gestures where speech and

gesture relationship is performed with the statistical style model. Recently, Levine

et al. [4] introduce gesture controllers, which avails a modular methodology to drive
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beat-like gestures, with live speech using customized gesture repertoires. Gesture

controllers infer hidden states from speech, and select the optimal gesture kinematics

based on the inferred states. From a hierarchical perspective, the work of Levine

et al. is mainly concentrated on the gesture phase level. Although motion capture

is becoming widely available, there is limited number of studies in the literature on

processing of 3D motion data rather than using it for 3D reconstruction. Heloir et

al. [5] provides technical setup, scenarios and challenges in building a motion capture

database for virtual human animation. Similarly, Busso et al. [6] presents the interac-

tive emotional dyadic motion capture (IEMOCAP) database, which is a multimodal

and multispeaker database of improvised dyadic interactions.

Early works on prosody driven gesture synthesis mostly concentrate on facial ex-

pression and head motion. Face animation with expressions using neural networks [7],

and multimodal communication using affine transformations [8] are among the works

on facial expression synthesis. An approach to synthesize emotional head motion

sequences driven by prosodic features is presented in [9] by building hidden Markov

models for emotion categories to model temporal dynamics of emotional head mo-

tion sequences. A two-stage framework for joint analysis of head gesture and speech

prosody patterns of a speaker towards automatic realistic synthesis of head gestures

from speech prosody has been studied in [10]. A recent paper [11] focuses on building

a speech-driven facial animation framework to generate natural head and eyebrow

motions using dynamic Bayesian networks (DBNs).

In this study, we employ hidden semi-Markov model (HSMM) for the multimodal

analysis of gestures and prosody. The HSMM was first introduced by Ferguson [12] as

the explicit duration hidden Markov models. The main intuition behind the HSMM

idea is to extend hidden Markov models to processes where states have durations

and thus emit a number of observations instead of a single one. This yields that

the underlying process in the system is Markovian in certain jumps. Moreover, the

state duration is allowed to follow a probabilistic distribution. Based on the work of

Ferguson [12], several similar methods have been proposed [13–15]. Since the duration
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of human body gestures are variable in nature, the problem of generating body gesture

sequences from prosody observations fits into the concept of HSMMs. To our best

knowledge this is the first time that HSMM is considered for the task of synthesizing

body gestures from prosody observations.

1.2 Contributions

In this study we describe a framework for analyzing audio-visual data and synthe-

sizing upper body gestures from speech prosody using HSMM. From a hierarchical

perspective, our work is mainly concentrated on gesture phrases which are seman-

tically more expressive than gesture phases studied in the work of Levine et al. [4].

Hence our framework provides a more personalized and natural speech-driven gesture

synthesis, as also demonstrated by experiments.

The main contributions of this thesis work are:

• A framework for unimodal analysis of recurrent prosodic speech and upper-body

gesture patterns

• Construction of the Multimodal Upper-Body (MVGL-MUB) Corpus

• A gesture animation method that maps synthesized gesture sequences to body

motion sequences

We note that the HSMM-based gesture synthesis method that we use in this thesis

work is adapted from [16].

1.3 System Overview

The general framework for our automatic hand gesture synthesis system is given in

Fig. 1.1. The framework consists of four main functional blocks for: i) unimodal

clustering of gesture and intonational phrases, ii) multimodal analysis of gesture and

intonational phrases, iii) speech driven gesture synthesis, and iv) gesture animation.
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The first functional block consists of the unimodal analysis of speech and body motion

to learn temporal patterns of gesture and speech prosody. Body motion features,

which are extracted from multi-channel synchronous video recordings, are used to

define gesture phrases with a semi-supervised temporal clustering scheme. On the

other hand prosody features, which are extracted from speech input, are used to

define intonational phrases with an unsupervised temporal clustering scheme. The

second functional block performs multimodal analysis to learn dependencies between

gesture and intonational phrases by utilizing a hidden semi-Markov model (HSMM).

In the third functional block, we perform gesture synthesis, that is extraction of

gesture sequence and gesture durations, given the speech input. Finally the fourth

functional block performs gesture animation, where the synthesized gesture sequence

is mapped into body motion sequences to maintain a natural looking animation.

Figure 1.1: The block diagram of the general framework for the automatic hand
gesture synthesis system.

The remainder of this thesis is organized as follows: Chapter 1 reviews the cur-

rent literature on speech-driven gesture analysis and synthesis. Chapter 2 describes

our Motion Capture system and provides details about the recording hardware and

software specifications. Chapter 3 reviews current multimodal databases and presents

our MVGL-MUB corpus in detail. Our framework for unimodal clustering of upper-

body gestures and speech prosody is explained in Chapter 4. Multimodal analysis and

synthesis of prosody-driven upper body gestures is described in Chapter 5. Chapter 6
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describes our gesture animation method that maps synthesized gesture sequences to

body motion sequences. Experimental evaluation of the proposed system is provided

in Chapter 7. Finally, concluding remarks are given in Chapter 8.
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Chapter 2

MOTION CAPTURE

2.1 Motion Capture

Motion capture systems have consistently been evolving and there are various tech-

niques for capturing and modeling the motion. We can basically divide these motion

capture techniques into 4 groups as stated below;

Types of Motion Capture Systems:

• Optical

• Inertial

• Mechanical

• Magnetic

Optical motion capture systems use visual data for tracking the motion of refer-

ence points that are clearly visible and previously attached on the points of interest.

In this method, optical markers, which are inside of the field vision of mocap cameras,

are used to mark objects for tracking. Marker based systems depend on the contrast

of the marker color with the background color to maintain tracking operation. Op-

tically active and passive markers are the types which are currently used in motion

capture systems. Active optical capture systems such as LED markers that pulse

flashes in synchronization with the cameras digital shutters. Passive optical systems,

such as markers made of simple beam and IR light reflective matter which are visi-

ble in any lighting condition. These methods however cannot acquire the shape and

texture properties of the object, which could also give supplementary information
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about location of marker points. There exist a number of marker-based commercial

systems as used for human motion capture but most of them rely on a high number

of cameras to avoid occlusions, high frame rates or expensive hardware. [17] described

method for low-cost accurate marker tracking system which previously analyzes skele-

ton structure parameters of the actor and maintain tracking of the body markers even

if occlusion happens using skeleton this calibration parameters.

Markerless systems such as Microsoft Kinect do not require any indicators like

markers to estimate motion of the body parts. They use computer vision algorithms

to detect significant body parts such as face, torso, arms and legs and estimates the

inter-limbs between them. Moreover kinect uses an IR light source and a receptor to

measure depth of the player and combines depth data with visual data to distinguish

body parts along with the motion of them. Wren [18] presented a markerless motion

capture system Pfinder which tracks full body in real-time and interprets behaviors

the person. Today in wide range of applications such as wireless interfaces, video

databases and low-bandwidth coding, Pfinder features are being used.

For the other types of mocap systems such as inertial motion capture uses special

sensors to capture motion of the object with less accuracy but do not use any visual

data or cameras. In this system, inertial sensors such as gyroscopes are used to

measure rotational rate of the attached objects. In human motion capture, rotational

data received from the gyroscope ,that are attached to several limbs of the subject,

can be transferred into a skeleton model in a limited accuracy. [19] proposed a new

algorithm to accurately estimate linear acceleration of compulsive motions such as

running. Since gyroscopes suffer from the rigorous movements, actor is still delimited

to make swift motions.

