
PARAMETER ESTIMATION OF A NOVEL STOCK

PRICE MODEL

by

Nihal Bahtiyar

A Thesis Submitted to the

Graduate School of Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Industrial Engineering
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ABSTRACT

In this study, a stock price process is considered as an integral with respect to

a Poisson random measure which governs several parameters of the trading agents.

This model is powerful since it reflects two important properties of high frequency

financial data, long-range dependence and self-similarity. We estimate parameters of

this model using real data. The estimation procedure is demonstrated on log-returns

of a particular stock in banking industry from Istanbul Stock Exchange between

February 2007 and December 2009. We estimate the Hurst parameter describing long-

range dependence. The numerical values found here verify the long-range dependence

assumption. We also estimate the order duration parameter which follows a Pareto

distribution. Interarrival rate of orders are calculated under the assumption that they

arrive according to a Poisson Process. Effect rate and effect function are numerically

fitted to the price data.
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ÖZETÇE

Bu çalışmada, hisse senedi işlemleri yapan yatırımcılar ile bağlantılı parametreleri

yöneten bir rassal Poisson ölçüsüne göre integralden oluşan bir hisse senedi süreci

dikkate alınmıştır. Bu model, yüksek sıklıktaki finansal verilerin iki önemli özelliği

olan öz benzerlik ve uzun dönemli bağımlılığı yansıttığı için güçlüdür. Gerçek ver-

iler kullanarak bu modelin parametrelerini tahminledik. Kestirim için, ubat 2007

ve Aralık 2009 arasında stanbul Menkul Kıymetler Borsasında işlem gören bankacılık

sektörüne ait bir hisse kullanılmıştır. Uzun dönemli bağımlılığı gösteren Hurst parame-

tresini tahminledik. Bulunan sayısal değerler uzun dönemli benzerlik varsayımını

destekler nitelikteydi. Pareto dağılımına uyan emir süresi parametresinin kestirimi

yapıldı. Bir Poisson süreci ile geldiği varsayılan emirlerin geliş hızı hesaplandı. Etki

hızı ve etki fonksiyonu da gerçek verilerden yola çıkılarak numerik olarak hesaplandı.
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Chapter 1

INTRODUCTION

The impact of the behavior and the strategies of trading agents on financial mar-

kets has been widely studied in the literature. Different academic fields show a grow-

ing interest to agents’ behavior as physical units determining the prices of stocks in

the market and to the analysis of their interactions. The agents are most commonly

categorized as “chartist” and “fundamentalist” [23], [24], [22]. The strategy of fun-

damentalists is based on buying more stocks as the price of stocks they own decrease

and thus making profit. On the other hand, the investor group called chartist adopts

the principle of buying more stocks as the prices of the ones they own increase while

selling these when the prices decrease since they rely on the behavior of their competi-

tors as well as on actual price movements. There might be also other agent behaviors

and different categorizations. Our approach does not rely on these categorizations

as explained in [5]. Each behavior is specified either by a specific function defining

its characteristic or it is represented by a probability distribution. We will prefer the

probability distribution approach which allows modeling of individual differences in

the group. Agent behavior has also been studied by physicists which use network

techniques [10], [11], [12]. Alfarano and Milakovic showed that network structure

which was expressed by a matrix representing the interaction of agents[9]. Alfarano

et al., introduce a stochastic model using this interaction matrix[14].

Long-range dependence and self-similarity properties, which are mostly observed

together, are related to the correlation structure of stochastic process. From a general

point of view, long-range correlations observed in a process is called “long-range

dependence”, while sudden fluctuations in almost every time scale are called “self-
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similarity”. They refer to the conditions which are mathematically expressed in terms

of correlation functions and probability distributions [15]. It is shown that these

properties are also observed in financial data [16].

Stochastic analysts concentrate on two stochastic processes where long-range de-

pendence and self-similarity are exactly modeled. These are the “Levy processes”

and “fractional Brownian motion” whose theoretical characteristics were intensively

investigated in the last decade. The references [17] and [18] can be shown as examples

for the use of these processes as price process. The majority of recent studies concen-

trated on whether the condition of not allowing arbitrage in fair markets is satisfied

in cases where these two processes are used. Arbitrage refers to making profit without

taking any risks. Since fractional Brownian motion allows arbitrage, it is not appro-

priate for stock prices [19]. Levy process which does not allow arbitrage is suitable

for stock models; We should note however it is not the only method to prevent arbi-

trage [25]. Since these two processes, which attract the attention of mathematicians

in theoretical terms, require stochastic calculus, their simulations in computer media

require special numerical methods.

Inspired by the above mentioned studies, Bayraktar et al. [16] constructed a

stochastic process which is appropriate for simulation or numerical trials and allows

for drawing theoretical conclusions. They established a semi-Markov process and

included finite number of agents, however envisaged that this number goes to infinity

in the limit [16]. As another simplification, they reflected agent behavior in the model

only at stagnation periods. On the other hand, Kluppelberg and Kuhn, established

a model on change of price in time by speculative information coming to the market

according to a Poisson process [20]. After arriving at the market, this information

will slowly affect the price, and this effect will decrease in time.

In this thesis, all analysis are based on a new price process proposed by Akcay [19]

and presented in Akcay and Caglar [21]. The superiority of this stochastic process

analyzed is that it can give fractional Brownian motion and stable Levy motion by

different limiting processes. In this thesis, physical parameters of the considered
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model are predicted using real stock exchange data. We assume that the demand for

a stock and the change in its price are directly proportional, and furthermore each

buy order increases the stock price and each sell order decreases the price. Variables

such as order time, order quantity and the duration a transaction are considered

to be regulated by a Poisson random measure. The model also assumes that the

trade duration of an agent follows a heavy tailed distribution and shows a long-range

dependence as a result. This process being a semi-martingale does not allow arbitrage

in the market.

In Chapter 2, we give the basic definitions for stochastic processes and statistical

methods that we use in other chapters. In Chapter 3 of this study, we discuss the

nature of high frequency financial data using both the stylized facts of high frequent

data and the available models. In Chapter 4, we introduce the model introduced in

[19] and describe the dataset used in parameter estimation. Then, we describe the

parameters of the involved distributions and estimate those parameters using data

retrieved from Istanbul Stock Exchange in Chapter 5. Finally, the conclusions are

given in Chapter 6.
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Chapter 2

PRELIMINARIES

In this chapter, we state certain definitions that we will be use in the sequel. Sec-

tion 2.1 and Section 2.2 contains definitions respectively related to stochastic processes

and statistics.

2.1 Stochastic Process Preliminaries

In this section, we give fundamental definitions from stochastic processes cited in [31].

We assume that the reader is familiar with axiomatic probability theory, martingale

theory and stochastic processes. In particular, the notions of probability space Ω,

σ-algebra, expected values, local martingale and finite variation process will be used

below.

2.1.1 Fractional Brownian motion and Hurst parameter

Definition A real process X is called a semi-martingale with respect to a given

filtration Ft if X can be decomposed as X = M + V where M is a local martingale

and V is a finite variation process [30].

