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ABSTRACT

In this thesis we describe an algorithm to find the globally minimal value of a

specified eigenvalue of a Hermitian matrix function depending on its parameters an-

alytically. The algorithm exploits the boundedness of the second derivatives of the

eigenvalues, and is globally convergent. It is based on the determination of the globally

minimal value of a piece-wise quadratic under-estimator for the eigenvalue function

repeatedly, and can be considered as an extension of an algorithm due to Breiman

and Cutler. In the multi-variate case determining this globally minimal value can be

posed as a quadratic program. The derivatives of the eigenvalue functions are used to

construct quadratic models yielding rapid global convergence as compared to tradi-

tional global optimization algorithms. We also provide surveys on (i) the analytical

properties of eigenvalues of Hermitian matrix functions, (ii) applications of the eigen-

value optimization, and (iii) existing numerical algorithms. Finally, we illustrate the

asymptotic convergence behavior of the algorithm on numerical examples related to

the distance to instability and distance to a nearest defective matrix from a given

matrix as well as the Crawford number.
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ÖZET

Bu tezde parametrelerine analitik olarak bağlı Hermit bir matris fonksiyonunun be-

lirtilen bir özdeğerinin en ufak değerinin bulunması üzerine yoğunlaşıyoruz. Bu prob-

lemin global olarak en iyi çözümünü bulmak için Breiman ve Cutler algoritmasının

bir uzantısını sunuyoruz. Algoritma Hermit matris fonsiyonunun özdeğerlerinin ikinci

türevlerinin sınırlı olmasını kullanmakta ve global olarak en iyi çözüme yakınsıyor.

Özdeğer fonksiyonunun altında yatan parçalı sürekli kuadratik fonksiyonların global

minimumunu tekrar tekrar bulma fikri üzerine kurulu. Çok boyutlu durumda ise

bu parçalı-kuadratik fonksiyonun global minimumu bir kuadratik optimizasyon prob-

leminin çözümü olarak ifade edilebilir. Kuadratik fonksiyonları oluşturmak için kul-

lanılan özdeğer fonksiyonlarının türevleri, bu algoritmanın geleneksel global optimiza-

syon algoritmalarına göre daha hızlı yakınsamasını sağlıyor. Ayrıca bu tezde (i)

Hermit matris fonksiyonlarının özdeğerlerinin analitik özellikleri, (ii) özdeğer opti-

mizasyon problemlerinin uygulamaları, ve (iii) varolan algoritmalar ile ilgili literatür

taramalarına yer verilmekte. Son olarak algoritmanın asimtotik yakınsama özellikleri

nümerik olarak dengesizlik mesafesi, Crawford numarası ve en yakındaki kusurlu bir

matrise uzaklık problemleri üzerinde gösterilmiştir.
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Chapter 1

Introduction

This thesis concerns a Hermitian matrix function A(ε) : Rd → Cn×n depending

on its parameters analytically. We consider the global optimization of a prescribed

eigenvalue λ(ε) of A(ε) over ε ∈ Rd numerically. Typically prescribed refers to the

jth largest eigenvalue λ(ε) := λj(A(ε)). But, it might as well as refer to a particular

eigenvalue after ordering the eigenvalues with respect to a different criterion provided

the analyticity properties discussed below hold.

We will focus on the univariate case and the multivariate case separately. In the

univariate case, the eigenvalue functions of A(ε) : R→ Cn×n can be arranged so that

each of its eigenvalue functions is analytic over R. This analyticity property remains

valid even if some of the eigenvalues repeat. On the other hand this analyticity

property does not hold for non-Hermitian matrix functions, e.g., the eigenvalues of

the matrix  0 −1

ε 0


are not analytic functions with respect to ε ∈ R. From an application point of

view the eigenvalues often need to be arranged from largest to smallest. With this

arrangement, the eigenvalues of A(ε) are still continuous, but only piece-wise analytic.

2
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In the multivariate case, the analyticity of the eigenvalue functions does not hold

anymore. But along any line in Rd ordering them from largest to smallest yields

continuous and piece-wise analytic functions.

The algorithm that we use in this thesis is in essence adopted from a global

optimization algorithm due to Breiman and Cutler [23] for the optimization of a

prescribed eigenvalue λ(ε) of A(ε). It heavily depends on boundedness of the second

derivatives of the analytic pieces defining the prescribed eigenvalue. The eigenvalues

of A(ε) are typically non-convex functions, i.e., they may have many local extrema.

Traditional derivative-based optimization algorithms are guaranteed to converge to

only local minimizers. Here we benefit from global properties such as an upper bound

on the second derivatives of analytic eigenvalues to converge to global minimizers.

Some of the most elementary examples that require the optimization of eigenval-

ues of Hermitian matrix functions are the distance to instability, the numerical radius

of a matrix, H∞ norm of a transfer function, the distance to uncontrollability from

a linear time-invariant dynamical system, and the distance to defectiveness. Many

researchers came up with specialized algorithms for the solution of each one of these

problems. Van Loan has worked on the distance to instability concerning the dy-

namical system x′(t) = Ax(t), and offered a heuristic-based algorithm [8]. Later, this

problem has been considered by many researchers [37, 12, 9]. More recently Freitag

and Spence offered a Newton-based algorithm [26]. The bisection method due to

Byers [37] for the distance to instability inspired many algorithms. Boyd and Bal-

akrishnan [43], and Bruinsma and Steinbuch [33] extended the bisection method to

evaluate the H∞ norm of the transfer function of a linear dynamical system. Paige

[7] introduced the distance to uncontrollability for which the eigenvalue optimization

characterization was presented by Eising [39]. In time, many algorithms have been

suggested for the numerical solution of this problem [38, 28, 31, 30]. In another di-

rection specific problems related to the nearest matrix with an eigenvalue of specified
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algebraic multiplicity have been studied by many mathematicians. For instance the

eigenvalue optimization characterization for the distance to a defective matrix was

introduced by Malyshev [3], the eigenvalue optimization characterization for the dis-

tance to a nearest matrix with an eigenvalue of specified multiplicity was presented

in [15], and the eigenvalue optimization characterization for the distance to a nearest

pencil with eigenvalues lying in a specified region was studied in [13].

