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Koç University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a doctoral dissertation by

Yusuf Sahillioğlu
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ABSTRACT

There are many pairs of objects in the digital world that need to be related before

performing any comparison, transfer, or analysis in between. The shape correspondence

algorithms essentially address this problem by taking two shapes as input with the aim of

finding a mapping that couples similar or semantically equivalent surface points of the given

shapes.

We focus on computing correspondences between some featured or all present points of

two semantically similar 3D shapes whose surfaces overlap completely or partially up to

isometric, i.e., distance-preserving, deformations and scaling. Differently put, our isometric

shape correspondence algorithms handle several different cases for the shape correspondence

problem that can be differentiated based on how similar the shape pairs are, whether they

are partially overlapped, the resolution of the desired mapping, etc.

Although there exist methods that can, in most cases, satisfactorily establish 3D corre-

spondences between two given shapes, these methods commonly suffer from certain draw-

backs such as high computational load, incapability of establishing a correspondence which

is partial and dense at the same time, approximation and embedding errors, and confusion

of symmetrical parts of the shapes. While the existing methods constitute a solid founda-

tion and a good starting point for the shape correspondence problem, our novel solutions

designed for a given scenario achieve significant improvements as well as contributions.

We specifically explore the 3D shape correspondence problem under two categories as

complete and partial correspondences where the former is categorized further according to

the output resolution as coarse and dense correspondences. For complete correspondence

at coarse resolution, after jointly sampling evenly-spaced feature vertices on shapes, we for-

mulate the problem as combinatorial optimization over the domain of all possible mappings

between source and target features, which then reduces within a probabilistic framework to

a log-likelihood maximization problem that we solve via EM (Expectation Maximization)

algorithm. Due to computational limitations of this approach, we design a fast coarse-

iv



to-fine algorithm to achieve dense correspondence between all vertices of complete models

with specific care on the symmetric flip issue. Our scale normalization method based on a

novel scale-invariant isometric distortion measure, on the other hand, handles a particular

and rather restricted setting of partial matching whereas our rank-and-vote-and-combine

(RAVAC) algorithm deals with the most general matching setting, where both two solutions

produce correspondences that are partial and dense at the same time.

In comparison with many state-of-the-art methods, our algorithms are tested by a variety

of two-manifold meshes representing 3D shape models based on real and synthetic data.



ÖZETÇE

Sayısal dünyada, aralarında herhangi bir karşılaştırma, aktarım, veya analiz yapabilmek

için ilişkilendirilmesi gereken çok sayıda nesne modeli vardır. Şekil eşleme algoritmaları, bu

probleme çözüm olarak verili iki nesne modeli arasında benzer veya anlamsal olarak denk

yüzey noktalarını eşleştirmeyi hedeflerler.

Bu çalışmada anlamsal olarak yakın ve yüzeyleri tamamen veya kısmi olarak örtüşen

iki 3B şeklin öznitelik noktaları veya tüm noktaları arasında eşleştirme hesaplama prob-

lemine odaklanıyoruz. Bu örtüşmenin izometrik, yani uzaklık-koruyan, deformasyonlara ve

ölçeklemeye karşı değişimsiz olduğunu varsayıyoruz. Bir başka deyişle, bizim geliştirdiğimiz

izometrik şekil eşleme algoritmaları şekil eşleme probleminin, şekiller arasındaki benzerlik

miktarı, örtüşmenin kısmi ya da tam olması, istenilen eşlemenin çözünürlüğü gibi çeşitli

etkenlere bağlı olarak ayrışan birçok farklı durumun üstesinden gelirler.

Verilen iki şekil arasında çoğu zaman tatmin edici 3B eşlemeler bulabilen yöntemler

olsa da bu yöntemlerin yüksek hesap yükü, hem kısmi hem yoğun eşleme yapamama,

yaklaşıklık ve gömme hataları, simetrik parçaların karıştırılması gibi çeşitli sorunları vardır.

Mevcut yöntemler şekil eşleme problemi için sağlam bir temel ve iyi bir başlangıç nok-

tası oluştururken, bu çalışmada, verilen senaryoya göre tasarlanan yeni çözümler bu temel

problemin ele alınmasında belirgin gelişmeler ve katkılar sağlamaktadır.

3B şekil eşleme problemini tam ve kısmi eşleme olarak iki ana grupta inceliyoruz, ve ilk

grubu çıktı çözünürlüğüne göre kaba ve yoğun eşlemeler olarak kendi içinde ikiye ayırıyoruz.

Kaba çözünürlükteki tam eşleme problemi için, eşit uzaklıklarla ayrılan öznitelik nokta-

larını iki şekil yüzeyi üzerinden ortaklaşa örnekledikten sonra, problemi kaynak ve hedef

şekillerdeki örnekler arasında olası tüm gönderimler üzerinden tanımlanan bir kombinato-

ryal eniyileme olarak formule ediyoruz ve bunu, olasılıksal bir yaklaşımla EM algoritmasi

kullanarak çözebileceğimiz bir olasılıksal çatı içindeki log-olabilirlik enbüyütme problemine

dönüştürüyoruz. Bu yöntem yüksek hesap yükü nedeniyle ancak kaba çözünürlükte görece

az sayıda nokta arasında eşleme yapabilir. Tez çalışmasının bir sonraki aşamasında, şekil
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modellerindeki bütün noktalar arasında yoğun eşleme yapabilen hızlı, kabadan-inceye (çoklu

çözünürlüklü), ve simetrik flip problemini de dikkate alan yeni bir algoritma tasarlıyoruz.

Ölçek-değişimsiz ölçütümüz üzerine dayalı şekil ölçek düzgeleme yöntemimiz, diğer yandan,

kısmi eşleme probleminin özel ve kısıtlı bir halinin üstesinden gelirken, diz-oyla-ve-birleştir

(RAVAC) algoritmamız en genel kısmi eşleme durumunu ele alır. Bu iki yöntem de hem

kısmi hem yoğun eşlemeler üretir.

Bu çalışmada geliştirdiğimiz bütün yöntemleri, gerçek ve sentetik veriye dayalı çeşitli

3B şekil vertabanları üzerinde, literatürde mevcut diğer yöntemlerle karşılaştırmalı olarak

sınıyoruz.
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Chapter 1

INTRODUCTION

3D shape correspondence is a fundamental problem in both computer vision and com-

puter graphics; it aims to find a mapping between some or all of the surface points of two

given shapes, in other words, it seeks on two given shapes for pairs of surface points that

are similar or semantically equivalent. Dealing with the 3D shape correspondence prob-

lem is important because it lays the foundations of numerous practical applications such

as shape morphing and interpolation [1][2], mesh parameterization [3][4], rigid or non-rigid

shape registration [5][6], time-varying reconstruction [7][8], shape recognition and retrieval

[9][10], shape segmentation [11][12], texture mapping [13], deformation transfer [14], mesh

watermarking [15], and statistical shape analysis [16], all of which and many others can be

reviewed in [17], [18].

Establishing consistent maps or improving the existing ones between more than two

shapes is also of interest as there has recently been a growing trend for 3D reconstruction

of time-varying real scenes, and there already exist several methods that can generate mesh

sequences representing the geometry and the motion of the dynamic objects. However, there

is yet relatively little work in the literature on the analysis of such shape collections [19][20].

1.1 Scope

The goal of this research is to design algorithms that can efficiently establish robust coarse

and/or dense correspondences between

(a) two perfectly isometric shapes, e.g., two different poses of the same object, (Fig. 1.1-a),

(b) two nearly isometric shapes, e.g., two different people, (Fig. 1.1-b),

(c) two partially isometric shapes where
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(1) one shape is an isometric part of the other, e.g., upper body vs. man (Fig. 1.1-c1),

(2) shapes have parts which are not in common, centaur vs. man (Fig. 1.1-c2),

where the shapes to be matched are always allowed to come in arbitrary scales.

Figure 1.1: Correspondences to be sought between two perfectly isometric (a), nearly iso-

metric (b), and partially isometric (c1 and c2) shapes.

We use geodesic distance metric to capture the global intrinsic structure of the shapes

which is invariant to isometric deformations such as rotation, translation, and bending. If

two shapes are perfectly isometric, then there exists an isometry, i.e., a distance-preserving

mapping, between these shapes such that the geodesic distance between any two points on

one shape is exactly the same with the geodesic distance between their correspondences

on the other. However, since two digital shapes are hardly ever perfectly isometric, even

for different poses of a rigid object, due to imperfections of the modeling process and/or

geometry discretization errors, it is not usually possible to find a zero distortion mapping,

hence the goal rather becomes minimization of an conveniently defined isometric distortion

function.

1.2 Contributions

We present robust algorithms for various aspects of 3D isometric shape correspondence

that are not only efficient but also fully automatic. Contributions towards this goal are as

follows:
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• We introduce four new sampling algorithms, namely curvature-oriented evenly-spaced

(COES), coarse-to-fine, and two different extremity sampling, that can both be em-

bedded into any geometry processing algorithm working on manifold meshes on which

geodesic distances can be computed.

• For each input scenario, we define isometric distortion functions that measure, for

a given map, deviation from isometry in the original 3D Euclidean space wherein

isometry itself is defined, hence free of any embedding and approximation errors.

• We optimize these functions again in the 3D Euclidean space by employing well-

established paradigms such as bipartite graph matching, greedy optimization, EM

algorithm, combinatorial optimization, and voting.

• We share the fastest computational complexity on dense correspondence with [21]

which, however, comes with sphere topology restriction and triangulation sensitivities.

• We present a map tracking mechanism with which the symmetric flip problem that

is inherent to multiresolution isometric shape matching algorithms is substantially

handled.

• We address partial shape correspondence in the most general setting where our method-

ology admits shapes with quite small similarity overlap. Besides, we are capable of

establishing a correspondence which is partial and dense at the same time.

• Our algorithms have no restriction on shape topology and are all insensitive to the

peculiarities of the particular triangulation.

1.3 Overviews

In the sequel, we overview two different and important aspects of 3D isometric shape cor-

respondence problem for both of which we propose published or to be published solutions

at coarse and/or dense resolutions.
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1.3.1 Complete correspondence

Complete correspondence solutions seek for a plausible mapping between two completely

common input shapes at arbitrary scales. Our output correspondence in this setting can be

coarse as well as dense.

1.3.1.1 Coarse correspondence

For coarse correspondence between jointly sampled feature vertices, our preliminary contri-

bution, that is accepted by IEEE Conference on Computer Vision and Pattern Recognition

(CVPR) 2010, is based on greedy optimization of our isometric distortion function [22].

This optimization mechanism improved within EM (Expectation-Maximization) framework

and coupled with a more sophisticated sampling scheme leads to an extension work accepted

by IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 2012 [23].

1.3.1.2 Dense correspondence

For dense correspondence between all vertices, our EM-based coarse correspondence al-

gorithm does not scale well due to computational burden that becomes apparent as the

cardinality of the mapping set approaches thousands. An alternative coarse-to-fine (C2F)

strategy that replaces the user-defined sampling distance parameter of the former with

patch-based subdivisions captures level of details not only efficiently but also fully automat-

ically. With these motivations, we present our novel C2F dense correspondence algorithm

in Eurographics Symposium on Geometry Processing (SGP) 2011 [24].

Since the goal of [24] is to achieve a dense correspondence, the focus is rather on com-

putational efficiency, and hence the method is less accurate than [23] in achieving sparse

correspondence. Moreover, the dense correspondence method in [24] severely suffers from

symmetric flips due to initial coarse sampling problem which has then been addressed by

the tracking mechanism introduced in our extension work to be published in Computer

Graphics Forum (CGF) 2012 [25].

1.3.2 Partial correspondence

Partial correspondence solutions, in the most general setting, seek for a plausible mapping

between two shapes with multiple common parts as well as uncommon parts. In a restricted
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setting, partial correspondence reduces to part matching where one of the two shapes to be

matched is an isometrically deformed part of the other. For both settings, shapes come at

arbitrary scales and the resolution of the output correspondence is generally coarse although

we manage to establish correspondences that are partial and dense at the same time. Note

also that, in general, if a method can find solutions for the partial case, it will also be able to

handle the complete correspondence case naturally, which applies to our partial matching

algorithms as well.

Bringing two shapes to the same scale is the essential problem to be handled before

performing the partial matching. To this end, we first explore scale normalization issue

and propose an algorithm based on our novel scale-invariant isometric distortion measure

as described in the paper to appear in the Pacific Conference on Computer Graphics and

Applications (Pacific Graphics) 2012 [26].

With shapes that have multiple common parts at arbitrary scales as well as uncom-

mon parts, we propose a more involved algorithm that we call rank-and-vote-and-combine

(RAVAC) with the idea of collecting partial isometry cues from the given shapes by consid-

ering all possible partial mappings (relations) between shape extremities and accumulating

the collected information into a vote matrix to be analyzed for the overall optimal par-

tial correspondence. A journal paper describing our RAVAC algorithm is currently under

preparation to be submitted to a journal [27].

1.4 Putting It All Together

We wrap up all of our shape correspondence algorithms reviewed above in Table 1.1 and

release their source codes and executables to public through author’s current web site.

1.5 Organization

The rest of this thesis expands our works referenced above with a corresponding literature

review, solution, and discussion of comparative results, as well as future research direc-

tions and conclusions, hence touching various aspects of 3D isometric shape correspondence

problem, which are complete and partial correspondences at coarse and dense resolutions.

Preceding that, related concepts and numerical tools some of which form the foundations

of our (and many other) correspondence algorithms are investigated.
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Input scenario Output

resolution

Solution paradigm Computational

complexity

Publication

Isometric or nearly

isometric

Coarse Greedy optimization O(NV log V ) CVPR [22]

Isometric or nearly

isometric

Coarse Greedy optimization

and EM algorithm

O(NV log V ) PAMI [23]

Isometric or nearly

isometric

Coarse or

dense

Combinatorial O(V log V ) SGP/CGF [24]

Isometric or nearly

isometric

Coarse or

dense

Combinatorial (with

symmetric flip care)

O(V log V ) CGF [25]

Isometric or nearly

isometric or par-

tially isometric

Coarse or

dense

Combinatorial (part

matching)

O(
(

N
M

)
M !M3) PG/CGF [26]

Isometric or nearly

isometric or par-

tially isometric

Coarse or

dense

Combinatorial (most

general setting)

O(N3V log V ) to be submit-

ted [27]

Table 1.1: Summary of our algorithms that handle various aspects of 3D isometric shape corre-

spondence. V is the number of vertices in the original mesh, N ¿ V is the number of samples at

coarse resolution, and M is the cardinality of the sample subset which is 5 in all of the corresponding

experiments. [25] is in revision cycle, [27] is to be submitted.
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Chapter 2

RELATED WORK AND PRELIMINARIES

In this chapter, we first categorize the 3D shape correspondence algorithms along with

the basic references to the related work (Section 2.1) which will be populated more in the

following chapters. We then explore the concepts and computational tools that are closely

related to the 3D shape correspondence problem. Our correspondence algorithms, as well

as most of the others, benefit from some subset of the material discussed in this chapter

(Sections 2.2–2.5.2.3).

2.1 Classification of Correspondence Methods

3D shape correspondence methods can be grouped as non-isometric and isometric according

to the type of deformations the input shapes are exposed to. In case of isometric deforma-

tions, the distance between any two points on one shape is expected to be preserved such

that the distance between their images on the other shape is, at least roughly, the same. For

non-isometric inputs, on the other hand, lack such distance preservation property. Whether

isometric or not, a correspondence method is expected to produce output at coarse and

dense resolutions where a subset or the full set of the vertices are matched for the former

and the latter, respectively.

2.1.1 Non-isometric methods

The methods that address non-isometric shape correspondence rely on local shape similarity

information using shape descriptors [28, 19, 29, 30]. Although local shape similarity is fast

to measure and an important clue for non-isometric shape correspondence, it is considered

as less reliable than global shape information such as isometry. The methods which rely

only on local geometric information may not perform well when the shapes to be matched

exhibit large variations in their local geometry, or may easily confuse surface parts when

there are many points that are locally similar.
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2.1.2 Isometric methods

Isometric shape correspondence methods benefit from isometry information as a global

similarity measure in addition to the local similarity information that still applies in this

setting. For isometric methods, local shape descriptors may still come handy in the pre-

processing step where the samples to be matched need to be selected consistently [23, 24,

25, 27, 31, 21, 32] and/or in the optimization process where the main pairwise geodesic or

diffusion-based distance consistency condition is backed up with pointwise descriptor terms

[33, 34, 35, 36, 37]. There also exist methods that completely discard local shape descriptors

to proceed according to isometric clues only [22, 26, 38, 39]. All of our algorithms fall into

this category, hence respecting geodesic consistency in the maps to be produced.

2.2 Shape Classes

In computer graphics and vision applications, the surface of a shape is represented either

explicitly as a polygon mesh or disconnected set of points, or implicitly as an isosurface to

be extracted from a signed distance function stored in a grid of specified resolution. While

we work on explicit triangulations of two-manifolds embedded in 3D Euclidean space, for a

3D shape correspondence application, more important than the representation is the range

of the transformations a shape can admit, which can be rigid or non-rigid.

2.2.1 Rigid shapes

Rigid shapes are exposed to distance-preserving rigid transformations which are translation,

rotation, and reflection. Due to low degree of freedom, which is 2 translation plus 1 rotation

plus 2 reflection axes in 2D plane and similarly 6 in total in 3D space, it is generally easier

to register/align two rigid shapes compared to the non-rigid case; one needs to resolve only

the translation ambiguity and rotation ambiguity between shapes (Figure 2.1).

Translation disambiguation is handled by simply translating the objects such that their

center of masses coincide at the origin, whereas rotation ambiguity can be resolved by Prin-

cipal Component Analysis (PCA) on covariance matrix C that encodes variances between
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Figure 2.1: Rigid shapes that differ by translation and rotation (left). Translation disam-

biguation (middle) and rotation disambiguation (right) to perfectly align the two.

x, y, and z coordinate pairs of all n shape points.

C =




∑n
i=1 x2

i

∑n
i=1 xiyi

∑n
i=1 xizi

∑n
i=1 xiyi

∑n
i=1 y2

i

∑n
i=1 yizi

∑n
i=1 xizi

∑n
i=1 yizi

∑n
i=1 z2

i




The eigenvectors of C provide principal axes/directions of the shape, which are then aligned

with the standard Euclidean axes. Same alignment applied to the other shape disambiguates

rotation between two rigid inputs. Our works in [22][23] perform this rigid alignment on

isometry-invariant spectral embeddings of the input shapes. The scale invariance, if neces-

sary, is then achieved by setting the average Euclidean distance from the set of vertices to

coordinate origin to the same value for both shapes.

PCA-based solution to rigid registration problem does not work when the surfaces are

given only partially, a more common scenario that, for example, arises in a range scan of a

3D object as each of multiple scans has missing parts due to occlusion (Figure 2.2). Iterative

closest points (ICP) algorithms comes handy at this time since they cast the problem as

surface-to-surface distance difference minimization task. There are variants distinguished

by the way surface-to-surface distance measured and/or the numerical minimization method

preferred, both of which eventually produces desired rotation and translation to be applied

to one shape for perfect alignment with the other [5][40][41][42][43]. Correspondence between
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shape points are extracted trivially once the shapes are rigidly aligned.

Figure 2.2: Generic ICP algorithm aligns two rigid shapes given partially. Surface-to-

surface distance minimization guided by black correspondences (left) and an example of a

final registration (right, taken from [42]).

2.2.2 Non-rigid shapes

A more involved yet realistic approach to represent real world objects in digital world brings

non-rigid objects which may admit bending, folding, stretching, and scaling in addition to

the rigid transformations (Figure 2.3). Other than stretching, to which we tolerate to

some short extent, all of our isometric correspondence algorithms are invariant to these

non-rigid transformations that preserve pairwise geodesic distances on shapes. Note that,

although scaling does not preserve distances in its original form, our appropriate scale

normalization methods produce normalized distances with which scale-invariance is achieved

[22][24][23][25]. For partial matching where normalization is not trivial, we still enforce

isometry by proper choice of scale-invariant isometric distortion functions [26][27].

While non-rigid correspondence can easily be inferred from non-rigid alignment that

brings input shapes to the final common pose [44][32], there exist many other ways to

compute correspondences which is crucial for various follow-up applications such as mesh

morphing, keyframe animation and attribute transfer fed by objects most likely in non-rigid

poses. We discuss various non-rigid correspondence methods in the following chapters.



Chapter 2: Related Work and Preliminaries 11

Figure 2.3: Non-rigid shapes from the same mesh sequence exhibiting translation, bending,

rotation, reflection, scaling, and stretching (artifacts around belly at the rightmost pose).

2.3 Shape Similarity

In this section, we review important computational tools that can be used to perform pair-

wise similarity comparisons between isometrically deformed non-rigid shapes which in turn

enables correspondence computation in between. The main theme is to develop isometry-

invariant local shape descriptors and global metrics upon the key observation that similar

shapes possess similar first-order descriptors between the corresponding points and similar

second- or third-order metrics between the corresponding pair or triplet of points. The

former, in other words, deals with local similarity whereas the latter addresses the global

similarity, and their combination is analyzed to decide the similarity measure based on which

one can compute a plausible correspondence that couples similar or semantically equivalent

surface points of the given shapes.

2.3.1 Global similarity: distance metrics

2.3.1.1 Isometry

Isometry is an important global shape information that is defined as distance-preserving

mapping between two metric spaces each equipped with a pair of a point set and an appro-
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priate metric between points that are invariant under the transformations the spaces can

be exposed to. If two metric spaces (V, dV (, )) and (U, dU (, )) are perfectly isometric, then

a correspondence algorithm exploits that fact by favoring a mapping f : V → U such that

dV (vi, vj) = dU (f(vi), f(vj)) for all vertex pairs. However, two digital shapes are hardly

ever perfectly isometric, even for different poses of a rigid object, due to imperfections of

the modeling process and/or geometry discretization errors. Hence the goal of isometric

correspondence methods existing in the literature and proposed in this thesis is rather to

find a mapping that minimizes the amount of deviation from isometry.

Isometry type of a given mapping can be labeled by means of Lipschitz continuity con-

stant C = dU (f(vi),f(vj))
dV (vi,vj)

which returns C ≤ 1, C < 1, and C = 1 for nonexpanding map,

contraction map, and perfectly isometric map, respectively.

We describe in the sequel several well-known distances that are used to define isometry

between deformable shapes. The desired properties of such a distance are that it is a metric

(non-negative, symmetric, satisfies triangle inequality and indistinguishability), invariant to

isometric deformations, computationally inexpensive, insensitive to noise and small topol-

ogy changes, and free of any parameter that must be set differently for specific meshes or

applications.

2.3.1.2 Geodesic distance

Geodesic distance is a metric defined between a point pair as the length of the shortest

path along the surface, hence not as relaxed as the Euclidean distance that is allowed travel

through anywhere on Rm (Figure 2.4–left). Such a restriction comes handy for exploring

the global intrinsic structure of the non-rigid shapes as geodesic distance is invariant to

non-rigid transformations such as bending. The sensitivity to topology changes is the main

drawback of this metric that arises due to the consideration of only one path which may

severely change by even the slightest cutting or gluing operation. We use geodesic distance

g for all of the isometric correspondence algorithms in this thesis.

Shortest paths through faces. When shape is represented explicitly with a polygon

mesh, Dijkstra’s algorithm [45][46] can be employed to decide the shortest paths which, how-

ever, typically pass through faces in the mesh and are therefore not found by the traditional

method [45]. We, therefore, use Dijkstra’s algorithm, accelerated by Fibonacci heap [47] for
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Figure 2.4: Left: Euclidean (blue) vs. geodesic (red) distance between a pair of points

on the surface (green). Two boxes at right: Dijktra’s shortest paths solution to geodesic

distance computation is refined by the introduction of shortcut edges (blue) that permit

traveling over mesh faces.

edge selection, with a slight shortcut edge modification for smoothing effect [48]. Movement

on shortcut edges in addition to the original mesh edges improves the measurements as

they allow traveling on the mesh faces as well (Figure 2.4–right). Triangles adjacent to a

centering triangle are unfolded to the plane of the centering triangle, and a shortcut edge

is generated if it falls inside the unfolded polygon.

Although Dijkstra’s shortest paths algorithm boosted by shortcut edges provides suf-

ficiently accurate geodesic distances efficiently, one can improve results even further with

no additional computational cost. Fast marching (FM) method, for this purpose, exploits

the roads on mesh faces to the fullest. To this effect, when shortest path is at a particular

vertex, marcher checks not only adjacent edges (traditional Dijkstra) but also adjacent faces

[49]. Note that, shortcut edges provide a limited version of this effect by allowing face travel

starting from a triangle vertex, whereas FM is capable of entering the face from an arbi-

trary point on the triangle edge, hence increasing accuracy furthermore. Being restricted to

triangular faces and requirement of special processing for triangles with obtuse angles are

drawbacks of FM over Dijkstra’s algorithm which works on any polygonal face. A raster

scan algorithm permits parallel process of FM method yielding the fastest geodesic compu-
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tation time to this date [50]. More accurate solution than that of FM at almost the same

speed for triangle meshes is achieved by edge partitioning in [51] whose bottleneck is the

intense memory requirement due to large number of windows that represent the partitions.

2.3.1.3 Diffusion distance

Diffusion distance is a metric defined between a point pair by averaging over all paths of

length t connecting the two points [52] which in turn renders it more robust to topological

noise than the geodesic distance yet less intuitive and accurate due to the spectral embedding

involved and the choice of t. To realize this metric, heat diffusion properties on manifolds

are exploited in multiscale fashion by defining the heat kernel function kt(p, v) at different

time scales to represent the heat transferred from source p to v in time t, or as an equivalent

interpretation, the probability of Brownian motion of heat starting at p to reach v in time

t (Figure 2.5):

kt(p, v) =
∞∑

i=0

e−tλiφi(p)φi(v) (2.1)

where λi and φi are the eigenvalues and eigenvectors of the Laplace-Beltrami operator

(Section 2.5.1.2) on the input shape.

Figure 2.5: Diffusion distances started from point p towards 6 distinct numbered points at

different time scales for two shapes. Notice the similar distances between corresponding

points under isometric deformations, i.e., isometry invariance. Image taken from [33].

The diffusion distance dt(, ) is then defined using two heat kernels on the input shape S:

dt(p, v) = ||kt(p, ·)− kt(v, ·)||L2 =
∫

s∈S
|kt(p, s)− kt(v, s)|2ds (2.2)

which expands to

d2
t (p, v) =

∞∑

i=1

e−2tλi(φi(p)− φi(v))2 (2.3)
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Multiscale property captures local geometry for small t, and the global connectiv-

ity/topology for large t, yet the time scale depends on the shape diameter which makes

the choice of t problematic.

2.3.1.4 Commute-time distance

Commute-time distance is a metric that is quite similar to diffusion distance except it

measures the connectivity of two points by paths of any length, hence eliminating the scale

parameter [53][54]. To this end, commute-time distance dcom(, ) is computed by

d2
com(p, v) = 2

∫ ∞

0
d2

t (p, v)dt =
∞∑

i=1

1
λi

(φi(p)− φi(v))2 (2.4)

which essentially sums diffusion lengths of all possible paths between points p and v. De-

spite being scale-invariant, multiscale property of diffusion distance that describes different

properties of the shape at different scales is lost in this distance due to integration over time

scale which in turn may fail to realize the fact that two shapes can be similar at small scales

and dissimilar at large scales or vice versa.

2.3.1.5 Biharmonic distance

Biharmonic distance is a metric that is related to diffusion and commute-time distances

with a slight modification on the eigenvalue normalization [55] as given by

d2
bi(p, v) =

∞∑

i=1

1
λ2

i

(φi(p)− φi(v))2 (2.5)

which provides a good balance between local and global properties as 1/λ2
i decays slow

enough to get good local properties around the source point and fast enough to be globally

shape-aware in far areas. The usability of this theoretically sound distance, however, has

not yet been verified in shape analysis applications domain.

2.3.2 Local similarity: descriptors

Local shape descriptors capture important local shape information by characterizing the

surface within a fixed distance about the feature point of interest. By not incorporating

any information from far areas, local shape descriptors perform well for matching under non-

isometric deformations thanks to the omitted global isometry information, but otherwise
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it is considered as less reliable especially when the shapes to be matched exhibit large

variations or similarities in their local geometry.

We describe in the sequel several well-known local shape descriptors that are used to

define isometry between deformable shapes. The desired properties of such a descriptor

are that it is discriminative, isometry-invariant, quick to compute, insensitive to noise and

small topology changes, and parameter-free.