Mechanical motion capture systems can directly track joint angles of the body

which requires an exoskeleton (skeletal like articulated structure) to be worn for cap-

turing relative motion of the performer. Potentiometers between articulated parts

measures the Euler angles of the joints and transmits them to a base station for real

time motion capture. Mechanical motion capture systems are relatively occlusion
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free and have no limitation about volume of capture but restrict movements due to

being heavy weight. Moreover, exoskeleton motion capture systems are widely used

in robotic control applications such as robotic imitation of the gestures captured by

the exoskeleton. [20] presents hardware implementation and control interface between

exoskeleton and operational robot for teleoperation tasks with motion capture.

In magnetic systems of motion capture can calculate both range and the orienta-

tion between the attached magnetic sensors to body limbs. Measured relative mag-

netic flux between the sensors enables system to calculate both relative range and

orientation of the sensors by mapping tracking volume. Hidden or occluded objects

can be tracked by using the magnetic field of the markers. These sensor markers are

not occluded by non-metallic objects but any likely magnetic or electrical inference

will cause spikes and corruption in the sensor data. In addition, cross talk is the

most common error between magnetic mocap sensors. [21] proposes a new mocap sys-

tem with magnetic sensors which overcomes the cross-talk problem even in adjacent

distances by usage and analysis of multiple axial sensors data.

In this work, we have used low-cost solution to visually track markers with syn-

chronized multicamera system. For tracking the passive optical markers, we are using

our own program TrackBuddy which is implemented on OpenCV library [22]. The

tracking program tracks 2D pixel positions of the markers, attached to joints of the

body parts, then calculates the 3D coordinates of the markers using calibration pa-

rameters and 2D projections on each camera’s image plane. We make use of the

multistereo correspondence information from multiple cameras to precisely estimate

3D positions of the markers. This provides us with a set of 3D point locations for each

frame recorded. We employ Kalman filtering for smoothing out the observations and

predicting future location of the points in that point cloud. This program also allows

users to intervene into tracking process, therefore users can monitor whole tracking

process and correct mis-tracking or lead tracking manually. However, the tracking

process itself may become time-consuming and cumbersome.
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2.2 Initialization of the system

For each frame in the recorded video sequence, a set of N images are obtained from

the N cameras. All cameras are calibrated using a pinhole camera model based on

perspective projection. Our camera calibration process is maintained by the Mul-

tiCamera Self-Calibration Tool [23] which requires additionally a laser pointer to

calculate extrinsic and intrinsic parameters of the cameras.

Camera Calibration is a process of calculating true parameters of the camera by

examining a captured video or photograph to deduce camera situation at the capture

time. The extrinsic true parameters indicate the translation and rotation of the

camera which determines the captured scene. The intrinsic parameters specifies focal

length, principal axis, CCD dimensions (image resolution) and the skew parameter of

the camera that varies among different cameras. In the calibration process, we have

used a red laser pointer that roams in the stage while all cameras are simultaneously

recording. After recording several hundreds of frames from each camera, we fed the

calibration tool with these frames to solve multi-stereo correspondence problem [23].

2.3 3D Body Tracking

In order to track multiple markers from multiple cameras, all frames are converted to

YCrCb color space which provides convenience and flexibility to track intensive colors

and distinguish different colors in the frames captured by cameras from different views.

Moreover, markers can be occluded by other objects therefore occluded markers may

not be seen from the camera and the number of detected markers in every image

may vary. However, we can overcome this problem by using the redundancy among

multiple views. To calculate 3D coordinates of a marker, theoretically we need that

marker to be visible to 2 cameras at least. So the usage of high number of cameras

with different view angles, enables the marker likely to be seen by several cameras and

a few camera occlusions would not cause problems. On the other hand a marker can

get into occlusion by another marker and marker identification can be problematic in
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the cease of occlusion but user can intervene the TrackBuddy and correct the marker

identifications manually.

There are Mm markers attached to the actor and let W set of search windows to

track markers where W = {w1, w2,..., wMm}. Each search window wi is initially set

on marker positions by the user to start tracking process. The search window set W

is used to track all markers and store the 2D (x, y) positions of the markers for each

frame.

Since both motion capture suit of the actor and dark color background plane have

contrast colors with the markers, only the skin color of the actor and the markers

should be meticulously distinguished. To differentiate markers with the skin color,

we have used [22] OpenCV library skin color detection and removal functions which

automatically detects skin color by using adaptive color thresholding. To track mark-

ers over black background, we apply predefined color thresholding to pixels inside each

search window wi. Among the pixels that overpass color threshold value, we calculate

the mean coordinate point of elected pixels and set this point as the marker coor-

dinate. We make use of the multistereo correspondence information to estimate 3D

world coordinates of the markers and a set of 3D (x, y, z) points over time is obtained.

3D world coordinates of the markers are estimated via epipolar geometry based on

marker projections on image plane of each camera. Moreover, we use Kalman filter-

ing to smooth 3D marker motions and to predict occluded marker locations in similar

method explained in [24].

In order to speed up the tracking process, we have embedded basic color com-

parison operations. Since displacement of the markers between successive frames

are minor, spatial-temporal information is exploited to predict marker position and

decreasing the marker searching area in latter frames.

3D marker locations are converted to joint angles to create more reliable and useful

data by using a professional software [25]. In addition, most of the 3D character

animating systems work with joint angles. Given set of 3D marker locations, [25]

estimates joint angle motions by fitting a 3D human model into 3D marker motions.
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In this process each marker should be attached to a body limb of the 3D human model

(Fig. 2.2) thus [25] can calculate joint angle motions by using inverse kinematics. As

an input/output relationship, [25] takes a set of 3D marker displacements over time

and outputs a set of angle motions of the joints over time.

2.4 MVGL Motion Capture System

At Multimedia, Vision and Graphics Laboratory, an automated motion capture sys-

tem with 8 cameras is available to collect and analyze multi-view video data, which

is primarily used for human body motion modeling applications. The motion capture

(MOCAP) system can track optical markers attached to the actors body and gener-

ate corresponding 3D world coordinates of the markers. In our experiments we have

made recordings with 5 cameras as shown in Fig. 2.1, which are sufficient to capture

upper and lower body movements of the actor. Each mocap camera can record 20

frames per second simultaneously at 1392x1040p resolution.

We use the 5 cameras of the MVGL 8-camera optical motion capture system, which

are placed on a truss structure on the ceiling, positioned three meters away to capture

the upper body movements of the participant in all directions for 3D tracking. These

cameras are placed like a curve of a semicircle to prevent any marker getting out of

the field of vision. This setting also increases the multicamera calibration accuracy.
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Figure 2.1: MVGL Motion Capture System Setup

Moreover, during the recordings participants wear a black motion capture suit

that is covered with reflective optical markers, which are clearly visible in any lighting

condition. Totally 15 markers are used in the upper body tracking process that are

attached to Mm = 15 human upper body parts:
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Body Parts Attached Marker Count

Head 3

Chest 1

Hands 2 (Left Hand/Right Hand)

Elbows 2 (Left Elbow/Right Elbow)

Shoulders 2 (Left Shoulder/Right Shoulder)

Legs 2 (Left Leg/Right Leg)

Feet 2 (Left Feet/Right Feet)

Back 1

Table 2.1: Optical Marker Placements on Actor

Our motion capture process is a marker-based approach where a set of distinguish-

able color markers is attached to the joints of the participant. As a result of optical

marker tracking process, 3D world coordinates for each frame and each marker are

calculated by using the camera calibration parameters. After getting the 3D marker

movement data, smoothing operations are applied to marker data to eliminate noises

and latter a professional software, MotionBuilder [25], is used to convert 3D marker

data to joint angles (Fig. 2.2).

