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ABSTRACT

There are many pairs of objects in the digital world that need to be related before
performing any comparison, transfer, or analysis in between. The shape correspondence
algorithms essentially address this problem by taking two shapes as input with the aim of
finding a mapping that couples similar or semantically equivalent surface points of the given
shapes.

We focus on computing correspondences between some featured or all present points of
two semantically similar 3D shapes whose surfaces overlap completely or partially up to
isometric, i.e., distance-preserving, deformations and scaling. Differently put, our isometric
shape correspondence algorithms handle several different cases for the shape correspondence
problem that can be differentiated based on how similar the shape pairs are, whether they
are partially overlapped, the resolution of the desired mapping, etc.

Although there exist methods that can, in most cases, satisfactorily establish 3D corre-
spondences between two given shapes, these methods commonly suffer from certain draw-
backs such as high computational load, incapability of establishing a correspondence which
is partial and dense at the same time, approximation and embedding errors, and confusion
of symmetrical parts of the shapes. While the existing methods constitute a solid founda-
tion and a good starting point for the shape correspondence problem, our novel solutions
designed for a given scenario achieve significant improvements as well as contributions.

We specifically explore the 3D shape correspondence problem under two categories as
complete and partial correspondences where the former is categorized further according to
the output resolution as coarse and dense correspondences. For complete correspondence
at coarse resolution, after jointly sampling evenly-spaced feature vertices on shapes, we for-
mulate the problem as combinatorial optimization over the domain of all possible mappings
between source and target features, which then reduces within a probabilistic framework to
a log-likelihood maximization problem that we solve via EM (Expectation Maximization)

algorithm. Due to computational limitations of this approach, we design a fast coarse-
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to-fine algorithm to achieve dense correspondence between all vertices of complete models
with specific care on the symmetric flip issue. Our scale normalization method based on a
novel scale-invariant isometric distortion measure, on the other hand, handles a particular
and rather restricted setting of partial matching whereas our rank-and-vote-and-combine
(RAVAC) algorithm deals with the most general matching setting, where both two solutions
produce correspondences that are partial and dense at the same time.

In comparison with many state-of-the-art methods, our algorithms are tested by a variety

of two-manifold meshes representing 3D shape models based on real and synthetic data.



OZETCE

Sayisal diinyada, aralarinda herhangi bir kargilagtirma, aktarim, veya analiz yapabilmek
igin iligkilendirilmesi gereken ¢ok sayida nesne modeli vardir. Sekil egleme algoritmalari, bu
probleme ¢oziim olarak verili iki nesne modeli arasinda benzer veya anlamsal olarak denk
yiizey noktalarini esglestirmeyi hedeflerler.

Bu caligmada anlamsal olarak yakin ve yiizeyleri tamamen veya kismi olarak ortiigen
iki 3B geklin 6znitelik noktalar1 veya tiim noktalar1 arasinda eslestirme hesaplama prob-
lemine odaklaniyoruz. Bu ortiismenin izometrik, yani uzaklik-koruyan, deformasyonlara ve
olceklemeye karsi degisimsiz oldugunu varsayiyoruz. Bir bagka deyisle, bizim geligtirdigimiz
izometrik sekil esleme algoritmalar: sekil esleme probleminin, sekiller arasindaki benzerlik
miktari, ortiigmenin kismi ya da tam olmasi, istenilen eglemenin c¢oziintirligi gibi cesitli
etkenlere bagh olarak ayrigan birgok farkli durumun iistesinden gelirler.

Verilen iki gekil arasinda ¢ogu zaman tatmin edici 3B eslemeler bulabilen yoéntemler
olsa da bu yontemlerin yiliksek hesap yiikii, hem kismi hem yogun esleme yapamama,
yaklagiklik ve gomme hatalari, simetrik pargalarin karigtirilmas: gibi gesitli sorunlar: vardir.
Mevcut yontemler sekil egleme problemi igin saglam bir temel ve iyi bir baslangi¢ nok-
tas1 olustururken, bu caligmada, verilen senaryoya gore tasarlanan yeni ¢oziimler bu temel
problemin ele alinmasinda belirgin gelismeler ve katkilar saglamaktadir.

