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ABSTRACT

The newsvendor model is one of the basic models in inventory management. Due to

the randomness in demand and supply, this model includes uncertainty which causes risk

to the managers. The related literature mostly assumes that the inventory manager is

risk-neutral. So, the classical newsvendor problem aims to maximize expected pro�t or

minimize expected cost, and the risk caused by uncertainty is disregarded. However, in

real life, decision makers are sensitive to risk. Thus, the risk-neutrality assumption has

limitations in practice. Recently, there has been increasing interest in dealing with this

issue using risk management tools. The inventory managers may prefer less gain but more

stable cash �ows. They are often conservative toward uncertainty in pro�t due to high

demand and supply volatility in the market, and they may be risk-averse. In this thesis,

we follow a mean-variance approach to the single-period, single-item stochastic inventory

problem where the manager considers both the mean and variance of the cash �ow. We

also incorporate supply uncertainty based on random yield, random capacity and both

random yield and random capacity. We further suppose that the randomness in demand

and supply is correlated with the �nancial markets. The newsvendor hedges demand and

supply risks investing in a portfolio composed of various �nancial instruments. The problem

therefore includes both the determination of the optimal ordering policy and the selection

of the optimal portfolio. Our aim is to maximize the hedged mean-variance cash �ow. We

analyze the problem using the cases based on demand and supply randomness as before.

We provide explicit characterizations on the structure of the optimal policy. Finally, we

present numerical examples to illustrate the e¤ects of the degree of risk-aversion on the

optimal order quantity and the e¤ects of mean-variance approach and �nancial hedging on

variance, or risk reduction.

Keywords : Newsvendor model, mean-variance approach, risk hedging
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ÖZETÇE

Envanter yönetiminde çal¬̧s¬lan ana modellerden biri gazete sat¬c¬s¬modelidir. Rassall¬¼g¬n

sadece müşteri talebi ile s¬n¬rl¬olmad¬¼g¬ arz¬n da rassal oldu¼gu, verilen sipari̧sin hepsinin

teslim al¬namad¬¼g¬modeller yönetici için risk oluşturmaktad¬r. Klasik modellerde riske karş¬

duyars¬z olan insanlar ele al¬nmakta ve beklenen son nakit ak¬̧s¬n¬enbüyütme ya da maliyeti

enküçültme amaçlanmaktad¬r. Bu durumda rassall¬¼g¬n oluşturdu¼gu risk gözard¬edilmekte-

dir. Günümüzde insanlar riske karş¬duyarl¬hareket etmektedir. Bu nedenle riske duyars¬z

envanter modelleri pratikte yetersiz kalmaktad¬r. Son zamanlarda, risk yönetimi araçlar¬n¬

kullanarak riske duyarl¬modeller geli̧stirmeye artan bir ilgi vard¬r. Envanter yöneticileri

daha az kazanc¬ama ak¬̧s¬n varyasyonunun daha az olmas¬n¬tercih edebilirler. Riske du-

yarl¬yöneticiler müşteri talebi ve arzda olan belirsizlik nedeniyle nakit ak¬̧s¬ndaki rassall¬¼ga

temkinli yaklaş¬r. Bu tezde, biz tek dönem ve tek ürün içeren rassal envanter modellerine

ortalama-varyans yaklaş¬m¬n¬izlemekteyiz. Tezin ilerleyen k¬s¬mlar¬nda, rassall¬¼g¬oluşturan

müşteri talebinin ve arz¬n, �nansal baz¬endeksler ya da varl¬klar ile korelasyonu oldu¼gu du-

rumlar tart¬̧s¬lacakt¬r. Gazete sat¬c¬s¬ bu varl¬klar¬n vadeli i̧slemler ve türev piyasalar¬nda

pozisyon alarak, bu korelasyondan yararlanacak ve dönem sonu nakit ak¬̧s¬n¬n riskini daha

azaltacakt¬r. Böylece, karar problemi hem sipari̧s miktar¬n¬ belirlemek hem de ayn¬ za-

manda riski azaltacak en iyi portföyü oluşturmakt¬r. Bu modeller ayr¬nt¬s¬yla incelenip

envanter yönetimine riske duyarl¬ bir yaklaş¬m sergilenmi̧stir. Son olarak, riske olan du-

yarl¬l¬¼g¬n eniyi sipari̧s miktar¬na, ortalama-varyans yaklaş¬m¬n¬n ve �nansal portföyün riske

olan etkisi incelenmi̧stir.

Anahtar kelimeler : Gazete sat¬c¬s¬problemi, ortalama-varyans yaklaş¬m¬, risk yönetimi.
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in me and for all the support they gave me.

v



TABLE OF CONTENTS

List of Tables viii

List of Figures x

Nomenclature xi

Chapter 1: Introduction 1

Chapter 2: Literature Review 4

2.1 Risk Management Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Expected Utility Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 MV Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Satis�cing Probability Maximization . . . . . . . . . . . . . . . . . . . 8

2.1.4 VaR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Financial Hedging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Random Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 3: MV Models with Random Demand and Supply 13

3.1 MV Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 MV Model with Exponential Demand . . . . . . . . . . . . . . . . . . 23

3.1.2 E¢ cient Frontier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

vi



3.2 MV Model with Random Yield . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 MV Model with Random Capacity . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 MV Model with Random Yield and Capacity . . . . . . . . . . . . . . . . . . 44

Chapter 4: MV Models with Hedging 58

4.1 MV Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 MV Model with Random Yield . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 MV Model with Random Capacity . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 MV Model with Random Yield and Capacity . . . . . . . . . . . . . . . . . . 75

Chapter 5: Numerical Illustrations 80

5.1 A Simple Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.1 MV Models Without Hedging . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.2 MV Models with Financial Hedging . . . . . . . . . . . . . . . . . . . 93

5.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.1 MV Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.2 MV Model with Random Yield . . . . . . . . . . . . . . . . . . . . . . 109

5.2.3 MV Model with Random Capacity . . . . . . . . . . . . . . . . . . . . 110

5.2.4 MV Model with Random Yield and Capacity . . . . . . . . . . . . . . 111

Chapter 6: Conclusions 116

Vita 123

vii



LIST OF TABLES

5.1 The constant term, the critical risk-aversion level, and the maximium order

quantity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 The means and variances of the cash �ows, MV values and the optimal port-

folios for random demand model when the standard deviation of demand

error is 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3 The means and variances of the cash �ows, MV values and the optimal port-

folios for random demand model when the standard deviation of demand

error is 300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4 The means and variances of the cash �ows, MV values and the optimal port-

folios for random demand model when the standard deviation of demand

error is 600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5 The means and variances of the cash �ows, MV values and the optimal port-

folios for di¤erent degrees of risk-aversion when the standard deviation of

demand error is 600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.6 The means and variances of the cash �ows, MV values and the optimal port-

folios when the standard deviation of demand error is 600 and yield error is

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.7 The means and variances of the cash �ows, MV values and the optimal port-

folios when the standard deviation of demand error is 600 and yield error is

200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.8 The expected values of the means and variances of the cash �ows, MV values

and the optimal portfolios when the standard deviation of demand error is

600 and yield error is 400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.9 The means and variances of the cash �ows, MV values and the optimal port-

folios when the standard deviations of demand error and yield error vary

together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

viii



5.10 The means and variances of the cash �ows, MV values and the optimal port-

folios when the standard deviations of demand error and yield error vary

together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.11 The means and variances of the cash �ows, MV values and the optimal port-

folios when demand is ample (D>K) and capacity is perfectly correlated with

the stock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.12 The means and variances of the cash �ows, MV values and the optimal port-

folios when the standard deviations of demand error and capacity error are

600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.13 The means and variances of the cash �ows, MV values and the optimal port-

folios when the standard deviations of demand error is 600, capacity error is

600 and yield error is 400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

ix



LIST OF FIGURES

3.1 �(y) as a Function of y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 E¢ cient Frontier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 The E¤ect of Risk-Aversion Parameter on Optimal Order Quantity . . . . . . 26

x



NOMENCLATURE

D : Random demand

U : Random yield

K : Random capacity

y : Order quantity

Q(y) : Random supply if order quantity is y

c : Purhcasing cost of one unit of inventory

p : Selling price of one unit of inventory

u : Emergency ordering cost for one unit of inventory

s : Net salvage value for one unit of inventory

p̂ : Critical ratio or the probablity of satisfying the demand on time

� : Risk-aversion parameter

S0 : Price of a tradable asset in the market at time 0

S : Price of a tradable asset in the market at time T

FX : Cumulative distribution function of X

fX : Probability density function corresponding to FX
�FX : Survival probability function of X

xi



Chapter 1: Introduction

1

Chapter 1

INTRODUCTION

Inventory management is crucial for any business practice that has to keep some form of

inventory. Many companies including manufacturers, wholesalers and retailers are trying to

�nd the most e¢ cient strategy to manage inventory. For this reason, inventory management

is at the center of interest in operations research and industrial engineering. The single-

period, single-item inventory management problem known as the newsvendor problem has

received considerable attention due to shortening product life cycles. The newsvendor deals

with perishable products that have a limited lifetime to keep in inventory. The products

might be fresh fruits, vegetables, fashion goods or seasonal items such as air conditioners,

woolen apparel and Christmas gifts. During the life cycle of these products the newsvendor

faced with stochastic demand has to decide on a suitable order quantity that balances

overage cost against underage cost. If the realized demand is greater than the quantity

ordered, the newsvendor has the option to purchase the units that are short at an emergency

purchase price that is higher than the regular price. In this case, an opportunity of additional

pro�t is lost whereas if the demand is less than the order quantity, the unsold amount is

salvaged at a price lower than the purchasing cost.

The classical newsvendor model is based upon risk-neutrality assumption. Thus, the aim

is to maximize expected pro�t or minimize expected cost, yet this approach is questioned as

the resulting policy is optimal on average. In this case since the problem includes uncertainty

the variability of bene�ts (or costs) is ignored. Thus, risk exposure is inevitable, and so

in practice most of the inventory managers are risk-sensitive, being conservative towards

risk. Simply put, they are risk-averse and prefer a certain pro�t to a risky pro�t whose

expected value equals the certain one. The literature holds many risk models used in

stochastic inventory models. They can be categorized mainly as utility models, mean-

variance (MV) models, satis�cing probability maximization and Value-at-Risk (VaR). For a

decision maker, utility is a measure of satisfaction and the aim is to maximize the decision
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maker�s satisfaction which is the expected utility of the cash �ow. The MV approach is

the treatment of inventory managers�con�icting objectives of high return versus low risk.

Alternatively, satis�cing probability maximization refers to maximizing the probability of

achieving a �target� level of pro�t. Finally, in the literature of �nance, VaR is de�ned as

the maximum loss on a portfolio of �nancial assets for a given risk level. The focus of this

study is the MV approach.

Expected utility theory and the MV approach are closely related to each other. In deci-

sion sciences the utility approach and the MV approach are two common methodologies to

model risk-sensitivity. The application of the utility approach is limited since it is practi-

cally di¢ cult to assess the utility function of each decision maker. Thus, some researchers

use the MV analysis. In the context of inventory management, mean measures the expected

value of the cash �ow while variance captures the variability of the cash �ow. This problem

is a type of multi-objective problem. The di¢ culty here lies in the con�ict between the two

objectives: maximizing the expected value of the cash �ow and minimizing the variance of

the cash �ow. Therefore, we search for a compromise solution to these con�icting objectives.

The literature of the newsvendor model mostly assumes that the demand is the only

source of randomness. Although demand constitutes a major source of randomness, in real

life, supply randomness also exists. Recently, in the literature there has been an increased

interest in modelling supply randomness as well. Because of the unforeseen events during

the production and transportation of the products, the quantity received may not be equal

to the quantity ordered. Speci�cally, during the production stage there might be long

machine downtimes due to unplanned maintenance, strikes, seconds, scraps, lack of raw

material, rework. During the transportation stage there might be accidents, de�ciencies in

the quality and various environmental factors as the possible causes of uncertainty. As a

result, the quantity received may be some proportion of the quantity ordered or the capacity

of the supplier may be limited by a random number. The combined randomness of demand

and supply increases the risk of the decision maker. Therefore, as we consider risk-averse

decision makers in this study, it is of crucial importance to include supply uncertainty in

our model as well.

For most business practices, it is possible to �nd a correlation between the random

factors of inventory like demand and supply and the �nancial market. For example, many

�nancial instruments such as forwards, calls and puts exist to enable the inventory manager

to hedge the inventory risk. Therefore, the inventory manager has the option to invest in
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a portfolio of �nancial assets. This results in a hedged cash �ow for which the variance

may be substantially less than the variance of the unhedged cash �ow. Moreover, the

impact of �nancial hedging depends on the degree of correlation between the randomness

in demand, supply and the �nancial variables. In this thesis, we make our analysis based

on the arbitrage-free complete market. Recently, there has been a huge interest in hedging

operational risks using �nancial instruments. Yet, our study of the MV newsvendor problem

combining inventory management and �nancial hedging is a novel and interesting one.

The motivation of this thesis is to follow the MV approach to the newsvendor problem

under random demand and supply. This study consists of two main parts depending on the

existence of the �nancial market. In the �rst part, we consider the MV problem without

�nancial hedging. Firstly, we analyze the problem when the demand is the only source of

uncertainty. Then, we include supply uncertainty into our problem with the assumption that

demand and supply random variables are not necessarily independent. We analyze the MV

problem with random yield, random capacity and both random yield and random capacity,

respectively. Secondly, we consider the MV newsvendor problem with random demand and

supply being correlated with the �nancial market. Again, we analyze the problem initially

with no supply uncertainty and then include random yield, random capacity and both

random yield and capacity models. For each one, as a special case we �rst analyze a single

asset model and then models with multiple assets.

This thesis is organized as follows. In the next chapter, we review the literature of the

relevant inventory models. In Chapter 3, we analyze the MV newsvendor problem with

random supply without �nancial hedging. In Chapter 4, we characterize the optimal policy

for the MV problems with random supply and �nancial hedging opportunity. In Chapter

5, we illustrate the models discussed in Chapter 3 and Chapter 4 with a simple numeric

example and then we use a simulation-based approach for additional numerical results. To

conduct Monte Carlo simulation we use Matlab as a simulation tool and provide the results.

Finally in Chapter 6, we give a summary of the thesis and suggest several directions for

future research.



Chapter 2: Literature Review

4

Chapter 2

LITERATURE REVIEW

Newsvendor models are one of the basic models in inventory management. The related

literature mostly assumes that the inventory manager is risk-neutral. So, the classical

newsvendor problem aims to maximize expected pro�t or minimize expected cost, and

the risk caused by demand uncertainty is disregarded. However, in real life, the decision

makers are sensitive to risk. Thus, the risk-neutrality assumption has limitations in practice.

Recently, there has been increasing interest in dealing with this issue using risk management

tools. Inventory managers may prefer less gain but more stable cash �ows. They are often

conservative to uncertainty in pro�t due to high demand volatility in the market, and they

may be risk-averse. Another group is risk-seeking decision makers, who can be viewed as

gamblers. In fact, risk preferences can be categorized into three groups as risk-neutral,

risk-averse and risk-seeking. In this thesis, we focus on risk-averse decision makers. There

are several approaches to taking risk into account. The most common risk management

models involve expected utility theory, MV analysis, satis�cing probability maximization

and value-at-risk (VaR). We discuss these models in the related literature in Section 2.1. The

correlation between random demand and �nancial markets enables risk-sensitive decision

makers to use �nancial hedging. The literature is given in Section 2.2. Finally, supply

uncertainty is another important issue in inventory management, the literature of which is

discussed in Section 2.3.

2.1 Risk Management Models

2.1.1 Expected Utility Theory

The expected utility model was initiated by Bernoulli [1738], but von Neumann and Mor-

genstern [1944] developed the modern theory of expected utility. They showed the existence

of a nondecreasing utility function for rational decision makers. Since then, the expected
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utility theory has been widely used by risk-sensitive decision makers. First, Lau [1980] ini-

tiated the approach of utility functions for the newsvendor problem. After that, Bouakiz

and Sobel [1992] used the exponential utility criterion to optimize the present value of net

pro�t for the multi-period newsvendor problem over a �nite planning horizon and in�nite

horizon. They show that the base-stock policy is optimal with the assumption of linear

ordering cost. Eeckhoudt et al. [1995] study risk-averse newsvendors with the objective of

expected utility maximization using Pratt [1964]�s argument that an increase in risk-aversion

equals the concave transformation of the utility function. They show that as risk-aversion

increases, the optimal order quantity decreases. Moreover, they analyze the e¤ect of cost

and price changes on the optimal order quantity. They also examine two types of changes

in the degree of risk: an introduction of risky background wealth and an increase in demand

uncertainty. Agrawal and Seshadri [2000a] also consider the risk-averse newsvendor in a

single-period. They decide on both ordering quantity and selling price to maximize the ex-

pected utility. In their model, the demand distribution is a¤ected by selling price which is

determined by the retailer. They analyze two di¤erent cases. In the �rst case, price a¤ects

the scale of the demand distribution. In the second case, price a¤ects only the location

of the demand distribution. They compare the results with the risk-neutral newsvendor.

They �nd that in the �rst case a risk-averse newsvendor will charge a higher price and give

fewer orders. In the second case, they state that a risk-averse newsvendor will charge a lower

price but they are inconclusive about order quantity. Agrawal and Seshadri [2000b] consider

risk-averse retailers maximizing their expected utility and demonstrate the importance of

intermediaries in supply chains. They conclude that the risk of retailers is reduced when

the risk-neutral distributor o¤ers mutually bene�cial risk sharing contracts. Moreover, the

ine¢ ciency due to risk-aversion on the part of the retailers can be avoided. Schweitzer

and Cachon [2000] investigate the decision bias in managers�decisions. They analyze each

preference that leads to di¤erent order quantity from the risk-neutral ordering amount. Ad-

ditionally, the experiments they performed reveal that for high-pro�t products the optimal

order quantity is less than the optimal order amount of risk-neutral decision makers, and

the opposite is true for low-pro�t products. Chen et al. [2007] consider risk-averse decision

makers in multi-period inventory models. They deal with two related problems. In the

�rst one, price is not a decision variable while in the second demand depends on price,

which is also a decision variable. Moreover, they examine the theory of expected utility in

multi-period inventory models. Finally, they incorporate a complete or partially complete
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�nancial market into their model. Keren and Pliskin [2006] derive the optimality conditions

for a risk-averse expected utility maximizer newsvendor. They illustrate their work for a

uniformly distributed demand. Wang et al. [2008] question the e¤ect of selling price on

the order quantity of a risk-averse newsvendor. They show that for most of the classes of

risk-averse utility functions, as the selling price gets larger (provided that it is higher than

a threshold value) the order quantity decreases. Wang and Webster [2009] consider the

loss-averse single-period newsvendor. They conclude that, depending on the shortage cost,

the loss-averse newsvendor may order more or less than the risk-neutral newsvendor.

2.1.2 MV Analysis

This approach originates from �nance. Nobel laureate Markowitz [1959] used the MV

approach for the portfolio management problem and constructed the e¢ cient frontier. For

a given value of mean return, the portfolio weights are decided so that the variance of

return is minimized. The MV model is applicable and implementable since only expectation

and variance of the objective function are calculated. Van Mieghem [2003] shows that

MV optimization problem is equivalent to maximizing a utility function with a constant

coe¢ cient of risk-aversion or a quadratic concave utility function.

In inventory management literature, the MV approach has also received signi�cant at-

tention. Pioneered by Lau [1980], the newsvendor model has been studied in some detail.

He considers the trade-o¤ between the pro�t�s expected value and its standard deviation.

He concludes that the optimal order quantity is located between zero and the optimal or-

der quantity of the risk-neutral newsvendor. Berman and Schnabel [1986] study the MV

newsvendor problem for both risk-averse and risk-lover vendors. They show that under risk-

aversion the amount ordered is less than the amount ordered under risk-neutrality. How-

ever, when the manager is risk-lover the ordered amount is greater than the risk-neutral

one. Moreover, they also consider the problem with a �xed cost of ordering in addition

to the variable purchase cost and show the optimality of (s;Q) policy where s denotes

the reorder point and Q denotes the order quantity. Chen and Federgruen [2000] use a

quadratic utility function for the newsvendor and then construct an e¢ cient frontier via a

numerical study. They show that without stockout cost the variance function of stochastic

pro�t is a monotone increasing function of order quantity and a risk-averse newsvendor

with the objective of maximizing expected utility should always order less than the risk-
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neutral newsvendor. However, if stockout cost is considered the variance function loses the

monotonicity property and the optimal solution, depending on the demand distribution,

can be larger or smaller than the risk-neutral newsvendor solution. In the second part, they

study a single-product periodic review inventory model when customers arrive according

to a Poisson process. For this model, the base-stock policy is known to be optimal. They

consider both expected waiting time until demand is satis�ed and its variability. Another

performance measure they take into account is the steady-state holding costs incurred in

the system. They make a trade-o¤ analysis between these two performance measures. Due

to managerial insights there are also other policies such as the (R;nQ) policy used in prac-

tice. This policy is such that whenever the inventory position is at or below a reorder

point R, a minimum integer multiple of Q is ordered to raise the inventory position above

R. They study the single-product, periodic review model with independent and identically

distributed demands when stockouts are fully backlogged. The standard formulation for the

(R;nQ) model is again to minimize long-run average costs. However, they make a trade-o¤

analysis between long-run average costs and the variance of on-hand inventory as well as the

variance of costs incurred in an arbitrary period. Choi et al. [2008] study MV analysis for

decision makers with all kinds of risk attitudes. They study the problem with and without

the stockout penalty cost. Wu et al. [2009] use power distributed demand and study the

risk-averse newsvendor with the MV objective. They show that in the presence of stockout

cost the risk-averse newsvendor may order more than the risk-neutral newsvendor. Choi

and Chiu [2012] model the newsvendor problem with both the MV and the mean-downside-

risk objectives for two cases: the �rst one is that the retail price is not a decision variable

so it is exogenously given, the second is endogenous retail pricing case where the retail

price is considered as a decision variable. For both cases, they show that the respective

optimal order quantities for MV and mean-downside-risk are the same. Then, they perform

sustainability measures such as the expected amount of leftover, the ratio of the expected

sales to expected products leftover, the rate of return on investment and the probability of

achieving the pro�t target. They conclude that the newsvendor adopting either the MV

or the mean-downside-risk objective is more sustainable than the risk-neutral newsvendor.

Choi et al. [2011] investigate a solution scheme to solve a periodic review multi-period in-

ventory problem under an MV framework. Since it is impossible to separate variance in

the sense of dynamic programming, they develop a primal-dual solution approach and show

that base-stock policy is optimal.
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2.1.3 Satis�cing Probability Maximization

Satis�cing probability maximization refers to maximizing the probability of exceeding a

certain level of pro�t. Lau [1980] provides analytical solutions to maximize the probability

of achieving a certain level of pro�t for some demand densities. Sankarasubramanian and

Kumaraswamy [1983] determine the order quantity that maximizes the probability of ex-

ceeding a given pro�t. The two-product newsvendor problem is studied by Lau and Lau

[1988] and numerical results are obtained. Li et al. [1990] and Li et al. [1991] extend Lau

and Lau [1988] by dealing with uniformly and exponentially distributed demands. Parlar

and Weng [2003] consider two con�icting objectives in the newsvendor problem namely to

maximize the expected pro�t and maximize the probability of exceeding the expected pro�t.

2.1.4 VaR

Simons [1996], Jorion [1997], Dowd [1998] contribute to the VaR literature with their re-

views. Luciano et al. [2003] use VaR as a risk measure in the context of a single-product

multi-period economic order quantity (EOQ) inventory model and establish useful bounds.

Gan et al. [2004] discuss the issue of coordinating in supply chains and develop coordinating

contracts considering three cases: downside risk constraint, MV trade-o¤ and maximization

of expected utility. Tapiero [2005] provides an explanation for the VaR criterion when it

is used as a tool for VaR e¢ ciency design and demonstrates applications to single-period,

multi-period and multi-product inventory problems. Ahmed et al. [2007] analyze a single-

item, multi-period inventory model for a risk-averse newsvendor using coherent risk mea-

sures such as conditional value-at-risk and mean-absolute semi-deviation. They show that

the optimal policy has a structure similar to the classical expected value problem. Özler

et al. [2009] study single-period, multi-product inventory problem with a VaR constraint.

They derive an exact total pro�t distribution function for the two-product case and they

develop an approximation method for the multi-product case.

2.2 Financial Hedging

Financial markets enable inventory managers to diversify the risk in inventory systems by

using the correlation between the demand of a product and the price of a �nancial asset.
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Earlier work by Anvari [1987] presents a one-period newsboy problem with no set-up costs

by using the capital asset pricing model (CAPM). He computes the optimal inventory level

in the case of a normally distributed demand and states that, depending on the sign of

the covariance, the optimal order quantity with CAPM framework can be larger or smaller

than the optimal standard newsvendor solution. Then, Chung [1990] provides an alternative

solution methodology to Anvari [1987]. A more recent work by Caldentey and Haugh [2006]

considers the operations of a non�nancial corporation that chooses an optimal operating

policy and an optimal trading strategy in the �nancial markets. The corporation is risk-

averse with an MV objective function. When the pro�ts are correlated with returns in the

�nancial markets, they deal with the problem of dynamically hedging its pro�ts. Moreover,

they also analyze the e¤ect of di¤erent informational assumptions on the types of hedging

and solution techniques. Gaur and Seshadri [2005] consider the problem of hedging inventory

risk for the newsvendor problem when the demand is correlated with the price of a �nancial

asset. The statistical evidence that an inventory index (Redbook), that represents average

sales, is highly correlated with a �nancial index (SP500), that represents average asset prices

provides an opportunity to construct static hedging strategies using both MV and utility-

maximization frameworks. When there is a linear dependence between demand forecast and

the price of the asset, they derive the hedged-cash �ow for a perfectly-correlated arbitrage-

free complete market. Thus, they show that by using �nancial instruments it is possible

to obtain a deterministic hedged-cash �ow. However, in practice perfect correlation is not

realistic, so they extend their work to partially correlated markets. They conclude that

the risk of inventory carrying can be replicated as a �nancial portfolio by using simple

instruments like bonds, futures and options and a risk-averse decision maker orders more

inventory when hedging is applied. Chu et al. [2009] develop a continuously reviewed single-

product inventory model with uncertain demand. To mitigate inventory risk, a �nancial

hedging approach is established and an MV criterion is used. Ding et al. [2007] combine

operational and �nancial hedging. They deal with a global �rm that sells to both domestic

and foreign markets. Thus, the �rm faces demand and exchange-rate uncertainties. They

use an MV utility function to consider the �rm�s risk-aversion when there are multiple

products and suppliers. From the operations point of view they suggest that the �rm

exploit the capacity allocation by delaying the commitment until demand and exchange

rate uncertainties are realized. From the �nancial point of view, they suggest that the

�rm use call and put options to hedge exchange rate uncertainty. They conclude that with
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the �nancial hedge, the �rm invests more than without the �nancial hedge. By using the

operational hedge, the expected pro�t can be increased and by using the �nancial hedge,

the variance of pro�t can be decreased.