Figure 2.2: Demonstration of Marker Positions to Joint Angles and Marker Assign-
ments in MotionBuilder
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Optical markers with different colors are used in our recording to improve marker-

tracking performance. Red optical markers are attached to the most active body

parts such as hands. For more stable parts green and white optical markers are used.

Searching and tracking of the markers are maintained inside of the corresponding

search window wi with 5x5 pixels wide.

Figure 2.3: Simultaneous Camera Shot from the MoCap System

Speech is recorded with a high quality Sony ECM-166BMP lapel microphone

worn by the participant close to mouth, so that movement of the participant would

not cause volume alterations in the recordings. Moreover, it is small enough that

the microphone does not occlude body markers. Lapel microphone and upper body

recording system are both connected to a high capacity server that manages the

synchronization between audio and video information. Speech of the actor is recorded

at 16K sampling rate and stored in wav-formatted files.

The actor stands in the middle of the room during the recordings. We give the

participant some degree of freedom in moving, but this freedom is limited to moving

in place. The recordings are performed in the MVGL multi-camera studio with stable

and good lighting conditions. A good lighting condition means that there is enough
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diffuse light to leave no shadows on the actors body. All cameras are focused on the

participant. Sample views from multi-camera are given in Fig. 2.3. The background

and the floor of the room are covered with black color.
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Chapter 3

MULTIMODAL DATABASE

An ideal system for automatic analysis and recognition of human affective infor-

mation should be multimodal, as the human sensory system is. The integration of

multiple sources of information would enhance the power for achieving a reliable emo-

tional recognition that building multimodal databases is considered a very important

issue for affective computing research. While this need is clearly acknowledged within

research community, very few large multimodal databases are available. Most of the

databases deal only with speech or facial expressions and even when considering few

more complete multimodal databases available they mostly combine audio and visual

(facial expression) information, very few uses 3D upper-body gesture information.

Moreover, naturalness of the emotional database is another issue. Acquiring real-

istic emotional data is a challenging task. In fact, many of the databases available ask

subjects to act or pose emotions in order to extract speech and facial related features.

In the last years, this lack of naturalism has been severely criticized. Recent research

is oriented towards inducing emotions of speakers (elicited databases) or collecting

real-life data. There have been a large number of studies on emotion and non-verbal

communication of facial expressions and also on expressive body gestures. Yet, these

studies were mostly based on acted basic emotions.

In addition, range of emotions in a database is also a concern. Early works consid-

ered only the basic seven emotion classes, namely, anger, happiness, sadness, surprise,

fear, disgust and neutral assuming this classification is independent of cultural back-

ground. However, recent research include emotions exceeding traditional primary

emotions such as shame, frustration and boredom. These are believed to play a key

role both in learning processes and interpersonal relationships.
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Data in a spontaneous database reflects a wide variety of emotions heavily de-

pendent on the contextual information. In terms of annotations, affective databases

can be annotated with categorical or dimensional labels. Categorical annotation uses

discrete emotion classes to describe emotional content (e.g., happy, sad, etc.), while

dimensional annotation uses the activation-valence coordinate space to describe emo-

tional content (e.g., positive-negative valence vs. high-low arousal). Categorical labels

are easy to use but they cannot be effectively used to cover the entire spectrum of

emotions. On the other hand, dimensional labels are more flexible but they suffer

from issues like inter-annotator agreement and emotional baseline detection.

3.1 Existing multimodal databases

HUMAINE database is one of the most comprehensive multimodal databases which

was collected during the Third Summer School of the HUMAINE EU-IST project,

held in Genova in September 2006. Acted emotional state recordings of anger, de-

spair, interest, pleasure, sadness irritation, joy and pride incorporated facial expres-

sions, body movements and gestures and speech. The database is also multi-lingual

including recordings in languages English, French and Hebrew [26].

The CreativeIT database is a naturally induced affective database. The corpus

is annotated with the continuous emotional descriptors (valence, activation) and col-

lected using cameras, microphones and motion capture containing detailed audiovisual

information of the actors’ body language and speech cues. It serves two purposes.

First, it provides insights into the creative and cognitive processes of actors during the-

atrical improvisation. Second, the database offers a well-designed and well-controlled

opportunity to study expressive behaviors and natural human interaction [27].

IEMOCAP database is also multimodal including speech and facial expressions.

Ten actors were asked to perform three selected scripts with clear emotional content.

In addition to the scripts, the subjects were also asked to improvise dialogs in hy-

pothetical scenarios, designed to elicit specific emotions (happiness, anger, sadness,

frustration and neutral state). One participant of the pair was motion captured at a
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time during each interaction. Fifty-three facial markers were attached to the subject

being motion captured, who also wore wristbands and a headband with markers to

capture hand and head motion, respectively [28].

Some of the most successful efforts to collect new emotional databases have been

based on broadcasted television programs. Some of these examples are the Belfast

natural database [29], the VAM database [30] and the EmoTV1 database [31]. Like-

wise, movie excerpts with expressive content have also been proposed for emotional

corpora, especially for extreme emotions (e.g., SAFE corpus [32]).

Other attempts for collecting natural databases were based on recordings in place

(Genova Airport Lost Luggage database [33]), recordings of spoken dialogs from real

call centers (the CEMO [34], and CCD [35] corpora), asking the subjects to recall emo-

tional experiences [36], inducing emotion with a Wizard of Oz approach in problem-

solving settings using a human-machine interface (e.g., SmartKom database [37]),

using games specially designed to emotionally engage the users (e.g., the EmoTa-

boo corpus [38]), and inducing emotion through carefully designed human-machine

interaction (i.e., SAL [39]).

Our database is mainly focused on building a multimodal database by taking

into account different sources of data such as upper-body movements, speech in a

natural fashion. We systematically investigated the difference between emotions in

the considered modalities and to verify the existence of systematic correlation between

the different measures. In our database we considered categorical annotations.

3.2 MVGL MUB Database

The Multimodal Upper-Body (MVGL-MUB) Corpus consists of 42 recordings (about

2 hours long in total) from five pre-defined Turkish scenarios with 7 participants.

Three scenarios (23 records) are monologue conversations. The rest of the conversa-

tions is dialogue. In this corpus different types of scenarios have been used to extract

characteristic features from gestures. The recordings include storytelling of memories,

documentaries, fairy tales as well as conversations and watch & tell scenarios. Each
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scenario is designed for natural and transparent interaction of participants within the

recordings. Detailed information can be accessed in [40]. A summary of the scenario

descriptions are given as following:

Scenario 1: Storytelling a memory The first scenario consists of telling an

exciting event that the subject/participant faced with. Each subject tells an incident

about his/her experience avoiding pretended gestures in spontaneous manner.

Scenario 2: Storytelling a documentary The second scenario is storytelling a

documentary film. Each subject watches the same documentary film and talks about

it to another person in front of the cameras.