2.3.2.1 Curvature

Gaussian curvature κ(v) measures the deviation of the neighborhood of vertex v from being

a flat plane (Figure 2.6–left) and plays an important role for our curvature-oriented evenly-

spaced (COES) joint point sampling [23][24][25]. A basic approach for curvature computa-

tion is to subtract sum of angles incident to query vertex v from 2π as it approximates the

flatness amount, 0 being plain flat. We, on the other hand, use [56] which normalizes the

basic result by the adjusted area information from the surrounding obtuse and non-obtuse

triangles to increase accuracy. Curvatures satisfy all of the desired properties but stumble

on discriminativeness due to small neighborhoods in consideration.

2.3.2.2 Average geodesic distance function

The second and last shape descriptor we employ [24][25] assigns average geodesic distance

µ(v) from v to all other mesh vertices by launching Dijkstra’s shortest paths algorithm from

uniformly distributed few number of samples {si}, yielding µ(v) =
∑

i g(v, si) · a(si) where

a is the area of the patch centered by si [48]. A good coarse sampling can benefit from µ or

its local maxima to detect extreme and/or center vertices because the higher the value of

µ(v) the more extreme the vertex v is, as demonstrated in Figure 2.6–rightmost. Besides,

µ satisfies all of the desired properties but topology insensitivity.

2.3.2.3 Spectral signatures

Heat kernel signature [57] is a multiscale descriptor based on eigenfunctions of the Laplace-

Beltrami operator (Section 2.5.1.2) and can be interpreted as the probability of random walk

of heat to return to the starting point p in different times, that is K(p) = (kt1(p, p), kt2(p, p), .., ktn(p, p)).

One can relate the heat kernel signature K(p) to curvature as heat is hard to escape from
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Figure 2.6: Two local shape descriptors employed by our algorithms. Vertices with similar

Gaussian curvature (left) and average geodesic distance (right) values are colored the same.

Blue vertex at the tip of the shape has a higher average geodesic distance than the yellow

one at armpit (rightmost).

high-curvature areas which yields, for example at hands, high values even at large scales.

The drawback of the heat kernel signature is its dependence on the shape scale which is ad-

dressed in [58] with a scale-invariant version of the signature which however requires setting

a time scale parameter that itself depends on the shape scale. The Global Point Signa-

ture [59] is based on the same spectral invariant, i.e., GPS(x) = (φ1(p)√
λ1

, φ2(p)√
λ2

, .., φi(p)√
λi

, ..), but

severely suffers from sign and order switch of eigenfunctions by treating them individually as

vector components unlike K(p) which takes their weighted average via the heat kernel func-

tion kt. All these signatures are invariant under isometric deformations of the shape, yet do

not use geodesic distances explicitly which in turn renders them robust against topological

noise.

2.3.2.4 Signatures by geometric primitives

There are many descriptors under this category which essentially decompose the spherical

space around a feature point into a collection of shells and then the area or volume of the

shape intersected by each shell is stored in a histogram bin indexed by radius. The area-

based bin values are obtained by adding up the polygon areas within a corresponding shell

[60][28] whereas the integral volume descriptor [42] approximates the intersected volume of
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the shape for vertex v that centers the undecomposed sphere of radius r via

Vr(v) =
2π

3
r3 − πκ(v)

4
r4 + O(r5) (2.6)

Shape diameter function, as a similar volume-based descriptor, measures the diameter of

the shape volume in the neighborhood of the query point by taking weighted average of all

conical ray lengths which fall within one standard deviation from the median length [61].

Shape contexts [30], on the other hand, use histograms with log-polar bins to capture the

relative distribution of all other points in the plane relative to each feature point on the

shape. Since of all these descriptors are invariant only to rigid transformations, they do not

match feature points under isometric deformations.

2.4 Shape Sampling

The representative points sampled on the surface of a shape should be dense enough for suf-

ficient coverage, yet sparse enough for computational efficiency. For shape correspondence,

one should also perform joint sampling as consistent as possible for computational accuracy.

2.4.1 Uniform sampling

In uniform sampling, triangles are first picked randomly with probabilities proportional to

their areas. Random sample points are then generated inside the selected triangles with

equal probability per unit area. While this scheme is easy to implement and fast to execute,

generated samples may be too close to each other or fail to cover the informative parts

of the shape. Another drawback is joint sampling as the potential inconsistency between

samples may not permit a plausible mapping even with a robust correspondence algorithm.

Comparison of uniform sampling with evenly-spaced sampling (Figure 2.7–left) for surface

matching algorithms favors the latter [62].

2.4.2 Evenly-spaced sampling

When performed at a sufficiently high resolution, evenly-spaced sampling produces a con-

sistent joint sampling for correspondence algorithms so that two point sets to be matched

involve plausible correspondence candidates.
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2.4.2.1 COES sampling

The resolution requirement above can be significantly relaxed by landing samples on salient

surface parts with high information content related to the surface geometry and topology,

such as curvature, extremities, boundaries, etc. Motivated by this, our curvature-oriented

evenly-spaced (COES) sampling mechanism makes a good joint sampler by evenly sampling

high-curvature vertices from both shapes, as demonstrated in Figure 2.7–right in comparison

with another evenly-spaced sampling method in [48]. In COES sampling, samples are

computed by launching the Dijkstras shortest paths algorithm from an arbitrary source

vertex. When a sample is selected, all the vertices that are at most r distant from it are

marked not to be a future sample. The next highest-curvature sample is then selected

from the unmarked vertices. When this is repeated until no unmarked vertex is left, we

eventually obtain all samples that are at least r apart from each other [23]. We also use

shape extremities as salient vertices in the COES framework to meet our initial matching

requirements in [24][25].

2.4.2.2 FPS sampling

Farthest point sampling (FPS) provides almost evenly-spaced sampling the next sample is

placed in the center of the largest empty disk on the surface, or circle on the plane for 2D case

[63]. The next sample, in other words, is placed at a point that is farthest from the previous

samples. To this effect, each candidate vertex first decides the closest existing sample along

with the minimum distance. Amongst all these decided distances, the candidate providing

the maximum one is then set to be the next sample.

2.4.2.3 Centroidal Voronoi sampling

Unlike the greedy FPS that is unable to undo what was done in previous iterations, cen-

troidal Voronoi sampling reiterates with a new sample set extracted from the intrinsic cen-

troids of the current Voronoi tessellation of the previous sample set [64]. This alternating

minimization guarantees more uniformity and less sample resolution compared to FPS in

the expense of increased implementation complexity and computational load. The exten-

sion of 2D centroidal Voronoi sampling to surfaces in 3D is based on geodesic centroidal

tessellation [65].
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Figure 2.7: Left: Uniform sampling (top) vs. evenly-spaced sampling (bottom), both taken

from [62]. Right: Two views from joint sampling of the source and target meshes by our

COES sampling (top) vs. by [48] (bottom). Green spheres by COES highlight the first 12

highest-curvature points whose counterparts due to [48] are not that consistent.

2.4.2.4 Stratified sampling

We also mention a voxel-based evenly-spaced sampling method called the stratified sam-

pling [66] which proceeds by first voxelizing the model and then selecting one sample per

voxel, restricted to the original model’s surface. Close samples are clustered to one in post-

processing to achieve evenly spacing. Not only sampling distance, but also the size of the

grid for voxelization is a parameter to be set manually. Besides, cubic grid cells may simply

not be good enough to generate samples with fine radial isotropy.
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2.4.3 Extremity sampling

Since vertices on the extremities or tips of the prominent components provide a good

overview of the shape structure, we also discuss sampling methods targeted at these salien-

cies. To this end, one of our methods applies FPS (Section 2.4.2.2) starting from the most

extreme point, i.e., the one with the maximum µ (Section 2.3.2.2), until N well-spread sam-

ples are placed where N is kept small not to produce spurious extremes since the purpose

is to represent the shape, not all the extremities [26] (Figure 2.8–left).

To hit all, or at least most, of the shape extremities, we slightly modify our other

sampler in [27] which also samples central regions that we do not need here. We initialize

the sample sets with local maxima of µ which are expected to be on the tips of a given

shape [37]. The initial sample sets are then exposed to two steps of pruning, first of which

clusters geodesically close samples into the most extreme ones where the closeness threshold

is determined based on the maximum geodesic distance gmax on the surface. The second

step of pruning removes a local maximum v from the sample set if µ(v) is less than the

average µ to cancel out redundant extremities that are not on tips (Figure 2.8–right).

Sampling in [67] relies similarly on these local maxima vertices but does the pruning

based on the convex hull of the MDS embedding of the shape. Finally, we mention [68] that

chooses the intersection of two local maxima sets based on the geodesic distance from the

candidate vertex to two farthest points where closeness threshold is again required during

intersection operation.

Figure 2.8: Our point samplers that capture representative (left) or all (right) shape ex-

tremities on the tips.
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2.5 Shape Embedding

In this section, we discuss how the shapes in the original 3D Euclidean space are embedded

into a different domain where they gain invariance against isometric deformations. An

embedding is Euclidean or non-Euclidean if the distance in the definition of isometry is

replaced by the Euclidean distance or non-Euclidean distance, respectively. Isometry is

commonly defined with the geodesic distance which is more intuitive and accurate than the

diffusion-based counterpart whose main advantage is robustness to topological noise.

2.5.1 Euclidean embedding

When the geodesic distance g on the surface is replaced by the Euclidean distance L2

in the embedding space, this isometric embedding is impossible to be distortionless, as

exemplified in Figure 2.9–left from [18]. Four points on a sphere cannot be isometrically

embedded into an Euclidean space of any dimension, hence approximation is a must. After

a distortionless, i.e., perfect, isometrical embedding, respective embedded vertices v̂{1,2,3,4}

has ||v̂1− v̂2||L2 = ||v̂2− v̂3||L2 = 1 and ||v̂1− v̂3||L2 = 2, making the triangle (v̂1, v̂2, v̂3) flat.

Moreover, (v̂1, v̂4, v̂3) is also flat implying that v̂2 = v̂4 and consequently ||v̂2 − v̂4||L2 = 0

contradicting the assumption that ||v̂2 − v̂4||L2 = g(v2, v4) = 1. Since it is impossible

to find a truly isometric, or equivalently distortionless, embedding, a minimum-distortion

approximate embedding should be sought which may serve as a valid initialization for an

isometric correspondence algorithm [23][39].

In the sequel we observe several embedding spaces on all of which L2 distance replaces

the geodesic distance on surfaces. Note that the embeddings based on eigenanalysis are

prone to arbitrary reflections due to sign ambiguities in eigenvectors and eigenfunctions.

2.5.1.1 MDS

A well-known Euclidean embedding is multidimensional scaling (MDS) which comes in

classical, least-squares, and landmark forms. All MDS models aim to represent the pairwise

(dis)similarity data stored in the affinity matrix as Euclidean distances in a low-dimensional

space in order to make these data accessible to visual inspection and further exploration.

This mapping from the affinities aij to the K-dimensional MDS configuration V̂ is achieved
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by the transformation function f : aij → dij(V̂), where the particular choice of f specifies

the MDS model.

Classical MDS is introduced by Gower [69] in 1966 and used extensively in computer

vision/graphics applications such as shape correspondence [22][39], shape representation

[9][70], and texture mapping [71]. Classical MDS essentially uses the K leading eigenvec-

tors of the associated geodesic affinity matrix in order to transform the affinities to the

K-dimensional configuration V̂ (Figure 2.9–middle). This eigenanalysis leads to a low-

dimensional spectral embedding with no danger of getting stuck in local minima, a prob-

lem that least-squares MDS model exhibits while minimizing the transformation error via

gradient descent or Scaling by Maximizing a Convex Function (SMACOF) optimization

algorithms [72][67]. Landmark MDS (LMDS), on the other hand, embeds a large num-

ber of points by further approximating the classical MDS. Given the embedded landmark

points, LMDS computes embedding coordinates for the remaining data points based on

their distances from the landmark points [70] (Figure 2.9–right).

The embedding space for all MDS models is RK . These embeddings are all geodesic-

based which poses the problem of sensitivity to local topology changes as another drawback.

Figure 2.9: Left: Euclidean embedding ambiguously maps two distinct (red and yellow)

points on the same location. Middle: Euclidean embedding of samples (blue spheres) into R3

via classical MDS. Right: Efficient LMDS extension embeds all vertices (top and bottom).
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2.5.1.2 Laplacian embedding

The graph Laplacian encodes local geometric and topological properties of a graph or mesh

which renders it convenient for describing articulated objects. The most appealing property

of the Laplacian is the stability to local topology changes due to its global nature obtained

by completely avoiding the use of geodesic distances. There is a combinatorial Laplacian

and a discrete Laplacian both based on local neighborhoods which in turn leads to sparse

matrices from which extraction of eigenvectors requires lighter computations than MDS

guided by dense matrices. Such a spectral analysis on Laplacian matrix results in numerous

applications such as natural vertex ordering for mesh streaming [73], calculation of number

of spanning trees and connected components [74][75], and deformation-invariant embedding

which is our particular interest.

Combinatorial Laplacian. The simplest combinatorial Laplacian is the umbrella op-

erator which brings each vertex to the center of its 1-ring neighborhood via the displacement

vector δi

δi =
1∑
j wij

∑
vj∈ηi

(wjvj − vi) (2.7)

is to be added to vi where ηi is the set of adjacent vertices whose cardinality gives the degree

di of vi. Each neighbor can be weighted with wij = 1 for the umbrella effect or with the

inverse of the distances between vi, leading to the Laplacian smoothing operator Lsmo

Lsmo
ij =





wij/di if i and j adjacent,

−1 if i = j,

0 otherwise,

(2.8)

that yields the displacements δ = Lsmov to smooth the original vertices v with. This is,

however, a smoothing effect which does not lead to any kind of pose-invariant embedding.

To address our isometric embedding demand, one needs to perform spectral analysis on the

Laplacian matrix L defined similarly:

Lij =





−1 if i and j adjacent,

di if i = j,

0 otherwise,

(2.9)
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that measures, when applied to v, the local smoothness L(vi) = divi −
∑

vj∈ηi
vj at each

vertex with many other variants in the literature [76][77][78]. The eigenvalues and eigen-

functions of L then give the isometry-invariant embedding.

Discrete Laplacian. By properly adjusting the weights in L using discrete differential

geometry, one not only injects more geometry in combinatorial Laplacian but also decreases

the sensitivity to the peculiarities in the triangulation of the input mesh. The resulting

discrete Laplacian is linked with the Laplace-Beltrami operator that appears in the wave

equation and therefore referred as such [79]. Let a local criterion l be incurring large penalty

if neighboring points are mapped apart by the embedding. Applying l to overlapping small

neighborhoods and combining the results makes a global criterion that can be captured by

the Laplace-Beltrami operator as it intuitively spreads the function it is applied to over

small neighborhoods and its eigenfunctions make it possible to understand how these local

neighborhoods interact and how global properties emerge from this interaction. To this

effect, new L has the following entries:

Lij =





−(cotαij + cotβij)/2 if i and j adjacent,
∑

k(cotαik + cot βik)/2 if i = j,

0 otherwise,

(2.10)

where the edge (vi, vj) is shared by two triangles whose angles facing (vi, vj) are α and β

[59]. The eigenvalues and eigenfunctions of L then give the isometry-invariant embedding.

The embedding space for all Laplacian embeddings is RK . Laplacian embedding, as well

as MDS embedding, are also known as spectral embeddings since the embedding coordinates

are computed as eigenvectors/functions of some matrix.

2.5.2 Non-Euclidean embedding

A problem common to Euclidean embedding based techniques is that they all produce

approximate and/or ambiguous solutions since they can measure deviations from isometry

only approximately in the embedding space (Figure 2.9–left), which is mainly because of the

line paths replacing the more general geodesic paths. Non-Euclidean embeddings relax this

line constraint using more sophisticated paths between embedded vertices with the hope of

decreasing the embedding distortion.
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2.5.2.1 Generalized MDS

Generalized MDS (GMDS) proposes to embed source shape into the surface of the target

shape [80][38], hence geodesic distances are replaced with again geodesics defined on the

target surface rather than with line paths over the whole Rm. Since the curved rooms of

the target surface is more suitable than a flat space for housing a similar surface to be

matched, this embedding generally performs better than the pure Euclidean embedding in

the expense of minimization of a non-convex stress function that is difficult and expensive

to optimize:

min
u′1,..,u′N∈U

∑

i>j

|dV (vi, vj)− dU (u′i, u
′
j)|p (2.11)

where {u′i} denote surface points which is not necessarily the discrete vertex set or subset

of U . The variants of this generalized stress function to be minimized are also used by our

methods within more efficient optimizers [22][24][23][25][26][27] and with special care for

handling the multiple local minima scenarios that arise due to low distortions attached to

true and perfectly symmetric mappings (e.g., full body flip) as well as almost symmetric

mappings (e.g., bilateral flip of the legs) [25][26][27]. The non-convex optimization proposed

in the original GMDS is, however, based on many geodesic distance approximations and

can get stuck in a local minima. Nevertheless, the invaluable idea of embedding one shape

directly into the other removes unnecessary representation errors stemming from embedding

into an intermediate space.

2.5.2.2 Spherical embedding

Spherical embedding leads to smaller metric distortions compared to Euclidean embedding

by changing the embedding domain from flatty Rm to curvy spherical space which in turn

leads to better isometry-invariant representation of surfaces. This embedding parameterizes

a triangle mesh onto the sphere [81][82] where parameterization requires assigning each mesh

vertex a 3D position on the unit sphere such that the spherical triangles induced by the

mesh connectivity are not too distorted and do not overlap. A common way to perform this

embedding is to cut the closed genus-0 mesh into two pieces, parameterize each over a planar

disk with a common boundary using any planar parameterization method [83][84], and then

map each disk to a hemisphere to be merged along the common boundary. This embedding,
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however, is not popular for shape correspondence problem due to the computational load

of arched distances over sphere surface as well as the difficulty of rigid surface matching in

spherical spaces.

2.5.2.3 Möbius embedding

Möbius embedding conformally maps shapes with sphere topology into the the extended

complex plane Ĉ and covers distance-preserving isometries as a subset. When original

vertices V and U are mapped to Ĉ as V̂ and Û via, for instance, mid-edge conformal

flattening [85], Möbius transformation on two point sets has a closed-form formulated as


a b

c d


 =


û2 − û3 û1û3 − û1û2

û2 − û1 û1û3 − û3û2



−1 

v̂2 − v̂3 v̂1v̂3 − v̂1v̂2

v̂2 − v̂1 v̂1v̂3 − v̂3v̂2


 (2.12)

given v̂1,2,3 ∈ Ĉ and û1,2,3 ∈ Ĉ as two triplets of correspondences defined by vi → ui. The

Möbius transformation defined by a, b, c, d then embeds each point v̂i with a rational linear

function f(v̂i) = av̂i+b
cv̂i+d to Ĉ where they gain invariance against isometric deformations and

hence become comparable by simple mutually closest point search on L2 distances [31][36].

This conformal embedding that preserve angles is, however, sensitive to peculiarities of the

particular triangulation and restricted to genus zero surfaces.
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Chapter 3

COMPLETE SHAPE CORRESPONDENCE

We propose methods to match two semantically similar complete shapes without any

missing or extra parts at coarse and dense resolutions in the presence of arbitrary scal-

ing. Our main ingredients for the coarse correspondence are greedy optimization and EM

framework [23] (Section 3.1) whereas for the dense matching we perform fast combinatorial

matching in coarse-to-fine fashion [24] (Section 3.2) with special care on the multiple local

minima threat [25] (Section 3.3).

3.1 Coarse Correspondence of Complete Shapes

In this section, we present our theoretically-sound EM algorithm [23] which extends our

preliminary matching algorithm in [22].

3.1.1 Literature review

3D shape correspondence methods aim to find a mapping between the surface points of two

given shapes, or more generally, they seek on two given shapes for pairs of surface points that

are similar or semantically equivalent [17]. Shape correspondence is a fundamental problem

in both computer vision and computer graphics with numerous applications such as mesh

morphing [1], mesh parametrization [86], deformation transfer [14], shape registration [6],

shape matching [48],[9], analysis of sequential meshes [19] and statistical shape modeling

[16]. In this section we address the problem of establishing correspondence between isometric

(or nearly isometric) shapes. Isometric shapes appear in various contexts such as different

poses of an articulated object, models of a mesh sequence representing the motion of a

human actor, or two shapes representing different but semantically similar objects (e.g.,

two different humans or animals).

If two shapes are perfectly isometric, then there exists an isometry, i.e., a distance-

preserving mapping, between these shapes such that the geodesic distance between any two
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points on one shape is exactly the same as the geodesic distance between their correspon-

dences on the other. However, two digital shapes are hardly ever perfectly isometric, even

for different poses of a rigid object, due to imperfections of the modeling process and/or

geometry discretization errors. Hence the goal of isometric correspondence methods exist-

ing in the literature is rather to find a mapping that minimizes the amount of deviation

from isometry. A common strategy to achieve this is to embed shapes into a different

(e.g., spectral) domain where geodesic distances are replaced with Euclidean distances so

that isometric distortion can efficiently be measured and optimized in the embedding space

[9, 39, 87, 88, 72, 77, 22]. However, since the Euclidean embedding process itself introduces

a distortion [18], deviations from isometry can be measured only approximately in the em-

bedding space. Hence all these methods mentioned above produce approximate and/or

ambiguous solutions, and thus have room for improvement. To remove the approximation

error, Bronstein et al. [38] propose to embed one shape to the surface of the other by using

generalized multidimensional scaling (GMDS), which however requires minimization of a

non-convex function that is difficult and expensive to optimize. Our main contribution is

a novel shape correspondence method that minimizes the isometric distortion directly in

the 3D Euclidean space, i.e., in the domain where isometry is originally defined, with a

computationally efficient algorithm.

Isometry is an important clue for shape correspondence; not only since most real world

deformations are isometric, but also because semantically similar shapes have similar metric

structures. There are different ways of exploiting isometry for shape correspondence. One

way is to minimize the deviation from isometry, indirectly in some embedding space, where

Euclidean distances approximate geodesic distances. Euclidean embedding, in the context

of shape analysis, can be achieved by using various techniques such as classical MDS (Multi-

Dimensional Scaling) [39], [87], [22], least-squares MDS [9], [72], and spectral analysis of

the graph Laplacian [77] or of the Laplace-Beltrami operator [89]. Some recent methods

propose to use embeddings such as the heat kernel [33] and the canonical diffusion embedding

[90], which are invariant under isometric deformations, but which are not Euclidean in

the multidimensional scaling sense. Other three recent examples that can be categorized

un non-Euclidean embeddings tab and can be applied to only shapes with genus zero,

are based on the Möbius transformation which is used for conformal embedding of the
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given shapes into a canonical coordinate frame on the complex plane where deviations from

isometry are approximated based on mutually closest points [31], [36], [21]. A problem

common to these embedding-based techniques is that they all produce approximate and/or

ambiguous solutions since they can measure deviations from isometry only approximately

in the embedding space. In order to eliminate the approximation error, Bronstein et al.

[38] propose to embed one of the shapes to be matched into the surface of the other via the

generalized MDS, which requires minimization of a non-convex stress function. To optimize

this function, they use an iterative gradient-type algorithm which however results in two

major drawbacks. First, in order to avoid convergence to local minima, they employ a

coarse-to-fine (multiresolution) optimization strategy [38], which may in turn yield artificial

symmetric flips in the computed correspondences due to initial coarse sampling. Second,

since the algorithm is based on gradient descent, it produces sub-vertex matchings which do

not necessarily coincide with the initial sampling, yielding clustered correspondence samples.

The embedding process brings in distortion but reduces the correspondence problem

to an alignment or point-to-point matching problem which is easier to solve. Jain and

Zhang [39] for example employ the TPS-RPM (Thin-Plate Spline – Robust Point Match-

ing) algorithm of [91] for non-rigid alignment of the embedded points. Other examples are

the Hungarian algorithm employed in [72], [22], high-order graph matching in [36], graph-

matching based on dual decomposition in [92], Möbius voting scheme in [31], unsupervised

point clustering in [77], EM-algorithm in [87, 77], nearest point matching in [33], and asso-

ciation graphs in [90].

Isometric correspondence methods may incorporate local shape information into their

schemes. In [31] for example, Gaussian curvature is used to find an initial set of feature

points upon which the rest of the correspondence algorithm relies, whereas in [36], the ex-

trinsic curvature and orientation information (including also texture if available) is used to

augment the intrinsic global shape (isometric) information. Some methods rely mainly on

local shape similarity, using descriptors such as spherical harmonics as in [28], histogram of

oriented gradients as in [19], mean curvature as in [29] and shape contexts as in [30]. Local

shape similarity is an important clue for shape correspondence, especially in the case of

non-isometric deformations, but otherwise it is considered as less reliable than global shape

information such as isometry. The methods which rely only on local geometric information
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may not perform well when the shapes to be matched exhibit large variations in their local

geometry, or may easily confuse surface parts when there are many points that are locally

similar. Hence some feature-based correspondence search algorithms include also a pruning

procedure that takes into account isometric clues by enforcing geodesic consistency [29],

[37], [32], [93]. In a recent work, Wang et al. [34] define an objective function in terms

of local diffusion information as well as global isometric distortion, that also accounts for

shape variability in a probabilistic setting. They formulate the correspondence problem as

a graph labeling problem and then solve it by graph matching based on the dual decom-

position technique proposed in [92]. Although this is a nice mathematical formulation, the

optimization process is computationally very demanding.

Another distinction between shape correspondence methods is whether they target sparse

or dense correspondence. Most embedding-based methods naturally support dense corre-

spondence but the computational load is usually a limiting factor that can be overcome

with various approximations [21]. There also exist methods which primarily aim to find a

small number of feature correspondences [37], [32], [90], [93], [31]. These methods regard the

sparse correspondence problem as the main challenge since, based on a sufficient number of

reliable landmarks, cross-parametrization [86] or some other form of interpolation technique

can always be applied to obtain a dense correspondence [1]. However, in this coarse-to-fine

approach, to decide on the degree of sparsity, that would lead to a robust dense corre-

spondence, is always a problematic issue. A particular example to sparse correspondence

methods is the deformation-driven approach of [37]. In this method, shape extremities are

first determined based on the average squared geodesic distance field. Then an optimal cor-

respondence is sought between these extremities via combinatorial tree traversal by pruning

the search space according to some criteria based on local shape similarity and geodesic

consistency. For each candidate correspondence set, the source shape is deformed to the

target based on these small number of landmarks (anchor points), and the correspondence

with the smallest distortion gives the best matching. Another similar deformation-driven

method is presented also in [32]. Both methods can handle large deformations but their

computational cost is very high due to the repeated deformation process that they involve.

In this section we present a purely isometric method that finds an optimal correspondence

between two shapes. We first evenly sample high-curvature vertices from the given shapes
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and then seek for a minimum-distortion mapping from one vertex set to the other. Hence

our correspondence method can be regarded as sparse, though the density of the mapping

can be increased as desired by adjusting the sampling rate. Since the mapping is sought

between two evenly sampled vertex sets, it becomes possible to formulate minimization of

the isometric distortion as a combinatorial optimization problem over the domain of all

possible mappings. The resulting optimization problem can then efficiently be solved in

the original 3D Euclidean space, as free of embedding errors, by using an expectation-

maximization (EM) algorithm that we initialize in spectral domain. In fact our method can

also be used to further improve the performance of any isometric correspondence method

existing in the literature. A preliminary version of our method in this section was presented

in [22], which we substantially improve mainly by solving the combinatorial optimization

problem in a probabilistic setting via EM algorithm. We also note that we have very

recently proposed a dense shape correspondence method [24] (Section 3.2), that minimizes

the isometric distortion via combinatorial matching in a coarse-to-fine fashion. Since the

goal of [24] is to achieve a dense correspondence, i.e., a matching between all vertices of

two given high resolution meshes, the focus is rather on computational efficiency, and hence

the method is less accurate than the one we present in this section in achieving sparse

correspondence. Moreover, the dense correspondence method in [24] suffers from symmetric

flips due to initial coarse sampling like the multiresolution GMDS method [38].

3.1.2 Problem formulation and overview

We address the problem of 3D shape correspondence between two (nearly) isometric shapes.

