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ABSTRACT

Plasmonics is a research field on the physics and applications of the interaction of

light with surface-plasmons on mostly- metal surfaces. From a naive point of view,

there is electronics on one side, which can perform well on nano-scale structures but

the data process and transfer is very slow compared to optical frequencies. On the

other side, optical data transfer is ultrafast e.g. in fibers but their size is down-

limited by the wavelength of light which is usually much larger than the nanoscale.

Thus, plasmonics establishes a link between electronics and photonics by coupling

light and surface plasmons at very small scales, at optical frequencies. This has the

potential to develop surface-plasmon-integrated optoelectronic devices at nanoscales.

In this respect, the excitation and control of surface-plasmons via coupling to con-

trollable optical sources is highly desirable. In this thesis work, we investigate the

dynamical properties of the interaction between an optical soliton in a nonlinear di-

electric waveguide and co-propagating surface-plasmons along a metal surface. Due

to the nonlinear nature of the optical soliton, the coupling parameter depends on

the soliton amplitude, and thus become an inherently dynamical parameter rather

than being a coupling constant. We first revisit the dynamics of the parallel system

which is formulated as a Josephson junction by introducing fractional population im-

balance and the relative phase variables. Then, we consider the interaction when

the soliton is propagating on a parabolic trajectory with respect to the flat metal

surface. Nearly full population conversion from optical soliton to surface plasmon

is achievable under certain parameter values. We next investigate the dynamics in a

metal/dielectric/Kerr/dielectric/metal multilayer system, in which the optical soliton

is essentially coupled to two surface plasmons on either side across dielectric spacers.

We found that for certain (asymmetric) spacing parameters the spatial profile of the

viii



soliton is almost constant along the propagation. In a different multilayer configu-

ration, we take the metal surfaces to form a parallel channel but with a parabolic

opening with respect to the soliton axis. In this case, depending on the model param-

eters the oscillations in the spatial profile of the soliton may be induced or suppressed

as it enters through the parabolic channel.
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ÖZETÇE

Plazmonik, fizikte ışıın çoğunlukla metal yüzeylerde yüzey plazmonlarıyla etk-

ileşim uygulamalarını içeren bir araştırma dalıdır. Genel bir bakış açısıyla bakarsak,

bir tarafta nano-ölçeklerde iyi sonuçlar veren fakat veri akışı ve iletiminin optik

frekanslara kıyasla çok yavaş olduğu elektronik, diğer tarafta ise optik veri ileti-

minin çok hızlı olduğu fakat boyutlarının nano-ölçekten daha büyük olan ışığın dalga

boyu ile sınırlandığı fotonik bulunmaktadır. Plazmonik ise ışığı ve yüzey plazmon-

larını optik frekanslar gibi çok küçük ölçeklerde çiftleştirerek elektronik ve fotonik

arasında bir bağ kurar. Bu da yüzey plazmonlarıyla donanımlı nano-ölçekli op-

tik cihazlar geliştirilmesine olanak sağlar. Bu açıdan bakıldığında yüzey plazmon-

larının kontrol edilebilir optik kaynaklarla çiftleştirilerek uyarılması ve kontrol edilmesi

amaçlanmaktadır. Bu tez çalışmasında nonlineer dielektrik dalga kılavuzunda yayılan

optik soliton ile metal yüzeylerde yayılan yüzey plazmonlarının etkileşiminin dinamik

özelliklerini inceliyoruz. Optik solitonun nonlineer doğasından kaynaklanan nedenlerle

bağlama parametresi soliton genliği ile değişmektedir ve bunun bir sonucu olarak

sabit bir etkileşim değerinden çok dinamik bir parametredir. Öncelikle fraksiyonel

popülasyon oransızlığı ve bağıl faz terimlerini kullanarak paralel sistemin dinamiğini

Josephson eklemi olarak inceledik. Daha sonra da düz metal bir yüzeye göre parabo-

lik bir yörüngede yayılan solitonun etkileşimini göz önüne aldık. Bazı parametre

değerlerinde optik solitondan yüzey plazmonuna neredeyse tam bir popülasyon trans-

feri gerçekleştirdik. Daha sonra optik solitonun dielektriğin iki tarafındaki metal

yüzeylerde yayılan yüzey plazmonlarıyla etkileştiği metal/dielektrik/Kerr/dielektrik/metal

çok katmanlı sistemin dinamiğini inceledik. Bazı uzaklık parametresi değerlerinde soli-

tonun uzaysal profilinin yayılım sırasında neredeyse sabit olduunu bulduk. Farklı bir

yapılandırmada da metal yüzeyleri ile soliton ekseni arasındaki uzaklığı parabolik bir

x



tünel olarak oluşturduk ve bu durumda parametre değerlerine göre solitonun uzaysal

profilinin tünele girdikten sonra azaltılıp arttırılabildiğini gösterdik.

xi
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Chapter 1

INTRODUCTION

Surface plasmons are of interest to a wide spectrum of scientists, ranging from

physicists,chemists and materials scientists to biologists.Renewed interest in surface

plasmons comes from recent advances that allow metals to be structured and char-

acterized on the nanometre scale. This has enabled us to control surface plasmon

properties to reveal new aspects of their underlying science and some specific applica-

tions. For instance, surface plasmons are being explored for their potential in optics,

magneto-optic data storage, microscopy and solar cells, as well as being used to con-

struct sensors for detecting biologically interesting molecules. For researchers in the

field of optics, one of the most attractive aspects of surface plasmons is the way in

which they help us to concentrate and channel light using subwavelength structures.

This could lead to miniaturized photonic circuits with length scales much smaller

than those currently achieved. Such a circuit would first convert light into surface

plasmons, which would then propagate and be processed by logic elements, before

being converted back into light. Concentrating light in this way leads to an electric

field enhancement that can be used to manipulate lightmatter interactions and boost

non-linear phenomena. The enhanced field associated with surface plasmons makes

them suitable for use as sensors, and commercial systems have already been developed

for sensing biomolecules. The interaction between the surface charges and the electro-

magnetic field that constitutes the surface plasmons has two consequences. First, the

interaction between the surface charge density and the electromagnetic field results in
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the momentum of the surface plasmon mode, h̄kSP , being greater than that of a free-

space photon of the same frequency, h̄k0. (k0 = ω/c) is the free-space wavevector.)