2.3 Random Supply

In inventory systems, apart from the randomness in demand, supply of the products may

also be random. During production or procurement of products, the supply process may be

disrupted due to limitations or unforeseen events. Thus, the received amount may be less

than the ordered amount. As mentioned in Chopra and Sodhi [2004] supply uncertainty

may result from natural disasters, machine breakdowns, labour disputes, war, terrorism

and many other causes. The study by Norrman and Jansson [2004] gives an example of

such an accident. In 2000, a �re occurred at an supplier plant of Ericsson. This plant was

responsible for producing radio-frequency chips. As a result, �re caused a loss of almost

$400 million and eventually Ericsson decided to withdraw from the mobile phone industry.

Another example is the UK chassis manufacturer UPF Thompson, which had �nancial

problems in 2001 and so the production was suspended at Land Rover (Juttner [2005]).

Additionally, Kharif [2003] writes about Motorola�s camera phones. The shipping of phones

failed as a result of component shortages during the holiday season in 2003. All these tragic

examples demonstrate the importance of including random supply into inventory models.

In the literature, also, there is a growing interest to include supply unreliability into the

inventory models.

The earliest paper modeling the yield uncertainty belongs to Karlin [1958]. He argues

that if the holding and shortage costs are convex increasing functions, then a critical level

of initial inventory exists, below which an order should be issued. Shih [1980] considers

the EOQ inventory model and stochastic single-period model under the assumption that

some percentage of received items is defective. The percentage of defective items is random

with a known probability distribution. The necessary optimality conditions are derived and

compared to the traditional ones. Noori and Keller [1986] study a lot-size inventory problem

where the quantity received as well as the demand are random. They extend Hadley and

Whitin [1963] and analyze the a¤ect of parameter changes on the optimal inventory policy

and provide numerical examples for uniform, normal and exponential demand distributions.

Gerchak et al. [1988] deal with a periodic review model with random yield and conclude that
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the optimal policy is not order-up-to anymore. Henig and Gerchak [1990] analyze periodic

review inventory model with random yield. They prove that for a single-period model

an optimal order point exists whose value does not depend on replenishment randomness.

When yield is a randommultiple of lot size, the non-order-up-to optimal policy is shown to be

optimal for a �nite-horizon model. Parlar and Wang [1993] consider a single-period random

yield model where there are two suppliers. They conclude that diversi�cation enables a

reduction in overall yield variability. Yano and Lee [1995] review the related literature

about lot sizing when the yields are random. Ciarallo et al. [1994] analyze the problem

when the capacity is random with a known distribution for single-period, multiple-period

and in�nite-horizon scenarios. They show that for single-period model the optimal policy

does not change. For multiple-period and in�nite-horizon models order-up-to policies that

are dependent on the distribution of capacity are optimal. Jain and Silver [1995] also study

the random capacity model when a given level of capacity can be guaranteed to be available

by paying a premium. Özekici and Parlar [1999] consider a special case of the random yield

model where the order is either fully satis�ed or remains completely unful�lled. Erdem

and Özekici [2002] is an extension of Özekici and Parlar [1999]. They also consider random

capacity as the source of random supply. Gallego and Hu [2004] study the �nite capacity

inventory model when the system is subject to random yields. Arifo�glu and Özekici [2007]

extend Gallego and Hu [2004]�s model by considering the case when the environment is only

partially observable.

Okyay et al. [2010] categorize the random supply models under three groups: random

yield, random capacity, random yield and random capacity. Let y be the units ordered and

Q(y) be the received amount.

� Random Yield: Due to unforeseen events only a fraction of ordered amount is received
and

Q (y) = Uy

where U represents the proportion of nondefective items received.

� Random Capacity: The supplier�s capacity is a random variable denoted by K so that

Q (y) = min fK; yg .

Once y units are ordered, the supplier will ship y if its capacity K is greater than y,

or K units will be shipped.
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� Random Yield and Capacity: This model combines the previous two so that

Q (y) = U min fK; yg .

When y units are ordered, at most K units can be shipped by the supplier and only

a proportion U is received in good shape.

Our work is closely related to Okyay et al. [2010], Okyay et al. [2011] and Say¬n [2011]. In

Chapter 3, we consider the MV newsvendor model where there are risks associated with the

uncertainty in demand as well as supply. Although all the three works study the newsvendor

model with the same risk uncertainty categories, Okyay et al. [2010] aim expected cash �ow

maximization and Say¬n [2011] use the expected utility maximization framework while our

goal is to maximize the MV value of the cash �ow. Then in Chapter 4, we consider the MV

model where the randomness in demand and supply is correlated with the �nancial markets

like Okyay et al. [2011] and Say¬n [2011]. However, Okyay et al. [2011] and Say¬n [2011]

both use minimum-variance approach in this part. This part also di¤ers from their works

in a way that we choose the optimal order quantity and hedging portfolio in only one step

following MV hedging framework.
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Chapter 3

MV MODELS WITH RANDOM DEMAND AND SUPPLY

We take the MV approach to the newsvendor problem. The MV problem is a parametric

optimization problem where mean measures the expected value of the cash �ow while vari-

ance captures the variability of the cash �ow. Considering risk-averse newsvendors, there

are two ways to model the optimization problems under the MV formulation: by choosing

an order quantity y; the newsvendor maximizes the mean of the cash �ow subject to an

upper bound on the variance of the cash �ow, or vice versa, the newsvendor minimizes the

variance of the cash �ow subject to a lower bound on the mean of the cash �ow. By system-

atic variation of the lower/upper bound, we can generate the e¢ cient frontier which will be

discussed further later on in this chapter. As a general idea note that this frontier consists of

order quantities whose expected pro�t can not be increased without a simultaneous increase

of its corresponding variance of pro�t.

Let CF (X; y) be the random cash �ow when the order quantity is y where X is a vector

of random variables representing demand and supply uncertainty. The MV optimization

problem is

max
y�0

E[CF (X; y)]� �V ar[CF (X; y)] (3.1)

where � � 0 denotes the relative weight of the variance criterion. It can be regarded as

risk-aversion parameter. As � increases, the newsvendor becomes more risk-averse.

In Section (3.1), we �rst discuss the results for the MV newsvendor where the only

randomness comes from demand. Then, we include supply uncertainty into the model. In

Section (3.2), we discuss random yield models when only the fraction of ordered amount can

enter the stockpile. In Section (3.3), we discuss random capacity models when the supplier�s

capacity is random. Lastly, in Section (3.4), we combine random yield and capacity and

analyze the results.

3.1 MV Model
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In this section, we suppose that the newsvendor deals with stochastic demand where X =

fDg: Let c be the unit purchase cost, p be the unit sale price, u be the emergency ordering
cost for a shortage of products after demand is realized and s be the net unit salvage value,

which is obtained by subtracting inventory holding costs from salvage values. It is assumed

that holding cost is charged at the end of the period. To avoid trivial cases, p � u > c > 0
and c > s. We also assume that D is strictly greater than 0. Let CF (D; y) denote the

random cash �ow, that is

CF (D; y) = �cy + pD + s(y �D)+ � u(D � y)+

= �cy + pD + s(y �minfD; yg)� u(D �minfD; yg)

= (s� c)y + (p� u)D + (u� s)minfD; yg (3.2)

where (y �D)+ = y �minfD; yg and (D � y)+ = D �minfD; yg:
From here onwards, we will let m(y) and v(y) denote, respectively, the mean of the cash

�ow and the variance of the cash �ow. For the MV model they are

m(y) = E[CF (D; y)] = (s� c)y + (p� u)E[D] + (u� s)E[minfD; yg] (3.3)

and

v(y) = V ar[CF (D; y)]

= (p� u)2V ar[D] + (u� s)2V ar[minfD; yg]

+2(p� u)(u� s)Cov [D;minfD; yg] : (3.4)

Our optimization problem can be written as

max
y�0

H(y; �) = E[CF (D; y)]� �V ar[CF (D; y)] (3.5)

where

H(y; �) = (s� c)y + (p� u)E[D] + (u� s)E[minfD; yg] (3.6)

��
 
(p� u)2V ar[D] + (u� s)2V ar[minfD; yg]
+2(p� u)(u� s)Cov [D;minfD; yg]

!

is the objective function for any �xed � � 0:
Throughout this thesis, we will let FX ; fX ; �FX = 1 � FX denote the cumulative dis-

tribution function, the probability density function and the survival probability function
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respectively for any random variable X. To obtain the derivative of the mean and variance

of the cash �ow, note that for any random variable X we can write

E[minfX; yg] =
yZ
0

xfX(x)dx+ y

+1Z
y

fX(x)dx:

The derivative with respect to y is

dE[minfX; yg]
dy

=

+1Z
y

fX(x)dx = PfX > yg = E[1fX>yg] = 1� FX(y) = �FX(y): (3.7)

Similarly,

V ar[minfX; yg] = E[(minfX; yg)2]� E[minfX; yg]2

=

yZ
0

x2fX(x)dx+ y
2

+1Z
y

fX(x)dx� E[minfX; yg]2 (3.8)

and

Cov[X;minfX; yg] = E[X(minfX; yg)]� E[X]E[minfX; yg]

=

yZ
0

x2fX(x)dx+ y

1Z
y

xfX(x)dx� E[X]E[minfX; yg]: (3.9)

Then, it follows from (3.7) and (3.8) that

dV ar[minfX; yg]
dy

= 2y �FX(y)� 2E[minfX; yg] �FX(y)

= 2 �FX(y)(y � E[minfX; yg]) (3.10)

= 2Cov[minfX; yg; 1fX>yg]:

In this section, we will use the second equality form of (3.10) for the sake of simplicity.

Moreover, from (3.7) and (3.9), one can show that

dCov[X;minfX; yg]
dy

=

1Z
y

xfX(x)dx� E[X]
1Z
y

fX(x)dx

= E[X1fX>yg]� E[X]E[1fX>yg]

= Cov[X; 1fX>yg]: (3.11)



Chapter 3: MV Models with Random Demand and Supply

16

Particularly, to solve (3.5), we take the derivative of (3.6) with respect to y and set it

equal to zero. By using (3.7), (3.10) and (3.11) where X is D, the �rst order condition is

obtained as

dH(y; �)

dy
= (s� c) + (u� s) �FD(y)

�2�
�
(u� s)(u� s) �FD(y)S(y) + (p� u)Cov[D; 1fD>yg]

�
= 0 (3.12)

where S(y) = y � E[minfD; yg] denotes the expected unsold amount. It is clear that

S(y) � 0: The shape of S(y) will be important in later stages of our analysis. It is a convex
increasing function because

S0(y) = 1� �FD(y) = FD(y) � 0

and

S00(y) = fD(y) � 0:

Moreover, S(0) = 0 and as the order quantity y increases to +1; the slope of S(y) increases
to 1.

In order to get a rough idea about the MV problem, we analyze two extreme cases.

When � = 0, the newsvendor is risk-neutral and so the expected pro�t is maximized, or the

problem is

max
y�0

m(y) = E[CF (D; y)]:

The �rst order condition is

m0(y) = (s� c) + (u� s) �FD(y)

= 0: (3.13)

The mean of the cash �ow is concave since

m00(y) = �(u� s)fD(y) � 0: (3.14)

This also implies that m0(y) is decreasing in y. It follows from (3.13) that the optimal order

quantity satis�es

PfD � y�RNg =
u� c
u� s = p̂ (3.15)

where y�RN is the optimal order quantity for the risk-neutral newsvendor and p̂ denotes

a critical ratio which satis�es 0 < p̂ < 1: Note that this is equivalent to the classical
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newsvendor solution. Therefore, (3.15) gives the optimality condition provided thatm0(0) >

0 and m0(+1) < 0:
The optimal solution is y�RN = 0 if m

0(0) � 0; or

m0(0) = (s� c) + (u� s)(1� PfD = 0g) � 0:

Equivalently, we can state that if

PfD = 0g � p̂ (3.16)

then y�RN = 0: Note that the ratio in the right hand side of (3.16) is between 0 and 1:

Additionally, in this thesis, we assumed D to be strictly greater than 0. However, without

this assumption (3.16) may hold. In this case, we can conclude that if PfD = 0g = 1; the
newsvendor clearly orders nothing.

Moreover, the optimal solution is y�RN = +1 if m0(+1) � 0; or

m0(+1) = (s� c) + (u� s)PfD = +1g � 0:

Equivalently, we can state that if

PfD = +1g � 1� p̂ (3.17)

then y�RN = +1: The ratio in the right hand side of (3.17) is again between 0 and 1. If
demand is not �nite, or PfD = +1g = 1; we have y�RN = +1: From now on, in our

analysis we assume m0(0) > 0 and m0(+1) < 0 to avoid trivial cases.
As � increases to +1; the newsvendor becomes extremely risk-averse. The objective con-

tribution due to expected return becomes negligible and the problem turns into minimizing

the variance of the cash �ow, or

min
y�0

v(y) = V ar[CF (D; y)]: (3.18)

We take the �rst derivative of (3.4) with respect to y and see that the variance of the cash

�ow is increasing in y since

v0(y) = 2(u� s)
�
(u� s) �FD(y)S(y) + (p� u)Cov[D; 1fD>yg]

�
� 0: (3.19)
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Here, (3.19) follows from the fact that k(y) = Cov
�
D; 1fD>yg

�
� 0. To see this, note that

k(y) = E[D1fD>yg]� E[D]E[1fD>yg]

=

0@ +1Z
y

xfD(x)dx� E[D]
+1Z
y

fD(x)dx

1A
=

+1Z
y

(x� E[D])fD(x)dx: (3.20)

It can be seen that k(0) = 0: The derivative of (3.20) with respect to y is

k0(y) = �(y � E[D])fD(y)

so that

sign (k0(y)) =

(
+ y � E[D]
� y > E[D]

:

Therefore, starting from 0; until y becomes E[D]; k(y) increases. Then, when y > E[D];

k(y) is decreasing in y. However, in the region y > E[D]; k(y) never becomes negative since

k(y) =

1Z
y

(x� E[D])fD(x)dx �
1Z
y

(y � E[D])fD(x)dx = (y � E[D])PfD � yg � 0:

Put another way, Cov
�
D; 1fD>yg

�
� 0 because 1fD>yg is an increasing function of D.

Thus, the optimal order quantity in (3.18) is 0. For this case, the expected cash �ow

(3.3) and variance of the cash �ow (3.4) are

E[CF (D; 0)] = (p� u)E[D]

and

V ar[CF (D; 0)] = (p� u)2V ar[D] (3.21)

since CF (D; 0) = (p� u)D:

Lemma 3.1.1 (a) E[CF (D; y)] is concave in y; it is increasing on [0; y�RN ] and decreasing

on (y�RN ;+1). (b) V ar[CF (D; y)] is a nondecreasing function of y. Moreover,

(p� u)2V ar[D] � V ar[CF (D; y)] � (p� s)2V ar[D]

for all y.
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Proof. It is seen from (3.14) that E[CF (D; y)] is concave and the maximum is attained at

y�RN by (3.15). Since the derivative of V ar[CF (D; y)] with respect to order quantity (3.19)

is positive, V ar[CF (D; y)] is nondecreasing. Moreover,

lim
y!+1

V ar[CF (D; y)] = (p� u)2V ar[D] + (u� s)2 lim
y!+1

V ar[minfD; yg]

+2(p� u)(u� s) lim
y!+1

Cov [D;minfD; yg]

= (p� s)2V ar[D]

and the lower bound for V ar[CF (D; y)] is given in (3.21).

It follows from part (a) of Lemma 3.1.1 and (3.15) that E[CF (D; y)] is maximized at

a �nite, positive point. To obtain it, � is set to zero in the MV formulation. This point

corresponds to the classical newsvendor solution y�RN that satis�es (3.15). However, to

maximize the MV objective we must consider both the mean and variance of the cash �ow.

For the MV optimization problem, the di¢ culty of identifying an optimal solution is the

con�ict among the two objectives. For instance, the best solution for minimizing the variance

of the cash �ow is the worst for maximizing the mean of the cash �ow. Therefore, a good

compromise between the objectives acceptable to the newsvendor is sought. For the multi-

objective problems a feasible solution is called e¢ cient (Pareto optimal or non-dominated)

if there is no other feasible solution where all the objectives get a better value. We state

that y is dominated if and only if there exists y0 that satis�es E[CF (D; y0)] � E[CF (D; y)]
and V ar[CF (D; y0)] � V ar[CF (D; y)] where at least one of the inequalities is strict.
Let y(�) be an optimal solution to (3.5). Then it should satisfy

E[CF (D; y(�))]� �V ar[CF (D; y(�))] � E[CF (D; y0)]� �V ar[CF (D; y0)] (3.22)

for all y0. Suppose that there exists y0 such that

E[CF (D; y0)] � E[CF (D; y(�))] (3.23)

and

V ar[CF (D; y0)] � V ar[CF (D; y(�))]: (3.24)

Multiplying (3.24) by � � 0 and subtracting it from (3.23) we get

E[CF (D; y0)]� �V ar[CF (D; y0)] � E[CF (D; y(�))]� �V ar[CF (D; y(�))]

which contradicts (3.22). Clearly, the solution to the MV problem consists of non-dominated

order quantities. From Lemma 3.1.1, it can be easily veri�ed that the order quantities in
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the region [0; y�RN ] are all non-dominated. Moreover, order quantities in (y
�
RN ;+1) are all

dominated, since y�RN dominates all y > y�RN : This also implies that y(�) � y�RN for all

� � 0:

Proposition 3.1.2 The optimal order quantity y(�) that maximizes the MV objective is

less than or equal to the classical newsvendor solution y�RN for any � � 0:

Proof. Suppose that there exists an optimal order quantity that satis�es y(�) > y�RN . Then

by concavity of the expected value of the cash �ow we know that

E[CF (D; y(�))] < E[CF (D; y�RN )]

and since variance of the cash �ow is increasing

V ar[CF (D; y(�))] � V ar[CF (D; y�RN )]:

From the above arguments we can state that y(�) is dominated by y�RN and this is a

contradiction. Therefore, for our analysis we only need to consider the order quantities

that lie in the region [0; y�RN ].

Theorem 3.1.3 The optimal order quantity y(�) that maximizes the MV objective (3.6) is

obtained from (3.12) by solving

FD(y(�)) + 2�
�
(u� s) �FD(y(�))S(y(�)) + (p� u)Cov[D; 1fD>y(�)g]

�
= p̂: (3.25)

Moreover, y(�) decreases as � increases.

Proof. For any �xed y; let �(y) satisfy the optimality condition (3.25) which can be written

as

FD(y) + 2�(y)
�
(u� s) �FD(y)S(y) + (p� u)Cov[D; 1fD>yg]

�
= p̂

or

�(y) =
p̂� FD(y)

2
�
(u� s) �FD(y)S(y) + (p� u)Cov[D; 1fD>yg]

� : (3.26)

In later parts of our analysis we use the integral form of k(y) = Cov[D; 1fD>yg] in (3.20) to

simplify the calculations. Thus, (3.26) can be written as

�(y) =
p̂� FD(y)

2

(
(u� s) �FD(y)S(y) + (p� u)

1R
y
(x� E[D])fD(x)dx

) :
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For all y in the region [0; y�RN ]; p̂ � FD(y) is valid and in this non-dominated region we can
show that �(y) is decreasing in y: The derivative of (3.26) is

�0(y) =

8>>>><>>>>:
�fD(y)

"
(u� s) �FD(y)S(y) + (p� u)

1R
y
(x� E[D])fD(x)dx

#
�[(u� s)

�
�fD(y)S(y) + �FD(y)S

0(y)
�

+(p� u) (�(y � E[D])fD(y))](p̂� FD(y))

9>>>>=>>>>;
2

(
(u� s) �FD(y)S(y) + (p� u)

1R
y
(x� E[D])fD(x)dx

)2 : (3.27)

If y � E[D]; then since �FD(y) � p̂� FD(y); (3.27) gives

�0(y) �

8>>><>>>:
�(u� s)fD(y) �FD(y)S(y)� (p� u) fD(y)

1R
y
(x� E[D])fD(x)dx

+(u� s)fD(y)S(y) �FD(y)� (u� s) �FD(y)FD(y)(p̂� FD(y))
+(p� u)fD(y)(y � E[D])(p̂� FD(y))

9>>>=>>>;
2

(
(u� s) �FD(y)S(y) + (p� u)

1R
y
(x� E[D])fD(x)dx

)2
� 0: (3.28)

If y > E[D]; then since x � y > E[D] and �FD(y) � p̂� FD(y); (3.27) leads to

�0(y) �

8>>><>>>:
�(u� s)fD(y) �FD(y)S(y)� (p� u)fD(y)

1R
y
(y � E[D])fD(x)dx

+(u� s)fD(y)S(y) �FD(y)� (u� s) �FD(y)FD(y)(p̂� FD(y))
+(p� u)fD(y)(y � E[D])(p̂� FD(y))

9>>>=>>>;
2

(
(u� s) �FD(y)S(y) + (p� u)

1R
y
(x� E[D])fD(x)dx

)2
� � (u� s) �FD(y)FD(y)(p̂� FD(y))

2

(
(u� s) �FD(y)S(y) + (p� u)

1R
y
(x� E[D])fD(x)dx

)2
� 0 (3.29)

where the second inequality follows from

1Z
y

(y � E[D])fD(x)dx = (y � E[D]) �FD(y) � (y � E[D])(p̂� FD(y)):
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Moreover, note that �(0) = +1 and �(y�RN ) = 0: Therefore, �(y) decreases from +1 to 0

as y increases from 0 to y�RN . Up to now, by showing �(y) is a decreasing function of y,

we establish the existence of an order quantity for each risk-aversion level �: Note that on

(y�RN ;+1); �(y) � 0 so that this region is dominated. Additionally, the �rst derivative of
the MV objective function (3.12) evaluated at y = 0 and y = y�RN are

dH(y; �)

dy

����
y=0

= (s� c) + (u� s) �FD(0)

�2�(u� s)
�
(u� s) �FD(0)S(0) + (p� u)Cov[D; 1fD>0g]

�
= u� c � 0 (3.30)

and

dH(y; �)

dy

����
y=y�RN

= �2�(u� s)
�
(u� s) �FD(y�RN )S(y�RN )

+(p� u)Cov[D; 1fD>y�RNg]
i

� 0: (3.31)

Therefore, the MV objective function is quasi-concave and the order quantity that lies

between 0 and y�RN maximizes (3.5). For any � � 0; by taking the inverse ��1 of �(y), we
can obtain the optimal order quantity corresponding to that � value so that

y(�) = ��1(�): (3.32)

The objective function in (3.6) is not necessarily concave. However, it follows from (3.30)

and (3.31) and the fact �(y) is decreasing in y in the region [0; y�RN ] that there exists an

optimal order quantity 0 � y(�) � y�RN which satis�es (3.25) for any � � 0. According to
the newsvendor�s preference of risk given by �, the optimal order quantity is chosen between

0 and y�RN : Since �
0(y) � 0; we know that �(y) is decreasing in y. Therefore, the inverse

given in (3.32) is also decreasing and this leads to the conclusion that as risk-aversion �

increases, the optimal order quantity y(�) decreases.

As a general remark throughout this thesis we state that the uniqueness of the optimal

order quantity is ensured if and only if �(y) is a strictly decreasing function of y: Otherwise,

the optimal order quantity, y(�); is the minimum y satisfying (3.25). Also, note that we can

write (3.25) as

m0(y(�))� �v0(y(�)) = 0
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where m0(y) and v0(y) are given in (3.13) and (3.19). When � = 0; (3.25) becomes (3.15):

When � > 0; the only di¤erence is an additional term that comes from including the variance

of the cash �ow into the objective function.

In this section, we have investigated optimal order quantities and corresponding expected

pro�ts and variance of pro�ts when demand constitutes the only source of randomness. Con-

sideration of variance in the objective function is important since it captures the stochastic

nature of the problem and at the same time it enables us to include the newsvendor�s

risk attitude. Therefore, in our analysis we �nd tailor-�t optimal order quantity for the

newsvendor with each risk-aversion level. We observe that a risk-averse newsvendor orders

lower than the classical newsvendor solution. Another conclusion is that as the newsvendor

becomes more risk-averse the optimal order quantity decreases.

3.1.1 MV Model with Exponential Demand

Up to this point, any demand distribution is considered. We now illustrate a numerical

example where demand is exponentially distributed with rate � = 0:1: The newsvendor can

buy each item with purchase cost c = 0:5; sell it at a price p = 1; and the leftovers can be

salvaged at s = 0:1. For simplicity, we assume that emergency cost is equal to sale price;

that is u = 1: For this setting to calculate the mean and variance of the cash �ow, we obtain

the following explicit expressions.

Mean of sales is

E[minfD; yg] =

yZ
0

�e��xxdx+

1Z
y

�e��xydx

=
1� e��y

�
� ye��y + ye��y

=
1� e��y

�
(3.33)

second moment of sales is

E[(minfD; yg)2] =

yZ
0

�e��xx2dx+

1Z
y

�e��xy2dx

=
2

�2
� 2

�
ye��y

�
+
e��y

�2

�
+ y2e��y
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and, lastly, variance of the sales is

V ar[minfD; yg] = E[(minfD; yg)2]� E[minfD; yg]2

=
2

�2
� 2

�
ye��y

�
+
e��y

�2

�
+ y2e��y �

�
1� e��y

�

�2
: (3.34)

The salvage amount can be obtained easily as

S(y) = y � E[minfD; yg]

=
y�� 1 + e��y

�
:

The mean and variance of the cash �ow are

E[CF (D; y)] = (s� c)y + (p� s)E[minfD; yg] (3.35)

and

V ar[CF (D; y)] = (p� s)2V ar[minfD; yg]: (3.36)

For the exponential demand distribution, by substituting (3.33) into (3.35), the mean of the

cash �ow is obtained as

E[CF (D; y)] = (s� c)y + (p� s)
�
1� e��y

�

�
and by substituting (3.34) to (3.36), the variance of the cash �ow becomes

V ar[CF (D; y)] = (p� s)2
"
2

�2
� 2

�
ye��y

�
+
e��y

�2

�
+ y2e��y �

�
1� e��y

�

�2#
:

The optimality condition in (3.25) can be updated as

1� e��y(�) + 2�(p� s)e��y(�)
 
y(�)�� 1 + e��y(�)

�

!
= p̂

or

�(y) =
p̂� (1� e��y)

2(p� s)e��y
�
y��1+e��y

�

� :
The graphical illustrations of the relationships between �(y) versus y and E[CF (D; y(�))]

versus V ar[CF (D; y(�))] as � changes from 0 to 5 with 0:01 increments are shown in Figure

3.1 and Figure 3.2 respectively.
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Figure 3.1: �(y) as a Function of y

Figure 3.2: E¢ cient Frontier
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Figure 3.3: The E¤ect of Risk-Aversion Parameter on Optimal Order Quantity

For every risk-aversion parameter �; the optimal order quantity is obtained by taking

the inverse

y(�) = ��1(�):

Figure 3.3 shows the inverse of �(y): It is seen that as risk-aversion increases the optimal

order quantity decreases. When � = 0; the newsvendor is risk-neutral and the problem

becomes the classical newsvendor problem. From (3.15) the optimal order quantity y�RN
satis�es

1� e��y�RN = 0:5

0:9

and by solving this equation for � = 0:1, we obtain the newsvendor order quantity as

y�RN = 8:1:

When � = 5; the newsvendor becomes risk-averse, the optimal order quantity y(�)

decreases to 1:07: At this point, the mean and variance of the cash �ow are

E[CF (D; 1:07)] = 0:4887

and

V ar[CF (D; 1:07)] = 0:8760:

Similar to the e¢ cient frontier obtained by the Markowitz model in portfolio theory; for

this example, mean of the cash �ow and variance of the cash �ow constitute the e¢ cient

frontier. They are the best mean-variance combinations for risk-averse investors. Therefore,

we limit our study to this frontier. From Figure 3.2, it can be seen that as the newsvendor

wants to increase the gain, the risk he/she is taking also increases.
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3.1.2 E¢ cient Frontier

We stated previously that for risk-averse newsvendors, the order quantities in the region

[0; y�RN ] are all non-dominated. When we choose each order quantity in the region [0; y
�
RN ];

and map it to the MV space by plotting the corresponding mean of the cash �ow versus the

variance of the cash �ow, the resulting image of the order quantities in [0; y�RN ] is called the

e¢ cient frontier that shows the trade-o¤s between the mean and variance of the cash �ow.