A fractional Brownian motion (Bt
H , t ≥ 0) with Hurst parameter 0 < H < 1 is a

continuous Gaussian process such that

E[BH
t ] = 0, E[BH

t B
H
s ] = 1/2(| t |2H + | s |2H − | t− s |2H) t, s ∈ R+ (2.1)

The characteristic of this process dependent crucially on the Hurst parameter, H.

• If H = 1/2, (BH
t ) becomes the standard Brownian motion with independent
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increments which is a semi-martingale. This process is also well-known as the

Wiener Process[27].

• If 0 < H < 1/2, the process is not affected by long-past and fluctuates around

mean.

• If 1/2 < H < 1, the process represents long-range dependence property with

hyperbolically decaying autocorrelation coefficient. Definition of this property

will be given in Subsection 2.1.2.

2.1.2 Long-range dependence and self-similarity

Stock price data have two fundamental properties, long-range dependence and self-

similarity. In this sub-section, we give definition of these properties for any process

Z. We also give special case for fractional Brownian motion cited from [26].

Definition For any stochastic process Z, let r(n) = E[Z1(Zn+1−Zn)]. If
∞∑
n−1

r(n) =

∞, then Z has long-range dependence property.

In particular, for fractional Brownian motion, long-range dependence property is ob-

served when following condition is satisfied

∞∑
n−1

r(n) =∞ where r(n) = E[BH
1 (BH

n+1 −BH
n )] (2.2)

In long-range dependent processes, the data are correlated across arbitrarily large

time lag.

Definition Let Z be any stochastic process, Z is called self-similar with Hurst pa-

rameter H if Zαt and αHZt has the same probability law. Particularly, a fractional

Brownian motion is self-similar with Hurst parameter H when (BH
αt, t ≥ 0) has the

same probability law as (αHBH
t , t ≥ 0) [26]. If the data represent self-similarity, it

has bursty paths over a wide range of time scales.
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2.2 Stastistics Preliminaries

In this section, we define two statistical method that we will be used in the following

chapters. First one is periodogram which is used to detect seasonal effect. Second

is two-way analysis of variance that we use to distinguish the effect of months and

week-days.

2.2.1 Periodogram

Periodogram is the empirical version of power spectral density [29]. The definition of

periodogram is given below.

Definition Let X be a process. ŜX,n(f) =| n−1/2
n∑
k=1

Xk exp2iπkf | is called the order

n periodogram of X.

In practice, the periodogram is generally computed by means of a fast Fourier

transform that provides a sampled version of ŜX,n(f) [29]. Peak points of the peri-

odogram corresponds to periods observed in dataset and they allow to detect seasonal

component of the data.

2.2.2 Two-way analysis of variance (ANOVA)

Analysis of variance(ANOVA) is used to detect the source of the variation within

several treatments. In two-way ANOVA, the data are arranged a matrix xij refering

observation for ith block and jth treatment where the term block refers to a matched

group of observations from each population.

Let x̄i be the mean of the observations in ith block (i = 1, 2, ..., b) and x̄j be mean

of the observations in jth treatment (j = 1, 2, ..., k) where b and k be number of

treatments and number of blocks respectively. Let ¯̄x be general mean of data. These
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means are calculated as follows:

x̄i =
k∑
j=1

xij
k

x̄j =
b∑
i=1

xij
b

¯̄x =
k∑
j=1

b∑
i=1

xij
bk

(2.3)

The purpose is to reduce the within-treatment variation to more easily detect dif-

ferences between the treatment means. In this analysis, total sum of squares (SSTotal)

is defined to be the sum of squares for error (SSE), the sum of squares for treatments

(SST ) and the sum of squares for blocks (SSB).

SSTotal = SSE + SST + SSB (2.4)

Sum of squares are calculated by the

SSTotal =
k∑
j=1

b∑
i=1

(xij − ¯̄x)2

SST =
k∑
j=1

b(x̄j − ¯̄x)2

SSE =
k∑
j=1

b∑
i=1

(xij − x̄j − x̄i + ¯̄x)2

(2.5)

MST and MSE stands for mean squares of treatments and mean squares of errors

respectively. They are computed by dividing the sums of squares by their respective

degree of freedom.

MST =
SST

k − 1

MSB =
SSB

b− 1

MSE =
SSE

n− k − b+ 1

(2.6)
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Test statistic is calculated using mean squares as follows:

F =
MST

MSE
(2.7)

which is F distributed with ν1 = k − 1 and ν2 = n− k − b+ 1 degrees of freedom.

If we want to test to determine whether the block means differ, test statistics

becomes

F =
MSB

MSE
(2.8)

where F is distributed with ν1 = b− 1 and ν2 = n− k − b+ 1 degrees of freedom.
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Chapter 3

HIGH FREQUENCY FINANCIAL DATA

In this chapter, we describe the high frequency data retrieved from Istanbul Stock

Exchange by introducing the stylized facts observed and review the available models

used for such data.

3.1 Stylized Facts

In this section, we state stylized facts by using high frequency stock price data. This

dataset is retrieved from Istanbul Stock Exchange and consists of price of a single

stock between February 2007 and December 2009 with granularity of second. Details

about the data are given in Section 4.2. In this section, we analyze seasonal and

periodical components of logarithmic return series of this stock since we continue

with a logarithmic return model in the sequel. Logarithmic return series is denoted

as Xt and defined by

Xt = log(Yt)− log(Yt−1), (3.1)

where Y (t) represents stock price at time t. First, we obtain daily log-return i.e.

the differences of the logarithms of day-end closing prices. We use periodogram as

defined in Section 2.2.1 to determine the frequency of seasonal components. Figure

3.1 represents periodogram of 3 years data. Although the most dominant three peak

points could be selected, a significant period could not be identified since they did

not correspond to periods such as day, week or months.

Since our dataset consists of high frequency data for 3 years, we analyze seasonality

of daily data on weekly, monthly and annual time scale. In this part of analysis, we do

not consider intra-day seasonality because intra-day characteristics will be analyzed
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Figure 3.1: Smoothed Periodogram (Estimated spectral density function) obtained
by using SAS 9.1 statistical software. “Smoothed” version refers to the periodogram
obtained after removal of measurement noise. This method is applied to daily log-
return series of 3 years of a single stock. No significant period is identified.

in estimation of buy-sell orders’ physical parameters. For this reason, in this part

also, we use daily log-return series that we have obtained using day-end price.

Daily, monthly and yearly averages obtained from the processed series are pre-

sented in Figure 3.2.

When the averages are subtracted from time series data, seasonality are removed

and time series shown in Figure 3.3 is obtained. These steps are introduced as follows.

