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ABSTRACT

Plasmonics is a research field on the physics and applications of the interaction of
light with surface-plasmons on mostly- metal surfaces. From a naive point of view,
there is electronics on one side, which can perform well on nano-scale structures but
the data process and transfer is very slow compared to optical frequencies. On the
other side, optical data transfer is ultrafast e.g. in fibers but their size is down-
limited by the wavelength of light which is usually much larger than the nanoscale.
Thus, plasmonics establishes a link between electronics and photonics by coupling
light and surface plasmons at very small scales, at optical frequencies. This has the
potential to develop surface-plasmon-integrated optoelectronic devices at nanoscales.
In this respect, the excitation and control of surface-plasmons via coupling to con-
trollable optical sources is highly desirable. In this thesis work, we investigate the
dynamical properties of the interaction between an optical soliton in a nonlinear di-
electric waveguide and co-propagating surface-plasmons along a metal surface. Due
to the nonlinear nature of the optical soliton, the coupling parameter depends on
the soliton amplitude, and thus become an inherently dynamical parameter rather
than being a coupling constant. We first revisit the dynamics of the parallel system
which is formulated as a Josephson junction by introducing fractional population im-
balance and the relative phase variables. Then, we consider the interaction when
the soliton is propagating on a parabolic trajectory with respect to the flat metal
surface. Nearly full population conversion from optical soliton to surface plasmon
is achievable under certain parameter values. We next investigate the dynamics in a
metal/dielectric/Kerr/dielectric/metal multilayer system, in which the optical soliton
is essentially coupled to two surface plasmons on either side across dielectric spacers.

We found that for certain (asymmetric) spacing parameters the spatial profile of the

viii



soliton is almost constant along the propagation. In a different multilayer configu-
ration, we take the metal surfaces to form a parallel channel but with a parabolic
opening with respect to the soliton axis. In this case, depending on the model param-
eters the oscillations in the spatial profile of the soliton may be induced or suppressed

as it enters through the parabolic channel.
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OZETCE

Plazmonik, fizikte 1gsun ¢ogunlukla metal ytizeylerde yilizey plazmonlariyla etk-
ilesim uygulamalarini igeren bir aragtirma dalidir. Genel bir bakig agisiyla bakarsak,
bir tarafta nano-ol¢eklerde iyi sonuclar veren fakat veri akigi ve iletiminin optik
frekanslara kiyasla cok yavasg oldugu elektronik, diger tarafta ise optik veri ileti-
minin ¢ok hizli oldugu fakat boyutlarinin nano-6lgekten daha biiyiik olan 1g1g81n dalga
boyu ile smirlandigi fotonik bulunmaktadir. Plazmonik ise 15181 ve yiizey plazmon-
larin1 optik frekanslar gibi ¢ok kiiciik oOlgeklerde ciftlestirerek elektronik ve fotonik
arasinda bir bag kurar. Bu da ylizey plazmonlariyla donanimli nano-olgekli op-
tik cihazlar gelistirilmesine olanak saglar. Bu agidan bakildiginda yiizey plazmon-
larinin kontrol edilebilir optik kaynaklarla ¢iftlestirilerek uyarilmasi ve kontrol edilmesi
amaclanmaktadir. Bu tez ¢caligmasinda nonlineer dielektrik dalga kilavuzunda yayilan
optik soliton ile metal yiizeylerde yayilan yiizey plazmonlarinin etkilesiminin dinamik
ozelliklerini inceliyoruz. Optik solitonun nonlineer dogasindan kaynaklanan nedenlerle
baglama parametresi soliton genligi ile degismektedir ve bunun bir sonucu olarak
sabit bir etkilesim degerinden cok dinamik bir parametredir. Oncelikle fraksiyonel
poptilasyon oransizligi ve bagil faz terimlerini kullanarak paralel sistemin dinamigini
Josephson eklemi olarak inceledik. Daha sonra da diiz metal bir yiizeye gore parabo-
lik bir yoriingede yayilan solitonun etkilesimini goz oniine aldik. Bazi parametre
degerlerinde optik solitondan yiizey plazmonuna neredeyse tam bir popiilasyon trans-
feri gercgeklestirdik. Daha sonra optik solitonun dielektrigin iki tarafindaki metal
yiizeylerde yayilan yiizey plazmonlariyla etkilegtigi metal /dielektrik /Kerr /dielektrik /metal
¢ok katmanl sistemin dinamigini inceledik. Bazi uzaklik parametresi degerlerinde soli-
tonun uzaysal profilinin yayilim sirasinda neredeyse sabit olduunu bulduk. Farkli bir

yapilandirmada da metal yiizeyleri ile soliton ekseni arasindaki uzakligi parabolik bir



tiinel olarak olusturduk ve bu durumda parametre degerlerine gore solitonun uzaysal

profilinin tiinele girdikten sonra azaltilip arttirilabildigini gosterdik.

xi
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Chapter 1

INTRODUCTION

Surface plasmons are of interest to a wide spectrum of scientists, ranging from
physicists,chemists and materials scientists to biologists.Renewed interest in surface
plasmons comes from recent advances that allow metals to be structured and char-
acterized on the nanometre scale. This has enabled us to control surface plasmon
properties to reveal new aspects of their underlying science and some specific applica-
tions. For instance, surface plasmons are being explored for their potential in optics,
magneto-optic data storage, microscopy and solar cells, as well as being used to con-
struct sensors for detecting biologically interesting molecules. For researchers in the
field of optics, one of the most attractive aspects of surface plasmons is the way in
which they help us to concentrate and channel light using subwavelength structures.
This could lead to miniaturized photonic circuits with length scales much smaller
than those currently achieved. Such a circuit would first convert light into surface
plasmons, which would then propagate and be processed by logic elements, before
being converted back into light. Concentrating light in this way leads to an electric
field enhancement that can be used to manipulate lightmatter interactions and boost
non-linear phenomena. The enhanced field associated with surface plasmons makes
them suitable for use as sensors, and commercial systems have already been developed
for sensing biomolecules. The interaction between the surface charges and the electro-
magnetic field that constitutes the surface plasmons has two consequences. First, the

interaction between the surface charge density and the electromagnetic field results in
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the momentum of the surface plasmon mode, hkgp, being greater than that of a free-
space photon of the same frequency, hko. (kg = w/c) is the free-space wavevector.)
The second consequence of the interaction between the surface charges and the elec-
tromagnetic field is that the field perpendicular to the surface decays exponentially
with distance from the surface. The field in this perpendicular direction is said to be
evanescent or near field in nature and is a consequence of the bound, non-radiative
nature of surface plasmons [3], [2].