We assume that each shape is represented by a manifold surface mesh of sufficiently high

resolution, on which geodesic distances can easily be computed. We designate one of the

shapes as source and the other as target. Let S and T denote the two sets of points sampled

uniformly on the source and the target, respectively. Since the points are evenly sampled

over mesh representations, we refer to them as base vertices (Section 3.1.3). The problem

then reduces to searching for an optimal mapping from the base vertex set S to T . Note that

one can find more than one optimal correspondence for symmetrical objects. We require

the optimal correspondence (mapping) to have two properties; 1) to be as complete and

one-to-one as possible (note that |S| = |T | only in the case of perfect isometry), and 2) to
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minimize the deviation from isometry, i.e., the isometric distortion function defined below:

Diso(§) =
1
|§|

∑

(si,tj)∈§
diso(si, tj) (3.1)

where diso(si, tj) is the contribution of the individual correspondence (si, tj) to the overall

isometric distortion:

diso(si, tj) =
1
|§′ |

∑

(sl,tm)∈§′
|g(si, sl)− g(tj , tm)| (3.2)

where g(., .) is the geodesic distance between two vertices on a given surface and correspon-

dence list §′ = § − {(si, tj)} in the most general setting, that is, unless stated otherwise.

Both diso and Diso take values in the interval [0, 1] since the function g is normalized with

respect to the maximum geodesic distance over the surface. Note that Eq. 3.1 can be

seen as a variant of the generalized stress function defined in [38], that we compute be-

tween evenly sampled base vertices. Given S and T , finding the optimal correspondence

§∗ that minimizes the isometric distortion is actually a combinatorial problem, which we

solve in a probabilistic framework using EM algorithm (Section 3.1.4). We assume that the

probability of a base vertex si being in correspondence with tj can be defined in terms of iso-

metric distortion. Given these probabilities, the optimal correspondence can be estimated

by maximizing a likelihood function. The probability values, hence the EM algorithm, are

initialized based on the Euclidean distances between the vertices embedded into spectral

domain through classical MDS (Section 3.1.5). Maximization of the likelihood function,

hence minimization of the isometric distortion given in Eq. 3.1, is then achieved in the

original 3D Euclidean space, for each iteration of the EM algorithm, in two steps; by using

first a bipartite graph matching algorithm (Section 3.1.6.1), and then a greedy optimization

technique (Section 3.1.6.2), both with polynomial time complexity (Section 3.1.7). Note

that neither the number of vertices of the original source and target meshes nor |S| and |T |
need to be exactly equal. The block diagram of the overall shape correspondence scheme

is given in Figure 3.1. We demonstrate the performance of our method with experiments

in Section 3.1.8, where we also compare our algorithm with two state-of-the-art techniques:

the spectral method of Jain and Zhang [39] and the GMDS of Bronstein et al. [38].
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Figure 3.1: Overall isometric shape correspondence scheme.

3.1.3 Sampling

The sampling of base vertices should be as consistent as possible between source and target

meshes. To achieve this goal, we sample each mesh separately, but imposing a uniformity

constraint and favoring the vertices which are geometrically salient. Our sampling algorithm

is as follows. We initially compute the Gaussian curvature at each vertex of the original

mesh [56]. We then sort the vertices into a list in descending order with respect to their

curvature values and select the top vertex of the list as the first base vertex. We launch the

Dijkstra’s shortest paths algorithm from this vertex and mark all the vertices lying within

a distance r. The next base vertex is then picked as the first unmarked vertex in the list.

When this is repeated until no unmarked vertex is left, we obtain a sampling of the surface,

where the base vertices are at least at distance r apart from each other.

The sampling algorithm described above is the same as the one proposed by Hilaga et.

al in [48] except that the next base vertex is selected arbitrarily from unmarked vertices

in [48], whereas we select it as the unmarked vertex with the highest curvature. Hence

our algorithm places the base vertices on local maxima of the Gaussian curvature and

thereby generates a more consistent sampling on two shapes, which eventually improves

the correspondence performance and yields more intuitive matchings. As verified in our

experiments, this vertex sampling heuristic, as we call it the curvature-oriented evenly-

spaced (COES) sampling, provides a good start for our algorithm. The resolution of the
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sampling, hence the density of the ultimate correspondence, can easily be set thanks to the

intuitive parameter r, the sampling distance, as we will refer to it. Although COES sampling

algorithm cannot in general guarantee the same sampling on two shapes, the parameter r

can be set to a sufficiently small value so that all critical vertices of the given meshes (for

typical shapes) are included by the sampling process. Moreover, the sampling distance

r puts an upper bound to the isometric distortion of the optimal correspondence §∗ that

minimizes Eq. 3.1. One such upper bound is given by Diso(§∗) ≤ r in the case of perfect

isometry.

We note that there exist in the literature several other techniques for uniform mesh

sampling such as the farthest point sampling technique [94], which is commonly employed

by shape correspondence algorithms such as in [38, 31]. Our COES algorithm is rather

built upon the sampling method of [48] since it provides us with a convenient framework to

develop an efficient saliency-based uniform sampling algorithm.

3.1.4 EM framework

Minimization of the isometric distortion in Eq. 3.1 can be formulated in a probabilistic

setting as the following log-likelihood maximization problem:

§∗ = arg max
§

log P(§|X ,Q) (3.3)

where X = (S, T ) is the observed data, i.e., the base vertices, and Q is the matrix with

entries qij , each representing the probability of source base vertex si being in correspondence

with target tj , such that
∑

j qij = 1. Note that since we seek for an (almost) complete

correspondence, we require every si ∈ S to be matched with exactly one tj ∈ T .

The likelihood maximization problem given in Eq. 3.3 can be solved by using the EM

algorithm [95]. Let §(k) and Q(k) denote the estimates for § and Q at iteration k. Starting

from an initial estimate Q(0), the EM algorithm alternately recomputes the expected value

of Q and the estimate §(k) through the following E-step (for Expectation) and M-step (for

Maximization):

• E-step: Q(k) = E(Q|X , §(k−1))

• M-step: §(k) = arg max
§

log P(§|X ,Q(k))
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until convergence.

We assume that, for each base vertex si, the probability of correspondence with tj

can be modeled as a function of the resulting isometric distortion via the following Gibbs

distribution:

qij = P(tj |si) =
1
Ti

e−βdiso(si,tj) (3.4)

where β is a fixed positive factor that determines the sharpness of the distribution, and Ti

is a normalizing constant to be chosen such that the constraint
∑

j qij = 1 is satisfied for

all i. The term diso(si, tj) is the isometric distortion due to the correspondence of si with

tj (see Eq. 3.2), and its expected value at iteration k can be estimated by averaging over

all the correspondence pairs in §(k−1):

d
(k)
iso (si, tj) = E(diso(si, tj)|X , §(k−1)) (3.5)

=
1

|§(k−1)| − 1

∑

(sl,tm)∈§(k−1)

(sl,tm)6=(si,tj)

|g(si, sl)− g(tj , tm)|

which can then be used to compute q
(k)
ij in E-step:

q
(k)
ij = E(qij |X , §(k−1)) =

1
Ti

e−βd
(k)
iso (si,tj) (3.6)

Hence in M-step, (assuming statistical independence for assignments of si) we have

§(k) = arg max
§

log
∏

(si,tj)∈§
q
(k)
ij (3.7)

and substituting Eq. 3.6, we get

§(k) = arg max
§

∑
i
log

1
Ti
− β

∑

(si,tj)∈§
d

(k)
iso (si, tj) (3.8)

Here the first summation is constant, hence can be ignored. Since the second term is always

negative, using Eq. 3.5, the maximization in Eq. 3.8 becomes equivalent to the following

minimization problem:

§(k) = arg min
§

∑

(si,tj)∈§
d

(k)
iso (si, tj) (3.9)

= arg min
§

1
|§|

∑

(si,tj)∈§

1
|§(k−1)| − 1

∑

(sl,tm)∈§(k−1)

(sl,tm)6=(si,tj)

|g(si, sl)− g(tj , tm)|
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Figure 3.2: EM Algorithm.

Hence starting from an initial estimate Q(0), or equivalently {d(0)
iso (si, tj)}, the EM algorithm

repeatedly computes Eq. 3.2 based on §(k−1) and minimizes the overall isometric distortion

Eq. 3.1 to generate §(k) (see Fig. 3.2). The EM algorithm is expected to converge to a local

minimum [95], as also verified by our experiments presented in Section 3.1.8.

3.1.5 Initialization

In this section, we describe how we initialize the EM algorithm, that is, how we obtain good

initial estimates for the entries of the probability matrix Q, or equivalently for the isometric

distortions {d(0)
iso (si, tj)}, defined in the previous section.

3.1.5.1 Spectral embedding

We start by computing the geodesic distances between all pairs of bases by running the

Dijkstra shortest paths algorithm from each base vertex. These pairwise distances, when

exposed to an exponential kernel, form a geodesic affinity matrix, Aij = exp(−g2(i, j)/2σ2)

for each of the base vertex sets S and T with g(., .) being the geodesic distance between

two points on a given surface. We set the kernel width σ to be half of the maximum

geodesic distance over the surface. Note that computation of the geodesic affinity matrix

does not bring any additional load to our overall correspondence algorithm due to the

Dijkstra framework that is already prepared for the COES sampling procedure.
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Based on the computed geodesic affinity matrices, we transform each of the base vertex

sets into an M -dimensional spectral domain by means of the classical MDS algorithm to

gain invariance against rigid transformations as well as shape bending. The classical MDS,

introduced by Gower [69], essentially uses the M leading eigenvectors of the affinity matrix

to obtain spectral embedding. We scale each of these eigenvectors with the square root

of the corresponding eigenvalue (ignoring the first eigenvector since it becomes constant

due to normalization) as suggested in [39]. The scaled eigenvectors provide us with an

M -dimensional spectral embedding of the base vertices, that we will denote by Ŝ and T̂ ,

respectively for the source and the target.

3.1.5.2 Alignment

The geodesic distances between base vertices in the original 3D space approximately cor-

respond to L2 distances between their M -dimensional embeddings in the spectral domain.

Although the same transformation is applied to both shapes, due to arbitrary sign flips

of eigenvectors, a disambiguation process is required, which tests the 2M different possible

embeddings for the best alignment. We measure the alignment of each such embedding Ŝm

with a fixed T̂ by means of the cost Cm =
∑|Ŝm|

i=1 (‖ŝi,m− t̂i‖2), i.e., the sum of L2 distances

between mutually closest points in the spectral domain, where each term in the summation

is the distance between some ŝi,m and the target t̂i which is closest to it. The embedding Ŝm

producing the minimum cost Cm aligns best with T̂ . This alignment operation is visualized

in Figure 3.3 for M = 3.

3.1.5.3 Isometric distortion

For each possible (si, tj) pair, the isometric distortion diso(si, tj) in Eq. 3.2 can be approxi-

mated by the L2 distance between the embedded coordinates ŝi and t̂j , which provides us

with the initial estimate that we seek for:

d
(0)
iso (si, tj) = ‖ŝi − t̂j‖2 (3.10)

3.1.6 Optimization

In this section, we describe the M-step of our EM algorithm, which involves minimization

of the isometric distortion as given in Eq. 3.9. We solve this optimization problem in two



Chapter 3: Complete Shape Correspondence 39

Figure 3.3: Two shapes along with their spectral embeddings (left), the alignments obtained using

an arbitrary configuration of the eigenvectors (left box), and using the best aligned embedding (right

box). The boxes display two different views for visual convenience.

steps. We first find a one-to-one mapping from S to T , which is close to the global optimum,

via bipartite perfect matching, and then in the second step, we refine it locally via a greedy

optimization algorithm that relaxes the injectivity constraint and thereby generates a many-

to-one mapping. Both optimization steps are carried out in the original 3D Euclidean space.

3.1.6.1 Bipartite graph matching

At each iteration k of the EM algorithm, we create a complete bipartite graph G on which the

minimum-weight perfect matching is sought. The base vertices S and T form the disjoint

vertex sets of G which is made complete by connecting every vertex of one set to every

vertex of the other with edges weighted by wij = d
(k)
iso (si, tj), specifying the isometric cost

of matching si with tj . Since the cardinalities of the disjoint sets must match for a perfect

matching, if |S| 6= |T |, we introduce virtual vertices with connector edges of ∞ weights.

Note that the numbers of base vertices are almost equal for a given pair of isometric shapes

but need not be exactly the same due to possible deviations from isometry. Hence at the end

of the optimization process, some base vertices in T may be left unassigned (we designate
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source and target so that |S| ≤ |T |). We employ the efficient Blossom V algorithm [96] to

solve the bipartite graph matching problem, hence the minimization in Eq. 3.9. Bipartite

perfect matching results in a one-to-one (but not necessarily onto) mapping from S to T ,

that we denote by §(k)
0 .

3.1.6.2 Greedy optimization

The greedy optimization starts with the one-to-one mapping found via bipartite perfect

matching of the first step, § = §(k)
0 , and iteratively improves § by relaxing the injectivity

constraint imposed on it. The algorithm traverses the current § and replaces each time

the current pair (si, tj) with some (si, tn) provided that this replacement decreases the

isometric distortion. The accumulation of these greedy decisions, each of which considers

a local improvement, eventually leads to a local optimum on Diso as we re-traverse § until

convergence, i.e., until Diso no longer improves.

For replacement of (si, tj), the algorithm considers a small set of candidates tm. This

candidate set, denoted by T ′, is formed by the target base vertices (plus their base neigh-

bors), that have been matched with the base vertices in the closed neighborhood of si. For

each such tm, diso(si, tm) is computed, and (si, tj) is replaced with the pair (si, tn) yielding

the minimum distortion, provided also that this replacement brings in some improvement

over the current one, i.e., if diso(si, tn) < diso(si, tj). In addition to this potential replace-

ment concerning si, we also consider the current match s+
i of the selected tn by replacing

(s+
i , tn) with (s+

i , tj) if diso(s+
i , tj) < diso(s+

i , tn). Note that the function diso is evaluated

each time using the current correspondence list §. The greedy optimization algorithm is

illustrated on an example in Fig. 3.4 and given in pseudocode in Fig. 3.5.

The greedy algorithm relies on the assumption that the initial correspondence found in

the first step is reasonably good, which is so thanks to the spectral matching that serves

as a good starting point. This assumes that for most of the samples on the source shape,

at least a base neighbor is initially matched close to its optimum on the target. For the

remaining samples for which this assumption does not hold, EM iterations are expected to

resolve the problem as described next.
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Figure 3.4: Illustration of a local improvement by the greedy algorithm. Suppose each base vertex

(filled circles) has 4 neighbors (empty circles) and (si, tn) is the ground-truth correspondence. When

(si, tj) ∈ § is in process, the target base vertices matched with the base neighbors of si (pointed

by the dashed arrows) are tested (the base neighbors of these targets are also tested, though not

illustrated in the figure). Since the target base tn with minimum distortion is different than tj in this

case, the correspondence pair (si, tj) is replaced with (si, tn) after checking diso(si, tn) vs. diso(si, tj).

Not shown above, the pair (s+
i , tn) is also considered next for its possible replacement with (s+

i , tj).

Input: §(k)
0 , one-to-one, Output: §(k), many-to-one

§ = §(k)
0

For each pair (si, tj) ∈ §
T ′ = GetCandidateTargets(si, tj)

minD = ∞
For each tm ∈ T ′

If diso(si, tm) < minD tn = tm; minD = diso(si, tm)

If diso(si, tn) < diso(si, tj) (si, tn) replaces (si, tj) in §
Let s+

i be the match of tn, i.e., (s+
i , tn) ∈ §

If diso(s
+
i , tj) < diso(s

+
i , tn) (s+

i , tj) replaces (s+
i , tn) in §

Until convergence (until Diso no longer improves)

§(k) = §
GetCandidateTargets(Pair (si, tj) ∈ §)
T ′ = Ø

For each sp ∈ W (si) where W (si) is the closed base neighborhood of si

T ′ = T ′ ∪ {W (tr) | (sp, tr) ∈ §}
Return T ′

Figure 3.5: The greedy optimization algorithm.
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3.1.6.3 EM iterations

At each iteration k of the EM algorithm, the M-step first generates a one-to-one mapping

from S to T via bipartite perfect matching. This mapping, that we denote by §(k)
0 , is

then iteratively refined by the greedy algorithm so as to produce a many-to-one mapping,

denoted by §(k). At the E-step of the next iteration, the bipartite matching process uses §(k)

to compute estimates for isometric distortion via Eq. 3.5, and thereby generates a one-to-

one mapping §(k+1) in a globally consistent manner. The final output of the EM algorithm

at convergence, §∗, can hence be one-to-one or many-to-one upon choice, depending on at

which step the algorithm is stopped. We will provide experimental results for both cases in

Section 3.1.8.

3.1.7 Computational Complexity

Let V denote the number of vertices in the original mesh (source or target, whichever

has more vertices), and N the number of base vertices sampled on the target (N = |T |,
recalling that |S| ≤ |T |). The COES sampling process involves curvature-based sorting

with O(V log V ) complexity, followed by the actual base vertex sampling procedure in again

O(V log V ) time since the shortcut Dijkstra shortest paths for each base sum up to one

single Dijkstra algorithm spanning V vertices. The geodesic affinity matrix is computed in

O(NV log V ) time. The eigenanalysis for embedding into M -dimensional spectral domain

is O(N2), followed by O(2MN2) operations for alignment, where M ≤ 6. As for the EM

algorithm, the greedy optimization demands O(N2) time since the computation of diso can

be performed in linear time for each pair in §. The bipartite matching part of the M-step

employs the Blossom V algorithm with O(N2 log N) complexity for a given N × N cost

matrix which is created in the E-step by computing a diso value for each entry in linear

time. The EM framework hence demands O(N3) work per iteration until Diso converges,

which takes no more than 5 iterations in our experiments. Under the valid assumption of

N ¿ V , the overall complexity is then given as O(NV log V ), which can be regarded as

quite efficient when the other methods in the shape correspondence literature are considered.

For example, this is almost equivalent to the computational complexity of the method

presented in [39], but better than GMDS [38] with O(V 2 log V ) complexity, than the method

in [31] with O(N4 log N +V 2 log V ) complexity and than the method in [37], which involves
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combinatorial tree traversals and repeated shape deformations.

3.1.8 Experiments

3.1.8.1 Datasets

We have conducted experiments on four different types of datasets. The first consists of two

mesh sequences, Jumping Man [97] and Dancing Man [98], both originally reconstructed

from real scenes and each representing the real motion of a human actor. The second

dataset is the Horse Gallop which is a computer generated synthetical mesh sequence [14].

The original meshes of these sequences are all uniform and given at high resolution with fixed

connectivity, hence we have the ground-truth dense correspondences in all three cases. The

third dataset is the Ballerina from the 3D segmentation benchmark [99], which contains

five different poses of the same human model, each represented with a mesh model of

arbitrary connectivity. The last dataset is the Nonrigid World shape database [38], which

contains various animal and human mesh models with different poses, where each object

has approximately 3K vertices with arbitrary connectivity.

3.1.8.2 Evaluation metrics

We measure the performance of our shape correspondence scheme in terms of deviation from

ground-truth as well as isometric distortion. To quantify isometric distortion, we use the

average distortion measure Diso defined in Eq. 3.1, and also a maximum distortion measure

that we denote by d†iso:

d†iso = max
(si,tj)∈§

diso(si, tj), (3.11)

where diso is the isometric distortion function given in Eq. 3.2. Similarly we compute

average and maximum ground-truth correspondence errors respectively by (whenever the

ground-truth correspondence is available),

Dgrd =
1
|§|

∑

(si,tj)∈§
g(ti, tj), (3.12)

and

d†grd(si, tj) = max
(si,tj)∈§

g(ti, tj), (3.13)

where each (si, ti) stands for a ground-truth correspondence pair.
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N Dgrd, d
†
grd Diso, d

†
iso

40 1.99r′, 4.29r′ 1.34r′, 3.13r′
80 0.58r′, 2.92r′ 0.56r′, 1.85r′
160 0.46r′, 2.11r′ 0.42r′, 1.28r′
320 0.38r′, 1.13r′ 0.31r′, 0.84r′

Table 3.1: One-to-one mapping performance for varying number N of base vertices on Horse

Gallop sequence, where r′ denotes the sampling distance for N = 80.

3.1.8.3 Parameter setting

The correspondence that we find between the sampled base vertices can be regarded as

sparse, which can though be expanded to a dense correspondence via cross-parametrization

or some other form of interpolation techniques [1]. However, it is always an issue to decide on

the optimal sampling that would render the dense matching phase as efficient and robust as

possible. The related sampling distance parameter r of our algorithm is the only parameter

that we set manually. Our current strategy to set this parameter is to select a sufficiently

small value so that all the critical vertices of a given mesh for typical shapes are included

by our COES sampling procedure.

In Figure 3.6, we demonstrate, on a pair of shapes from the Horse Gallop sequence, a

degenerate case when the number of base vertices is significantly low, e.g., N = 10. The

problems due to such degenerate cases are usually fixed by increasing the base resolution,

e.g., to N = 40, hence by a decrement on the sampling distance r. The smaller the parameter

r, the less the deviation from the ground-truth during base vertex sampling, and hence the

more accurate the correspondence obtained, as also verified by the quantitative results given

in Table 3.1. In the table, we observe that the isometric distortion and the correspondence

error both decrease as the sampling distance gets smaller, in the expense of some execution

time: 1.5, 2.1, 4.0, and 10.5 seconds for N ≈ 40, 80, 160, and 320, respectively (recall the

O(NV log V ) complexity of our algorithm).

3.1.8.4 Results

We display some visual examples from the computed correspondences through Figures 3.7-

3.26, and provide quantitative results in Tables 3.1 and 3.2. In all our experiments, the
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Figure 3.6: Two correspondence results on a pair of meshes from the Horse Gallop sequence,

with N = 10 (left) and with N = 10 (right). The horse has two critical vertices on the

tips of the ears, sampled alternately on the source and on the target for N = 10. Hence

it is impossible to obtain the ground-truth left-to-left (or right-to-right) ear match at this

resolution. The region painted (in red) on each shape represents the surface patch with

radius r around the sampled (blue) base vertex. The mismatch problem is resolved when

the number of base vertices to be matched is increased to N = 40.

dimension of the spectral domain is set to be K = 6, and the number of base vertices is

about 80 unless stated otherwise.

In Fig. 3.7, we display one-to-one matching results on a shape pair from the Horse Gallop

sequence for varying resolutions, hence for varying N . We observe that, while the obtained

correspondences satisfactorily match the ground-truth at all resolution levels, the matching

precision increases as the number N of base vertices increases. In Figures 3.8 and 3.9, we

provide the visual correspondence results obtained on sample shape pairs, respectively from

the Dancing Man and Ballerina sequences. Fig. 3.10 displays the correspondence results

across two mesh sequences, i.e., on two shapes representing two different humans, which

are hence only nearly isometric. We observe that the one-to-one mapping obtained is very

accurate despite the missing head of the Jumping Man. In all these figures, two base vertices

with the same color indicate a correspondence pair, whereas the worst matchings, with

respect to isometric distortion and ground-truth correspondence error (whenever available),

are highlighted with bold red and green lines, respectively. Note also that some target bases

may not be drawn in the figures if not matched with any source base vertex.
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Figure 3.7: (From top to bottom) Correspondence results on Horse Gallop with N =

40, 80, 160, 320, where each row displays the shape pair from two different views. Bold

green and red lines indicate the worst matches with respect to ground-truth error and

isometric distortion, respectively. Note that the two worst matches coincide for N = 160,

where red overwrites green. (Left) All available correspondence pairs, each indicated with

a line segment drawn between two spheres of the same color at both ends, (right) best-

10 matches with respect to isometric distortion and 10 matches for top-10 vertices of the

curvature-sorted vertex list, highlighted in cyan and blue, respectively (cyan may overwrite

blue). This color scheme applies to the subsequent figures in this section as well.
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Figure 3.8: The final one-to-one mappings obtained for two different shape pairs from

Dancing Man.

In Fig. 3.11, we demonstrate the outputs obtained at different stages of our correspon-

dence algorithm on a Jumping Man pair and on a hybrid Jumping Man - Dancing Man

pair. For each pair, we display the initial one-to-one mapping §(0)
0 (the output of the first

bipartite matching process), the final one-to-one mapping §∗0 (the output of the last bipar-

tite matching process at convergence), and the final many-to-one mapping §∗ (the output

of the last greedy optimization process at convergence). Note the improvements obtained

through the different stages of the correspondence algorithm. Fig. 3.26 demonstrates these

improvements on a particular example, i.e., on a Ballerina - Jumping Man hybrid pair which

contains local but severe non-isometries due to the fingers of the Ballerina shape (note that

the Jumping Man model does not have any fingers). Hence the Ballerina shape has more

base vertices sampled on the hands as compared to the Jumping Man, and since the initial

one-to-one mapping forces every source base vertex to match a different target base, the

result severely deviates from the ground-truth. Our final many-to-one mapping however

correctly assigns all base vertices of the fingers to the single base vertex sampled on the
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Figure 3.9: The final one-to-one mappings obtained for two different Ballerina pairs (top

row). Note that N ≈ 80 base vertices include all high-curvature points of a hand, which are

then accurately matched (bottom row, left pair shown in zoom). Observe how the initial

mismatches on the fingers (§(0)
0 , middle row) are healed by our EM-based optimization

framework (§∗0, bottom row).
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Figure 3.10: The final one-to-one mapping obtained for a Jumping Man-Dancing Man

hybrid pair, displayed from two different views.

corresponding hand of the Jumping Man.

Table 3.2 provides, on different datasets, the values that the performance measures take

at different stages of our algorithm, for §(0)
0 , §∗0, and §∗ (see also Fig. 3.11). The average-based

performance measures, Dgrd and Diso, and the maximum-based measures d†grd and d†iso, are

each computed over 10 different runs of the algorithm on 10 different pairs, except one pair

for Dog-Wolf from the Non-rigid World database and five pairs for Ballerina. Each run

matches two spatially-apart poses of the articulated object in the corresponding sequence.

We note that, in some cases, especially at low resolution matchings when N is small, the

spectral alignment procedure (Section 3.1.5.2) may fail to resolve the sign ambiguities of

the eigenvectors due to the symmetries in the object shapes. The results given in Table 3.2

exclude such cases in order not to artificially burst the ground-truth correspondence errors.

All the performance measures are provided as a factor of the sampling distance r for better

interpretation of the errors.

The results given in Table 3.2 can be assessed also by considering the input quality, i.e.,

the isometric deviations inherent in the original datasets. To this effect, we have measured
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Figure 3.11: (Left) The initial one-to-one mapping §(0)
0 , (middle) the final one-to-one map-

ping §∗0, and (right) the final many-to-one mapping §∗, for an isometric (top) and a nearly

isometric pair of shapes (bottom). Some base vertices from the source shapes, for which

the final correspondences improve significantly as compared to the initial, are each marked

with a red circle.

Figure 3.12: (Left) The initial one-to-one mapping §(0)
0 , and (right) the final many-to-one

mapping §∗ obtained for a Jumping Man-Ballerina hybrid pair, displayed from two views.
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the isometric distortion within and across our test sequences by computing a Diso value,

given the manual match of 10 critical vertices on each shape pair, and obtained the following

distortion values (from the most isometric to the least): 0.030 for Jumping Man, 0.034 for

Ballerina, 0.036 for Dancing Man, 0.039 for Horse Gallop, 0.046 for Jumping-Dancing pair,

0.047 for Jumping Man-Ballerina pair, and 0.060 for the Dog-Wolf pair. Each of these

values can be interpreted as the isometric distortion of the semantical mapping that can be

established between the corresponding shapes, i.e., as a measure of how isometric the given

shapes to be matched are. In Table 3.2, we observe that the isometric distortion inherent in

a dataset puts roughly an upper bound to the performance, hence a lower bound to the Diso

value that can be achieved by our method. We see that, for each dataset, our one-to-one

mapping performance achieves a Diso value which is close to this bound, and even exceeds

it in the many-to-one setting.

The execution time of our implementation is mainly dominated by the number of vertices

in the original meshes due to geodesic distance computation. On a 6GB 2.53GHz 64-bit

workstation, the overall algorithm takes, for N ≈ 80 base vertices, 2.1, 5.6, 8.0, 2.0, 6.0, 3.5

and 1.5 seconds, respectively on Horse Gallop (V = 9K), Jumping Man (V = 16K), Dancing

Man (V = 20K), Ballerina (V = 6K), Jumping Man - Dancing Man pair (V = 20K),

Jumping Man-Ballerina pair (V = 16K), and Dog-Wolf pair (V = 3.4K). We note that the

portion of the execution time that belongs to geodesic computation varies between 77 and

90 percents on different datasets. This suggests that our shape correspondence method can

be made even more efficient by using faster geodesics computation algorithms such as the

one in [50].