The second consequence of the interaction between the surface charges and the elec-

tromagnetic field is that the field perpendicular to the surface decays exponentially

with distance from the surface. The field in this perpendicular direction is said to be

evanescent or near field in nature and is a consequence of the bound, non-radiative

nature of surface plasmons [3], [2].

An optical soliton is a pulse that travels without distortion due to dispersion or

other effects. They are a nonlinear phenomenon caused by self-phase modulation,

which means that the electric field of the wave changes the index of refraction seen by

the wave (Kerr effect). Self-phase modulation causes a red shift at the leading edge of

the pulse. Solitons occur when this shift is canceled due to the blue shift at the leading

edge of a pulse in a region of anomalous dispersion, resulting in a pulse that maintains

its shape while propagating. Solitons are therefore an important development in the

field of optical communications [1]. The word ’soliton’ refers to highly stable localized

solutions of certain nonlinear partial differential equations. The soliton concept has

deeply penetrated into almost all branches of science wherever nonlinear partial differ-

ential equations are being used. This concept was first discovered in hydrodynamics

in the 19th century [3]. Solitons have been extensively studied in many branches of

physics such as optics, plasmas, condensed matter physics, fluid mechanics, particle

physics and even astrophysics. Interestingly, over the past two decades, the field of

solitons has been substantially advanced and enriched by research and discoveries in

nonlinear optics. While optical solitons have been strongly investigated in both spa-

tial and temporal domains, it can be said that much soliton research has been made on

optical spatial solitons. This is partly due to the fact that although temporal solitons

are fundamentally one-dimensional entities, the high dimensionality of their spatial

counterparts has opened new scientific possibilities in soliton research. Another rea-
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son is related to the nonlinearity. Unlike temporal optical solitons, spatial solitons

employ a variety of noninstantaneous nonlinearities, ranging from the nonlinearities

in photorefractive materials and liquid crystals to the nonlinearities mediated by the

thermal effect, thermophoresis and the gradient force in colloidal suspensions. Such a

diversity of nonlinear effects has given rise to numerous soliton phenomena, because

for decades scientists were thinking that solitons must strictly be the exact solutions

of the cubic nonlinear Schrodinger equation as established for ideal Kerr nonlinear

media [4].

In this thesis work, we investigate the dynamical properties of the interaction

between an optical soliton in a nonlinear dielectric waveguide and co-propagating

surface-plasmons along a metal surface.Due to the nonlinear nature of the optical

soliton, the coupling parameter depends on the soliton amplitude, and thus become

an inherently dynamical parameter rather than being a coupling constant. We first

revisit the dynamics of the parallel system which is formulated as a Josephson junc-

tion by introducing fractional population imbalance and the relative phase variables.

Then, we consider the interaction when the soliton is propagating on a parabolic tra-

jectory with respect to the flat metal surface. Nearly full population conversion from

optical soliton to surface plasmon is achievable under certain parameter values. We

next investigate the dynamics in a metal/dielectric/Kerr/dielectric/metal multilayer

system, in which the optical soliton is essentially coupled to two surface plasmons on

either side across dielectric spacers. We found that for certain (asymmetric) spacing

parameters the spatial profile of the soliton is almost constant along the propagation.

In a different multilayer configuration, we take the metal surfaces to form a parallel

channel but with a parabolic opening with respect to the soliton axis. In this case,

depending on the model parameters the oscillations in the spatial profile of the soliton

may be induced or suppressed as it enters through the parabolic channel.
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Chapter 2

SURFACE PLASMON-SOLITON INTERACTION IN A

METAL DIELECTRIC INTERFACE

2.1 Surface Plasmons: Brief Theoretical Background

2.1.1 Dispersion Relation

Surface plasmon polaritons are electromagnetic excitations propagating at the inter-

face between a dielectric and a conductor, evanescently confined in the perpendicular

direction. This strong confinement enables applications as surface plasmon resonance

sensors or highly miniaturized photonic circuitry which represent a great interest for

telecommunication, computing, and information processing. To study the plasmon

propagation in nonlinear media, one should analyze nonlinear Maxwell’s equations

for the transverse magnetic waves in the presence of a metal-dielectric interface. The

electromagnetic surface waves arise via the coupling of the electromagnetic fields to

oscillations of the conductor’s electron plasma. The wave equation should be taken as

a starting point to describe the fundamentals of surface plasmon polaritons both at

single, flat interfaces and in metal-dielectric multilayer structures.In the following, we

proceed through the derivation of the dispersion relation of surface-plasmons starting

from Maxwell’s equations. This derivation can be found in many text books [5], [6].

∇ ·D = ρext (2.1)

∇ ·B = 0 (2.2)
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∇× E = −∂B
∂t

(2.3)

∇×B = Jext +
∂D

∂t
(2.4)

Maxwell’s equations have to be applied to the flat interface between a conductor and

a dielectric. The curl equations of Eq.(1) can be combined, and the result is

∇×∇× E = −µ0
∂2D

∂t2
(2.5)

Using identities ∇×∇×E ≡ ∇(∇ ·E)−∇2E and ∇ · (εE) ≡ E · ∇ε+ ε∇ ·E Eq.(2)

can be rewritten as

∇(−1

ε
E · ∇ε)−∇2E = −µ0ε0ε

∂2E

∂t2
(2.6)

The first term of the left-hand side can be neglected due to the variation of the

dielectric profile ε = ε(r) over distances on the order of one optical wavelength and

the result is the wave equation itself:

∇2E − ε

c2
∂2E

∂t2
= 0. (2.7)

This equation has to be solved separately in regions and the results have to be matched

using boundary conditions. Starting with an electric field with a harmonic time

dependence E(r, t) = E(r)e−iωt, the wave equation becomes the Helmholtz equation

∇2E + k20εE = 0 (2.8)

To solve this equation a proper propagation geometry has to be defined.For the ge-

ometry in Fig.2.1 the electric field is E(x, y, z) = E(z)eiβx and ε = ε(z).