3B sekil esleme problemini tam ve kismi esgleme olarak iki ana grupta inceliyoruz, ve ilk
grubu cikt1 ¢ozlintirliigiine gore kaba ve yogun esglemeler olarak kendi icinde ikiye ayiriyoruz.
Kaba c¢oziiniirliikteki tam esleme problemi igin, esit uzakliklarla ayrilan 6znitelik nokta-
larim iki gekil ylizeyi ilizerinden ortaklaga ornekledikten sonra, problemi kaynak ve hedef
sekillerdeki ornekler arasinda olasi tiim gonderimler tlizerinden tanimlanan bir kombinato-
ryal eniyileme olarak formule ediyoruz ve bunu, olasiliksal bir yaklagimla EM algoritmasi
kullanarak ¢ozebilecegimiz bir olasiliksal ¢at1 igindeki log-olabilirlik enbiiyiitme problemine
doniigtiirtiyoruz. Bu yontem yiiksek hesap yiikii nedeniyle ancak kaba c¢oziintirliikte gorece

az sayida nokta arasinda esleme yapabilir. Tez caligmasinin bir sonraki agsamasinda, sekil
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modellerindeki biitiin noktalar arasinda yogun egleme yapabilen hizli, kabadan-inceye (¢oklu
¢Oziintirliiklii), ve simetrik flip problemini de dikkate alan yeni bir algoritma tasarliyoruz.
Olcek-degisimsiz Sliitiimiiz tizerine dayah sekil dlcek diizgeleme yontemimiz, diger yandan,
kismi egleme probleminin 6zel ve kisith bir halinin tistesinden gelirken, diz-oyla-ve-birlestir
(RAVAC) algoritmamiz en genel kismi egleme durumunu ele alir. Bu iki yontem de hem
kismi hem yogun esglemeler iiretir.

Bu caligmada geligtirdigimiz biitiin yontemleri, gercek ve sentetik veriye dayali gesitli
3B sekil vertabanlar: iizerinde, literatiirde mevcut diger yontemlerle kargilagtirmali olarak

SInlyoruz.
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Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

3D shape correspondence is a fundamental problem in both computer vision and com-
puter graphics; it aims to find a mapping between some or all of the surface points of two
given shapes, in other words, it seeks on two given shapes for pairs of surface points that
are similar or semantically equivalent. Dealing with the 3D shape correspondence prob-
lem is important because it lays the foundations of numerous practical applications such
as shape morphing and interpolation [1][2], mesh parameterization [3][4], rigid or non-rigid
shape registration [5][6], time-varying reconstruction [7][8], shape recognition and retrieval
[9][10], shape segmentation [11][12], texture mapping [13], deformation transfer [14], mesh
watermarking [15], and statistical shape analysis [16], all of which and many others can be
reviewed in [17], [18].

Establishing consistent maps or improving the existing ones between more than two
shapes is also of interest as there has recently been a growing trend for 3D reconstruction
of time-varying real scenes, and there already exist several methods that can generate mesh
sequences representing the geometry and the motion of the dynamic objects. However, there

is yet relatively little work in the literature on the analysis of such shape collections [19][20].

1.1 Scope

The goal of this research is to design algorithms that can efficiently establish robust coarse

and/or dense correspondences between

(a) two perfectly isometric shapes, e.g., two different poses of the same object, (Fig. 1.1-a),

(b) two nearly isometric shapes, e.g., two different people, (Fig. 1.1-b),

(c) two partially isometric shapes where
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(1) one shape is an isometric part of the other, e.g., upper body vs. man (Fig. 1.1-¢;),

(2) shapes have parts which are not in common, centaur vs. man (Fig. 1.1-cg),

where the shapes to be matched are always allowed to come in arbitrary scales.

(b) (c1)

Figure 1.1: Correspondences to be sought between two perfectly isometric (a), nearly iso-

metric (b), and partially isometric (c; and c2) shapes.

We use geodesic distance metric to capture the global intrinsic structure of the shapes
which is invariant to isometric deformations such as rotation, translation, and bending. If
two shapes are perfectly isometric, then there exists an isometry, i.e., a distance-preserving
mapping, between these shapes such that the geodesic distance between any two points on
one shape is exactly the same with the geodesic distance between their correspondences
on the other. However, since two digital shapes are hardly ever perfectly isometric, even
for different poses of a rigid object, due to imperfections of the modeling process and/or
geometry discretization errors, it is not usually possible to find a zero distortion mapping,
hence the goal rather becomes minimization of an conveniently defined isometric distortion

function.

1.2 Contributions

We present robust algorithms for various aspects of 3D isometric shape correspondence
that are not only efficient but also fully automatic. Contributions towards this goal are as

follows:
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e We introduce four new sampling algorithms, namely curvature-oriented evenly-spaced
(COES), coarse-to-fine, and two different extremity sampling, that can both be em-
bedded into any geometry processing algorithm working on manifold meshes on which

geodesic distances can be computed.

e For each input scenario, we define isometric distortion functions that measure, for
a given map, deviation from isometry in the original 3D Euclidean space wherein

isometry itself is defined, hence free of any embedding and approximation errors.

e We optimize these functions again in the 3D Euclidean space by employing well-
established paradigms such as bipartite graph matching, greedy optimization, EM

algorithm, combinatorial optimization, and voting.

e We share the fastest computational complexity on dense correspondence with [21]

which, however, comes with sphere topology restriction and triangulation sensitivities.

e We present a map tracking mechanism with which the symmetric flip problem that
is inherent to multiresolution isometric shape matching algorithms is substantially

handled.

o We address partial shape correspondence in the most general setting where our method-
ology admits shapes with quite small similarity overlap. Besides, we are capable of

establishing a correspondence which is partial and dense at the same time.

e Our algorithms have no restriction on shape topology and are all insensitive to the

peculiarities of the particular triangulation.