Comparison with the spectral method. The spectral method of Jain and Zhang [39]

is one of the state of the art techniques for embedding-based non-rigid shape correspondence.

The method generates as output a many-to-one mapping from source to target. In Fig. 3.13,

we compare our many-to-one mapping results with the many-to-one mappings obtained via

this spectral method on two distinct cases: on an isometric shape pair from the Ballerina

sequence, and on the non-isometric Dog-Wolf pair from the Nonrigid World database, which

contains two shapes with similar structure but distorted isometry. We observe that our

method outperforms the spectral method significantly in both cases, the worst matchings

being significantly better as well as the correspondences being generally more accurate.
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Initial one-to-one, §(0)0 Final one-to-one, §∗0 Final many-to-one, §∗ Many-to-one of [39]

Pair Dgrd, d
†
grd Diso, d

†
iso Dgrd, d

†
grd Diso, d

†
iso Dgrd, d

†
grd Diso, d

†
iso Dgrd, d

†
grd Diso, d

†
iso

Horse Gallop 0.73r, 7.71r 0.64r, 2.75r 0.58r, 2.92r 0.56r, 1.85r 0.35r, 2.17r 0.29r, 0.87r 0.55r, 2.17r 0.50r, 1.49r

Jumping Man 0.57r, 2.45r 0.49r, 0.91r 0.52r, 2.45r 0.28r, 0.54r 0.40r, 1.92r 0.24r, 0.47r 0.52r, 3.98r 0.38r, 0.68r

Dancing Man 0.58r, 7.48r 0.48r, 2.55r 0.44r, 1.88r 0.28r, 0.82r 0.38r, 1.22r 0.23r, 0.60r 0.44r, 1.41r 0.27r, 0.77r

Ballerina n/a 0.50r, 1.46r n/a 0.43r, 1.02r n/a 0.26r, 0.63r n/a 0.46r, 1.25r

Jumping-Dancing n/a 0.51r, 1.03r n/a 0.46r, 1.12r n/a 0.37r, 0.59r n/a 0.47r, 1.03r

Jumping-Ballerina n/a 1.05r, 3.32r n/a 0.67r, 2.00r n/a 0.46r, 1.14r n/a 0.64r, 1.50r

Dog-Wolf n/a 0.73r, 2.38r n/a 0.69r, 1.62r n/a 0.51r, 0.79r n/a 0.65r, 1.20r

Table 3.2: Quantitative performance analysis of our shape correspondence method in com-

parison with the spectral method of [39]. The best (lowest) performance values on each row

are given in bold. In all cases the sampling distance r is approximately 0.07 (the maximum

geodesic distance on the mesh is taken as 1.0), which yields about N = 80 base vertices.

While our method correctly matches all the shape extremities, the tips of the left ears on

the Dog-Wolf pair are not for example correctly matched with the spectral method. We

have obtained the results of the spectral method by using the Matlab code made publicly

available by the authors of [39]. In the comparison tests, we have run their code on the

same sets of base vertices (about 80) and the same geodesic affinity matrices that we have

used for our algorithm.

The last column of Table 3.2 presents the average and maximum-based performance

measures for the spectral method in comparison to ours. These measures are computed

over the shape pairs for which none of the two methods results in a symmetric flip. We

observe that our many-to-one mapping §∗ outperforms the results of the spectral method

significantly in all settings for all datasets. Another interesting observation is that our

one-to-one mapping §∗0 is performance-wise almost on a par (even slightly better in some

occasions) with the many-to-one output of the spectral method.

We note that, although the complexity of the spectral method as presented in [39] is

O(V 2 log V ) against our O(NV log V ) complexity, it can be reduced to O(NV log V ) by us-

ing the Nyström method which however introduces further approximation to the Euclidean

embedding process [100].

Comparison with GMDS. We have conducted experiments on the Nonrigid World

shape database to compare our method with the GMDS method of [38]. For GMDS, we

have used the publicly available Matlab code which uses multiresolution optimization [38].
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Figure 3.13: The many-to-one mappings on the Dog-Wolf hybrid pair from the Nonrigid

World database (bottom) and on a Ballerina pair (top); obtained with our method (right)

and with the spectral method of [39] (left).
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The part of the Nonrigid World database that we have used contains mesh models of 9 cats,

11 dogs, 3 wolves, 17 horses, 24 female figures, and two different male figures containing

respectively 15 and 20 poses. We have excluded some shape classes from the experiments;

the gorillas having disconnected shape components, the shark which has only one mesh

model in its class, and the lions on which the Matlab code for GMDS has crashed.

We have evaluated the performances in three different categories: 1) within human

models, 2) within animal models, and 3) across human models. In the experiments belonging

to the first and second categories, for each model, we pick a random model from the same

class and then compute the correspondence in between, e.g., we match each dog to another

dog. In the third category, for each human object, we pick a random model from each

different human class and then compute the correspondence. We note that both methods

can result in symmetric flips, though the symmetry problem with the GMDS method is

more severe due to the coarse initialization step which is based on only 8 samples in the

available implementation. In our experiments, while our method matched about 40% of

the shape pairs over the three categories as free of symmetric flip errors, this ratio was

only 27% in the case of GMDS. We note that almost all the shapes in the Nonrigid World

database have intrinsic symmetries (though not perfect), and the number of symmetric flips

tend to decrease with our method as we increase the number of samples, which was about

80 in these experiments. In the comparison tests, we included only the pairs that could be

matched as free of symmetry problems by both methods.

Like the spectral method, the GMDS method generates as output a many-to-one map-

ping from the source shape to the target. Hence also in this case, for comparison we have

used our many-to-one mapping results. The GMDS method has its own sampling procedure,

and the publicly available code can be set so as to generate the same number of vertices that

our method produces. Thus in our experiments for comparison with GMDS, the sampled

vertices on a given mesh are different but the same in number.

We present the quantitative results of the comparison tests in Table 3.3. We observe that

our method significantly outperforms GMDS across humans category, and is on a par with it

for the isometric categories (recall also that the complexity of GMDS is O(V 2 log V ) against

our O(NV log V ) complexity). Note that the ground-truth correspondence information is

not available with the Nonrigid World database. We have excluded across animal models,
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Many-to-one (GMDS) Many-to-one (our method)
Category Diso, d

†
iso Diso, d

†
iso

Across humans 0.625r, 1.701r 0.407r,1.158r
Within humans 0.314r, 1.139r 0.379r,0.885r
Within animals 0.358r,1.036r 0.405r, 1.231r

Table 3.3: Quantitative performance of our shape correspondence method in comparison with the

GMDS method on the Nonrigid World dataset.

as a forth possible category, from our experiments for comparison with GMDS since in that

case some shape pairs to be matched would have severe global non-isometries that both

methods, which are essentially isometric, would fail to handle. The three categories that

we have experimented on correspond to (nearly) isometric instances of the correspondence

problem with the following isometric distortion values: 0.035 for across humans, 0.028 for

within humans, and 0.030 for within animals (or equivalently, 0.500r, 0.400r, and 0.428r,

respectively, where r = 0.07). Recall however that the Dog-Wolf pair for which we have

presented visual and quantitative results above is from the Nonrigid World database.

We visually demonstrate the comparison tests on three examples in Fig. 3.14. In the

figure, we see that the vertices matched with GMDS are not as evenly distributed as they are

in our case, resulting in clustered correspondences. Note, for instance on the top row, that

the samples clustered on the inner part of the left leg of one model have been matched to

the samples clustered on the outer part of the left leg of the other model. This is mainly due

to the fact that the GMDS algorithm is a gradient-based iterative optimization process that

produces sub-vertex matchings which do not necessarily coincide with the initial sampling.

We also note that, while computing the resulting isometric distortion value for a GMDS

output, we round sub-vertex coordinates to their nearest vertices on the surface mesh. The

effect of this rounding process to the computed distortion values is however negligible since

the mesh models in the Nonrigid World database are almost uniform and at relatively high

resolution. We also observe from the visual comparison that our method can match the

salient points of a shape more successfully than GMDS (e.g., ear tips of the cats), thanks

to our saliency-based sampling.
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Figure 3.14: Many-to-one mappings obtained with GMDS (left) and with our method (right)

for sample pairs selected from across humans (top), within humans (middle), and within

animals (bottom) categories of the Nonrigid World dataset. Our worst match between the

cat models (red line) falls inside the skull, hence is not visible. The vertices matched with

our method are always evenly-spaced and at prominent regions such as finger or ear tips

unlike GMDS matches. Note that correspondences tend cluster with GMDS in all cases.
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3.1.9 Conclusion

We have proposed an isometric shape correspondence method that minimizes the isometric

distortion in the original 3D Euclidean space by using EM algorithm. We have conducted

experiments on various datasets, and our findings can be summarized as follows:

• Our method performs well not only on isometric shapes, but also on pairs of shapes

which are nearly isometric, such as mesh representations of two different humans or

animals, i.e., for shapes of the objects which are different but semantically and/or

structurally similar.

• The COES sampling algorithm that we propose solves the joint sampling problem by

evenly sampling high-curvature vertices from both shapes using a sufficiently small

sampling distance.

• When the shapes to be matched are given in terms of evenly sampled surface points

(base vertices), any isometric correspondence technique in the literature can be used

to initialize our EM-based method. In that sense, our method can be used to further

improve the results of any embedding-based isometric method, such as [39], that

possibly suffers from approximations and/or ambiguities in the embedding domain.

• Our method generates two optimal mappings at a time from one shape to the other,

one injective and the other many-to-one, the former having generally higher isometric

distortion than the latter, especially in the presence of severe non-isometries between

the shapes.

• Our method is computationally very efficient, and can be made even more efficient by

using faster algorithms for computation of geodesic distances.

• Our method can be applied to any pair of isometric shapes with arbitrary genus.

However, it cannot handle the deformations which include topological changes that

would modify geodesic distances drastically.

One limiting factor for our method is that it has been designed to work on isometric

shapes, though the experiments show that our algorithm works well also for nearly isometric
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shapes. Yet, our algorithm may not produce good correspondence results when two shapes

contain severe global non-isometries such as some of the hybrid animal shape pairs in the

Nonrigid World database. Another limitation of our method is due to the problem of sym-

metric correspondences, which is inherent to all isometry-based correspondence methods.

Hence, if two shapes to be matched include intrinsic symmetries, then our method may fail

to find the correct matching and result in symmetric flips. To resolve the symmetry prob-

lem, explicit symmetry information is needed and one can resort to methods that can detect

global intrinsic symmetries such as [101, 89]. Our tracking mechanism that alleviates the

symmetry problem [25] (Section 3.3) can also be adapted to this work that can be regarded

as multiresolution thanks to the sampling distance parameter.
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3.2 Dense Correspondence of Complete Shapes

In this section, we present coarse-to-fine combinatorial matching for dense isometric shape

correspondence [24].

3.2.1 Literature review

We append the following literature review on dense correspondence to the review in Sec-

tion 3.1.1 that already applies to this section where we describe an isometric matching

algorithm.

An important problem in shape correspondence is how to achieve dense correspondence,

i.e., a matching between all vertices of two given high resolution meshes. The main bot-

tleneck in achieving dense correspondence is the computational complexity of the existing

algorithms. Most embedding-based methods naturally support dense correspondence but

their computational load is usually a limiting factor. To the best of our knowledge there

exist only two methods in the literature [21, 24], that can achieve this in O(V log V ) time,

where V is the number of vertices in the given meshes to be matched. While [21] introduces

various approximations, [24] to be described in this section may suffer from symmetric flip

issue that is inherent to multiresolution matchers. Note that the problem in the latter is

mostly handled with the application of our generic symmetric flip solver [25] (Section 3.3).

One of the best performant dense matching algorithms in the literature appears to be

the BIM (blended intrinsic maps) method proposed in [21]. The approach is to search for

a continuous blend of multiple low-dimensional maps which can be explored via Mobius

transformations. By combining these conformal maps with weights varying smoothly over

the surface, a space of maps is obtained, which can be searched in polynomial-time. Thanks

to blending, non-isometric deformations are handled better with this method as compared

to other Möbius transformation based methods such as in [31, 36]. However, the BIM

method introduces various approximations to achieve dense correspondence in O(V log V )

time. First, the isometric distortion of each blending map is estimated on the extended

complex plane to which the surfaces to be matched are transformed (flattened) via mid-

edge uniformization, hence with some embedding error. Second, geodesic centroids of the

blending maps are approximated with Euclidean distances. Third, confidence weights of the

blending process are computed over all vertices of a dense surface mesh via interpolation.
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These approximations may lead to inaccurate matches (see Fig. 4.24 for an example).

Moreover the method has restrictions on topology, suffering from non-delaunay triangles

during the process of mid-edge uniformization and also requiring zero-genus meshes as

input.

In this section, the isometric dense correspondence problem is solved by using a mul-

tiresolution strategy with the following contributions achieved. First, we propose a dense

shape correspondence method which is computationally efficient. We minimize the isomet-

ric distortion directly in the 3D Euclidean space, i.e., in the domain where isometry is

originally defined, by using a coarse-to-fine combinatorial search algorithm. Our method

does not require any initialization and aims to find an accurate solution in the minimum-

distortion sense for perfectly isometric shapes. Second, our shape correspondence method

is based upon a coarse-to-fine joint sampling technique that incrementally samples evenly-

distributed salient vertices from a given mesh at increasing levels of detail.

3.2.2 Problem statement and overview

Our goal is to establish a dense correspondence between two given isometric (or nearly

isometric) shapes. We assume that each shape is represented by a manifold surface mesh

of sufficiently high resolution, on which geodesic distances can easily be computed. We

designate one of the shapes as source and the other as target. Let S and T denote the

vertex sets of the source and the target meshes, respectively. Let also that a mapping

§ : S → T (or a relation in the most general setting) is given. We then measure the

isometric distortion Diso as defined in Eq. 3.1. The problem can then be formulated as a

combinatorial search over all possible mappings so as to minimize the isometric distortion

function given in Eq. 3.1:

§∗ = arg min
§

Diso(§) (3.14)

Since S and T consist of vertices sampled on isometric (or nearly isometric) shapes, we

require the optimal mapping §∗ to establish a full correspondence between S and T so

that every si ∈ S is related to some tj ∈ T , and likewise every tj ∈ T is related to some

si ∈ S. If we further assume that the shapes are perfectly isometric and represented by

uniform triangle meshes, then §∗ is constrained to be a one-to-one correspondence with

|S| = |T |, and can be found by evaluating Eq. 3.1 for N ! different possible mappings, where
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N = |S| = |T |. This combinatorial solution however has factorial complexity and hence

computationally intractable for typical values of N .

Motivated by the simplicity of this optimal but expensive solution, we provide a coarse-

to-fine shape matching algorithm based on combinatorial search. The idea is to reduce the

search space by exploiting the fact that the optimal mapping §∗ maps nearby vertices on

the source shape to nearby vertices on the target. This suggests that shape matching can

be performed on a patch-by-patch basis in a coarse-to-fine fashion. To this effect, we incre-

mentally sample evenly-distributed vertices from the surfaces of both shapes at increasing

levels of detail (Section 3.2.3). In parallel to this sampling process, at each level of detail,

we match the sampled vertices by combinatorial search on a patch-by-patch basis (Sec-

tion 3.2.4), using Equations 3.1 and 3.14. Our algorithm is built upon the basic assumption

that the shapes to be matched are perfectly isometric. However two digital shapes (or their

mesh representations) are hardly ever so in practice. Moreover |S| is not usually equal to

|T |, hence the correspondence §∗, which is optimal in the minimum-distortion sense, is a

many-to-many mapping. We note that the final output of our correspondence algorithm is

also a many-to-many mapping.

3.2.3 Coarse-to-fine sampling

In this section, we describe our coarse-to-fine algorithm that we use to sample base vertices

from the mesh representations of the given shapes. We sample S and T separately, at

increasing levels of detail, by using a sequence of decreasing sampling radii {r(k)} such that

r(k) > r(k+1) for k = 0, 1, ...,K. Let S(k) denote the set of base vertices sampled from S at

level k. We require the sets {S(k)}: i) to be incremental such that S(k) ⊂ S(k+1) ⊆ S, and

ii) to consist of samples as evenly distributed as possible on the shape surface. Note that

the same notation applies also to T .

In order to obtain a consistent joint sampling between two shapes, we use an importance

sampling strategy which prioritizes salient vertices (shape extremities and/or high curvature

points) during selection of the samples. We initially sort the vertices of S into a list in

descending order with respect to their saliency values and mark them all as base vertex

candidates. The sampling algorithm starts, at the coarsest level k = 0, by selecting the top

vertex of the list as the first base vertex. We launch the Dijkstra’s shortest paths algorithm
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from this vertex and unmark all the vertices lying within a distance r(0). Then, the next

base vertex is picked as the first marked vertex of the list. When this is repeated until no

marked vertex is left, we obtain a sampling of the surface, where the base vertices are at

least r(0) apart from each other. The same sampling procedure is applied to each level k

by initializing the sampling with S(k) = S(k−1), where S(−1) = ∅. At the beginning of each

level k, we mark all the vertices but the ones which are within a distance r(k) from the base

vertices inherited from the previous level. We then pick the first marked vertex in the list

and unmark all the vertices within a distance r(k). When this is repeated until no marked

vertex is left, we obtain the base vertex set S(k) such that the samples are at least r(k) apart

from each other. The maximum level of sampling is obtained when all the vertices in S are

picked as base vertices.

Each base vertex si ∈ S(k), sampled as described above, defines a surface patch around

itself at level k. This patch, that we denote by S
(k)
i , includes all the vertices within a

distance r(k) from the base si, as illustrated in Fig.3.16. The algorithm also ensures that

each vertex is covered by the patch of at least one base vertex. Hence, the resulting patches

partition the shape surface at each level into overlapping regions of approximately equal

size such that S(k) =
⋃

i S
(k)
i . The sampling algorithm is given as pseudocode in Fig. 3.15.

Our sampling algorithm is built on a sampling technique used in [48]. As described

above, we extend this technique, which is uniresolution and which selects the base vertices

evenly but in an arbitrary manner, so as to have a multiresolution sampling algorithm which

prioritizes the selection of salient vertices. We measure saliency by the integral of geodesic

distance function of [48] at the initial coarsest level, and by the Gauss curvature at all other

levels. Hence the base vertices are placed on local maxima of Gauss curvature at every level

except that they are selected from the shape extremities at the initial level.

3.2.4 Correspondence algorithm

We establish the vertex correspondence between the source shape S and the target T , at

increasing levels of detail, in parallel to our coarse-to-fine sampling algorithm described in

the previous section. Hence our shape correspondence algorithm produces a sequence of

correspondences, {§(k)}, which is refined as the level k increases, and at the maximum level

possible, we expect to get the optimal dense correspondence: §∗ = §(K). In the sequel, we
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Input: Vertex set S, sampling radii {r(k)} s.t. r(0) > r(1) > ... > r(K)

Output: Base vertex sets {S(k)} s.t. S(0) ⊂ S(1) ⊂ ... ⊂ S(K)

S(−1) = ∅; k = −1;

Sort S in descending order w.r.t. saliency;

Iterate on level k

Mark all vertices in S as base vertex candidates;

S(k) = S(k−1);

For each base si ∈ S(k−1)

Unmark all the vertices within patch S
(k)
i ;

Repeat

Let sj be the first marked vertex in S;

S(k) = S(k) ∪ {sj};
Unmark all the vertices within patch S

(k)
j ;

Until no marked vertex is left

Until all vertices in S are sampled (or maximum level K is achieved)

Figure 3.15: The coarse-to-fine sampling algorithm.

explain how we obtain each §(k), i.e., the correspondence at each level k.

3.2.4.1 Patch-based combinatorial matching

Recall from Section 3.2.3 that each base vertex set S(k−1), or equivalently T (k−1), partitions

the surface of the shape S (or T ) into overlapping patches of approximately equal size

{S(k−1)
i } (or {T (k−1)

i }). Suppose that each such patch at level k − 1, say S
(k−1)
i , contains a

fixed number M of base vertices from the next level k, i.e., from S(k). If we designate S
(k−1)
i

as the parent of these kth level base vertices, then our coarse-to-fine sampling procedure

can be thought of as a process in which the surface of the shape S is recursively subdivided

into M smaller patches as levels proceed. Note that, while a newly sampled base at level k

(or its patch) may have multiple parents, a base vertex inherited from level k − 1 has only

one parent patch.

Given §(k−1), the correspondence §(k) can be obtained on a patch-by-patch basis, i.e., for

every (si, tj) ∈ §(k−1), by matching the kth level base vertices inside the patches S
(k−1)
i and

T
(k−1)
j , respectively, as illustrated in Fig. 3.17. The M base vertices of two corresponding
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Figure 3.16: Coarse-to-fine sampling. Small blue dots represent the original vertex set S. (Left)

Green points are the base vertices sampled at level k− 1, where the base si defines the patch S
(k−1)
i

with radius r(k−1). (Right) The newly sampled base vertices at level k (in black), along with the

ones inherited from the previous level (in green), constitute the base vertex set S(k) at level k, where

each sj defines a patch S
(k)
j around itself with radius r(k). The patch S

(k−1)
i is the parent of the

base vertices that it covers at level k.

patches, say S
(k−1)
i and T

(k−1)
j , can be matched by combinatorial search provided that M

is sufficiently small. To this effect, we evaluate each time the isometric distortions of M !

possible one-to-one mappings § from the base vertices in S
(k−1)
i to the base vertices in T

(k−1)
j

via Eq. 3.1 and pick the one with the least distortion. We denote this minimum-distortion

patch-to-patch matching by §(k)
m . Recall that, to be able to compute Diso(§) in Eq. 3.1, we

need to set a correspondence list §′ to be used in Eq. 3.2. The list §′, which includes § by

default, should be global enough to avoid mismatches due to local symmetries, yet local

enough to perform well on details, hence we augment it with the matchings of the parent

patches, whenever available: §′ = §∪⋃
n §(k−1)

n , where each §(k−1)
n denotes the correspondence

at level k − 1 between the parent patches of si and tj (note that a base vertex may have

multiple parents).

At each level k, we set the value of the sampling radius r(k) based on the area of

the largest patch at level k − 1, denoted by A(k−1). We use the ad-hoc formula, r(k) =

0.6
√

A(k−1)/π, which ensures that the number M of bases sampled within a parent patch

is about 5 (or more generally, M ≤ 6), and that in turn allows us to match the resulting
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Figure 3.17: Coarse-to-fine patch-based combinatorial matching. At level k, the base vertices

inside the (grey) patches S
(k−1)
i and T

(k−1)
j are matched by combinatorial search. At level k−1, the

matching §(k−1)
n is one-to-many since the (green) patches S

(k−2)
i and T

(k−2)
j have different number

of bases. Note that §(k−1)
n is included in §′ while matching the patches S

(k−1)
i and T

(k−1)
j at level k.

patches via combinatorial search.

Since two shapes are never perfectly isometric, two patches to be matched may indeed

have different number of base vertices sampled, say M and M ′ and M ′ > M , as it is also the

case in in Fig. 3.17. In such cases we have
(
M ′
M

)
M ! different possible one-to-one mappings

to evaluate for combinatorial matching. Once the minimum-distortion one-to-one mapping

is found via combinatorial search, there remain unmatched vertices in one of the patches,

to which we assign residual matches in order to assure that the whole surface is covered

by the correspondence algorithm as depicted in Fig. 3.17. To achieve this, each unmatched

vertex in one patch is paired with all the vertices in the other one by one, and the pair that

minimizes the isometric distortion is picked as the residual match. Hence each patch-to-

patch matching at level k results in a mapping §(k)
m , which can be one-to-one, many-to-one

or one-to-many, depending on the number of base vertices sampled in each patch.

3.2.4.2 Correspondence merging

At the end of each level k, we merge the patch-to-patch correspondences {§(k)
m }, obtained

via combinatorial search as explained in Section 3.2.4.1, into one global correspondence §(k)

that covers the whole surface. Since patches partition the shape surface into overlapping

regions, the union of these matchings, §(k,0) =
⋃

m §(k)
m , gives an initial correspondence that

needs to be simplified. The merging process at level k is carried out in the following three
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steps, that involve elimination of redundant multiple matches and trimming of the outliers

(as illustrated in Fig. 3.18):

• Step 1: For every base vertex si ∈ S(k), we keep only one correspondence pair, the

one with the minimum distortion among all (si, tj) ∈ §(k,0), which gives us §(k,1), the

output of the first step of the merging algorithm. We compute each isometric distortion

diso(si, tj) via Eq.3.2 with the setting §′ = §(k,0). Note that §(k,1) is many-to-one.

• Step 2: To every isolated base vertex tj ∈ T (k) with no correspondence si ∈ S(k)

s.t. (si, tj) ∈ §(k,1), we assign the base sn ∈ S(k) that yields the minimum distortion

among all (sn, tj) ∈ §(k,0), which gives us §(k,2), the output of the second step. We

compute each isometric distortion with the setting §′ = §(k,1).

• Step 3: We replace every outlier (si, tj) ∈ §(k,2) for which diso(si, tj) > 2 ·Diso(§(k,2)),

with (si, tn) that yields the minimum distortion among all tn ∈ T (k). We compute

each isometric distortion with the setting §′ = §(k,2). If the removal of an outlier

creates an isolated target base, then step (2) is repeated. The output of this last step

gives us the final correspondence §(k), which is a many-to-many mapping.

3.2.4.3 Overall algorithm

The overall correspondence algorithm is composed of three basic tasks at each level of detail:

sampling, combinatorial matching and merging. A critical parameter of the algorithm is

the sampling radius r(k), which determines at each level k the number M of bases sampled

within each parent patch. Recall that we set r(k) based on the area of the largest patch

at level k − 1, A(k−1), by using the ad-hoc formula given in Section 3.2.4.1, which ensures

a sufficiently small value of M for combinatorial matching, M ≤ 6. Hence in practice, we

have two sampling radii at each level, r
(k)
S and r

(k)
T , one for the source shape S and one

for the target T , which have close but different values (since S and T are assumed to be

nearly isometric). We initialize the area parameters, as A
(−1)
S = AS and A

(−1)
T = AT , where

AS and AT denote the surface areas of the source and the target, respectively. The overall

correspondence algorithm can then be written as pseudocode in Fig. 3.19.
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Figure 3.18: Merging of patch-based correspondences, §(k)
1 , §(k)

2 and §(k)
3 , into one global mapping

§(k) at level k. The illustration considers only three patches for demonstration purposes. Points

from different patches with the same color correspond to the same base vertex. Note that some

redundant matches are eliminated and the outlier (s2, t3) is replaced with (s1, t3) and (s2, t4). The

resulting §(k) covers every base vertex on the source shape as well as on the target.

3.2.5 An insight to why the algorithm works

We now show that, under certain conditions, a coarse-to-fine matching algorithm, such as

ours, can be used to gradually localize an accurate dense correspondence as the level of

detail increases, based on the following ”inclusion assertion”:

Inclusion Assertion: Suppose S and T are sampled at sufficiently high resolution from two

perfectly isometric surfaces. Let (si, ti) ∈ §∗, where §∗ is the optimal correspondence that

minimizes Diso(§), i.e., Diso(§∗) = 0. Suppose also that §(k) is the optimal correspondence

at some level k, and that the optimal solution is unique, which exempts us from ambiguities
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Input: Vertex sets S and T

Output: Dense Correspondence §(K) : S → T

Iterate on level k (initially k = 0)

Set the sampling radii r
(k)
S and r

(k)
T based on the largest patch

areas at the previous level, A
(k−1)
S and A

(k−1)
T ;

Compute the base sets S(k) and T (k) by the sampling

algorithm (Section 3.2.3);

For each (si, ti) ∈ §(k−1)

Match kth level base vertices in patch S
(k−1)
i and patch T

(k−1)
i

via combinatorial search, that gives §(k)
m (Section 3.2.4.1);

Merge patch-to-patch correspondences {§(k)
m }

into §(k) (Section 3.2.4.2);

Until all vertices in S and T are matched;

Figure 3.19: The dense correspondence algorithm.

due to symmetries. Then,

∀i, j (si, tj) ∈ §(k) → ti ∈ T
(k)
j

where T
(k)
j is the patch with radius r(k) centered around tj at level k.