To our knowledge all algorithms for eigenvalue optimization have been derived

for particular problems. The algorithm that is described here is based on piece-

wise quadratic models lying underneath the objective function. The under-estimators

for global optimization were first utilized by Piyavskii and Shubert [41, 6]. These

algorithms [6] are derivative-free, and later the algorithms [14, 46] have been suggested

attempting to estimate bounds for the first derivatives of the objective functions

efficiently. The algorithm here exploits the derivatives, and the use of quadratic

under-estimators based on derivatives yields faster convergence. A factor making

the use of these quadratic models for eigenvalue optimization more appealing is the

fact that the derivatives of the eigenvalue functions can be calculated by means of

the analytic formulas in terms of the eigenvectors and the derivative of the matrix

function.

OUTLINE

In Chapter 2 we review the basic results concerning the analyticity of the eigenvalues

of a Hermitian matrix functionA(ε) that depends on ε analytically. These basic results

are inherited from Rellich [17]. Also, we derive expressions for the first two derivatives

of an analytic eigenvalue λ̃(ε), which is used in the definition of a piece-wise analytic

eigenvalue λ(ε). These expressions first appeared in a Numerische Mathematik paper

by Lancaster [35]. Chapter 3 focuses on some applications where eigenvalue opti-

mization problems occur, and Chapter 4 focuses on some of the existing algorithms

which can be applied to some of the elementary eigenvalue problems mentioned above.
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Chapter 5 is devoted to the derivation of the one-dimensional algorithm, and the ex-

tension of the algorithm to the multivariate case. Also, this chapter focuses on the

analysis of the multi-dimensional algorithm; specifically it establishes that there are

subsequences of the sequence generated by the algorithm that converge to a global

minimizer. Section 5.3 is devoted to some observations that can lead us to an efficient

implementation of the algorithm in the multi-variate case. These observations are

mostly due to Breiman and Cutler [23]. Chapter 6 presents the numerical results for

the algorithm derived in Chapter 5 on some of the specific eigenvalue optimization

problems given in Chapter 3.



Chapter 2

Perturbation Theory of

Eigenvalues

This chapter summarizes the analyticity results concerning the eigenvalues of matrix

functions dependent on real-parameters, mostly borrowed from Rellich’s [17] and

Lewis’ works [5].

2.1 Eigenvalue Perturbation Theory

2.1.1 Univariate Case

In this part, we will analyze the analyticity of the eigenvalues and associated eigen-

vectors of Hermitian matrix functions depending on one variable analytically. We

consider the eigenvalue problem

A(ε)u(ε) = λ̃(ε)u(ε) (2.1)

where A(ε) ∈ Cn×n is analytic and A(ε)∗ = A(ε). By definition u(ε) is a nonzero

vector in Cn. We furthermore assume ‖u(ε)‖2 = 1. Since A(ε) is Hermitian, the

6
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eigenvalue λ̃(ε) is real. Equation (2.1) implies that

(A(ε)− λ̃(ε)In)u(ε) = 0 ⇔ (A(ε)− λ̃(ε)In) is singular

⇔ det(A(ε)− λ̃(ε)In) = 0.

Therefore λ̃(ε) is a root of the characteristic polynomial of A(ε) of the form

p(λ, ε) = det(A(ε)− λIn) = λn + c1λ
n−1 + ...+ cn−1λ+ cn

where each coefficient cj has a power series in terms of ε convergent for small ε in

absolute value. By Puiseux’ Theorem, any root λ̃(ε) of p(λ, ε) has an expansion of

the form

λ̃(ε) = λ̃(0) + b1ε
1
m + b2ε

2
m + ... = λ̃(0) +

∞∑
k=1

bkε
k
m (2.2)

where m is the algebraic multiplicity of λ̃(0). As we stated above, λ̃(ε) is real for all

ε.

Lemma 2.1.1. Only the integral powers appear in the expansion (2.2).

Proof. Let bj be the first nonzero coefficient in the expansion (2.2). Then we have

lim
ε→0+

λ̃(ε)− λ̃(0)

εj/m
= bj

implying bj is real, since λ̃(ε), for all ε, and εj/m are real numbers. Furthermore

lim
ε→0−

λ̃(ε)− λ̃(0)

(−ε)j/m
=

bj

(−1)j/m

must be a real number implying (−1)j/m is real, consequently j
m is an integer.
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This shows that λ̃(ε) is analytic at ε = 0. Similarly, it can be decuded that λ̃(ε)

is analytic at all ε. This implies that there exist coefficients ak such that

λ̃(ε) =
∞∑
k=0

akε
k

for small epsilon in absolute value. Furthermore it can be shown that the associated

eigenvectors are also analytic functions. More precisely associated with each analytic

eigenvalue λ̃(ε) there exists a unit eigenvector u(ε) =

[
u1(ε) . . . un(ε)

]∗
∈ Cn such

that u(ε) has a power series in terms of ε and convergent for small ε in absolute

value. This follows from the following argument. Let γ(ε) := A(ε) − λ̃(ε)In. If γ(ε)

is identically zero for all ε, then choose u(ε) =

[
1 0 . . . 0

]∗
and we are done. So

suppose γ(ε) is nonzero. Since λ̃(ε) is an eigenvalue of A(ε), γ(ε) is rank-deficient.

Let rank(γ(ε)) = r, where 1 ≤ r ≤ n − 1. Without loss of generality assume that

det(γ̃r(ε)) 6= 0, where

γ̃r(ε) :=


γ11(ε) . . . γ1r(ε)

...
. . .

...