The slope of a point on this curve can be obtained by

�(y) =
dE[CF (D; y)]=dy

dV ar[CF (D; y)]=dy
:

To observe the change in the slope as the order quantity increases from 0 to y�RN , we simply

take the derivative of �(y) with respect to y. It follows from (3.28) and (3.29) that �0(y) � 0:
Therefore, as the order quantity increases the slope of a point on the e¢ cient frontier

decreases. We can generate the e¢ cient frontier numerically. When y = 0; �(0) = +1:
When y = y�RN ; �(y

�
RN ) = 0. Thus, the e¢ cient frontier that has a shape depicted in Figure

3.2 is observed to be convex to the left.

Up to this point, we analyzed the MV newsvendor problem and the e¤ect of risk-aversion

on the optimal order quantity when demand is the only source of uncertainty. As we stated

before, supply uncertainty is another signi�cant source of randomness for inventory man-

agement. Because of some unforeseen events during production or transportation processes,

suppliers may not meet the quantity ordered. Starting from the following section, we an-

alyze supply randomness in three categories: random yield, random capacity and random

yield and capacity. Remarkably, in literature there is no example that discusses the MV

model with random supply. Therefore, the analysis in the remainder of this chapter is new.

3.2 MV Model with Random Yield

In this section, we also consider the supply uncertainty when it is caused by random yield in

the sense that the received amount is a random proportion of order quantity due to defects,

errors during production process or transportation problems, etc.. Let 0 � U � 1 be a

random variable representing the proportion of non-defective items received, thus when y

units are ordered Uy amount is received. For generality, we assume that U and D are not
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necessarily independent and the conditional density function of demand given U = v is fDjv:

For the random yield model the cash �ow in (3.2) can be updated as

CF (D;U; y) = (s� c)Uy + (p� u)D + (u� s)minfD;Uyg:

The mean and variance of the cash �ow are

m(y) = E[CF (D;U; y)] = (s� c)yE[U ] + (p� u)E[D] + (u� s)E[minfD;Uyg]

and

v(y) = V ar[CF (D;U; y)]

= (s� c)2y2V ar[U ] + (p� u)2V ar[D] + (u� s)2V ar[minfD;Uyg]

+2(s� c)(p� u)yCov[U;D] + 2(p� u)(u� s)Cov[D;minfD;Uyg]

+2(s� c)(u� s)yCov[U;minfD;Uyg]

� 0: (3.37)

The aim of the risk-averse newsvendor now is

max
y�0

H(y; �) = E[CF (D;U; y)]� �V ar[CF (D;U; y)]

for any � � 0: Equivalently, the objective function H(y; �) for any any �xed � � 0 can be
written as

H(y; �) = (s� c)yE[U ] + (p� u)E[D] + (u� s)E[minfD;Uyg] (3.38)

��

8>>>>><>>>>>:
(s� c)2y2V ar[U ] + (p� u)2V ar[D]

+(u� s)2V ar[minfD;Uyg] + 2(s� c)(p� u)yCov[U;D]
+2(p� u)(u� s)Cov[D;minfD;Uyg]
+2(s� c)(u� s)yCov[U;minfD;Uyg]

9>>>>>=>>>>>;
:

To obtain the optimality condition, note that for random variables X and V we can

write

E[minfX;V yg] =
1Z
0

fV (v)dv

0@ vyZ
0

xfXjv(x)dx+ vy

+1Z
vy

fXjv(x)dx

1A :
The derivative with respect to y is

dE[minfX;V yg]
dy

=

1Z
0

vfV (v)dv

+1Z
vy

fXjv(x)dx = E[V 1fX>V yg]

= E[V ]� E[V 1fX�V yg] (3.39)
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by using the fact that 1fX>V yg = 1� 1fX�V yg: Similarly,

V ar[minfX;V yg] = E[(minfX;V yg)2]� E[minfX;V yg]2

=

1Z
0

fV (v)dv

0@ vyZ
0

x2fXjv(x)dx+ v
2y2

+1Z
vy

fXjv(x)dx

1A
�E[minfX;V yg]2: (3.40)

Then, it follows from (3.39) and (3.40) that

dV ar[minfX;V yg]
dy

= 2y

1Z
0

v2fV (v)dv

+1Z
vy

fXjv(x)dx

�2E[minfX;V yg]E[V 1fX>V yg]

= 2(yE[V 21fX>V yg]� E[minfX;V yg]E[V 1fX>V yg])

= 2Cov[minfX;V yg; V 1fX>V yg]: (3.41)

Moreover, the covariance terms in (3.37) are

Cov[X;minfX;V yg] = E[XminfX;V yg]� E[X]E[minfX;V yg]

=

1Z
0

fV (v)dv

0@ vyZ
0

x2fXjv(x)dx+ vy

+1Z
vy

xfXjv(x)dx

1A
�E[X]E[minfX;V yg] (3.42)

and

Cov [V;minfX;V yg] = E[V minfX;V yg]� E[V ]E[minfX;V yg]

=

1Z
0

fV (v)dv

0@v vyZ
0

xfXjv(x)dx+ v
2y

+1Z
vy

fXjv(x)dx

1A
�E[V ]E[minfX;V yg]: (3.43)

Then, using (3.39) and (3.42) one can obtain

dCov[X;minfX;V yg]
dy

=

1Z
0

vfV (v)dv

+1Z
vy

xfXjv(x)dx� E[X]E[V 1fX>V yg]

= E[XV 1fX>V yg]� E[X]E[V 1fX>V yg]

= Cov[X;V 1fX>V yg]: (3.44)
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Lastly, it follows from (3.39) and (3.43) that

dCov [V;minfX;V yg]
dy

=

1Z
0

v2fV (v)dv

+1Z
vy

fXjv(x)dx� E[V ]E[V 1fX>V yg]

= E[V 21fX>V yg]� E[V ]E[V 1fX>V yg]

= Cov[V; V 1fX>V yg]: (3.45)

Again, initially we analyze two extreme cases. The case � = 0 corresponds to the

risk-neutral newsvendor and so the expected pro�t is maximized, or

max
y�0

m(y) = E[CF (D;U; y)]:

Using (3.39) where X is D and V is U , the �rst order condition is

m0(y) = (u� c)E[U ]� (u� s)E[U1fD�Uyg]

= 0: (3.46)

It is clear that 1fD�Uyg is increasing in y so that

m00(y) = �(u� s)
1Z
0

v2fU (v)fDjv(vy)dv � 0 (3.47)

and the mean of the cash �ow is concave. This also implies that m0(y) is decreasing in y.

Thus, it follows from (3.46) that the optimal order quantity y�RN satis�es

E[U1fD�Uy�RNg]

E[U ]
= p̂ (3.48)

where p̂ denotes the same critical ratio as in (3.15). Note that (3.48) is equivalent to

the classical newsvendor solution with random yield model given in Okyay et al. [2010].

Therefore, (3.48) gives the optimality condition provided that m0(0) > 0 and m0(+1) < 0
and there exists an optimal order quantity y�RN satisfying (3.48).

The optimal order quantity is y�RN = 0 if m
0(0) � 0; or

m0(0) = (u� c)E[U ]� (u� s)E[U1fD=0g] � 0: (3.49)

Equivalently, we can conclude that if

E[U1fD=0g]

E[U ]
� p̂ (3.50)
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then y�RN = 0: Clearly, the ratio in the right hand side of (3.49) is between 0 and 1. Here,

the same remark of the previous section is valid. By our assumption D is strictly greater

than 0 in which case (3.50) can not be true. However, we aim to show the result when this

assumption does not hold.

Moreover, the optimal solution is y�RN = +1 if m0(+1) � 0; or

m0(+1) = (u� c)E[U ]� (u� s)E[U1fD<+1g] � 0:

Equivalently if
E[U1fD=+1g]

E[U ]
� 1� p̂ (3.51)

then y�RN = +1: The ratio in the right hand side of (3.51) is again between 0 and 1. To
avoid these trivial cases in our analysis we assume m0(0) > 0 and m0(+1) < 0:
As � increases to +1; the newsvendor becomes extremely risk-averse and the problem

becomes minimizing the variance of the cash �ow, or

min
y�0

v(y) = V ar[CF (D;U; y)]: (3.52)

To carry out the analysis as in the previous section, we make the following assumption

throughout the remainder of this thesis.

Assumption 3.2.1 The function v(y) = V ar[CF (D;U; y)] is nondecreasing in y and con-

vex on [0; y�RN ].

This assumption implies that

v0(y) = 2[(s� c)2yV ar[U ] + (u� s)2Cov[minfD;Uyg; U1fD>Uyg]

+(s� c)(p� u)Cov[U;D] + (p� u)(u� s)Cov[D;U1fD>Uyg]

+(s� c)(u� s)
�
Cov[U;minfD;Uyg] + yCov[U;U1fD>Uyg]

�
]

� 0 (3.53)

for all y. This is obtained by using (3.41), (3.44) and (3.45) where X is D and V is U .

Moreover, v00(y) � 0 on [0; y�RN ]: Assumption 3.2.1 also implies that

v0(0) = 2[(s� c)(p� u)Cov[U;D] + (p� u)(u� s)Cov[D;U1fD>0g]]

= 2(p� u)(u� c)Cov[U;D]

� 0
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and, as a consequence, Cov[U;D] � 0 so that U and D are positively correlated. The reverse
is not necessarily true and positive correlation between U and D does not necessarily imply

that V ar[CF (D;U; y)] is increasing.

Under this assumption, the optimal order quantity in (3.52) is 0. At this point, the

corresponding mean and variance of the cash �ow are respectively

E[CF (D;U; 0)] = (p� u)E[D]

and

V ar[CF (D;U; 0)] = (p� u)2V ar[D] (3.54)

since CF (D;U; 0) = (p� u)D:

Lemma 3.2.2 (a) E[CF (D;U; y)] is concave in y; it is increasing on [0; y�RN ] and decreas-

ing on (y�RN ;+1). (b) Moreover,

(p� u)2V ar[D] � V ar[CF (D;U; y)]

for all y.

Proof. E[CF (D;U; y)] is concave since (3.47) holds and the maximum is attained at y�RN
by (3.48). Moreover, V ar[CF (D;U; y)] is bounded below by (p � u)2V ar[D] as given in
(3.54).

It follows from part (a) of Lemma 3.2.2 and (3.48) that E[CF (D;U; y)] is maximized

at a �nite, positive point. We can obtain this point when � is equal to zero in the MV

formulation. It corresponds to classical newsvendor solution with random yield that satis�es

(3.48). However, to maximize the MV objective we must take into account both the mean

and variance of the cash �ow. In the MV analysis, we need to consider the order quantities

that lie in the region [0; y�RN ] which is the non-dominated region. Moreover, the order

quantities in (y�RN ;+1) are all dominated. This argument implies that y(�) � y�RN for all

� � 0:

Proposition 3.2.3 The optimal order quantity y(�) that maximizes the MV objective is

less than or equal to the classical newsvendor solution y�RN for all � � 0:

Proof. The argument is similar to the discussion of Proposition 3.1.2 in Section 3.1.
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Using (3.39), (3.41), (3.44) and (3.45) where X is D and V is U , we di¤erentiate the

objective function (3.38) with respect to y and obtain the �rst order condition as

g(y; �) =
dH(y; �)

dy
= m0(y)� �v0(y) = 0 (3.55)

where m0(y) and v0(y) are given in (3.46) and (3.53).

Theorem 3.2.4 The optimal order quantity y(�) that maximizes the MV objective (3.38)

is obtained from (3.55) by solving

m0(y(�))� �v0(y(�)) = 0: (3.56)

Moreover, y(�) decreases as � increases.

Proof. For any �xed y; let �(y) satisfy the optimality condition (3.56) which can be written

as

�(y) =
m0(y)

v0(y)
: (3.57)

For all y in the non-dominated region [0; y�RN ]; we can show that �(y) is decreasing in y.

The derivative of (3.57) is

�0(y) =
m00(y)v0(y)� v00(y)m0(y)

(v0(y))2
� 0: (3.58)

We already know by Lemma 3.2.2 that E[CF (D;U; y)] is concave so that m0(y) � 0 on

[0; y�RN ] and m
00(y) � 0. By our assumption V ar[CF (D;U; y)] is nondecreasing so that

v0(y) � 0. Moreover, v00(y) � 0 on [0; y�RN ]; that is, V ar[CF (D;U; y)] is convex along the
non-dominated region so that (3.58) follows. Note that

�(0) =
E[U ]

2(p� u)Cov[U;D] � 0

and

�(y�RN ) = 0

since m0(y�RN ) = 0 by concavity of E[CF (D;U; y)]: Therefore, �(y) decreases from �(0)

to 0 as y increases from 0 to y�RN . Up to now, by showing �(y) is a decreasing function

of y, we establish the existence of an order quantity for each risk-aversion level � that is

between 0 � � � �(0): Note that on (y�RN ;+1), �(y) � 0 and so this is the dominated
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region. Additionally, along the non-dominated region [0; y�RN ] the second order condition is

obtained as
d2H(y; �)

dy2
= m00(y)� �v00(y) � 0:

Since the second order condition is satis�ed, the objective function is concave on [0; y�RN ].

Moreover, the �rst derivative of the MV objective function (3.55) evaluated at y = 0 is

dH(y; �)

dy

����
y=0

= (u� c)E[U ]� (u� s)E[U1fD�0g]� 2�(p� u)(u� c)Cov[U;D]

= (u� c)E[U ]� 2�(p� u)(u� c)Cov[U;D]

� 0

and (3.55) is nonpositive on (y�RN ;+1) because m(y) is decreasing while v(y) is increasing
on (y�RN ;+1). This implies that the MV objective function is decreasing along the non-

dominated region: Therefore, it is quasi-concave and the order quantity that is between 0

and y�RN is a maximizer of (3.38). For any 0 � � < �(0); by taking the inverse ��1 of �(y),
we can obtain the optimal order quantity corresponding to that � value so that

y(�) = ��1(�): (3.59)

According to the newsvendor�s risk-aversion level given by �, the optimal order quantity is

chosen between 0 and y�RN : Since �
0(y) � 0; we know that �(y) is decreasing in y, so the

inverse given in (3.59) is also decreasing. Therefore, similar to the previous section, we state

that as the level of risk-aversion � increases the optimal order quantity y(�) decreases.

Note that we can also write (3.56) as

E[U1fD�Uy(�)g]

E[U ]
+ ��v(y(�)) = p̂ (3.60)

where

�v(y) =

2

8>><>>:
(s� c)2yV ar[U ] + (u� s)2Cov

�
minfD;Uyg; U1fD>Uyg

�
+(s� c)(p� u)Cov [U;D] + (p� u)(u� s)Cov

�
D;U1fD>Uyg

�
+(s� c)(u� s)

�
Cov [U;minfD;Uyg] + yCov

�
U;U1fD>Uyg

��
9>>=>>;

(u� s)E[U ] :

When � = 0; (3.60) becomes the same as (3.48): When � > 0; the only di¤erence is an

additional term given by �v(y) that comes from the variance of the cash �ow.
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The optimal order quantity is y(�) = 0 if g(0; �) � 0; that is

g(0; �) = (u� c)E[U ]� (u� s)E[U1fD=0g]� 2�(p� u)(u� c)Cov[U;D] � 0:

Equivalently, we can conclude that if

� � E[U ]

2(p� u)Cov[U;D] = �(0)

then y(�) = 0:

As a special case, when U = 1 which means that there is no randomness in yield, the

optimality condition is (3.25).

This section examined the optimal order quantities for the random yield model. The

arguments that a risk-averse newsvendor orders less than the classical newsvendor and as the

risk-aversion level increases the optimal order quantity decreases are valid under Assumption

3.2.1.

As a general remark, throughout this thesis the MV analysis is based on Assumption

3.2.1. If we only assume that the variance of the cash �ow is increasing in y; then we can

still argue that the non-dominated region lies on [0; y�RN ] and the MV newsvendor orders

less than the risk-neutral one: Nevertheless, the variance of the cash �ow being convex along

the non-dominated region ensures that as the MV newsvendor becomes more risk-averse,

the order quantity decreases. Suppose for a moment that the variance of the cash �ow is

decreasing in y: Although we could not �nd such an example to illustrate this case, if it

were, then the non-dominated region would be (y�RN ;+1) and the MV newsvendor would
order more than the risk-neutral one: Moreover, if we further assume that the variance of

the cash �ow is convex along the non-dominated region then as the newsvendor would be

more risk-averse, the order quantity would increase.

3.3 MV Model with Random Capacity

In this section, in addition to the demand uncertainty we consider the e¤ects of supply

uncertainty when it is caused by random capacity. Due to limited capacity the received

amount of order quantity may be less than the ordered amount. Thus, we express the

received amount from ordering y units as minfK; yg where K � 0 is the maximum number

of units the supplier can ship. We further assume that D and K may be dependent and

the conditional density function of D given K = z is fDjz: Moreover, it is assumed that
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PfK > zg > 0 for all z, therefore there is always some probability that our order will be
satis�ed in full. The cash �ow in (3.2) can be updated for the random capacity model as

CF (D;K; y) = (s� c)minfK; yg+ (p� u)D + (u� s)minfD;K; yg:

The mean and variance of the cash �ow are

m(y) = E[CF (D;K; y)]

= (s� c)E[minfK; yg] + (p� u)E[D] + (u� s)E[minfD;K; yg]

and

v(y) = V ar[CF (D;K; y)]

= (s� c)2V ar[minfK; yg] + (p� u)2V ar[D] + (u� s)2V ar[minfD;K; yg]

+2(s� c)(p� u)Cov[D;minfK; yg] + 2(p� u)(u� s)Cov[D;minfD;K; yg]

+2(s� c)(u� s)Cov[minfK; yg;minfD;K; yg]

� 0:

The MV formulation of the risk-averse newsvendor in (3.1) can be updated as

max
y�0

H(y; �) = E[CF (D;K; y)]� �V ar[CF (D;K; y)]

or in open form the objective function is expressed as

H(y; �) = (s� c)E[minfK; yg] + (p� u)E[D] + (u� s)E[minfD;K; yg] (3.61)

��

8>>>>><>>>>>:
(s� c)2V ar[minfK; yg] + (p� u)2V ar[D]

+(u� s)2V ar[minfD;K; yg] + 2(s� c)(p� u)Cov[D;minfK; yg]
+2(p� u)(u� s)Cov[D;minfD;K; yg]

+2(s� c)(u� s)Cov[minfK; yg;minfD;K; yg]

9>>>>>=>>>>>;
for any � � 0:
Before analyzing the optimality condition note that for any random variables X and Z;

we can write that
dE[minfX;Z; yg]

dy
= PfX > y;Z > yg. (3.62)
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This follows from (3.7) by putting minfX;Zg as the random variable X. Similar to (3.10),

we can write

dV ar[minfZ; yg]
dy

= 2y �FZ(y)� 2E[minfZ; yg] �FZ(y)

= 2Cov[minfZ; yg; 1fZ>yg]: (3.63)

Moreover, the derivative of the other variance term in (3.61) can be expressed as

dV ar[minfX;Z; yg]
dy

= 2Cov[minfX;Z; yg; 1fX>y;Z>yg] (3.64)

which follows from (3.10) where minfX;Zg is the random variable X. Similarly, the co-

variance terms in (3.61) are

Cov[X;minfZ; yg] = E[XminfZ; yg]� E[X]E[minfZ; yg]

=

+1Z
0

minfz; ygfZ(z)dz
+1Z
0

xfXjz(x)dx

�E[X]E[minfZ; yg]

=

yZ
0

zfZ(z)dz

+1Z
0

xfXjz(x)dx

+y

+1Z
y

fZ(z)dz

+1Z
0

xfXjz(x)dx� E[X]E[minfZ; yg];

Cov[X;minfX;Z; yg] = E[XminfX;Z; yg]� E[X]E[minfX;Z; yg]

=

+1Z
0

fZ(z)dz

0B@ minfz;ygZ
0

x2fXjz(x)dx+minfz; yg
+1Z

minfz;yg

xfXjz(x)dx

1CA
�E[X]E[minfX;Z; yg]

=

yZ
0

fZ(z)dz

0@ zZ
0

x2fXjz(x)dx+ z

+1Z
z

xfXjz(x)dx

1A
+

+1Z
y

fZ(z)dz

0@ yZ
0

x2fXjz(x)dx+ y

+1Z
y

xfXjz(x)dx

1A
�E[X]E[minfX;Z; yg] (3.65)
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and

Cov[minfZ; yg;minfX;Z; yg] = E[minfZ; ygminfX;Z; yg]

�E[minfZ; yg]E[minfX;Z; yg]

=

+1Z
0

fZ(z)dz

0B@minfz; yg minfz;ygZ
0

xfXjz(x)dx

+(minfz; yg)2
+1Z

minfz;yg

fXjz(x)dx

1CA
�E[minfZ; yg]E[minfX;Z; yg]

=

yZ
0

fZ(z)dz

0@z zZ
0

xfXjz(x)dx+ z
2

+1Z
z

fXjz(x)dx

1A
+

+1Z
y

fZ(z)dz

0@y yZ
0

xfXjz(x)dx+ y
2

+1Z
y

fXjz(x)dx

1A
�E[minfZ; yg]E[minfX;Z; yg]: (3.66)

Then, we can obtain their derivatives as

dCov[X;minfZ; yg]
dy

=

+1Z
y

fZ(z)dz

+1Z
0

xfXjz(x)dx� E[X]PfZ > yg

= E[X1fZ>yg]� E[X]PfZ > yg

= Cov[X; 1fZ>yg]; (3.67)

and

dCov[X;minfX;Z; yg]
dy

=

+1Z
y

fZ(z)dz

+1Z
y

xfXjz(x)dx

�E[X]PfX > y;Z > yg

= E[X1fX>y;Z>yg]� E[X]PfX > y;Z > yg

= Cov[X; 1fX>y;Z>yg] (3.68)

which follows from (3.62) and (3.65). Lastly,
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dCov[minfZ; yg;minfX;Z; yg]
dy

=

+1Z
y

fZ(z)dz

0@ yZ
0

xfXjz(x)dx

+2y

+1Z
y

fXjz(x)dx

1A� PfZ > ygE[minfX;Z; yg]
�E[minfZ; yg]PfX > y;Z > yg

= E[minfX;Z; yg1fZ>yg]� PfZ > ygE[minfX;Z; yg]

+E[minfZ; yg1fX>y;Z>yg]

�E[minfZ; yg]PfX > y;Z > yg

= Cov[minfX;Z; yg; 1fZ>yg]

+Cov[minfZ; yg; 1fX>y;Z>yg] (3.69)

which is obtained by using (3.62) and (3.66).

The two extreme cases are as follows; � = 0 corresponds to the risk-neutral newsvendor

and so the expected pro�t is maximized, or

max
y�0

m(y) = E[CF (D;K; y)]:

By using (3.62) where X is D and Z is K; we obtain the �rst order condition

m0(y) = (s� c)PfK > yg+ (u� s)PfD > y;K > yg

= 0: (3.70)

This can be written as

m0(y) = PfK > yg((s� c) + (u� s)PfD > y j K > yg)

= 0: (3.71)

Noting that PfK > yg > 0 for all y by our assumption, we can write (3.71) as

(s� c) + (u� s)PfD > y j K > yg = 0:

For this model, we do not necessarily end up with a concave objective function since m0(y)

is not necessarily decreasing. To carry out the analysis, let
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h(y) = PfD � y j K > yg: (3.72)

Assumption 3.3.1 The conditional probability h(y) is strictly increasing in y:

Then, we obtain the optimality condition

PfD � y�RN j K > y�RNg = p̂ (3.73)

which is equivalent to the classical newsvendor solution with random capacity given in Okyay

et al. [2010]. It follows from (3.71) and (3.72) that m0(y) is nonnegative and decreasing on

[0; y�RN ] and nonpositive on (y
�
RN ;+1). Thus, the objective function is concave increasing

on [0; y�RN ] and decreasing on (y
�
RN ;+1). This implies that the objective function is quasi-

concave and the solution y�RN is the optimal solution. If h(0) < p̂ < h(+1); then there
exists a unique 0 < y�RN < +1 satisfying (3.73) so that h(y�RN ) = p̂ (or m

0(y�RN ) = 0). We

also argue that the optimal order quantity is trivially y�RN = 0 if h(0) � p̂; that is

h(0) = PfD = 0 j K > 0g � p̂: (3.74)

Again since we assumed D to be strictly greater than 0; (3.74) can not hold. However,

without this assumption the case given in (3.74) may happen. Moreover, we argue that

y�RN = +1 if h(+1) � p̂; that is

h(+1) = PfD < +1 j K = +1g

=
PfD < +1;K = +1g

PfK = +1g

=
PfK = +1g� PfD = +1;K = +1g

PfK = +1g
= 1� PfD = +1 j K = +1g � p̂:

Equivalently, if

PfD = +1 j K = +1g � 1� p̂

then y�RN = +1. We can conclude that if demand is �nite PfD = +1g = 0; then

the optimal order quantity is also �nite. To avoid trivial cases, we assume h(0) < p̂ (or

m0(0) > 0) and h(+1) > p̂ (or m0(+1) < 0).
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When we increase � to +1; the newsvendor�s level of risk-aversion increases extremely
and the problem turns into minimizing the variance of the cash �ow, or

min
y�0

v(y) = V ar[CF (D;K; y)]: (3.75)

To carry out the analysis as in Section 3.1, we consider the random capacity model with

the following assumption.