Scenario 3: Storytelling a fairy tale In the third scenario, subject is asked to

read/watch a fairy tale from a text/video, and tells the story as he/she remembers.

Scenario 4: Conversation with an agent In the fourth scenario, subject is

given a text from phone call between an angry client and customer support service

employee who is asked to act part of the client and forced the subject to make over-

powered gestures.

Scenario 5: Watch & Tell As for the fifth case, subject is expected to watch

and tell thoughts about various previously prepared videos and images.

Scenario Length Conversation (Monolog / Dialog) Record Count
Scenario 1 1-3 mins Monolog 9
Scenario 2 2-4 mins Monolog 7
Scenario 3 2-5 mins Monolog 7
Scenario 4 2-3 mins Dialog 11
Scenario 5 3-4 mins Dialog 8

All the recordings in our database is kept meticulously for easiness of future pro-

cessing. For each recording in our database, there exist;

• 5 videos captured from 5 different cameras

• An audio recording from the lapel microphone

• 3D marker locations data over time
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• Joint angle data over time

• 3D model animation of the actor

• Comparison video of model animation with original video

We generate 3D marker location sequences by tracking the videos captured from

5 different viewpoint cameras and using multistereo correspondence information to

estimate 3D marker world coordinates for each frame. These 3D marker coordinates

are then converted to joint angles in MotionBuilder [25] to create more reliable and

useful data. 3D human model animation is generated in MotionBuilder based on joint

angle movement data.
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Chapter 4

UNIMODAL CLUSTERING

4.1 Unsupervised Clustering

We extract intonational phrases through unsupervised and gesture phrases through

semi-supervised temporal clustering. For the purpose of temporal clustering we em-

ploy the parallel branch HMM structure that we defined in [10]. The parallel branch

HMM structure Λ has M parallel branches and N states as shown in Fig. 4.1. In the

HMM structure Λ, observation probability densities are modeled by a single Gaus-

sian with diagonal covariance. The states labeled as ss and se are non emitting start

and end states of the parallel HMM structure. As it can be observed from Fig. 4.1,

the parallel HMM Λ is composed of M parallel left-to-right HMMs, {λ1, λ2, . . . , λM},

where each λm is composed of N states, {sm,1, sm,2, . . . , sm,N}. The state transition

matrix Aλm of each λm is associated with a sub-diagonal matrix of AΛ. The feature

stream is a sequence of feature vectors, F = {f 1,f 2, . . . ,fT}, where f t denotes the

feature vector at frame t. Unsupervised temporal segmentation using HMM structure

Λ yields L number of segments ε = {ε1, ε2, . . . , εL}. The l-th temporal segment is

associated with the following sequence of feature vectors,

εl = {f tl ,f tl+1, . . . ,f tl+1−1} l = 1, 2, . . . , L (4.1)

where f t1 is the first feature vector f 1 and f tL+1−1 is the last feature vector fT .

The segmentation of the feature stream is performed using Viterbi decoding to

maximize the probability of model match, which is the probability of feature sequence
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F given the parallel HMM Λ,

P(F |Λ) = max
εl,ml

L∏
l=1

P(εl|λml
) (4.2)

where εl is the l-th temporal segment, which is modeled by the ml-th branch of

the parallel HMM Λ. Since, the temporal segment εl from frame tl to (tl+1 − 1) is

associated with segment label `l, where we have a label sequence ` = {`1, `2, . . . , `L}

corresponding to the temporal segments ε = {ε1, ε2, . . . , εL}.

Figure 4.1: Parallel Branch HMM Structure
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4.2 Unsupervised Clustering of Prosody

Prosodic voice characteristics at the acoustic level, including intonation, rhythm and

intensity patterns, carry important temporal and structural synchrony with gesture

phrases [41]. Acoustic features such as pitch and speech intensity can be used to

model underlying intonational phrases of speech. We choose to include normalized

speech intensity, normalized pitch and confidence to pitch, which is represented with

pitch gain, into the prosody feature vector. We estimate the prosody feature vector

for each speech frame of 25 msec duration centered on a 50 msec analysis window.

Speech intensity is extracted as the logarithm of the signal energy in the analysis

window,

Ik = log(
1

W

W∑
i=0

sk[i]
2), (4.3)

where sk is the speech signal in the kth window, and W is the window size. The

normalized speech intensity, Īk, is then extracted with mean and variance normal-

ization. Pitch is extracted using the auto-correlation method [42]. The normalized

auto-correlation function for the kth speech frame can be defined as,

rk(τ) =

∑
i(sk[i] ∗ sk[i− τ ])√∑
i sk[i]

√∑
i sk[i− τ ]

. (4.4)

Then the lag value which maximize the auto-correlation function is set as the pitch

feature, τ ∗k = arg maxτ rk(τ), and the corresponding auto-correlation value is set as

the pitch gain, r∗k = maxτ rk(τ). Since pitch values differ for each speaker and the

system is desired to be speaker-independent, speaker normalization is applied. For

each speech segment, we compute the mean pitch value over the pitch values with

pitch gain higher than 0.4. Then the mean pitch value is removed from the pitch

values, which are computed for each segment, to obtain the normalized pitch τ̄ ∗k .

Then normalized intensity, normalized pitch, pitch gain and the first derivative of
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these three parameters are used to define the prosody feature vector,

f pk = [Īk, τ̄
∗
k , r

∗
k, ∆Īk, ∆τ̄ ∗k , ∆r∗k], (4.5)

where ∆ defines the first order derivative for the corresponding features.

The prosody feature stream F p = {f p1,f
p
2, ...,f

p
T} is used to train a parallel branch

HMM structure, Λp, which clusters the prosody feature stream and captures recurrent

intonational phrases. The HMM structure Λp is composed of Mp parallel left-to-right

HMMs, {λp1, λ
p
2, ..., λ

p
Mp
}, where each λpm is composed of Np states. The unsupervised

clustering process defines temporal intonational segments, εpl , where each segment

label `pl is assigned to one of the Mp available segment classes {p1, p2, ..., pMp}. Fur-

thermore, frame level label sequence is defined for intonational phrase sequence,

ξt = `pl for t = tl, tl + 1, . . . , tl+1 − 1, (4.6)

where ξt is the intonation label of the tth speech frame.

Note that optimal choice of HMM branch count M and state count N will later

be investigated in Chapter 5.

4.3 Semi-Supervised Clustering of Gesture

We model upper-body gestures, specifically hand gestures, at gesture phrase level

to emphasize speech intonation. In the analysis of gestures we employ joint angles

as the gesture features from four body parts: left arm, left forearm, right arm, and

right forearm. Note that angle values of each joint are defined in the local frame of

reference on the ancestor joint (see Fig. 4.2).
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Figure 4.2: Upper body joint angles used in our system

We define the gesture feature vector for the ith joint at frame k, fJik , to include

the joint angles from the ith body part and their first order derivatives,

fJik = [θik, φ
i
k, ψ

i
k,∆θ

i
k,∆φ

i
k,∆ψ

i
k], for i = 1, 2, 3, 4, (4.7)

where θik, φ
i
k and ψik are the Euler angles respectively in x, y and z directions, rep-

resenting the posture of the ith joint at frame k, and ∆θik, ∆φik, ∆ψik denote their

respective first order derivatives. The resulting gesture feature (Fig. 4.2) for the four

joints at time frame k is defined as,

f gk = [fJ1
k , ...,f

J4
k ]. (4.8)
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We implement a semi-supervised clustering using the parallel branch HMM struc-

ture, Λg, over the gesture feature stream F g = {f g1,f
g
2, ...,f

g
T} to extract recurrent

gesture phrases. The HMM structure Λg initially is set to have two parallel branch

HMMs, {λg1, λ
g
2}, where each λgm is composed of Ng states. The number of branches

increased iteratively to Mg in a semi-supervised manner using the following procedure:

(i) Initially set Λg to have two branches to model rest position of hands and all the

other hand movements. Hand label several examples of rest event.