γr1(ε) . . . γrr(ε)

 .
We define Γji as the (i, j) cofactor of γ̃r+1(ε) and

fk(ε) :=


Γk,r+1 if k = 1, 2, . . . , r + 1

0 if k = r + 2, . . . , n

Analyticity of A(ε) and λ̃(ε) for all real ε implies that each fk(ε) has a convergent

power series in terms of ε for small ε in absolute value and f(ε) := [f1(ε) . . . fn(ε)]T is

not identically zero since fr+1(ε) =det(γ̃r) 6= 0. Moreover, the ith entry of the vector
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γ(ε)f(ε) vanishes for i = 1, . . . , r + 1. The ith entry of the vector is given by

n∑
k=1

(γ(ε))ikfk(ε) =
r+1∑
k=1

(γ(ε))ikΓk,r+1 = 0. (2.3)

Observe that the second sum is the determinant of the matrix

γ̂r+1(ε) =



γ11(ε) . . . . . . . . . γ1,r+1(ε)

...
. . .

. . .
. . .

...

γi1(ε) . . . . . . . . . γi,r+1(ε)

...
. . .

. . .
. . .

...

γr1(ε) . . . . . . . . . γr,r+1(ε)

γi1(ε) . . . . . . . . . γi,r+1(ε)


∈ C(r+1)×(r+1),

which is equal to zero. To see this the second sum in (2.3) corresponds to the cofactor

expansion of γ̂r+1(ε) across the (r + 1)th row. Equation (2.3)holds also for i =

r+ 2, . . . , n, because in this case γ̂r+1(ε) corresponds to a (r+ 1)× (r+ 1) submatrix

of γ(ε), which cannot be full rank due to rank(γ(ε) = r meaning det(γ̂r+1(ε) = 0.

Define

u(ε) :=
f(ε)

‖f(ε)‖
, where ‖f‖ = (|f1|2 + . . .+ |fn|2)1/2 for real ε.

Then clearly u(ε) is an analytic function of real ε and ‖u(ε)‖ = 1.

Let λ̃1(ε) and λ̃2(ε) be two distinct analytic eigenvalues of the Hermitian ma-

trix A(ε), and ε1, . . . , ε` be the points where λ̃1(ε) and λ̃2(ε) intersect each other,

i.e, λ̃1(εj) = λ̃2(εj) for j = 1, . . . , `. Also let v1(ε) and v2(ε) be the eigenvectors,

associated with λ̃1(ε) and λ̃2(ε) respectively. We know that there are finitely many

such intersection points on a finite interval, say [a, b], due to the analyticity of the
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eigenvalues. By assumption, we have the following equalities

A(ε)v1(ε) = λ̃1(ε)v1(ε) (2.4)

A(ε)v2(ε) = λ̃2(ε)v2(ε) (2.5)

Premultiply equation (2.4) by v∗2(ε) and equation (2.5) by v∗1(ε). Now complex-

conjugating the first equation and subtracting it from the second equation yield

(λ̃2(ε)− λ̃1(ε))v∗1(ε)v2(ε) = 0.

This implies that v1(ε) is orthogonal to v2(ε) for all ε ∈ {[a, b] − {ε1, . . . , ε`}}. Or-

thogonality of the eigenvectors remains valid for ε = εj for j = 1, . . . , ` due to the

continuity of the inner product v∗1(ε)v2(ε).

Theorem 2.1.2 (Rellich). For any Hermitian matrix function A(ε) : R→ Cn×n that

depends on ε analytically, the following holds.

(i) The eigenvalue functions of A(ε) can be arranged so that each λ̃j(ε) for j =

1, . . . , n is an analytic function of ε.

(ii) There exists an orthonormal set {v1(ε), v2(ε), . . . , vn(ε)} of eigenvectors where

vj(ε) is a unit eigenvector associated with λ̃j(ε) and analytic at all ε.

The results above hold strictly for Hermitian matrices. For non-Hermitian matri-

ces the eigenvalues are not necessarily real, consequently the Puiseux’ series may have

fractional powers. In other words, the eigenvalues may not be analytic no matter how

they are ordered. For instance, consider the matrix

 0 −1

ε 0

, with the eigenvalues

λ1,2 = ±
√
−ε that are not analytic around ε = 0.
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2.1.2 Multivariate Case

In the multi-variate case, even if A(ε) ∈ Cn×n is Hermitian and analytic for ε ∈ Rd

with d > 1, its eigenvalues may not be analytic regardless of their ordering. As an

example, consider

 1 + 2ε1 ε1 + ε2

ε1 + ε2 1 + 2ε2

 with the eigenvalues λ(ε1, ε2) = 1 + ε1 + ε2±

√
2
√
ε21 + ε22, which do not have convergent power series around ε1 = ε2 = 0. Theorem

2.1.2 implies that for any direction p ∈ Rd the eigenvalues can be ordered as λ̃1, . . . , λ̃n

so that each eigenvalue λ̃j(tp) is analytic at all t ∈ R

2.2 Non-Smooth Analysis

We will analyze the differential properties of the eigenvalue functions of Hermitian

matrices which are not differentiable in the usual sense. As an example, consider the

following problem.

minimize f(x)

subject to g(x) = u

Let h(u) denote the globally minimal value of the problem above. By using the

Newton’s method applied to Lagrangian function [20], we could solve the problem

above. But f(x) and g(x) have to be differentiable functions to use that method.

Unfortunately, there is no guarantee for the differentiability of f(x) and g(x). Now,

define the problem above as follows

H(x) =


f(x) if g(x) = u

∞ else

Then we know that the minimum of H(x) must be attained at a stationary point, and

in the generalized sense this stationary point must satisfy the necessary conditions

for optimality. Whenever f does not have a derivative in the usual sense, we define a
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set called approximate subdifferential ∂f(x) of f(x) which behaves very much like a

derivative. Then the optimality conditions can be stated in terms of the approximate

subdifferentials instead of the derivatives. For instance, if f has a local minimum or

maximum at x0, then 0 ∈ ∂f(x0) (see [16]).