Assumption 3.3.2 The function v(y) = V ar[CF (D;K; y)] is nondecreasing in y and con-

vex on [0; y�RN ]:

This assumption implies that

v0(y) = 2
�
(s� c)2Cov[minfK; yg; 1fK>yg] + (u� s)2Cov[minfD;K; yg; 1fD>y;K>yg]

+(s� c)(p� u)Cov[D; 1fK>yg] + (p� u)(u� s)Cov[D; 1fD>y;K>yg]

+(s� c)(u� s)
 

Cov[minfD;K; yg; 1fK>yg]
+Cov[minfK; yg; 1fD>y;K>yg]

!#
� 0 (3.76)

for all y: This is obtained by using (3.63), (3.64), (3.67), (3.68) and (3.69) where X is D

and Z is K, and v00(y) � 0 on [0; y�RN ]:
The optimal order quantity to the problem in (3.75) is 0. At this order quantity, the

corresponding expected value of the cash �ow and variance of the cash �ow are respectively

E[CF (D;K; 0)] = (p� u)E[D]

and

V ar[CF (D;K; 0)] = (p� u)2V ar[D] (3.77)

since CF (D;K; 0) = (p� u)D:

Lemma 3.3.3 (a) E[CF (D;K; y)] is quasi-concave in y; it is increasing on [0; y�RN ] and

decreasing on (y�RN ;+1). (b) Moreover,

(p� u)2V ar[D] � V ar[CF (D;K; y)] � V ar[(s� c)K + (u� s)minfD;Kg+ (p� u)D]

for all y.
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Proof. E[CF (D;K; y)] is quasi-concave since (3.72) is strictly increasing in y by Assump-

tion 3.3.1. The maximum is attained at y�RN by (3.73). Moreover,

lim
y!+1

V ar[CF (D;K; y)] = lim
y!+1

(s� c)2V ar[minfK; yg] + lim
y!+1

(p� u)2V ar[D]

+ lim
y!+1

(u� s)2V ar[minfD;K; yg]]

+ lim
y!+1

2(s� c)(u� s)Cov [minfK; yg;minfD;K; yg]

+ lim
y!+1

2(p� u)(u� s)Cov[D;minfD;K; yg]

+ lim
y!+1

2(s� c)(p� u)Cov[D;minfK; yg]

= V ar[(s� c)K + (u� s)minfD;Kg+ (p� u)D]

for all y and the lower bound for V ar[CF (D;K; y)] is (p� u)2V ar[D] as given in (3.77).
It follows from part (a) of Lemma 3.3.3 and (3.73) that E[CF (D;K; y)] is maximized at

a �nite, positive point. We obtain this point by setting � = 0 in the MV formulation. It is

the classical newsvendor solution y�RN that satis�es (3.73). However, we must also consider

the variance of the cash �ow. In the MV analysis, we need to consider the order quantities

that lie in the non-dominated region, [0; y�RN ]. Moreover, the order quantities in (y
�
RN ;+1)

are all dominated. This implies that y(�) � y�RN for all � � 0:

Proposition 3.3.4 The optimal order quantity y(�) that maximizes the MV objective is

less than or equal to the classical newsvendor solution y�RN for all � � 0:

Proof. This is similar to the proof of Proposition 3.1.2 given in Section 3.1.

Using (3.62), (3.63), (3.64), (3.67), (3.68) and (3.69) where X is D and Z is K, we obtain

the �rst order condition

g(y; �) =
dH(y; �)

dy
= m0(y)� �v0(y) = 0 (3.78)

where m0(y) and v0(y) are given in (3.70) and (3.76).

Theorem 3.3.5 The optimal order quantity y(�) that maximizes the MV objective (3.61)

is obtained from (3.78) by solving

m0(y(�))� �v0(y(�)) = 0: (3.79)

Moreover, y(�) is decreasing in �.
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Proof. For any �xed y; let �(y) satisfy the optimality condition (3.79) which can be written

as

�(y) =
m0(y)

v0(y)
: (3.80)

For all y in the non-dominated region [0; y�RN ]; we can show that �(y) is decreasing in y.

The functional form of �0(y) is given in (3.58). As our discussion about the behavior of

the function in (3.72) suggests, in the region [0; y�RN ]; m
0(y) � 0 and m00(y) � 0: As for

V ar[CF (D;K; y)]; via our assumption it is nondecreasing so that v0(y) � 0: Moreover, in

the non-dominated region [0; y�RN ], v
00(y) � 0 that is V ar[CF (D;K; y)] is convex. So,

under the assumptions imposed on m(y) and v(y); �0(y) � 0 so that �(y) is decreasing in y.
Moreover, note that

�(0) =
PfK > 0g((s� c) + (u� s)PfD > 0 j K > 0g)

2
�
(s� c)(p� u)Cov[D; 1fK>0g] + (p� u)(u� s)Cov[D; 1fD>0;K>0g]

� = +1
and

�(y�RN ) = 0

since m0(y�RN ) = 0 by quasi-concavity of E[CF (D;K; y)]: Therefore, �(y) decreases from

+1 to 0 as y increases from 0 to y�RN . Up to this point, by showing �(y) is a decreasing

function of y, we establish the existence of an order quantity for each risk-aversion level

� � 0: Note that on (y�RN ;+1), �(y) � 0 and this implies that the region (y�RN ;+1) is
dominated. Additionally, in the non-dominated region [0; y�RN ] the second order condition

is obtained as
d2H(y; �)

dy2
= m00(y)� �v00(y) � 0:

Since the second order condition is satis�ed, the objective function is concave on [0; y�RN ].

Moreover, the �rst derivative of the MV objective function (3.78) evaluated at y = 0 is

dH(y; �)

dy

����
y=0

= PfK > 0g((s� c) + (u� s)PfD > 0 j K > 0g)

�2�
"

(s� c)(p� u)Cov[D; 1fK>0g]
+(p� u)(u� s)Cov[D; 1fD>0;K>0g]

#
= (u� c) � 0

and (3.78) is nonpositive on (y�RN ;+1) since m(y) is decreasing and v(y) is increasing along
this region. Therefore, the MV objective function is decreasing on (y�RN ;+1) so that it is
quasi-concave and the order quantity that is between 0 and y�RN is a maximizer of (3.61).
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For any � � 0; by taking the inverse ��1 of �(y), we can obtain the optimal order quantity
corresponding to that � value so that

y(�) = ��1(�):

According to the newsvendor�s level of risk-aversion given by �, the optimal order quantity

changes between 0 and y�RN . It can be seen that �(y) is decreasing in y. Similar to the

previous section, we state that as the level of risk-aversion � increases the optimal order

quantity y(�) decreases.

Also, note that we can write (3.79) as

PfD � y(�) j K > y(�)g+ ��v(y(�)) = p̂ (3.81)

where

�v(y) =

2

8>>>>>>>>>><>>>>>>>>>>:

(s� c)2Cov
�
minfK; yg; 1fK>yg

�
+(u� s)2Cov

�
minfD;K; yg; 1fD>y;K>yg

�
+(s� c)(p� u)Cov

�
D; 1fK>yg

�
+(p� u)(u� s)Cov

�
D; 1fD>y;K>yg

�
+(s� c)(u� s)

 
Cov

�
minfD;K; yg; 1fK>yg

�
+Cov

�
minfK; yg; 1fD>y;K>yg

� !

9>>>>>>>>>>=>>>>>>>>>>;
(u� s) :

Also, remark that (3.81) is similar to the characterization in (3.73). The only di¤erence is

that we have an additional term given by �v(y): When � = 0; (3.81) becomes the same as

(3.73) :

As a special case, suppose that K = +1 to guarantee there is no capacity restriction,

then the optimality condition (3.79) becomes (3.25).

In this section, we studied the optimal order quantities considering the MV model where

there is capacity randomness. We conclude that under Assumption 3.3.1 and 3.3.2 a risk-

averse newsvendor orders less than the classical newsvendor and a more risk-averse newsven-

dor will order even less.

3.4 MV Model with Random Yield and Capacity

This section incorporates both supply uncertainties as random yield and random capacity

into the MV newsvendor model. When y units are ordered, UminfK; yg amount is received.
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Here, U and K are random variables representing the proportion of non-defective items

received and the capacity of the supplier, respectively. We suppose that D;U and K are

not necessarily independent. The conditional density functions fKjU=v and fDjK=z;U=v
exist. Then, the cash �ow in (3.2) is

CF (D;U;K; y) = (s� c)U minfK; yg+ (p� u)D + (u� s)minfD;U minfK; ygg:

The mean and variance of the cash �ow are respectively

m(y) = E[CF (D;U;K; y)] = (s�c)E[U minfK; yg]+(p�u)E[D]+(u�s)E[minfD;UK;Uyg]
(3.82)

and

v(y) = V ar[CF (D;U;K; y)]

= (s� c)2V ar [U minfK; yg] + (p� u)2V ar [D] + (u� s)2V ar [minfD;UK;Uyg]

+2(s� c)(p� u)Cov [D;U minfK; yg]

+2(p� u)(u� s)Cov [D;minfD;UK;Uyg]

+2(s� c)(u� s)Cov [U minfK; yg;minfD;UK;Uyg]

� 0:

The aim of the risk-averse newsvendor is

max
y�0

H(y; �) = E[CF (D;U;K; y)]� �V ar[CF (D;U;K; y)] (3.83)

where

H(y; �) = (s� c)E[U minfK; yg] + (p� u)E[D] + (u� s)E[minfD;UK;Uyg] (3.84)

��

8>>>>><>>>>>:
(s� c)2V ar [U minfK; yg] + (u� s)2V ar [minfD;UK;Uyg]
+(p� u)2V ar [D] + 2(s� c)(p� u)Cov [D;U minfK; yg]

+2(p� u)(u� s)Cov [D;minfD;UK;Uyg]
+2(s� c)(u� s)Cov [U minfK; yg;minfD;UK;Uyg]

9>>>>>=>>>>>;
is the objective function for any �xed � � 0:

Note that for any random variables X; V and Z we can write

E[V minfZ; yg] =
1Z
0

vfV (v)dv

0@ yZ
0

zfZjv(z)dz + y

+1Z
y

fZjv(z)dz

1A (3.85)
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and the derivative of (3.85) is

dE[V minfZ; yg]
dy

=

1Z
0

vfV (v)dv

+1Z
y

fZjv(z)dz (3.86)

= E[V 1fZ>yg]:

Moreover, one can show that

E[minfX;V Z; V yg] =

1Z
0

fV (v)dv

0B@ +1Z
0

fZjv(z)dz

0B@ vminfz;ygZ
0

xfXjvz(x)dx

+vminfz; yg
+1Z

vminfz;yg

fXjvz(x)dx

1CA
1CA

=

1Z
0

fV (v)dv

0@ yZ
0

fZjv(z)dz

0@ vzZ
0

xfXjvz(x)dx+ vz

+1Z
vz

fXjvz(x)dx

1A
+

+1Z
y

fZjv(z)dz

0@ vyZ
0

xfXjvz(x)dx+ vy

+1Z
vy

fXjvz(x)dx

1A1A
where fZjv(z) is the conditional density function of Z given V = v and fXjvz(x) is the

conditional density of X given V = v and Z = z and its derivative is

dE[minfX;V Z; V yg]
dy

=

1Z
0

vfV (v)dv

+1Z
y

fZjv(z)dz

+1Z
vy

fXjvz(x)dx

= E[V 1fX>V y;Z>yg]: (3.87)

The variance terms in (3.84) are

V ar[V minfZ; yg] = E[(V minfZ; yg)2]� E[V minfZ; yg]2

=

1Z
0

v2fV (v)dv

0@ yZ
0

z2fZjv(z)dz + y
2

+1Z
y

fZjv(z)dz

1A
�E[V minfZ; yg]2 (3.88)
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and

V ar[minfX;V Z; V yg] = E[(minfX;V Z; V yg)2]� E[minfX;V Z; V yg]2

=

1Z
0

fV (v)dv

+1Z
0

fZjv(z)dz

0B@ vminfz;ygZ
0

x2fXjvz(x)dx

+v2minfz; yg2
+1Z

vminfz;yg

fXjvz(x)dx

1CA� E[minfX;V Z; V yg]2

=

1Z
0

fV (v)dv

0@ yZ
0

fZjv(z)dz

0@ vzZ
0

x2fXjvz(x)dx

+v2z2
+1Z
vz

fXjvz(x)dx

1A
+

+1Z
y

fZjv(z)dz

0@ vyZ
0

x2fXjvz(x)dx

+v2y2
+1Z
vy

fXjvz(x)dx

1A1A
�E[minfX;V Z; V yg]2: (3.89)

Then, their derivatives can be obtained as

dV ar[V minfZ; yg]
dy

= 2y

1Z
0

v2fV (v)dv

+1Z
y

fZjv(z)dz

�2E[V minfZ; yg]E[V 1fZ>yg]

= 2(yE[V 21fZ>yg]� E[V minfZ; yg]E[V 1fZ>yg])

= 2Cov[V minfZ; yg; V 1fZ>yg] (3.90)
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and

dV ar[minfX;V Z; V yg]
dy

= 2y

1Z
0

v2fV (v)dv

+1Z
y

fZjv(z)dz

+1Z
vy

fXjvz(x)dx

�2E[minfX;V Z; V yg]E[V 1fX>V y;Z>yg]

= 2
�
yE[V 21fX>V y;Z>yg]

�E[minfX;V Z; V yg]E[V 1fX>V y;Z>yg]
�

= 2Cov[minfX;V Z; V yg; V 1fX>V y;Z>yg]: (3.91)

Here, (3.90) follows from (3.86) and (3.88) while (3.91) is obtained by using (3.87) and

(3.89). Similarly, the covariance terms in (3.84) are

Cov [X;minfX;V Z; V yg] = E[XminfX;V Z; V yg]� E[X]E[minfX;V Z; V yg]

=

1Z
0

fV (v)dv

+1Z
0

fZjv(z)dz

0B@ vminfz;ygZ
0

x2fXjvz(x)dx

+vminfz; yg
+1Z

vminfz;yg

xfXjvz(x)dx

1CA
�E[X]E[minfX;V Z; V yg]

=

1Z
0

fV (v)dv

0@ yZ
0

fZjv(z)dz

0@ vzZ
0

x2fXjvz(x)dx

+vz

+1Z
vz

xfXjvz(x)dx

1A+ +1Z
y

fZjv(z)dz

0@ vyZ
0

x2fXjvz(x)dx

+vy

+1Z
vy

xfXjvz(x)dx

1A1A ; (3.92)
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Cov[X;V minfZ; yg] = E[XV minfZ; yg]� E[X]E[V minfZ; yg]

=

1Z
0

vfV (v)dv

+1Z
0

minfz; ygfZjv(z)dz
+1Z
0

xfXjvz(x)dx

�E[X]E[V minfZ; yg]

=

1Z
0

vfV (v)dv

0@ yZ
0

zfZjv(z)dz +

+1Z
0

yfZjv(z)dz

1A +1Z
0

xfXjvz(x)dx

�E[X]E[V minfZ; yg] (3.93)

and

Cov [V minfZ; yg;minfX;V Z; V yg] = E[V minfZ; ygminfX;V Z; V yg]

�E[V minfZ; yg]E[minfX;V Z; V yg]

=

1Z
0

vfV (v)dv

+1Z
0

minfz; ygfZjv(z)dz0B@ vminfz;ygZ
0

xfXjvz(x)dx

+vminfz; yg
+1Z

vminfz;yg

fXjvz(x)dx

1CA
�E[V minfZ; yg]E[minfX;V Z; V yg]

=

1Z
0

vfV (v)dv

0@ yZ
0

zfZjv(z)dz

0@ vzZ
0

xfXjvz(x)dx

+vz

+1Z
vz

fXjvz(x)dx

1A
+

+1Z
y

yfZjv(z)dz

0@ vyZ
0

xfXjvz(x)dx

+vy

+1Z
vy

fXjvz(x)dx

1A1A : (3.94)
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One can obtain the derivatives of the covariance terms as

dCov [X;minfX;V Z; V yg]
dy

=

1Z
0

vfV (v)dv

+1Z
y

fZjv(z)dz

+1Z
vy

xfXjvz(x)dx

�E[X]E[V 1fX>V y;Z>yg]

= E[XV 1fX>V y;Z>yg]� E[X]E[V 1fX>V y;Z>yg]

= Cov
�
X;V 1fX>V y;Z>yg

�
(3.95)

using (3.87) and (3.92). Moreover,

dCov [X;V minfZ; yg]
dy

=

1Z
0

vfV (v)dv

+1Z
y

fZjv(z)dz

+1Z
0

xfXjvz(x)dx

�E[X]E[V 1fZ>yg]

= E[XV 1fZ>yg]� E[X]E[V 1fZ>yg]

= Cov
�
X;V 1fZ>yg

�
(3.96)

follows from (3.86)and (3.93). Lastly,

dCov [V minfZ; yg;minfX;V Z; V yg]
dy

=

1Z
0

vfV (v)dv

+1Z
y

fZjv(z)dz

0@ vyZ
0

xfXjvz(x)dx

+vy

+1Z
vy

fXjvz(x)dx+ yv

+1Z
vy

fXjvz(x)dx

1A
�E[V 1fZ>yg]E[minfX;V Z; V yg]

�E[V minfZ; yg]E[V 1fX>V y;Z>yg]

= E[V 1fZ>ygminfX;V Z; V yg]

�E[V 1fZ>yg]E[minfX;V Z; V yg]

+E[V 2minfZ; yg1fX>V y;Z>yg]

�E[V minfZ; yg]E[V 1fX>V y;Z>yg]

= Cov
�
minfX;V Z; V yg; V 1fZ>yg

�
+Cov

�
V minfZ; yg; V 1fX>V y;Z>yg

�
(3.97)

is obtained by using (3.86), (3.87) and (3.94).
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As a special case, suppose that � = 0 so that the newsvendor is risk-neutral and the aim

is to maximize the expected pro�t, or

max
y�0

m(y) = E[CF (D;U;K; y)]: (3.98)

Using (3.86) and (3.87), we take the derivative of (3.98) and set it equal to zero to obtain

the �rst order condition

m0(y) = (s� c)]E[U1fK>yg] + (u� s)E[U1fD>Uy;K>yg]

= 0

which can be written as

m0(y) = E[U1fK>yg]

�
(s� c) + (u� s)

�
E[U1fD>Uy;K>yg]

E[U1fK>yg]

��
= 0: (3.99)

Since PfK > yg > 0 for all y by our assumption and further supposing that U 6= 0, we can
conclude that E[U1fK>yg] > 0 so that we can write

(s� c) + (u� s)
�
E[U1fD>Uy;K>yg]

E[U1fK>yg]

�
= 0:

For this model, the objective function (3.82) is not necessarily concave since m0(y) is not

necessarily decreasing. To carry out the analysis, let

h(y) =
E[U1fD�Uy;K>yg]

E[U1fK>yg]
= 1�

E[U1fD>Uy;K>yg]

E[U1fK>yg]
: (3.100)

Assumption 3.4.1 The conditional probability h(y) is strictly increasing in y:

Then, we can obtain the optimality condition as

E[U1fD�Uy�RN ;K>y�RNg]

E[U1fK>y�RNg]
= p̂ (3.101)

since E[U1fD>Uy;K>yg ] = E[U1fK>yg] � E[U1fD�Uy;K>yg]. Note that (3.101) is equivalent
to the classical newsvendor solution with random yield and capacity given in Okyay et al.

[2010]. Furthermore, since h(y) is increasing in y; it follows from (3.99) and (3.100) that the

derivative m0(y) is nonnegative and decreasing on [0; y�RN ] and nonpositive on (y
�
RN ;+1):

Thus, the objective function is concave increasing on [0; y�RN ] and decreasing on (y
�
RN ;+1)
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so that the objective function is quasi-concave and the solution y�RN satisfying (3.101) is

indeed the optimal solution.

Provided that h(0) < p̂ < h(+1); there exists 0 < y�RN < +1 that satis�es h(y�RN ) =

p̂; or m0(y�RN ) = 0: Moreover, we also claim that y�RN = 0 if h(0) � p̂; that is

h(0) =
E[U1fD�0;K>0g]

E[U1fK>0g]
(3.102)

=
E[U1fD=0;K>0g]

E[U1fK>0g]
� p̂:

Note that since we assumed D to be strictly greater than 0; (3.102) can not hold. However,

we consider the case given in (3.102) without this assumption. Similarly, y�RN = +1 if

h(+1) � p̂; that is

h(+1) =
E[U1fD<+1;K=+1g]

E[U1fK=+1g]

=
E[U1fK=+1g]� E[U1fD=+1;K=+1g]

E[U1fK=+1g]

= 1� PfD = +1 j K = +1g � p̂:

Equivalently, we can conclude that if

PfD = +1 j K = +1g � 1� p̂

then y�RN = +1: Therefore, if the demand is �nite the optimal order quantity is also �nite.
From now on, we assume h(0) < p̂ (or m0(0) > 0) and h(+1) > p̂ (or m0(+1) < 0) to

avoid trivial cases.

Another special case is when � = +1 so that the newsvendor becomes extremely risk-

averse and the aim is to minimize the variance of the cash �ow, or

min
y�0

v(y) = V ar[CF (D;U;K; y)]: (3.103)

To carry out the analysis as in Section 3.1, we consider the random yield and capacity model

with the following assumption.

Assumption 3.4.2 The function v(y) = V ar[CF (D;U;K; y)] is nondecreasing in y and

convex on [0; y�RN ]:
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This implies that

v0(y) = 2
�
(s� c)2Cov

�
U minfK; yg; U1fK>yg

�
+(u� s)2Cov

�
minfD;UK;Uyg; U1fD>Uy;K>yg

�
+(s� c)(u� s)

 
Cov

�
U1fK>yg;minfD;UK;Uyg

�
+Cov

�
U minfK; yg; U1fD>Uy;K>yg

� !!
+(s� c)(p� u)Cov

�
D;U1fK>yg

�
+(p� u)(u� s)Cov

�
D;U1fD>Uy;K>yg

�
� 0 (3.104)

for all y which is obtained by using (3.90), (3.91), (3.96), (3.95) and (3.97) where X is D,

V is U and Z is K, and v00(y) � 0 on [0; y�RN ]:
Under this assumption, the optimal order quantity to the problem in (3.103) is 0. At

this order quantity, the corresponding expected value of the cash �ow and variance of the

cash �ow are respectively

E[CF (D;U;K; 0)] = (p� u)E[D]

and

V ar[CF (D;U;K; 0)] = (p� u)2V ar[D] (3.105)

since CF (D;U;K; 0) = (p� u)D:

Lemma 3.4.3 (a) E[CF (D;U;K; y)] is quasi-concave in y; it is increasing on [0; y�RN ] and

decreasing on (y�RN ;+1): (b) Moreover,

(p�u)2V ar[D] � V ar[CF (D;U;K; y)] � V ar [(s� c)UK + (p� u)D + (u� s)minfD;UKg]

for all y:

Proof. E[CF (D;U;K; y)] is quasi-concave since by our assumption (3.100) is strictly in-
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creasing in y. The maximum is attained at y�RN by (3.101). Moreover,

lim
y!+1

V ar[CF (D;U;K; y)] = lim
y!+1

2(s� c)(u� s)Cov [U minfK; yg;minfD;UK;Uyg]

+ lim
y!+1

�
(s� c)2V ar [U minfK; yg] + (p� u)2V ar[D]

�
+ lim
y!+1

2(p� u)(u� s)Cov [D;minfD;UK;Uyg]

+ lim
y!+1

2(s� c)(p� u)Cov [D;U minfK; yg]

+ lim
y!+1

(u� s)2V ar [minfD;UK;Uyg]

= V ar [(s� c)UK + (p� u)D + (u� s)minfD;UKg]

for all y and the lower bound for V ar[CF (D;U;K; y)] is (p�u)2V ar[D] as given in (3.105).

It follows from part (a) of Lemma 3.4.3 and (3.101) that E[CF (D;U;K; y)] is maximized

at a �nite, positive point. We can obtain this point by setting � = 0. It is the classical

newsvendor solution that satis�es (3.101). However, in the MV problem we must consider

both the mean and variance of the cash �ow. We focus on the order quantities that lie in

the non-dominated region, [0; y�RN ]. Moreover, the order quantities in (y
�
RN ;+1) are all

dominated. This implies that y(�) � y�RN for all � � 0:

Proposition 3.4.4 The optimal order quantity y(�) that maximizes the MV objective is

less than or equal to the classical newsvendor solution y�RN for all � � 0:

Proof. The reader may refer to Proposition 3.1.2 in Section 3.1, similar arguments apply

here as well.

Using (3.86), (3.87), (3.90), (3.91), (3.96), (3.95) and (3.97) where X is D, V is U and

Z is K, we di¤erentiate the objective function (3.84) and set it equal to zero so that the

�rst order condition is

g(y; �) =
dH(y; �)

dy
= m0(y)� �v0(y) = 0 (3.106)

where m0(y) and v0(y) are given in (3.99) and (3.104).

Theorem 3.4.5 The optimal order quantity y(�) that maximizes the MV objective (3.84)

is obtained from (3.106) by solving

m0(y(�))� �v0(y(�)) = 0: (3.107)

Moreover, y(�) is decreasing in �.
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Proof. For any �xed y; let �(y) satisfy the optimality condition (3.106) which can be

written as

�(y) =
m0(y)

v0(y)
:

For all y in the non-dominated region [0; y�RN ]; we can show that �(y) is decreasing in y. The

functional form of �0(y) is given in (3.58). As our discussion about the behavior of the func-

tion in (3.100) suggests h(y) is increasing in y so that in the region [0; y�RN ]; m
0(y) � 0 and

m00(y) � 0: As for V ar[CF (D;U;K; y)]; via our assumption it is nondecreasing so that v0(y):
Moreover, in the non-dominated region [0; y�RN ], v

00(y) � 0 that is V ar[CF (D;U;K; y)] is

convex. Therefore �0(y) � 0 and we argue that �(y) is decreasing in y. Moreover, note that

�(0) =
(s� c)E[U1fK>0g] + (u� s)E[U1fD>0;K>0g]

2
�
(s� c)(p� u)Cov

�
D;U1fK>0g

�
+ (p� u)(u� s)Cov

�
D;U1fD>0;K>0g

��
=

E[U ]

2(p� u)Cov[D;U ]
and

�(y�RN ) = 0

since m0(y�RN ) = 0 by quasi-concavity of E[CF (D;U;K; y)]: Therefore, �(y) decreases from

�(0) to 0 as y increases from 0 to y�RN . Up to now, by showing �(y) is a decreasing function

of y, we establish the existence of an order quantity for each risk-aversion level � that

is between 0 � � � �(0): Note that on (y�RN ;+1), �(y) � 0 and therefore this region

is dominated. Additionally, along the non-dominated region [0; y�RN ]; the second order

condition is obtained as
d2H(y; �)

dy2
= m00(y)� �v00(y) � 0:

Since the second order condition is satis�ed, the objective function is concave on [0; y�RN ].