The complex parameter β = kx is called the propagation constant of the traveling

waves and corresponds the component of the wave vector in the direction of propa-
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Figure 2.1: Definition of a planar waveguide geometry. The waves propagate along the
x-direction in a cartesian coordinate system. [5]

gation. Using this equation one can obtain the desired form of the wave equation:

∂2E(z)

∂z2
+ (k20ε− β2)E = 0. (2.9)

This is the starting point for the general analysis of guided electomagnetic modes in

waveguides and this equation can be expanded using curl equations. For harmonic

time dependence ( ∂
∂t

= −iω), for propagation along the x-direction ( ∂
∂x

= iβ) and for

the homogenity in the y-direction ( ∂
∂y

= 0) these identities is used.

For TM modes, the system reduces to

Ex = −i 1

ωε0ε

∂Hy

∂z
(2.10)

Ez = − β

ωε0ε
Hy (2.11)

and the wave equation for TM modes is

∂2Hy

∂z2
+ (k20ε− β2)Hy = 0 (2.12)
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For TE modes, the system reduces to

Hx = −i 1

ωµ0

∂Ey
∂z

(2.13)

Hz = − β

ωµ0

Ey (2.14)

and the wave equation for TE modes is

∂2Ey
∂z2

+ (k20ε− β2)Ey = 0 (2.15)

This is the most simple geometry sustaining surface plasmon polaritons. z > 0

region has a positive real dielectric constant ε2 and z < 0 region has a dielectric

function ε1(ω). The metallic character of the lower region requires Re[ε1] < 0, and

this condition is fulfilled at frequencies below the bulk plasmon frequency ωp where

ω2
p = ne2

ε0m
. Here n is the number of electrons, e is the charge and m is the mass of a

single electron.

The propagating TM wave solutions confined the this interface can be found by

using the set of equations for both regions seperately. For z > 0 region

Hy(z) = A2e
iβxe−k2z (2.16)

Ex(z) = iA2
1

ωε0ε2
k2e

iβxe−k2z (2.17)

Ez = −A1
β

ωε0ε2
eiβxe−k2z (2.18)

and for z < 0 region

Hy(z) = A1e
iβxek1z (2.19)

Ex(z) = −iA1
1

ωε0ε1
k1e

iβxek1z (2.20)
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Ez = −A1
β

ωε0ε1
eiβxek1z (2.21)

ki ≡ kz,i(i = 1, 2) is the wave vector component for two regions, and its reciprocal

value, ẑ = 1/|kz|, defines the evanescent decay length of the feilds perpendicular to

the interface.Continuity of Hy and εiEz at the interface requires that A1 = A2 and

k2
k1

= −ε2
ε1

(2.22)

The surface waves exist only at interfaces between materials with opposite signs

of the real part of their dielectric permittivities. Regarding this expression, Hy has

to fulfill the wave equation, and this yields

k21 = β2 − k20ε1 (2.23)

k22 = β2 − k20ε2 (2.24)

Combining these equations the dispersion relation of surface plasmon polaritons

propagating at the interface between the two half spaces can be obtained

β = k0

√
ε1ε2
ε1 + ε2

. (2.25)

The TE wave solutions should also be discussed. Using Eq.(13), Eq.(14) and

Eq.(15) the following can be obtain for z > 0 region

Ey(z) = A2e
iβxe−k2z (2.26)

Hx(z) = −iA2
1

ω0

k2e
iβxe−k2z (2.27)

Hz = A2
β

ωµ0

eiβxe−k2z (2.28)

and for z < 0 region
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Ey(z) = A1e
iβxek1z (2.29)

Hx(z) = iA1
1

ωµ0

k1e
iβxek1z (2.30)

Ez = A1
β

ωµ0

eiβxek1z (2.31)

Continuity of Ey and Hx at the interface requires that A1(k1 + k2) = 0. Since

Re[k1] > 0 and Re[k2] > 0, this condition is only fulfilled if A1 = 0, so that A1 =

A2 = 0, so for TE polarization surface modes cannot exist. In other words, surface

plasmon polaritons only exist for TM polarization.

Figure 2.2: Dispersion relation β = k0
√

ε1ε2
ε1+ε2

Eq.(2.25) of surface plasmon polaritons at

the interface between a Drude metal with negligible collision frequency and air(gray curves)
and silica(black curves) [5].

Fig.2.2 show the plot of the dispersion relation for a metal with negligible damping

described by the dielectric function ε1(ω) = 1 − ω2
p

ω2 for an air (ε2 = 1) and a fused

silica (ε2 = 2.25) interface.The frequency ω is normalized to the plasma frequency ωp,

and both the real and imaginary part of the wave vector β are shown. The surface
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plasmon polariton excitations correspond to the part of the dispersion curves lying to

the right of the respective light lines of air and silica.

In the regime of large wave vectors, the frequency of the surface plasmon polari-

tons approaches the characteristic surface plasmon frequency, and can be found by

inserting ε1(ω) = 1− ω2
p

ω2+iγω
into the dispersion relation

ωsp =
ωp

1 + ε2
(2.32)

In the limit of negligible damping (Im[ε1] = 0), the wave vector β goes to infinity

as the frequency approaches ωsp. This mode is called the surface plasmon, which is

indeed the limiting form of a surface plasmon polariton as β →∞.

2.2 Optical Solitons: Brief Theoretical Background

2.2.1 Spatial Solitons

Spatial solitons are optical beams that propagate in a nonlinear medium without

diffraction, their beam diameter remains invariant during propagation. This invari-

ancy is one of the most important features of nonlinear optics, because the best-

known characteristic of wave propagation is that beams which are finite in space

tend to broaden due to diffraction effects. Breaking this paradigm requires a strong

nonlinear interaction between the wave and the medium through which the beam

is propagating. When this requirement is fulfilled, a self-trapped beam or a spatial

soliton can form. A spatial soliton represents an exact balance between diffraction

and nonlinearity induced self-focusing effects as shown in the Fig.2.3 [7].