Definition 2.2.1 (Regular Subgradient). Let E be an Euclidean space, and f : E →

R. A vector y ∈ E is called a regular subgradient of f at x ∈ E if for all sequences

z = {zn} with limn→∞ zn = 0 for all n sufficiently large

f(x+ zn) ≥ f(x) + (y, zn) + o(zn)

where (·, ·) denotes the inner product and o(zn) is such that limz→0
o(z)
‖z‖ = 0.

The set of regular subgradients at x is denoted by ∂̂f(x). The problem with the set of

regular subgradients is that it may be an empty set. The approximate subdifferential

solves this problem.

Definition 2.2.2 (Approximate Subdifferential). Let E be an Euclidean space, and

f : E → R. A y ∈ E vector is called an approximate subdifferential of f at x ∈ E

if there exists a sequence of points xr in E with xr → x, and f(xr) → f(x) < ∞

satisfying yr → y for some sequence {yr} of regular subgradients yr ∈ ∂̂f(xr).

The set of approximate subdifferentials of f at x is denoted by ∂f(x).

Now we derive the subgradient of f ◦ λ at any given matrix X. Let O(n) denote

the set of n× n real orthogonal matrices, and

U ·X := UTXU. (2.6)
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Consider the eigenvalue function

λ : S(n)→ Rn, where λ(A) :=


λ1
...

λn

 ,

S(n) is the set of n×n real symmetric matrices and λ1, . . . , λn denote the eigenvalues

of A. For any extended real valued function f we will focus on

f ◦ λ→ [−∞,∞].

Before deriving the subdifferential formula, we present three lemmas. For their proofs

we refer to [5].

Lemma 2.2.3 (Diagonal Subgradient). For any pair of vectors x and y in Rn and

any eigenvalue function f ◦ λ, we have

y ∈ ∂f(λ(X))⇔ Diag y ∈ ∂(f ◦ λ)(Diag(λ(X))).

Lemma 2.2.4 (Subgradient Invariance). If a function h : O(n) → R is invariant

with respect to the operation defined in (2.6) under a subgroup U of O(n), then all x

in the domain of h and all u ∈ Usatisfy ∂h(u · x) = u · ∂h(x).

Lemma 2.2.5 (Commutativity). Suppose Y ∈ ∂̂(f ◦ λ)(X) where X ∈ S(n), then

Y X = XY .

A formula for the subdifferential of f ◦ λ can be deduced by using the lemmas

above.

Theorem 2.2.6 (Subgradients of Eigenvalues). The set of approximate subdifferen-
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tials of any eigenvalue function f ◦ λ at any matrix X in S(n) is given by

∂(f ◦ λ)(X) = O(n)X ·Diag(∂f(λ(X)))

where O(n)X = {U ∈ O(n) : UTDiag(λ(X))U = X}.

Proof. First suppose y ∈ ∂f(λ(X)), then by Lemma 2.2.3 we have Diag y ∈ ∂(f ◦

λ)(Diag(λ(X))). Let U ∈ O(n)X . It follows from Lemma 2.2.4 that

Diag y ∈ ∂(f ◦λ)(Diag(λ(X)))⇔ U ·Diag y ∈ ∂(f ◦λ)(U ·Diag λ(X)) = ∂(f ◦λ)(X).

So far we proved that O(n)X · Diag (∂f(λ(X))) ⊆ ∂(f ◦ λ)(X). For the reverse

inequality assume

Y ∈ ∂(f ◦ λ)(X) (2.7)

By Lemma 2.2.5 this means Y X = XY implying X and Y are simultaneously diag-

onalizable, i.e., there exists a U ∈ O(n)X such that

UT · Y = diag y

for some y ∈ Rn. Applying Lemma 2.2.4 to (2.7) yields

diag y = UT · Y ∈
(
∂(f ◦ λ)(UT ·X)

)
= ∂(f ◦ λ)(diag(λ(X)))

Now we deduce from Lemma 2.2.3 that y ∈ ∂f(λ(X)) meaning diag y ∈ diag (∂f(λ(X))),

or equivalently U · diag y = Y ∈ U · diag ∂f(λ(X)). Consequently, ∂(f ◦ λ)(X) ⊆

O(n)X ·Diag (∂f(λ(X))). Therefore ∂(f ◦ λ)(X) = O(n)X ·Diag (∂f(λ(X))).
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2.3 Derivatives of Eigenvalues and Eigenvectors

This chapter is devoted to the derivation of the first two derivatives of an analytic

eigenvalue of a given Hermitian matrix function, mostly borrowed from [32].

2.3.1 First Derivatives of Eigenvalues

Let A(ε) be a univariate Hermitian matrix-valued function depending on ε analyti-

cally and let λ̃j(ε) and vj(ε) be any analytic eigenvalue and the associated analytic

eigenvector of A(ε) as stated in Theorem 2.1.2. They satisfy

A(ε)vj(ε) = λ̃j(ε)vj(ε), (2.8)

vj(ε)
∗A(ε) = vj(ε)

∗λ̃j(ε), and (2.9)

vj(ε)
∗vj(ε) = 1. (2.10)

Taking the derivatives of both sides of equation (2.10) with respect to ε, we get the

following property

dvj(ε)
∗

dε
vj(ε) = −vj(ε)∗

dvj(ε)

dε
. (2.11)

And differentiating the both sides of equation (2.8) yields

dA(ε)

dε
vj(ε) +A(ε)

dvj(ε)

dε
=
dλ̃j(ε)

dε
vj(ε) + λ̃j(ε)

dvj(ε)

dε
. (2.12)

By multiplying both sides of equation (2.12) by vj(ε)
∗, and using (2.9), (2.11) as well

as (2.10), we arrive at

dλ̃j(ε)

dε
= vj(ε)

∗dA(ε)

dε
vj(ε). (2.13)
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2.3.2 First Derivatives of Eigenvectors

First observe that equation (2.11) implies that

d (vj(ε)
∗vj(ε))

dε
= 0 =⇒ vj(ε)

∗dvj(ε)

dε
= 0, (2.14)

which means vj(ε) and its derivative are orthogonal at all ε. In other words,

dvj(ε)

dε
∈ span {vk(ε) : k 6= j}. (2.15)

For simplicity assume that the multiplicity of λ̃j(ε) is one. In this case

(λ̃j(ε)In −A(ε))† =
∑
k 6=j

1

λ̃j(ε)− λ̃k(ε)
vk(ε)vk(ε)

∗ (2.16)

and

(λ̃j(ε)In −A(ε))†(λ̃j(ε)In −A(ε)) =
∑
k 6=j

vk(ε)vk(ε)
∗, (2.17)

where † denotes the Moore-Penrose pseudoinverse. By equation (2.16),

(λ̃j(ε)In −A(ε))†vj(ε) = 0.