First, log-return series X(t) is re-indexed as Xi,j,k,l where the day t corresponds to

weekday i, month of the year j and the year k it belongs and l = 1, ..., L is in unit of

week in a month. In this setting, i ∈ {1, 2, 3, 4, 5} where i = 1 refers to Monday, i = 2

refers to Tuesday and so forth. j ∈ {1, 2, ..., 12} where j = 1 corresponds to January,

j = 2 corresponds to February and so forth. Similarly, k ∈ {1, 2, 3} where k = 1,

k = 2 and k = 3 refer to 2007, 2008 and 2009 respectively. l is used to distinguish first

Monday and second Monday within a month. For this reason, i ∈ {1, 2, 3, 4, 5}. For

example, let X(t) be log-return in Thursday, 20th of March, 2008. When we re-index,

we obtain X4,3,2,3 since i = 4, j = 3, k = 2 corresponds to Thursday, March and
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Figure 3.2: (a) Average of log-return price at each week-day. (b) Average of log-return
price at each month of year. (c) Average of log-return price at each year.

2008 respectively. In March 2008, we have 4 different Thursday’s corresponding to

6th, 13th, 20th and 27th of March. To identify 20th of March, we use the last index as

l = 3 since it is 3rd Thursday in March.

After re-indexing procedure, we find general mean, daily, monthly and yearly zero-

mean averages m, αi, βj, γk values are subtracted respectively and the following time

series is obtained:

X(i,j,k,l)−m−αi−βj−γk i = 1, ..., 5, j = 1, ..., 12, k = 1, ..., 3, l = 1, ..., 5. (3.2)

thus Xi,j,k,l is purified from averages according to weekday i, month of the year j

and the year k it belongs. Remaining oscillations are presented in Figure 3.3. The

decrease towards the middle of the series corresponds to financial crisis occurred in

2008. The difference between general average m and 0 was not found to be statistically

significant. Therefore, it will be assumed as 0 below.

Whether daily or monthly effects indicated in Equation 3.2 and their interactions

have a statistically significant effect is analyzed with analysis of variance(ANOVA)

method. Since the number of years is low here, annual averages will not be considered.
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Figure 3.3: Time series obtained after removal of trend(general mean, m) and seasonal
means(mean at weekday i, αi; mean at month of the year j, βj; mean in year k, γk.

The results of SAS GLM operation are presented in Figure 3.4. According to these

results, general linear model is not significant with 0.1033 P-value. When the effects

are analyzed individually, the effect months is slightly significant. Due to high P-

values, days alone or days and months collectively do not have an effect. Since the

effect of the months is not very strong, no seasonality is assumed for our data. If

the effect of months is desired to be included in the model, by fitting a curve to the

monthly averages in Figure 3.3, this effect can be estimated.

Since Hurst parameter is a shape parameter, it is independent from extracted

averages. For this reason, to predict the Hurst parameter, logarithmic return series

will be used without even subtracting monthly averages in Section 5.2.1. In addition

to seasonality, how long the Hurst parameter remains constant is also related to the

stationarity of the series and will be analyzed.

3.2 Available Models

In this section, we first introduce two fundamental models in stock pricing literature:

fractional Bachelier Model with its fractional version and Black and Scholes Model
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Figure 3.4: SAS output for variance analysis showing that month of year, day of week
and their interaction do not have statistically significant effect on log-return.

with its fractional version. Then, we continue with more recent models having agent

based approach in stock price modeling.

Bachelier model is an additive model as follows

Yt = Y0 + νt+ σBt t ∈ [0, T ]. (3.3)

In equation 3.3, Y represents the stock price process while B represents a Brownian

motion, ν ∈ R and σ, T ∈ R+ where σ is the volatility and ν is the drift of the model.

In fractional version of Brownian motion, B is replaced by fractional Brownian motion,

as follows

Yt = Y0 + νt+ σBH
t t ∈ [0, T ]. (3.4)
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The Black-Scholes model is another well-analyzed model for stock prices given by

Yt = Y0e
(r+ν)t+σBt t ∈ [0, T ]. (3.5)

In that model, we also see the impact of interest rate, r ∈ R+, different from Bachelier

model. Similarly, in fractional version of this model, fractional Brownian motion, BH

is used instead of Brownian motion B as given below.

Yt = Y0e
(r+ν)t+σBH

t t ∈ [0, T ]. (3.6)

Besides these well-known models, there are several approaches in stock price mod-

eling. We continue with agent-based approaches.

In [24], Lux considers that all agents belong to two different groups according to

their trading behavior: fundamentalists or chartists. Fundamentalists buy when price

is below and sell when price is above of a fundamental value which is assumed to be

known with certainty and to be constant. On the other hand, chartists rely on the

behavior of their competitors as well as on actual price movements and they have also

two subgroup as optimist chartists and pessimist chartists.

In [23], agents are able to compare strategies and change their behavior accord-

ingly. It is assumed that birth rate of the process is equal to its death rate, i.e.

the model assumes that a constant portion of agents is replaced by new entrants.

The probability of exit trading is equal for chartists and fundamentalists while new

entrants are assumed to first to act as chartists. In this setting, price changes are

modeled as endogenous responses of the market to imbalances between demand and

supply. Imbalances in the market occur according to transition probability from fun-

damentalists to chartists, optimist chartists to pessimist chartist and vice et versa

since these transitions change supply and demand to the market. Change in funda-

mental value of fundamentalists is also another factor that governs change of demand

and supply balance and consequently stock price. Further analysis of this model exist

in the literature. Analysis of its time variation of higher moments is given in [14]
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while volatility clustering analysis is stated in [22].

In [11], deterministic functions are used to define strategies of different types of

agents. According to their approach, each trading strategy is a signal processing

element using past price information and current net order then provides a price

formation process by inserting white noise. In this model, Farmer and Joshi consider

two type of traders existing in the market and assumed that only market makers

have an impact on the price formation. By modeling this type of agents impact, they

assumed that positions, orders, and strategies are anonymous and also market maker

must be risk neutral. They also assumed that both buy and sell orders have not a

priori difference in their impact on price. The price process is constructed by the

following dynamic system

pt+1 = pt +
1

λ

N∑
i=1

ω(i)(pt, pt−1, ..., It) + ξt+1 (3.7)

where pt, ξt+1, I(t), ω(i), λ represent log-price at time t, white noise, any additional

information at time t, order quantity of agent i, a scale factor that normalizes the

order size respectively.

In [10], an agent based model is constructed by agents’ decisions among three

states: buying, selling or staying idle. In their decisions, all agents take benefits of

public information (εt, t = 0, 1, 2, ...) characterized by a sequence of independent and

identically distributed Gaussian random variables where εt ∼ N(0, D2). The decision

of each agent occurs sequentially by following these steps at each time period:

i) They receive a public information signal εt.

ii) Each of them compares the received signal with her own threshold value, θi(t).

At each time period, any agent updates her threshold value with probability 0 < s < 1.

iii) Each agent i compares public information signal with her own threshold values.

If |εt| > θi(t) then they give an order.