An optical soliton is a pulse that travels without distortion due to dispersion or
other effects. They are a nonlinear phenomenon caused by self-phase modulation,
which means that the electric field of the wave changes the index of refraction seen by
the wave (Kerr effect). Self-phase modulation causes a red shift at the leading edge of
the pulse. Solitons occur when this shift is canceled due to the blue shift at the leading
edge of a pulse in a region of anomalous dispersion, resulting in a pulse that maintains
its shape while propagating. Solitons are therefore an important development in the
field of optical communications [1]. The word ’soliton’ refers to highly stable localized
solutions of certain nonlinear partial differential equations. The soliton concept has
deeply penetrated into almost all branches of science wherever nonlinear partial differ-
ential equations are being used. This concept was first discovered in hydrodynamics
in the 19th century [3]. Solitons have been extensively studied in many branches of
physics such as optics, plasmas, condensed matter physics, fluid mechanics, particle
physics and even astrophysics. Interestingly, over the past two decades, the field of
solitons has been substantially advanced and enriched by research and discoveries in
nonlinear optics. While optical solitons have been strongly investigated in both spa-
tial and temporal domains, it can be said that much soliton research has been made on
optical spatial solitons. This is partly due to the fact that although temporal solitons
are fundamentally one-dimensional entities, the high dimensionality of their spatial

counterparts has opened new scientific possibilities in soliton research. Another rea-
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son is related to the nonlinearity. Unlike temporal optical solitons, spatial solitons
employ a variety of noninstantaneous nonlinearities, ranging from the nonlinearities
in photorefractive materials and liquid crystals to the nonlinearities mediated by the
thermal effect, thermophoresis and the gradient force in colloidal suspensions. Such a
diversity of nonlinear effects has given rise to numerous soliton phenomena, because
for decades scientists were thinking that solitons must strictly be the exact solutions
of the cubic nonlinear Schrodinger equation as established for ideal Kerr nonlinear
media [4].

In this thesis work, we investigate the dynamical properties of the interaction
between an optical soliton in a nonlinear dielectric waveguide and co-propagating
surface-plasmons along a metal surface.Due to the nonlinear nature of the optical
soliton, the coupling parameter depends on the soliton amplitude, and thus become
an inherently dynamical parameter rather than being a coupling constant. We first
revisit the dynamics of the parallel system which is formulated as a Josephson junc-
tion by introducing fractional population imbalance and the relative phase variables.
Then, we consider the interaction when the soliton is propagating on a parabolic tra-
jectory with respect to the flat metal surface. Nearly full population conversion from
optical soliton to surface plasmon is achievable under certain parameter values. We
next investigate the dynamics in a metal/dielectric/Kerr/dielectric/metal multilayer
system, in which the optical soliton is essentially coupled to two surface plasmons on
either side across dielectric spacers. We found that for certain (asymmetric) spacing
parameters the spatial profile of the soliton is almost constant along the propagation.
In a different multilayer configuration, we take the metal surfaces to form a parallel
channel but with a parabolic opening with respect to the soliton axis. In this case,
depending on the model parameters the oscillations in the spatial profile of the soliton

may be induced or suppressed as it enters through the parabolic channel.
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Chapter 2

SURFACE PLASMON-SOLITON INTERACTION IN A
METAL DIELECTRIC INTERFACE

2.1 Surface Plasmons: Brief Theoretical Background

2.1.1 Dispersion Relation

Surface plasmon polaritons are electromagnetic excitations propagating at the inter-
face between a dielectric and a conductor, evanescently confined in the perpendicular
direction. This strong confinement enables applications as surface plasmon resonance
sensors or highly miniaturized photonic circuitry which represent a great interest for
telecommunication, computing, and information processing. To study the plasmon
propagation in nonlinear media, one should analyze nonlinear Maxwell’s equations
for the transverse magnetic waves in the presence of a metal-dielectric interface. The
electromagnetic surface waves arise via the coupling of the electromagnetic fields to
oscillations of the conductor’s electron plasma. The wave equation should be taken as
a starting point to describe the fundamentals of surface plasmon polaritons both at
single, flat interfaces and in metal-dielectric multilayer structures.In the following, we
proceed through the derivation of the dispersion relation of surface-plasmons starting

from Maxwell’s equations. This derivation can be found in many text books [5], [6].