Moreover, the �rst derivative of the MV objective function (3.106) evaluated at y = 0 is

dH(y; �)

dy

����
y=0

= (s� c)E[U1fK>0g] + (u� s)E[U1fD>0;K>0g]

�2�
�
(s� c)(p� u)Cov[D;U1fK>0g]

+(p� u)(u� s)Cov[D;U1fD>0;K>0g]
�

= (u� c)E[U ]� 2�(p� u)(u� c)Cov[D;U ]

� 0

and (3.106) is nonpositive on (y�RN ;+1) because m(y) is decreasing while v(y) is increasing
along this region. This implies that the MV objective function is decreasing on (y�RN ;+1):
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Therefore, it is quasi-concave and the order quantity between 0 and y�RN is optimal for

(3.83). For any 0 � � < �(0); by taking the inverse ��1 of �(y), we can obtain the optimal
order quantity corresponding to that � value so that

y(�) = ��1(�):

According to the newsvendor�s level of risk-aversion given by �, the optimal order quantity

is chosen between 0 and y�RN : Since �(y) is decreasing in y, the inverse function is also

decreasing. Therefore, similar to the previous section, we state that as the level of risk-

aversion � increases the optimal order quantity y(�) decreases.

Note that we can also write (3.107) as

E[U1fD�Uy(�);K>y(�)g]

E[U1fK>y(�)g]
+ ��v(y(�)) = p̂ (3.108)

where

�v(y) =

2

8>>>>>>>>>><>>>>>>>>>>:

(s� c)2Cov
�
U minfK; yg; U1fK>yg

�
+(u� s)2Cov

�
minfD;UK;Uyg; U1fD>Uy;K>yg

�
+(s� c)(p� u)Cov

�
D;U1fK>yg

�
+(p� u)(u� s)Cov

�
D;U1fD>Uy;K>yg

�
+(s� c)(u� s)

 
Cov

�
U1fK>yg;minfD;UK;Uyg

�
+Cov

�
U minfK; yg; U1fD>Uy;K>yg

� !

9>>>>>>>>>>=>>>>>>>>>>;
(u� s) :

Also, remark that (3.108) is similar to the characterization in (3.101). The only di¤erence

comes from �v(y): Moreover, if � = 0; (3.108) is same as (3.101):

The optimal order quantity is y(�) = 0 if g(0; �) � 0; or

g(0; �) = (u� c)E[U ]� 2�(p� u)(u� c)Cov[D;U ] � 0:

Equivalently, we can conclude that if

� � E[U ]

2(p� u)Cov[D;U ] = �(0)

then y(�) = 0:

As a special case, we suppose that K = +1 so that the model turns into the MV model

with random yield and the optimality condition is (3.60). Moreover, when U = 1 that is

the model becomes the MV model with random capacity, the optimality condition is (3.81).
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Finally, when U = 1 and K = +1 so that the model is the MV model, the optimality

condition becomes (3.25).

In this section, we investigated the optimal order quantities considering the MV model

where there exists yield and capacity randomness. We conclude that under Assumption

3.4.1 and 3.4.2, the arguments that a risk-averse newsvendor orders less than the classical

newsvendor and as the level of risk-aversion increases the optimal order quantity decreases

are valid.

Up to this point, we considered risk-averse newsvendors adopting MV approach. First,

in Section 3.1 we investigated the case that randomness exists only in demand, then we

included the models with random supply in Sections 3.2-3.4. In the following chapter, we

will study MV approach when there exists a �nancial hedging opportunity.
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Chapter 4

MV MODELS WITH HEDGING

In the previous chapter, we consider the newsvendor problem with the MV objective

where the cash �ow is random due to the stochastic nature of demand and supply. We

implicitly assumed that demand and supply are not correlated with the �nancial markets.

However, Gaur and Seshadri [2005] suggest that in real life the sales amount is in fact

correlated with the �nancial markets. Therefore, in this chapter, we suppose that there is a

�nancial market in which there are �nancial securities correlated with demand and supply.

The inventory manager decides on both the order quantity and the amount of investment

on a portfolio of �nancial securities.

Okyay et al. [2011] analyze the newsvendor problem with hedging and develop a risk-

sensitive solution approach to the problem by considering both the mean and the variance

of the cash �ow. They follow a two-step approach. At the �rst step, they aim to �nd an

optimal portfolio of �nancial securities that minimizes the variance of the hedged cash �ow

for any possible order quantity. Then, at the second step, with this optimal portfolio they

decide on an optimal order quantity which maximizes the mean of the hedged cash �ow.

Moreover, Say¬n [2011] uses the same risk-sensitive, two-step solution approach. Although

the �rst step remains the same as Okyay et al. [2011], as a second step, she aims to maximize

the expected utility of the hedged cash �ow. Our work is di¤erent from them in two ways;

�rstly, our aim is to maximize the hedged MV cash �ow and, secondly, we jointly determine

the optimal order quantity and hedging portfolio in one step.

We assume that the length of the period is T during which the risk-free interest rate

is r. The newsvendor buys the items at c, sells them at p, salvages the unsold items at s

and compensates the stockouts at u which satisfy p � u > cerT > 0 and cerT > s to avoid
trivial situations. Except for the cash payment made at time 0 to buy the items, all cash

�ows occur at time T . Let X =(D;U;K) be a vector of random variables corresponding to

demand and supply uncertainty, S be the price of a primary asset in the market at time

T . Suppose that there exist at least one derivative security (n � 1) in the market where

fi (S) is the net payo¤ of the ith derivative security at the end of the period. Moreover,
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let �i be the amount of security i in the portfolio and CF (X; y) be the unhedged cash

�ow. Throughout this chapter, we assume that the random vector X is correlated with the

�nancial variable S. The total hedged cash �ow at time T is given by

CF�(X; S; y) = CF (X; y) +

nX
i=1

�ifi(S):

The net payo¤ of the ith derivative security fi (S) is the payo¤ f̂i (S) received at time

T minus its investment cost f0i compounded to period T so that fi (S) = f̂i (S) � erT f0i .
For instance, if the derivative is a call option with strike price K; then f̂i (S) = (S�K)+ =
maxfS � K; 0g so that the net payo¤ is fi (S) = maxfS � �; 0g� erT f0i : In this chapter,

we impose the condition that there is a complete arbitrage-free market with some risk-

neutral probability measure Q. In that case, the price of the ith derivative security will

be f0i = e�rTEQ[f̂i (S)] and this will lead to EQ [fi (S)] = EQ

h
f̂i (S)� fTi

i
= 0 where

fTi = e
rT f0i is the price of the derivative security compounded to time T .

Similar to the chapter with no hedging opportunity there exist two ways to model the

hedged MV optimization problems. The newsvendor decides on an order quantity y and

hedging portfolio � = (�1; �2; � � � ; �n) either to maximize the mean of the hedged cash
�ow such that the variance of the hedged cash �ow can not exceed a threshold level or

to minimize the variance of the hedged cash �ow such that the mean of the hedged cash

�ow should be greater than a threshold level. We can combine them into a single MV

optimization problem such that the problem becomes

max
y�0;�

H(y;�;�) = E [CF�(X; S; y)]� �V ar [CF�(X; S; y)]

= E

"
CF (X; y) +

nX
i=1

�ifi(S)

#
� �V ar

"
CF (X; y) +

nX
i=1

�ifi(S)

#

= E [CF (X; y)]� �V ar
"
CF (X; y) +

nX
i=1

�ifi(S)

#
(4.1)

since E [fi(S)] = 0 by the arbitrage-free market assumption. Note that shortselling is

possible since we do not impose any nonnegativity restrictions on the portfolio �: We will

�rst analyze the general case and then take a look at the special models.
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The objective function in (4.1) can be explicitly written as

H(y;�;�) = E[CF (X; y)] (4.2)

��

8<:
nX
i=1

nX
j=1

�i�jCov(fi(S); fj(S))

+2

nX
i=1

�iCov (fi(S); CF (X; y)) + V ar(CF (X; y))

)
for any �xed � � 0. We can rewrite (4.2) in compact matrix notation as

H(y;�;�) = E [CF (X; y)]� �
�
V ar(CF (X; y) +�Tf(S))

�
= E[CF (X; y)]� �

�
�TC�+ 2�T�(y) + V ar(CF (X; y))

�
(4.3)

In (4.3), �T is the transpose of �; f(S) is the column vector with entries

f(S) = (f1(S); f2(S); � � � ; fn(S)) ;

C is the covariance matrix of the securities; that is

Cij = Cov(fi(S); fj(S))

and �(y) is a vector with entries

�i(y) = Cov(fi(S); CF (X; y)):

The optimal portfolio can be expressed in a compact formula as stated in the following

proposition.

Theorem 4.0.6 The optimal �nancial portfolio is given by

��(y) = �C�1�(y) (4.4)

for any order quantity y:

Proof. The gradient of the objective function with respect to � is

dH(y;�;�)

d�
= �2� (C�+ �(y)) (4.5)

and the Hessian is
d2H(y;�;�)

d�2
= �2�C � 0:

As the covariance matrix is always positive de�nite, the second order condition is satis�ed

and by setting (4.5) equal to zero, we obtain (4.4).

Now, we focus on the optimal order quantity that maximizes the MV hedged cash �ow.
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Theorem 4.0.7 The optimal order quantity y(�) satis�es

dE[CF (X; y)]

dy
� �

�
�2�(y)TC�1d�(y)

dy
+
dV ar[CF (X; y)]

dy

�
= 0 (4.6)

for any � � 0:

Proof. We take the gradient of the objective function with respect to y and set it equal to

zero
dH(y;�; �)

dy
=
dE[CF (X; y)]

dy
� �

�
2�T

d�(y)

dy
+
dV ar[CF (X; y)]

dy

�
= 0: (4.7)

Since we obtained the optimal portfolio for multiple securities in (4.4), we substitute it into

(4.7) which results in (4.6).

Note that, one can also express (4.6) as

dE[CF (X; y)]

dy
� �dV ar[CF�

�(X; S; y)]

dy
= 0:

Therefore, we obtain the optimal order quantity y(�) and the optimal portfolio �(�) =

��(y(�)): However, note that to guarantee optimality, we need to make some assumptions

that will be discussed further for each model later on in this chapter.

When there is only one security (i:e:; n = 1) used for �nancial hedging, there is further

simpli�cation in our results given in the following corollary.

Corollary 4.0.8 Suppose that only one security is used, then the optimal portfolio consists

of

��(y) = �Cov(f(S); CF (X; y))
V ar(f(S))

: (4.8)

Moreover, the optimal order quantity y(�) satis�es

dE[CF (X; y)]

dy
� �

24 �2�Cov(f(S);CF (X;y))V ar(f(S))

�
dCov(f(S);CF (X;y))

dy

+dV ar[CF (X;y)]
dy

35 = 0 (4.9)

for any � � 0:

Proof. The results follow from Proposition 4.0.6 and 4.0.7 by noting that if there is only one

derivative security for hedging with payo¤ f(S); then C = Cov(f(S); f(S)) = V ar (f(S))

and �(y) = Cov(f(S); CF (X; y)): More explicitly, to solve (4.1), we �rst take the gradient

of the objective function with respect to �

dH(y; �; �)

d�
= �2�[�V ar(f(S)) + Cov(f(S); CF (X; y))] (4.10)
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and the second derivative is

d2H(y; �; �)

d�2
= �2�V ar(f(S)) � 0:

Since the second order condition is satis�ed, we conclude that (4.10) gives the optimal

solution. Then, we take the gradient of the objective function with respect to y and set it

equal to 0. This leads to

dH(y; �; �)

dy
=

dE[CF (X; y)]

dy
� �

�
2�
dCov(f(S); CF (X; y))

dy
+
dV ar[CF (X; y)]

dy

�
= 0: (4.11)

Substituting ��(y) into (4.11), we obtain (4.9).

Next, we investigate special models to have insights for the optimal hedging portfolio

and the optimal order quantity. In Section 4.1, we �rst consider the MV model where

demand is the only source of randomness. Then, in Sections 4.2, 4.3 and 4.4 we include

the random supply models based on random yield, random capacity and random yield and

random capacity, respectively.

4.1 MV Model

In this section we assume that there is no randomness in supply. We deal with random

demand D which is correlated with the �nancial variable S. The total hedged cash �ow at

the end of the period is

CF�(X; S; y) = CF (D; y) +�Tf(S)

= (s� cerT )y + (p� u)D + (u� s)minfD; yg+�Tf(S)

where X = fDg: We analyze the problem for multiple securities and then for a single

security.

The optimization problem is

max
y�0;�

H(y;�;�) = E [CF (D; y)]� �
�
V ar(CF (D; y) +�Tf(S))

�
(4.12)

The optimal portfolio is same as (4.4) where �(y) can be updated as

�i(y) = Cov(fi(S); CF (D; y)):
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From (4.7), the �rst order condition with respect to the order quantity becomes

dH(y;�; �)

dy
= (s� cerT ) + (u� s) �FD(y)

�2�(u� s)
�
�T�̂(y) + (u� s) �FD(y)S(y) + (p� u)Cov(D; 1fD>yg)

�
= 0 (4.13)

where �̂i(y) =Cov(fi(S); 1fD>yg): This follows by noting that

�i(y) = (p� u)Cov(fi(S); D) + (u� s)Cov(fi(S);minfD; yg)

so that

�0i(y) =
d�i(y)

dy
= (u� s)Cov(fi(S); 1fD>yg):

Since we have obtained the optimal portfolio, we substitute it into (4.13) to obtain the

�rst order condition
dH(y; �)

dy
= m0(y)� �v0��(y) = 0: (4.14)

Note that

m(y) = E [CF (D; y)]

and

v��(y) = V ar [CF��(D;S; y)] :

Moreover, their derivatives are

m0(y) = (s� cerT ) + (u� s) �FD(y)

and

v0��(y) = 2(u� s)
(

��(y)TC�1�̂(y)
+(u� s) �FD(y)S(y) + (p� u)Cov(D; 1fD>yg)

)
:

To guarantee the existence of the optimal order quantity corresponding to each risk-aversion

level we need to impose some conditions on the structure of v��(y): The following assumption

is made throughout the remainder of this chapter.

Assumption 4.1.1 The function v��(y) = V ar [CF��(D;S; y)] is nondecreasing in y and

convex on [0; y�RN ].

Proposition 4.1.2 The optimal order quantity y(�) that maximizes the hedged MV objec-

tive is less than or equal to the classical newsvendor solution y�RN :
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Proof. Suppose that there exists an optimal order quantity that satis�es y(�) > y�RN . Then

from Lemma 3.1.1, we know that the expected value of the cash is concave so that

m(y) = E [CF (D; y(�))] < E [CF (D; y�RN )]

Moreover, since v0��(y) � 0

V ar [CF�(D;S; y(�))] � V ar [CF�(D;S; y�RN )] :

From the above arguments we can state that y(�) is dominated by y�RN and this is a

contradiction. Therefore, for our analysis we only need to consider the order quantities

that lie in the region [0; y�RN ].

Theorem 4.1.3 The optimal order quantity y(�) that maximizes the hedged MV objective

is obtained from (4.14) by solving

m0(y(�))� �v0��(y(�)) = 0: (4.15)

Moreover, y(�) decreases as � increases.

Proof. For any �xed y; let �(y) satisfy the optimality condition (4.15) which can be written

as

�(y) =
m0(y)

v0��(y)
: (4.16)

For all y in the non-dominated region [0; y�RN ]; one can show that �(y) is decreasing in y

since the derivative of (4.16) is

�0(y) =
m00(y)v0��(y(�))�m0(y)v00��(y(�))

(v0��(y(�)))
2 � 0: (4.17)

We already know by Lemma 3.1.1 that m0(y) � 0 on [0; y�RN ] and m
00(y) � 0 since

E[CF (D; y)] is concave. Moreover, by our assumption v0��(y(�)) � 0 for all y and v00��(y(�)) �
0 on [0; y�RN ] so that (4.17) follows. Note that

�(0) =
(s� cerT ) + (u� s) �FD(0)

2(u� s)
(

��(0)TC�1�̂(0)
+
�
(u� s) �FD(0)S(0) + (p� u)Cov(D; 1fD>0g)

� ) =
(u� cerT )

0
= +1

and

�(y�RN ) = 0
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since m0(y�RN ) = 0 by concavity of E[CF (D; y)]: Therefore, �(y) decreases from +1 to

0 as y increases from 0 to y�RN . Up to now, by showing �(y) is a decreasing function of

y, we establish the existence of an order quantity for each risk-aversion level � � 0: Note

that on (y�RN ;+1), �(y) � 0 and so this is the dominated region. Additionally, along the
non-dominated region [0; y�RN ] the second order condition is obtained as

d2H(y; �)

dy2
= m00(y)� �v00��(y) � 0:

Since the second order condition is satis�ed, the objective function is concave on [0; y�RN ].

Moreover, the �rst derivative of the MV objective function (4.14) evaluated at y = 0 is

dH(y; �)

dy

����
y=0

= (s� cerT ) + (u� s) �FD(0)

�2(u� s)�
(

��(0)TC�1�̂(0)
+
�
(u� s) �FD(0)S(0) + (p� u)Cov(D; 1fD>0g)

� )
= u� cerT � 0:

and (4.14) is nonpositive on (y�RN ;+1) since m(y) is decreasing while v�(y) is increasing.
This implies that the MV objective function is decreasing on (y�RN ;+1): Hence, the ob-
jective function is quasi-concave and the order quantity that is between 0 and y�RN is a

maximizer of (4.12). For any � � 0; by taking the inverse ��1 of �(y), we can obtain the
optimal order quantity corresponding to that � value so that

y(�) = ��1(�):

According to the newsvendor�s level of risk-aversion given by �, the optimal order quantity

changes between 0 and y�RN . As (4.17) indicates, �(y) is decreasing in y, so the inverse is

also decreasing. Therefore, we again state that as the level of risk-aversion � increases the

optimal order quantity y(�) decreases.

If there is a single hedging asset (n = 1), the optimal portfolio in (4.8) can be updated

as

��(y) = �Cov(f(S); CF (D; y))
V ar(f(S))

:

We can rewrite the optimal portfolio as

��(y) = �(p� u)�D(1)� (u� s)�D(y) (4.18)
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for any given y where

�D(y) =
Cov(f(S);minfD; yg)

V ar(f(S))

and

�D(1) =
Cov(f(S); D)

V ar(f(S))
:

The same assumptions for v��(y) are also required for this special case. Under this assump-

tion, the optimal order quantity now satis�es (4.15) where m0(y) is exactly the same. The

only di¤erence is v0��(y) which is in this case

v0��(y) = 2(u� s)
(

� ((p� u)�D(1) + (u� s)�D(y)) �̂(y)
+(u� s) �FD(y)S(y) + (p� u)Cov(D; 1fD>yg)

)
:

Consequently, the non-dominated order quantities lie on [0; y�RN ], the objective function is

quasi-concave and the conclusion that as the level of risk-aversion increases the optimal

order quantity decreases are valid, too.

As a special case, suppose there is no correlation between the random factors in inventory

system (i.e. demand, supply) and �nancial markets, then �� = 0 and the model reverts back

to the MV problem with no hedging opportunity. Thus, the optimality condition becomes

(3.25).

4.2 MV Model with Random Yield

In this section we analyze the supply uncertainty when it is subject to random yield. The

amount received from ordering y units is Uy where 0 � U � 1: For generality, we further
assume that D and U are not necessarily independent and the conditional density function

of D given U = v is fDjv: Moreover, D and U are correlated with S. For the random yield

model the total hedged cash �ow at the end of the period can be written as

CF�(X; S; y) = CF (D;U; y) +�Tf(S)

= (s� cerT )Uy + (p� u)D + (u� s)minfD;Uyg+�Tf(S)

where X = fD;Ug: We analyze the problem for multiple securities and then for a single

security, in turn.

We want to solve the following optimization problem

max
y�0;�

H(y;�; �) = E [CF (D;U; y)]� �V ar
�
CF (D;U; y) +�Tf(S)

�
: (4.19)
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The optimal portfolio is (4.4) where �(y) can be updated as

�i(y) = Cov(fi(S); CF (D;U; y)):

The �rst order condition with respect to order quantity can be updated as

dH(y;�; �)

dy
= (u� cerT )E[U ]� (u� s)E[U1fD�Uyg]

�2�

8>>>>>>>>>><>>>>>>>>>>:

�T�0(y) + (s� cerT )2yV ar[U ]
+(u� s)2Cov[minfD;Uyg; U1fD>Uyg]

+(s� cerT )(p� u)Cov[U;D]
+(p� u)(u� s)Cov[D;U1fD>Uyg]

+(s� cerT )(u� s)
 
Cov[U;minfD;Uyg]
+yCov[U;U1fD>Uyg]

!

9>>>>>>>>>>=>>>>>>>>>>;
= 0 (4.20)

where

�i(y) = (s� cerT )yCov(fi(S); U) + (p� u)Cov(fi(S); D) + (u� s)Cov(fi(S);minfD;Uyg)

and its derivative is

�0i(y) = (s� cerT )Cov(fi(S); U) + (u� s)Cov(fi(S); U1fD>Uyg):

By substituting the optimal portfolio into (4.20) we obtain the �rst order condition

g(y; �) =
dH(y; �)

dy
= m0(y)� �v0��(y) = 0 (4.21)

where

m(y) = E [CF (D;U; y)]

and

v��(y) = V ar [CF��(D;U; S; y)] :

Their derivatives are

m0(y) = (u� cerT )E[U ]� (u� s)E[U1fD�Uyg]

and

v0��(y) = 2

0BBBBB@
��(y)TC�1�0(y) + (s� cerT )2yV ar[U ]

+(u� s)2Cov[minfD;Uyg; U1fD>Uyg] + (s� cerT )(p� u)Cov[U;D]
+(p� u)(u� s)Cov[D;U1fD>Uyg]

+(s� cerT )(u� s)
�
Cov[U;minfD;Uyg] + yCov[U;U1fD>Uyg]

�

1CCCCCA :
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To guarantee that there exists an optimal order quantity corresponding to each risk-aversion

level; we consider the random yield model with the following assumption.

Assumption 4.2.1 The function v��(y) = V ar [CF��(D;U; S; y)] is nondecreasing in y

and convex on [0; y�RN ].

This assumption implies that

v0��(0) = 2(p� u)(u� cerT )
�
�Cov (fi(S); D)TC�1Cov (fi(S); U) + Cov[U;D]

�
� 0:

Proposition 4.2.2 The optimal order quantity y(�) that maximizes the hedged MV objec-

tive is less than or equal to the classical newsvendor solution y�RN :

Proof. Similar reasoning discussed in Proposition 4.1.2 is valid.

Theorem 4.2.3 The optimal order quantity y(�) that maximizes the hedged MV objective

is obtained from (4.21) by solving

m0(y(�))� �v0��(y(�)) = 0: (4.22)

Moreover, y(�) decreases as � increases.

Proof. For any �xed y; let �(y) satisfy the optimality condition (4.22) which can be written

as

�(y) =
m0(y)

v0��(y)
:

For all y in the non-dominated region [0; y�RN ]; one can show that �(y) is decreasing in y:

The argument is the same as the previous section. Moreover, note that

�(0) =
(u� cerT )E[U ]� (u� s)E[U1fD=0g]

2(p� u)(u� cerT )
�
�Cov (fi(S); D)TC�1Cov (fi(S); U) + Cov [U;D]

�
=

E[U ]

2(p� u)
�
�Cov (fi(S); D)TC�1Cov (fi(S); U) + Cov [U;D]

�
and

�(y�RN ) = 0
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since m0(y�RN ) = 0 by concavity of E[CF (D;U; y)]: Therefore, �(y) decreases from �(0) to 0

as y increases from 0 to y�RN . Up to now, by showing �(y) is a decreasing function of y, we

establish the existence of an order quantity y(�) for each risk-aversion level 0 � � � �(0):
Note that on (y�RN ;+1), �(y) � 0 and this guarantees that this is the dominated region.
Additionally, along the non-dominated region [0; y�RN ] the second order condition is obtained

as
d2H(y; �)

dy2
= m00(y)� �v00��(y) � 0:

Since the second order condition is satis�ed, the objective function is concave on [0; y�RN ].

Moreover, the �rst derivative of the MV objective function (4.21) evaluated at y = 0 is

dH(y; �)

dy

����
y=0

= (u� cerT )E[U ]

�2�(p� u)(u� cerT )
 
�Cov (fi(S); D)TC�1Cov (fi(S); U)

+Cov[U;D]

!
� 0

and (4.21) is nonpositive on (y�RN ;+1) since m(y) is decreasing while v�(y) is increasing.
Therefore, the MV objective function is decreasing on (y�RN ;+1): This implies that the
objective function is quasi-concave and the order quantity that is between 0 and y�RN is a

maximizer of (4.19). For any 0 � � � �(0); by taking the inverse ��1 of �(y), we can obtain
the optimal order quantity corresponding to that � value so that

y(�) = ��1(�):

According to the newsvendor�s level of risk-aversion given by �, the optimal order quantity

changes between 0 and y�RN . We conclude that �(y) is decreasing in y, so the inverse is also

decreasing so that as the level of risk-aversion � increases the optimal order quantity y(�)

decreases.

Note that, the optimal order quantity is y(�) = 0 if g(0; �) < 0; or

g(0; �) = (u� cerT )E[U ]

�2�(p� u)(u� cerT )
�
�Cov (fi(S); D)TC�1Cov (fi(S); U) + Cov[U;D]

�
< 0:

Equivalently, we can conclude that if

� >
E[U ]

2(p� u)
�
�Cov (fi(S); D)TC�1Cov (fi(S); U) + Cov[U;D]

� = �(0)
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then y(�) = 0:

If there is a single hedging asset (n = 1), the optimal portfolio in (4.8) can be updated

as

��(y) = �Cov(f(S); CF (D;U; y))
V ar(f(S))

:

This can be explicitly written as

��(y) = �(s� cerT )y�U � (p� u)�D(1)� (u� s)�D;U (y) (4.23)

for any given y where

�U =
Cov(f(S); U)

V ar(f(S))
;

�D(y) =
Cov(f(S);minfD; yg)

V ar(f(S))

and

�D;U (y) =
Cov(f(S);minfD;Uyg)

V ar(f(S))
:

Under the same assumptions for v��(y), the optimal order quantity now satis�es (4.22)

where m0(y) is exactly the same. The only di¤erence is in v0��(y) which is in this case

v0��(y) = 2

8>>>>><>>>>>:
�
�
(s� cerT )y�U + (p� u)�D(1) + (u� s)�D;U (y)

�
�0(y)

+(s� cerT )2yV ar[U ] + (u� s)2Cov[minfD;Uyg; U1fD>Uyg]
+(s� cerT )(p� u)Cov[U;D] + (p� u)(u� s)Cov[D;U1fD>Uyg]
+(s� cerT )(u� s)

�
Cov[U;minfD;Uyg] + yCov[U;U1fD>Uyg]

�

9>>>>>=>>>>>;
:

Consequently, the non-dominated order quantities lie on [0; y�RN ], the objective function is

quasi-concave and the conclusion that as the level of risk-aversion increases the optimal

order quantity decreases are valid, too.

Lastly, consider a special case that there exists no correlation between the random factors

in inventory system (i.e. demand, supply) and �nancial markets, then �� = 0 and the model

reverts back to the random yield model (3.56).