Excess of demand affects stock price and form a price process. As the result of

simulation given in [10], it is illustrated that the model replicates self-similarity and

long-range dependence of stock price data.
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In [16], agents are divided into two groups: inert and active agents. For each agent,

a semi-Markov process is associated with the trading activity where a Markov chain is

used to determine the mood of an agent including sell, buy or inactive states. Active

agents trade the stock frequently whereas the inert agents remain in the inactive state

for a time period with a heavy-tailed distribution. When the effect of these two types

of agents are combined, the stock price is approximated in law by a superposition

of stochastic integrals with respect to a fractional Brownian motion and a Wiener

process. The aggregate process does not allow arbitrage when the Hurst parameter

of fractional Brownian motion which is inherited from the sojourn time of the inert

agents in the inactive state is between 1/2 and 3/4 .
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Chapter 4

STOCK PRICES: MODEL AND DATA

In this chapter, we first describe the essentials of the model that we use with its

asymptotic limits. The model is an agent based model studied by Caglar [5]. It is

based on a stochastic process modeling log-return of a single stock. We also describe

the dataset that we use for parameter estimation in this chapter.

4.1 An Agent Based Model

The model used in the following of this work consists of a stochastic price process

given by Yt = Y0e
(mt+cZt) where Z(t) is the log-price process. The log price Z(t) is

modeled as aggregation of the effects of orders placed by all active agents in [0, t]

where Z0 = 0 [5]. Effect of each order is proportional to its duration and volume.

Other assumption of the model is positive correlation between the total net demand

and the price change. Thereby, we expect that a buy order of an agent increases the

price while a sell order decreases it. Since the process is a semi martingale, it does

not allow arbitrage [19].

We assume that each agent’s arrival is independent and identically distributed and

occurs according to the underlying Poisson process and its duration is also random.

We use the triplet (Sj, Uj, Rj) to represent a single order from an agent where Sj is

the arrival time of the order, Uj is the duration of its effect on the price, and Rj is its

rate. The rate is convertor to monetary units having positive values in case of a buy

order and having negative values in case of a sell order. These triplets compose the

atoms of a Poisson random measure N with mean measure µ.

Let (Ω, F,P) be a probability space. Let BR denote Borel-σ algebra on R. Let N

be a Poisson random measure on
(
R× R+ × R,BR ⊗ BR+ ⊗ BR

)
with mean measure
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µ(ds, du, dr) = λds ν(du) γ(dr) (4.1)

where λ > 0 is the arrival rate of the underlying Poisson Process, γ is the distribution

of a random variable R and ν is a probability measure satisfying

∫ ∞
u

ν(dy) ∼ h(u)
u−δ

δ
as u→∞ (4.2)

where 1 < δ < 2 and h is a slowly varying function at infinity. The log-price process

is constructed as

Z(t) =

∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

ru

[
f

(
t− s
u

)
− f

(
−s
u

)]
N (ds, du, dr) . (4.3)

In this setting, f : R −→ R is a Lipschitz continuous function representing the

effect of the order. In the limit, the log price process Z(t) converges to a fractional

Brownian motion (fBm) or a Lévy Process under different scalings [5].

4.2 Available Data

The data used in this paper are retrieved from Istanbul Stock Exchange including high

frequent trading data in granularity of second between February 2007 and December

2009. We select most liquid stock to analyze which belongs to a company from

banking industry in Turkey.

The data set that Istanbul Stock Exchange shares only for academic purposes

contains not only price information but also order type, order quantity, transaction

quantity, order time, order date and transaction time. Using the available infor-

mation, we obtain log-price and log-second price processes in granularity of second,

the duration and the interarrival distribution of orders and effects of these orders.

Therefore, these data sets provide required information to estimate all parameters.

To obtain a unit interval time series, tick-by-tick interpolation method is used

based on the assumption that the price remains constant if there is no occurring

transaction [2]. SAS 9.1 statistical software is used for this purpose. Time series
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obtained for the selected stock price is presented in Figure 4.1. We use MATLAB in

estimation of Hurst parameter while we use both SAS 9.1 and MATLAB in estimation

of other parameters.

Figure 4.1: Time series plot of selected stock’s price (between 02.02.2007-31.12.2009)

In Subsection 5.2.1, we consider entire dataset of 3 years to estimate Hurst pa-

rameter. We use six days data between 01.08.2008 and 08.08.2008 to estimate the

interarrival rate of orders in Section 5.1, duration distribution in Subsection 5.2.2 and

effect rate in 5.4 since these six days data have correct form of ID values enabling

to distinguish different orders in the month of August of 2008. These first six days

were selected due to technical obligation. During these six days, the orders were enu-

merated with 16-digit identification numbers and enable to identify different orders’

beginning and ending times and other information stored. After the first six days,

since order ID’s exceeded 16 digits, Istanbul Stock Exchange system is not appro-

priate to distinguish different orders by always keeping the same number. Since the

system is reset at the beginning of each month, it is possible to use the first days of

other months but we choose August as representative.
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Chapter 5

PARAMETER ESTIMATION

In this chapter, we estimate all three parameters of the model introduced in Section

4.1. In each section, we introduce the estimation methods and give estimation results

of each parameter. Estimation results are also interpreted in the modeling context.

5.1 Interarrival of Orders

In this section, we analyze interarrival times of orders. Interarrival time is defined as

the time difference between two consecutive orders. In stock markets, buy and sell

orders given over night accumulate and they are transacted immediately or throughout

the day. These over night orders will be excluded from our analysis of interarrival

times.

In our analysis, we begin with classification of orders occurred in August 2008

according to their buy/sell order characteristic and their validity as day/session type

of orders. Frequencies according to these classifications are presented in Table 5.1.

According to model presented in Equation 4.3, arrivals of orders occur accord-

Table 5.1: Observed numbers of orders used in interarrival estimation

Sell Orders Buy Orders Buy and
Sell Orders
(Total)

Day type valid orders 27 862 36 370 64 232
Session type valid orders 76 037 71 517 147 554

Total number of valid orders 103 899 107 887 211 786
Canceled orders 60 485

Total number of orders 272 271
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Table 5.2: Estimation of Interarrival of Buy and Sell Orders

Observed
Mean

Observed
Standard
Deviation

Estimated
Mean

λ̂

Buy Orders 3.295762 3.295855 3.295762 0.303420
Sell Orders 4.184979 4.185126 4.184979 0.238950

ing to a Poisson Process where interarrival times represents by random variable Sj.

Therefore,the interarrivals are driven by independent and follow an exponential dis-

tribution. Interarrival rates of buy and sell orders are predicted in the light of this

assumption of the model.

We fit independent exponential distributions to buy orders’ and sell orders’ inter-

arrival times separately by using maximum likelihood estimator λ̂ where it is given

by

λ̂ =
1

x̄
. (5.1)

We obtain different λ for each distribution with 1/sec unit where mean of interarrival

times is given by 1/λ. Prediction results of both buy and sell orders are given in

Table 5.2. As indicated in the table, an order occurs every 3-4 seconds.

Averages and standard deviations observed in buy and sell orders are almost

equal. Although this result strengthened our exponential distribution hypothesis,

Kolmogorov-Smirnov test is not significant due to “curse of dimension” with 211,786

orders in total.