1.3 Overviews

In the sequel, we overview two different and important aspects of 3D isometric shape cor-
respondence problem for both of which we propose published or to be published solutions

at coarse and/or dense resolutions.
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1.3.1 Complete correspondence

Complete correspondence solutions seek for a plausible mapping between two completely
common input shapes at arbitrary scales. Our output correspondence in this setting can be

coarse as well as dense.

1.8.1.1 Coarse correspondence

For coarse correspondence between jointly sampled feature vertices, our preliminary contri-
bution, that is accepted by IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) 2010, is based on greedy optimization of our isometric distortion function [22].
This optimization mechanism improved within EM (Expectation-Maximization) framework
and coupled with a more sophisticated sampling scheme leads to an extension work accepted

by IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 2012 [23].

1.8.1.2 Dense correspondence

For dense correspondence between all vertices, our EM-based coarse correspondence al-
gorithm does not scale well due to computational burden that becomes apparent as the
cardinality of the mapping set approaches thousands. An alternative coarse-to-fine (C2F)
strategy that replaces the user-defined sampling distance parameter of the former with
patch-based subdivisions captures level of details not only efficiently but also fully automat-
ically. With these motivations, we present our novel C2F dense correspondence algorithm
in Eurographics Symposium on Geometry Processing (SGP) 2011 [24].

Since the goal of [24] is to achieve a dense correspondence, the focus is rather on com-
putational efficiency, and hence the method is less accurate than [23] in achieving sparse
correspondence. Moreover, the dense correspondence method in [24] severely suffers from
symmetric flips due to initial coarse sampling problem which has then been addressed by
the tracking mechanism introduced in our extension work to be published in Computer

Graphics Forum (CGF) 2012 [25].

1.3.2  Partial correspondence

Partial correspondence solutions, in the most general setting, seek for a plausible mapping

between two shapes with multiple common parts as well as uncommon parts. In a restricted
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setting, partial correspondence reduces to part matching where one of the two shapes to be
matched is an isometrically deformed part of the other. For both settings, shapes come at
arbitrary scales and the resolution of the output correspondence is generally coarse although
we manage to establish correspondences that are partial and dense at the same time. Note
also that, in general, if a method can find solutions for the partial case, it will also be able to
handle the complete correspondence case naturally, which applies to our partial matching
algorithms as well.

Bringing two shapes to the same scale is the essential problem to be handled before
performing the partial matching. To this end, we first explore scale normalization issue
and propose an algorithm based on our novel scale-invariant isometric distortion measure
as described in the paper to appear in the Pacific Conference on Computer Graphics and
Applications (Pacific Graphics) 2012 [26].

With shapes that have multiple common parts at arbitrary scales as well as uncom-
mon parts, we propose a more involved algorithm that we call rank-and-vote-and-combine
(RAVAC) with the idea of collecting partial isometry cues from the given shapes by consid-
ering all possible partial mappings (relations) between shape extremities and accumulating
the collected information into a vote matrix to be analyzed for the overall optimal par-
tial correspondence. A journal paper describing our RAVAC algorithm is currently under

preparation to be submitted to a journal [27].

1.4 Putting It All Together

We wrap up all of our shape correspondence algorithms reviewed above in Table 1.1 and

release their source codes and executables to public through author’s current web site.

1.5 Organization

The rest of this thesis expands our works referenced above with a corresponding literature
review, solution, and discussion of comparative results, as well as future research direc-
tions and conclusions, hence touching various aspects of 3D isometric shape correspondence
problem, which are complete and partial correspondences at coarse and dense resolutions.
Preceding that, related concepts and numerical tools some of which form the foundations

of our (and many other) correspondence algorithms are investigated.
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Input scenario Output Solution paradigm Computational | Publication

resolution complexity

Isometric or nearly | Coarse Greedy optimization | O(NV1ogV) CVPR [22]

isometric

Isometric or nearly | Coarse Greedy optimization | O(NV1ogV) PAMI [23]

isometric and EM algorithm

Isometric or nearly | Coarse or | Combinatorial O(VlogV) SGP/CGF [24]
isometric dense