VD = peu (2.1)

V-B=0 (2.2)
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OB
g _9% 2.
V x T (2.3)
oD
B = = 2.4
V x Towt + o (2.4)

Maxwell’s equations have to be applied to the flat interface between a conductor and
a dielectric. The curl equations of Eq.(1) can be combined, and the result is

02D

E=—ig— 2.
V x V x Ho 50 (2.5)

Using identities VX VX E=V(V-E)=V?E and V- (eE) = E-Ve+€eV - E Eq.(2)
can be rewritten as
1 0’F

V(_EE -Ve) — V’E = ~ €0t > (2.6)

The first term of the left-hand side can be neglected due to the variation of the
dielectric profile € = €(r) over distances on the order of one optical wavelength and
the result is the wave equation itself:

e O°FE

2

This equation has to be solved separately in regions and the results have to be matched
using boundary conditions. Starting with an electric field with a harmonic time

dependence E(r,t) = E(r)e”™!, the wave equation becomes the Helmholtz equation
V2E + kieE =0 (2.8)

To solve this equation a proper propagation geometry has to be defined.For the ge-
ometry in Fig.2.1 the electric field is E(z,y,2) = E(2)e®® and € = €(z2).
The complex parameter 3 = k, is called the propagation constant of the traveling

waves and corresponds the component of the wave vector in the direction of propa-
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i z
TS = et _“‘[/.;-!c.'ifectlon of propagation]

¥

Figure 2.1: Definition of a planar waveguide geometry. The waves propagate along the
x-direction in a cartesian coordinate system. [5]

gation. Using this equation one can obtain the desired form of the wave equation:

0*E(z)

a2 T (ke — BE = 0. (2.9)

This is the starting point for the general analysis of guided electomagnetic modes in

waveguides and this equation can be expanded using curl equations. For harmonic

time dependence (% = —iw), for propagation along the x-direction (% =) and for

the homogenity in the y-direction (8% = 0) these identities is used.

For TM modes, the system reduces to

1 OH,
E, = —i Y 2.10
Zweoe 0z ( )

5
E,=- H 2.11
oeoc v (2.11)
and the wave equation for TM modes is
O0’H

Y + (kge — B*)H, =0 (2.12)

022
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For TE modes, the system reduces to

1 OF
Hy=—-i——* 2.13
Zw,uo 0z (2.13)
H. = —ﬁEy (2.14)
Who

and the wave equation for TE modes is

0°E,

52t (ke — B*)E, =0 (2.15)

This is the most simple geometry sustaining surface plasmon polaritons. z > 0
region has a positive real dielectric constant e; and z < 0 region has a dielectric
function € (w). The metallic character of the lower region requires Re[e;] < 0, and
this condition is fulfilled at frequencies below the bulk plasmon frequency w, where

2 _ ne?

Wy = o Here n is the number of electrons, e is the charge and m is the mass of a

single electron.
The propagating TM wave solutions confined the this interface can be found by

using the set of equations for both regions seperately. For z > 0 region

H,(2) = AgePre >z (2.16)
. 1 iBx —k
E.(z) =1iA, A (2.17)
WEp€2
_ 6 iBxr —koz
E, = —-A——e%e (2.18)
WEp€2
and for z < 0 region
H,(2) = AjePmehr? (2.19)
. 1 i8x ki1z
E.(z) = —iA; kie'PreM (2.20)

WEp€r
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E, = —Alie’ﬂxeklz (2.21)
WEpEq

k; = k. ;(i = 1,2) is the wave vector component for two regions, and its reciprocal
value, Z = 1/|k.|, defines the evanescent decay length of the feilds perpendicular to

the interface.Continuity of H, and ¢; £, at the interface requires that A; = A, and

R2__ @ (2.22)

The surface waves exist only at interfaces between materials with opposite signs
of the real part of their dielectric permittivities. Regarding this expression, H, has

to fulfill the wave equation, and this yields

k2 = B — kie (2.23)
ks = 32 — kiey (2.24)

Combining these equations the dispersion relation of surface plasmon polaritons

propagating at the interface between the two half spaces can be obtained

€1€2
=k . 2.25
&) 0”614—62 (2.25)

The TE wave solutions should also be discussed. Using Eq.(13), Eq.(14) and

Eq.(15) the following can be obtain for z > 0 region

E,(z) = AyePre s (2.26)
. 1 iBx —koz
H,(2) = —iAy—Fkqe"e " (2.27)
Wo
o ﬁ iBx  —koz
H, =A,——e"e (2.28)
WHo

and for z < 0 region
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E,(z) = Ajefreh (2.29)
. 1 i8x k1z
H,(z) = 1Aj—kee™ (2.30)
Who
o ﬁ iBx kiz
E,=A—=¢"" (2.31)
WHo

Continuity of E, and H, at the interface requires that A;(k; + k2) = 0. Since
Re[ki] > 0 and Re[ks] > 0, this condition is only fulfilled if A; = 0, so that A; =
Ay = 0, so for TE polarization surface modes cannot exist. In other words, surface

plasmon polaritons only exist for TM polarization.

—

(=8
g 0.8 . :
~spalr -
- == BA =
£ 06 . o
g — e
o sp,silica-
o / rr X
E []4 /""f fE
L
02
o
0 1

Wave vector Bc/wp,

Figure 2.2: Dispersion relation 8 = kg, /Eilﬁz Eq.(2.25) of surface plasmon polaritons at

the interface between a Drude metal with negligible collision frequency and air(gray curves)
and silica(black curves) [5].

Fig.2.2 show the plot of the dispersion relation for a metal with negligible damping
described by the dielectric function €;(w) = 1 — :—’z’ for an air (e = 1) and a fused
silica (€2 = 2.25) interface.The frequency w is normalized to the plasma frequency wy,

and both the real and imaginary part of the wave vector 8 are shown. The surface
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plasmon polariton excitations correspond to the part of the dispersion curves lying to
the right of the respective light lines of air and silica.

In the regime of large wave vectors, the frequency of the surface plasmon polari-
tons approaches the characteristic surface plasmon frequency, and can be found by

2
“p
w?+iyw

inserting € (w) =1 — into the dispersion relation

(2.32)

In the limit of negligible damping (Im[e;] = 0), the wave vector § goes to infinity
as the frequency approaches wg,. This mode is called the surface plasmon, which is

indeed the limiting form of a surface plasmon polariton as § — oo.