(ii) Perform the Baum-Welch training of the Λg.

(iii) Perform the Viterbi decoding to get temporal clusters.

(iv) Visually inspect clusters, correct clusters as needed. Repeat steps (ii) and (iii)

until convergence.

(v) If a new gesture phrase, which is recurrent in the training data and not covered

by the Λg, exists, go to step (vi), otherwise stop.

(vi) Hand label several examples of the new gesture phrase. Add a branch to the

Λg for the new gesture phrase with initial training. Go to step (ii).

Eventually the semi-supervised clustering process defines gesture phrase segments,

εgl , where each segment label `gl is assigned to one of the Mg available gesture phrase

classes {g1, g2, ..., gMg}. We currently use MG = 7 parallel branches (hence number

of gesture phrase clusters) and NG = 4 states for the parallel branch HMM structure

Λg. Table 4.1 and figure 4.3 describes the gesture classes obtained as the result of

semi-supervised clustering when performed on our MVGL-MUB database.
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Label: Description: Details:

g1 Simultaneous hand raise Actor raises both hands at the same time

g2 Rest Stand by position of the actor

g3 Left hand gestures Actor raises left hand only

g4 Perpendicular gestures
Asynchronously moves one hand in vertical and

other in horizontal direction

g5 Hands contact Actor touches his/her hands one another)

g6 Arms open Actor stretches his/her arms to backward)

g7 Right hand gestures Actor raises right hand only

Table 4.1: Gesture Labels and Descriptions
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Figure 4.3: Gesture description figures
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Chapter 5

MULTIMODAL ANALYSIS AND SYNTHESIS OF

PROSODY-DRIVEN GESTURES

5.1 Gesture Generation Model

In a natural speaking style beat gestures are articulated in synchrony with speech

prosody to emphasize the underlying speech [41,43,44]. In this chapter we construct

a multimodal analysis framework to form a relationship between beat gestures and

speech prosody. Unimodal clustering and labeling of gesture and intonation phrases

have been discussed in Chapter 4. In general intonation phrases last much shorter

than gesture phrases in duration, and the stroke of the gesture precedes or ends at,

but does not follow, the phonological peak syllable of speech as McNeill stated in [43].

A gesture phrase sequence, when accompanied by a sequence of intonation phrases,

forms a random process which can be seen as a Markov process. One useful mathe-

matical model for the multimodal analysis of gesture and intonation phrases can be

constructed by taking gesture phrases as the states of a Markov chain and intonation

phrases as the observations of this Markov process. Hence state transitions corre-

spond articulation of consecutive gesture phrases, and gesture phrases are expected

to localize in time with respect to the McNeill’s phonological rule by observing in-

tonation phrases. Since the relationship between gesture and intonation phrases is

not strong, once you decode gesture phrase sequence given the intonation phrase ob-

servations, gesture phrases have a shortfall in modeling duration in time. Another

useful mathematical model to overcome this shortfall is to introduce a state duration

model so that we can better control gesture phrase durations in the decoding process.

Combination of these two useful mathematical models yields hidden semi-Markov
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model (HSMM) framework [15] for the multimodal analysis of gesture and intonation

phrases. HSMM is an extension of HMM which allows the underlying process to be

a semi-Markov chain with states having variable durations. This is to say that, the

underlying process is Markovian at certain jump instants [45]. Fig. 5.1 shows how

such an HSMM structure works. The design implies that speech and body gesture

features should be clustered prior to the multimodal analysis. The temporal clustering

scheme, described in Chapter 4 is employed for this purpose.

Figure 5.1: In a Hidden Semi-Markov Process each state has a duration and emits a
number of observations.

An HSMM representing intonation phrases as observations with Mg fully con-

nected states is modeled as Λgp = (A,B,D,Π). The states of Λgp represent gesture

phrase classes, and the model parameters A, B, D, Π respectively are state tran-

sition probability, observation emission distribution, state duration distribution, and

initial state distribution matrices.

The Mg ×Mg state transition matrix A is defined by entries aij representing the

state transition probability from gesture gi to gj,

A : {aij = P (`gl = gj|`gl−1 = gi)} i, j = 1, ...,Mg, (5.1)

where `gl represents the lth gesture in the sequence of gesture phrases. The observation
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emission distribution B is modeled by discrete probability mass functions for each

gesture gi,

B : {bi(pk) = P (pk|`gl = gi)} k = 1, ...,Mp, i = 1, ...,Mg, (5.2)

where bi(pk) is the probability of observing intonation phrase pk at gesture gi. The

state duration distribution D is formed as state dependent duration probability mass

functions,

D : {di(k)} i = 1, ...,Mg, k = 1, ...,
Dmax

δ
, (5.3)

where di(k) is the probability of gesture gi lasting kδ sec, Dmax is the maximum dura-

tion among all gestures, and δ is the histogram bin size for the underlying probability

mass function. We take the maximum duration as Dmax = 10 sec, and the histogram

bin size as the speech frame duration, δ = 25 msec. The initial state probability

vector Π is defined by entries πi representing the probability of starting with gesture

gi as the first gesture phrase,

Π : {πi = P (`g1 = gi)} i = 1, ...,Mg. (5.4)

The Λgp model is extracted by estimating the statistical parameters of the model

over a training corpus. Statistical parameter estimations are given as:

πi = P (`g1 = gi) =̂
C(1, i, j)∑
j′ C(1, i, j′)

, (5.5)

aij = P (`gl = gj|`gl−1 = gi) =̂

∑
l C(l, i, j)∑

l

∑
j′ C(l, i, j′)

, (5.6)

bi(pk) = P (pk|`gl = gi) =̂
O(i, k)∑
k′ O(i, k′)

, (5.7)

di(k) =̂
G(i, kδ ≤ τ < (k + 1)δ)∑
k′ G(i, k′δ ≤ τ < (k′ + 1)δ)

, (5.8)

where C(l, i, j) is the number of times gi is the lth gesture and gj is the (l + 1)st
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gesture, O(i, k) is the number of frame count of intonation phrase pk at gesture gi,

and G(i, kδ ≤ τ < (k + 1)δ) is the number of occurrences of gesture gi with duration

τ in [kδ, (k + 1)δ) interval.