Isometric or nearly | Coarse or | Combinatorial (with | O(V logV) CGF [25]
isometric dense symmetric flip care)

Isometric or nearly | Coarse or | Combinatorial (part O((Aj\g)M IM3) | PG/CGF [26]
isometric or par- | dense matching)

tially isometric

Isometric or nearly | Coarse or | Combinatorial (most | O(N3V1ogV) | to be submit-

isometric or par- | dense general setting) ted [27]

tially isometric

Table 1.1: Summary of our algorithms that handle various aspects of 3D isometric shape corre-
spondence. V is the number of vertices in the original mesh, N <« V is the number of samples at
coarse resolution, and M is the cardinality of the sample subset which is 5 in all of the corresponding

experiments. [25] is in revision cycle, [27] is to be submitted.
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Chapter 2

RELATED WORK AND PRELIMINARIES

In this chapter, we first categorize the 3D shape correspondence algorithms along with
the basic references to the related work (Section 2.1) which will be populated more in the
following chapters. We then explore the concepts and computational tools that are closely
related to the 3D shape correspondence problem. Our correspondence algorithms, as well
as most of the others, benefit from some subset of the material discussed in this chapter

(Sections 2.2-2.5.2.3).

2.1 Classification of Correspondence Methods

3D shape correspondence methods can be grouped as non-isometric and isometric according
to the type of deformations the input shapes are exposed to. In case of isometric deforma-
tions, the distance between any two points on one shape is expected to be preserved such
that the distance between their images on the other shape is, at least roughly, the same. For
non-isometric inputs, on the other hand, lack such distance preservation property. Whether
isometric or not, a correspondence method is expected to produce output at coarse and
dense resolutions where a subset or the full set of the vertices are matched for the former

and the latter, respectively.

2.1.1 Non-isometric methods

The methods that address non-isometric shape correspondence rely on local shape similarity
information using shape descriptors [28, 19, 29, 30]. Although local shape similarity is fast
to measure and an important clue for non-isometric shape correspondence, it is considered
as less reliable than global shape information such as isometry. The methods which rely
only on local geometric information may not perform well when the shapes to be matched
exhibit large variations in their local geometry, or may easily confuse surface parts when

there are many points that are locally similar.
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2.1.2 Isometric methods

Isometric shape correspondence methods benefit from isometry information as a global
similarity measure in addition to the local similarity information that still applies in this
setting. For isometric methods, local shape descriptors may still come handy in the pre-
processing step where the samples to be matched need to be selected consistently [23, 24,
25, 27, 31, 21, 32] and/or in the optimization process where the main pairwise geodesic or
diffusion-based distance consistency condition is backed up with pointwise descriptor terms
[33, 34, 35, 36, 37]. There also exist methods that completely discard local shape descriptors
to proceed according to isometric clues only [22, 26, 38, 39]. All of our algorithms fall into

this category, hence respecting geodesic consistency in the maps to be produced.

2.2 Shape Classes

In computer graphics and vision applications, the surface of a shape is represented either
explicitly as a polygon mesh or disconnected set of points, or implicitly as an isosurface to
be extracted from a signed distance function stored in a grid of specified resolution. While
we work on explicit triangulations of two-manifolds embedded in 3D Euclidean space, for a
3D shape correspondence application, more important than the representation is the range

of the transformations a shape can admit, which can be rigid or non-rigid.

2.2.1 Rigid shapes

Rigid shapes are exposed to distance-preserving rigid transformations which are translation,
rotation, and reflection. Due to low degree of freedom, which is 2 translation plus 1 rotation
plus 2 reflection axes in 2D plane and similarly 6 in total in 3D space, it is generally easier
to register/align two rigid shapes compared to the non-rigid case; one needs to resolve only
the translation ambiguity and rotation ambiguity between shapes (Figure 2.1).
Translation disambiguation is handled by simply translating the objects such that their
center of masses coincide at the origin, whereas rotation ambiguity can be resolved by Prin-

cipal Component Analysis (PCA) on covariance matrix C that encodes variances between
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Figure 2.1: Rigid shapes that differ by translation and rotation (left). Translation disam-

s

biguation (middle) and rotation disambiguation (right) to perfectly align the two.

x, y, and z coordinate pairs of all n shape points.

ST Y myi Y Ti%i
C= | Yizy Yy iy Vi
STz i Yitio D1 %
The eigenvectors of C provide principal axes/directions of the shape, which are then aligned
with the standard Euclidean axes. Same alignment applied to the other shape disambiguates
rotation between two rigid inputs. Our works in [22][23] perform this rigid alignment on
isometry-invariant spectral embeddings of the input shapes. The scale invariance, if neces-
sary, is then achieved by setting the average Euclidean distance from the set of vertices to
coordinate origin to the same value for both shapes.