We will not formally prove this assertion, but rather give an outline of its justification,

that will provide us with an insight into why and under what conditions our coarse-to-fine

correspondence algorithm works. First note that Diso(§) is locally a slowly changing convex

function around its optimal point. Hence the mapping §(k), which is optimal at level k, will

assign each base vertex si to some base tj as nearest to the optimal ti as possible. Moreover

S(k) and T (k) consist of evenly-spaced base vertices sampled from perfectly isometric shapes,

such that each vertex in S and T is included by the patch of at least one base vertex with

radius r(k). Based on these, we can state the following: ∀i, j (si, tj) ∈ §(k) → g(ti, tj) ≤ r(k),

where g(., .) is the geodesic distance function, which directly implies the assertion. The

inclusion assertion is illustrated in Fig. 3.20 and demonstrated on a pair of isometric shapes

in Fig.3.21.

In the case of perfect isometry, the inclusion assertion basically suggests that, based

on the optimal correspondence §(k−1) at level k − 1, a patch-based matching algorithm,
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such as ours, can be used to find the optimal correspondence §(k) at level k. Starting

from the coarsest level k = 0, our algorithm aims to maintain the optimality at each

level k by patched-based combinatorial matching and merging, assuming the optimality of

the correspondence found at the previous level. The algorithm is expected to eventually

converge to the optimal correspondence §∗ as levels proceed, since at the last level there

will be only one vertex left in each patch.

The inclusion assertion, hence our algorithm, discards the symmetry problem which is

however inherent to all isometry-based correspondence methods. We note that, since our

algorithm is coarse-to-fine, even though the shapes to be matched are not symmetric as a

whole, symmetric flips may occasionally arise at the initial level due to coarse sampling,

which can then effect further levels of matching. Moreover, since real shapes are usually

only nearly isometric, the initial sampling based on extremities or Gaussian curvature with

particular choices of the sampling radius can lead to failure cases. That means, the optimal

correspondence §∗ ideally given by Eq. 3.14 may not always match the dense correspondence

§(K) that our algorithm produces.

Figure 3.20: Illustration of the inclusion assertion at level k. The optimal correspondence ti of si

is included in the patch defined by tj , whenever (si, tj) ∈ §(k)
m .

3.2.6 Computational complexity

Sorting the vertices of the original mesh w.r.t. saliency prior to the sampling process takes

O(N log N) time where N = max(|S|, |T |). Our correspondence algorithm then proceeds
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Figure 3.21: Demonstration of the inclusion assertion. Note how the correspondence between the

right ears of two horses is refined as levels proceed. At levels k = 0 and k = 1, the correspondence

is far from the optimal, yet the optimal target vertex is included at each level by the patch of the

matched base, as required by the inclusion assertion. At level k = 2, the left ears are correctly

matched. The corresponding patches are painted in red at each level.

with the following computations:.

• Coarse-to-fine sampling. We sample about M = 5 base vertices within each parent

patch. Restricted to the patch to be sampled, Dijkstra’s shortest paths algorithm,

when applied to all active patches, takes O(
∑K

k=1 Mk · N
Mk logM

N
Mk ) time, where Mk

and N
Mk can be interpreted as the number and the size of current patches, respectively,

and K = logM N is the maximum level of detail that can be achieved. The summa-

tion can be expanded as N logM 1 + N logM M + .. + N logM N , yielding a total of

O(N log N) time complexity.

• Patch-based combinatorial matching. Each patch pair is matched in constant time

O(M !) since there are M ! mappings to be evaluated via Diso that can be computed also

in constant time. Hence all patch pairs at all levels are matched in O(
∑K

k=1 Mk ·M !)

time, which unfolds to a total of O(N log N) complexity since MK = N .

• Merging. Given a global initial mapping §(k,0) of size Mk at the end of each level k,

its evenly-spaced subset that contains E matches (E ¿ N) is used as the list §′ to be

traversed in the computation of diso (see step 1 in Section 3.2.4.2). Hence, the total

time complexity can first be written as O(
∑K

k=1 3 · MkE), where the term MkE is

due to diso computations in the three-step merging algorithm. As before, the total
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complexity then reduces to O(N log N) with a proper choice of E such as 100.

The complexity analysis above reveals O(N log N) overall time complexity which scales well

to large meshes, especially when compared to other isometric shape correspondence algo-

rithms in the literature, such as O(N2 log N) complexity of [39] and [38], and O(N4 log N)

complexity of [31].

3.2.7 Experimental results

We have tested our algorithm on several shape datasets: 1) on various mesh sequences

and 2) on Nonrigid World database [38]. The mesh sequences are namely Ballerina [99],

Jumping Man [97] and Horse Gallop [14], each containing different poses of an articulated

object. While Jumping Man and Horse Gallop are given as fixed-connectivity mesh se-

quences sampled uniformly at high-resolution with 16K and 9K vertices, respectively, the

Ballerina sequence exhibits severe non-uniformity as well as different number of vertices and

connectivity among its 5 available different poses with around 6K vertices. On the other

hand, the part of the Nonrigid World database that we use contains mesh models of 9 cats,

11 dogs, 3 wolves, 17 horses, 24 female figures, and two different male figures, containing 15

and 20 poses, where each object has approximately 3K vertices with arbitrary connectivity.

We measure the performance of our shape correspondence algorithm in terms of devia-

tion from the ground-truth as well as isometric distortion. To quantify isometric distortion,

we use the average distortion measure Diso defined in Eq. 3.1, and also a maximum dis-

tortion measure that we denote by d†iso (Eq. 3.11). Similarly we compute average and

maximum ground-truth correspondence errors respectively by (whenever the ground-truth

correspondence is available) Dgrd (Eq. 3.12) and d†grd (Eq. 3.13).

In the figures where shape correspondences are displayed, the worst matchings, with

respect to isometric distortion d†iso and the ground-truth correspondence error d†grd (whenever

available), are highlighted with bold red and green lines, respectively. In Fig. 3.22, we display

the dense correspondence obtained on a shape pair from the Ballerina sequence, and zoom

on the fingers to show the accuracy and smoothness of the mapping obtained. Similarly,

dense correspondences established between Horse Gallop pairs as well as hybrid Wolf-Horse

pairs are given in Fig. 3.23.

In Fig. 3.24, we display the correspondences obtained at increasing levels of detail for
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Figure 3.22: Dense correspondence for a Ballerina pair (§(K) with K = 11), zooming on the fingers

of the left hands. The worst match w.r.t isometric distortion, as measured by d†iso, is indicated with

a bold red line.

a Ballerina pair and a Dog-Wolf pair from the Nonrigid World. We observe that the cor-

respondences are improved and refined as levels proceed, and eventually we obtain a very

accurate correspondence, even on the Dog-Wolf pair which contains severe non-isometries as

compared to the articulated Ballerina pair. As a general rule, the mapping becomes denser

and hence the isometric distortion is expected to decrease as levels proceed. This is verified

by the plot given in Fig. 3.25, except that there is a consistent small increase in distortion

from level k = 0 to k = 1, which is due to accurate joint sampling of shape extremities at

the initial level. In Fig. 3.25, we plot the surface coverage of matched points as well as the
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Figure 3.23: Dense correspondences obtained on a Horse Gallop pair (left) and on a Horse-Wolf

pair (right). The match with the worst ground-truth error is indicated with a green line for the

Horse pair.

isometric distortion for varying k, computed by averaging the results over 6 sample pairs

(whenever available).

The isometric quality of the input is an important factor for the performance of our

algorithm. To measure isometric quality, we assign each dataset an isometric distortion

value, denoted by ξ, which is computed as the value of Diso for the manual one-to-one

matching of 10 shape extremities: (from the most isometric to the least) 0.034 for Ballerina,

0.039 for Horse Gallop, 0.047 for the Jumping Man-Ballerina pair, 0.060 for the Dog-Wolf

pair, and 0.064 for the Wolf-Horse pair. Although any pair can be regarded as only nearly

isometric from a rigorous point of view, the Ballerina and Horse Gallop sequences, having

higher input quality, provide better outputs when compared to the other hybrid pairs, as

observed in Table 3.4 as well as in Fig. 3.25. Nevertheless, the hybrid pairs still yield high-
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Figure 3.24: Correspondences obtained at increasing levels of detail for a Ballerina pair (top) and

for the Dog-Wolf pair (bottom).

quality results despite significant non-isometries that they contain, e.g., due to the fingers

of the Ballerina matched with the hand of the Jumping Man (with no fingers) as shown in

Fig. 3.26, or due to the scale differences between the corresponding parts of the Wolf and

Dog shapes such as tails, legs, and faces (Fig. 3.24).

We compare our isometric shape correspondence method with two state-of-the-art tech-

niques: the spectral method of [39] and the generalized multidimensional scaling (GMDS)

method of [38]. We have obtained the results of these two methods by using the Mat-

lab codes made publicly available by the authors. Since neither the spectral method nor

the GMDS scales well to large meshes, in the comparison experiments we have stopped

our coarse-to-fine algorithm at an intermediate level (k = 4, ∼ 200 base vertices for the

spectral method and k = 5, ∼ 300 base vertices for GMDS). For comparisons with the

spectral method, we have run their code on the same set of base vertices that we have used

for our algorithm. The GMDS method however has its own sampling procedure, and the

publicly available code can be set so as to generate the same number of vertices that our

method produces. Hence in the latter case, the sampled vertices are different but the same

in number.
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Figure 3.25: The surface coverage (left) and isometric distortion (Diso) (right) of the correspondence

obtained at each level k for different shape datasets.

All the performance measures provided in Table 3.4 for comparison with the spectral

method are each computed and averaged over 10 different runs of the algorithm on 10

different pairs, except one pair for the Dog-Wolf and 5 pairs for Ballerina, where each run

matches two spatially-apart poses of the articulated object in the corresponding sequence.

In Table 3.5, we provide the results of the comparison of our method with GMDS on

the Nonrigid World database. In this case, we evaluate the average performance in three

different categories: 1) within human models, 2) within animal models, and 3) across human

models. In the first and second categories, all possible shape pairs are tested such that a

human or animal model is paired up only with models from the same class, e.g., a dog

to another dog, whereas in the third category, a human object is matched to a model if

and only if it represents a different human. We note that all three methods can result in

symmetric flips since they are all isometry-based. Hence when comparing two methods, we

have included only the pairs that can be matched as free of symmetry problems by both

methods in consideration. Note also that, in our case, if the value of M0, i.e., the number

of extremities at the coarsest level, is increased in the range 5 ≤ M0 ≤ 9, the number of

symmetric flips tend to decrease.

The spectral method, as well as the GMDS method, generates as output a many-to-one

mapping from the source shape to the target while our method produces a many-to-many

correspondence. Hence to make our result compatible, for comparison we have used the

many-to-one mapping, §(k,1), that the first step of our merging algorithm generates (see
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Figure 3.26: Correspondence results on a Jumping Man - Ballerina hybrid pair. At level k = 4, the

fingers of the Ballerina are mapped to a single vertex on the hand of the Jumping Man as desired

(left). Clustered matchings are observed on the Jumping Man at the last level, which is as expected

since its mesh representation is significantly denser than the Ballerina mesh (right).

Section 3.2.4.2). In Table 3.4, we observe that our many-to-one mapping, §(k,1), outper-

forms the results of the spectral method for all datasets, and that the improvement is

more significant on more isometric Ballerina and Horse Gallop pairs. In the table, we also

provide the performance results for the dense mapping, §(K), obtained with our method,

which are significantly better than the results obtained at intermediate levels. Note that,

on all datasets, the isometric distortion of our final many-to-many dense mapping is lower

than the corresponding input distortion ξ. We have the ground-truth correspondences only

for the Horse Gallop sequence, hence we compare the two methods in this case also w.r.t

their ground-truth error performances. Our method outperforms the spectral method with

Dgrd = 0.039 and d†grd = 0.102 against Dgrd = 0.062 and d†grd = 0.195, when the results

are averaged over 10 different runs of the algorithm on 10 different pairs. In Fig. 3.27, we

visually compare the performance of our algorithm with the spectral method on a Horse

Gallop pair. We observe that our method outperforms the spectral method significantly

in this case, the worst matching being significantly better with our method as well as the

correspondences being generally more accurate. While our method correctly matches all the

shape extremities, the tips of the ears on the Horse are not for example correctly matched

with the spectral method.

When compared with the GMDS method, we observe in Table 3.5 that our method is

performance-wise on a par in terms of isometric distortion, even slightly better in some cases
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(recall that the complexity of GMDS is O(N2 log N) against our O(N log N) complexity).

This is visually demonstrated on two examples in Fig. 3.28. In the figure, we see that the

matched vertices with GMDS are not as evenly distributed as they are in our case. This is

mainly due to the fact that the GMDS algorithm is an iterative optimization process that

produces sub-vertex matchings which do not necessarily coincide with the initial sampling.

Hence while computing the resulting isometric distortion value for a GMDS output, we

round sub-vertex coordinates to their nearest vertices on the surface mesh. The effect of

this rounding process to the computed distortion values is however negligible since the

mesh models in the Nonrigid World database are almost uniform and at relatively high

resolution. We also observe from the visual comparison that our method can match the

salient points of a shape more successfully than GMDS (e.g., ear tips of the cats), thanks

to our saliency-based sampling.

Many-to-one [39] Many-to-one (our method) Many-to-many (our method)
Pair Diso, d

†
iso Diso, d

†
iso Diso, d

†
iso

Ballerina .023, .054 .016, .038 .014, .024
Horse Gallop .021, .040 .013, .026 .008, .015
Jumping-Baller. .041, .069 .035, .058 .028, .051
Dog-Wolf .050, .105 .044, .075 .036, .055
Wolf-Horse Gal. .055, .087 .048, .079 .037, .066

Table 3.4: Quantitative performance of our method in comparison with spectral method of [39].

GMDS Our method
Pair Diso, d

†
iso Diso, d

†
iso

Within animals .022, .087 .021, .096
Within humans .018, .076 .020, .079
Across humans .026, .068 .038, .082

Table 3.5: Quantitative performance of our method in comparison with the GMDS method of [38]

on Nonrigid World database.

Finally we note that, on a 6GB 2.53GHz 64-bit workstation, the overall execution time of

our implementation, needed to match all the vertices so as to obtain a dense correspondence,

is 38, 103, 110, 281 and 337 seconds for Dog-Wolf, Ballerina, Wolf - Horse Gallop, Horse

Gallop and Jumping Man-Ballerina pairs, respectively.
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Figure 3.27: Many-to-one mappings obtained with the spectral method [39] (left) and with our

method at level k = 4 (right) for a Ballerina pair (top) and a Horse Gallop pair (bottom). Green

and red lines indicate the worst matches w.r.t. ground-truth and isometric distortion, respectively.

3.2.8 Conclusion

We have proposed a dense isometric shape correspondence method based on coarse-to-fine

sampling and combinatorial matching. Our findings can be summarized as follows:

• Our method is computationally very efficient with O(N log N) complexity, and hence

scales well to large meshes.

• The dense correspondences that we obtain are very accurate since the isometric distor-

tion is minimized in the original 3D Euclidean space, as free of approximation errors

that embedding-based methods usually suffer from.

• Our method performs well not only on isometric shapes, but also on pairs of shapes

which are nearly isometric, such as mesh representations of two different humans or

animals, i.e., for shapes of the objects which are different but semantically and/or

structurally similar.
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Figure 3.28: Many-to-one mappings obtained with the GMDS method [38] (left) and with our

method at level k = 5 (right) for a within-animal pair (top) and for a across-human pair (bottom).

• Our method produces accurate correspondences at different levels of detail thanks to

our coarse-to-fine joint sampling algorithm.

A shortcoming of our method is due to the symmetry problem, which is inherent to all

isometry-based correspondence algorithms. Moreover, since our algorithm is coarse-to-fine,

even though the shapes to be matched are not symmetric as a whole, symmetric flips may

occasionally arise at the initial level due to coarse sampling. This also relates to the difficult

problem of finding a reliable initial correspondence as discussed in Section 3.2.1, which we

plan to address as future work. We also plan to evaluate the performance of our method

with larger-scale comparisons to more recent methods, using benchmark datasets such as

in [21]. These two plans are all addressed in our recent work [25] (Section 3.3).
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3.3 Symmetric Flip Problem With A Solution

In this section, we introduce the symmetric flip problem that is inherent to multiresolution

isometric shape matching algorithms along with a solution [25] verified on two such matchers

that work in coarse-to-fine fashion, namely [24] (Section 3.2) and GMDS [38].

3.3.1 Introduction

We add the following literature review on symmetric flip problem to the dense correspon-

dence literature review in Section 3.2.1 that already applies to this section where we describe

a dense isometric shape matching algorithm.

A shape that exhibits intrinsic symmetries yields to more than one optimal solutions

while matching it to its articulated pose or to itself. One can exploit the latter, i.e., self-

matching, to detect intrinsic symmetries or self-similarities [89, 102, 103].

Whether known a priori or not, intrinsic symmetries cause the so-called symmetric flip

problem especially severely for multiresolution shape matchers if precautions are not taken.

In [24], the isometric dense correspondence problem is solved by using a multiresolution

strategy. A minimum distortion mapping is searched in the original 3D Euclidean space via

coarse-to-fine combinatorial matching, hence as free of embedding errors. A coarse-to-fine

approach is employed also in [38, 34] to speed up the optimization process and to improve

accuracy. A major drawback of coarse-to-fine shape correspondence algorithms in general

is the symmetric flip problem due to few number of samples to be matched at coarse levels

(e.g., left arm/leg is matched to right arm/leg between two human shapes). This section

essentially addresses this initial symmetric flip problem by extending the previous work

presented in [24] (Section 3.2). Our key idea is to keep track of all the optimal solutions,

which may be more than one due to symmetry especially at coarse levels, throughout denser

levels of the shape matching process. This becomes possible thanks to the coarse-to-fine

combinatorial matching process involved in the method described in [24], which can sort out

all possible mappings with respect to their isometric distortions. We test the performance

of our method with extensive experiments on several shape benchmarks in comparison to

two state of the art methods mentioned above, namely the GMDS method [38] and the

BIM (blended intrinsic maps) method [21], where the former needs further interpolation to

achieve dense correspondence yet the latter has several drawbacks due to various approxi-
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mations they use. First, the isometric distortion of each blending map is estimated on the

extended complex plane to which the surfaces to be matched are transformed (flattened) via

mid-edge uniformization, hence with some embedding error. Second, geodesic centroids of

the blending maps are approximated with Euclidean distances. Third, confidence weights of

the blending process are computed over all vertices of a dense surface mesh via interpolation.

These approximations may lead to inaccurate matches (see Fig. 4.24 for an example). More-

over the method has restrictions on topology, suffering from non-delaunay triangles during

the process of mid-edge uniformization and also requiring zero-genus meshes as input.

Figure 3.29: Our method vs. BIM. The yellow vertex on the face of the source human

model is mapped to the hand of the target by BIM (left) and to the face by our method

(right). Note also the unmatched target vertices (in grey color) on the BIM result, which

do not exist in our case.

The correspondence algorithm in this section has two main contributions. First, it ad-

dresses the symmetric flip problem which is actually inherent to all coarse-to-fine correspon-

dence algorithms, and extends the dense isometric shape correspondence method proposed

in [24] in that respect. Our key idea of tracking symmetric flips can also be considered as

a meta-approach which can be applied to other multiresolution shape matching algorithms

such as [38], as we demonstrate by experiments. Second, the extended method is tested on
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several shape benchmarks and compared with two state of the art techniques.

3.3.2 Coarse-to-fine combinatorial matching

The method proposed in [24] (Section 3.2) provides an isometric dense shape correspondence

algorithm based on combinatorial search. We will refer to this method as C2FCM (coarse-

to-fine combinatorial matching). The idea is to reduce the search space by exploiting the

fact that the optimal correspondence maps nearby vertices on the source shape to nearby

vertices on the target. Hence shape matching is performed efficiently on a patch-by-patch

basis in a coarse-to-fine manner.

The C2FCM algorithm is composed of three basic tasks at each level of detail: sam-

pling, combinatorial matching and merging (see Fig. 3.30). Each of the shape surfaces to be

matched is initially regarded as a root patch on which evenly-spaced high-curvature M base

vertices are sampled. Each of these base vertices defines a surface patch around itself with

a sampling radius. Once the samples, hence the patches, are matched via combinatorial

matching by evaluating the isometric distortion of all M ! possible mappings, the matched

parent patches are recursively subdivided into smaller sub-patches as levels of detail in-

crease, by further sampling M base vertices on each parent. At each level, the samples on

each pair of corresponding patches are separately matched via combinatorial matching and

then merged into one single correspondence. The number M is chosen to be small enough

(M ≈ 5) so that combinatorial matching becomes possible. We note that the algorithm

does not require the initial set of samples to include all the shape extremities; as the lev-

els of detail proceed, the samples corresponding to high-curvature vertices are gradually

populated and the correspondence accuracy is improved to the extent that the precision

of the current level allows, as explained in detail in [24]. At the finest level, a complete

dense correspondence, which is optimal in the minimum-distortion sense, is obtained, that

matches every vertex in either of the shapes with at least one vertex on the other. Hence

the final correspondence is usually a many-to-many mapping. Although the algorithm is

built upon the basic assumption that the shapes to be matched are perfectly isometric, the

experiments conducted show that it performs well also on nearly isometric shapes. We note

that the method can handle input meshes with arbitrary genus.
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Figure 3.30: Block diagram of the C2FCM algorithm [24].

3.3.3 Symmetric flip problem

Given a mapping § : S → T between two vertex sets S and T sampled from source and target

shapes, respectively, we measure its isometric distortion Diso via Eq. 3.1. The correspon-

dence problem can then be formulated as a combinatorial search for an optimal §∗ over all

possible mappings, that minimizes this isometric distortion function. One key observation

here is that one can find more than one optimal mapping for symmetrical objects: the true

correspondence plus the flipped versions. In the case of coarse-to-fine approach, the sym-

metric flip problem becomes even more severe due to few number of samples to be matched

at coarse levels; a coarsely sampled version of a shape may sometimes appear to be symmet-

ric although the shape is not symmetric when considered at a finer resolution as illustrated

in Fig. 3.31. Especially the initial level of the matching process in the C2FCM algorithm

may exhibit this configuration, and therefore is liable to symmetric flips which cannot be

recovered as levels proceed. We note that all purely-isometric shape correspondence meth-

ods existing in the literature actually suffer from this symmetric flip problem regardless of

the correspondence density since shapes may naturally exhibit intrinsic symmetries. In the

coarse correspondence method of [35] for instance, the symmetric flip problem is cast to a

sign ambiguity problem associated with the eigenfunctions of the Laplace-Beltrami operator

to explicitly seek for all possible mappings which are equally or approximately optimal in

terms of isometric distortion.
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Figure 3.31: Symmetric flip problem due to coarse sampling: Although the shapes to be

matched are not perfectly symmetric, the sampled vertices at the first level appear to be

symmetric in terms of geodesic distances. This may yield a flipped coarse correspondence

result as shown, which is actually one of the four optimal solutions.

In the C2FCM algorithm, symmetric flips may theoretically appear at any level since

base vertices at each level are matched patch by patch, where each patch consists of only

about M = 5 samples. However, since the C2FCM method expands the correspondence

list §′ used in computation of the distortion in Eq. 3.1 at each intermediate level with the

known correspondence pairs computed at the previous level, the chance of having flipped

correspondences is greatly reduced at intermediate levels, as illustrated in Fig. 3.32. This

expansion is not possible at the first level, and the correspondence list §′ in Eq. 3.1 can thus

simply be set to § − {(si, tj)}.

3.3.4 Tracking symmetric flips

The discussion in Section 3.3.3 basically suggests that by avoiding the symmetric flip prob-

lem only at the initial level, we can greatly reduce the chance of having a flipped dense

correspondence. We propose to resolve any such ambiguities due to coarse sampling by

tracking all the optimal (or near-optimal) solutions of the first level (optimal in the mini-

mum distortion sense) throughout intermediate levels of the shape matching process. This is

possible thanks to the combinatorial matching algorithm that can sort all possible mappings

with respect to their distortion values. The algorithm is described in the sequel.

We start by launching the C2FCM method at the first level (level 0), i.e., via combi-
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Figure 3.32: The C2FCM method handling symmetric flip problem at intermediate levels.

Suppose that the mapping obtained at the first level is free of symmetric flips. Then at the

next level, while matching the base vertices inside the highlighted patches (cyans and blue),

the isometric distortions are computed by taking into account also the correspondences

obtained at the previous level (other matching colors), which usually resolves the matching

ambiguities due to symmetry.

natorial matching of the initial M samples. While the original algorithm would pick and

pursue only the minimum-distortion mapping of the first level, we keep track of top-N

minimum-distortion mappings until some level K1, where the number of matched vertices

is sufficiently large, which occurs typically at level 4 with about 250 vertices. Hence for

each of these N initial mappings, we separately pursue the C2FCM algorithm and com-

pute the corresponding denser mapping at level K1. The choice of N is automatic since

we choose it as the first significant jump in the ascendingly sorted sequence of distortion

values D1, D2, .., DL of all possible mappings §1, §2, .., §L, respectively, where distortions are

computed via Eq. 3.1 with L = M !. The first instance on this sorted distortion sequence,

where the condition DN+1 − DN > δ holds, reveals the desired jump index N which is

typically 4 for human shapes. We set the threshold δ as twice the average of the first 10

distortion difference values: δ = 2(
∑11

l=2(Dl −Dl−1))/10.

This tracking process along with the distortion curve is illustrated in Fig. 3.33–left for

a pair of human shapes. Among the four mappings which are tracked until level K1 = 4,

the blue one (§2) wins the race, having the least isometric distortion at this intermediate

level, and is to be maintained on its own until the final level that gives the dense map. Note
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that, with the original C2FCM method, the mapping §1 (in green) would continue alone and

eventually converge to a flipped result in the absence of any other flipped competitors. We

also observe that §1 yields flipped hands and legs, whereas §4 (cyan) has correct hands but

flipped legs. The mapping §6 (orange), that is not actually tracked due to jump condition,

would yield hand-to-head matching and flipped legs. Another demonstration of the tracking

process is given in Fig. 3.33–right for a pair of glass shapes, where N comes out to be 2, a

common value for the glasses class.

Figure 3.33: (Left) The distortion plot for the top 6 mappings at the first level along with

the visualizations of §1, §2, §4 and §6 (Top). The mappings that §1, §2 and §4 lead to at

level K1 = 4 (Bottom). Spheres of matching colors and lines indicate the correspondence

pairs (all lines are not drawn at level 4). The mapping §6 (orange) is not tracked since its

distortion value appears after the first significant jump. The mapping §3 is actually tracked

but not shown in the figure for visual convenience. (Right) Similar symmetric flip tracking

for a pair of glasses shapes with the same layout except three out of top 5 mappings at level

0 shown for visual convenience.
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3.3.5 Computational complexity

The complexity of the original C2FCM method is O(V log V ), where V is the number of

vertices in the original meshes to be matched [24]. In our case, running the C2FCM method

N times for tracking purposes up to some level K1, which is typically K1 = 4, i.e., not up

to the finest level where the dense map is obtained, incurs no additional asymptotic cost

since N is usually a small number varying based on the intrinsic symmetries of the shapes

to be matched, which is for example typically 4 for human shapes. Initial sorting of M !

mappings for jump detection also comes free of asymptotic cost for M ≤ 8 but nevertheless,

for practical usage, we perform the sorting only on mappings with isometric distortion

below a threshold value (0.15 in our experiments). This significantly reduces the number of

mappings (typically to M ′ ≈ 300) to sort with no accuracy loss as the true mapping to be

tracked will almost certainly be in the top-M ′ least distorted mappings. In our experiments,

it has always remained within the top 6.

Our overall O(V log V ) complexity outperforms that of other isometric dense shape

correspondence algorithms in the literature, such as O(V 2 log V ) complexity of [39] and

GMDS [38], O(V 2) complexity of HKM [33], O(V 2 log V + Y 4 log Y ) complexity of Möbius

Voting [31]. Note that, GMDS and Möbius Voting can achieve a coarse correspondence

between Y feature points which can later be interpolated into a dense one with no addi-

tional asymptotic cost. Blended intrinsic maps of [21] is faster than these methods with

max(O(V log V ), O(W 2)) complexity with W being an upper bound on the number of maps

considered.

3.3.6 Experimental results

We have employed a comprehensive test suite consisting of five well-known 3D shape bench-

mark datasets: TOSCA [18], Watertight [104], SHREC’11 [105], SCAPE [106], and Non-

rigid World [38]. Our results are also compared with two state-of-the-art techniques, namely

GMDS [38] and Blended Intrinsic Maps (BIM) [21] by running their publicly available codes.

We provide symmetric flip ratios resulting from each dataset in Tables 3.6, 3.9, 3.11

and 3.13. We also demonstrate numerical (Tables 3.7, 3.8, 3.10, 3.12, and 3.14) and visual

(Figures 3.34-3.38) quality of our final dense maps in comparison with the two methods.