Rearrange equation (2.12) so that

(λ̃j(ε)I −A(ε))
dvj(ε)

dε
=
dA(ε)

dε
vj(ε)−

dλ̃j(ε)

dε
vj(ε). (2.18)

Now multiply the both sides of equation (2.18) by (λ̃j(ε)In −A(ε))† to obtain

(λ̃j(ε)In −A(ε))†(λ̃j(ε)In −A(ε))
dvj(ε)
dε = (λ̃j(ε)In −A(ε))† dA(ε)dε vj(ε)

−dλ̃j(ε)
dε (λ̃j(ε)In −A(ε))†vj(ε)︸ ︷︷ ︸

=0

.

(2.19)
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The expression (λ̃j(ε)In − A(ε))†(λ̃j(ε)In − A(ε)) is indeed an orthogonal projector

onto span{vk : k 6= j}. By using equation (2.15), we deduce

(λ̃j(ε)In −A(ε))†(λ̃j(ε)In −A(ε))
dvj(ε)

dε
=
dvj(ε)

dε
. (2.20)

Finally, by substituting equation (2.20) in equation (2.19), we obtain

dvj(ε)

dε
= (λ̃j(ε)In −A(ε))†

dA(ε)

dε
vj(ε). (2.21)

2.3.3 Second Derivatives of Eigenvalues

Here for simplicity we assume that the multiplicity of λ̃j(ε) is one. Taking the deriva-

tives of both sides of (2.13) we get

d2λ̃j(ε)
dε2

=
(
dvj(ε)
dε

)∗
dA(ε)
dε vj(ε) + vj(ε)

∗ d2A(ε)
dε2

vj(ε) + vj(ε)
∗ dA(ε)

dε
dvj(ε)
dε

= vj(ε)
∗ d2A(ε)

dε2
vj(ε) + 2 <

(
vj(ε)

∗ dA(ε)
dε

dvj(ε)
dε

)
.

By substituting for
dvj(ε)
dε using the formula in (2.21) we have

d2λ̃j(ε)

dε2
= vj(ε)

∗d
2A(ε)

dε2
vj(ε) + 2 <

(
vj(ε)

∗dA(ε)

dε
(λ̃j(ε)In −A(ε))†

dA(ε)

dε
vj(ε)

)
,

or by using (2.16) for the pseudoinverse,

d2λ̃j(ε)

dε2
= vj(ε)

∗d
2A(ε)

dε2
vj(ε) + 2

∑
k 6=j

1

λ̃j(ε)− λk(ε)

∣∣∣∣vk(ε)∗dA(ε)

dε
vj(ε)

∣∣∣∣2 . (2.22)
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2.3.4 Derivatives of Eigenvalues for Multivariate Hermitian Matrix

Functions

Let A(ε) : Rd → Cn×n be a Hermitian and analytic matrix valued function. It follows

from (2.13) that

∂λ̃j(ε)

∂εk
= v∗j (ε)

∂A(ε)

∂εk
vj(ε). (2.23)

The first partial derivatives of the eigenvalue λ̃j(ε) are continuous, which implies the

existence of the second partial derivatives. By differentiating both sides of (2.23) with

respect to εl, we get

∂2λ̃j(ε)

∂εk ∂εl
= v∗j (ε)

∂2A(ε)

∂εk ∂εl
vj(ε) + v∗j (ε)

∂A(ε)

∂εk

∂vj(ε)

∂ε`
+

(
∂vj(ε)

∂εl

)∗ ∂A(ε)

∂εk
vj(ε)

One can simplify this expression by eliminating the derivatives of the eigenvectors

and using (2.21) to obtain

∂2λ̃j(ε)
∂εk ∂εl

= v∗j (ε)
∂2A(ε)
∂εk ∂εl

vj(ε) + v∗j (ε)
∂A(ε)
∂εk

(λ̃j(ε)In −A(ε))† ∂A(ε)∂εl
vj(ε)

+v∗j (ε)
∂A(ε)
∂εl

(λ̃j(ε)In −A(ε))† ∂A(ε)∂εk
vj(ε),

or, by replacing the pseudoinverses above with the right-hand sides of (2.16), we have

∂2λ̃j(ε)
∂εk ∂εl

= v∗j (ε)
∂2A(ε)
∂εk ∂εl

vj(ε)

+
∑

m 6=j
1

λ̃j(ε)−λm(ε)

(
vj(ε)

∗ dA(ε)
∂εk

vm(ε)
)(

vm(ε)∗ dA(ε)∂εl
vj(ε)

)
+
∑

m 6=j
1

λ̃j(ε)−λm(ε)

(
vj(ε)

∗ dA(ε)
∂εl

vm(ε)
)(

vm(ε)∗ dA(ε)∂εk
vj(ε)

)
.