4.3 MV Model with Random Capacity

In this section we analyze the MV newsvendor problem including supply uncertainty when

it is caused by random capacity. The amount received from ordering y units is minfK; yg
where K is a random variable. For generality, we further assume that D and K are not
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necessarily independent and the conditional density function of D given K = z is fDjz:

Moreover, both D and K are correlated with S. The total hedged cash �ow at the end of

the period equals

CF�(X; S; y) = CF (D;K; y) +�Tf(S)

= (s� cerT )minfK; yg+ (p� u)D + (u� s)minfD;K; yg+�Tf(S)

where X = fD;Kg: We again analyze the problem for multiple securities and then for a

single security, respectively.

We want to decide on the best values of y and � for the following MV optimization

problem

max
y�0;�

H(y;�; �) = E [CF (D;K; y)]� �V ar
�
CF (D;K; y) +�Tf(S)

�
: (4.24)

The optimal portfolio is (4.4) where �(y) can be updated as

�i(y) = Cov(fi(S); CF (D;K; y)):

From (4.7), the �rst order condition with respect to order quantity becomes

dH(y;�; �)

dy
= PfK > yg

�
(s� cerT ) + (u� s)PfD > y j K > yg

�

�2�

8>>>>>>>>>><>>>>>>>>>>:

�T�0(y) + (s� cerT )2Cov[minfK; yg; 1fK>yg]
+(u� s)2Cov[minfD;K; yg; 1fD>y;K>yg]
+(s� cerT )(p� u)Cov[D; 1fK>yg]
+(p� u)(u� s)Cov[D; 1fD>y;K>yg]

+(s� cerT )(u� s)
 

Cov[minfD;K; yg; 1fK>yg]
+Cov[minfK; yg; 1fD>y;K>yg]

!

9>>>>>>>>>>=>>>>>>>>>>;
= 0 (4.25)

where

�i(y) = (s� cerT )Cov(fi(S);minfK; yg) + (p� u)Cov(fi(S); D)

+(u� s)Cov(fi(S);minfD;K; yg)

and the derivative of �i(y) is

�0i(y) = (s� cerT )Cov(fi(S); 1fK>yg) + (u� s)Cov(fi(S); 1fD>y;K>yg):
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By substituting the optimal portfolio for multiple assets into (4.25) we obtain the �rst order

condition
dH(y; �)

dy
= m0(y)� �v0��(y) = 0 (4.26)

where

m(y) = E [CF (D;K; y)]

and

v��(y) = V ar [CF��(D;K; S; y)] :

The derivatives can be obtained as

m0(y) = PfK > yg
�
(s� cerT ) + (u� s)PfD > y j K > yg

�
and

v0��(y) = 2

8>>>>>>>>>><>>>>>>>>>>:

��(y)TC�1�0(y) + (s� cerT )2Cov[minfK; yg; 1fK>yg]
+(u� s)2Cov[minfD;K; yg; 1fD>y;K>yg]
+(s� cerT )(p� u)Cov[D; 1fK>yg]
+(p� u)(u� s)Cov[D; 1fD>y;K>yg]

+(s� cerT )(u� s)
 

Cov[minfD;K; yg; 1fK>yg]
+Cov[minfK; yg; 1fD>y;K>yg]

!

9>>>>>>>>>>=>>>>>>>>>>;
:

To guarantee that there exists an optimal order quantity corresponding to each risk-aversion

level; we consider the random capacity model with the following assumption.

Assumption 4.3.1 The function v��(y) = V ar [CF��(D;K; S; y)] is nondecreasing in y

and convex on [0; y�RN ].

Proposition 4.3.2 The optimal order quantity y(�) that maximizes the hedged MV objec-

tive is less than or equal to the classical newsvendor solution y�RN :

Proof. Similar reasoning discussed in Proposition 4.1.2 is valid.

Theorem 4.3.3 The optimal order quantity y(�) that maximizes the hedged MV objective

is obtained from (4.26) by solving

m0(y(�))� �v0��(y(�)) = 0: (4.27)

Moreover, y(�) decreases as � increases.
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Proof. For any �xed y; let �(y) satisfy the optimality condition (4.27) which can be written

as

�(y) =
m0(y)

v0��(y)
:

For all y in the non-dominated region [0; y�RN ]; one can show that �(y) is decreasing in y.

We already know from our discussion about the behavior of the function in (3.72) that in

the region [0; y�RN ]; m
0(y) � 0 and m00(y) � 0: Moreover, via Assumption 4.3.1 v0��(y) � 0

for all y and v00��(y) � 0 on [0; y�RN ] so that �(y) is decreasing in y. Moreover, note that

�(0) =
PfK > 0g

�
(s� cerT ) + (u� s)PfD > 0 j K > 0g

�

2

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

��(0)TC�1�0(0)
+(s� cerT )2Cov[minfK; 0g; 1fK>0g]

+(u� s)2Cov[minfD;K; 0g; 1fD>0;K>0g]
+(s� cerT )(p� u)Cov[D; 1fK>0g]
+(p� u)(u� s)Cov[D; 1fD>0;K>0g]

+(s� cerT )(u� s)
 

Cov[minfD;K; 0g; 1fK>0g]
+Cov[minfK; 0g; 1fD>0;K>0g]

!

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;

= +1

and

�(y�RN ) = 0

since m0(y�RN ) = 0 by quasi-concavity of E[CF (D;K; y)]: Therefore, �(y) decreases from

+1 to 0 as y increases from 0 to y�RN . Up to now, by showing �(y) is a decreasing function

of y, we establish the existence of an order quantity for each risk-aversion level � � 0: Note
that on (y�RN ;+1), �(y) � 0 and this is the dominated region. Additionally, along the

non-dominated region [0; y�RN ] the second order condition is obtained as

d2H(y; �)

dy2
= m00(y)� �v00��(y) � 0:

Since the second order condition is satis�ed, the objective function is concave on [0; y�RN ].

Moreover, the �rst derivative of the MV objective function (4.26) evaluated at y = 0 is

dH(y; �)

dy

����
y=0

= PfK > 0g
�
(s� cerT ) + (u� s)PfD > 0 j K > 0g

�
= (u� cerT ) � 0

and (4.26) is nonpositive on (y�RN ;+1) becausem(y) is decreasing while v�(y) is increasing.
Thus, the MV objective function is decreasing on (y�RN ;+1): This implies that the objective
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function is quasi-concave and the order quantity that is between 0 and y�RN is a maximizer

of (4.24). For any � � 0; by taking the inverse ��1 of �(y), we can obtain the optimal order
quantity corresponding to that � value so that

y(�) = ��1(�):

According to the newsvendor�s level of risk-aversion given by �, the optimal order quantity

changes between 0 and y�RN . �(y) is decreasing in y, so the inverse is also decreasing. Similar

to the previous section, we state that as the level of risk-aversion increases the optimal order

quantity decreases.

If there is a single hedging asset (n = 1), the optimal portfolio in (4.8) can be updated

as

��(y) = �Cov(f(S); CF (D;K; y))
V ar(f(S))

:

This can be explicitly written as

��(y) = �(s� cerT )�K(y)� (p� u)�D(1)� (u� s)�D;K(y) (4.28)

for any given y where

�K(y) =
Cov(f(S);minfK; yg)

V ar(f(S))
;

�D(y) =
Cov(f(S);minfD; yg)

V ar(f(S))

and

�D;K(y) =
Cov(f(S);minfD;K; yg)

V ar(f(S))
:

The same assumptions for v��(y), are also held for this special case so that the optimal

order quantity now satis�es (4.27) where m0(y) is exactly the same. The only di¤erence is

v0��(y) which is in this case

v0��(y) = 2

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

�
�
(s� cerT )�K(y) + (p� u)�D(1) + (u� s)�D;K(y)

�
�0(y)

+(s� cerT )2Cov[minfK; yg; 1fK>yg]
+(u� s)2Cov[minfD;K; yg; 1fD>y;K>yg]
+(s� cerT )(p� u)Cov[D; 1fK>yg]
+(p� u)(u� s)Cov[D; 1fD>y;K>yg]

+(s� cerT )(u� s)
 

Cov[minfD;K; yg; 1fK>yg]
+Cov[minfK; yg; 1fD>y;K>yg]

!

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
:
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Consequently, the non-dominated order quantities lie on [0; y�RN ], the objective function is

quasi-concave and the conclusion that as the level of risk-aversion increases the optimal

order quantity decreases are valid, too.

As a special case suppose that �� = 0 then the model reverts back to the random

capacity model (3.79).

4.4 MV Model with Random Yield and Capacity

In this section we work on the MV newsvendor problem when supply randomness results

from both yield and capacity. Therefore, the amount received from ordering y units is

U min fK; yg where U and K are random variables. Moreover, we suppose that D;U and

K are not necessarily independent and have a joint distribution function, FDKU (x; z; v) =

P fD � x;K � z; U � vg : The conditional distribution function of D for given K = z and

U = v is fDjzv and the conditional distribution function of K for a given U = v is fKjv. We

also suppose that D; U and K are correlated with S: The total hedged cash �ow equals to

CF�(X; S; y) = CF (D;U;K; y) +�Tf(S)

=
�
s� cerT

�
U min fK; yg+ (p� u)D + (u� s)minfD;UK;Uyg+�Tf(S)

where X = (D;U;K). We again analyze the problem for multiple securities and then for a

single security, in turn.

We want to solve the following MV optimization problem

max
y�0;�

H(y;�; �) = E [CF (D;U;K; y)]� �V ar
�
CF (D;U;K; y) +�Tf(S)

�
: (4.29)

The optimal portfolio is (4.4) where �(y) can be updated as

�i(y) = Cov(fi(S); CF (D;U;K; y)):
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From (4.7), the �rst order condition with respect to order quantity becomes

dH(y;�; �)

dy
= (s� cerT )E[U1fK>yg] + (u� s)E[U1fD>Uy;K>yg]

�2�

8>>>>>>>>>><>>>>>>>>>>:

�T�0(y) + (s� cerT )2Cov
�
U minfK; yg; U1fK>yg

�
+(u� s)2Cov

�
minfD;UK;Uyg; U1fD>Uy;K>yg

�
+(s� cerT )(p� u)Cov

�
D;U1fK>yg

�
+(p� u)(u� s)Cov

�
D;U1fD>Uy;K>yg

�
+(s� cerT )(u� s)

 
Cov

�
U1fK>yg;minfD;UK;Uyg

�
+Cov

�
U minfK; yg; U1fD>Uy;K>yg

� !

9>>>>>>>>>>=>>>>>>>>>>;
= 0

where

�i(y) = (s� cerT )Cov(fi(S); U minfK; yg) + (p� u)Cov(fi(S); D)

+(u� s)Cov(fi(S);minfD;UK;Uyg)

and the derivative of �i(y) is

�0i(y) = (s� cerT )Cov(fi(S); U1fK>yg) + (u� s)Cov(fi(S); U1fD>Uy;K>yg):

By substituting the optimal portfolio for multiple assets into (4.25) we obtain the �rst order

condition

g(y; �) =
dH(y; �)

dy
= m0(y)� �v0��(y) = 0 (4.30)

where

m(y) = E [CF (D;U;K; y)]

and

v��(y) = V ar [CF��(D;U; S; y)] :

Their derivatives are

m0(y) = (s� cerT )E[U1fK>yg] + (u� s)E[U1fD>Uy;K>yg]

and

v0��(y) = 2

8>>>>>>>>>><>>>>>>>>>>:

��(y)TC�1�0(y) + (s� cerT )2Cov
�
U minfK; yg; U1fK>yg

�
+(u� s)2Cov

�
minfD;UK;Uyg; U1fD>Uy;K>yg

�
+(s� cerT )(p� u)Cov

�
D;U1fK>yg

�
+(p� u)(u� s)Cov

�
D;U1fD>Uy;K>yg

�
+(s� cerT )(u� s)

 
Cov

�
U1fK>yg;minfD;UK;Uyg

�
+Cov

�
U minfK; yg; U1fD>Uy;K>yg

� !

9>>>>>>>>>>=>>>>>>>>>>;
:
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To guarantee that there exists an optimal order quantity corresponding to each risk-aversion

level, we consider this model with the following assumption.

Assumption 4.4.1 The function v��(y) = V ar [CF��(D;U;K; S; y)] is nondecreasing in

y and convex on [0; y�RN ].

This assumption implies that

v0��(0) = 2(p� u)(u� cerT )
�
�Cov(fi(S); D)TC�1Cov [fi(S); U ] + Cov[U;D]

�
� 0.

Proposition 4.4.2 The optimal order quantity y(�) that maximizes the hedged MV objec-

tive is less than or equal to the classical newsvendor solution y�RN :

Proof. Similar reasoning discussed in Lemma 3.1.1 is valid.

Theorem 4.4.3 The optimal order quantity y(�) that maximizes the hedged MV objective

is obtained from (4.30) by solving

m0(y(�))� �v0��(y(�)) = 0: (4.31)

Moreover, y(�) decreases as � increases.

Proof. For any �xed y; let �(y) satisfy the optimality condition (4.31) which can be written

as

�(y) =
m0(y)

v0��(y)
:

For all y in the non-dominated region [0; y�RN ]; one can show that �(y) is decreasing in y.

The argument follows from Section (4.3) Moreover, note that

�(0) =
(s� cerT )E[U1fK>0g] + (u� s)E[U1fD>0;K>0g]

2(p� u)(u� cerT ) (�Cov(fi(S); D)TC�1Cov(fi(S); U) + Cov[U;D])

=
E[U ]

2(p� u) (�Cov(fi(S); D)TC�1Cov(fi(S); U) + Cov[U;D])

and

�(y�RN ) = 0

since m0(y�RN ) = 0 by quasi-concavity of E[CF (D;U;K; y)]: Therefore, �(y) decreases from

�(0) to 0 as y increases from 0 to y�RN . Up to now, by showing �(y) is a decreasing
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function of y, we establish the existence of an order quantity for each risk-aversion level

0 � � � �(0): Note that on (y�RN ;+1), �(y) � 0 which ensures that this is the dominated
region. Additionally, along the non-dominated region [0; y�RN ] the second order condition is

obtained as
d2H(y; �)

dy2
= m00(y)� �v00��(y) � 0:

Since the second order condition is satis�ed, the objective function is concave on [0; y�RN ].

Moreover, the �rst derivative of the MV objective function (4.30) evaluated at y = 0 is

dH(y; �)

dy

����
y=0

= (u� cerT )E[U ]

�2�(p� u)(u� cerT )
 
�Cov(fi(S); D)TC�1Cov(fi(S); U)

+Cov[U;D]

!
� 0

and (4.30) is nonpositive on (y�RN ;+1) becausem(y) is decreasing while v�(y) is increasing.
Therefore, the MV objective function is decreasing on (y�RN ;+1): This implies that the
objective function is quasi-concave and the order quantity that is between 0 and y�RN is a

maximizer of (4.29). For any 0 � � � �(0); by taking the inverse ��1 of �(y), we can obtain
the optimal order quantity corresponding to that � value so that

y(�) = ��1(�):

According to the newsvendor�s level of risk-aversion given by �, the optimal order quantity

changes between 0 and y�RN . We show that �(y) is decreasing in y so that the inverse is also

decreasing. Thus, similar to the previous section, we state that as the level of risk-aversion

� increases the optimal order quantity y(�) decreases.

Note that, the optimal order quantity is y(�) = 0 if g(0; �) < 0; or

g(0; �) = (u� cerT )E[U ]

�2�(p� u)(u� cerT )
�
�Cov (fi(S); D)TC�1Cov (fi(S); U) + Cov[U;D]

�
< 0:

Equivalently, we can conclude that if

� >
E[U ]

2(p� u)
�
�Cov (fi(S); D)TC�1Cov (fi(S); U) + Cov[U;D]

� = �(0)
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then y(�) = 0:

If there is a single hedging asset (n = 1), the optimal portfolio in (4.8) can be updated

as

��(y) = �Cov (f(S); CF (D;U;K; y))
V ar (f(S))

:

This can be explicitly written as

��(y) = �(s� cerT )�U;K(y)� (p� u)�D(1)� (u� s)�D;U;K(y)

for any given y where

�U;K(y) =
Cov (f(S); U minfK; yg)

V ar(f(S))
;

�D(y) =
Cov(f(S);minfD; yg)

V ar(f(S))

and

�D;U;K(y) =
Cov(f(S);minfD;UK;Uyg)

V ar(f(S))
:

The same assumptions for v��(y) are also held for this special case. The optimal order

quantity now satis�es (4.31) where m0(y) is exactly the same. The only di¤erence is v0��(y)

which is in this case

v0��(y) = 2

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

�
�
(s� cerT )�U;K(y) + (p� u)�D(1) + (u� s)�D;U;K(y)

�
�0(y)

+(s� cerT )2Cov
�
U minfK; yg; U1fK>yg

�
+(u� s)2Cov

�
minfD;UK;Uyg; U1fD>Uy;K>yg

�
+(s� cerT )(p� u)Cov

�
D;U1fK>yg

�
+(p� u)(u� s)Cov

�
D;U1fD>Uy;K>yg

�
+(s� cerT )(u� s)

 
Cov

�
U1fK>yg;minfD;UK;Uyg

�
+Cov

�
U minfK; yg; U1fD>Uy;K>yg

� !

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
:

Consequently, the non-dominated order quantities lie on [0; y�RN ], the objective function is

quasi-concave and the conclusion that as the level of risk-aversion increases the optimal

order quantity decreases are valid, too.

As a special case, suppose that there exists no correlation between demand, supply and

�nancial markets, then �� = 0 and the model becomes the random yield and capacity model

(3.108).
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Chapter 5

NUMERICAL ILLUSTRATIONS

Up to this point, we discuss the newsvendor problem within the MV framework. In

Chapter 3, we analyze the MV newsvendor problem where the source of risk comes from

demand as well as supply. Then, in Chapter 4, we consider the same problem when the

risks associated with the cash �ow in the inventory system can be hedged by investing in

a portfolio of instruments in the �nancial markets. This chapter demonstrates the results

of Chapter 3 and Chapter 4 by some illustrative numerical examples. First, we construct

a simple example to investigate the e¤ects of parameters on the decision variables. Then,

we use the Monte Carlo method to simulate our models and comment on the e¤ect of MV

approach and hedging on the optimal decisions.

5.1 A Simple Example

The aim of this section is to illustrate how some important parameters a¤ect the optimal

order quantity. We assume that there exists no salvage cost, so that s = 0: The newsvendor

purchases each item at a purchase cost c and sells it at sale price p: For simplicity, we assume

that, unless otherwise stated, emergency cost is equal to the sale price, that is p = u. We

�rst solve the problem when there is no hedging option, and then we consider the case when

there exists some correlation between random variables of inventory system and �nancial

markets.

5.1.1 MV Models Without Hedging

For this example, we assume that hedging option does not exist and the source of randomness

comes only from the demand. Then, we also consider the case when there exists supply

uncertainty caused by random yield, random capacity and, lastly, both random yield and

random capacity. Eeckhoudt et al. [1995] discuss a similar example where the aim is to
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maximize the expected utility of the cash �ow where utility function is exponential. We use

the same setting of the example, yet our aim is to optimize the MV objective.

MV Model

We �rst consider the case when the randomness results only from the demand. Let demand

take two values as D 2 f0;Mg ; with probabilities p1 and p2 = 1� p1; respectively: For this
example, the MV objective function in (3.6) can be updated as

H(y; �) = �cy + pE[minfD; yg]� �p2V ar[minfD; yg]

= �cy + pp2minfM;yg � �p2p2(1� p2)minfM;yg2: (5.1)

Before going into the analysis of the MV order quantity, we �rst simplify the problem by

taking � = 0 and analyze the case for the classical newsvendor. The optimal order quantity

is

y�RN =

(
0 p1 � p̂
M p1 < p̂

(5.2)

where p̂ = (p� c) =p:
When the MV objective is considered, we already know that the non-dominated order

quantities lie in [0; y�RN ]: This means that the order quantity for the MV problem can not

exceed M . This decision is logical since we know for sure that demand can not exceed M

units. Note that

g(y; �) =
dH(y; �)

dy
=

(
�c+ pp2 � 2�p2p2(1� p2)y 0 � y �M
�c y > M

(5.3)

and
dg(y; �)

dy
=

(
�2�p2p2(1� p2)y 0 � y �M
0 y > M

:

In the non-dominated region [0;M ]; dg(y; �)=dy � 0 so that the objective function in (5.1)
is concave. This also implies that g(y; �) is decreasing in y:

The optimal order quantity can be easily obtained from (5.3) by setting g(y; �) = 0

y(�) =
p̂� p1

2pp1(1� p1)�
:

The optimal solution is y(�) = 0 if g(0; �) � 0; or
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g(0; �) = �c+ pp2 � 0:

Equivalently, we can conclude that if

p1 � p̂

then y(�) = 0 for all � � 0: Moreover, the optimal solution is y(�) =M if g(M; �) � 0; or

g(M; �) = �c+ pp2 � 2�p2p2(1� p2)M � 0:

Equivalently, we can conclude that if

� � p̂� p1
2pp1(1� p1)M

then y(�) =M:

In conclusion, we can write

y(�) =

8>><>>:
0 p1 � p̂

p̂�p1
2pp1(1�p1)� p1 < p̂ and

p̂�p1
2pp1(1�p1)M < � < +1

M p1 < p̂ and � � p̂�p1
2pp1(1�p1)M

:

The optimal order quantity depends on both the demand and the risk-aversion parameter

�:When PfD = 0g is more than p̂; the newsvendor orders nothing. When PfD = 0g is less
than p̂, if � is less than (p̂� p1) =2pp1(1�p1)M; � is so small that the newsvendor behaves like
a risk-neutral newsvendor and ordersM units; if � is more than (p̂� p1) =2pp1(1�p1)M; the
newsvendor orders (p̂� p1) =2pp1(1� p1)� units. We can see that as risk-aversion increases,
the optimal order quantity decreases. Moreover, by comparing the optimal policies for the

classical newsvendor problem and the MV problem, we can conclude that the risk-averse

newsvendor may give an order amount between 0 andM unlike the risk-neutral newsvendor

since the risk-averse newsvendor also considers risk in the MV approach.

MV Model with Shortage Cost

The MV newsvendor problem we considered in this thesis does not include an explicit

shortage penalty cost for stockout. Nevertheless, as we know when there is insu¢ cient stock

to meet the demand during a period, the newsvendor misses a chance to earn a marginal

pro�t of u�c: Here, we also want to see the e¤ect of shortage cost in our numerical analysis
and on the optimal order quantity. We study the same example of random demand model
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yet this time we take u � p to represent the unit stockout cost. In this case, the cash �ow
in (3.2) can be updated as

CF (D; y) = �cy + (p� u)D + uminfD; yg:

The mean and variance of the cash �ow are derived as follows

E[CF (D; y)] = �cy + (p� u)E[D] + uE[minfD; yg]

= �cy + (p� u)p2M + up2minfM;yg

and

V ar[CF (D; y)] = (p� u)2V ar(D) + u2V ar(minfD; yg)

+2u(p� u)Cov(D;minfD; yg)

= p2(1� p2)
�
(p� u)2M2 + u2minfM;yg2 + 2u(p� u)M minfM;yg

�
� 0: (5.4)

The MV objective function in (3.6) can be written as

H(y; �) = �cy + (p� u)p2M + up2minfM;yg (5.5)

��p2(1� p2)
�
(p� u)2M2 + u2minfM;yg2 + 2u(p� u)M minfM;yg

�
:

As a special case, � = 0 corresponds to the classical newsvendor. The optimal order

quantity is

y�RN =

(
0 p1 � p̂
M p1 < p̂

(5.6)

where p̂ = (u� c) =u: Comparing (5.6) to (5.2), we observe that for the risk-neutral newsven-
dor, shortage cost has no e¤ect on the optimal ordering policy. Because, similar to the case

without shortage cost, the mean of the cash �ow is concave.

Then, we consider the MV problem and take the derivative of (5.4) to obtain

dV ar[CF (D; y)]

dy
=

(
2p2(1� p2)

�
u2y + u(p� u)M

�
0 � y �M

0 y > M
:

Therefore, V ar[CF (D; y)] is not a monotone increasing function of y. More precisely,

V ar[CF (D; y)] is decreasing on [0; ((u� p) =u)M ], increasing on [((u� p) =u)M;M ] and
constant after M: This implies that the non-dominated region is [((u� p) =u)M;M ] :
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Along the non-dominated region, the derivative of (5.5) is

g(y; �) =
dH(y; �)

dy
= �c+ up2 � 2�p2(1� p2)

�
u2y + u(p� u)M

�
(5.7)

for ((u� p) =u)M � y �M: Also, the second derivative of (5.5) is

dg(y; �)

dy
= �2�p2(1� p2)u2 � 0 (5.8)

for ((u� p) =u)M � y � M: Therefore, g(y; �) is decreasing in y as (5.8) implies and the

objective function in (5.5) is concave.

The optimal order quantity can be obtained from (5.7) by setting g(y; �) = 0 so that

y(�) =
�c+ up2 � 2�p2(1� p2)u(p� u)M

2�p2(1� p2)u2

=
p̂� p1

2�p1(1� p1)u
+

�
u� p
u

�
M:

The optimal solution is y(�) = ((u� p) =u)M when g (((u� p) =u)M; �) � 0; or

g

��
u� p
u

�
M; �

�
= �c+ up2 � 0:

Equivalently, we can state that if

p1 � p̂

then y(�) = ((u� p) =u)M for all � � 0: Moreover, the optimal solution is y(�) = M if

g(M; �) � 0; or

g(M; �) = �c+ up2 � 2�p2(1� p2)Mup

� 0:

Equivalently, we can state that if

� � p̂� p1
2pp1(1� p1)M

then y(�) =M:

In conclusion, we can write

y(�) =

8>><>>:
�u�p
u

�
M p1 � p̂

p̂�p1
2�p1(1�p1)u +

�u�p
u

�
M p1 < p̂ and

p̂�p1
2pp1(1�p1)M < � < +1

M p1 < p̂ and � � p̂�p1
2pp1(1�p1)M

: (5.9)

We can see from (5.9) that, when p1 � p̂; the optimal order quantity under shortage cost,
((u� p) =u)M; goes beyond y�RN = 0:
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MV Model with Random Yield

In this part, in addition to demand, we consider the case when supply yield is also random.