We measure isometric quality of the final maps by Diso using Eq. 3.1, whereas ground-truth
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distortion is measured by Dgrd (Eq. 3.12) whenever ground-truth correspondence pairs are

available as (si, ti) ∀i. We also employ two additional worst-case distortion measures, the

maximum ground-truth distortion d†grd (Eq. 3.13) and the maximum isometric distortion

d†iso (Eq. 3.11). As usual, in computation of the performance measures, we use normalized

geodesic distances so that the max geodesic distance on a shape surface is taken as 1.0.

As a convention that applies to all figures, for each dataset and a particular shape class,

we display the mapping on the pair for which the method whose d†iso (or d†grd) is worse than

the other method for that particular class; a † sign emphasizes this interesting mapping.

The same pair is also shown with the mapping computed by the other method – expected

to be better. In all figures, the dense mapping is visualized by transferring source vertex

colors to the target through computed correspondences.

Finally, there is also a downsampled version of each dataset that we use, with meshes

of size at most 5K to be able to run the GMDS method which does not scale well to large

meshes.

3.3.6.1 Dataset: TOSCA

The original TOSCA dataset is explored under three classes: within animals (11 cats and

8 horses), within humans (two different males with 12 and 20 poses each, and 12 females),

and across humans (using the three human classes above). The within-animal results are

obtained by matching every cat (or horse) to a different randomly selected cat (or horse).

The same applies to within-human results. Likewise, in the across-human experiments, each

human model in the dataset is matched to another model randomly selected from a different

human class.

In Table 3.6 - rows 2-4, we see for instance that 100% − 38% = 62% of across-human

tests start with an initial symmetric flip at level 0, which means that if we had employed the

original C2FCM algorithm, then 62% of the resulting dense maps would suffer from being

symmetrically flipped. With our method, on the other hand, only 100%−78% = 22% of all

correspondence results is symmetrically flipped at the end. Another interpretation is that

62% initial symmetric flips reduce to just 22% in the final result, an improvement of 40%.

The BIM method [21] is 95% free of symmetric flip errors for this class, and outperforms

our method for all other classes as well in this set as far as the symmetric flip problem is
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concerned.

Dataset: TOSCA % of all results
A B C

C2FCM 59 61 38
Our method 69 68 78
BIM 100 100 95
C2FCM 37 60 67
Our method 58 75 83
GMDS 37 54 39

Table 3.6: Percentage values for dense correspondence results without symmetric flips,

obtained with different methods. A: Within animals, B: Within humans, C: Across humans.

Last three rows show the results on downsampled versions of classes A to C.

For isometric and ground-truth distortions in this dataset, we observe in Table 3.7 that

d†iso and d†grd values favor our method for within and across humans as those classes may

include pairs with touching surface parts, e.g., hand-to-breast, which are confused by BIM

that approximates geodesic centroid as a weighted Euclidean centroid (see Fig. 3.34 and

also Fig. 4.24). As for the average values Diso and Dgrd, our method is on a par with the

results of BIM.

Our method BIM
Class Diso, d

†
iso Dgrd, d

†
grd Diso, d

†
iso Dgrd, d

†
grd

A .018, .081 .030, .226 .018, .071 .018, .155
B .015, .052 .033, .202 .013, .266 .021, .417
C .019, .065 n/a .017, .068 n/a

Table 3.7: Isometric and ground-truth distortions obtained on TOSCA with our method as

compared to BIM. A: Within animals, B: Within humans, C: Across humans.

We run the GMDS method of [38] on a downsampled version of TOSCA database,

using random test pairs chosen in the same way as described previously. The number of

vertex samples to be matched on the decimated models is set to be 150, a parameter of the

publicly available code. The 150 correspondence pairs, which are obtained with GMDS for

each shape pair, are then used to interpolate a dense map as described in [21].

The resulting symmetric flip ratios (Table 3.6 - rows 5-7) as well as average isomet-

ric distortion values (Table 3.8) all favor our method in this dataset when compared to
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Figure 3.34: Dense correspondence results on TOSCA, obtained with our method vs. BIM.

The red and green lines indicate the worst matches w.r.t. isometric and ground-truth dis-

tortions, respectively. The worst matchings are in general better in our case when compared

to BIM. Notice for example hand-to-breast and breast-to-arm matches (third column) as

well as the unmatched regions shown in grey for BIM results. In addition to transferred

colors, some lines ending with spheres of matching colors are used to enhance visuals. When

red and green lines overlap, only red is shown. This whole representation scheme applies to

the subsequent figures of this section as well.
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GMDS. Our maximum distortion values, however, are slightly worse on human test pairs.

Nevertheless, we see that 150 vertices matched with GMDS are not evenly distributed on

the shape surfaces, which results in clustered correspondences (Fig. 3.35), hence one of the

major shortcomings of the GMDS method. This is mainly due to the fact that the GMDS

algorithm employs a gradient-based iterative optimization process that produces sub-vertex

matchings which do not necessarily coincide with the initial sampling. We also note that,

while computing the resulting isometric distortion value for a GMDS output, we round sub-

vertex coordinates to their nearest vertices on the surface mesh. The effect of this rounding

process to the computed distortion values is negligible since the mesh models in this, and all

other datasets are almost uniform and at relatively high resolution. We also observe from

the visual comparison that the GMDS matching often misses the salient points of a shape

(e.g., ear tips of the cats).

Our method GMDS
Class Diso, d

†
iso Diso, d

†
iso

A .024, .045 .017, .051
B .018, .049 .022, .043
C .020, .081 .026, .057

Table 3.8: Isometric distortions obtained on TOSCA downsampled with our method as

compared to GMDS. A: Within animals, B: Within humans, C: Across humans.

3.3.6.2 Dataset: Watertight

The part that we have used from the original dataset consists of human, glasses, chair,

teddy bear, hand, fish, and armadillo classes of cardinality 20 each. We have omitted ant

and octopus classes which are too symmetric to handle in the sense that the shapes in

these classes do not contain sufficient clues to resolve ambiguities due to symmetry even at

denser resolution levels. We also exclude the remaining 10 classes since they exhibit severe

non-isometries, such as airplanes and four-leggeds, while our method, as well as GMDS, has

been designed to work on isometric shapes. In these experiments, an object fetched from a

class is matched to a random object from the same class.

Concerning symmetric flips (Table 3.9 - rows 2-4), our method is as good as BIM which

cannot however handle the chair class with nonzero genus objects and is slightly worse than
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Figure 3.35: Dense correspondence results on TOSCA collapsed, obtained with GMDS (left)

and with our method (right). Generating 150 correspondence pairs for GMDS are shown

as spheres of matching colors.

our method on isometric distortion measurements (Table 3.10 - column 2-3).

As the flow of the transferred colors shows (Fig. 3.36 - top), our dense map is not always

as smooth as the one generated by BIM which interpolates the feature correspondences in

the extended complex plane by nearest neighbor search to generate the conformal maps to

be blended. These smooth conformal maps are obtained at the expense of leaving a fair

amount of target vertices unmatched (grey) even after blending. Our final map, on the

other hand, is always onto, i.e., no vertices are left unmatched.

Dataset: % of all results
Watertight A B C D E F G
C2FCM 28 63 30 50 50 69 60
Our method 89 88 70 67 88 88 90
BIM 89 57 n/a 83 100 85 89
C2FCM 61 29 69 42 50 43 37
Our method 83 71 66 50 83 86 75
GMDS 28 40 n/a 33 50 71 25

Table 3.9: Percentage values for dense correspondence results without symmetric flips,

obtained with different methods. A: Humans, B: Glasses, C: Chairs, D: Teddy bears, E:

Hands, F: Fishes, G: Armadillos. Last three rows show the results on downsampled versions

of classes A to G.

Downsampled Watertight models, when fed into GMDS in the way described in Section
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Our method BIM Our method GMDS
Class Diso, d

†
iso Diso, d

†
iso Diso, d

†
iso Diso, d

†
iso

A .022, .109 .035, .121 .021, .053 .031, .079
B .008, .020 .063, .248 .007, .015 .034, .147
C .024, .109 n/a .022, .022 n/a
D .032, .108 .048, .225 .029, .081 .032, .119
E .034, .138 .046, .167 .027, .049 .029, .134
F .033, .140 .061, .192 .024, .079 .024, .069
G .030, .185 .049, .193 .031, .098 .039, .135

Table 3.10: Isometric distortions on Watertight dataset, obtained with different methods.

A: Humans, B: Glasses, C: Chairs, D: Teddy bears, E: Hands, F: Fishes, G: Armadillos.

Fourth and fifth columns give the results on downsampled versions of classes A to G.

3.3.6.1, are significantly more prone to symmetric flips than our method (Table 3.9 - rows 5-

7). Initial GMDS matchings suffer from the clustering issue (Fig. 3.36 - bottom), and when

interpolated into a dense map, produce worse results as compared to ours in terms isometric

distortion (Table 3.10 - column 4 and 5). Note also that, although a small topological

noise connecting index and middle fingers does not fail our method (see Fig. 3.36), noisy

connections that alter geodesic distances more severely may cause instabilities that are not

expected in diffusion-based methods such as [33].

3.3.6.3 Dataset: SHREC’11

We employ SHREC’11 dataset in order to see to what extent our algorithm tolerates noise

and holes of various sizes. Due to zero genus constraint of the BIM method, only noise and

shotnoise classes are used for the corresponding comparison suite. The GMDS public code,

on the other hand, crashes on all test cases but the shotnoise. The results summarized in

Table 3.11 and Table 3.12 generally show that both of our competitors are more sensitive

to noise as compared to our method (see Fig. 3.37 as well). Among five different shotnoise

levels tested, we fail to achieve stable results for the forth and fifth levels (in increasing

order) which possess severe shotnoises.

We give our results on microholes, holes, and viewing classes (which cannot be obtained

with BIM and GMDS) in the format of (Diso, d†iso), as (.013, .059), (.022, .058), and (.016,

.068), respectively (Fig. 3.37 - bottom).
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Figure 3.36: Dense correspondence results on Watertight dataset, obtained with our method

vs. BIM (top) and vs. GMDS (bottom, separated by yellow line).

3.3.6.4 Dataset: SCAPE

Each SCAPE model represents the articulated motion of a human actor reconstructed from

range data. We match each SCAPE model to a random model from the remainig 71 shapes.

Although the BIM method handles symmetric flips better than our method in this dataset

(Table 3.13), the mid-edge uniformization phase of their conformal maps to be blended

suffers from non-delaunay triangles on this raw data, hence leaving them slightly behind us

in distortion performances (Table 3.14) when coupled with weighted Euclidean centroids

Dataset: SHREC’11 % of all results
A B C

C2FCM 20 87 54
Our method 80 94 62
BIM 50 38 n/a
GMDS n/a n/a 23

Table 3.11: Percentage values for dense correspondence results without symmetric flips,

obtained with different methods. A: Noise, B: Shotnoise, C: Shotnoise on downsampled set.
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Our method BIM GMDS
Class Diso, d

†
iso Diso, d

†
iso Diso, d

†
iso

A .019, .066 .013, .079 n/a
B .015, .042 .032, .108 n/a
C .010, .066 n/a .026, .074

Table 3.12: Isometric distortions on SHREC’11, obtained with different methods. A: Noise,

B: Shotnoise, C: Shotnoise on the downsampled set.

approximation of geodesic centroids for efficiency. The GMDS method is again slightly worse

than our method in terms of symmetric flips (Table 3.13) and distortion measurements

((Diso, d†iso) = (.025, .086) of our method vs. (.028, .103) of GMDS) mainly due to their

clustered generating matches.

Dataset: SCAPE % of all results
A B

C2FCM 56 24
Our method 60 61
BIM 92 n/a
GMDS n/a 42

Table 3.13: Percentage values for dense correspondence results without symmetric flips,

obtained with different methods. A: SCAPE, B: SCAPE downsampled.

Our method BIM
Diso, d

†
iso Dgrd, d

†
grd Diso, d

†
iso Dgrd, d

†
grd

.019, .097 .045, .308 .027, .254 .039, .306

Table 3.14: Isometric and ground-truth distortions on SCAPE dataset, obtained with our

method in comparison to BIM.

3.3.6.5 Application to GMDS

In addition to C2FCM [24] on which our symmetric flip tracking approach has been verified

thus far, we now show how well this method, as a meta-approach, extends to another mul-

tiresolution isometric shape matching algorithm, namely GMDS [38], whose optimization

method is completely different from C2FCM. To this end, we first run the public GMDS
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Figure 3.37: Dense correspondence results on SHREC’11. Sample pairs for noise, shotnoise,

and downsampled shotnoise classes (top to bottom), obtained with our method (right) and

with BIM and GMDS (left). Our result samples for microhole, hole, and viewing classes are

displayed separately at the bottom (left to right).

code on a part of the Nonrigid World database that contains 8 cats, 6 centaurs, and 17

horses (for within animals class) as well as 10 male and 23 female figures (for within and

across humans classes), where the classes are formed in the same way as described in Sec-

tion 3.3.6.1. We then slightly modify the original public code so as to initialize GMDS with

the qualified maps generated at the first level of our method where qualification is based

on the jump detection scheme described in Section 3.3.4. Amongst the qualified maps that

are tracked until a relatively dense GMDS level that matches 250 vertices, we select the

one yielding the minimum GMDS distortion as the final map. In Table 3.15, we provide

the symmetric flip ratios on the final maps, which clearly favor the latter GMDS modified

by our tracking method (last row). We depict the tracking process in Fig. 3.39 along with

the corresponding distortion curve, where the number of tracked (qualified) maps is 8, a

common value for centaurs having three different pairs of limbs.
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Figure 3.38: Dense correspondence results on SCAPE. BIM yields the worst d†iso (top row,

red line), our method the worst d†grd (middle row, green overlapped by red), and GMDS the

worst d†iso (bottom row) on SCAPE downsampled.

3.3.6.6 Timing

With O(V log V ) time complexity, our algorithm scales well to large meshes such as TOSCA

and SHREC’11 humans of 53K vertices, TOSCA animals and Watertight armadillos of 28K

vertices, and SCAPE humans of 13K vertices. The tracking process for symmetric flips

(Section 3.3.4) is quite fast; on the largest pair of 53K vertices, a 2.53GHz 64-bit workstation

takes 10 seconds to evaluate M ! distortions of maps of sizes M each via Diso (Eq. 3.1) for

M = 8 and sort about 300 of them. This is followed by about 48 seconds tracking of top-N

(typically ≤ 4) mappings until level K1 (typically 4). The original C2FCM method then

continues to bring the qualified mapping to a dense map in 1578 seconds. For a SCAPE
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Dataset: Nonrigid World % of all results
A B C

GMDS 19 42 47
GMDS modified with tracking 61 70 67

Table 3.15: Percentage values for correspondence results without symmetric flips, obtained

with the original and modified GMDS methods. A: Within animals, B: Within humans, C:

Across humans. Last three rows show the results on decimated versions of classes A to C.

pair with around 13K vertices, these evaluation-sorting, tracking, and dense mapping times

become 2, 13, and 391 seconds, respectively, whereas for a downsampled shape pair, e.g.,

from TOSCA, with 5K vertices, the respective execution times are 1, 4, and 66 seconds.

3.3.6.7 Discussion

We summarize our comparative experimental findings as follows:

• In terms of symmetric flip ratio, our method is always better than GMDS which is,

as a coarse-to-fine solution, prone to symmetric flips at the initial levels with yet no

care taken. While BIM performs as good as our approach on Watertight models, it is

worse for SHREC’11 models that are exposed to various types of noises. The results

on TOSCA and SCAPE models favor BIM as the conformal maps being blended are

area-preserving at every point which proves useful in distinguishing mapping the front

of a human to the back.

• In isometric distortion performance, which goes parallel to ground-truth performances

(whenever ground-truth correspondences are available), our method outperforms GMDS

for all datasets mainly because of the clustered matchings of the latter, that are inter-

polated into a dense map. The BIM method, on the other hand, is on a par with ours

on TOSCA and slightly worse for all other datasets concerning average distortions as

the conformal maps to be blended induce embedding errors, and more importantly

confidence weights of the blending process are computed over all vertices of a dense sur-

face mesh via interpolation. Recall that our algorithm is embedding and interpolation

free. Moreover, the BIM yields unstable results on the datasets that include shapes
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Figure 3.39: (Top) The distortion plot for the top 10 mappings at the first level along with

the visualizations of §1, §3, §7 and §10. (Bottom) The GMDS mappings that §1, §3 and §7
lead to at the dense GMDS level where the map generated by §7 (cyan) wins the race having

the least distortion and §10 (orange) is not even tracked.

with touching surface parts since Euclidian centroid is replaced with the geodesic one,

with worst distortion behavior significantly behind ours.

• In the case of GMDS, the uniformity of the evenly-spaced initial samples is not nec-

essarily preserved in the final correspondence output, hence matching salient shape

points such as ear tips is not guaranteed. Besides, the algorithm does not support

dense matching without interpolation that incurs more errors. We usually hit salient

points at intermediate levels and yet support dense matching without need for any

interpolation.
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• Sphere topology restriction of the BIM as well as its sensitivity to peculiarities of

a given triangulation, e.g., non-delaunay triangles, are avoided in our approach (see

especially the experimental results on SHREC’11 and SCAPE datasets).

• The conformal maps in BIM are not usually onto after closest point matching in

the embedding domain, which in turn leaves a significant amount of target vertices

unmatched even after blending. Further interpolation would be required to obtain

the full dense mapping that we produce, which is many-to-many. The interpolated

conformal maps in BIM, however, generally leads to smoother dense maps than ours.

• Our symmetric flip tracking approach, when applied to the multiresolution GMDS

method, significantly reduces the percentage of the correspondence results with sym-

metric flips.

• By tracking, we significantly reduce the occurrence rate of symmetric flips as an end

result, yet cannot completely solve the problem. In our experiments, in almost all cases

where the symmetric flip problem cannot be resolved, the true solution is included in

the initial set of qualified mappings, but does not yield the minimum-distortion after

tracking (further increasing the resolution of the intermediate dense level does not

help either). This is mainly due to two reasons. First, in the case of perfectly isomet-

ric and intrinsically symmetric shapes, even at dense resolutions, there are actually

more than one correspondence, yielding distortion values which are all close to the

global minimum but possibly with some inaccuracy due to discretization and modeling

errors. Second, the shapes to be matched are often only nearly isometric while the

multiresolution correspondence algorithms that we have tested are designed to work

on perfectly isometric shape pairs. For the rare cases where the true correspondence

does not even appear in the initial set of maps to be tracked, one possibility could be

to seek for local minima of the distortion function, that would reveal the approximate

symmetries more accurately, as suggested in [103].
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3.3.7 Conclusion

We have extended our original efficient dense isometric shape correspondence algorithm

[24] (Section 3.2) so as to address the symmetric flip problem. To this effect, we couple

the coarse-to-fine structure of the original algorithm with a tracking mechanism that brings

some candidate initial maps into a finer resolution where their isometric distortions can be

more accurately computed. Maintaining only the best one at this stage generally reduces the

symmetric flips in the final correspondence, as demonstrated on five well-known benchmark

3D shape datasets in comparison with two state-of-the-art techniques. Our final dense

maps are also better than or on a par with our competitors as far as the final isometric and

ground-truth distortions are concerned. We perform the isometric matching in the original

3D Euclidean space wherein isometry is defined, and hence free of embedding errors. Our

dense map is also interpolation-free as the combinatorial matching continues efficiently

until all vertices are explicitly matched. Note also that, this tracking-based solution can

be used until a desired coarseness level of correspondence depending on the application or

the method to be compared with. The core idea of tracking symmetric flips (Section 3.3.4)

can be adapted to other techniques affected by the same issues (Section 3.3.6.5) as well as

to future multiresolution isometric shape matching algorithms. We finally note that the

proposed method can be used for symmetry detection by seeking optimal (or near-optimal)

maps from a shape to itself in the same spirit as other symmetry detection methods available

in the literature such as [103, 89]. As future work, we plan to make the framework available

for partially isometric shapes.
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Chapter 4

PARTIAL SHAPE CORRESPONDENCE

We propose methods to match at coarse and dense resolutions two semantically similar

shapes that may have multiple common parts at arbitrary scales as well as parts that are

not similar. Since scale normalization in this scenario is not as trivial as that in complete

matching, we first focus on this issue in a particular setting where one shape is the isometric

(or nearly isometric) part of the other up to an arbitrary scale [26] (Section 4.1). We then

handle a more general setting where shape pairs to be matched are partially isometric

but both having parts which are not in common [27] (Section 4.2). For both methods,

initial correspondences that are all sparse at the shape extremities are extended to dense

ones where the notion of density is more relaxed in this section, i.e., not all vertices, but

relatively high number of vertices. Note also that both methods support complete matching

naturally.

Our main ingredient for [26] (Section 4.1) is the novel third-order scale-invariant iso-

metric distortion measure whereas for [27] (Section 4.2) we cast votes based on the dense

sampling on the areas defined by isolated triplets of samples, hence free of intervention from

irrelevant parts.

4.1 Scale Normalization for Isometric Shape Matching

In this section, we address the scale problem that is inherent to isometric shape correspon-

dence and apparent in partial shape correspondence [26].

4.1.1 Literature review

As we already know by now, isometry is an important clue in matching similar or seman-

tically equivalent surface points from two shapes since similar shape parts usually have

similar metric structures. Although shape matching can be achieved by enforcing geodesic

consistencies or by searching for mappings with minimum isometric distortion, the arbitrary
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scale of shapes usually poses an important challenge to overcome for partial or complete

shape correspondence, as we address in this section.

There are different ways of dealing with the scale problem in the partial and/or complete

shape correspondence literature. Some methods simply assume that the shapes come in

compatible scales, which is rather a very strong assumption, but that might sometimes

prove useful especially in the case of matching 3D scan data [38, 42, 32, 29]. Other methods

are feature-based and rely solely on local shape descriptors which are usually designed

to be scale-invariant [28, 19, 58]. Local shape similarity is an important clue for shape

correspondence, especially in the case of non-isometric deformations, but otherwise it is

considered as less reliable than global shape information such as isometry. They may not

perform well for example when the shapes to be matched exhibit large variations in their

local geometry, or when there are many points that are locally similar.

If two shapes are isometric (perfectly, nearly, or partially) and come in different scales,

in order to be able to incorporate metric similarities, the shapes have to be normalized

into the same scale prior to the matching process. There exist two different approaches to

achieve this. The first and simpler approach is to scale the original geometry with respect

to some global intrinsic property such as maximum geodesic distance [22, 37], maximum

centricity [93], or total surface area [33]. This strategy may work satisfactorily in the case

of complete shape correspondence but otherwise for partial matching its success depends

highly on the global similarity between the shapes. Even in the case of complete correspon-

dence, if the given shapes are only nearly isometric, it is indeed possible that global intrinsic

properties significantly deviate from one shape to the other, yielding inaccurate normaliza-

tion. The second approach is to transform input shapes into a different domain where the

scaling problem is implicitly handled. Euclidean embedding is one such transform which

is commonly used for isometric shape correspondence, but it is rather a global technique

and does not well apply to partial correspondence [39, 77]. A better alternative for partial

matching is based on the Möbius transformation that can be used for conformal embedding

of the given shapes into a canonical coordinate frame on the complex plane [31, 36], where

deviations from isometry can approximately be computed based on mutually closest points.

The Möbius Voting method in [31] considers the most general setting of the partial cor-

respondence problem where shapes to be matched can also have uncommon (non-similar)
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parts. This voting-based approach can generate reliable but sparse correspondences, suf-

fering mainly from spurious votes of the extra uncommon parts in the shape models, and

hence performs poorly in terms of dense and shape extremity matching. We also note that

the Möbius Voting approach is restricted to sphere topology and prone to errors due to

embedding approximation.

An alternative to geodesic metric is the diffusion metric which is less accurate for mea-

suring isometric distortion but generally considered as more robust to topological noise.

Local scale differences are however difficult to handle using diffusion-based metrics. The

commute-time metric for example addresses the scale problem only globally [34], hence can-

not be used for the partial matching problem, i.e., in a setting where one of the shapes to

be matched includes a scaled part of the other. In [107], a scale-invariant version of the

heat kernel signature is used to address the part matching problem, which however requires

setting a time scale parameter that itself depends on the shape scale.

In the most general setting of the correspondence problem, the ambiguity of shape scale

is a local issue that cannot be resolved relying on some global shape intrinsics. This is

demonstrated in Fig. 4.1. While two completely isometric shapes can be brought to the

same scale trivially by normalizing their maximum geodesic distances (Fig. 4.1a), scale nor-

malization for partially overlapping shapes (and even for hybrid shapes which are nearly

isometric) is not that straightforward (Fig. 4.1b). In the latter case, the scale ambiguity

can be resolved based on local geodesic distances computed on a sparse set of trusted cor-

respondences (Fig. 4.1c), which is the approach that we follow in this paper. Alternatively,

a small set of trusted correspondences can be used to define an Euclidean embedding, such

as Möbius transformation in the extended complex plane [31], that implicitly handles the

scale problem (Fig. 4.1d).

In this section, we consider the shape correspondence problem in the particular setting

where one of the shapes to be matched is an isometric part of the other up to an arbitrary

scale (note that this setting also includes the problem of complete shape matching). We

address the scale problem in a combinatorial framework that minimizes a scale-invariant

isometric distortion function in the 3D Euclidean space. We first sample shape extremities

from the mesh representations of the given shape pair and then find a coarse map in between

via combinatorial search, that also extends to dense matching. The output of the proposed
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Figure 4.1: (a) Scale normalization of perfectly isometric shapes based on maximum geodesic

distances (yellow paths), which does not apply to partially isometric shapes, e.g., normalized

distances (red paths) are not the same on both shapes (b). Scale normalization for partial

matching can be achieved based on trusted correspondences, either by normalizing (green)

geodesic paths (c) or by defining an Euclidean embedding (d).

method is hence a sparse or dense optimal set of correspondences between the surfaces of

the given partially or completely isometric shapes.

4.1.2 Isometric distortion

We describe two different isometric distortion measures in the sequel, D
(1)
iso and D

(2)
iso , that

can be used interchangeably in our combinatorial shape matching framework. The first

measure can be considered as the one that we propose as a novel measure whereas the

latter rather serves as a baseline measure to compare with the former. These measures will

be compared experimentally later in Section 4.1.7.

4.1.2.1 Scale-invariant isometric distortion

Let S and T represent two sets of points sampled from the given source and target shapes,

respectively. Suppose also that a mapping § : S → T (a relation in the most general

setting) is given. Then the isometric distortion of this mapping can be measured by the

scale-invariant function D
(1)
iso (§) as follows:

D
(1)
iso (§) =

1
|§|

∑

(si,tj)

d
(1)
iso (si, tj), (4.1)
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where d
(1)
iso (si, tj) is the contribution of the individual correspondence (si, tj) to the overall

isometric distortion:

d
(1)
iso (si, tj) =

1(|§′|
2

)
∑

((sa,tb),(sc,td))∈C(§′)
|ρ(si, tj ; sa, tb)− ρ(si, tj ; sc.td)| (4.2)

with §′ = § − {(si, tj)} and C(§′) denoting the set of all pairwise combinations from §′.
The ratio function ρ(si, tj ; sk, tl) is then written in terms of geodesic distances, for a given

(sk, tl) ∈ §:
ρ(si, tj ; sk, tl) = max

(g(si, sk)
g(tj , tl)

,
g(tj , tl)
g(si, sk)

)
(4.3)

where g(., .) is the geodesic distance between two surface points. This definition of isometric

distortion is based on the observation that the ratios between geodesic distances on a surface

remain unchanged under scaling and isometric deformations. Hence if T and S are sampled

consistently from the given arbitrarily scaled (partially) isometric shapes, then one can find

an optimal mapping §∗ in between such that D
(1)
iso (§∗) = 0. This is illustrated in Fig. 4.2.