(2.24)

2.4 Analyticity of Singular Values

Let σj(ε) denote the jth largest singular value of an analytic n×m matrix function

A(ε). In this section A(ε) is not necessarily Hermitian. Clearly the set of eigenvalues



CHAPTER 2. PERTURBATION THEORY OF EIGENVALUES 19

of the Hermitian matrix function

B(ε) :=

 0 A(ε)

A(ε)∗ 0


is {σj(ε),−σj(ε) : j = 1, . . . , n}. Let us focus on the univariate case. Observe

that σj(ε) is the jth largest eigenvalue of B(ε). Suppose ε ∈ R, vj(ε) :=

 v1(ε)

v2(ε)


is the unit eigenvector, as specified in Theorem 2.1.2, associated with σj(ε), where

v1(ε) ∈ Cn and v2(ε) ∈ Cm satisfying

 0 A(ε)

A(ε)∗ 0


 v1(ε)

v2(ε)

 := σj(ε)

 v1(ε)

v2(ε)

 .
Rewrite this as

A(ε)v2(ε) = σj(ε)v1(ε), and

A(ε)∗v1(ε) = σj(ε)v2(ε).
(2.25)

By multiplying the first equation by v1(ε)
∗ and the second equation by v2(ε)

∗, we

obtain v1(ε)
∗v1(ε) = v2(ε)

∗v2(ε), so ‖v1(ε)‖ = ‖v2(ε)‖ = 1/
√

(2). By Theorem 2.1.2,

v1(ε), v2(ε) are analytic. Also observe that the right and left singular vectors asso-

ciated with the singular value σj(ε) are v1(ε) and v2(ε) due to (2.25). Now we can

derive expressions for the first derivative of σj(ε), in terms of the corresponding right

and left singular vectors of A(ε). By using (2.13), we have

dσj(ε)

dε
=

[
v1(ε)

∗ v2(ε)
∗
] 0 dB(ε)/dε

dB(ε)∗/dε 0


 v1(ε)

v2(ε)


= v1(ε)

∗ dB(ε)
dε v2(ε) + v2(ε)

∗ dB(ε)∗
dε v1(ε)

= 2 <
(
v1(ε)

∗ dB(ε)
dε v2(ε)

)
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In terms of the unit left v̂1(ε) :=
√

2 · v1(ε) and right v̂2(ε) :=
√

2 · v2(ε) singular

vectors associated with λ̃j(ε) we obtain

dσj(ε)

dε
= <

(
v̂1(ε)

∗dB(ε)

dε
v̂2(ε)

)
. (2.26)



Chapter 3

Applications

This chapter presents some applications of eigenvalue optimization problems. We

start the chapter with applications from numerical linear algebra and control theory,

specifically some distance problems, H∞-norm, some quantities related to field of

values, and the role of eigenvalue optimization in the design of optimal precondition-

ers are discussed. This is followed by an information-theory motivated graph theory

application. Then the relation between semidefinite programming and eigenvalue op-

timization problems is elaborated. In the last section applications of the eigenvalue

optimization to logarithmic Chebyshev approximation, and some geometrical prob-

lems involving quadratic forms are presented. In this last section applications to

structural optimization is also shortly mentioned.

3.1 Distance Problems

3.1.1 Distance to Defectiveness

Distance to a nearest defective matrix from a square matrix A ∈ Cn×n is defined as

min
{
‖∆A‖2 : ∆A ∈ Cn×n s.t. (A+ ∆A) is defective

}

21
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For this distance Malyshev [3] deduced the eigenvalue optimization characterization

min
λ∈C

max
γ∈R+

σ2n−1


 A− λIn γIn

0 A− λIn


 .

The distance to defectiveness from A is small if and only if A has a highly sensitive

eigenvalue [4, 19]. In [13] eigenvalue optimization characterizations were derived for

the more general problem, the distance to a nearest matrix with an eigenvalue of

specified algebraic multiplicity.

Unlike most of the other eigenvalue optimization problems that we will encounter

in this section the eigenvalue characterization above is in the min-max form. There

is no algorithm which is designed specifically for this problem based on the charac-

terization above. On the other hand, the algorithm that we describe in Chapter 5 is

applicable.

3.1.2 Distance to Instability

Suppose A ∈ Cn×n and Λ(A) ∈ Cn is the set of the eigenvalues of A in the complex

plane. If Λ(A) ⊆ C− := {λ ∈ C : <(λ) < 0}, then A is called a stable matrix. This

terminology is related to the asymptotic behavior of the ODE x′(t) = Ax(t). Stability

is a very important property in engineering applications. Yet properties stronger than

stability are desirable in practice. For instance even if A is stable, small perturbations

may yield unstable matrices. In other words, A + E may have eigenvalues crossing

the imaginary axis in the complex plane for E with small norm. Consequently, the

distance to instability is introduced by Van Loan [8]. Let us use the notation σmin(A)

for the smallest singular value of A, which satisfies

σmin(A) = min{‖E‖2 : rank(A+ E) < n,E ∈ Cn×n}
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Then the distance to instability is defined as

β(A) := min{‖E‖2 : x′(t) = (A+ E)x(t) is unstable}

and has the eigenvalue optimization characterization

β(A) = min
ω∈R

σmin(A− iωIn).

3.1.3 Distance to Uncontrollability

Two of the most important concepts in control theory are the controllability of a

time-invariant linear system and its observability as the dual problem. For given

matrices A ∈ Cn×n and B ∈ Cn×m, the linear control system

x′(t) = Ax(t) +Bu(t), (3.1)

is controllable if the state function x(t) in (3.1) can be directed from any given state

to a desired one in finite time by choosing the input function u(t) appropriately.

Any controllable system may be very close to an uncontrollable one. Furthermore

uncontrollability of the system in (3.1) is equivalent to the rank deficiency of

[
B AB . . . An−1B

]
,

and this cannot be determined reliably in the presence of rounding errors. Thus, a

continuous measure such as how far a controllable system is from a nearest uncon-

trollable system would be more useful.

The distance to uncontrollability of the system in (3.1) was introduced in [7] as

µ(A,B) := min{‖[δA δB]‖ : (A+ δA,B + δB) is uncontrollable} (3.2)
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where ‖.‖ denotes 2-norm or Frobenius norm1. This distance can equivalently be

characterized as [39].