In order to understand how spatial soliton can exist, some considerations about

a simple convex lens should be made. As shown in the Fig.2.4, an optical field

approaches the lens and then it is focused [9], [11].



Chapter 2: Surface Plasmon-Soliton Interaction in a Metal Dielectric Interface 11

Figure 2.3: Schematic showing the spatial beam profiles (solid line) and phase fronts (dashed
line) for (a) beam self-focusing, (b) normal beam diffraction, and (c) soliton propagation
[7].

The effect of the lens is to introduce a non-uniform phase change that causes

focusing. This phase change is a function of the space and can be represented with

φ(x) = k0nL(x) (2.33)

where L(x) is the width of the lens, changing in each point with a shape that is the

same of φ(x) because k0 and n are constants. In other words, in order to get a focusing

effect a phase change of such a shape have to be introduced, but the witdh does not

change [10]. If the width L is fixed in each point, but the value of the refractive

index n(x) exactly the same effect with a completely different approach will occur.

The change in the refractive index introduces a focusing effect that can balance the

natural diffraction of the field. If the two effects balance each other perfectly, then a

confined field propagating within the fiber occurs. That’s the way graded-index fibers

work, and spatial solitons are based on the same principle: the Kerr effect introduces

a self-phase modulation that changes the refractive index according to the intensity
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Figure 2.4: The focusing effect of a simple convex lens. The lens introduce a non-uniform
phase change φ that causes focusing [12].

[10]:

φ(x) = k0n(x)L = k0L[n+ n2I(x)] (2.34)

The field creates a fiber-like guiding structure while propagating. If the field creates

a fiber and it is the mode of such a fiber at the same time, it means that the fo-

cusing nonlinear and diffractive linear effect are perfectly balanced and the field will

propagate forever without changing its shape. In order to have a self-focusing effect,

n2 must be positive, otherwise nonlinear behavior will not be noticed. The optical

waveguide the soliton creates while propagating is not only a mathematical model,

but it actually exist and can be used to guide other waves at different frequencies.

This way it is possible to let light interact with light at different frequencies as it is

impossible in linear media.

An electric field is propagating in a medium showing optical Kerr effect, so the

refractive index is given by

n(I) = n+ n2I (2.35)

where I = |E|2
2η

and η = η0/η and η0 =
√
µ0/ε0 ≈ 377Ω. The field is propagating in

the z direction with a phase constant k0n. Since the field is infinite in y direction, we
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will ignore any dependece on y axis, and the field can be expressed as

E(x, z, t) = Ama(x, z)ei(k0nz−ωt) (2.36)

where Am is the maximum amplitude of the field and a(x,z) is a dimensionless nor-

malized function that represents the shape of the electric field among x axis [8]. Now

we have to solve the Helmholtz equation ∇2E + k20n
2(I)E = 0 , and we assume that

a(x, z) changes slowly while propagating,i.e.

| ∂
2a(x, z)

∂z2
|�| k0

∂a(x, z)

∂z
| (2.37)

and the following equation is obtained:

∂2a

∂x2
+ i2k0n

∂a

∂z
+ k20[n2(I)− n2]a = 0 (2.38)

After introducing an approximation that is valid because the nonlinear effects are

always much smaller than linear ones:

[n2(I)− n2] = [n(I)− n][n(I) + n] = n2I(2n+ n2I) ≈ 2nn2I (2.39)

then we express the intensity in terms of the electric field:

[n2(I)− n2] ≈ 2nn2
|Am|2|a(x, z)|2

2η0/n
= n2n2

|Am|2|a(x, z)|2

η0
(2.40)

the equation becomes:

1

2

∂2a

∂ξ2
+ i

∂a

∂ζ
+N2|a2a = 0 (2.41)

We will now assume n2 > 0 so that the nonlinear effect will cause self-focusing. In

order to make this evident, we will write in the equation n2 = |n2|. Let us now define
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some parameters and replace them in the Eq.(2.41):

ξ = x
X0

, so we can express the dependence on the x axis with a dimensionless

parameter; X0 is a length.

Ld = X2
0k0n, after the electric field has propagated across z for this length, the

linear effects of diffraction can not be neglected anymore.

ζ = z
Ld

, for studying the z-dependence with a dimensionless variable.

Lnl = 2η0
k0n|n2||Am|2 ,after the electric field has propagated across z for this length,

the nonlinear effects can not be neglected anymore. This parameter depends upon

the intensity of the electric field, that’s typical for nonlinear parameters.

N2 = Ld

Lnl

After the replacements, Eq.(2.41) becomes

1

2

∂2a

∂ξ2
+ i

∂a

∂ζ
+N2|a|2a = 0 (2.42)

This is the nonlinear Schrdinger equation.

For N � 1, then the nonlinear part can be neglected.

For N � 1, then the nonlinear effect will be more evident than diffraction, and

the field will tend to focus.

For N ≈ 1, then the two effects balance each other and the equation can be solved.

For N = 1, the solution of the equation is the fundamental soliton [10]:

a(ξ, ζ) = sech(ξ)eiζ/2 (2.43)

It still depends on z, but only in phase, so the shape of the field will not change during

propagation as shown in the Fig.2.5. For soliton solutions, N must be an integer and it

is said to be the order or the soliton. For higher values of N, there are no closed form

expressions, but the solitons exist and they are all periodic with different periods.
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Figure 2.5: The shape of the soliton while propagating with N=1 [12].

Their shape can easily be expressed only immediately after generation:

a(ξ, ζ = 0) = Nsech(ξ) (2.44)

2.2.2 Temporal Solitons

An actual picture of the contrast between soliton propagation and normal diffraction

for a beam in a photorefractive material is shown in the Fig.2.6. Such spatial solitons

belong to the same family of phenomena, the temporal soliton. A temporal soliton

forms when group velocity dispersion is totally counteracted by temporal self-focusing

or self-phase modulation effects [7].