Figure 4.2: Demonstration of the scale-invariant isometric distortion measure defined in

(4.1). The ratios between geodesic distances remain invariant under scaling and isometric

deformation: ρ(si, tj ; sa, tb) = ρ(si, tj ; sc, td).
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4.1.2.2 Isometric distortion with normalized geodesics

The isometric distortion D
(2)
iso (§) for a given map § : S → T between point sets S and T is

computed as follows:

D
(2)
iso (§) =

1
|§|

∑

(si,tj)∈§
d

(2)
iso (si, tj) (4.4)

where d
(2)
iso (si, tj) is the contribution of the individual correspondence (si, tj) to the overall

isometric distortion:

d
(2)
iso (si, tj) =

1
|§′|

∑

(sl,tm)∈§′
|gn(si, sl)− gn(tj , tm)| (4.5)

where §′ is the list of correspondences to be traversed, which is set to be as §′ = §−{(si, tj)}
unless stated otherwise. The function gn(., .) is the geodesic distance between two samples,

normalized by the local maximum geodesic distance, that is, the distance between the

two farthest points in S (or T ). Note that this definition of isometric distortion requires

a consistent joint-sampling between S and T to enable reliable normalization of pairwise

geodesics (see also Fig. 4.3).

Figure 4.3: Demonstration of the distortion measure with normalized geodesics defined in

(4.4). Suppose that sample sets S and T each contains three surface points to be matched.

The geodesics used in computation of d
(2)
iso (si, tj) (red paths on the right) are normalized

w.r.t. the local maximum geodesics (yellow paths on the left).

Unlike D
(1)
iso (§) that averages over all

(|§|−1
2

)
pairs of available correspondences in § for

each individual isometric distortion computation of a constituent match, D
(2)
iso (§) relies only
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on two farthest points to obtain locally normalized geodesics. Although this suggests a

saving in the order of |§| for the time complexity of isometric distortion computation, the

use of the latter measure may easily induce a failure: If the two farthest point pair in one

sample set does not align well with the pair in the other, the normalization of geodesics

becomes inconsistent, and the distortion measure cannot be computed reliably. Although

this is less of a problem in the case of complete shape matching (when compared to partial

matching), complete matching of semantically similar shapes may still be problematic since

farthest point pairs defining maximum geodesics are not necessarily consistent for nearly

isometric shapes, such as for Cat vs. Wolf with long and short tails, and for Gorilla vs.

Human with long and short arms, being two specific examples from our experiments.

4.1.3 Feature point selection

We use shape extremities as feature points since they are the most salient points of a surface,

which are easy to identify while searching for a sparse set of correspondences. To find shape

extremities on a given shape, we first compute the integral geodesic distance function [48] for

every vertex of the mesh representation and mark the one yielding the maximum function

value which is expected to be at the most prominent tip of the shape. The farthest point

sampling procedure of [63] started from this marked vertex then selects a number of samples

on the surface. We set the number of samples large enough to provide sufficient coverage on

the surface, and small enough for computational efficiency of the combinatorial framework

that will be described in the next section. The feature vertices resulting from this sparse

sampling process constitute the sets S (source) and T (target) to be matched (see Fig. 4.4).

Figure 4.4: Feature vertices on two models (10 samples).
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4.1.4 Combinatorial matching

Once we have the feature sets, S and T , extracted from the source and target shapes, we

search for an optimal partial mapping §∗ from S to T with minimum distortion. In our

setting, one of the shapes, say S, is an isometric part of T up to a scale factor. However,

since two shapes are never perfectly isometric, even partly, due to imperfections of the

modeling process and geometry discretization errors, it is not usually possible to find a zero

distortion mapping, hence the goal rather becomes minimization of the isometric distortion

function, that is either D
(1)
iso (§) defined in (4.1) or D

(2)
iso (§) in (4.4). We also note that when

matching a shape part with a complete model, the geodesics may slightly differ between

similar surface points from one shape to the other due to the cut regions.

We minimize the isometric distortion function via combinatorial search over all possible

mappings § between S and T . In order to make this combinatorial search problem tractable

and to reduce the search space, we consider M = 5 evenly-spaced vertices from S. Since, in

our setting, the shape S is assumed to be a part of T , these extreme vertices are expected

to match (at least roughly) with a subset of T . Hence we need to compute the isometric

distortion for M !
(|T |

M

)
different possible (one-to-one) mappings, and the mapping that yields

the minimum distortion is selected as the optimal mapping §∗ (see Fig. 4.5).

4.1.5 Extension to dense correspondence

We now extend the sparse correspondence §∗ : S → T between matched shape extremities

to a denser map. This support for dense correspondence also allows us to alleviate the

symmetric flip problem that isometric coarse correspondence methods usually suffer from

(e.g., left arm/leg is matched to right arm/leg between two human shapes due to sparse

sampling).

The first step towards dense matching is to bring the shapes to the same scale using the

trusted §∗ that provides us with the factor κ to scale the target mesh:

κ =
1(|§∗|
2

)
∑

((sa,tb),(sc,td))∈C(§∗)

g(sa, sc)
g(tb, td)

(4.6)

With both shapes at the same scale, in the second step, we take evenly-spaced dense

samples on each with consistent spacing. The dense sampling algorithm that we use is very

similar to the one described in [22]. We set the sampling radius to r = 0.17
√

A/π, where A
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Figure 4.5: Overview of the combinatorial matching process. M extreme vertices of the

source shape are matched with |T | extremities from the target. Hence M ! possible permu-

tations of
(|T |

M

)
different combinations are tested with the source, and the one with minimum

distortion gives the optimal mapping §∗ (right).

is the surface area of the target shape, that ensures sampling of about 100 dense samples.

An arbitrary vertex is selected as the initial sample, and all the vertices lying within its

patch of radius r are marked. The next sample is then selected arbitrarily from the set

of unmarked vertices. When this is repeated until no unmarked vertex is left, we obtain

a partitioning of the shape surface into samples that are at least r apart from each other.

We denote the dense sample sets on source and target shapes by Ŝ and T̂ , respectively, to

which we also append S and T themselves since they cover the salient extreme points. Note

that the number of samples on the source shape can be significantly less than the number

of samples on the target since the former is assumed to be an isometric part of the latter

in our setting.

The third and last step begins with filling in a cost matrix C where each entry cij

represents the cost of matching a sample ŝi in Ŝ to a sample t̂j in T̂ . We build C by setting

ci,j = d
(2)
iso (ŝi, t̂j) via (4.5), based on the trusted correspondences in §∗, hence §′ = §∗. We

then perform minimum-weight perfect matching [96] on C, that reveals the desired dense

map §̂∗. Since the cardinalities of the disjoint sets must match for a perfect matching, if
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|Ŝ| 6= |T̂ |, we introduce virtual vertices with connector edges of ∞ weights.

To address the symmetric flip problem, we iterate the third step above K times, each

time setting §′ to one of the best K sparse correspondences. Note that our combinatorial

matching framework allows us to sort out the K least distorted sparse maps, §1, §2, .., §K ,

where §1 = §∗. Hence we compute K dense maps §̂1, §̂2, .., §̂K . We then promote the sparse

map among the best K, which generates the dense correspondence with minimum distortion,

as our final sparse correspondence output:

§∗ ← arg min
§1,§2,..,§K

D̂iso(§̂) (4.7)

where D̂iso is similar to D
(2)
iso except that it uses geodesics normalized by the same overall

maximum geodesic over the shapes, which is the maximum geodesic of the target. In this

way, the coarse correspondences with similar distortion values, which are possibly symmet-

rically flipped, are compared at a finer resolution where their isometric distortions can be

more accurately computed. We use K = 5 in all our experiments, which is sufficient to

differentiate the true mapping most of the time.

4.1.6 Computational complexity

We analyze the computational complexity of D
(1)
iso (§) and D

(2)
iso (§) computations, and the

combinatorial part matching algorithm separately. Given a mapping § of size N , it takes

N ·(N−1
2

)
iterations of constant work to compute each d

(1)
iso (si, tj), and hence O(N3) time for

D
(1)
iso (§) computation. Similarly, D

(2)
iso (§) is achieved in O(N2) time as N · (N − 1) iterations

are required.

The partial matching algorithm, on the other hand, when fed with two original meshes

having VS and VT vertices, starts with feature point selection of O(V log V ) time, where

V = max(VS , VT ). The combinatorial search algorithm then demands
(|T |

M

)
M ! evaluations

of the function D
(1)
iso (§) or D

(2)
iso (§), where M is the size of the sought mapping, i.e., the size of

the reduced source feature set. Hence the overall algorithmic complexity is O(
(|T |

M

)
M !M3)

or O(
(|T |

M

)
M !M2), which gives reasonable computation time in practice thanks to the feature

sampling that leads to small |T | values as well as the choice M = 5.

Establishing a dense map of size U adds another O(V log V ) for dense sampling plus

O(U2 log U) time for minimum-weight perfect matching, both of which are dominated by

the preceding combinatorial part matching algorithm (we set U = 100 in our experiments).
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4.1.7 Experimental results

We have tested the performance of our shape correspondence algorithm on several shape

datasets. The first three datasets are uniformly sampled fixed-connectivity mesh sequences,

each representing the motion of an articulated object, which we refer to as Horse, Dog, Wolf,

Cat (from TOSCA shape benchmark [18]), Jumping Man [97], and Dancing Man [98]. The

fourth dataset is a reconstructed pose sequence of a human actor from the SCAPE bench-

mark [106], which contains 71 different non-uniformly sampled fixed-connectivity models.

We have created partial models from some of these datasets by manually cropping and

arbitrarily rescaling the original complete models. Representative partial models can be

observed throughout the figures.

The last dataset is from the SHREC’11 shape benchmark [105]. The part that we use

from this dataset includes a null (reference) shape (Human) plus three classes named as

isometry, partial, and scaling, each containing 5 uniform high-resolution human models with

arbitrary connectivity. The isometry class contains isometric deformations of the null shape

and the scaling class includes models from the isometry class in different scales, whereas

the partial class is composed by parts of the complete models from the isometry class.

We have also used the female class from TOSCA, which contains 10 models, to match

with the partial class of SHREC’11 to expand our experiments on nearly isometric shape

pairs. Besides, we match Gorilla from TOSCA with Human, which verifies, along with Cat

vs. Wolf, the accuracy of our algorithm on semantically similar hybrid shape pairs whose

maximum geodesic distances do not coincide, a case that would fail most of the conventional

isometric shape matchers.

We evaluate the quality of the obtained sparse mappings by using the distortion measure

D
(1)
iso or D

(2)
iso , depending on which measure is employed to find the given mapping. We use

the distortion measure D̂iso to evaluate the dense mappings. We also use the ground-

truth distortion Dgrd (Eq. 3.12) to measure deviation from ground-truth correspondences

whenever ground-truth correspondence of the source sample on target is either known a

priori or computed automatically by aligning the cropped model with its complete version.

The maximum geodesic distance on the target model is normalized to 1 in order to simplify

the interpretation of this measure.

We have compared our algorithm with the Möbius Voting (MV) method of [31]. For
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comparison tests, we have run the publicly available code of MV with its default settings of

100 samples and 1M votes, and evaluated its performance based on the M = 5 samples that

are closest to the shape extremity samples used for our algorithm. We also compare the full

dense correspondences obtained by MV to our dense correspondences. In the visualization of

our results, we highlight the generating/trusted coarse correspondences with larger spheres

and bold lines, and the generated dense maps with smaller spheres. Yellow lines represent

the worst matches w.r.t. ground-truth distortion (or isometric distortion in case the former

is not available).

Figures 4.6-4.9 display various examples from our partial correspondence results obtained

by using the isometric distortion measure D
(1)
iso , whereas in Fig. 4.22, we visually compare

the performance of our algorithm with the MV method. Since Möbius Voting algorithm is

restricted to sphere topology, while our method is not, for the sake of comparison, we have

patched up all the partial models at their cut regions except for standard SHREC’11 shapes.

Whether cut regions are patched up or not, the geodesic information on a partial surface

slightly changes with respect to its complete version, introducing some extra imperfection to

the correspondence problem; yet we observe that the correspondences that we obtain using

our method are very satisfactory, and generally more accurate especially at shape extremities

when compared to MV (see Fig. 4.22). The MV algorithm can actually generate accurate

correspondences only for a small number of correspondence pairs, those with high confidence

values. However the vertices corresponding to these pairs are not generally well distributed

on the surface, being arbitrarily located, as can also be observed from Fig. 4.22. We also

observe that the matching results of MV at shape extremities may be very inaccurate.

We provide quantitative performance evaluation of our method for dense and extremity-

based sparse matching in comparison to MV in Table 4.1, where we also compare the two

isometric distortion functions that we have employed for scale normalization. We note that

in addition to partial matching (first 4 rows), both methods naturally support complete

matching (last 4 rows). Note also that the computation of dense distortion D̂iso, as used in

Eq. 4.7, is based on trusted coarse correspondences obtained either by using the distortion

measure D
(1)
iso (column named as ”with D

(1)
iso ”) or D

(2)
iso (column named as ”with D

(2)
iso ”).

For part matching experiments (Figures 4.6-4.20), we have respectively 6, 7, 7, and

5 partial models for Jumping Man, Dancing Man, Horse, and SHREC11 sequences. In
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the test suite for each dataset, each of the C complete models is matched with P random

partial models from the same class, where the pair (C,P ) is (18, 2), (9, 3), (7, 3), and (11, 5),

respectively. For SHREC11 evaluation, in addition to matching the 11 models from the

null shape, isometry, and scaling classes to all 5 models from the partial class, we also

compute the mapping from each of the 10 female models from TOSCA to a random partial

class model in SHREC11. In all cases, we exclude from evaluation, the shape pairs that

result in symmetric flips when matched using our method and/or Möbius Voting. As a

result, the performance measures given in Table 4.1 are computed over 19, 22, 15, and 39

pairs, respectively on four datasets. Note that, a denser map that captures more intrinsic

geometry of the shapes tends to overcome the symmetric flip problems observed at a coarser

resolution, which in turn corrects the symmetric flip between the initial extreme samples as

well (Fig. 4.7-bottom).

Figure 4.6: Partial correspondences between two different Jumping Man pairs at different

scales (left half), and similarly for Dancing Man pairs (right half). S and T denote the

partial and complete models, respectively, which applies to all subsequent figures of this

section that involve partial models.

As for complete matching experiments (Fig. 4.9), each of the 9 and 10 complete models is

matched with a random complete model from the same class for Dog and SCAPE sequences,

respectively. We also perform complete matching across classes to address the incompatible

maximum geodesic issue with 5 Cat-Wolf and 4 Gorilla-Human pairs.
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Figure 4.7: (Left) Partial correspondences obtained on two different Horse pairs. (Framed)

The sparse partial mapping obtained on a Horse pair initially has a symmetric flip problem

(left), which is resolved at a denser resolution (right).

Figure 4.8: Partial correspondence on SHREC11: (Left to right) Mappings to a partial class

model S from a null shape, from a scaling class shape, and from two female class shapes in

TOSCA.

In Table 4.1, we observe that the distortion measure D
(1)
iso outperforms D

(2)
iso especially

for the part matching problem (first 4 rows). The performance difference here is mostly due

to the inconsistency of trusted farthest point pairs used for geodesic normalization with the

latter measure, which is not likely to occur in complete matching where D
(2)
iso performs as

good as D
(1)
iso for shapes with perfectly compatible maximum geodesic distances (rows 5−6)

but falls behind for hybrid pairs (rows 7−8). We also observe that our method outperforms

the MV method in sparse extremity matching as well as dense matching. Note that MV

cannot be evaluated on SHREC11 since the models in the partial class contain holes on the

surface. The ground-truth correspondence information is not available for hybrid pairs and
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Figure 4.9: Complete correspondences between a Dog pair and two SCAPE pairs (top) as

well as between a Cat-Wolf pair and two Gorilla-Human pairs (bottom).

SHREC11.

The execution times of our isometric part matching algorithm on a 2.53GHz PC is, for

the highest-resolution dataset SHREC11 of 50K vertices, 30 seconds for feature selection,

followed by 0.6 seconds combinatorial matching of M = 5 samples and then 0.4 seconds

dense matching of U = 100 samples. The respective seconds for the lowest-resolution

dataset SCAPE of 12.5K vertices are 3.6, 0.3, and 0.3. Note that the cubic complexity of

the promoted scale-invariant measure D
(1)
iso becomes negligible compared to the quadratic

D
(2)
iso with M = 5.

When we investigate how the choice of M , i.e., the size of the sought coarse mapping,

affects the output, we observe that small values, e.g., M = 3, may cause unstable results as

the individual distortions making up D
(1)
iso (§) become less reliable, whereas with relatively
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Figure 4.10: Partial correspondences obtained by our method and by MV respectively on

the left and right hand sides of each box for four different datasets. MV matches correspond

ing to our sparse matches are shown with larger spheres, whereas smaller spheres represent

the remaining matches.

high values such as M = 7, other than computational load concerns, inaccuracies may arise

due to joint sampling that starts to produce incompatible point pairs to be matched. In

Fig. 4.11, we see that although the initial samples which may contain some inconsistent

points are matched as accurately as possible in all cases, the quality of the final dense

correspondences may degrade due to these inconsistencies with Dgrd = .201, .058, and .107

values on average over SCAPE dataset for M = 3, 5, and 7, respectively. We note that

the proper choice of M can also be considered as model or database dependent. On the

Dog dataset for example, which contains shapes with more extremities, the choice of M = 5

or M = 7 does not affect the performance with Dgrd = .037 and .038 values on average,

respectively (for the complete matching scenario).
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Our extremity matching Our dense matching MV extremity MV dense
with D

(2)
iso with D

(1)
iso

Pair D
(2)
iso , Dgrd D

(1)
iso , Dgrd D̂iso, Dgrd D̂iso, Dgrd D

(1)
iso , Dgrd D̂iso, Dgrd

Jumping Man (partial) .030, .083 .219, .072 .019, .139 .017, .089 2.465, .253 .051, .140

Dancing Man (partial) .025, .068 .159, .037 .011, .082 .011, .055 1.965, .428 .068, .241

Horse (partial) .027, .056 .114, .028 .012, .055 .011, .048 2.463, .244 .051, .121

SHREC11 (partial) .044, n/a .207, n/a .038, n/a .034, n/a n/a, n/a n/a, n/a

Dog (complete) .038, .032 .191, .032 .013, .037 .013, .037 2.530, .210 .044, .101

SCAPE (complete) .032, .026 .143, .026 .010, .058 .010, .058 2.744, .348 .069, .139

Cat-Wolf (complete) .077, n/a .372, n/a .039, n/a .027, n/a 3.367, n/a .101, n/a

Gorilla-Human (complete) .079, n/a .376, n/a .041, n/a .021, n/a 3.879, n/a .091, n/a

Table 4.1: Quantitative performance analysis of our method in comparison with Möbius

Voting (MV) as bold vs. bold and underlined bold vs. underlined bold.

Figure 4.11: Different choices of M in creation of the initial coarse mapping on a SCAPE

shape pair.

4.1.8 Conclusion

We have introduced a novel scale normalization method, in comparison with a state of the

art method, that proves useful for partial/complete shape correspondence under a particular

setting where one of the shapes to be matched is a scaled and isometric part of the other.

Our method uses an isometric distortion measure in a combinatorial framework to establish

a trusted coarse correspondence based on which the shapes are brought to the same scale,

hence handling the scale problem. Dense matching then enables comparison of our approach

with state of the art as well as alleviates the symmetric flip problem due to initial coarse

sampling. Our isometric matching solution naturally covers the complete matching problem,

where the novel distortion measure has proved to be very effective while matching hybrid
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pairs of semantically similar shapes whose maximum geodesic distances do not necessarily

coincide, a case that would fail most conventional isometric shape matchers.

As a partial shape matcher, there is still room for improvement in this framework. We

assume that the sample set on the partial model is (approximately) a subset of the complete

model sample set which currently has a cardinality of 10. While this setting is sufficient

when the partial model is at least the half of the complete model, as in general and in

all examples of this work, the assumption breaks when the part is too small, e.g., Hand

vs. Human, since in this case the complete model will probably lack most of the samples

featured in the partial model. A simple solution is just to populate the target samples to

cover all extremities, instead of only 10 evenly-spaced ones, which would work up to 20

samples due to combinatorial complexity.

As a scale normalization tool, we see the work complete after thorough comparisons and

experiments. The most straightforward example to an application for which our method

can be used in its current form is part retrieval, i.e., searching a 3D database for shapes

containing a surface part given as query. We also note that the proposed scale-invariant

isometric distortion measure can be embedded into other frameworks that address the partial

shape correspondence problem in a more general setting, such as matching shape pairs which

are partially isometric but both having parts which are not in common. That would however

require the envisagement of a mechanism to eliminate the shape outliers (the uncommon

parts) from the global pool of shape vertices, such as the voting approach employed in [31],

which will be the topic of our further research.
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4.2 Isometric Partial Matching Algorithm

In this section, we present our rank-and-vote-and-combine (RAVAC) algorithm to address

the shape correspondence in the most general setting where shapes have multiple common

parts at arbitrary scales as well as parts that are not similar [27].

4.2.1 Literature review

The focus of the literature review in Section 4.1.1 is on the scale issue which applies to here

as well. Additionally, we review below the literature on partial shape correspondence in the

most general setting.

There are few methods in the literature, that are capable to address the partial corre-

spondence problem in the most general setting where shapes may have multiple common

parts at arbitrary scales as well as parts that are not similar [31], [28], [29], [93]. All these

methods rely on scale-invariant local shape descriptors except for the Möbius Voting method

[31]. Note also that the methods in [29], [93] enforce geodesic consistency in addition to lo-

cal shape similarity, and hence resort to global intrinsic properties for shape normalization.

When compared to Möbius Voting (MV), our method has several advantages. First, we

handle the scale problem inherent to partial correspondence directly in the 3D Euclidean

space wherein isometry is originally defined, hence as free of embedding errors. Second,

our method can produce reliable dense correspondences between partially isometric shapes.

Third, we impose no restriction on shape topology. Last, our method generates more reli-

able and accurate correspondences, especially at shape extremities, and can handle shape

pairs with less similarity overlap.

The Blended Intrinsic Maps (BIM) method [21] extends MV to address the complete

shape correspondence problem by blending multiple complete maps generated by shape

extremities spread all over the whole surface. Our method is methodologically similar in

the sense that we explore multiple partial maps between shape extremities of similar parts.

As a shortcoming other than sphere topology restriction, the BIM method does not support

partial matching at all.

In this paper, we propose a rank-vote-and-combine (RAVAC) algorithm to find corre-

spondences between partially and/or nearly isometric shapes, which naturally solves the

complete correspondence problem as well as partial correspondence. Our algorithm collects
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partial isometry cues from the given shapes by considering all possible partial mappings

(relations) between shape extremities and accumulates the collected information into a

vote matrix which is then used to find an overall optimal partial correspondence. We first

coarsely sample shape extremities from each shape which may be at arbitrary scale (Sec-

tion 3.2.3). In the ranking phase, we explore the space of all possible partial maps between

these extremities so as to rank all possible matchings (correspondence pairs) with respect

to the isometric distortion that they yield (Section 4.2.3). In the voting phase, the qualified

top-ranked matchings are subjected to a more detailed analysis at a denser resolution and

assigned with confidence values that accumulate into the vote matrix (Section 4.2.4). In

the combining phase, by iterating a minimum weight perfect matching algorithm based on

the vote matrix, an optimal (partial) mapping between shape extremities is obtained (Sec-

tion 4.2.5), which can later be extended to a denser map (Section 4.2.6). The computational

complexity of the overall shape correspondence algorithm is relatively low, as analyzed in

Section 4.2.7. We test the performance of our method on several datasets and benchmarks

in comparison to MV and BIM, as presented in Section 4.2.8.

4.2.2 Sampling

We pick shape extremities of the given shapes by using local extrema of the integral geodesic

distance function [48]. Let µ(v) denote the integral geodesic distance at vertex v. Prior to

computation of µ, we apply Laplacian smoothing to each shape model to prevent samples

at noisy bumps. We then initialize the sample sets with local maxima and minima of µ.

The local maxima are expected to be on the tips of a given shape whereas local minima

correspond to surface points which lie near the center of the shape [37]. The initial sample

sets are then exposed to two steps of pruning, first of which clusters geodesically close

samples into the most extreme ones where the closeness threshold is determined based on

the maximum geodesic distance gmax on the surface. In our experiments, we have used the

value obtained by dividing gmax with h ∈ [10, 20] depending on the dataset. The second

step of pruning removes a local maximum (minimum) v from the sample set if µ(v) is

less (greater) than the average µ to cancel out redundant extremities that are not on tips

(central region). The vertices resulting from this sparse sampling process constitute the sets

S (source) and T (target) to be matched (Fig. 4.12).
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Figure 4.12: Samples (red spheres) produced on the centaur (|S| = 9) and girl (|T | = 6)

models.

4.2.3 Ranking

Given a mapping § : S → T , we measure the isometric distortion Diso as follows:

Diso(§) =
1
|§|

∑

(si,tj)∈§
diso(si, tj , §′) (4.8)

where diso(si, tj , §′) is the contribution of the individual correspondence (si, tj) to the overall

isometric distortion:

diso(si, tj , §′) =
1
|§′|

∑

(sl,tm)∈§′
|g(si, sl)− g(tj , tm)| (4.9)

where g(., .) is the geodesic distance between two vertices on a given surface and §′ is

the correspondence list which is by default § − (si, tj). Note that Eq. 4.8 is essentially

same with Eq. 3.1 except we made some rearrangement to accommodate the upcoming

formulations. An optimal solution §∗ can then be searched over all possible mappings so

as to minimize the isometric distortion function given in (4.8), which cannot be directly

applied in a partial matching setting because there is no agreed maximum geodesic distance

to normalize g on source and target into [0, 1] interval due to possible local scale differences.

We however observe that, the individual isometric distortion of a queried match (si, tj) can

safely be evaluated in the absence of globally normalized geodesics using a correspondence

list consisting of matches from the shape part where si and tj itself resides in. We estimate

the individual isometric distortion by traversing over all mappings of cardinalities 2 to 5,
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which does not include (si, tj). We do not check beyond 5 due to efficiency reasons as well

as the fact that 1 + 5 extremities are usually sufficient to represent any given shape part.

The estimate, d̃iso(si, tj), of the individual isometric distortion of the correspondence (si, tj)

is then computed by

d̃iso(si, tj) =
1
4

∑

k∈[2,5]

min
l
{diso(si, tj , §(k)

l )} (4.10)

where {§(k)
l | l = 1, 2, ..., Lk} is the set of all maps of size k, not including (si, tj), and Lk =

(|S|−1
k

)(|T |−1
k

)
(k!). We denote this set by S(k). Taking the minimum in (4.10) guarantees

that if (si, tj) is a good match and traverses a list of matches from the same shape part it

resides in, then this is appreciated by selecting the lowest distortion. We then average over

sets of maps with different cardinalities since maps of small size, e.g., with k = 2 or 3, are

likely to fall in the same part as (si, tj) but may exhibit symmetric flip problems, whereas

mappings with large cardinalities, e.g., k = 4 or 5, are unlikely to be confused by flips but

have the risk of including irrelevant samples from a distinct part.

4.2.3.1 Safe map generators

In Eq. 4.10, each (si, tj) traverses all possible one-to-one mappings to compute the minimum

distortion over S(k). To reduce computation, we prune S(k) so as to keep only the potentially

safe maps, i.e., the maps between k source samples and k target samples which are expected

to be from similar shape parts (see Figure 4.13).

To this end, for each k, we define a set of safe map generators, G(k), which contains

all pairs of k-tuples, one tuple from the source sample set and the other from the target,

such that any map between these tuples is potentially safe. We denote each of these pairs

of sample tuples by G(k) ∈ G(k). A pair of k-tuples is identified as a safe map generator

if it satisfies the geodesic consistency condition that the average of pairwise normalized

geodesics between source samples is close to that of between target samples. We normalize

the geodesics with the maximum geodesic distance between the samples of the given tuple.

Note that although all k! mappings generated from a given G(k) are referred to as potentially

safe, only a small portion of them are actually correct mappings between two similar parts,

and hence while evaluating a query match (si, tj) via Eq. 4.10, taking the minimum helps

eliminating the contribution of the irrelevant partial maps.
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We create the generator sets {G(k)} incrementally for k = 3, 4, 5 (no pruning is neces-

sary for k = 2). For k = 3, each triplet of source samples is tested with each triplet of

target samples to meet the geodesic consistency condition. Among
(|S|

3

)(|T |
3

)
pairwise triplet

combinations, typically 20%− 30% make into G(3) in our experiments, where the closeness

threshold is set as 0.15. For k = 4, 5, we incrementally build G(k) from G(k−1). In each case,

a pair of source and target samples appended to an existing generator G
(k)
m triggers a new

geodesic consistency test and typically 2% − 4% of all possible pairwise combinations are

selected. Some safe map generators from G(3) are demonstrated in Figure 4.14.