2.2 Optical Solitons: Brief Theoretical Background

2.2.1 Spatial Solitons

Spatial solitons are optical beams that propagate in a nonlinear medium without
diffraction, their beam diameter remains invariant during propagation. This invari-
ancy is one of the most important features of nonlinear optics, because the best-
known characteristic of wave propagation is that beams which are finite in space
tend to broaden due to diffraction effects. Breaking this paradigm requires a strong
nonlinear interaction between the wave and the medium through which the beam
is propagating. When this requirement is fulfilled, a self-trapped beam or a spatial
soliton can form. A spatial soliton represents an exact balance between diffraction
and nonlinearity induced self-focusing effects as shown in the Fig.2.3 [7].

In order to understand how spatial soliton can exist, some considerations about
a simple convex lens should be made. As shown in the Fig.2.4, an optical field

approaches the lens and then it is focused [9], [11].
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(a) Self-Focusing i
(b) Diffraction
(c) Self~Trapped Soliton

Figure 2.3: Schematic showing the spatial beam profiles (solid line) and phase fronts (dashed
line) for (a) beam self-focusing, (b) normal beam diffraction, and (c) soliton propagation
[7].

The effect of the lens is to introduce a non-uniform phase change that causes

focusing. This phase change is a function of the space and can be represented with

o(z) = konL(x) (2.33)

where L(x) is the width of the lens, changing in each point with a shape that is the
same of ¢(x) because ky and n are constants. In other words, in order to get a focusing
effect a phase change of such a shape have to be introduced, but the witdh does not
change [10]. If the width L is fixed in each point, but the value of the refractive
index n(z) exactly the same effect with a completely different approach will occur.
The change in the refractive index introduces a focusing effect that can balance the
natural diffraction of the field. If the two effects balance each other perfectly, then a
confined field propagating within the fiber occurs. That’s the way graded-index fibers
work, and spatial solitons are based on the same principle: the Kerr effect introduces

a self-phase modulation that changes the refractive index according to the intensity
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D)

xY

Figure 2.4: The focusing effect of a simple convex lens. The lens introduce a non-uniform
phase change ¢ that causes focusing [12].

[10]:
() = kon(x)L = koL[n + nol(z)] (2.34)

The field creates a fiber-like guiding structure while propagating. If the field creates
a fiber and it is the mode of such a fiber at the same time, it means that the fo-
cusing nonlinear and diffractive linear effect are perfectly balanced and the field will
propagate forever without changing its shape. In order to have a self-focusing effect,
ny must be positive, otherwise nonlinear behavior will not be noticed. The optical
waveguide the soliton creates while propagating is not only a mathematical model,
but it actually exist and can be used to guide other waves at different frequencies.
This way it is possible to let light interact with light at different frequencies as it is
impossible in linear media.

An electric field is propagating in a medium showing optical Kerr effect, so the
refractive index is given by

n(I) =n+nyl (2.35)

where [ = % and 7 = no/n and 1y = \/po/€o ~ 377X2. The field is propagating in

the z direction with a phase constant kgn. Since the field is infinite in y direction, we



Chapter 2: Surface Plasmon-Soliton Interaction in a Metal Dielectric Interface 13

will ignore any dependece on y axis, and the field can be expressed as

E(z,2,t) = Ana(z, z)elkonz=wb (2.36)

where A,, is the maximum amplitude of the field and a(x,z) is a dimensionless nor-
malized function that represents the shape of the electric field among x axis [8]. Now
we have to solve the Helmholtz equation V2E + k2n*(I)E = 0 , and we assume that

a(x, z) changes slowly while propagating,i.e.

Da(x, z) da(z, z)
and the following equation is obtained:
Pa da
92 + sz:On& + kin*(I) —n*la =0 (2.38)

After introducing an approximation that is valid because the nonlinear effects are

always much smaller than linear ones:

[n*(1) — n? = [n(I) — n][n(I) +n] = nol(2n + nyl) =~ 2nnyl (2.39)

then we express the intensity in terms of the electric field:

Ap|*la(z, 2)[? |Am[*|a(z, 2)|?
n*(I) — n® ~ 2nn [Ar ’ = n’ny—=- ’ 2.40
[n2(1) — ) 2y = e (2.40)
the equation becomes:
10%a  Oa
——— +i— 4+ N?a%a = 2.41
2 082 + ¢ + laa =0 ( )

We will now assume ny > 0 so that the nonlinear effect will cause self-focusing. In

order to make this evident, we will write in the equation ny = |ns|. Let us now define
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some parameters and replace them in the Eq.(2.41):

& = Xio, so we can express the dependence on the x axis with a dimensionless
parameter; X is a length.

Lg = XZkon, after the electric field has propagated across z for this length, the
linear effects of diffraction can not be neglected anymore.

(= Lid, for studying the z-dependence with a dimensionless variable.

L, = Wm,aﬁer the electric field has propagated across z for this length,
the nonlinear effects can not be neglected anymore. This parameter depends upon
the intensity of the electric field, that’s typical for nonlinear parameters.

N2 = LL—,‘Z

After the replacements, Eq.(2.41) becomes

—— +i— + N?al’a=0 (2.42)

This is the nonlinear Schrdinger equation.

For N < 1, then the nonlinear part can be neglected.

For N > 1, then the nonlinear effect will be more evident than diffraction, and
the field will tend to focus.

For N =~ 1, then the two effects balance each other and the equation can be solved.

For N = 1, the solution of the equation is the fundamental soliton [10]:

a(€,¢) = sech(€)e/? (2.43)

It still depends on z, but only in phase, so the shape of the field will not change during
propagation as shown in the Fig.2.5. For soliton solutions, N must be an integer and it
is said to be the order or the soliton. For higher values of N, there are no closed form

expressions, but the solitons exist and they are all periodic with different periods.
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Figure 2.5: The shape of the soliton while propagating with N=1 [12].