In Figure 5.1 and Figure 5.2, probability density functions of day type buy and

sell orders are respectively shown with their fitted distributions. These figures show

a visual fit. Although statistical significance does not exist, this visual fit and nearly

equal mean and standard deviations given in Table 5.2 support our conclusion that

orders arrive according to a Poisson process.
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Figure 5.1: Estimated and empirical probability density function of interarrival times
of day type buy orders occurs within first 6 days of August 2008

5.2 Order durations and Hurst parameter

In this section, we analyze both distribution of order durations and Hurst parameter

of fBm characterizing long range dependence of the model. First, we estimate the

Hurst parameter which is expected to be related to the tail parameter of order dura-

tions. Then, we continue by fitting a heavy tailed distribution to order durations and

estimate its tail parameter.

5.2.1 Estimation of Hurst parameter

In this section, we estimate Hurst parameter of log-price process using data of 3 years

as explained in Section 4.2. In estimation procedure, we use wavelet based estimator

introduced by Vietch and Abry [3]. We begin with description of the model, then we

state the results. Since wavelet estimation method is robust to linear or non-linear

trend and seasonality effects, in estimation of Hurst parameter, logarithmic return

series is used without removing trend and seasonality.

Estimator introduced in [3] is based on discrete wavelet transform of data. Let

d(j, k), k = 1, ..., nj, j = 1, ..., J be discrete wavelet coefficients of data set x(t). d(j, k)
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Figure 5.2: Estimated and empirical probability density function of interarrival times
of day type sell orders occurs within first 6 days of August 2008

is found as follows:

d(j, k) =

∞∫
−∞

x(t)ψj,k(t)dt, j, k ∈ Z, (5.2)

where ψj,k(t) are wavelet functions. These functions are generated by mother wavelet

ψ0(t) according to following equation:

ψj,k(t) = 2−j/2ψ0(2
−jt− k), j, k ∈ Z. (5.3)

Using these coefficients, expected value of squares of wavelet coefficients are de-

noted as µj and calculated as follows:

µj =
1

nj

nj∑
k=1

d2x(j, k) (5.4)

where nj is number of coefficients at octave j and nj ≈ n2−j.

In the equation below, using µj and gj ∼ −1
nj ln2

, another function is calculated to
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guarantee unbiasdness.

yj = log2(µj)− gj (5.5)

At the end of these procedures, linear regression of yj on j is found. The slope of

regression line α equals to 2H − 1. Thus, the estimator of Ĥ = (1 + α)/2 is unbiased

and consistent [3]. Log-log scale diagram in Figure 5.3 represents plot of yj versus j

and regression line where we use log-return data of 3 years with granularity of 1min.

Figure 5.3: Scaling diagram in log-log scale where yj = log2(µj)−gj is plotted against
octave j. Regression line gives estimate of Hurst parameter as the slope is equal to
2Ĥ − 1.

In calculation of estimated Hurst parameter, we use MATLAB codes shared by

Vietch and Abry in [8]. We begin our estimations by keeping highest granularity that

we have in the data. We obtain Hurst parameter estimates within (0, 1/2) indicating

negative correlations when a granularity smaller than 1 minute is used. This negative

correlation reflects the reactional transactions of buyer and seller agents against each

other as also explained in [2], [1].

Table 5.3 shows estimated Hurst parameter for the entire data set and its con-
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fidence interval calculated using log-returns in 1 minute, 5 minute and 10 minute

granularity. Considering 1 minute, 5 minute and 10 minute log-returns, we still pre-

serve the high frequency nature of the data [2]. The parameter is not estimated for the

data in seconds to avoid the myopia effect that we observe in log-returns in seconds.

Table 5.3: Hurst Parameter Estimation for Entire Data Set

Properties of the Data Estimation Results
Aggregation
Interval

Length of
Aggregate
Data

Maximum
Available
Octave

Initial
Octave
(j1)

Final
Octave
(j2)

Hurst Pa-
rameter
(H)

Confidence
Interval for H

1min 236539 15 7 15 0.546 [0.521, 0.572]
5min 47567 13 6 13 0.591 [0.548, 0.634]
10min 23838 12 5 12 0.596 [0.553, 0.639]
15min 15830 11 4 11 0.513 [0.476, 0.549]
20min 11954 11 6 11 0.627 [0.522, 0.732]
30min 7961 10 4 10 0.538 [0.482, 0.594]
60min 4299 9 4 9 0.524 [0.448, 0.619]

Results stated in Table 5.3 show that we observe Hurst parameter greater than 0.5

even in the lower bound of the confidence interval if we consider log-returns in 1 min,

5 min or 10 min. These results are consistent with the results found by Bayraktar

in [16]. When we observe log-returns in time intervals longer than 10 minutes, the

confidence intervals are wide since we lose the high frequency nature of the data and

have shorter sequences of aggregate data. Therefore, rest of the work related to Hurst

parameter estimation is performed for 1 min, 5 min and 10 min intervals.

To check whether the Hurst parameter changes by year or not, we analyze three

years separately. Results of this analysis are given in Table 5.4.

In the results of log-returns in 1 minute and 5 minutes, the estimate Hurst pa-

rameter for 2009 is significantly less than those for 2007 and 2008. Even the results

of 2008 and 2007 do not lie on the confidence interval of 2009. In the analysis of 10

min data, the estimates of Hurst parameter for 2008 and 2009 are nearly equal while

they are less than that for 2007. This is considered as a signal of non-stationary data

and the analysis is repeated for 1/2, 1/4, 1/8 and 1/16 of the data [4] to detect the
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Table 5.4: Yearly Estimation of Hurst Parameter

Results(2007) Results(2008) Results(2009)
Hurst
Param-
eter

Confidence
Interval

Hurst
Param-
eter

Confidence
Interval

Hurst
Param-
eter

Confidence
Interval

1min 0.622 [0.544, 0.701] 0.689 [0.507, 0.872] 0.537 [0.492, 0.582]
5min 0.622 [0.528, 0.717] 0.629 [0.423, 0.834] 0.531 [0.454, 0.609]
10min 0.574 [0.479, 0.669] 0.515 [0.430, 0.601] 0.517 [0.439, 0.594]

non-stationary part and the reason of this difference.

Table 5.5 shows the analysis results when we divide the data into 1/2. In this

analysis, we keep initial octave (j1) the same as that used in the analysis of the entire

data stated in Table 5.3. First half of the data consist of log-returns in given intervals

between 02.02.2007 and 16.08.2008 while second half consists of the data between

17.08.2008 and 31.12.2009. The difference between these two subsets of main data

set is more apparent in 5 and 10 minute result.

Table 5.5: Estimation of Hurst Parameter for Each Half of the Data

Results(First Half) Results(Second Half)
Hurst Param-
eter

Confidence
Interval

Hurst Param-
eter

Confidence
Interval

1min 0.558 [0.520, 0.595] 0.534 [0.497, 0.572]
5min 0.626 [0.560, 0.693] 0.530 [0.464, 0.596]
10min 0.617 [0.551, 0.683] 0.524 [0.458, 0.590]

The above result evokes the necessity of the analysis for 1/4 of the dataset. These

results are given in Table 5.6. In the analysis of each quarter of the data, estimated

Hurst parameter of second quarter is notably lower than the rest of the data. It is

even lower than the lower bounds of confidence intervals of the other parts of data.