µ(A,B) := min
λ∈C

σmin([λIn −A,B]). (3.3)

3.2 H∞-norm

Consider the dynamical system

x′(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(3.4)

with x(0) = 0, where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m. Here

u(t) : [0,∞) → Rm is called the control input, y(t) : [0,∞) → Rp is called the

output of the system and the system is called of order n. In the Laplace domain this

dynamical system can be represented as

Y (s) = H(s)U(s)

where U(s) and Y (s) denote the Laplace transformations of u(t)and y(t) respectively,

and

H(s) := C(sI −A)−1B +D (3.5)

is called the transfer function of system (3.4).

One very important quantity related to the transfer function, for instance in model

reduction or controller synthesis, is its H∞-norm given by

‖H‖∞ := max
ω∈R

σmax(H(iω)). (3.6)

1The definitions are equivalent with respect to the 2-norm and Frobenius norm.
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3.3 Field of Values related quantities

3.3.1 Numerical Radius

The Field of Values of A ∈ Cn×n is defined by

F (A) := {x∗Ax : x ∈ Cn, x∗x = 1}.

The numerical radius of A is the modulus of the outermost point in F (A), that is

r(A) := max
x∈F (A)

|x|. (3.7)

Observe that r(A) satisfies the following matrix norm properties.

i) r(A) = 0 if and only if A = 0.

ii) r(αA) = αr(A) for any complex scalar α.

iii) Triangular inequality r(A+ B) ≤ r(A) + r(B) holds.

But note, on the other hand, that the submultiplicative property does not hold. The

norm of A is bounded by the numerical radius of A as follows.

r(A) ≤ ‖A‖ ≤ 2r(A).

Additionally, the numerical radius does satisfy the power inequality r(Ak) ≤ r(A)k for

any nonnegative k [36]. Therefore r(A) captures the norm of A and also asymptotic

behavior of the discrete first-order autonomous system xk = Axk−1. The numerical

radius have been used to analyze the convergence of classical iterative methods for

linear systems by Axelsson [45] and Eiermann [27].

Another measure related to the field of values is the numerical abscissa motivated

by continuous time autonomous dynamical systems. The numerical abscissa is the
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real part of the rightmost point in the field of values.

αF (A) := {<(z) : z ∈ F (A)}

It can be reduced to an eigenvalue problem. An eigenvalue optimization characteri-

zation for the numerical radius can be derived by exploiting this eigenvalue problem

associated with the numerical abscissa. Notice that the field of values of Aeiθ is the

same as the field of values of A rotated θ radians in the counter clock-wise direc-

tion. Consequently, the numerical radius can be considered as a global optimization

problem over θ of the form

r(A) = max
θ∈[0,2π)

αf (Aeiθ) (3.8)

where αf (Aeiθ) denotes the numerical abscissa of Aeiθ. By using the eigenvalue

characterization αf (A) = λmax (H(A)) for the numerical abscissa where H(A) =

A+A∗
2 [36], (3.8) can be rewritten as

r(A) = max
θ∈[0,2π)

λmax(H(Aeiθ)). (3.9)

3.3.2 Crawford Number

We can geometrically interpret the numerical radius of a matrix A as the maximal

distance from 0 ∈ C to the field of values F (A). On the other hand, the minimal

distance from 0 ∈ C to the field of values F (A) is called the Crawford number [44],

defined by

γ(A) := min
x∈F (A)

|x|. (3.10)
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By similar steps that led us to (3.9) this problem can be posed as

γ(A) = min
θ∈[0,2π)

∣∣∣λmax(H(Aeiθ))
∣∣∣ , (3.11)

assuming 0 6∈ F (A).

3.3.3 Inner Numerical Radius

The numerical radius of a matrix A is always attained at a point on the boundary of

the field of values F (A), while the Crawford number of A is attained on the boundary

if and only if 0 6∈ F (A). The inner numerical radius of A is defined by

ζ(A) := min{|ω| : ω is on the boundary of F (A)} (3.12)

which is the same as γ(A) whenever 0 6∈ F (A). When the field of values does contain

the origin, then γ(A) = 0, while ζ(A) is the radius of the largest circle centered at

the origin contained inside the field of values of A.

The inner numerical radius is equivalent to the eigenvalue optimization problem

ζ(A) = min
θ∈[0,2π)

∣∣∣λmax

(
H(e−iθA)

)∣∣∣ (3.13)

regardless whether 0 6∈ F (A) or not.

3.4 Design of Optimal Preconditioners

Greenbaum and Rodrigue [2] has worked on the following optimization problem; for

a given positive definite symmetric matrix B, find the positive definite symmetric

matrix M with the prescribed sparsity pattern that minimizes the 2-norm condition
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number of M−1/2BM1/2. This problem is equivalent to

M = arg min
M

λmax(In − L−1ML−1),

where LLT is the Cholesky factorization of B. Finding and applying such precondi-

tioners would speed up the convergence of Krylov subspace methods when they are

used to solve linear systems or eigenvalue problems associated with B.

3.5 Graph Problem

Let M ∈ Rn×n be a symmetric adjacency matrix associated with a graph with the

following properties. Its entries along the diagonal are zero. Its (i, j)-entry for i 6= j

is equal to zero whenever the vertices i and j are not adjacent, and equal to one

whenever the vertices i and j are adjacent.

Suppose A(x) := M + eeT where x denotes the vector consisting of strictly lower

triangular entries of M and e = [1 . . . 1]T . Then, the Shannon Capacity [24, 29] of

the graph is defined as

min
x
λmax(A(x)), (3.14)

which is an upper bound on the amount of information that can be reliably transmit-

ted over the given graph M .

3.6 Semidefinite Programming

We consider the problem of minimizing a linear function depending on x ∈ Rm subject

to a matrix inequality of the form

minimize cTx

subject to F (x) � 0
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where F (x) = F0+
∑m

i=1 xiFi, c ∈ Rm and F0, . . . , Fm ∈ Rn×n are symmetric matrices.

Above F (x) � 0 means F (x) is positive semi-definite, or equivalently its smallest

eigenvalue is non-negative. The logarithmic barrier method to solve this constrained

optimization problem will focus on

min
x∈Rm

L(x, µ)

where L(x, µ) = cTx − µ · ln(λmin(F (x))) and µ is a small positive real number.