Their shape can easily be expressed only immediately after generation:

a(¢,( =0) = Nsech(§) (2.44)

2.2.2  Temporal Solitons

An actual picture of the contrast between soliton propagation and normal diffraction
for a beam in a photorefractive material is shown in the Fig.2.6. Such spatial solitons
belong to the same family of phenomena, the temporal soliton. A temporal soliton
forms when group velocity dispersion is totally counteracted by temporal self-focusing
or self-phase modulation effects [7].

All solitons require that a strong enough nonlinear interaction takes place be-
tween themselves and the material in which they propagate. This intereaction typ-
ically requires that the so-called diffraction length for the spatial case or the dis-
persion length for the temporal case is comparable to a nonlinear length that char-
acterizes self-focusing in the medium. What sets spatial solitons apart from their
temporal counterparts is their dimensionality. Temporal solitons are described by

a (1+1)-dimensional space-time evolution equation, whereas spatial solitons are by
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Soliton

Dhffracting
Beam

Figure 2.6: Top view photograph of a 10-um-wide spatial soliton propagating in a strontium
barium niobate photorefractive crystal (top), and for comparison, the same beam diffracting

when the nonlinearity is turned off (bottom) [7]

nature (2+1)-dimensional beams. This difference in the dimensions causes interesting
processes in spatial case such as full three-dimensional interaction between solitons,
soliton spiraling, vortex solitons, angular momentum effects, rotating dipole vector
solitons, etc.
An electric field is propagating in a medium showing optical Kerr effect through
a guiding structure such as an optical fiber that limits the power on the xy plane. If

the field is propagating towards z with a phase constant [y, then it can be expressed

in the following form:

E(r,t) = Apal(t, 2) f (z, y)e!Poz—wot) (2.45)

where A, is the maximum amplitude of the field, a(t,z) is the envelope that shapes
the impulse in the time domain, f(x,y) represents the shape of the field on the xy

plane which does not change during propagation [10]. Since in the medium there

is a dispersion we can not neglect, the relationship between the electric field and its
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polarization is given by a convolution integral

Blr,w — w) = / E(r, t)e-i==0) gy (2.46)

[e.9]

The complete expression of the field in the frequency domain is

E(r,w — wy) = Apa(w — wo, 2) f(z,y)e* (2.47)

Now Helmholtz equation can be solved in the frequency domain V2E +n?(w)k2E = 0,

and following is obtained
. @CNL 2 27~
2ifo- + [ (w) — Fla=0 (2.48)
Here the phase constant is expressed with the following notation:
n(w)ko = f(w) = Bo + Bi(w) + B = Po + IS (w) (2.49)

where f3 is the linear non dispersive component, f;(w) is the linear dispersive compo-
nent, and 3, is the nonlinear component. After introducing the same approximation

that has been made in spatial soliton case, the equation has its final form:
10? 0
S8 NYaPa=0 (2.50)
-
where 7 = T/Ty, ¢ = z/Lg, N* = L4/ L,;.The first order soliton is given by [8], [10]

a(t,¢) = sech(t)e/? (2.51)

In the next section the interaction between surface plasmon and spatial soliton

will be achieved by a heuristic coupling mechanism.
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2.3 Surface Plasmon-Spatial Soliton Interaction

There are two ways for excitations of plasmons. The first is via the evanescent wave
generated at the total internal reflection, and the second is via a periodic structure
producing evanescent modes. Considering the first method,if there is a dielectric
waveguiding layer on the interface, propagating modes of the waveguide have evanes-
cent tails outside the waveguide which interact resonantly with plasmons at the metal
surface. In the Ref. [13] another way of resonant interaction of plasmons with elec-
tromagnetic waves is proposed. They introduce a nonlinear dielectric medium, which
admits spatial solitons which may propagate parallel to the metal-dielectric interface
and similar to the modes of the dielectric waveguide. As a result, effective linear and
nonlinear waveguides are coupled by the plasmon-soliton configuration, and an inter-
action between plasmon and soliton may be possible at certain resonant parameters

[14].

2.3.1 Model Description

To create a system that consists of optical soliton and surface-plasmon propagating
along the metal-dielectric interface, we adopt the following model in Ref. [13]:

The system shown in Fig.2.7 is formed by two interfaces: a metal/linear-dielectric
interface and a linear-dielectric/nonlinear-dielecric interface. The distance from the
surface plasmon propagation axis to the soliton center axis is d. The metal possesses a
negative dielectric constant €; whereas the dielectric constant of the dielectric medium
is €5 and it has the same value for the linear and nonlinear media. It is assumed that
the nonlinearity is self-focusing. The interaction between a surface plasmon guided
wave at the metal/dielectric interface that propagates along the z direction and a
spatial soliton in the nonlinear medium propagating along the same direction will be

analyzed. The nonlinear behavior of the soliton is able to provide a propagation con-
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Surface plasmon 0 d Spatial soliton

Figure 2.7: Plasmon and soliton in a metal-dielectric-Kerr nonlinearity system

stant satisfying 8; > (w/c) /€ that grows with the soliton peak amplitude. On the
other hand, the surface plasmon is formed by two evanescent wave tails both in the
metal ( e} and in the dielectric ( e=*2I*). For this reason the plasmon propaga-
tion constant is given in the dielectric by 3, = \/#3 + (w/c)2e2, which automatically
fulfills the same condition as the soliton: 3, > (w/c),/€2. It is expected that under
appropriate conditions controlled by the soliton power, it is possible to achieve the
matching of the propagation constants of plasmon and soliton. This phase-matching
condition should give rise to a mechanism of nonlinear resonant transfer of energy
from soliton to plasmon.