PCA-based solution to rigid registration problem does not work when the surfaces are
given only partially, a more common scenario that, for example, arises in a range scan of a
3D object as each of multiple scans has missing parts due to occlusion (Figure 2.2). Iterative
closest points (ICP) algorithms comes handy at this time since they cast the problem as
surface-to-surface distance difference minimization task. There are variants distinguished
by the way surface-to-surface distance measured and/or the numerical minimization method
preferred, both of which eventually produces desired rotation and translation to be applied

to one shape for perfect alignment with the other [5][40][41][42][43]. Correspondence between
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shape points are extracted trivially once the shapes are rigidly aligned.

Figure 2.2: Generic ICP algorithm aligns two rigid shapes given partially. Surface-to-
surface distance minimization guided by black correspondences (left) and an example of a

final registration (right, taken from [42]).

2.2.2 Non-rigid shapes

A more involved yet realistic approach to represent real world objects in digital world brings
non-rigid objects which may admit bending, folding, stretching, and scaling in addition to
the rigid transformations (Figure 2.3). Other than stretching, to which we tolerate to
some short extent, all of our isometric correspondence algorithms are invariant to these
non-rigid transformations that preserve pairwise geodesic distances on shapes. Note that,
although scaling does not preserve distances in its original form, our appropriate scale
normalization methods produce normalized distances with which scale-invariance is achieved
[22][24][23][25]. For partial matching where normalization is not trivial, we still enforce
isometry by proper choice of scale-invariant isometric distortion functions [26][27].

While non-rigid correspondence can easily be inferred from non-rigid alignment that
brings input shapes to the final common pose [44][32], there exist many other ways to
compute correspondences which is crucial for various follow-up applications such as mesh
morphing, keyframe animation and attribute transfer fed by objects most likely in non-rigid

poses. We discuss various non-rigid correspondence methods in the following chapters.
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Figure 2.3: Non-rigid shapes from the same mesh sequence exhibiting translation, bending,

rotation, reflection, scaling, and stretching (artifacts around belly at the rightmost pose).

2.3 Shape Similarity

In this section, we review important computational tools that can be used to perform pair-
wise similarity comparisons between isometrically deformed non-rigid shapes which in turn
enables correspondence computation in between. The main theme is to develop isometry-
invariant local shape descriptors and global metrics upon the key observation that similar
shapes possess similar first-order descriptors between the corresponding points and similar
second- or third-order metrics between the corresponding pair or triplet of points. The
former, in other words, deals with local similarity whereas the latter addresses the global
similarity, and their combination is analyzed to decide the similarity measure based on which
one can compute a plausible correspondence that couples similar or semantically equivalent

surface points of the given shapes.

2.8.1 Global similarity: distance metrics
2.8.1.1 Isometry

Isometry is an important global shape information that is defined as distance-preserving

mapping between two metric spaces each equipped with a pair of a point set and an appro-
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priate metric between points that are invariant under the transformations the spaces can
be exposed to. If two metric spaces (V,dy (,)) and (U, dy(,)) are perfectly isometric, then
a correspondence algorithm exploits that fact by favoring a mapping f : V' — U such that
dy (vi,vj) = dy(f(vi), f(vj)) for all vertex pairs. However, two digital shapes are hardly
ever perfectly isometric, even for different poses of a rigid object, due to imperfections of
the modeling process and/or geometry discretization errors. Hence the goal of isometric
correspondence methods existing in the literature and proposed in this thesis is rather to
find a mapping that minimizes the amount of deviation from isometry.

Isometry type of a given mapping can be labeled by means of Lipschitz continuity con-

_ du(f(vi),f(v)))
stant C = W

contraction map, and perfectly isometric map, respectively.

which returns C' < 1, ¢’ < 1, and C' = 1 for nonexpanding map,

We describe in the sequel several well-known distances that are used to define isometry
between deformable shapes. The desired properties of such a distance are that it is a metric
(non-negative, symmetric, satisfies triangle inequality and indistinguishability), invariant to
isometric deformations, computationally inexpensive, insensitive to noise and small topol-
ogy changes, and free of any parameter that must be set differently for specific meshes or

applications.

2.3.1.2 Geodesic distance

Geodesic distance is a metric defined between a point pair as the length of the shortest
path along the surface, hence not as relaxed as the Euclidean distance that is allowed travel
through anywhere on R™ (Figure 2.4-left). Such a restriction comes handy for exploring
the global intrinsic structure of the non-rigid shapes as geodesic distance is invariant to
non-rigid transformations such as bending. The sensitivity to topology changes is the main
drawback of this metric that arises due to the consideration of only one path which may
severely change by even the slightest cutting or gluing operation. We use geodesic distance
g for all of the isometric correspondence algorithms in this thesis.