All solitons require that a strong enough nonlinear interaction takes place be-

tween themselves and the material in which they propagate. This intereaction typ-

ically requires that the so-called diffraction length for the spatial case or the dis-

persion length for the temporal case is comparable to a nonlinear length that char-

acterizes self-focusing in the medium. What sets spatial solitons apart from their

temporal counterparts is their dimensionality. Temporal solitons are described by

a (1+1)-dimensional space-time evolution equation, whereas spatial solitons are by



Chapter 2: Surface Plasmon-Soliton Interaction in a Metal Dielectric Interface 16

Figure 2.6: Top view photograph of a 10-µm-wide spatial soliton propagating in a strontium
barium niobate photorefractive crystal (top), and for comparison, the same beam diffracting
when the nonlinearity is turned off (bottom) [7].

nature (2+1)-dimensional beams. This difference in the dimensions causes interesting

processes in spatial case such as full three-dimensional interaction between solitons,

soliton spiraling, vortex solitons, angular momentum effects, rotating dipole vector

solitons, etc.

An electric field is propagating in a medium showing optical Kerr effect through

a guiding structure such as an optical fiber that limits the power on the xy plane. If

the field is propagating towards z with a phase constant β0, then it can be expressed

in the following form:

E(r, t) = Ama(t, z)f(x, y)ei(β0z−ω0t) (2.45)

where Am is the maximum amplitude of the field, a(t,z) is the envelope that shapes

the impulse in the time domain, f(x,y) represents the shape of the field on the xy

plane which does not change during propagation [10]. Since in the medium there

is a dispersion we can not neglect, the relationship between the electric field and its
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polarization is given by a convolution integral

Ẽ(r, ω − ω0) =

∫ ∞
−∞

E(r, t)e−i(ω−ω0)tdt (2.46)

The complete expression of the field in the frequency domain is

Ẽ(r, ω − ω0) = Amã(ω − ω0, z)f(x, y)eiβ0z (2.47)

Now Helmholtz equation can be solved in the frequency domain ∇2Ẽ+n2(ω)k20Ẽ = 0,

and following is obtained

2iβ0
∂ã

∂z
+ [β2(ω)− β2

0 ]ã = 0 (2.48)

Here the phase constant is expressed with the following notation:

n(ω)k0 = β(ω) = β0 + βl(ω) + βnl = β0 + δβ(ω) (2.49)

where β0 is the linear non dispersive component, βl(ω) is the linear dispersive compo-

nent, and βnl is the nonlinear component. After introducing the same approximation

that has been made in spatial soliton case, the equation has its final form:

1

2

∂2a

∂τ 2
+ i

∂a

∂ζ
+N2|a|2a = 0 (2.50)

where τ = T/T0, ζ = z/Ld, N
2 = Ld/Lnl.The first order soliton is given by [8], [10]

a(τ, ζ) = sech(τ)eiζ/2 (2.51)

In the next section the interaction between surface plasmon and spatial soliton

will be achieved by a heuristic coupling mechanism.
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2.3 Surface Plasmon-Spatial Soliton Interaction

There are two ways for excitations of plasmons. The first is via the evanescent wave

generated at the total internal reflection, and the second is via a periodic structure

producing evanescent modes. Considering the first method,if there is a dielectric

waveguiding layer on the interface, propagating modes of the waveguide have evanes-

cent tails outside the waveguide which interact resonantly with plasmons at the metal

surface. In the Ref. [13] another way of resonant interaction of plasmons with elec-

tromagnetic waves is proposed. They introduce a nonlinear dielectric medium, which

admits spatial solitons which may propagate parallel to the metal-dielectric interface

and similar to the modes of the dielectric waveguide. As a result, effective linear and

nonlinear waveguides are coupled by the plasmon-soliton configuration, and an inter-

action between plasmon and soliton may be possible at certain resonant parameters

[14].

2.3.1 Model Description

To create a system that consists of optical soliton and surface-plasmon propagating

along the metal-dielectric interface, we adopt the following model in Ref. [13]:

The system shown in Fig.2.7 is formed by two interfaces: a metal/linear-dielectric

interface and a linear-dielectric/nonlinear-dielecric interface. The distance from the

surface plasmon propagation axis to the soliton center axis is d. The metal possesses a

negative dielectric constant ε1 whereas the dielectric constant of the dielectric medium

is ε2 and it has the same value for the linear and nonlinear media. It is assumed that

the nonlinearity is self-focusing. The interaction between a surface plasmon guided

wave at the metal/dielectric interface that propagates along the z direction and a

spatial soliton in the nonlinear medium propagating along the same direction will be

analyzed. The nonlinear behavior of the soliton is able to provide a propagation con-
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Figure 2.7: Plasmon and soliton in a metal-dielectric-Kerr nonlinearity system

stant satisfying βs > (ω/c)
√
ε2 that grows with the soliton peak amplitude. On the

other hand, the surface plasmon is formed by two evanescent wave tails both in the

metal ( e−κ1|x|) and in the dielectric ( e−κ2|x|). For this reason the plasmon propaga-

tion constant is given in the dielectric by βp =
√
κ22 + (ω/c)2ε2, which automatically

fulfills the same condition as the soliton: βp > (ω/c)
√
ε2. It is expected that under

appropriate conditions controlled by the soliton power, it is possible to achieve the

matching of the propagation constants of plasmon and soliton. This phase-matching

condition should give rise to a mechanism of nonlinear resonant transfer of energy

from soliton to plasmon.

In this model Ψp and Ψs are uncoupled plasmon and soliton fields propagating in

the direction z. The total wave function is represented via the ansatz

Ψ(x, z) = Ψp(x, z) + Ψs(x, z) (2.52)
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where transverse profiles of plasmon and soliton are

Ψp(x, z) = cp(z)ψp(x)Ψs(x, z) = cs(z)ψs(x) (2.53)

Here ψp(x) = e−κpx with κp =
√
k2p − k2 and ψs(x, |cs|) = sech[κs(x − d)] with

κs = k
√
γ/2|cs|. Here cp and cs are the plasmon and soliton amplitudes, k is the

wavevector of light and kp is the surface-plasmon wavevector. γ is the nonlinearity

parameter of the medium. We emphasize that the transverse profile of the soliton

depends on its amplitude |cs| which is the driving parameter.