In order to detect the non-stationary parts of the data, we increase the number of

splits in data set.

Table 5.7 gives the estimation results of Hurst Parameter for each piece corre-
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sponding to one eighth of the dataset. As indicated in Table 5.7, the estimated Hurst

parameter in part 4 is the lowest one. This result is parallel to the decrease observed

in the second quarter in Table 5.6. Moreover, it shows that part 4 is the main cause

of the decrease observed in second quarter rather than part 3. Part 4 where we have

lower Hurst parameter stands for the data between 07.04.2008 and 08.10.2008 where

Late-2000’s Global Financial Crisis begins. This fact illuminates the cause of the

decrease in Hurst parameter in 5.8.

Table 5.6: Estimation of Hurst Parameter for Each Quarter of the Data

1min (j1=7, j2=13) 5min (j1=6, j2=11) 10min (j1=5,j2=10)
Hurst
Param-
eter

Confidence
Interval

Hurst
Param-
eter

Confidence
Interval

Hurst
Param-
eter

Confidence
Interval

Part 1 0.550 [0.494, 0.607] 0.643 [0.538, 0.749] 0.567 [0.462, 0.673]
Part 2 0.558 [0.501, 0.614] 0.514 [0.409, 0.620] 0.333 [0.228, 0.439]
Part 3 0.561 [0.504, 0.617] 0.513 [0.408, 0.618] 0.542 [0.436, 0.648]
Part 4 0.467 [0.410, 0.523] 0.564 [0.458, 0.669] 0.510 [0.404, 0.615]

Table 5.7: Estimation of Hurst Parameter for Each Eighth Part of the Data

1min (j1=7, j2=12) 5min (j1=6, j2=10) 10min (j1=5,j2=9)
Hurst
Param-
eter

Confidence
Interval

Hurst
Param-
eter

Confidence
Interval

Hurst
Param-
eter

Confidence
Interval

Part 1 0.478 [0.390, 0.567] 0.618 [0.442, 0.795] 0.559 [0.277, 0.640]
Part 2 0.609 [0.521, 0.698] 0.692 [0.515, 0.869] 0.595 [0.413, 0.777]
Part 3 0.499 [0.411, 0.588] 0.712 [0.535, 0.889] 0.653 [0.471, 0.834]
Part 4 0.332 [0.244, 0.421] 0.370 [0.193, 0.547] 0.312 [0.131, 0.494]
Part 5 0.585 [0.497, 0.674] 0.494 [0.317, 0.671] 0.673 [0.492, 0.855]
Part 6 0.563 [0.475, 0.652] 0.448 [0.272, 0.625] 0.544 [0.362, 0.725]
Part 7 0.461 [0.373, 0.550] 0.515 [0.339, 0.692] 0.505 [0.324, 0.687]
Part 8 0.455 [0.367, 0.543] 0.581 [0.405, 0.758] 0.574 [0.392, 0.755]

For further analysis of this effect, we estimate Hurst parameter for each sixteenth

part of the data as detailed in Table 5.8. As indicated in Table 5.7, estimated Hurst
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parameter in part 4 is the lowest one. This result is parallel to decrease observed in

second quarter in Table 5.6. Moreover, it shows that part 4 is the main cause of the

decrease observed in second quarter rather than part 3. Part 4 where we have lower

Hurst parameter stands for the data between 07.04.2008 and 08.10.2008 where Late-

2000’s Global Financial Crisis begins. This fact illuminates the cause of the decrease

in Hurst parameter. For further analysis of this effect, we estimate Hurst parameter

for each sixteenth part of the data as detailed in Table 5.8.

Table 5.8: Estimation of Hurst Parameter for Each Sixteenth Part of the Data

1min (j1=7, j2=11) 5min (j1=6, j2=9)
Hurst Param-
eter

Confidence
Interval

Hurst Param-
eter

Confidence
Interval

Part 1 0.548 [0.404, 0.692] 0.626 [0.296, 0.955]
Part 2 0.542 [0.398, 0.686] 0.259 [-0.070, 0.589]
Part 3 0.631 [0.487, 0.775] 0.773 [0.443, 1.103]
Part 4 0.607 [0.463, 0.752] 0.614 [0.285, 0.944]
Part 5 0.382 [0.237, 0.526] 0.280 [-0.050, 0.610]
Part 6 0.625 [0.481, 0.769] 0.681 [0.351, 1.011]
Part 7 0.318 [0.174, 0.462] -0.159 [-0.489, 0.171]
Part 8 0.581 [0.437, 0.725] 0.792 [0.463, 1.122]
Part 9 0.595 [0.451, 0.739] 0.520 [0.190, 0.850]
Part 10 0.631 [0.487, 0.775] 0.628 [0.298, 0.958]
Part 11 0.628 [0.484, 0.772] 0.484 [0.154, 0.813]
Part 12 0.569 [0.424, 0.713] 0.640 [0.310, 0.970]
Part 13 0.513 [0.369, 0.657] 0.435 [0.105, 0.764]
Part 14 0.500 [0.356, 0.644] 0.776 [0.446, 1.106]
Part 15 0.426 [0.282, 0.571] 0.566 [0.236, 0.896]
Part 16 0.491 [0.347, 0.636] 0.564 [0.234, 0.894]

In Table 5.8, we give analysis for 5 min and 10 min log-returns since we have not

enough number of octaves for the analysis of 15min data. Non-stationarity is observed

in Part 2 and Part 7 for especially in 5 min data. The decrease in Hurst parameter

occurred in Part 2 is not observed in previous divisions while the decrease in Part

7 reflects the decrease occurred in previous divisions. In order to have a stationary

data set, we exclude these two parts.



Chapter 5: Parameter Estimation 29

5.2.2 Estimation of Order Duration

In the price model, the order duration is associated with random variable Uj assuming

that it follows a heavy-tailed distribution. To predict order duration parameter, we

use data of first six days in August 2008 that we choose as we explained in Section

4.2. Table 5.9 shows frequency of analyzed orders according to their type, buy or sell,

day or session type.