Shortest paths through faces. When shape is represented explicitly with a polygon
mesh, Dijkstra’s algorithm [45][46] can be employed to decide the shortest paths which, how-
ever, typically pass through faces in the mesh and are therefore not found by the traditional

method [45]. We, therefore, use Dijkstra’s algorithm, accelerated by Fibonacci heap [47] for
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Figure 2.4: Left: Euclidean (blue) vs. geodesic (red) distance between a pair of points
on the surface (green). Two boxes at right: Dijktra’s shortest paths solution to geodesic
distance computation is refined by the introduction of shortcut edges (blue) that permit

traveling over mesh faces.

edge selection, with a slight shortcut edge modification for smoothing effect [48]. Movement
on shortcut edges in addition to the original mesh edges improves the measurements as
they allow traveling on the mesh faces as well (Figure 2.4-right). Triangles adjacent to a
centering triangle are unfolded to the plane of the centering triangle, and a shortcut edge
is generated if it falls inside the unfolded polygon.

Although Dijkstra’s shortest paths algorithm boosted by shortcut edges provides suf-
ficiently accurate geodesic distances efficiently, one can improve results even further with
no additional computational cost. Fast marching (FM) method, for this purpose, exploits
the roads on mesh faces to the fullest. To this effect, when shortest path is at a particular
vertex, marcher checks not only adjacent edges (traditional Dijkstra) but also adjacent faces
[49]. Note that, shortcut edges provide a limited version of this effect by allowing face travel
starting from a triangle vertex, whereas FM is capable of entering the face from an arbi-
trary point on the triangle edge, hence increasing accuracy furthermore. Being restricted to
triangular faces and requirement of special processing for triangles with obtuse angles are
drawbacks of FM over Dijkstra’s algorithm which works on any polygonal face. A raster

scan algorithm permits parallel process of FM method yielding the fastest geodesic compu-
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tation time to this date [50]. More accurate solution than that of FM at almost the same
speed for triangle meshes is achieved by edge partitioning in [51] whose bottleneck is the

intense memory requirement due to large number of windows that represent the partitions.

2.8.1.83 Diffusion distance

Diffusion distance is a metric defined between a point pair by averaging over all paths of
length ¢ connecting the two points [52] which in turn renders it more robust to topological
noise than the geodesic distance yet less intuitive and accurate due to the spectral embedding
involved and the choice of . To realize this metric, heat diffusion properties on manifolds
are exploited in multiscale fashion by defining the heat kernel function ki (p,v) at different
time scales to represent the heat transferred from source p to v in time ¢, or as an equivalent
interpretation, the probability of Brownian motion of heat starting at p to reach v in time

t (Figure 2.5):
=3 e P ()an(v) (21)
1=0

where \; and ¢; are the eigenvalues and eigenvectors of the Laplace-Beltrami operator

(Section 2.5.1.2) on the input shape.

Figure 2.5: Diffusion distances started from point p towards 6 distinct numbered points at
different time scales for two shapes. Notice the similar distances between corresponding

points under isometric deformations, i.e., isometry invariance. Image taken from [33].

The diffusion distance d;(, ) is then defined using two heat kernels on the input shape S:

di(p, v) = [lke(p, ) = ke(v, )|, = /ES ke (p, ) = ki (v, 5)[*ds (2.2)

which expands to
o0

A (p,v) = e ?i(4i(p) — ¢i(v))? (2.3)

=1
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Multiscale property captures local geometry for small ¢, and the global connectiv-
ity /topology for large ¢, yet the time scale depends on the shape diameter which makes

the choice of ¢ problematic.

2.8.1.4 Commute-time distance

Commute-time distance is a metric that is quite similar to diffusion distance except it
measures the connectivity of two points by paths of any length, hence eliminating the scale
parameter [53][54]. To this end, commute-time distance deom(,) is computed by
> — 1
Eonlp) =2 [ .00t =3 500) = 001’ (2.4)
=

which essentially sums diffusion lengths of all possible paths between points p and v. De-
spite being scale-invariant, multiscale property of diffusion distance that describes different
properties of the shape at different scales is lost in this distance due to integration over time
scale which in turn may fail to realize the fact that two shapes can be similar at small scales

and dissimilar at large scales or vice versa.

2.8.1.5 Biharmonic distance

Biharmonic distance is a metric that is related to diffusion and commute-time distances

with a slight modification on the eigenvalue normalization [55] as given by

Bilp o) = 3 55 (6:(0) — 6i(0))? (25)
i=1

)

which provides a good balance between local and global properties as 1/A\? decays slow
enough to get good local properties around the source point and fast enough to be globally
shape-aware in far areas. The usability of this theoretically sound distance, however, has

not yet been verified in shape analysis applications domain.