Due to the spatial overlapping of the plasmon and soliton transverse profiles,

the plasmon and soliton fields couple and obey the linear and nonlinear oscillator

equations:

c
′′

p + β2
pcp = q(|cs|)cs, (2.54)

c
′′

s + β2
s (|cs|)cs = q(|cs|)cp. (2.55)

2.3.2 The Nonlinear Coupling Function

The strategy to excite plasmon-polariton mode consists of the generation of evanescent

waves in the dielectric medium. Evanescent exponentially decaying tails behave very

much alike those corresponding to the plasmon-polariton mode close to the resonant

condition β ≈ βp. This property allows significant coupling between the modes due

to the non-negligible overlap of their corresponding field amplitudes. [The physical

reason behind the possibility of the existence of interaction between a soliton and

a plasmon-polariton is the peculiarity of a soliton as a guided mode.] The soliton

propagation constant depends on the peak soliton amplitude.

In Eq.(2.54) and (Eq.2.55) the derivatives are with respect to the dimensionless
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coordinate kz, βp = kp
k
> 1, βs = ks

k
∼= 1 + γ|cs|2/4 and q is the coupling function:

q(|Cs|) ≈ exp(−kd
√
γ/2|Cs|). (2.56)

The coupling function is the overlapping of the tails of the plasmon and soliton waves

in the area between metal and dielectric, and equal to the soliton field at the metal

surface. Here d is the distance between metal and the nonlinearity in the dielectric.

The initial motivation is to obtain an effective plasmon-soliton transition, and it

occurs only near the resonance βp = βs. Eq.(2.54) and Eq.(2.55) can be simplified

by neglecting the second order derivatives and making the substitution cp,s(kz) =

Cp,s(kz)e
ikz. We obtain:

−iC ′

p = νpCp −
q(|Cs|)

2
Cs (2.57)

−iC ′

s = −q(|Cs|)
2

Cp + νs(|Cs|)Cs (2.58)

where νp = βp − 1� 1, νs = βs − 1 = γ|C2
s/4� 1.

2.3.3 Surface Plasmon-Spatial Soliton Coupling with Parabolic Distance

We modify this model such that the distance between metal and nonlinearity is a

parabolic function of z as shown in Fig.2.8, and the new coupling coefficient is

q(|Cs|) ≈ exp(−kd(1 + αξ2)
√
γ/2|Cs|) (2.59)

where ξ = kz.

We introduce ’fractional population imbalance’ Z = |Cs|2−|Cp|2
|Cs|2+|Cp|2 , and ’relative phase

difference’ φ = φs − φp between the soliton and the surface plasmon where Cs,p =

As,pe
iφs,p [15]. Using this substitution and the fact that |Cs|2 + |Cp|2 = N (N is
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Figure 2.8: Modified plasmon-soliton system. The distance between metal surface and the
Kerr nonlinearity is a parabolic function of z.

a normalized constant for isolated system and equal to 1) Eq.(2.57) and Eq.(2.58)

become

Ż = −q(Z)
√

1− Z2 sinφ, (2.60)

Φ̇ = Λ(1 + Z)− νp +
q(Z)Z cosφ√

1− Z2
. (2.61)

2.4 Numerical Analysis

2.4.1 Parallel System

In the model, [13] the distance between metal and the nonlinearity in the dielectric

is constant, so two layers are parallel to each other. In this case in which there are

no dissipative effects, a decrease in the total population |Cs|2 + |Cp|2 is not expected

and this quantity is conserved. However, there are mutual and continuous transitions

between surface plasmon and soliton, also the population imbalance ′Z ′ is not constant

and undergoes mutual and continuous transitions as well as shown in the Fig.2.9
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Figure 2.9: Surface plasmon-soliton interaction in a parallel metal/dielectric system (above),
kd = 1.8, α = 0.

2.4.2 Parabolic System

This section is the heart of this research, because the goal of the research in [13] is to

obtain a full transition from soliton to surface plasmon amplitude. It has been tried

to obtain by adding a dissipation, Eq.(2.62), to the system, in which the total energy

decreases in time.

νp,s = νp,s + iσp,s (2.62)

However, and both the soliton and surface plasmon amplitudes decrease as shown in

Fig.2.10 and Fig.2.11.

In this thesis, we implement this through the parabolic modification of the coupling

parameter as discussed in the previous section. In the system, the distance between

metal surface and the nonlinearity in the dielectric is a parabolic function of z, and

kd is the minimum distance between layers. The transition is observed to occur

in the neighbourhood of this minimum distance. Since the distance is increasing

parabolically, outside of this neighbourhood the coupling between soliton and surface

plasmon is negligble.
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Figure 2.10: Dynamics in plasmon-soliiton system with small dissipation. σp = 0, σs = 10−4.
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Figure 2.11: Dynamics in plasmon-soliiton system with small dissipation. σp = 10−2, σs = 0.

Fig.2.12, Fig.2.13, and Fig.2.14 show the output value of Z as a function of kd

and α. From these figures we try to determine feasible α and kd values which yield

maximum transition.

Here νp is taken 0.2, and γ is taken 0.1. According to the results, the minimum

Z value is obtained when kd is 1.8. In the light of these values, Fig.2.15 show the

optimal α value, which is 0.84.
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Figure 2.12: The minimum Zout value corresponds to 1.5 < kd < 2

For the optimal α and kd values we obtain nearly ideal transition from plasmon

amplitude to soliton amplitude. The population imbalance Z which is initially 1,

becomes -0,7669. Following figures show transitions for different α values.