Table 5.9: Observed numbers of orders used in duration estimation

Buy Orders Sell Orders Total
Transacted Day Type Orders 6851 6851 12515

Transacted Session Type Orders 21006 21006 35112
Total Transacted Orders 27857 27857 47627

Untransacted Orders 7819 7819 20450
Total Number of Orders 35676 35676 68077

Order durations are calculated by taking the difference between initial registration

time of the order and last trade time of the order by combining the two datasets using

order ID number. Figure 5.4 shows the histogram of orders given during the day while

Figure 5.5 shows the histogram of the orders given during the session. Since session

type orders are valid only during one session, the times of these types of orders

involve a shorter period of time compared to day type orders. The distributions

are heavy tailed as assumed by the model. In the estimation, we used generalized

Pareto distribution as a well-known heavy-tailed distribution using MATLAB. Density

function of generalized Pareto distribution is defined as

f(x|k, σ, θ) =

[
1 + k(

x− θ
σ

)

]−1− 1
k

(5.6)

where σ is the scale parameter, θ is the threshold parameter and k is the shape

parameter effective on the tail in particular. The parameter δ that we have used

in the model coincides with 1/k here. Hence, we can find the Hurst index to be

(3 − 1/k)/2. Table 5.10 gives the parameters of the generalized Pareto distribution



Chapter 5: Parameter Estimation 30

fitted on the order durations. Here, the threshold parameter is not constrained to be

positive for the sake of fitting the tail better. As the model predicts, the important

factor in self-similarity and long-range dependence is the tail parameter, while there

is no special requirement on the initial part of the duration distribution.

Figure 5.4: Histogram of day type orders occurred within first 6 days of August 2008
which follows heavy-tailed distribution.

Table 5.10: Estimation result of generalized Pareto distribution fit to order durations

tail parameter (k) scale parameter (σ) threshold parameter (θ) Hurst parameter (H)
Day type buy
orders

0.695319 1359.58 -600 0.780905599

Day type sell
orders

0.572437 1103.84 -480 0.626541436

Session type
buy orders

0.643222 266.13 -120 0.722663404

Session type
sell orders

0.615648 215.81 -90 0.687847601

Table 5.10 shows that the distributions of order durations give greater Hurst pa-

rameter estimates than direct estimation of Hurst parameters from price time series
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Figure 5.5: Histogram of session type orders occurred within first 6 days of August
2008 which follows heavy-tailed distribution.

using wavelet estimation method. However this difference is considered acceptable

since models are idealized estimates of real data. In spite of this difference, order

realization times have heavy tailed distribution as assumed by the model. Since the

orders that are traded immediately upon arrival are not separately considered in the

model, we plot also histogram of non-zero durations as seen in Figure 5.6 where only

52% of orders take at least 1 sec to transact completely. If we ignore zero duration

orders, mean of non-zero durations is found as 1939sec and shape parameter is 0.7.

On the other hand, if we take both zero and non-zero durations into account, mean

of duration is found as 1010sec.

5.3 Effect function estimation

In this section, we begin with construction of effect function and estimation of its

parameters. Then we use our dataset to estimate effect rate for this selected effect

function by using assumptions of the model given in Section 4.1.
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Figure 5.6: Histogram of all nonzero durations; excluded are those transactions which
take place immediately.

In estimation of effect function and effect rate, we use same dataset that we have

used in duration estimation. First, we estimate effect function f as defined in Section

4.1. Then we estimate effect rate r that we have considered as the monetary conversion

parameter.

As explained in Section 5.2, our model does not consider the effect of orders

that are traded instantaneously upon arrival. When we analyze realization rate of

remaining orders, we note that 21,639 (76%) of all 28,357 orders were traded in one

piece after a certain duration while only 24% were traded in several pieces in time.

The distribution of these according to different types of orders is presented in Figure

5.7.

Since our price model did not consider orders that are traded instantaneously, we

propose an exponential function which most fits to this dynamic, of the form

f(x) =
exp(ax)− 1

exp(a)− 1
(5.7)

This function constructs a link between transacted quantity of each order and its
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Figure 5.7: Histogram of all orders occurred within first 6 days of August 2008 that
trades throughout the order duration or at the last minute

corresponding duration. The parameter a > 0, which we chose as parameter, models

effect rate in a non-linear form. Thus, this continuous function represents orders

as much as possible that transact in one piece after a certain time. The change of

traded quantity in time for a given order is represented with this function. Standard f

function is calculated for different values of a in Figure 5.8, it will be shifted according

to order arrival time and duration as required by the model and will be scaled with

effect parameter r. Here, we will use a constant r parameter to convert unit of

quantity into monetary unit. At the end it will be multiplied by the amount of each

order and will get a separate value for each order.

It is clear that the method we adopted changed the real model to represent the

behavior in real data. We expressed difference between the orders with random vari-

able a instead of r which is a parameter which linearly entered the model. Using

lsqcurvefit function in MATLAB, we fitted f to additive trade realization function

that each order formed while realization. Dividing observational function by total

trade quantity, we obtained image in [0,1] interval; We scale also the domain of f into
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Figure 5.8: The effect function for various values of a

[0,1]. As a result, domain and codomain of observational and theoretical functions

became equal. Figure 5.9 shows an order’s dynamic where a was predicted as 1.2542

and used in the effect function f .

Figure 5.10 shows the frequency distribution of a estimated from the data. The

accumulation observed around the value 700 matches with the orders that are all

transacted at once, since the upper limit that we use in the least squares method is

700. This is even steeper than a = 100 curve of Figure 5.9. As the numeric precision

in MATLAB limits us to this magnitude, 700 is chosen and a better precision is not

looked for. The accumulation here is in accordance with the fact that 76% of 28357

orders are orders that are transacted all at once rather than piecewise.

Since distribution of a given in Figure 5.10 is bimodal, a single distribution cannot

be fitted. Keeping orders that were realized at the last minute, a heavy tailed dis-

tribution like Pareto can be appropriate for the first section. Another option at the

stage of simulation involves drawing random number using Bootstrap method from

observed distributions, instead of fitting a parametric distribution.
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Figure 5.9: An order realization curve with estimated a = 1.2542

5.4 Estimation of effect rate

As expressed in Section 4.1, effect rate is represented by a random variable Rj and

has a monetary conversion role. Assuming that the effect of any order i is directly

proportional with trade duration in our model, expressing with

riuif

(
t− si
ui

)
(5.8)

We fit function f which determines the shape of effect in Section 5.3 after its normal-

ization by dividing into transaction quantity. For this reason, ri is directly propor-

tional to quantity. According to expression 5.8, ri also plays the role at converting

time unit of trade duration into monetary unit of stock price change. To join these two

facts, we define effect rate as ri = rQi where r is a conversion parameter. Accordingly,

when we convert the total effect of an order i into money unit,

riui = rQiui
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Figure 5.10: Distribution of parameter a of effect function

For this reason, to estimate r, we use data of six days used in prediction of duration

distribution, defined in Section 4.2. Considering that buy orders have positive while

sell orders have negative effects, ri becomes a real valued random variable. Making

use of this random variable and effect function f , we are able to calculate the effect

of an order at any time until its last transaction. At this stage, it is appropriate to

test one of the model assumptions stating the independence of effect rate and order

duration. We need to apply the test into two random variables R and U defining

effect rate and order duration respectively. According to our effect rate definition,

we obtain R = rQi. For these reasons, we test independence of order quantity Q

and order duration U . Scatter diagram of these variables is presented in Figure 5.11.

According to this figure, no dependence is observed in visual sense even if a certain

accumulation is observed on smaller times and quantities. Since correlation coefficient

is −0.0732, we conclude the verification of model assumption by the fact that effect

rate and order duration are independent random variables.