2.8.2  Local similarity: descriptors

Local shape descriptors capture important local shape information by characterizing the
surface within a fixed distance about the feature point of interest. By not incorporating
any information from far areas, local shape descriptors perform well for matching under non-

isometric deformations thanks to the omitted global isometry information, but otherwise
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it is considered as less reliable especially when the shapes to be matched exhibit large
variations or similarities in their local geometry.

We describe in the sequel several well-known local shape descriptors that are used to
define isometry between deformable shapes. The desired properties of such a descriptor
are that it is discriminative, isometry-invariant, quick to compute, insensitive to noise and

small topology changes, and parameter-free.

2.3.2.1 Curvature

Gaussian curvature x(v) measures the deviation of the neighborhood of vertex v from being
a flat plane (Figure 2.6-left) and plays an important role for our curvature-oriented evenly-
spaced (COES) joint point sampling [23][24][25]. A basic approach for curvature computa-
tion is to subtract sum of angles incident to query vertex v from 27 as it approximates the
flatness amount, 0 being plain flat. We, on the other hand, use [56] which normalizes the
basic result by the adjusted area information from the surrounding obtuse and non-obtuse
triangles to increase accuracy. Curvatures satisfy all of the desired properties but stumble

on discriminativeness due to small neighborhoods in consideration.

2.8.2.2 Awerage geodesic distance function

The second and last shape descriptor we employ [24][25] assigns average geodesic distance
p(v) from v to all other mesh vertices by launching Dijkstra’s shortest paths algorithm from
uniformly distributed few number of samples {s;}, yielding p(v) =, g(v, s;) - a(s;) where
a is the area of the patch centered by s; [48]. A good coarse sampling can benefit from p or
its local maxima to detect extreme and/or center vertices because the higher the value of
p(v) the more extreme the vertex v is, as demonstrated in Figure 2.6-rightmost. Besides,

1 satisfies all of the desired properties but topology insensitivity.

2.8.2.83 Spectral signatures

Heat kernel signature [57] is a multiscale descriptor based on eigenfunctions of the Laplace-
Beltrami operator (Section 2.5.1.2) and can be interpreted as the probability of random walk
of heat to return to the starting point p in different times, that is K (p) = (k¢, (p, 0), ki, (D, D), -, kt,, (D, D))-

One can relate the heat kernel signature K (p) to curvature as heat is hard to escape from
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Figure 2.6: Two local shape descriptors employed by our algorithms. Vertices with similar
Gaussian curvature (left) and average geodesic distance (right) values are colored the same.
Blue vertex at the tip of the shape has a higher average geodesic distance than the yellow

one at armpit (rightmost).

high-curvature areas which yields, for example at hands, high values even at large scales.
The drawback of the heat kernel signature is its dependence on the shape scale which is ad-
dressed in [58] with a scale-invariant version of the signature which however requires setting

a time scale parameter that itself depends on the shape scale. The Global Point Signa-

$1(p) $2(p) $i(p)
\}H, \;E"" \/E,..),but

severely suffers from sign and order switch of eigenfunctions by treating them individually as

ture [59] is based on the same spectral invariant, i.e., GPS(z) = (

vector components unlike K (p) which takes their weighted average via the heat kernel func-
tion k. All these signatures are invariant under isometric deformations of the shape, yet do
not use geodesic distances explicitly which in turn renders them robust against topological

noise.

2.3.2.4 Signatures by geometric primitives

There are many descriptors under this category which essentially decompose the spherical
space around a feature point into a collection of shells and then the area or volume of the
shape intersected by each shell is stored in a histogram bin indexed by radius. The area-
based bin values are obtained by adding up the polygon areas within a corresponding shell

[60][28] whereas the integral volume descriptor [42] approximates the intersected volume of
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the shape for vertex v that centers the undecomposed sphere of radius r via

Vi (v) = %”ﬁ - 7”1(”)# + 00 (2.6)

Shape diameter function, as a similar volume-based descriptor, measures the diameter of
the shape volume in the neighborhood of the query point by taking weighted average of all
conical ray lengths which fall within one standard deviation from the median length [61].
Shape contexts [30], on the other hand, use histograms with log-polar bins to capture the
relative distribution of all other points in the plane relative to each feature point on the
shape. Since of all these descriptors are invariant only to rigid transformations, they do not

match feature points under isometric deformations.

2.4 Shape Sampling

The representative points sampled on the surface of a shape should be dense enough for suf-
ficient coverage, yet sparse enough for computational efficiency. For shape correspondence,

one should also perform joint sampling as consistent as possible for computational accuracy.