These results show that nearly full transition from spatial soliton to surface plas-

mon can be achieved by a heuristic coupling mechanism. We’ve modified the model

in [13] such that the distance between the metal surface and the nonlinearity in the

dielectric is a parabolic function of z. However, in this modification α should be small,

i.e. α < 1, because the coupled oscillator equations, Eq.(2.54) and Eq.(2.55), which

are obtained from the Maxwell equations are for one dimensional case. Since our

modification makes the system two dimensional, we assume that α is small enough

to keep the system in one dimensional form.
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Figure 2.13: Contour plot of Zout values with respect to kd and α
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Figure 2.14: More detailed contour plot of Zout values with respect to kd and α
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Figure 2.15: The minimum Zout value corresponds α = 0.84
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Figure 2.16: α = 0.1, kd = 1.8, νp = 0.2
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Figure 2.17: α = 0.1, kd = 1.8, νp = 0.2
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Figure 2.18: The optimum α value 0.84, which enables nearly ideal transition between
soliton and surface-plasmon, kd = 1.8, νp = 0.2
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Chapter 3

SURFACE PLASMON-SOLITON INTERACTION IN

METAL-DIELECTRIC-METAL INTERFACE

3.1 Surface Plasmons in Multilayers: Brief Theoretical Background

In a multilayer system, each single interface can sustain bound surface plasmon po-

laritons. When the seperation between adjacent interfaces is comparable to the de-

cay length of the interface mode, interactions between surface plasmon polaritons

give rise to coupled modes. To illuminate the general properties of coupled surface

plasmon polaritons, two specific system in the Fig.3.1 should be analyzed: Insula-

tor/metal/insulator heterostructure, and metal/insulator/metal heterostructure [5], [6].

Figure 3.1: Geometry of a three-layer system consisting of a thin layer I sandwiched between
two infinite half spaces II and III.

The field components of TM modes for z > a region are

Hy(z) = Aeiβxe−k3z (3.1)

Ex(z) = iA
1

ωε0ε3
k3e

iβxe−k3z (3.2)
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Ez = −A β

ωε0ε3
eiβxe−k3z (3.3)

for z < −a region

Hy(z) = Beiβxek2z (3.4)

Ex(z) = −iB 1

ωε0ε2
k2e

iβxek2z (3.5)

Ez = −B β

ωε0ε2
eiβxek2z (3.6)

In the core region −a < z < a, the modes localized at the bottom and top interface

couple, yielding

Hy = Ceiβxek1z +Deiβxe−k1z (3.7)

Ex = −iC 1

ωε0ε1
k1e

iβxek1z + iD
1

ωε0ε1
k1e

iβxek1z (3.8)

Ez = C
β

ωε0ε1
k1e

iβxek1z +D
β

ωε0ε1
k1e

iβxek1z (3.9)

The requirement of continuity of Hy and Ex at z = a leads to

Ae−k3a = Cek1a +De−k1a (3.10)

A

ε3
k3e
−k3a = −C

ε1
k1e

k1a +
D

ε1
k1e

k1a

and at z = −a

Be−k2a = Ce−k1a +Dek1a (3.12)

B

ε2
k2e
−k2a = −C

ε1
k1e
−k1a +

D

ε1
k1e

k1a
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This is a linear system of four coupled equations. Hy further has to fulfill the wave

equation in the three distinct regions, via k2
i = β2 − k20εi(3.13)for i = 1, 2, 3. Solving

this system of linear equations results in an implicit expression for the dispersion

relation limking β and ω via

e−4k1a =
k1/ε1 + k2/ε2
k1/ε1 − k2/ε2

k1/ε1 + k3/ε3
k1/ε1 − k3/ε3

(3.14)

In the special case of ε2 = ε3 and k2 = k3, the dispersion relation can be split into

a pair of equations

tanhk1a = −k2ε1
k1ε2

(3.15)

tanhk1a = −k1ε2
k2ε1

(3.16)

The dispersion relations can now be applied to dielectric/metal/dielectric and

metal/dielectric/metal structures to investigate the properties of the coupled surface

plasmon polariton modes in these two systems.

3.2 Surface Plasmon-Soliton Transition in Multilayer Systems

3.2.1 Parabolic System

A transition from surface-plasmon amplitude to soliton amplitude can be achieved in

multilayer systems such as metal/dielectric/metal interface. The distance from the

first metal to the nonlinearity in the dielectric is again a parabolic function of α1, and

the minimum distance between two layers is denoted as kd1. The distance from the

second metal to the nonlinearity in the dielectric is also a parabolic function of α2,

and the minimum distance between two layers is kd2, as shown in Fig.3.2.

In this multilayer system, we have two different coupling functions since we have

two different surface plasmon-spatial soliton interactions.The corresponding coupling



Chapter 3: Surface Plasmon-Soliton Interaction in Metal-Dielectric-Metal Interface 32

Figure 3.2: Two surface plasmons and a spatial soliton in a
metal/dielectric/Kerr/dielectric/metal multilayer.

functions are as follows:

q1(|Cs|) = e−kd1(1+αξ
2)
√
γ/2|Cs| (3.17)

q2(|Cs|) = e−kd2(1+αξ
2)
√
γ/2|Cs| (3.18)

where ξ = kz. Our previous coupled oscillator equations, Eq.(2.54) and Eq.(2.55),

need modifications since we are working with three-layer system. The new equations

are

c
′′

p1
+ β2

p1
cp1 = q1(|cs|)cs (3.19)

c
′′

p2
+ β2

p2
cp2 = q2(|cs|)cs (3.20)

c
′′

s + β2
scs = q1(|cs|)cp1 + q2(|cs|)cp2 (3.21)

Making the substitutions cp1 = Cp1e
iξ, cp2 = Cp2e

iξ, and cs = Cse
iξ the equations

become



Chapter 3: Surface Plasmon-Soliton Interaction in Metal-Dielectric-Metal Interface 33

−iC ′

p1
= νp1Cp1 −

q1(|Cs|)
2

Cs (3.22)

−iC ′

p2
= νp2Cp2 −

q2(|Cs|)
2

Cs (3.23)

−iC ′

s = νsCs −
q1(|Cs|)

2
Cp1 −

q2(|Cs|)
2

Cp2 (3.24)

and the following substitutions is made:

Cp1 = Ap1e
iφp1 (3.25)

Cp2 = Ap2e
iφp2 (3.26)

Cs = Ase
iφs (3.27)

We used ’ode45’ function in MATLAB to solve these differential equations. The

initial amplitude of first surface plasmon,Ap1 , is 0.99 and the soliton,As, and the

second surface plasmon amplitudes,Ap2 , are zero.α has the same optimal value as in

Chapter 2,which is 0.84, and the optimal kd1 and kd2 values are 1.8 and 10.2 respec-

tively. The initial φp1 ,φp2 , and φs values are taken zero. Under these circumstances

the first surface plasmon transfer most of its energy to soliton and a small part to

second surface plasmon as shown in the Fig.3.3.