All trade quantities are presented in Figure 5.12 with positive values representing

buy orders and negative values representing sell orders. When normal distribution is
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Figure 5.11: Scatter diagram of quantity versus duration

fitted into this histogram, mean is found as 1039.7 and standard deviation is found

as 35442. In the following calculations, if we make 1/10000 scaling we will reach

smaller numbers; it is convenient to continue with a distribution with 0.1 average and

3.54 standard deviation. Let the indexes of buy orders realized throughout a certain

day be collected in set B, and indexes of sell orders be collected at set S. Let the

transaction quantity of any order i is indicated with Qi . Since all transactions will

be finalized at the end of the day, for simplicity, we consider a common r value both

for buy and sell orders. Considering that buy orders increase prices while sell orders

decreases, the following relationship appears by the end of the day:

∑
i∈A

rQiui −
∑
i∈S

rQiui = r

[∑
i∈A

Qiui −
∑
i∈S

Qiui

]
∝ logP1 − logP0. (5.9)

where P0 and P1 indicates opening and closing prices of one day respectively. Left side

of Equation 5.9 can be interpreted as the net effect of buy and sell on price. Since total

effect of orders is taken into account due to day-long calculation, intermediate values
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Figure 5.12: The distribution of order quantity; buy (positive) and sell (negative)
orders

of effect function are not included in this calculation. For 6 days that the data are

involved, we continue by calculating the terms in right and left side of Equation 5.9 in

terms of r and fitting least squares line. The slope of the line gives scaled estimate of

r, r̂ where calculations are made by scaling trade quantity as 1/10000 and duration as

1/3600 to maintain the numerical sensitivity used by the computer. After calculating

slope of regression line, we turn back to previous scale to obtain an estimate of the

effect rate. In Figure 5.13, for 6-days period,
∑

i∈AQiui −
∑

i∈S Qiui values are

plotted in x-axis while daily logarithmic return are plotted in y-axis. According

to the figure the effect of trades is not related to logarithmic return. Moreover, the

gradient of regression line is not significantly different than zero, correlation coefficient

is extremely low. As a result of this observation, thinking that this effect is reflected

on the prices after a certain period of time, we plot the right hand side of (2) with a

delay of 1 and 2 days. The 2-day shifted state of the price changes is shown in Figure

5.14. Here, a positive linear relationship with a high correlation coefficient of 0.9258
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is observed. The conversion factor r is found to be 1.93e− 05. Although it is a very

small number, it is significant with a P-value of 0.008. As a result of the regression,

the y-intercept is found to be −0.013. The associated P-value is 0.03. Even though

it is statistically meaningful to some degree, this parameter will be taken to be 0 in

order for r to act as a direct factor. Although it is different from the original model,

a shift in time does not fundamentally change the nature of the model. It just means

that the price sequence will emerge as a result of the transactions only after a certain

time delay.

Figure 5.13: Logarithmic return versus net daily effect

To be used at the fitting stage, we assume that the factor ri has a normal distribu-

tion since we have previously assumed that the amount distribution is normal. We will

work back from the scalings above and recover the correct parameters. In view of the

scaling for the amount, we had calculated the mean to be 0.1 and the standard devi-

ation to be 3.54. Since the scaling for time amounts to converting seconds into hours,

we can assume that the coefficients ri come from a normal distribution with mean

(1.93e−05)(0.1) = 1.93e−06 and standard deviation (1.93e−05)(3.54) = 6.8322e−05,
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Figure 5.14: Daily log-return vs daily net contribution with delay of two days

and that time is measured in units of hours. If one measures time in units of seconds,

one needs to make the mean and the standard deviation even smaller. The reason for

obtaining numbers as small as above is that the effect at the end is proportional to

the logarithm of the price.
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Chapter 6

CONCLUSIONS

In this thesis, we have estimated all parameters of a stock price model using real

data retrieved from Istanbul Stock Exchange. Since this stochastic model considers

effects of agent-level behavior on stock price, we estimate agent-based parameters.

Moreover, the model converges asymptotically to a fractional Brownian motion when

high frequency trading occurs. For this reason, we express and estimate the long-

range dependence parameter of the model as the Hurst parameter corresponding to

the limiting fractional Brownian motion.

First, we have estimated interarrival of orders after classification of orders into

two groups: buy and sell orders. We have fit independent exponential distributions

to interarrivals of both buy and sell orders by using maximum likelihood estimation

method. Although results of Kolmogorov-Smirnov test are not significant, we have

found that estimated mean, observed mean and observed standard deviation are close

to each other which support our assumption that arrivals occur according to a Poisson

process.

We have estimated Hurst parameter governing long-range dependence property

using wavelet based estimation method. Estimate of Hurst parameter is found around

0.6 for time scales greater than 1 minute. This results justifies long range dependence

nature of high frequency stock price data. Then, we have estimated the order duration

parameter. According to the model, order duration follows a heavy-tailed distribution.

Histogram of order duration visually supports this assumption. We fit generalized

Pareto distribution as a well-known heavy-tailed distribution after grouping orders

according to their duration type as day/session type orders and buy/sell type. We

have also calculated Hurst parameter this time by using its relationship with the
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tail parameter of generalized Pareto distribution. Even if the two estimates of Hurst

parameter are not equal to each other, this difference is acceptable.

Finally, we have constructed an effect function that represents the local dynamics

of trading of each order over its duration . Then, parameter of this function is

estimated. We end up with estimation of effect rate. Effect rate is assumed as a

multiple of order quantity and a monetary conversion parameter. Since all orders are

finalized at the end of day, we consider daily price change to estimate the conversion

parameter. In this procedure, we could not find a linear proportion between daily net

contribution and daily log return. Since we observe a linear relation after two days

of delay, we estimate conversion parameter with delayed data.

Our analysis of high frequency data have confirmed that mild long-range depen-

dence is observed in stock prices at 1min granularity. While smaller scales involve

reactional movements of buyers and sellers, the Hurst parameter is estimated to be

around 0.6 using scales of 1min and larger. Our overall conclusion is that the stochas-

tic price model fits the data well The Poisson arrivals and heavy tailed duration dis-

tribution assumptions hold and the effect of the buy and sell orders on the price can

be numerically approximated by a deterministic function with a random parameter.

Furthermore, all the estimations of this thesis are used in validation of the model by

simulations reported elsewhere [6].



Bibliography 43

BIBLIOGRAPHY

[1] Tsay, R. S., Analysis of Financial Time Series, 2002, Wiley.

[2] Dacorogna, M. M., Gencay, R., Muller, U., Olsen, R. B. and Pictet O. V., ”An

Introduction to High Frequency Finance” Academic Press, 2001.

[3] Vietch, D. and Abry, P., ”A Wavelet-Based Joint Estimator of the Parameters

of Long-Range Dependence”, IEEE Transactions on Information Theory, 45:878-

897, April 1999.

[4] Willinger, W., Taqqu, M. S., Teverovsky, V., ”Stock market prices and long-range

dependence”,Finance and Stochastics, 3:1-13, 1999.
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