2.4.1 Uniform sampling

In uniform sampling, triangles are first picked randomly with probabilities proportional to
their areas. Random sample points are then generated inside the selected triangles with
equal probability per unit area. While this scheme is easy to implement and fast to execute,
generated samples may be too close to each other or fail to cover the informative parts
of the shape. Another drawback is joint sampling as the potential inconsistency between
samples may not permit a plausible mapping even with a robust correspondence algorithm.
Comparison of uniform sampling with evenly-spaced sampling (Figure 2.7-left) for surface

matching algorithms favors the latter [62].

2.4.2  FEwvenly-spaced sampling

When performed at a sufficiently high resolution, evenly-spaced sampling produces a con-
sistent joint sampling for correspondence algorithms so that two point sets to be matched

involve plausible correspondence candidates.
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2.4.2.1 COES sampling

The resolution requirement above can be significantly relaxed by landing samples on salient
surface parts with high information content related to the surface geometry and topology,
such as curvature, extremities, boundaries, etc. Motivated by this, our curvature-oriented
evenly-spaced (COES) sampling mechanism makes a good joint sampler by evenly sampling
high-curvature vertices from both shapes, as demonstrated in Figure 2.7-right in comparison
with another evenly-spaced sampling method in [48]. In COES sampling, samples are
computed by launching the Dijkstras shortest paths algorithm from an arbitrary source
vertex. When a sample is selected, all the vertices that are at most r distant from it are
marked not to be a future sample. The next highest-curvature sample is then selected
from the unmarked vertices. When this is repeated until no unmarked vertex is left, we
eventually obtain all samples that are at least r apart from each other [23]. We also use
shape extremities as salient vertices in the COES framework to meet our initial matching

requirements in [24][25].

2.4.2.2 FPS sampling

Farthest point sampling (FPS) provides almost evenly-spaced sampling the next sample is
placed in the center of the largest empty disk on the surface, or circle on the plane for 2D case
[63]. The next sample, in other words, is placed at a point that is farthest from the previous
samples. To this effect, each candidate vertex first decides the closest existing sample along
with the minimum distance. Amongst all these decided distances, the candidate providing

the maximum one is then set to be the next sample.

2.4.2.83 Centroidal Voronoi sampling

Unlike the greedy FPS that is unable to undo what was done in previous iterations, cen-
troidal Voronoi sampling reiterates with a new sample set extracted from the intrinsic cen-
troids of the current Voronoi tessellation of the previous sample set [64]. This alternating
minimization guarantees more uniformity and less sample resolution compared to FPS in
the expense of increased implementation complexity and computational load. The exten-
sion of 2D centroidal Voronoi sampling to surfaces in 3D is based on geodesic centroidal

tessellation [65].
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Figure 2.7: Left: Uniform sampling (top) vs. evenly-spaced sampling (bottom), both taken

from [62]. Right: Two views from joint sampling of the source and target meshes by our
COES sampling (top) vs. by [48] (bottom). Green spheres by COES highlight the first 12

highest-curvature points whose counterparts due to [48] are not that consistent.

2.4.2.4 Stratified sampling

We also mention a voxel-based evenly-spaced sampling method called the stratified sam-
pling [66] which proceeds by first voxelizing the model and then selecting one sample per
voxel, restricted to the original model’s surface. Close samples are clustered to one in post-
processing to achieve evenly spacing. Not only sampling distance, but also the size of the
grid for voxelization is a parameter to be set manually. Besides, cubic grid cells may simply

not be good enough to generate samples with fine radial isotropy.
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2.4.8 Extremity sampling

Since vertices on the extremities or tips of the prominent components provide a good
overview of the shape structure, we also discuss sampling methods targeted at these salien-
cies. To this end, one of our methods applies FPS (Section 2.4.2.2) starting from the most
extreme point, i.e., the one with the maximum g (Section 2.3.2.2), until N well-spread sam-
ples are placed where N is kept small not to produce spurious extremes since the purpose
is to represent the shape, not all the extremities [26] (Figure 2.8-left).

To hit all, or at least most, of the shape extremities, we slightly modify our other
sampler in [27] which also samples central regions that we do not need here. We initialize
the sample sets with local maxima of g which are expected to be on the tips of a given
shape [37]. The initial sample sets are then exposed to two steps of pruning, first of which
clusters geodesically close samples into the most extreme ones where the closeness threshold
is determined based on the maximum geodesic distance gmax on the surface. The second
step of pruning removes a local maximum v from the sample set if u(v) is less than the
average p to cancel out redundant extremities that are not on tips (Figure 2.8-right).

Sampling in [67] rel