5.2 Gesture Synthesis

Gesture synthesis is defined as decoding an optimal state sequence, ˆ̀g, over the HSMM

Λgp given a sequence of frame level intonational phrase labels, {ξ1, ξ2, . . . , ξT}. Note

that the decoded optimal state sequence delivers synthesized sequence of gesture

phrases and their durations, and the HSMM framework secures to have realistic ges-

ture phrase durations. In HMM framework, where the underlying process is Markov,

given an observation sequence, the Viterbi algorithm is employed to decode the most

likely state sequence. In HSMM framework however, states have variable durations

and a sequence of observations are emitted at a single state. This requires us to define

a forward likelihood function, which incorporates state duration model,

ψt(j) = max
τ

max
i
{ψt−τ (i) + log(aijdj(τ)

t∏
k=t−τ+1

bj(ξk))}, (5.9)

where ψt(j) is the accumulated logarithmic likelihood at time frame t in state gj after

observing intonational phrase labels {ξ1, ξ2, . . . , ξt}. Based on the forward likelihood

function ψt(j), we define the following modified Viterbi decoding algorithm (Alg. 1)

to extract the optimal state sequence, that is the optimal gesture phrase sequence

{ˆ̀g1, . . . , ˆ̀g
L}, and the associated gesture phrase durations {κ1, . . . , κL}.
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Algorithm 1 The modified Viterbi decoding algorithm for gesture synthesis

Require: : Λgp and {ξ1, ξ2, . . . , ξT}
ψ1(i) = log(πibi(ξ1)) i = 1, 2, . . . ,Mg

for t = 2 to T do
for j = 1 to Mg do
T ′ = min(Dmax, t)/δ
ψt(j) = maxτ∈[1,T ′] maxi∈[1,Mg ]{ψt−τ (i) + log(aijdj(τ)

∏t
k=t−τ+1 bj(ξk))}

ϕt(j) = arg maxi∈[1,Mg ]maxτ∈[1,T ′]{ψt−τ (i) + log(aijdj(τ)
∏t

k=t−τ+1 bj(ξk))}
νt(j) = arg maxτ∈[1,T ′] maxi∈[1,Mg ]{ψt−τ (i) + log(aijdj(τ)

∏t
k=t−τ+1 bj(ξk))}

end for
end for
ˆ̀g
L = arg maxj ψT (j)

κL = νT (ˆ̀g
L)

l = L− 1; t = T
while t > 0 do

ˆ̀g
l = ϕt(ˆ̀g

l+1)

κl = νt−κl+1
(ˆ̀g
l )

t = t− κl+1; l = l − 1
end while
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Chapter 6

GESTURE ANIMATION

Animation of the synthesized gesture sequence has been performed over three

main tasks: extraction of gesture motion sequence with unit selection, smoothing

gesture-to-gesture transitions, and finally animation of the gesture motion sequence.

The first task is to generate a synthesized sequence of gesture motion segments, ε̂g,

given the synthesized gesture phrase ˆ̀g and duration κ sequences. Then the next task

is to smooth joint angle discontinuities over a temporal window at gesture segment

boundaries, that is at the boundary of two consecutive synthesized gesture segments

ε̂gl and ε̂gl+1, to extract a smoothed gesture motion segment sequence ε̃g. Then the

smoothed gesture motion sequence ε̃g is used to animate upper-body gestures of a

virtual character.

Figure 6.1: Gesture Animation Generation System
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We employ a unit selection algorithm to generate the synthesized sequence of

gesture motion segments ε̂g. In order to employ unit selection, a collection of rep-

resentative temporal segment templates for each gesture gi is constructed as Gi =

{εgi1, εgi2, . . . , εgiKi}, where Ki is the number of templates in the collection of gesture

gi. We target to minimize a mixture of duration and joint angle continuity penalty

scores during the unit selection. The duration penalty and joint angle continuity

scores of a gesture segment template εgik for a synthesized gesture phrase ˆ̀g
l are

respectively defined as,

υκ(ε
gik|ˆ̀gl = gi) = ||κl − κ(εgik)||, and (6.1)

υω(εgik|ˆ̀gl = gi) = ||ωe(ε̂gl−1)− ωb(εgik)||, (6.2)

where κl is the duration of the synthesized gesture phrase ˆ̀g
l , κ(εgik) is the duration

of the gesture segment template εgik, ωe(ε̂
g
l−1) is the ending joint angle vector of the

synthesized gesture segment ε̂gl−1, and ωb(ε
gik) is the beginning joint angle vector of

the gesture segment template εgik. Then the overall penalty score to be minimized in

the unit selection is set as,

υ(εgik|ˆ̀gl = gi) = αυω(εgik|ˆ̀gl = gi) + (1− α)υκ(ε
gik|ˆ̀gl = gi), (6.3)

where α is the mixture weight of the joint angle penalty score.

Unit selection based gesture motion sequence extraction is configured as finding

an optimal path on a lattice of temporal gesture templates by minimizing the accu-

mulated penalty score. The optimal path can be extracted by the following Viterbi

algorithm:

i. Initialization

V1(k) = υκ(ε
gik|ˆ̀g1 = gi), where k = 1, 2,..., Ki

ii. Recursion: Repeat for l = 2, 3, ..., L,

Vl(k) = minj=1,...,Ki
{Vl−1(j) + υ(εgik|ˆ̀gl = gi},
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Ql(k) = arg minj{Vl−1(j) + υ(εgik|ˆ̀gl = gi}

iii. Backtrace the optimal path

qL = arg mink{VL(k)},

ql = Ql+1(ql+1) for l = L− 1, L− 2, ..., 1,

iv. Construct the synthesized sequence of gesture motion segments

ε̂gl = ε
ˆ̀g
l ql for l = 1, 2, . . . , L.

Figure 6.2: Viterbi Path Selection (Note that not all gestures have same duration.
For each desired gesture class, there different number of gesture choices in the pool)

As the second task of the gesture animation, an exponential smoothing function

is applied on the synthesized gesture motion sequence ε̂g, and the smoothed gesture

motion sequence ε̃g is extracted. The smoothing window size is adjusted to gener-

ate passivated gestures or energetic gestures by respectively increasing or decreasing

smoothing window size. Smoothing window size (ζs = 5) is decided based on length

of gestures in the pool. Besides, different smoothing schemes are applied and conse-

quences on motion sequence are observed.
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Figure 6.3: Smoothing Filter trials on Joint Angle Data

For more realistic skeleton animation, motion of spine and lower body joints are

also transferred from the original skeleton animation. Then resulting motion sequence

is animated using the MotionBuilder 3D Character Animation Software [25].

Figure 6.4: Screenshots from synthesized body animation



Chapter 7: Experimental Evaluations 41

Chapter 7

EXPERIMENTAL EVALUATIONS

A database of various records belonging to two different actors from the MVGL-

MUB corpus is considered for evaluations. In order to synthesize a record in the

dataset, the HSMM machine is trained on the dataset from which the record con-

sidered for synthesis is excluded. Following training, the intonational phrases of the

test record is produced and fed to the HSMM machine where the modified Viterbi

algorithm is used to generate a synthesized gesture sequence. This is repeated for

all the records in the database in a leave-one-out fashion. Such an experiment where

all the records of the data collection for a given actor are synthesized in the manner

described above will be referred to as a synthesis session.