In this model ¥, and ¥, are uncoupled plasmon and soliton fields propagating in

the direction z. The total wave function is represented via the ansatz

U(z,2) =V, (x,2) + Vy(z, 2) (2.52)
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where transverse profiles of plasmon and soliton are
Wy, 2) = 2y @) Ul 2) = ()0 () (2.53)

Here tp,(x) = e ™" with k, = \/k2 —k? and ¢y(z, |c,|) = sech|k,(x — d)] with
Ky = k\/’y_/2\03|. Here ¢, and ¢, are the plasmon and soliton amplitudes, £ is the
wavevector of light and k£, is the surface-plasmon wavevector. -« is the nonlinearity
parameter of the medium. We emphasize that the transverse profile of the soliton
depends on its amplitude |cs| which is the driving parameter.

Due to the spatial overlapping of the plasmon and soliton transverse profiles,
the plasmon and soliton fields couple and obey the linear and nonlinear oscillator

equations:

¢y + Bacy = allesl)es, (2.54)

cs + B2(esl)es = alles))ep (2.55)

2.3.2  The Nonlinear Coupling Function

The strategy to excite plasmon-polariton mode consists of the generation of evanescent
waves in the dielectric medium. Evanescent exponentially decaying tails behave very
much alike those corresponding to the plasmon-polariton mode close to the resonant
condition 8 ~ B,. This property allows significant coupling between the modes due
to the non-negligible overlap of their corresponding field amplitudes. [The physical
reason behind the possibility of the existence of interaction between a soliton and
a plasmon-polariton is the peculiarity of a soliton as a guided mode.] The soliton
propagation constant depends on the peak soliton amplitude.

In Eq.(2.54) and (Eq.2.55) the derivatives are with respect to the dimensionless
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coordinate kz, 8, = %’” >1, 6, = % 1 + v|cs|?/4 and ¢ is the coupling function:

q(|Cy]) = exp(—kdr/~/2|Cs)). (2.56)

The coupling function is the overlapping of the tails of the plasmon and soliton waves
in the area between metal and dielectric, and equal to the soliton field at the metal
surface. Here d is the distance between metal and the nonlinearity in the dielectric.
The initial motivation is to obtain an effective plasmon-soliton transition, and it
occurs only near the resonance 8, = 5. Eq.(2.54) and Eq.(2.55) can be simplified
by neglecting the second order derivatives and making the substitution ¢, s(kz) =

C,.s(kz)e™™. We obtain:

—iC = 1,C), — ‘J('?')CS (2.57)
—icy = -, e, (2.59)

where v, = 3, -1 < 1, v, =3, — 1 =7|C?/4 < 1.

2.3.8  Surface Plasmon-Spatial Soliton Coupling with Parabolic Distance

We modify this model such that the distance between metal and nonlinearity is a

parabolic function of z as shown in Fig.2.8, and the new coupling coefficient is

a(|Cy]) = exp(—kd(1 + a&?)v/7/2|C,)) (2.59)

where & = kz.

|Cs |Gy |2

, .
[CEFICE and 'relative phase

We introduce ’fractional population imbalance’ Z =
difference’ ¢ = ¢, — ¢, between the soliton and the surface plasmon where C, =

Agpe®sr  [15]. Using this substitution and the fact that |Cs|> + |C,|> = N (N is
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Surface plasmon O d Spatial soliton

Figure 2.8: Modified plasmon-soliton system. The distance between metal surface and the
Kerr nonlinearity is a parabolic function of z.

a normalized constant for isolated system and equal to 1) Eq.(2.57) and Eq.(2.58)
become
Z = —q(Z)V1 = Z2sin ¢, (2.60)

: q(Z2)Z cos ¢

= A(1+2) =+ T (2.61)

2.4 Numerical Analysis

2.4.1 Parallel System

In the model, [13] the distance between metal and the nonlinearity in the dielectric
is constant, so two layers are parallel to each other. In this case in which there are
no dissipative effects, a decrease in the total population |Cs|? + |Cp|? is not expected
and this quantity is conserved. However, there are mutual and continuous transitions
between surface plasmon and soliton, also the population imbalance 'Z’ is not constant

and undergoes mutual and continuous transitions as well as shown in the Fig.2.9
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10

Figure 2.9: Surface plasmon-soliton interaction in a parallel metal/dielectric system (above),
kd=1.8, a=0.

2.4.2  Parabolic System

This section is the heart of this research, because the goal of the research in [13] is to
obtain a full transition from soliton to surface plasmon amplitude. It has been tried
to obtain by adding a dissipation, Eq.(2.62), to the system, in which the total energy
decreases in time.

Vp,s - VP,S + io_p,s (2.62)

However, and both the soliton and surface plasmon amplitudes decrease as shown in
Fig.2.10 and Fig.2.11.

In this thesis, we implement this through the parabolic modification of the coupling
parameter as discussed in the previous section. In the system, the distance between
metal surface and the nonlinearity in the dielectric is a parabolic function of z, and
kd is the minimum distance between layers. The transition is observed to occur
in the neighbourhood of this minimum distance. Since the distance is increasing
parabolically, outside of this neighbourhood the coupling between soliton and surface

plasmon is negligble.
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Figure 2.11: Dynamics in plasmon-soliiton system with small dissipation. o, = 1072,0, = 0.

Fig.2.12, Fig.2.13, and Fig.2.14 show the output value of Z as a function of kd
and «. From these figures we try to determine feasible v and kd values which yield
maximum transition.

Here v, is taken 0.2, and 7 is taken 0.1. According to the results, the minimum
Z value is obtained when kd is 1.8. In the light of these values, Fig.2.15 show the

optimal « value, which is 0.84.
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kd

Figure 2.12: The minimum Zout value corresponds to 1.5 < kd < 2

For the optimal o and kd values we obtain nearly ideal transition from plasmon
amplitude to soliton amplitude. The population imbalance Z which is initially 1,
becomes -0,7669. Following figures show transitions for different o values.