Figure 4.13: Samples (green spheres) on three different shape pairs. A safe map generator

G
(k)
m is expected to choose k samples from each common shape part (red regions). In spite

of the significant structural difference due to large uncommon components (gray regions),

our algorithm produces reliable correspondences.

By replacing S(k) in (4.10) with the potentially safe one-to-one maps based on G(k), we

not only reduce the search space significantly but also increase the accuracy by excluding

unexpected distortion values due to evaluation of (si, tj) via (unsafe) maps that accommo-

dates samples from irrelevant shape parts. Once the individual distortions are computed,

for each source sample si, we rank the pairs (si, tj) based on their individual distortions:

We sort all possible |T | different matches with respect to d̃iso(si, tj) in ascending order and

qualify only the ones with a distortion value that appears before the first significant jump

in the corresponding distortion plot (we set the jump value as the sum of the first two

distortion differences in the sorted list). With the qualified matches, the voting module is

then ready to start, as described next.
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Figure 4.14: Three different triplet pairs (safe map generators) from G(3) are indicated with

large green spheres on three different views of the same shape pair. Blue spheres represent

the remaining samples.

4.2.4 Voting

With the ranking of possible matches in hand, one possibility to solve the correspondence

problem is to select the least distorted match for each source sample. This straightforward

solution would give a (possibly many-to-one) mapping that would however suffer from sym-

metric flips and mismatches due to low number of extremities being matched. We therefore

consult to a voting procedure which is more robust, that relies on the ranking obtained in

the previous section.

The voting process considers the generator set G(3) (the others are discarded simply due

to computational reasons). Among 3! potentially safe maps generated from each G
(3)
m ∈ G(3),

only those containing the matches qualified in the ranking phase are taken into account.

Each such safe map §(3)
l defines two regions of interest on the given two shapes (as will be

explained next), which are resampled and matched at a denser level (see Figure 4.15). The

resulting isometric distortion is then used to vote up the three matches contained in this

potentially safe map. This is repeated for all qualified safe maps and the resulting votes are

accumulated into a vote matrix where each entry represents the confidence of a potential

match between two shape extremities. In the sequel, we describe the voting algorithm in

detail.
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Figure 4.15: Two examples of the voting process in top and bottom rows for two different

generating pairs of sample triplets from G(3). a) Two steps that decide regions of interest

(painted red), b) evenly-spaced dense samples (yellow spheres), and c) one-to-one map

between them (lines) to be used in computation of confidence votes.

4.2.4.1 Finding regions of interest

Let §(3)
l be a potentially safe map generated from G

(3)
m = ((si1 , si2 , si3), (tj1 , tj2 , tj3)) such

that §(3)
l = {(si1 , tj1), (si2 , tj2), (si3 , tj3)}. The voting algorithm first brings the shapes to the

same scale by scaling the target mesh with a factor κ = (g(si1
,si2

)

g(tj1 ,tj2 ) + g(si1
,si3

)

g(tj1 ,tj3 ) + g(si2
,si3

)

g(tj2 ,tj3 ) )/3

based on the geodesic distance ratios between the ordered sample points, and then finds

the regions of interest that these shape extremities determine (see Figure 4.15a). Let the

extremity sample sets {si1 , si2 , si3} and {tj1 , tj2 , tj3} be denoted by Sl and Tl, respectively.

The region of interest on the source shape includes the source mesh vertices that are close

to Sl and distant to S − Sl. To implement this, we mark a vertex v as a region vertex if

g(s, v) < gmax ∀s ∈ Sl, where gmax is the maximum geodesic between extremity samples

in Sl (see Figure 4.15a-left). To meet the second requirement, for each maximal extremity

s′ ∈ S − Sl, we unmark the region vertices that are at most g(s, s′)/2 apart from s′ where

s ∈ Sl is the closest extremity to s′ (see Figure 4.15a-right). The region of interest on the

target shape defined by the extremity set Tl is computed likewise.
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4.2.4.2 Dense region sampling

Next, we distribute evenly-spaced dense samples in the regions of interest (see Figure 4.15b).

We resample and populate the region of interest on the source shape by first selecting the

corresponding extremities as the first three dense samples. Given the region area A, we use

the radius r = 0.17
√

A/π to ensure evenly sampling of about 100 dense samples as follows.

When an arbitrary region vertex is selected as a dense sample, all the region vertices lying

within its patch of radius r are marked. The next dense sample is then selected arbitrarily

from the unmarked region vertices. When this is repeated until no unmarked region vertex

is left, we obtain a partitioning of the region into dense samples that are at least r apart

from each other [48]. A similar evenly-sampling on the regions of interest of the scaled target

mesh using the same r makes the joint dense samples as consistent as possible, especially if

source and target regions are due to the compatible generating extremity samples from the

same shape parts, in which case the distortion of the dense map to be computed becomes

low. We denote the dense sample sets on regions due to Sl and Tl by Ŝl and T̂l, respectively.

4.2.4.3 Dense region matching

We match Ŝl and T̂l by using a fast minimum-weight perfect matching algorithm [96], and

denote the resulting dense map by §̂l. To feed the algorithm, we build a cost matrix C

where each entry cpq is the isometric distortion of matching a source sample ŝp ∈ Ŝl to a

target sample t̂q ∈ T̂l. We compute each cpq based on the three correspondences available

in the qualified safe map §(3)
l by setting cpq = diso(ŝp, t̂q, §(3)

l ) via (4.9), which is expected

to map Ŝl to T̂l with low distortion if §(3)
l is correct. Since the cardinalities of the disjoint

sets must match for a perfect matching, if |Ŝl| 6= |T̂l|, we introduce virtual vertices with

connector edges of ∞ weights. We also enforce the three correspondences available in the

map §(3)
l to be preserved in the resulting dense map by setting the corresponding entries of

the cost matrix to −∞. Hence we guarantee that §(3)
l ⊂ §̂l.

4.2.4.4 Vote matrix

The dense region matching process described previously is repeated for each qualified safe

map §(3)
l generated from G(3), and each such matching process produces a confidence vote

γl(si, tj) for each pair (si, tj) ∈ §(3)
l . This confidence vote is computed based on the individ-
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ual isometric distortion that the dense matching yields:

γl(si, tj) = exp(−diso(si, tj , §̂l)) (4.11)

which produces a value in [0, 1]. Note that the confidence measure given above considers the

global consistency of the matching between dense samples since (si, tj) traverses all ∼100

matches in §̂l to compute diso via Eq. 4.9. (see Figure 4.16).

Figure 4.16: Confidence vote assignment to the matches between the extremity samples

(colored bold lines) for three different safe maps shown at left, middle, and right. Confidence

votes are computed by traversing a pair (si, tj) over the dense matching displayed with thin

black lines.

The confidence votes resulting from all dense mappings are then accumulated into a vote

matrix Γ, where each entry γij eventually represents the confidence of matching a source

extremity si ∈ S to a target extremity tj ∈ T . More specifically, each entry γij is given

by the average of all confidence votes that the pair (si, tj) gets. We note that, to improve

robustness, we discard a qualified safe map from the voting process if the target region of

interest is twice larger than the source region after scale normalization since this definitely

implies a bad configuration, e.g., three source samples from finger tips of a hand vs. a target

triplet consisting of two hands and a head on a pair of human shapes.

4.2.5 Combining

We use the vote matrix Γ to find an optimal mapping, §∗ : S → T , from the set of source

extremities to the set of target extremities. We first convert the vote matrix into a cost

matrix and then apply the minimum-weight perfect matching algorithm in [96], that gives us
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an optimal one-to-one mapping which respects confidence values globally. The cost matrix

C∗ is formed by replacing the high confidence entries in Γ with c∗ij = 1−γij and others with

∞. High-confidence entries are determined automatically using a procedure that is similar

to the jump detection algorithm described in Section 4.2.3.1. Given a sample si, we sort

all confidences in row γi to infer the average difference ζ between the consecutive sorted

confidences. We then mark the entries appearing before the first significant jump, which

we set to 1.5ζ, as high-confidence entries. Taking into account only high confidence entries

improves the robustness of the matching algorithm.

The above perfect matching algorithm produces a one-to-one mapping that associates

every source extremity with one target extremity sample. This is a desirable solution in

the case of complete shape correspondence as well as for the problem of part matching.

However, when the shapes are partially isometric both with parts that are not similar, some

of the matches in the resulting map will clearly be outliers which distract the optimization

process itself. Also, when the structural dissimilarity between the shapes is large, there is

the danger of occupying a nice spot on the target shape with an irrelevant match which

originates from a source sample whose counterpart does not actually exist on the target.

To address this problem, we iterate the perfect matching algorithm each time removing

one of the outliers. Since an outlier match is expected to have small confidence, at each

iteration we remove the least-confident match by setting the corresponding entry in C∗

to ∞ and solving the new C∗ again and repeating these removals until convergence, i.e.,

when there is no jump in the confidences of the matches in the resulting one-to-one map,

i.e., all consecutive confidence differences are less than 3ζ. Hence the final map that our

algorithm produces is always one-to-one, but does not necessarily associate every extremity

sample on the source (or target) shape with an extremity on the other; in other words, it is

a one-to-one partial mapping. We summarize our overall shape correspondence algorithm

(RAVAC) with the pseudocode given below.

4.2.6 Extension to dense map

The optimal coarse correspondence §∗ that our RAVAC algorithm produces between sparse

shape extremities can be extended to a dense map. For each mapping with cardinality

three, which is a subset of §∗, we densely resample and match the corresponding regions of
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Input: Extremity sample sets S and T

Output: One-to-one mapping §∗ : S → T

————– Ranking ————–

For each si ∈ S

Estimate d̃iso(si, tj) ∀tj ∈ T via (4.10);

Qualify the match (si, tk) for voting if diso(si, tk) appears

before the first significant jump in the sorted distortion plot of si;

————– Voting —————

Γ: Vote matrix with all entries γij initialized to 0;

G(3): Set of all safe map generators;

For m = 1 to |G(3)|
If G

(3)
m = ((si1 , si2 , si3), (tj1 , tj2 , tj3)) generates

§(3)l = {(si1 , tj1), (si2 , tj2), (si3 , tj3)} where all pairs are qualified

Bring meshes to the same scale by multiplying target with

κ = (
g(si1 ,si2 )

g(tj1 ,tj2 )
+

g(si1 ,si3 )

g(tj1 ,tj3 )
+

g(si2 ,si3 )

g(tj2 ,tj3 )
)/3;

Set Sl = {si1 , si2 , si3} and Tl = {tj1 , tj2 , tj3};
Compute the regions of interest on source and target defined by Sl and Tl;

Spread ∼100 dense samples Ŝl and T̂l on regions of interest;

Find the dense map §̂l : Ŝl → T̂l;

Vote up confidence of extremity match (si, tj) ∈ §(3)l via

γij = γij + exp(−diso(si, tj , §̂l));
————– Combining ————

C∗ = ∞;

c∗ij = 1− γij for high-confidence matches (si, tj);

Repeat

§∗ = minimum-weight perfect matching on C∗

Let (sa, tb) be the least-confident match in §∗;
c∗ab = ∞;

Until there is no jump in confidences of the matches in §∗

Figure 4.17: The general shape correspondence algorithm: RAVAC.
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interest. This process is repeated for all §(3)
l ⊂ §∗, and then the resulting dense matchings

are blended into one dense map, that we denote by §̂∗.
The process of resampling and matching the regions is the same as described in Sec-

tion 4.2.4 except that this time the resampling algorithm takes into account the other

overlapping regions of interest while populating its samples. The regions of interest are

enforced to include the same samples in the parts where they overlap. Hence while resam-

pling a region (Section 4.2.4.2), the dense sample set is initialized to include all the dense

samples that have been so far included by some other regions of interest. This enables to

accumulate a set of candidate matches on the target, F (ŝi), for a given dense source sample

ŝi as regions of interest are matched. Let t̂j be the coordinate vector for the target dense

sample t̂j . The blended coordinate

bi =
1

|F (ŝi)|
∑

t̂j∈F (ŝi)

t̂j (4.12)

then approximates the geodesic centroid of the candidate matches for ŝi and provides (ŝi, t̂k)

as the blended dense match, where t̂k is the target vertex closest to bi in L2 sense.

We note that the main computational load of this extension is on the minimum-weight

perfect matching phase which is negligible when the number of dense samples to be matched

is less than 500.

4.2.7 Computational complexity

Sampling N initial extremities on the input mesh with V vertices takes O(V log V ) time.

The ranking module demands O(N4) operations as each of N samples is tested with all

O(N3) triplets to traverse a map of constant size. The voting procedure, for each qualified

triplet (O(N3)), generates a potentially safe map, defines regions of interest around the

map (O(V )) and distributes ∼100 dense samples on them (O(V log V )), which are then

matched for confidence computations. The voting complexity is hence O(N3V log V ) where

the number of region vertices taken as V is generally much fewer and there is always the

possibility to hash the existing regions to reuse them in constant time, which yield a much

more moderate cost in practice. The final combining step performs minimum-weight perfect

matching of O(N2 log N) work about at most 10 times until convergence. The dense map

extension comes without any additional complexity as the blended coordinates computed
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in O(N3V log V ) time provide the closest mesh vertices in O(NV ) time. The overall worst

case complexity is therefore O(N3V log V ) assuming N ¿ V .

Compared to O(V 2 log V +N4 log N) complexity of the MV method, our method is con-

sidered to be fast since it uses a much smaller N , e.g., 10 vs. 250. We note that the number

of sample triplet pairs in the above discussion does not exceed 15K for a typical shape pair

with N = 10 extremity samples after pruning, e.g., 25% of all
(
10
3

)(
10
3

)
triplets. The BIM

method, on the other hand, is faster with O(V log V ) complexity yet not guaranteed to solve

the partial matching problem.

4.2.8 Experimental results

We test the performance of our method on several shape benchmarks for complete, par-

tial and dense correspondence problems in the presence of isometric (or nearly isometric)

deformations and scale differences.

The first dataset is a subset of the Non-rigid World benchmark [38], which consists

of uniformly-sampled meshes representing articulated motions of 17 horses, 6 centaurs, 6

seahorse, 21 gorillas, 4 males, and 4 females, each with ∼3.4K vertices and arbitrary con-

nectivity. We have also created 4 partial horse models by manually cropping the original

complete models. Matching horses within themselves (Horse↔Horse) is a complete match-

ing problem on shape pairs with no structural differences, whereas establishing a map from

a horse to its cropped version (Horse↔Horse-part) is basically a part matching problem

where one shape is an isometric part of the other. A harder, and perhaps more realistic,

partial correspondence setting involves pairs with uncommon parts such as Centaur↔Horse,

Seahorse↔Horse, and Centaur↔Human pairs.

The second dataset is a part of the SHREC’11 benchmark [105]. A high-resolution mesh

of a null reference male model (SHREC-null), its 5 different poses that have undergone

isometric deformations (SHREC-iso), one isometric pose in 5 different scales (SHREC-sca),

and 5 cropped models (SHREC-part) are represented with ∼50K uniformly-spaced and

arbitrarily connected vertices.

The third and the last dataset that we employ is the SCAPE benchmark [106], which

is reconstructed from a real scene, representing the real motion of a human actor in 71

meshes. Since this dataset comes with ground-truth correspondence information for all
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∼12.5K vertices of the meshes, we mainly use it to evaluate the performance of our dense

matching results.

Figures 4.18-4.21 display various examples from our shape correspondence results, whereas

in Figures 4.22 and 4.23 we compare our algorithm with the Möbius voting (MV) method of

[31], and in Figure 4.24 with the Blended Intrinsic Maps (BIM) method of [21]. In all figures

concerning maps produced by our algorithm, we give the most confident 6 extremity matches

in red, green, blue, black, cyan, and magenta colors, respectively, and for the subsequent

matches, if exist, we use dashed black lines with spherical endpoints scaled with a radius

proportional to the confidence of the correspondence pair. Unmatched samples, if exist, are

represented by small red spheres. Apart from these visual evaluations, we also evaluate the

performance using the distortion measure Dgrd (Eq. 3.12) which quantifies the deviation

of a given correspondence § from ground-truth correspondences as the ground-truth corre-

spondence of a given source sample on the target is either marked manually or available

a priori as in SCAPE dataset, and g(., .) is the geodesic distance function. The maximum

geodesic distance on the target model is normalized to 1 to simplify the interpretation of

this measure. For comparison tests, we have run the publicly available code of MV with

the default settings of 100 samples and 1M votes and evaluate their correspondence results

based on the samples that are closest to the extremity samples used by our algorithm. We

also compare the correspondence formed by their top (most confident) 5 matches with our

5 corresponding matches. For the former case concerning extremity matches, our method

outperforms MV whereas for the latter 5 matches that tend to be on non-extremities such

as shape centers, we are almost on a par with them (Table 4.2). Note that, our original

coarse correspondence on the extremity samples needs to be extended to a denser one as

described in Section 4.2.6 in order to find our closest counterparts to the top 5 MV matches.

We have also run the public code of BIM to compare their extremity and full dense

matching performances with ours on 8 Horse (from TOSCA shape benchmark [18]) and

12 SCAPE pairs for both of which the full ground-truth information is available. For the

former, we follow the same strategy in MV extremity comparisons whereas for the latter

we interpolate our dense map (Section 4.2.6) to a full map between all vertices as described

in [21]. In extremity matching, BIM is slightly better than our method mainly because

we enforce three extremity correspondences in the generating partial maps to be preserved
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in the resulting dense maps to be blended. The BIM method, on the other hand, blends

unrestricted match candidates for a given extreme sample which renders it more flexible

as exemplified via nose matches in Figure 4.24-bottom. Full dense maps of BIM are again

slightly better than our interpolated counterparts (Table 4.3) yet suffer from unmatched

regions. All the slight differences in favor of BIM during these complete correspondence

tests can be tolerated since our main concern is the more challenging partial correspondence

problem that cannot be handled by the BIM method.

For the complete correspondence tests between the Non-rigid World horse models, each

complete model is mapped to a random complete model whereas the partial correspondence

is evaluated by finding maps between each cropped model and 4 random complete models,

hence a total of 33 pairs (Figure 4.18). Note that, we do not change any component

or parameter to toggle between the complete and partial correspondence problems as the

algorithm designed specifically for the partial matching problem solves the simpler complete

matching problem naturally.

Figure 4.18: Complete shape matching between the extremities of two complete horse mod-

els from Non-rigid World (left). Maps between a horse and two cropped models as partial

correspondences (right).

The other tests that we have conducted on the Non-rigid World benchmark require

partial correspondence in the presence of uncommon parts that complicates the problem

further. Our algorithm successfully rules out the samples representing the uncommon parts

without causing any confusions on the matches concerning samples of interest from the

common parts (Figure 4.19). The outlier matches between heads of Seahorse↔Horse are

removed by the iterative perfect matching process in the combining phase as the confidences

of these matches are relatively low compared to the matches between the feet, which is as
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expected since the heads of these two models are isometrically very different. In these

experiments, we pick 5 centaurs and match each of them with 4 random models from horse,

male, and female classes, hence a total of 60 pairs. Similarly, all seahorses are matched to

4 random horse models for another 24 pairs.

Figure 4.19: Examples of partial shape matching on three different pairs from three different

shape classes in Non-rigid World, given in increasing level of difficulty from top to bottom

row.

The SHREC’11 tests are performed by mapping each isometry class model to a random

model from the same class. As far as the partial correspondence is concerned, each model

in the partial class is matched with 3 random models from the isometry and scaling classes,

hence a total of 35 pairs (Figure 4.20).

We also experiment on a low-resolution gorilla and a high-resolution male from two dif-
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Figure 4.20: Example matchings on SHREC’11 between complete shapes of the isometry

class (left). A partial model mapped to a scaling model (middle) and to an isometry model

(right) via partial matching. Note the arbitrary number of samples on fingers.

ferent benchmarks to demonstrate the endurance of our algorithm not only to the difference

and size of the triangulations but also to complete matching of shapes that exhibit local

similarities but large deviations from global isometry (Figure 4.21). With 21 pairs obtained

by matching the null shape to all gorillas, we obtain successful results as the semantically

common parts accommodate sample triplets to cast votes. Since we isolate each potentially

compatible triplet pair from all other samples during the voting process, the male hands

can be matched to the elongated gorilla hands successfully.

Figure 4.21: Two examples of complete shape matching between male and gorilla meshes

that exhibit locally similarities but large deviations from global isometry.
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Several examples for comparison with MV are demonstrated in Figure 4.22. The top

5 MV matches are highlighted by large spheres whereas their extremity matches that are

closest to ours are indicated by large spheres with connecting lines. All other small spheres

of matching colors represent the remaining correspondences. A similar visualization is

performed for our results as well except only 5 of our dense matches, that correspond to the

top 5 MV matches, are shown. We observe that whenever the dissimilarity between shapes

increases, MV shows instabilities especially at the extremity matches as the mutual closest

point matches in their embedding domain starts to confuse on these regions of small area.

Our results, on the other hand, rely on the dense matchings obtained in the neighborhoods

of the extremities, which are hence less likely to get negatively affected by irrelevant data.

Figure 4.22: Möbius Voting (left) vs. our method (right) on four different shape classes.

We finally evaluate our dense matching described in Section 4.2.6. By establishing a

dense map on SCAPE data, we can thoroughly evaluate Dgrd over all matches, rather

than on just 5 matches, thanks to the ground-truth information available. Figure 4.23

visualizes our dense map between ∼250 vertices and the MV map of the same size with

thin lines, demonstrating our much smoother correspondence flow as compared to MV. The

yellow bold line represents the worst individual match which suffers from outliers around

extremity samples for the MV method. The quantitative evaluation favors our method as
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well with Dgrd = .153 vs. .044 for MV and our method, respectively. Similarly, the worst

distortions for the dense correspondences obtained are .952 and .257 in our favor.

In Table 4.2, we observe that the MV results on SCAPE database, which includes much

more non-delaunay triangles than SHREC meshes, degrade as compared to its performance

on SHREC, although the object types and isometric deformations applied are quite similar

for these two datasets. This decrease in performance is not observed in our method which

is insensitive to the peculiarities of the particular triangulation. The missing entries in the

table for the rows including SHREC-part meshes with holes are due to sphere topology

restriction of MV. The entry for Centaur↔Human pair is also missing since the similarity

between the shapes is required to be more than 40% in the case of MV [31]. Note also that

gorilla and seahorse meshes crash the public MV code.

Figure 4.23: Dense maps between SCAPE models computed by Möbius Voting (left) and our

method (right). Some MV matches that correspond to our extremity matches are marked

with circles. Yellow lines show the worst matches. Dashed line separates two different pairs.

Finally, the execution times of our shape correspondence algorithm on a 2.53GHz PC is

150, 175, 145, 91, 557, 1216, and 22 seconds for Horse↔Horse, Centaur↔Horse, Seahorse↔Horse,

Centaur↔Human, SHREC-iso↔SHREC-iso, Gorilla↔Human, and SCAPE↔SCAPE, re-

spectively. The times are dominated by the voting module which creates and samples regions

of interests whereas the fast ranking phase just demands shortest path distances between

few number of extremity samples. The relatively high execution time on Gorilla↔Human is

mainly due to 15 samples in matching as opposed to the typical 10 samples for the others.

The fastest runs are on SCAPE↔SCAPE pairs, dealing with only ∼6 samples.
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Figure 4.24: Blended Intrinsic Maps (left) vs. our method (right) on two different shape

classes. The color of each source vertex is transferred to the corresponding target vertex

where unmatched vertices are painted in grey. Our dense map used in interpolation is shown

as spheres of matching colors.

4.2.9 Conclusion

We have presented a 3D correspondence algorithm that handles partially and/or nearly iso-

metric shape pairs using a rank-and-vote-and-combine (RAVAC) algorithm. We summarize

our findings and conclusions below:

• As an isometric shape correspondence method, RAVAC is very general and can be

applied to shapes that may have multiple common parts at arbitrary scales as well as

parts that are not similar.

• With RAVAC, we can establish correspondences which are partial and dense at the

same time.

• The performance of RAVAC is especially good at shape extremities.

• RAVAC, designed for the partial correspondence problem, can handle the simpler

complete correspondence naturally.

• RAVAC can also handle a harder variant of the complete correspondence problem

that involves shapes which exhibit local similarities but also large deviations from

global isometry, such as Gorilla↔Human pair, as long as semantically similar parts

are represented by sufficient number of samples, which is 3 at the least.
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Extremities

(MV, Our method)

5-matches

(MV-top5,

Our counterparts)
Dataset (Dgrd, Dgrd) (Dgrd, Dgrd)
Horse↔Horse (.189, .028) (.014, .066)
Horse↔Horse-part (.281, .045) (.039, .089)
Centaur↔Horse (.348, .046) (.025, .133)
Seahorse↔Horse (n/a, .071) (n/a, n/a)
Centaur↔Human (n/a, .078) (n/a, n/a)
SHREC-iso↔SHREC-iso (.053, .003) (.002, .044)
SHREC-part↔SHREC-iso (n/a, .049) (n/a, n/a)
SHREC-part↔SHREC-sca (n/a, .051) (n/a, n/a)
Gorilla↔SHREC-null (n/a, .065) (n/a, n/a)
SCAPE↔SCAPE (.182, .004) (.007, .045)

Table 4.2: Quantitative evaluation of our method in comparison with MV [31].

Extremities

(BIM, Our method)

Full dense map

(BIM, Our method)
Dataset (Dgrd, Dgrd) (Dgrd, Dgrd)
Horse↔Horse (.007, .024) (.019, .037)
SCAPE↔SCAPE (.012, .017) (.042, .051)

Table 4.3: Quantitative evaluation of our method in comparison with BIM [21].

• RAVAC performs well on shape pairs with quite small similarity overlap, such as

Centaur↔Human pair.

• RAVAC is based on well-established paradigms such as combinatorial optimization

(ranking) and bipartite graph matching (voting), all guided by isometric distortion

measurements performed in the original 3D Euclidean space where isometry is origi-

nally defined, hence as free of embedding errors.

• We avoid the symmetric flip problem which is common to sparse correspondence meth-

ods by incorporating information via auxiliary dense sampling and matching.

• RAVAC has no restriction on shape topology as long as geodesics can reliably be

computed on the surfaces of the given shapes, as demonstrated on SHREC’11 shapes

containing holes.
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Whether partial or complete, our algorithm is designed for isometric shapes, though the

experiments show that our algorithm works well also for nearly isometric shapes. Yet there

remains future work to address the tradeoff between the accuracy of the geodesic metric

currently in use and the topological noise robustness of the diffusion-based metrics to be

tested.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

We have presented a package of novel and computationally efficient algorithms that can

establish coarse and dense correspondences between two complete or partially overlapping

isometric (or nearly isometric) shapes (Section 1.4). Through this journey the following

contributions have been achieved.

• Four new sampling algorithms (Sections 3.1.3, 3.2.3, 4.1.3, 4.2.2).

• Isometric distortion measurement functions (Equations 3.1, 4.1, 4.10) that guide the

optimizations.

• Isometric distortion optimizers based on solid paradigms (Sections 3.1.6.1, 4.1.5, 4.2.4.3,

3.1.6.2, 3.1.4, 3.2.4.1, 4.1.4, 4.2.3, 4.2.4).

• For all isometric shape correspondence algorithms, sticking with the 3D Euclidean

space where isometry is originally defined as well as insensitivity to shape topology

and to the peculiarities of the particular triangulation.

• The fastest computational complexity on dense matching (Section 3.2.6), and thorough

complexity analyses of all algorithms

• Correspondence tracking mechanism addressing the symmetric flip problem (Sec-

tions 3.3.4, 4.1.5).

• Partial correspondence between shapes with significantly small similarity overlap, the

smallest indeed to the best of our knowledge (Section 4.2).

• Correspondences that are partial and dense at the same time (Sections 4.1, 4.2).
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There remains a future work to address the tradeoff between the accuracy of the geodesic

metric currently in use by all of our algorithms and the topological noise robustness of the

diffusion-based metrics to be tested.

As another future research direction, it may be desirable to incorporate more shapes

into the process to establish or improve correspondences in between. While correspondence

methods between more than two shapes can benefit from the existing pairwise methods, one

also needs to consider the new parameters, the difficulties as well as the opportunities that

are specific to this new problem. For correspondence generation within a mesh sequence,

such an opportunity can be the injection of the Euclidean distance into the optimization

process as internally isometric shapes of the consecutive frames are expected to be externally

close as well. For improvement of a group of correspondence, on the other hand, one may

force consistency rules such that all cycles of consistent maps return to identity, i.e., the

correspondence path started from vertex v on the first shape returns to v itself after being

tracked over a collection of pairwise maps.
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