7.1 Objective Evaluations

It is expected that the generated synthesis sequence follows the duration model of

the actual gesture sequence. Also, the gesture boundaries in synthesized gesture

sequence are expected to be close to those of the actual gesture sequence. Hence, to

determine the quality of the generated synthesis sequence two performance criteria

are considered. The first criteria measures the similarities between the probabilistic

duration model histograms of the synthesized and actual gesture sequences according

to the following equation:

Si =

∑Dmax

k=1 P (i, k)P̂ (i, k)√∑Dmax

k=1 P (i, k)2

√∑Dmax

k=1 P̂ (i, k)2

(7.1)

Here, P (i, k) and P̂ (i, k) are the probabilities that gesture type i has a duration equal

to k for actual and synthesized gesture sequences respectively. Also, 0 ≤ Si ≤ 1 and
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a perfect match between synthesized and actual gesture sequences in terms of the

duration model yields Si = 1 for each gesture type. The value of Si decreases as the

duration model resemblance of gesture type i in the synthesized gesture sequence to

actual gesture sequence diminishes.

As for the second performance criteria, it computes the boundary distance of the

gestures in the synthesized sequence to those in the actual gesture sequence (Figure

7.1). That is, for each gesture in the synthesized sequence, the time distance to its

closest gesture boundary in the actual sequence is measured. Note that, the distance

between two boundary positions are measured regardless of the type of the gesture

in any of the two sequences. The sum of these distances is then normalized by the

count of the gestures along the synthesized sequence. This criterion demonstrates

how well gesture boundaries are preserved while generating the synthesized gesture

sequence. The boundary distance between the two sequences is computed according

to the following equation:

D =
1

L

∑
i

|bi − b̂i| (7.2)

Figure 7.1: The boundary distance between actual (g) and synthesized (ĝ) gestures.

Here, L is the number of gestures in the synthesized sequence while bi and b̂i are the

boundary times of the actual and synthesized gestures respectively. To evaluate the

synthesis performance of a session, duration model similarity and boundary distance

measures are considered. A synthesis session on a database of R records containing

M distinguishable gesture types results in R ×M duration model similarity values.

Thus, the duration model similarity of a synthesis session is given by the following
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equation:

S =
1

M ×R

M∑
i=1

R∑
r=1

Sir (7.3)

Here, Sir is the histogram similarity measure (Eq. 7.1) corresponding to gesture

type i in record r. Since the chosen data collection has 4 records for each actor and

the number of available gestures acquired is equal to 7 (excluding the start pose) then

R = 4 and M = 7 in our experiments.

To measure the boundary distance for an entire synthesis session, the boundary

distance between the synthesized and actual gesture sequences of each record in the

data collection is computed. This results in R boundary distance values. Conse-

quently, the boundary distance for the whole session can be computed by Eq. 7.4

which is a weighted sum of the distances acquired for each record, where the duration

of each record is used as the weight:

D =

∑R
r=1 τrDr∑R
r=1 τr

(7.4)

Here, Dr is the boundary distance (Eq.7.2) for record r and τr is the duration of the

record r in seconds. In our experiments, the bin length of all histograms from which

the duration model is computed (Eq. 5.8) is set to be 0.025 sec, and the maximum

gesture duration (Dmax) is set to 10 sec.

Since prosody patterns are extracted by unsupervised clustering, it is crucial to

determine the number of states used in the HMM machine which clusters prosody

stream. Utilizing small number of states favors long prosodic patterns while a larger

number of states results in smaller prosody patterns. Also, the number of resulting

prosody clusters should be determined prior to synthesis. An over-segmented prosody

stream produces redundant and similar prosody clusters while under-segmentation

combines two or more clusters into a single segment. In such cases lack of generaliza-

tion or loss of data affects the synthesis process and results in a poor performance.

As for the number of states, one can argue that using 3 states is the most suitable
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choice since it simplifies the whole process. This is our assumption in the synthesis

phase and further experimental analysis proofs its validity. To overcome the ambi-

guities related to the optimum number of prosody clusters, an experiment has been

conducted in which the unsupervised prosody clustering unit of the framework is

adjusted to segment the prosody stream of the records in the data collection into

4, 6, 8, 10, 12, 14 and 16 clusters. For each number of prosody clusters a synthesis

session is performed and the session performance is evaluated resulting in S and D

values (equations 7.3 and 7.4 respectively) for each synthesis session. The optimum

number of clusters is expected to maximize the duration model similarity and mini-

mize the boundary distance. Figure 7.2(a) gives the resulting plot of the experiment

conducted on the video records belonging to a single actor.

(a) (b)

Figure 7.2: A comparison of histogram similarity and boundary distance between var-
ious numbers of clusters (a) and states (b) for prosody patterns

It is clear from the plot that when speech is segmented into 8 clusters, histogram

similarity between the synthesized and real gesture is maximized (0.8313) while the

boundary distance is almost minimized (1.0714). The boundary distance for the case

when prosody patterns are segmented to 4 clusters are slightly less than that of 8

cluster prosody patterns. However, the histogram similarity for the 4 cluster prosody

patterns is the minimum similarity value among all other test cases. This yields that

clustering speech stream into 8 segments results in the best synthesis performance.
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A comparative analysis, similar to the analysis made for various number of prosody

patterns, is performed for various number of states of the HMM machine which seg-

ments the prosody patterns. That is, the number of prosody clusters is fixed and set

to the optimum value (8) found in the previous experiment and intonational phrases

are produced using a HMM machine with 3, 5, 7 and 9 number of states. For each

number of HMM states a synthesis session is performed. Subsequently the synthesis

performance for each session is evaluated resulting in S and D values for each syn-

thesis session. The optimum number of states which results in minimum boundary

distance (D) as well as maximum duration model similarity (S) is then chosen as

the optimum number of states to segment prosody patterns. The result is shown in

Figure 7.2(b).

The histogram similarity measure is more or less the same when 3 or 5 states

are considered. However, the boundary distance is clearly less when 3 states are

considered while clustering prosodies. This outcome verifies our assumption that

employing a 3 state HMM machine for clustering speech into prosody patterns is an

optimum choice, since it not only simplifies the resulting model but also it provides

the framework with a synthesized gesture sequence which is more similar to the actual

one in terms of duration model and the alignment of gesture boundaries.

Choosing the resulting optimum number of states and clusters, a gesture sequence

is generated for each record. The resulting histograms for one of the records of scenario

2 (telling fairy tales) and their corresponding actual gesture sequences can be seen in

Figure 7.3, and respectively for a different actor in Figure 7.4. It is obvious that the

generated gesture sequence follows the duration model of the training set. Note that,

in each sub-plot of Figures 7.3 and 7.4, the upper histogram represents the duration

model of the synthesized gesture sequence and the lower one represents the actual

gesture sequence. Finally in Figure 7.5, we plot the occurrence frequencies of specific

gesture types for the two actors.
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7.2 Subjective Evaluations

Subjective A-B comparisons are performed using the speech driven body gesture

animations to analyze opinions on how natural and realistic body gestures are syn-

thesized. The participants are asked to evaluate the naturalness of the body gesture

animations for an A-B test pair on a scale of (-2, -1, 0, 1, 2), where the scale corre-

sponds to (A much better, A better, no preference, B better, B much better).

The whole test database consists of meaningful 20 segments, where each segment

is approximately 15 seconds. For each segment, there exists original, synthesized and

random body gesture animations. Random body gesture animation is generated by

selecting random gestures from the gesture pool and appending them in sequence

(see Chapter 6). The overall evaluation comprises 12 steps of video-pair comparison.

The first two steps constitute the out-of-evaluation training phase which is designed

for getting familiar with the test system. The remaining steps are formed as three

(Original vs. Synthesized), three (Original vs. Random), three (Synthesized vs.