These results show that nearly full transition from spatial soliton to surface plas-
mon can be achieved by a heuristic coupling mechanism. We’ve modified the model
in [13] such that the distance between the metal surface and the nonlinearity in the
dielectric is a parabolic function of z. However, in this modification a should be small,
i.e. a < 1, because the coupled oscillator equations, Eq.(2.54) and Eq.(2.55), which
are obtained from the Maxwell equations are for one dimensional case. Since our
modification makes the system two dimensional, we assume that « is small enough

to keep the system in one dimensional form.
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Figure 2.13: Contour plot of Zout values with respect to kd and «
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Figure 2.14: More detailed contour plot of Zout values with respect to kd and «
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Figure 2.17: o = 0.1,kd = 1.8,1, = 0.2
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Figure 2.18: The optimum « value 0.84, which enables nearly ideal transition between
soliton and surface-plasmon, kd = 1.8,v, = 0.2
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Chapter 3

SURFACE PLASMON-SOLITON INTERACTION IN
METAL-DIELECTRIC-METAL INTERFACE

3.1 Surface Plasmons in Multilayers: Brief Theoretical Background

In a multilayer system, each single interface can sustain bound surface plasmon po-
laritons. When the seperation between adjacent interfaces is comparable to the de-
cay length of the interface mode, interactions between surface plasmon polaritons
give rise to coupled modes. To illuminate the general properties of coupled surface
plasmon polaritons, two specific system in the Fig.3.1 should be analyzed: Insula-

tor/metal /insulator heterostructure, and metal /insulator /metal heterostructure [5], [6].

L

Figure 3.1: Geometry of a three-layer system consisting of a thin layer I sandwiched between
two infinite half spaces II and III.

The field components of TM modes for z > a region are

,(2) = Aehrehsz (3.1)

E.(z)=1A kae!PTehsz (3.2)

WeEpe€s
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Ez — ezﬁme—kgz
WEpE3

for z < —a region

H,(2) = Befreh?
. 1 iBx koz
E.(2) = _ZBwe - koee
0€2

E, = —B——¢frek>?
WEpEa

(3.4)

(3.5)

(3.6)

In the core region —a < z < a, the modes localized at the bottom and top interface

couple, yielding

Hy — Ceiﬁweklz + Deiﬂxe—klz
. 1 iBx ki1z . iBx ki1z
E,=—iC kie*e™* 4+ 14D ket e™
WeEp€Er WEp€q
E.=C b kiePrekz 4 D b kT ki
WEpEL Wep€q

The requirement of continuity of H, and E, at z = a leads to

Aehs® = CeM® 4 Dehe

A C D
_kgefkga — ——kle’““ + —klekla
€3 €1 €1

and at z = —a

Be ™% = Ce~*1a 4 Dekre
B C D
_k2e—k2a — __kle—kuz + _klekqa
€9 €1 €1

(3.10)

(3.12)
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This is a linear system of four coupled equations. H, further has to fulfill the wave
equation in the three distinct regions, via k? = 3% — k2e;(3.13)for i = 1,2, 3. Solving
this system of linear equations results in an implicit expression for the dispersion

relation limking 8 and w via

o—dkia _ ki/er + kofes ki fer + ks /e
kl/el — k2/€2 ]{71/61 — ]{33/63

(3.14)

In the special case of €5 = €3 and kg = k3, the dispersion relation can be split into

a pair of equations

ko€

tanhkia = —ﬁ (3.15)
kie

tanhkia = —ﬁ (3.16)

The dispersion relations can now be applied to dielectric/metal/dielectric and
metal /dielectric/metal structures to investigate the properties of the coupled surface

plasmon polariton modes in these two systems.

3.2 Surface Plasmon-Soliton Transition in Multilayer Systems

3.2.1 Parabolic System

A transition from surface-plasmon amplitude to soliton amplitude can be achieved in
multilayer systems such as metal/dielectric/metal interface. The distance from the
first metal to the nonlinearity in the dielectric is again a parabolic function of oy, and
the minimum distance between two layers is denoted as kd;. The distance from the
second metal to the nonlinearity in the dielectric is also a parabolic function of «y,
and the minimum distance between two layers is kds, as shown in Fig.3.2.

In this multilayer system, we have two different coupling functions since we have

two different surface plasmon-spatial soliton interactions.The corresponding coupling
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0 d: di+dz x
Surface plasmon _1 Spatial soliton Surface plasmon_2
Figure 3.2: Two  surface plasmons and a  spatial soliton in a
metal /dielectric/Kerr/dielectric/metal multilayer.
functions are as follows:
a(|Cs]) = e hdi(1+a€2)/7/2/C| (3.17)
B (Ca]) = e—Ha+a€)VATRCH (3.18)

where £ = kz. Our previous coupled oscillator equations, Eq.(2.54) and Eq.(2.55),
need modifications since we are working with three-layer system. The new equations

are

C;;l + B;Cm = Q1(‘csy)cs (319)
ng + ﬁ;Qsz = QQ(‘CSDCS (320)
¢ + B2 = qilles)ep, + aa(]esl)ep, (3.21)

Making the substitutions c¢,, = C,,e%, ¢,, = Cp,e®, and ¢, = Cye®® the equations

become
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-~ q Cs
—iC), = 1y, Cypy — 1(’2 |)CS (3.22)
—iC!, = 1,C,, — q2(|203|>cs (3.23)
—iC = v,Cy — —ql(fS')cpl . —QQ(fS')C,,Q (3.24)

and the following substitutions is made:

C,, = Ay e'm (3.25)
sz = Ap2ei¢p2 (3.26)
C, = Ase'? (3.27)

We used 'ode4b’ function in MATLAB to solve these differential equations. The
initial amplitude of first surface plasmon,A,, , is 0.99 and the soliton,A,, and the
second surface plasmon amplitudes,A4,,, are zero.ow has the same optimal value as in
Chapter 2,which is 0.84, and the optimal kd; and kd, values are 1.8 and 10.2 respec-
tively. The initial ¢, ,¢,,, and ¢4 values are taken zero. Under these circumstances
the first surface plasmon transfer most of its energy to soliton and a small part to
second surface plasmon as shown in the Fig.3.3.