Thus, when y units are ordered, Uy amount is received. Similar to the example where

the randomness only exists in demand, here U also takes two values U 2 f0; Ng where
0 < N � 1: Moreover, U and D have the following joint probability mass function

D = 0 and U = 0 with probability p1

D = 0 and U = N with probability p2

D =M and U = 0 with probability p3

D =M and U = N with probability p4

:

For this example, the mean of the cash �ow is

E[CF (D;U; y)] = �cyE[U ] + pE[minfD;Uyg] (5.10)

= �cy(p2 + p4)N + pp4minfM;Nyg

and the variance of the cash �ow is

V ar[CF (D;U; y)] = c2y2V ar[U ] + p2V ar[minfD;Uyg]

�2pcyCov[U;minfD;Uyg]

= c2y2N2(p2 + p4)(1� p2 � p4) + p2p4(1� p4)minfM;Nyg2

�2pcyNp4(1� p2 � p4)minfM;Nyg

� 0: (5.11)

Moreover, the MV objective function in (3.38) can be updated as

H(y; �) = �cy(p2 + p4)N + pp4minfM;Nyg (5.12)

��
 
c2y2N2(p2 + p4)(1� p2 � p4) + p2p4(1� p4)minfM;Nyg2

�2pcyNp4(1� p2 � p4)minfM;Nyg

!
:

Before analyzing the MV order quantity, we �rst simplify the problem by taking � = 0 and

analyze the case for the classical newsvendor. The �rst derivative of (5.10) is

dE[CF (D;U; y)]

dy
=

(
�c(p2 + p4)N + pp4N 0 � y � M

N

�c(p2 + p4)N y > M
N
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and the optimal order quantity becomes

y�RN =

(
0 p2

p2+p4
� p̂

M
N

p2
p2+p4

< p̂
:

Note that, we carry out the analysis with the assumption that p2= (p2 + p4) < p̂: Then, for

the MV analysis we take the �rst derivative of (5.11) to obtain

dV ar[CF (D;U; y)]

dy
=

8>><>>:
2yN2

�
c2(p2 + p4)(1� p2 � p4) 0 � y � M

N

+p2p4(1� p4)� 2pcp4(1� p2 � p4)
�

2(1� p2 � p4)cN (ycN(p2 + p4)� pMp4) y > M
N

(5.13)

and we observe the sign of (5.13) as follows

sign

�
dV ar[CF (D;U; y)]

dy

�
=

8>><>>:
+ 0 � y � M

N

� M
N < y � pM

cN

�
p4

p2+p4

�
+ y > pM

cN

�
p4

p2+p4

� :

Therefore, the non-dominated region is [0; (pMp4) =cN (p2 + p4)] : In this case, the order

quantity corresponding to each risk-aversion level � � 0 is not unique anymore. Therefore,
we continue the analysis with a speci�c example discussed later in this chapter.

MV Model with Random Capacity

For this example, the capacity of the supplier is also random. In other words, when y

units are ordered minfK; yg is received. Both demand and capacity take two values as
D 2 f0;Mg and K 2 f0;Mg and their joint probability distribution function is given by

D = 0 and K = 0 with probability p1

D = 0 and K =M with probability p2

D =M and K = 0 with probability p3

D =M and K =M with probability p4

:

The mean and variance of the cash �ow are, respectively

E[CF (D;K; y)] = �cE[minfK; yg] + pE[minfD;K; yg] (5.14)

= �c(p2 + p4)minfM;yg+ pp4minfM;yg
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and

V ar[CF (D;K; y)] = c2V ar(minfK; yg) + p2V ar(minfD;K; yg)

�2pcCov(minfK; yg;minfD;K; yg)

= c2(p2 + p4)(1� p2 � p4)minfM;yg2 + p2p4(1� p4)minfM;yg2

�2pcp4(1� p2 � p4)minfM;ygminfM;yg

= minfM;yg2d

� 0 (5.15)

where

d = c2(p2 + p4)(1� p2 � p4) + p2p4(1� p4)� 2pcp4(1� p2 � p4):

The MV objective function in (3.61) can be written as

H(y; �) = �c(p2 + p4)minfM;yg+ pp4minfM;yg � �minfM;yg2d:

Before analyzing the MV problem, as a special case, we take � = 0 and the problem turns

into the classical newsvendor problem. The �rst derivative of (5.14) is

dE[CF (D;K; y)]

dy
=

(
�c(p2 + p4) + pp4 0 � y �M
0 y > M

(5.16)

and the optimal order quantity is

y�RN =

(
0 p2

p2+p4
� p̂

M p2
p2+p4

< p̂
:

Note that, we carry out the analysis with the assumption that p2= (p2 + p4) < p̂: Then, to

analyze the MV problem we take the �rst and second derivative of (5.15) as follows

dV ar[CF (D;K; y)]

dy
=

(
2yd � 0 0 � y �M
0 y > M

(5.17)

and
d2V ar[CF (D;K; y)]

dy2
=

(
2d � 0 0 � y �M
0 y > M

: (5.18)

Therefore, as (5.16) indicates, E[CF (D;K; y)] is quasi-concave, more explicitly E[CF (D;K; y)]

is linearly increasing on 0 � y � M and constant afterwards, whereas as (5.17) and (5.18)
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points out V ar[CF (D;K; y)] is quasi-convex. It is convex increasing on 0 � y � M and

constant afterwards: We also see that this example supports Assumption 3.3.2. Therefore,

we state that the non-dominated order quantities lie in [0;M ] and we restrict our analysis

to this region. The �rst derivative of the MV problem is

g(y; �) =
dH(y; �)

dy
=

(
�c(p2 + p4) + pp4 � 2�yd 0 � y �M
0 y > M

: (5.19)

The optimal order quantity can be obtained from (5.19) by setting g(y; �) = 0 so that

y(�) =
p(p2 + p4)

�
p̂� p2

p2+p4

�
2�d

:

The optimal solution is y(�) = 0 when g(0; �) � 0; that is

g(0; �) = �c(p2 + p4) + pp4 � 0:

Equivalently, we can state that if
p2

p2 + p4
� p̂

then y(�) = 0 for all � � 0: Moreover, the optimal solution is y(�) =M if g(M; �) � 0; that
is

g(M; �) = �c(p2 + p4) + pp4 � 2�Md

� 0:

Equivalently, we can declare that if

� �
p(p2 + p4)

�
p̂� p2

p2+p4

�
2Md

then y(�) =M:

In conclusion, we can write

y(�) =

8>>><>>>:
0 p2

p2+p4
� p̂

p(p2+p4)
�
p̂� p2

p2+p4

�
2�d

p2
p2+p4

< p̂ and
p(p2+p4)

�
p̂� p2

p2+p4

�
2Md < � < +1

M p2
p2+p4

< p̂ and � �
p(p2+p4)

�
p̂� p2

p2+p4

�
2Md

:

The optimal order quantity depends on both the demand and capacity randomness

and also the risk-aversion parameter �: If PfD = 0 j K = Mg � p̂; the risk-averse
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newsvendor orders nothing. When PfD = 0 j K = Mg < p̂, if � is greater than

(pp̂(p2 + p4)� pp2) =2Md; the risk-averse newsvendor orders (pp̂(p2 + p4)� pp2) =2�d units;
and if � is less than (pp̂(p2 + p4)� pp2) =2Md; the newsvendor orders M units. Thus, we

can declare that the optimal order quantity y(�) decreases as � increases. Moreover, the

decision that at most M units are ordered is logical since demand and capacity can be at

most M .

MV Model with Random Yield and Capacity

Finally, we suppose that randomness results from demand, yield and capacity. Thus, when

y units are ordered, U minfK; yg is received. For this example, demand, yield and capacity
take two values asD 2 f0;Mg ; U 2 f0; Ng andK 2 f0;Mg : Their joint discrete probability
distribution function is

D = 0; U = 0;K = 0 with probability p1

D = 0; U = 0;K =M with probability p2

D = 0; U = N;K = 0 with probability p3

D = 0; U = N;K =M with probability p4

D =M;U = 0;K = 0 with probability p5

D =M;U = 0;K =M with probability p6

D =M;U = N;K = 0 with probability p7

D =M;U = N;K =M with probability p8

:

For this example, the mean and variance of the cash �ow are, respectively

E[CF (D;U;K; y)] = �cE[U minfK; yg] + pE[minfD;UK;Uyg]

= �c(p4 + p8)N minfM;yg+ pp8minfM;NM;Nyg (5.20)

and

V ar[CF (D;U;K; y)] = c2V ar(U minfK; yg) + p2V ar(minfD;UK;Uyg)

�2pcCov(U minfK; yg;minfD;UK;Uyg)

= c2(p4 + p8)(1� p4 � p8)N2minfM;yg2

+p2p8(1� p8)minfM;NM;Nyg2

�2pcp8(1� p4 � p8)N minfM;ygminfM;NM;Nyg

= N2minfM;yg2d

� 0: (5.21)
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where

d = c2(p4 + p8)(1� p4 � p8) + p2p8(1� p8)� 2pcp8(1� p4 � p8):

The MV objective function in (3.84) can be written as

H(y; �) = �c(p2 + p4)minfM;yg+ pp4minfM;M; yg � �N2minfM;yg2d:

Before analyzing the MV problem, as a special case, when we set � = 0, the prob-

lem becomes the classical newsvendor problem with random yield and capacity. The �rst

derivative of (5.20) is

dE[CF (D;U;K; y)]

dy
=

(
(�c(p4 + p8) + pp8)N 0 � y �M
0 y > M

(5.22)

and the optimal order quantity is

y�RN =

(
0 p4

p4+p8
� p̂

M p4
p4+p8

< p̂
:

Note that we carry out the analysis with the assumption that p2= (p2 + p4) < p̂: Then, we

consider the MV problem, the �rst and second derivative of (5.21) are

dV ar[CF (D;U;K; y)]

dy
=

(
2yN2d � 0 0 � y �M
0 y > M

and
d2V ar[CF (D;U;K; y)]

dy2
=

(
2N2d � 0 0 � y �M
0 y > M

:

Therefore, as (5.22) shows, E[CF (D;U;K; y)] is quasi-concave, more explicitly it is

linearly increasing on 0 � y � M and constant afterwards M whereas as (5.17) indicates

V ar[CF (D;U;K; y)] is quasi-convex. It is convex increasing on 0 � y � M and constant

after M: Notice that this example supports Assumption 3.4.2. Therefore, we state that

the non-dominated order quantities lie in [0;M ] and we restrict our analysis to this region.

Moreover, the �rst derivative of the MV problem is

g(y; �) =
dH(y; �)

dy
=

(
�c(p4 + p8)N + pp8N � 2�N2yd 0 � y �M
0 y > M

: (5.23)

The optimal order quantity can be obtained from (5.23) by setting g(y; �) = 0 so that

y(�) =
p(p4 + p8)

�
p̂� p4

p4+p8

�
2�Nd

:
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The optimal solution is y(�) = 0 when g(0; �) � 0; that is

g(0; �) = N (�c(p4 + p8) + pp8) � 0:

Equivalently, we can state that if
p4

p4 + p8
� p̂

then y(�) = 0; for all � � 0: Moreover, the optimal solution is y(�) = M if g(M; �) � 0;

that is

g(M; �) = �c(p4 + p8)N + pp8N � 2�N2Md

� 0:

Equivalently, we can state that if

� �
p(p4 + p8)

�
p̂� p4

p4+p8

�
2NMd

then y(�) =M:

In conclusion, we can write

y(�) =

8>>><>>>:
0 p4

p4+p8
� p̂

p(p4+p8)
�
p̂� p4

p4+p8

�
2�Nd

p4
p4+p8

< p̂ and
p(p4+p8)

�
p̂� p4

p4+p8

�
2NMd < � < +1

M p2
p2+p4

< p̂ and � �
p(p4+p8)

�
p̂� p4

p4+p8

�
2NMd

:

We can also make the same remarks for the optimal order quantity characterization. The

optimal order quantity depends on the probability

PfD = 0 j U = N;K =Mg = p4
p4 + p8

and increases from 0 to M as � decreases from +1 to (pp̂(p4 + p8)� pp4) = (2NMd). We
again argue that the decision of ordering at most M units is logical.

In summary, we illustrate all results obtained up to this point with a numerical example.

Suppose thatM is 100 and N is 0:5:Moreover, the probabilities for a MV model, MV model

with random capacity, and MV model with random yield and capacity are respectively

p1 = [0:25; 0:75] ;

p2 = [0:09; 0:16; 0:15; 0:60] ;

p3 = [0:01; 0:09; 0:05; 0:10; 0:10; 0:25; 0:10; 0:30] :
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We want to analyze the e¤ect of the risk-aversion parameter. Suppose that the newsven-

dor sells newspapers at p = 28 TL and buys them at c = 20 TL. Up to now, for each case,

we show that the optimal order quantity depends on both the probabilities and the level of

risk-aversion. Now, we rede�ne that condition depending on only the level of risk-aversion.

We obtain a critical value of risk-aversion, b� and show the optimal order quantity is of the
form

y(�) =

(
C
� � > b�
ymax � � b� (5.24)

where C is a constant term depending on probabilities and cost parameters. When the

risk-aversion level is less than b�; the optimal order quantity takes the largest value that is
ymax: For instance, when supply randomness results from both random yield and capacity,

C is

C =
pp̂(p4 + p8)� pp4

2Nd
= 0:00678

and while the level of risk-aversion is larger than

b� = pp̂(p4 + p8)� pp4
2NMd

= 0:00007;

the optimal order quantity has the structure, C� . When the level of risk-aversion is less than

or equal to b�; the optimal order quantity equals
ymax =M = 100:

Table 5.1 shows the values of C;b� and ymax for all cases where Model 1-3 represent MV
Model, MVModel with Random Capacity and MVModel with Random Yield and Capacity,

respectively. Note that for all cases, as � increases from 0 to +1; the optimal order quantity
decreases from the largest value ymax to 0:

Model 1 Model 2 Model 3

C 0:00709 0:00117 0:00678b� 0:00007 0:00001 0:00007

ymax 100 100 100

Table 5.1: The constant term, the critical risk-aversion level, and the maximium order
quantity
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For the MV model with shortage cost the optimal policy has a di¤erent form than other

cases. Numerically, we take p = 28; c = 20 and u = 32 with the same probabilities as MV

model, p1 = [0:25; 0:75] : For this case, we �nd the optimal order policy in (5.24) such that

y(�) =

(
0:010417

� + 12:5 � > 0:000119

100 � � 0:000119

where the critical value of � is �̂ = 0:000119:

As for the MV model with random yield we did not go through a complete analysis.

Yet, we aim to illustrate with a speci�c example, for instance, if we take � = 0:01 and

the probabilities as p4 = [0:10; 0:15; 0:35; 0:40] ; then the order quantities that make the

�rst derivative equal to zero are either 0:233 or 203:525: However, the second one is the

maximizer of (5.12).

Up to here, we demonsrate a numerical example for the MV model without hedging

opportunity. Now, we repeat the similar example for the MV model with �nancial hedging

opportunity.

5.1.2 MV Models with Financial Hedging

In this section, we suppose that the randomness in demand and supply is correlated with

the �nancial markets. First, we illustrate the example where the randomness only results

from the demand. Then, we include random supply.

MV Model

For this example, both D and f (S) take two values as D 2 f0;Mg and f (S) 2 f�L;Lg for
computational simplicity. So, their joint distribution function is

f (S) = �L; D = 0 with probability p1

f (S) = �L; D =M with probability p2

f (S) = L; D = 0 with probability p3

f (S) = L; D =M with probability p4

:

To make sure that there is no arbitrage opportunity, we assume that

E [f (S)] = � (p1 + p2)L+ (p3 + p4)L = 0 (5.25)
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so that

V ar (f (S)) = L2: (5.26)

Note that (5.25) and (5.26) are valid in the remainder of this section. Moreover, throughout

this example we make our calculations based on the fact that the newsvendor orders at most

M units which is logical because demand can be at most M units.

The optimal portfolio for a single asset with random demand in (4.18) becomes

�� (y) = �p�D(y)

for any y where

�D(y) =
Cov(f(S);minfD; yg)

V ar(f(S))
:

It can be calculated that

Cov (f (S) ;min fD; yg) = E [f (S)min fD; yg]� E [f (S)]E [min fD; yg]

= E [f (S)min fD; yg]

= p1 (�Lmin f0; yg) + p2 (�Lmin fM;yg)

+p3 (Lmin f0; yg) + p4 (Lmin fM;yg)

= (p4 � p2)Ly

and its derivative is

�̂(y) =
dCov (f (S) ;min fD; yg)

dy
= Cov(f(S); 1fD>yg) = (p4 � p2)L:

Hence, the optimal portfolio is

�� (y) = p
(p2 � p4)

L
y: (5.27)

Here, we observe that the sign of (5.27) depends on the sign of (p2 � p4) : Moreover, since

Cov (f (S) ; D) = E [f (S)D]� E [f (S)]E [D]

= E [f (S)D]

= (p4 � p2)LM

if (p4 � p2) is positive, f (S) and D are positively correlated in which case the sign of

the optimal portfolio is negative that indicates shortselling the portfolio and if (p4 � p2)
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is negative, f (S) and D are negatively correlated and the sign of (5.27) becomes positive

which means the portfolio is bought.

The optimality condition in (4.15) can be updated as

g(y; �) =
dH(y; �)

dy
= �cerT + p(p2 + p4)� 2�p2yd = 0 (5.28)

where d =
�
� (p4 � p2)2 + (p2 + p4)(1� p2 � p4)

�
: The derivative of (5.28) is

dg(y; �)

dy
= �2�p2d:

Provided that d � 0, the second order condition is satis�ed and the optimal order quantity
can be obtained from (5.28) so that

y(�) =
�cerT + p(p2 + p4)

2�p2d

=
p̂� (p1 + p3)

2�pd
:

The optimal solution is y(�) = 0 if g(0; �) � 0; or

g(0; �) = �cerT + p(p2 + p4) � 0:

Equivalently, we can conclude that if

p1 + p3 � p̂

then y(�) = 0 for all � � 0: Moreover, the optimal solution is y(�) =M if g(M; �) � 0; or

g(M; �) = �cerT + p(p2 + p4)� 2�p2Md � 0:

Equivalently, we can conclude that if

� � p̂� (p1 + p3)
2pMd

then y(�) =M:

In conclusion, we can write

y(�) =

8>><>>:
0 p1 + p3 � p̂
p̂�(p1+p3)
2�pd p1 + p3 < p̂ and

p̂�(p1+p3)
2pMd < � < +1

M p1 + p3 < p̂ and � � p̂�(p1+p3)
2pMd

:
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The optimal order quantity depends on the probability distribution of demand and the

risk-aversion parameter �: If PfD = 0g is more than p̂; the newsvendor orders nothing.
When PfD = 0g is less than p̂, if � is more than (p̂� (p1 + p3)) =2pMd; the newsvendor
orders (p̂� (p1 + p3)) =2�pd units; if � is less than (p̂� (p1 + p3)) =2pMd; � is so small that
the newsvendor behaves like a risk-neutral newsvendor and orders M units. We can see

that as risk-aversion increases, the optimal order quantity decreases.

MV Model with Random Yield

Now, we include yield randomness into our model. For this example, D, f (S) and U all

take two possible values as D 2 f0;Mg, f (S) 2 f�L;Lg and U 2 f0; Ng. Their joint
distribution is given as

f (S) = �L; D = 0; U = 0 with probability p1

f (S) = �L; D = 0; U = N with probability p2

f (S) = �L; D =M; U = 0 with probability p3

f (S) = �L; D =M; U = N with probability p4

f (S) = L; D = 0; U = 0 with probability p5

f (S) = L; D = 0; U = N with probability p6

f (S) = L; D =M; U = 0 with probability p7

f (S) = L; D =M; U = N with probability p8

:

Note that we make our calculations based on the fact that the newsvendor orders at

most M=N units which is logical because demand can be at most M units. The optimal

portfolio for a single asset with random yield in (4.23) is updated as

�� (y) = cerT y�U � p�D;U (y)

for any y where

�U =
Cov (f (S) ; U)

V ar (f (S))

and

�D;U (y) =
Cov (f (S) ;min fD;Uyg)

V ar (f (S))
:
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One can show that

Cov (f (S) ; U) = E [f (S)U ]� E [f (S)]E [U ]

= E [f (S)U ]

= p2 (�L)N + p4 (�L)N + p6 (L)N + p8 (L)N

= (p6 + p8 � p2 � p4)LN

and

Cov (f (S) ;min fD;Uyg) = E [f (S)min fD;Uyg]

�E [f (S)]E [min fD;Uyg]

= E [f (S)min fD;Uyg]

= (p8 � p4)LNy (5.29)

and the derivative of (5.29) equals

dCov (f (S) ;min fD;Uyg)
dy

= (p8 � p4)LN:

Thus, the optimal portfolio is

�� (y) =
�
cerT (p6 + p8 � p2 � p4)� p (p8 � p4)

��N
L

�
y:

The optimality condition in (4.22) can be updated as

g(y; �) =
�
�cerT (p2 + p4 + p6 + p8) + p(p4 + p8)

�
N � 2�yd = 0 (5.30)

where

d = N2

8>>>>><>>>>>:

�
cerT (p6 + p8 � p2 � p4)� p (p8 � p4)

�2
+(cerT )2(p2 + p4 + p6 + p8)(1� p2 � p4 � p6 � p8)

+p2(p4 + p8)(1� p4 � p8)
�2cerT p(p4 + p8)(1� p2 � p4 � p6 � p8)

9>>>>>=>>>>>;
:

The derivative of (5.30) is
dg(y; �)

dy
= �2�d:

Provided that d � 0, the second order condition is satis�ed and the optimal order quantity
can be obtained from (5.30) which is

y(�) =

�
�cerT (p2 + p4 + p6 + p8) + p(p4 + p8)

�
N

2�d

=
(p̂ (p2 + p4 + p6 + p8)� (p2 + p6)) pN

2�d
:
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The optimal solution is y(�) = 0 if g(0; �) � 0; or

g(0; �) =
�
�cerT (p2 + p4 + p6 + p8) + p(p4 + p8)

�
N � 0:

Equivalently, we can conclude that if

p2 + p6
p2 + p4 + p6 + p8

� p̂

then y(�) = 0 for all � � 0: Moreover, the optimal solution is y(�) =M if g(M; �) � 0; or

g(M; �) =
�
�cerT (p2 + p4 + p6 + p8) + p(p4 + p8)

�
N � 2�Md � 0:

Equivalently, we can state that if

� � (p̂ (p2 + p4 + p6 + p8)� (p2 + p6)) pN
2Md

then y(�) =M:

In conclusion, we can write

y(�) =

8>>>>><>>>>>:
0 p2+p6

p2+p4+p6+p8
� p̂

(p̂(p2+p4+p6+p8)�(p2+p6))pN
2�d

p2+p6
p2+p4+p6+p8

< p̂ and
(p̂(p2+p4+p6+p8)�(p2+p6))pN

2Md < � < +1
M=N p2+p6

p2+p4+p6+p8
< p̂ and � � (p̂(p2+p4+p6+p8)�(p2+p6))pN

2Md

:

The optimal order quantity depends on the probability distribution of demand and yield

and the risk-aversion parameter �: The optimal order quantity depends on the probability

PfD = 0 j U = Ng = p2 + p6
p2 + p4 + p6 + p8

and increases from 0 to M=N as � decreases from +1 to

(p̂ (p2 + p4 + p6 + p8)� (p2 + p6)) pN
2Md

:

MV Model with Random Capacity

Now, we consider supply randomness in capacity. For our example, demand, f (S) and

capacity take two values, D 2 f0;Mg, f (S) 2 f�L;Lg and K 2 f0;Mg : The joint distrib-
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ution function is given by

f (S) = �L; D = 0; K = 0 with probability p1

f (S) = �L; D = 0; K =M with probability p2

f (S) = �L; D =M; K = 0 with probability p3

f (S) = �L; D =M; K =M with probability p4

f (S) = L; D = 0; K = 0 with probability p5

f (S) = L; D = 0; K =M with probability p6

f (S) = L; D =M; K = 0 with probability p7

f (S) = L; D =M; K =M with probability p8

:

Note that we make our calculations based on the fact that the newsvendor orders at most

M units which is logical because demand can be at most M units. The optimal portfolio

for a single asset with random capacity in (4.28) is updated as

��(y) = cerT�K(y)� p�D;K(y)

for any y where

�K(y) =
Cov(f(S);minfK; yg)

V ar(f(S))

and

�D;K(y) =
Cov(f(S);minfD;K; yg)

V ar(f(S))
:

One can show that

Cov (f (S) ;minfK; yg) = E [f (S)minfK; yg]� E [f (S)]E [minfK; yg]

= E [f (S)minfK; yg]

= p2 (�L) y + p4 (�L) y + p6 (L) y + p8 (L) y

= (p6 + p8 � p2 � p4)Ly (5.31)

and the derivative of (5.31) is

dCov (f (S) ;minfK; yg)
dy

= Cov
�
f (S) ; 1fK>yg

�
= (p6 + p8 � p2 � p4)L:

Moreover,

Cov (f (S) ;min fD;K; yg) = E [f (S)min fD;K; yg]

�E [f (S)]E [min fD;K; yg]

= E [f (S)min fD;K; yg]

= (p8 � p4)Ly: (5.32)
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and the derivative of (5.32) equals

dCov (f (S) ;min fD;K; yg)
dy

= Cov
�
f (S) ; 1fD>y;K>yg

�
= (p8 � p4)L:

Hence, the optimal portfolio is

�� (y) =
�
cerT (p6 + p8 � p2 � p4)� p (p8 � p4)

� � y
L

�
:

The optimality condition in (4.27) can be updated as

g(y; �) = (p2 + p4 + p6 + p8)
�
�cerT + p(p4 + p8)

�
� 2�yd = 0 (5.33)

where

d =

8>>>>><>>>>>:

�
cerT (p6 + p8 � p2 � p4)� p (p8 � p4)

�2
+(cerT )2(p2 + p4 + p6 + p8)(1� p2 � p4 � p6 � p8)

+p2(p4 + p8)(1� p4 � p8)
�2cerT p(p4 + p8)(1� p2 � p4 � p6 � p8)

9>>>>>=>>>>>;
:

The derivative of (5.33) is
dg(y; �)

dy
= �2�d

Provided that d � 0, the second order condition is satis�ed and the optimal order quantity
can be obtained from (5.33) which is

y(�) =
(p2 + p4 + p6 + p8)

�
�cerT + p(p4 + p8)

�
2�d

=
(p̂� (1� p4 � p8)) p(p2 + p4 + p6 + p8)

2�d
:

The optimal solution is y(�) = 0 if g(0; �) � 0; or

g(0; �) = (p2 + p4 + p6 + p8)
�
�cerT + p(p4 + p8)

�
� 0:

Equivalently, we can state that if

1� p4 � p8 � p̂

then y(�) = 0 for all � � 0: Moreover, the optimal solution is y(�) =M if g(M; �) � 0; or

g(M; �) = (p2 + p4 + p6 + p8)
�
�cerT + p(p4 + p8)

�
� 2�Md � 0:

Equivalently, we can state that if

� � (p̂� (1� p4 � p8)) p(p2 + p4 + p6 + p8)
2Md
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then y(�) =M:

In conclusion, we can write

y(�) =

8>>>>><>>>>>:
0 1� p4 � p8 � p̂
(p̂�(1�p4�p8))p(p2+p4+p6+p8)

2�d 1� p4 � p8 < p̂ and
(p̂�(1�p4�p8))p(p2+p4+p6+p8)

2Md < � < +1
M 1� p4 � p8 < p̂ and � � (p̂�(1�p4�p8))p(p2+p4+p6+p8)

2Md

:

The similar remarks of the previous example are valid. The optimal order quantity

depends on the probability distribution of demand and capacity, net payo¤ of asset and the

risk-aversion parameter �: The optimal order quantity depends on the probability

1� PfD =M;K =Mg = 1� p4 � p8

and increases from 0 to M as � decreases from +1 to

(p̂� (1� p4 � p8)) (p2 + p4 + p6 + p8)p
2Md

:

MV Model with Random Yield and Capacity

Last, we consider supply randomness in both yield and capacity. For our example, demand,

f (S) ; yield and capacity take the following values, D 2 f0;Mg, f (S) 2 f�L;Lg ; U 2
f0; Ng and K 2 f0;Mg : Their joint distribution function is
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f (S) = �L; D = 0; U = 0; K = 0 with probability p1

f (S) = �L; D = 0; U = 0; K =M with probability p2

f (S) = �L; D = 0; U = N; K = 0 with probability p3

f (S) = �L; D = 0; U = N; K =M with probability p4

f (S) = �L; D =M; U = 0; K = 0 with probability p5

f (S) = �L; D =M; U = 0; K =M with probability p6

f (S) = �L; D = 0; U = N; K = 0 with probability p7

f (S) = �L; D = 0; U = N; K =M with probability p8

f (S) = L; D = 0; U = 0; K = 0 with probability p9

f (S) = L; D = 0; U = 0; K =M with probability p10

f (S) = L; D = 0; U = N; K = 0 with probability p11

f (S) = L; D = 0; U = N; K =M with probability p12

f (S) = L; D =M; U = 0; K = 0 with probability p13

f (S) = L; D =M; U = 0; K =M with probability p14

f (S) = L; D =M; U = N; K = 0 with probability p15

f (S) = L; D =M; U = N; K =M with probability p16

:

Note that we make our calculations based on the fact that the newsvendor orders at most

M units which is logical because demand can be at most M units. The optimal portfolio

for a single asset with random yield and capacity in (4.28) is updated as

��(y) = cerT�U;K(y)� p�D;U;K(y)

for any y where

�U;K(y) =
Cov (f(S); U minfK; yg)

V ar(f(S))
;

�D;U;K(y) =
Cov(f(S);minfD;UK;Uyg)

V ar(f(S))
:

It follows that

Cov (f (S) ; U min fK; yg) = E [f (S)U min fK; yg]

= p4 (�L)Ny + p8 (�L)Ny + p12 (L)Ny + p16 (L)Ny

= (p12 + p16 � p4 � p8)LNy
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and

Cov (f (S) ;min fD;UK;Uyg) = E [f (S)min fD;K; yg]

= p8 (�L)Ny + p16 (L)Ny

= (p16 � p8)LNy:

Hence, the optimal portfolio is

�� (y) =
�
cerT (p12 + p16 � p4 � p8)� p (p16 � p8)

��N
L

�
y:

The optimality condition in (4.31) can be updated as

g(y; �) =
�
�cerT (p4 + p8 + p12 + p16) + pp16

�
N � 2�yd = 0 (5.34)

where

d = N2

8>>>>><>>>>>:

�
cerT (p6 + p8 � p2 � p4)� p (p8 � p4)

�2
+(cerT )2(p4 + p8 + p12 + p16)(1� p4 � p8 � p12 � p16)

+p2p16(1� p16)N
�2cerT pp16(1� p16)

9>>>>>=>>>>>;
:

The derivative of (5.34) is
dg(y; �)

dy
= �2�d

Provided that d � 0, the second order condition is satis�ed and the optimal order quantity
can be obtained from (5.34) which is

y(�) =

�
�cerT (p4 + p8 + p12 + p16) + pp16

�
N

2�d

=
(p̂ (p4 + p8 + p12 + p16)� (p4 + p8 + p12)) pN

2�d
:

The optimal solution is y(�) = 0 if g(0; �) � 0; or

g(0; �) =
�
�cerT (p4 + p8 + p12 + p16) + pp16

�
N � 0:

Equivalently, we can conclude that if

p4 + p8 + p12
p4 + p8 + p12 + p16

� p̂

then y(�) = 0 for all � � 0: Moreover, the optimal solution is y(�) =M if g(M; �) � 0; or
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g(M; �) =
�
�cerT (p4 + p8 + p12 + p16) + pp16

�
N � 2�Md � 0:

Equivalently, we can conclude that if

� � (p̂ (p4 + p8 + p12 + p16)� (p4 + p8 + p12)) pN
2Md

then y(�) =M:

In conclusion, we can write

y(�) =

8>>>>>>><>>>>>>>:

0 p4+p8+p12
p4+p8+p12+p16

� p̂
(p̂(p4+p8+p12+p16)�(p4+p8+p12))pN

2�d
p4+p8+p12

p4+p8+p12+p16
< p̂ and

(p̂(p4+p8+p12+p16)�(p4+p8+p12))pN
2Md < � < +1

M p4+p8+p12
p4+p8+p12+p16

< p̂ and

� � (p̂(p4+p8+p12+p16)�(p4+p8+p12))pN
2Md

:

We again state that the optimal order quantity depends on the probability distribution

of demand, yield and capacity, net payo¤ of asset and the risk-aversion parameter �: The

optimal order quantity depends on the probability

PfD = 0 j U = N;K =Mg = p4 + p8 + p12
p4 + p8 + p12 + p16

and increases from 0 to M as � decreases from +1 to

(p̂ (p4 + p8 + p12 + p16)� (p4 + p8 + p12)) pN
2Md

:

Up to this point, we consider a simple example to analyze the e¤ect of some parameters

on the optimal order quantity. In the next section, we use the Monte Carlo method to

simulate the models.

5.2 Simulation

In this section, we present numerical examples to quantify the e¤ects of the MV framework

and �nancial hedging to compensate for demand and supply risks. As the base scenario, we

take the example in Gaur and Seshadri [2005] where they use a stock to hedge the demand

risk. Let the initial stock price S0 be $660 and the interest rate be r = 10% per year. We
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assume that T = 6 months and the return ST =S0 has a lognormal distribution under the

risk-neutral measure with mean
�
r � �2

2

�
T and standard deviation �

p
T where � = 20%

per year, that is

ln

�
ST
S0

�
� N

��
r � �

2

2

�
T; �

p
T

�
= N (0:04; 0:14142) : (5.35)

Let the demand be D = b S + � where b = 10; S = ST and � has a normal distribution

with mean zero and standard deviation ��. Therefore, random demand is linearly correlated

with the �nancial market. The �nancial parameters are: p = 1; u = 0:7; c = 0:6 and s = 0:1:

In our analysis, we consider three types of �nancial portfolios. The �rst portfolio consists

of futures only and has the net payo¤ f1(S), the second portfolio consists of the call option

with some strike price � only and has the net payo¤ f2(S). Finally, the third portfolio

uses both instruments jointly and has the net payo¤s f1(S) and f2(S). The payo¤ of these

derivative securities are

f1 (S) = S � erTS0

and

f2 (S) = max fS � �; 0g � erTC

where the strike price is � = y=b and the price of the call option at time 0 is C. Under the

assumption that there exists no arbitrage opportunity in the market which means that the

expected gain from the �nancial portfolio is 0 we have

C = EQ
�
e�rT max fS � �; 0g

�
and

EQ [f1 (S)] = EQ [f2 (S)] = 0

when Q is the risk-neutral probability measure given in (5.35).

Throughout the remainder of this chapter all of the numerical calculations are done using

Monte Carlo simulations via Matlab. The cash �ows are generated by using the simulated

values of S;D;U; and K whenever needed. We consider four di¤erent models: �rst the

MV model, second we include random yield, third we include random capacity and last we

include both random yield and capacity. For each model, we will compare the following

eight di¤erent scenarios:
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Scenario 1: Newsvendor does not use any portfolio and aims to maximize expected

cash �ow (� = 0) ;

Scenario 2: Newsvendor uses the �rst portfolio (future) and aims to maximize

expected cash �ow (� = 0) ;

Scenario 3: Newsvendor uses the second portfolio (call option) and aims to maximize

expected cash �ow (� = 0) ;

Scenario 4: Newsvendor uses the third portfolio (future and call option) and aims to

maximize expected cash �ow (� = 0) ;

Scenario 5: MV newsvendor does not use any portfolio and aims to maximize the MV

cash �ow,

Scenario 6: MV newsvendor uses the �rst portfolio (future) and aims to maximize the

MV cash �ow,

Scenario 7: MV newsvendor uses the second portfolio (call option) and aims to

maximize the MV cash �ow,

Scenario 8: MV newsvendor uses the third portfolio (future and call option) and aims

to maximize the MV cash �ow.

5.2.1 MV Model

In this subsection, we analyze the case where demand is the only source of uncertainty. The

unhedged cash �ow at time T is written as

CF (D; y) = �cerT y + pD + smax fy �D; 0g � umax fD � y; 0g

and the hedged cash �ow at time T is

CF��(y) (D;S; y) = CF (D; y) +�
� (y) f (S) :

We �rst suppose that the standard deviation of demand error is �� = 0 so that a perfect

correlation between demand and the stock price exits and the risk-aversion parameter is

� = 0:01:We run our simulation for di¤erent order quantities and generate 50; 000 instances

to calculate the stock prices, demand quantities and payo¤of the derivative securities. Then,

we use the formulas obtained in Theorem 4.0.6 and Corollary 4.0.8 of Chapter 4 to calculate

the optimal portfolios. Finally, we generate another 50; 000 instances to obtain pro�ts. For

each scenario, we calculate the mean, the variance, and the MV value of the cash �ow for

each optimal order quantity.
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�� = 0 y(�) Mean Variance MV Portfolio(�)

S1 5804 2457:38 125412:62 � �

S2 5802 2456:68 7150:09 � �3:4823
S3 5800 2455:86 18470:47 � �3:5538
S4 5804 2458:14 0 � �9:00; 6:00

S5 4839 2416:35 88988:72 1526:46 �

S6 5263 2440:85 1252:58 2428:32 �3:1106
S7 5070 2429:72 1235:52 2417:36 �3:0688
S8 5804 2458:14 0 2458:14 �9:00; 6:00

Table 5.2: The means and variances of the cash �ows, MV values and the optimal portfolios
for random demand model when the standard deviation of demand error is 0

For scenarios 1-4, we decide on the optimal order quantity values based on the mean of

the cash �ows. Therefore, for these scenarios we consider the risk-neutral newsvendor. For

scenarios 5-9, we �nd the optimal order quantities of a risk-averse newsvendor adopting MV

strategy with � = 0:01. The results of our analysis are depicted in Table 5.2. For scenarios

1-4, since the expected values of the cash �ows are almost the same, we can make fair

comparisons on risk reduction enabled by �nancial hedging looking at the variances. For

scenarios 5-8, we should compare the MV values. We see that when the standard deviation

of the demand error is zero, hedging with a portfolio of future and option eliminate the

variance of the cash �ow totally for both the risk-neutral and MV newsvendor. Moreover,

�nancial hedging enables considerable increases in the value of the MV objective. For

example, consider the case when both portfolios are used. The �nancial hedging provides

increase in the MV value of the cash �ow by 61% for the MV newsvendor. Then, we

analyze the e¤ect of the MV objective by comparing scenario 1 and scenario 5. The risk-

averse newsvendor orders less and so the expected pro�t is also less. However, the variance

of the expected cash �ow is reduced by 29%.

Moreover, we analyze the problem for di¤erent demand variations. We run the simulation

by changing order quantity values when �� is 300 and 600: The results are summarized in

Table 5.3 when �� = 300 in which case a high degree of correlation between demand and

the stock price exits, and later in Table 5.4 when �� = 600 in which case a lower degree of

a correlation between demand and the stock price exists.
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�� = 300 y(�) Mean Variance MV Portfolio(�)

S1 5742 2451:26 139461:28 � �

S2 5740 2450:55 20552:52 � �3:4916
S3 5736 2449:74 29809:55 � �3:5601
S4 5744 2451:94 14854:75 � �8:9135; 5:8281

S5 4666 2404:47 97418:62 1430:29 �

S6 5027 2426:23 9731:94 2328:91 �3:0764
S7 4922 2419:64 9580:85 2323:82 �3:0621
S8 5179 2435:42 9850:49 2336:91 �9:3145; 6:2787

Table 5.3: The means and variances of the cash �ows, MV values and the optimal portfolios
for random demand model when the standard deviation of demand error is 300

When the standard deviation of the demand error is small (�� = 300) indicating a

high degree of correlation between demand and the stock price, a decrease of 89.3% in the

variance of the cash �ow in the classical model and an increase of 63.4% in the MV value

is achieved. For �� = 600; the variance of the cash �ow can be lowered by 68.6% for the

classical model while the MV value can be increased by 77.7%. Therefore, we conclude

that the variance reductions decrease when the degree of correlation between the random

demand and �nancial variables decrease.

We also analyze the e¤ect of risk-aversion parameter � on the optimal order quantity.

We again take the same example where �� = 600: Table 5.5 depicts the optimal order

quantities, mean, variance and MV value of the cash �ows and the optimal portfolios. From

Table 5.5, we conclude that as risk-aversion increases, the optimal order quantity decreases.

Moreover, from the variances of the cash �ows, we can state that hedging always reduces

the variation and increases the MV value of the cash �ow.

As for the optimal portfolio structure, it is always optimal to sell the future since in

our example demand and stock price are taken to be positively correlated. However, in

the optimal portfolio, the call option is bought when used as the second instrument along

with the future, but is sold when it is used as the only instrument. Comparing the variance

values for scenarios 1-4 and MV values for scenarios 5-8, it is also interesting to note that

using a portfolio consisting only of the future is much more e¤ective than the call option

itself. Hence, we conclude that the call option serves to �ne tune the portfolio along with



Chapter 5: Numerical Illustrations

109

�� = 600 y(�) Mean Variance MV Portfolio(�)

S1 5588 2435:22 181262:37 � �

S2 5587 2434:51 60560:87 � �3:5191
S3 5583 2433:72 66289:60 � �3:5761
S4 5587 2435:82 56965:91 � �8:9780; 5:7328

S5 4225 2374:08 122123:91 1152:84 �

S6 4493 2390:76 34399:51 2046:77 �3:046
S7 4477 2389:35 34341:32 2045:94 �3:0447
S8 4493 2392:61 34310:28 2049:51 �16:8198; 13:7806

Table 5.4: The means and variances of the cash �ows, MV values and the optimal portfolios
for random demand model when the standard deviation of demand error is 600

the future but is not as e¤ective when used alone.

5.2.2 MV Model with Random Yield

This subsection presents an example for the random yield model. There can be many

functional forms of constructing a relation between the stock price and the yield and in our

example we take

U = 1� e�(1=S0)(+ST )

where  is a normally distributed random variable with mean zero and standard deviation

� . We apply the same base scenario and use identical portfolio options. We �x �� to 600 and

� to 0:01 and for di¤erent values of � (0; 200; 400), we �nd the optimal order quantities for

each scenario and analyze the e¤ect of the MV approach and �nancial hedging. We present

the means, variations, MV values and the optimal portfolios in Table 5.6, 5.7 and 5.8.

The classical newsvendor using both �nancial instruments achieves considerable variance

reductions: 68.7% when � = 0; 68.1% when � = 200 and 64.5% when � = 400: For the

MV newsvendor the increases in the MV values are: 100% when � = 0; 105% when

� = 200; 107% when � = 400: Again, we observe that for the classical model, the

reductions in variance terms decreases as � increases.

Then, for the same example, we vary the standard deviations of yield and demand

errors, � and ��; together. Tables 5.9 and 5.10 report the results of this experiment. We
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� y(�) Mean Variance MV Portfolio(�)

S5 0:002 4796 2409:32 130766:35 2147:78 �

0:010 4225 2374:08 122123:91 1152:84 �

0:015 4094 2365:34 121409:15 544:20 �

S6 0:002 5046 2421:10 41524:70 2338:05 �3:1785
0:010 4493 2390:76 34399:51 2046:77 �3:046
0:015 4357 2382:11 33683:70 1876:86 �3:0315

S7 0:002 5002 2418:66 41219:73 2336:22 �3:1719
0:010 4477 2389:35 34341:32 2045:94 �3:0447
0:015 4345 2380:93 33648:57 1876:20 �3:0308

S8 0:002 5092 2424:16 41754:74 2340:65 �10:1498; 7:0222
0:010 4493 2392:61 34310:28 2049:51 �16:8198; 13:7806
0:015 4350 2384:16 33606:50 1880:06 �21:6067; 18:5793

Table 5.5: The means and variances of the cash �ows, MV values and the optimal portfolios
for di¤erent degrees of risk-aversion when the standard deviation of demand error is 600

conclude that for the classical model using both instruments when the standard deviations

are smaller, (� = �� = 200) the variance reduction is 89.6%, when we increase the standard

deviation, (� = �� = 400) we again obtain variance reductions but less than before, 74%.

For the MV newsvendor, MV value can be improved by 82.5% and 89.6%, respectively. As

for the optimal portfolio structure, the same remarks of the previous subsection are valid.

5.2.3 MV Model with Random Capacity

In this subsection, we again apply the same base example, in addition, we assume the

following relationship between the strike price and the capacity, K = k ST + � where k = 9

and � has a normal distribution with mean zero and standard deviation ��. We �x � to

0:01: Firstly, we consider the case that there is ample demand in the market with respect to

the capacity. (i.e., PfD > Kg = 1) and there exists perfect correlation between the demand
and the stock also the capacity and stock (�� = �� = 0). From Table 5.11, it can be seen

that a portfolio consisting of the future is extremely e¤ective and removes all the variance.
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� = 0 y(�) Mean Variance MV Portfolio(�)

S1 9358 2473:81 184519:25 � �

S2 9357 2473:51 57652:53 � �3:6167
S3 9370 2473:45 175667:82 � �11:9629
S4 9357 2473:54 57579 � �3:6443; 1:0804

S5 7331 2409:53 136736:08 1042:16 �

S6 7924 2434:52 34360:08 2090:92 �3:3120
S7 5442 2332:02 33935:90 1992:66 �3:3222
S8 7925 2434:59 3434:88 2091:10 �3:3473; 0:1634

Table 5.6: The means and variances of the cash �ows, MV values and the optimal portfolios
when the standard deviation of demand error is 600 and yield error is 0

Next, we consider imperfect correlations with the market and take �� = �� = 600: The

results are depicted in Table 5.12. Hedging enables 66.7% reduction in the variance for the

classical newsvendor and 77.8% increase in the MV value for the risk-averse newsvendor. We

observe that when the correlations between the demand and the market, and the capacity

and the market weaken the variance reduction is less but still considerable.

5.2.4 MV Model with Random Yield and Capacity

Lastly, we analyze the combination of random yield and capacity models. The same base

scenario and the identical portfolio options are taken as before. We �x the standard devi-

ations as �� = 600; � = 400 and �� = 600 and � = 0:01: Then, we calculate the optimal

order quantities and optimal portfolios for each scenario. The resulting means, variances

and MV values are summarized in Table 5.13. Again, we conclude that the e¤ect of �nan-

cial hedging is signi�cant. For example, for the classical newsvendor 72,9% reduction in the

variance of the cash �ow and 108% increase in the MV objective is achieved. For the optimal

portfolio structure, interestingly, the risk-neutral newsvendor using both instruments sells

both the future and call option. Other than that for the optimal portfolio the same remarks

of the previous subsection are valid.
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� = 200 y(�) Mean Variance MV Portfolio(�)

S1 8534 2421:38 190072:73 � �

S2 8534 2421:08 60676:46 � �3:6536
S3 8534 2420:33 162224:14 � �8:89
S4 8535 2421:17 60503:69 � �3:7373; 0:8777

S5 6046 2345:15 136633:23 978:82 �

S6 6850 2378:39 36992:50 2008:46 �3:2902
S7 5518 2321:63 35604:23 1965:59 �3:3066
S8 6859 2378:77 36995:36 2008:82 �3:4080; 0:1979

Table 5.7: The means and variances of the cash �ows, MV values and the optimal portfolios
when the standard deviation of demand error is 600 and yield error is 200

� = 400 y(�) Mean Variance MV Portfolio(�)

S1 7635 2356:65 201542:92 � �

S2 7634 2356:35 71829:76 � �3:6572
S3 7635 2355:60 138718:91 � �6:2641
S4 7635 2355:60 71420:40 � �3:8882; 0:7718

S5 1758 2151:68 125712:11 894:55 �

S6 4928 2277:68 41894:44 1858:74 �3:2221
S7 4737 2269:67 41206:62 1857:60 �3:2188
S8 4942 2278:35 41944:76 1858:90 �4:0119; 0:7931

Table 5.8: The expected values of the means and variances of the cash �ows, MV values
and the optimal portfolios when the standard deviation of demand error is 600 and yield
error is 400
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� = �� Scenario y(�) Mean Variance MV Portfolio(�)

200 S1 8776 2437:59 143961:61 � �

S2 8775 2437:29 15037:13 � �3:6463
S3 8782 2436:69 123472:26 � �9:7065
S4 8776 2437:37 14880:48 � �3:7108; 0:97

S5 6809 2378:56 109860:26 1279:96 �

S6 7871 2420:13 8414:12 2335:99 �3:3717
S7 5541 2322:78 6695:38 2255:83 �3:3112
S8 7884 2420:60 8403:88 2336:56 �3:4417; 0:2992

Table 5.9: The means and variances of the cash �ows, MV values and the optimal portfolios
when the standard deviations of demand error and yield error vary together

� = �� Scenario y(�) Mean Variance MV Portfolio(�)

400 S1 7746 2363:68 175525:54 � �

S2 7745 2363:38 45920:84 � �3:6558
S3 7740 2362:59 117400:16 � �6:5040
S4 7746 2363:49 45502:87 � �3:8692; 0:8043

S5 1759 2151:77 107587:25 1075:89 �

S6 5126 2285:67 24551:80 2040:15 �3:2289
S7 4796 2272:10 23344:38 2038:66 �3:2215
S8 5115 2285:29 24504:13 2040:25 �3:6892; 0:4655

Table 5.10: The means and variances of the cash �ows, MV values and the optimal portfolios
when the standard deviations of demand error and yield error vary together
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�� = �� Scenario y(�) Mean Variance MV Portfolio(�)

0 S1 11481 2514:17 127241:73 � �

S2 11481 2513:87 0 � �3:6230
S3 11006 2514:19 126406:07 � �19:5297
S4 11006 2514:19 0 � �3:6231; 0:0721

S5 5127 2434:74 89508:94 1539:65 �

S6 11481 2513:87 0 2513:87 �3:6230
S7 5445 2458:91 1740:30 2441:51 �3:1903
S8 11481 2513:87 0 2513:87 �3:6231; 0

Table 5.11: The means and variances of the cash �ows, MV values and the optimal portfolios
when demand is ample (D>K) and capacity is perfectly correlated with the stock

�� = �� Scenario y(�) Mean Variance MV Portfolio(�)

600 S1 6763 2459:45 196364:74 � �

S2 6763 2459:14 65799:67 � �3:67
S3 6751 2458:57 92421:42 � �4:6963
S4 6751 2458:57 65330:44 � �4:0452; 0:5955

S5 4235 2373:52 122076:93 1152:75 �

S6 4651 2398:97 35002:39 2048:94 �3:0655
S7 4651 2398:96 35001:73 2048:95 �3:0737
S8 4675 2400:39 35071:04 2050:52 �6:1532; 3:0841

Table 5.12: The means and variances of the cash �ows, MV values and the optimal portfolios
when the standard deviations of demand error and capacity error are 600
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Scenario y(�) Mean Variance MV Portfolio(�)

S1 11986 2334:22 177934:12 � �

S2 11986 2334:17 48078:53 � �3:6490
S3 11562 2334:25 177684:12 � �27:6521
S4 10796 2334:18 48076:41 � �3:6478;�0:9086

S5 1653 2148:33 125658:85 891:74 �

S6 5171 2285:74 42676:47 1858:97 �3:2657
S7 4710 2268:64 41116:54 1857:47 �3:23
S8 5192 2286:54 42739:68 1859:15 �3:8325; 0:5727

Table 5.13: The means and variances of the cash �ows, MV values and the optimal portfolios
when the standard deviations of demand error is 600, capacity error is 600 and yield error
is 400
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Chapter 6

CONCLUSIONS

This thesis focuses on the single-period, single-item inventory problem when the decision-

maker (newsvendor) is risk-averse. We use the MV framework to model risk-aversion. In

our models, we deal with the risks or uncertainties that result from both random demand

and random supply. Our thesis consists of two parts. In the �rst part, we deal with the

newsvendor models with random supply when the aim is to maximize the MV objective. In

the second part, we study the same model when the randomness in demand and supply is

correlated with the �nancial markets.

In the �rst part, we consider the MV newsvendor problem considering random demand

as well as random supply based on random yield and random capacity. In all cases, we

�nd the optimal order quantity for each risk-aversion level. Therefore, our results present

tailor-�t solutions to every newsvendor with di¤erent risk-attitudes. However, the char-

acterizations require certain properties and assumptions on the structure of the objective

function. For the random demand case, the objective function is quasi-concave, so we �nd

explicit characterizations for the optimal order quantity. For other cases, the existence of

the solution require certain assumptions. For random yield case, we need the variance func-

tion to be nondecreasing and convex on the non-dominated region. For random capacity,

and random yield and capacity the assumption on the variance function is the same. Addi-

tionally for these cases, we establish the quasi-concavity of the mean function with certain

assumptions. Then, we can state the quasi-concavity of the MV objective function. For all,

we discuss the e¤ect of risk-aversion on the optimal order quantity.

In the second part, we further suppose that the randomness in demand and supply is

correlated with the �nancial markets. The newsvendor hedges demand and supply risks

investing in a portfolio composed of various �nancial instruments to mitigate inventory

risks. In this problem, not only the optimal order quantity but also the optimal �nancial

portfolio is decided in only one step. We analyze two types of portfolios: one consisting

of a single asset and another one with multiple assets, for random demand and supply

cases. For all cases, we establish quasi-concavity of the objective function and then we �nd
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explicit characterizations for the optimal order quantities and optimal portfolios. However,

the existence of the optimal order quantities in these cases require certain assumptions.

In the numerical part, we provide some illustrative examples. The e¤ects of risk-aversion

on the optimal order quantities are examined. Moreover, we also analyze the e¤ect of MV

approach and the �nancial hedging on the variance function. We show that the optimal

order quantity to the MV problem is less than the optimal order quantity of the classical

newsvendor problem. Furthermore, the more risk-averse the newsvendor is, the smaller his

order. We also observe that the optimal order quantity depends on both the demand and

supply uncertainties. We further conclude that the �nancial hedging reduces the variance

of the problem signi�cantly and increases MV value.

This research can be extended in several directions. Firstly, it is theoretically possible

to extend the MV hedging model using a vector of �nancial securities. For example, the

demand can be correlated with one derivative security and the capacity can be correlated

with another derivative security etc.. Secondly, although we consider the newsvendor�s cash

�ow, the MV approach we studied in this thesis is applicable for any problem where the

mean function is concave and the variance function is increasing. Other possible extensions

are multi-period, in�nite-period, continous time inventory models or multi-product models

adopting MV strategy. In addition, Bayesian models, random environment models and

hidden Markov models are other suitable areas for extensions.
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