Random) and one pair of identical animations comparisons in a random sequence.

The test segments for the 10 steps are selected randomly out of 20 segment choices

without any repetition.

The subjective tests are performed over 35 subjects via our online A-B test sys-

tem. The average preference scores for the three comparison types are presented in

Table 7.1. Samples of the audio-visual sequences for the speech-driven body gesture

animations are available online http://mvgl.ku.edu.tr. We observe that the synthe-

sized animations are favored over the random ones while the originals are favored over

the synthesized as expected.

A-B Pair Preference Score
Original versus Synthesis -0,43
Original versus Random -1,06
Synthesis versus Random -0,54

Table 7.1: The Subjective A-B Comparison Results



Chapter 7: Experimental Evaluations 47

According to the subjective test results, participants favoredOriginal over Synthesized

animation 65.7% of the time which implies a p-value less than 0.05 where p-value

quantifies the strength of the evidence in favor of hypothesis. Moreover, Original an-

imation is preferred over Random one 88.5% of the time which is significantly above

the chance, p-value, less than 0.001. Finally, Synthesized animation was favored over

Random animation 71.4% of the time which is also majorly above the p-value less

than 0.01.
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Figure 7.3: Duration model comparison of synthesized and original gesture sequences
(Actor #1)
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Figure 7.4: Duration model comparison of synthesized and original gesture sequences
(Actor #2)
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(a)

(b)

Figure 7.5: Characteristic Gesture Frequency Comparison
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Chapter 8

CONCLUSIONS

In this thesis we have presented a new computational model for natural and plau-

sible upper-body gesture synthesis in synchrony with speech using statistical learning

techniques over multimodal gesticulation. Especially, we focused on finding mappings

between speech and gesture patterns, which are modeled by taking into account lag

between modalities and the duration of gestures. The main contributions of this thesis

can be summarized as follows:

• An automated overall system is developed that observes and learns characteristic

gestures then synthesizes natural and realistic body gestures which are driven

by speech.

• We have modeled the mapping between speech and upper body gestures along

with gesture durations. Both the correlation of audio-visual modalities and the

correlation of successive gestures are evaluated in the gesture synthesis system.

Furthermore, characteristic gesture duration models are generated for synthe-

sizing realistic gestures.

• We developed a gesture animation system which generates smooth and realistic

gesture animations by making use of duration and joint angle based gesture

selection metric.

• An objective evaluation scheme is constituted for the audio-visual modality

synthesis systems

• A low-cost, high performance motion capture software has been developed for
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marker tracking and human modeling. In addition, a video supervision tool has

been implemented for monitoring, segmenting and grouping gesture patterns.

Since the beginning, all of our studies about multimodal analysis and synthesis

systems pointed out that creating a multimodal corpus is crucial, that determines

the performance and quality of the overall system. Therefore we put significant effort

to generate a useful audio-visual database and meticulously formed our recording

scenarios to capture natural behaviors. In addition, gesture segmentation and labeling

should be done meticulously because temporal gesture clusters significantly affect

gesture animation quality (see Section 4.3).

Although we tested our system on recordings of particular scenarios belonging to

two different actors, we strongly believe that proposed system can be applied to any

person with challenging scenarios such as dancing with music. We also believe that

the proposed framework can be easily adapted to other multimodal applications such

as speech driven facial expression synthesis. Moreover, our system is currently able

to generate multiple character profiles and synthesize body gestures of a person when

driven by another person’s speech.

The experimental results show that the proposed framework is successful at syn-

thesizing natural and realistic body gestures which can be used in several application

areas such as:

• Communication applications, specifically in visual teleconferencing where the

receiver side can generate visual body animation based on incoming speech data.

Thus transmitting only the speech data will significantly decrease bandwidth

usage of common visual teleconferencing applications.

• Movies and video games which requires realistic body animations synchronized

with speech. Motion capture systems are used to generate 3D realistic body

animations in both movies and video games. In movies, using mocap recordings

for dozens of scenes is a cumbersome process which can be facilitated by learning

gestures of the actor and synthesizing it in future scenes. Personalized 3D body
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gesture animations can be used especially in online role-playing games such as

Second Life or World of Warcraft thus they will have more reality.

• Visual media where anchors or video jockeys can be replaced with 3D human

models with realistic gestures.

As future research for speech driven gesture synthesis, a third modality, facial ex-

pressions, can be added to examine the correlation triangle between the three modal-

ities so as to generate speech driven body and face animations.
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[4] S. Levine, P. Krähenbühl, S. Thrun, and V. Koltun, “Gesture controllers,” in

ACM SIGGRAPH 2010 papers, ser. SIGGRAPH ’10. New York, NY, USA:

ACM, 2010, pp. 124:1–124:11.

[5] A. Heloir and M. Neff, “Exploiting motion capture for virtual human animation:

Data collection and annotation visualization,” in In Proc. of the Workshop on

Multimodal Corpora: Advances in Capturing, Coding and Analyzing Multimodal-

ity, 2010.

[6] C. Busso, M. Bulut, C.-C. Lee, A. Kazemzadeh, E. Mower, S. Kim, J. N. Chang,

S. Lee, and S. Narayanan, “Iemocap: interactive emotional dyadic motion cap-

ture database,” Language Resources and Evaluation, vol. 42, no. 4, pp. 335–359,

2008.



Bibliography 55

[7] P. Hong, Z. Wen, and T. S. Huang, “Real-time speech-driven face animation

with expressions using neural networks,” IEEE Trans. Neural Networks, vol. 13,

pp. 916–927, 2002.

[8] T. Chen and R. Rao, “Audio-visual integration in multimodal communication,”

Proc. of the IEEE, vol. 86, no. 5, pp. 837 –852, 1998.

[9] C. Busso, Z. Deng, M. Grimm, U. Neumann, and S. Narayanan, “Rigid head

motion in expressive speech animation: Analysis and synthesis,” Audio, Speech,

and Language Processing, IEEE Transactions on, vol. 15, no. 3, pp. 1075 –1086,

March 2007.

[10] M. Sargin, Y. Yemez, E. Erzin, and A. Tekalp, “Analysis of head gesture and

prosody patterns for prosody-driven head-gesture animation,” IEEE Trans. on

Pattern Analysis and Machine Intelligence,, vol. 30, no. 8, pp. 1330 –1345, 2008.

[11] S. Mariooryad and C. Busso, “Generating human-like behaviors using joint,

speech-driven models for conversational agents,” Audio, Speech, and Language

Processing, IEEE Transactions on, vol. 20, no. 8, pp. 2329 –2340, Oct. 2012.

[12] J. Ferguson, “Variable duration models for speech,” in Symp. Application of

Hidden Markov Models to Text and Speech, 1980, pp. 143–179.

[13] S. Levinson, “Continuously variable duration hidden markov models for auto-

matic speech recognition,” Computer Speech & Language, vol. 1, no. 1, pp. 29 –

45, 1986.

[14] M. Ostendorf, V. Digalakis, and O. A. Kimball, “From hmms to segment models:

A unified view of stochastic modeling for speech recognition,” IEEE Transactions

on Speech and Audio Processing, vol. 4, pp. 360–378, 1995.

[15] S.-Z. Yu, “Hidden semi-Markov models,” Artif. Intell., vol. 174, no. 2, pp. 215–

243, 2010.



Bibliography 56
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