Following figure, Fig.3.4, gives more insight to surface plasmon-spatial soliton
transition in this configuration. The optimal kdl value,1.8, can be shown in the

figure.
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Figure 3.3: Here a = 0.84, kdy = 1.8, and kdo = 10.2. In the effective area, the second
surface-plasmon forces the soliton and the first surface-plasmon to interact. A transition is
achived, but not as ideal as in the two-layer system.

3.3 Stable Soliton Amplitudes in Multilayer Systems

3.3.1 Parallel System

In the metal/dielectric/metal interface, where the distances between metals and the
nonlinearity in the dielectric are constant (Fig.3.5), a simple transition between sur-
face plasmon and soliton amplitudes cannot be achieved since the distance is un-
changed and there is no energy dissipation. Subsequent transitions occur and the
energy oscillates between surface plasmon and soliton amplitudes. However, in some
specific configurations no transition occurs at all, and A, is observed to be stable in
magnitude. Initial A; and A,, values for one of these configurations are 0.4 and 0.6
respectively, where initial A,, value is zero. kd; and kdy values are 8 and 3 respec-
tively. Fig.3.6 shows the plot of A, for this case, and Fig.3.7 shows the A, and A,,

graphs which correspond to constant A, graph.
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Figure 3.4: Graph of As,y,: values with respect to kdi. kdi + kdo value is constant, and
equal to 12. « is 0.84.

3.4 Transition from Stable Amplitudes to Oscillatory Amplitudes

3.4.1 Half Parallel/Half Parabolic System

Another configuration in metal/dielectric/metal interface is that the distance between
second metal and the nonlinearity in the dielectric is constant, and the distance
between the nonlinearity and the first metal is a parabolic function of z (Fig.3.8). In

this configuration, the coupling functions are

0 (|Cy]) = etV (3.28)
BC,)) = M oIV (3:29)

It can be foreseen by the knowledge of the previous sections, that subsequent tran-
sitions occur between first two layers, and in the area of the effective transition near
the minimum distance between soliton and first metal layers the transitions are af-
fected by the first metal although there is no initial surface plasmon amplitude A,,

on the metal. Then, subsequent transitions shifts in amplitudes, and continue the
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Figure  3.5: Two  surface plasmons and a spatial soliton in a
metal /dielectric/Kerr/dielectric/metal system.
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Figure 3.6: Graph of As with different kd; configurations.kd; + kde = 11. When kd; = 8,
spatial oscillations in Ay is highly suppressed.

oscillations. Fig.3.9 shows the plot of an ordinary case.

In some specific configurations this change in A, ,4,,, and Ay becomes a switch
between oscillatory and stable amplitudes. It can be both ways as shown in Fig.3.10
and Fig.3.11.

In this chapter, we investigated the interaction between surface plasmons and
spatial solitons in metal/dielectric/Kerr nonlinearity/dielectric/metal system. We

obtain results for three different case. First, metals are bent such that the distances
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Figure 3.7: Ap; and Apy graphs of the constant As value. kd; = 8. kdy + kdo = 11.
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Figure 3.8: Two surface plasmons and a spatial soliton in half parabolic/half parallel system.

between metal surfaces and the nonlinearity are parabolic functions of z. In this case,
we have looked for a similar transition like we have obtained in Chapter 2, but we
couldn’t obtain a full transition. In the second case, we keep the system unmodified,
such that the metals and the nonlinearity are parallel to each other. In this case,
spatial oscillations in A, are highly suppressed. In the third and final case, one of
the metals is parallel to the nonlinearity, and the other metal is bent. The effect of
the bent metal shows itself only near the minimum distance between the metal and
the nonlinearity, and the amplitudes of the oscillations in A, and A,, changes after

surface plasmon and spatial soliton pass through this neighbourhood.
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Figure 3.9: The amplitudes change after the interaction with the first metal. kd; = 3.4,
kdy = 7.6, and v, = 0.2
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Figure 3.10: Near the minimum distance between first metal and the nonlinearity in the
dielectric, second surface plasmon and soliton interacts with the second metal and the
oscillations in A,, and A are highly suppressed. kdi = 5.2, kdy = 6.8, and v}, = 0.2
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Figure 3.11: The amplitudes of second surface plasmon and soliton which are constant start
oscillating after interacting with the first metal near the minimum distance between the
first metal and the nonlinearity in the dielectric. kdy = 4.4, kda = 7.6, and v, = 0.2
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Chapter 4

CONCLUSION

In the presented work, we studied the dynamical properties of the interaction
between an optical soliton in a nonlinear dielectric waveguide and co-propagating
surface-plasmons along a metal surface. In the metal/dielectric system the coupling
parameter depends on the soliton amplitude instead of being a coupling constant.
Our goal was to obtain a transition between soliton and surface-plasmon amplitudes.
To achieve this goal we consider the interaction when the soliton is propagating on
a parabolic trajectory with respect to the flat metal surface. After numerical cal-
culations we have achieved nearly full population conversion from optical soliton to
surface-plasmon under certain parameter values. With the success of this goal, we ex-
pand our system to a metal/dielectric/Kerr/dielectric/metal multilayer interface, in
which the optical soliton is essentially coupled to two surface plasmons on either side
across dielectric spacers. We found that for certain spacing parameters the spatial
profile of the soliton is almost constant along the propagation. In a different multi-
layer configuration, we form a system in which one surface-plasmon propagates on a
parallel trajectory, and the other surface-plasmon propagates on a parabolic trajec-
tory. In this case, depending on the model parameters the oscillations in the spatial
profile of the soliton may be induced or suppressed as it enters through the parabolic
channel. In this way we switch the spatial profile of the soliton from oscillation to

constant propagation or visa versa.
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