Following figure, Fig.3.4, gives more insight to surface plasmon-spatial soliton

transition in this configuration. The optimal kd1 value,1.8, can be shown in the

figure.
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Figure 3.3: Here α = 0.84, kd1 = 1.8, and kd2 = 10.2. In the effective area, the second
surface-plasmon forces the soliton and the first surface-plasmon to interact. A transition is
achived, but not as ideal as in the two-layer system.

3.3 Stable Soliton Amplitudes in Multilayer Systems

3.3.1 Parallel System

In the metal/dielectric/metal interface, where the distances between metals and the

nonlinearity in the dielectric are constant (Fig.3.5), a simple transition between sur-

face plasmon and soliton amplitudes cannot be achieved since the distance is un-

changed and there is no energy dissipation. Subsequent transitions occur and the

energy oscillates between surface plasmon and soliton amplitudes. However, in some

specific configurations no transition occurs at all, and As is observed to be stable in

magnitude. Initial As and Ap1 values for one of these configurations are 0.4 and 0.6

respectively, where initial Ap2 value is zero. kd1 and kd2 values are 8 and 3 respec-

tively. Fig.3.6 shows the plot of As for this case, and Fig.3.7 shows the Ap1 and Ap2

graphs which correspond to constant As graph.
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Figure 3.4: Graph of Asout values with respect to kd1. kd1 + kd2 value is constant, and
equal to 12. α is 0.84.

3.4 Transition from Stable Amplitudes to Oscillatory Amplitudes

3.4.1 Half Parallel/Half Parabolic System

Another configuration in metal/dielectric/metal interface is that the distance between

second metal and the nonlinearity in the dielectric is constant, and the distance

between the nonlinearity and the first metal is a parabolic function of z (Fig.3.8). In

this configuration, the coupling functions are

q1(|Cs|) = e−kd1
√
γ/2|Cs| (3.28)

q2(|Cs|) = e−kd2(1+αξ
2)
√
γ/2|Cs| (3.29)

It can be foreseen by the knowledge of the previous sections, that subsequent tran-

sitions occur between first two layers, and in the area of the effective transition near

the minimum distance between soliton and first metal layers the transitions are af-

fected by the first metal although there is no initial surface plasmon amplitude Ap2

on the metal. Then, subsequent transitions shifts in amplitudes, and continue the
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Figure 3.5: Two surface plasmons and a spatial soliton in a
metal/dielectric/Kerr/dielectric/metal system.
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Figure 3.6: Graph of As with different kd1 configurations.kd1 + kd2 = 11. When kd1 = 8,
spatial oscillations in As is highly suppressed.

oscillations. Fig.3.9 shows the plot of an ordinary case.

In some specific configurations this change in Ap1 ,Ap2 , and As becomes a switch

between oscillatory and stable amplitudes. It can be both ways as shown in Fig.3.10

and Fig.3.11.

In this chapter, we investigated the interaction between surface plasmons and

spatial solitons in metal/dielectric/Kerr nonlinearity/dielectric/metal system. We

obtain results for three different case. First, metals are bent such that the distances
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Figure 3.7: Ap1 and Ap2 graphs of the constant As value. kd1 = 8. kd1 + kd2 = 11.

Figure 3.8: Two surface plasmons and a spatial soliton in half parabolic/half parallel system.

between metal surfaces and the nonlinearity are parabolic functions of z. In this case,

we have looked for a similar transition like we have obtained in Chapter 2, but we

couldn’t obtain a full transition. In the second case, we keep the system unmodified,

such that the metals and the nonlinearity are parallel to each other. In this case,

spatial oscillations in As are highly suppressed. In the third and final case, one of

the metals is parallel to the nonlinearity, and the other metal is bent. The effect of

the bent metal shows itself only near the minimum distance between the metal and

the nonlinearity, and the amplitudes of the oscillations in As and Ap2 changes after

surface plasmon and spatial soliton pass through this neighbourhood.
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Figure 3.9: The amplitudes change after the interaction with the first metal. kd1 = 3.4,
kd2 = 7.6, and νp = 0.2
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Figure 3.10: Near the minimum distance between first metal and the nonlinearity in the
dielectric, second surface plasmon and soliton interacts with the second metal and the
oscillations in Ap2 and As are highly suppressed. kd1 = 5.2, kd2 = 6.8, and νp = 0.2
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Figure 3.11: The amplitudes of second surface plasmon and soliton which are constant start
oscillating after interacting with the first metal near the minimum distance between the
first metal and the nonlinearity in the dielectric. kd1 = 4.4, kd2 = 7.6, and νp = 0.2



Chapter 4: Conclusion 40

Chapter 4

CONCLUSION

In the presented work, we studied the dynamical properties of the interaction

between an optical soliton in a nonlinear dielectric waveguide and co-propagating

surface-plasmons along a metal surface. In the metal/dielectric system the coupling

parameter depends on the soliton amplitude instead of being a coupling constant.

Our goal was to obtain a transition between soliton and surface-plasmon amplitudes.

To achieve this goal we consider the interaction when the soliton is propagating on

a parabolic trajectory with respect to the flat metal surface. After numerical cal-

culations we have achieved nearly full population conversion from optical soliton to

surface-plasmon under certain parameter values. With the success of this goal, we ex-

pand our system to a metal/dielectric/Kerr/dielectric/metal multilayer interface, in

which the optical soliton is essentially coupled to two surface plasmons on either side

across dielectric spacers. We found that for certain spacing parameters the spatial

profile of the soliton is almost constant along the propagation. In a different multi-

layer configuration, we form a system in which one surface-plasmon propagates on a

parallel trajectory, and the other surface-plasmon propagates on a parabolic trajec-

tory. In this case, depending on the model parameters the oscillations in the spatial

profile of the soliton may be induced or suppressed as it enters through the parabolic

channel. In this way we switch the spatial profile of the soliton from oscillation to

constant propagation or visa versa.
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