Throughout the rest of this section we will present specific semidefinite programming

problems.

3.6.1 Logarithmic Chebyshev Approximation

Consider the problem of approximating the solution ofAx = b, whereA = [a1 . . . ap]
T ∈

Rp×k and b ∈ Rp. In logarithmic Chebyshev approximation we minimize the `∞-norm

of the residual

max
i
| log(aTi x)− log(bi)| (3.15)

where we assume that bi > 0. Equation (3.15) can be cast as a semidefinite program-

ming problem of the form [25]

min t, subject to


t− aTi x/bi 0 0

0 aTi x/bi 1

0 1 t

 � 0, i = 1, . . . , p.

3.6.2 Geometrical problems involving quadratic forms

Many geometrical problems involving quadratic functions can be cast as semidefinite

programs. We will focus on only one example. Consider the quadratic functions

fi(x) = xTAix+ 2bTi x+ c, i = 1, . . . , k,
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which are ellipsoids. Our goal is to find the smallest ball that contains all k of these

ellipsoids. We can find the smallest ball by solving the semidefinite programming

problem [25]

min t

subject to

 I −xc

xTc γ 0

 � ηi
 Ai bi

bTi ci

 , i = 1, . . . , k

ηi ≥ 0, i = 1, . . . , k In xc

xTc t+ γ

 � 0

where the variables are xc, η1, . . . , ηk, γ and t.

3.6.3 Structural optimization

Consider a structure consisting of k elastic bars connected at a set of p nodes. The

task is to determine the optimal cross-sectional areas for the bars. For simplicity,

assume that the external nodal forces fi, i = 1, . . . , p are fixed, let d denote the

displacement vector of the nodes caused by the nodal forces f . The objective is to

minimize the elastic energy stored 1
2f

Td with the constraints on the total volume,

upper and lower bounds on the cross-sectional area of each bar. The relation between

f and d is linear, that is f = A(x)d where A(x) =
∑k

i=1 xiAi for some Ai ∈ Cp×p for

i = 1, . . . , k.

The optimization problem can be posed as

minimize fTd

subject to f = A(x)d∑k
i=1 `ixi ≤ v

xi ≤ xi ≤ x̄i, i = 1, . . . , k
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where d and x are the variables, v is the maximal total volume of the elastic bars,

`i are the lengths of the bars, and xi, x̄i are the lower and upper bounds on the

cross-sectional areas (see [1] for details).

By eliminating d, the structural problem can be posed as a semidefinite program-

ming problem of the form

minimize t

subject to

 t fT

f A(x)

 � 0

∑k
i=1 `ixi ≤ v

xi ≤ xi ≤ x̄i, i = 1, . . . , k

in terms of the variables x and t.



Chapter 4

Existing Numerical Algorithms

This chapter presents a survey on the widely-used algorithms for some of the elemen-

tary eigenvalue optimization problems. Specifically we will focus on the algorithms for

the distance to instability, distance to uncontrollability, H∞-norm and the numerical

radius in this order.

4.1 Distance to Instability

Here we describe some of the widely-used algorithms to compute the distance to

instability. One of the oldest algorithms is due to Van Loan [8]. But since it is

heuristic-based, and not able to return estimates with a prescribed accuracy, we skip

Van Loan’s algorithm. Instead we consider the algorithms by Byers [37], Boyd and

Balakrishnan [43], and the recent Newton-based algorithm of Freitag and Spence [26]

4.1.1 Byers’ Method

Distance to instability is a one dimensional unconstrained real global optimization

problem of the form

min
ω∈R

f(ω)

32
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where f(ω) := σmin(A − ωiIn). The bisection method due to Byers that we present

in this section gives upper bound and lower bound for the globally minimal value of

f(ω), and it converges to the globally minimal value of f(ω) even when f has multiple

local extrema. However, it converges slowly.

This algorithm heavily depends on the Hamiltonian matrix

H(σ) =

 A −σIn

σIn −A∗

 ∈ C2n×2n

where σ ≥ 0 and A∗ denotes the adjoint (complex conjugate transpose) of A. Let us

also use the notation C0 := {λ ∈ C : <(λ) = 0} for the imaginary axis in the next

theorem.

Theorem 4.1.1 (Byers). There exists λj ∈ (Λ(H(σ)) ∩ C0)if and only if σ ≥ β(A).

Proof. (⇒) Assume λj ∈ (Λ(H(σ)) ∩ C0) meaning λj = iη for some η ∈ R. By the

definition of an eigenvalue, there exists a nonzero vector u ∈ C2n such that

H(σ)u = ηiu. (4.1)

If we partition u into vectors u1, u2 ∈ Cn, (4.1) can be expressed as

 A −σIn

σIn −A∗


 u1

u2

 = ηi

 u1

u2

 (4.2)

By simple calculations, (4.2) yields

(A− ηiIn)u1 = σu2, and

(A− ηiIn)∗u2 = σu1,
(4.3)

implying that σ is a singular value of (A − ηiIn). So, for some integer k ∈ [1, n] we

have σ = σk(A− ηiIn) ≥ σmin(A− ηiIn) ≥ minη σmin(A− ηiIn) = β(A).
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(⇐) Assume σ ≥ β(A). Now consider f(ω) = σmin(A− ωiIn), which is a continuous

positive real-valued function, and it is unbounded above as ω → ∞. Since σ ≥

β(A) ≥ 0, by continuity of f there exists η ∈ R such that f(η) = σ. That means σ is

a singular value of (A − ηiIn), that is there exist unit vectors u1, u2 ∈ Cn such that

(A− ηiIn)u1 = σu2, and (A− ηiIn)∗u2 = σu1. By reversing the steps that yield (4.3)

from (4.2), we deduce H(σ)u = ηiu where u =

 u1

u2

 ∈ C2n.

Corollary 4.1.2. There exists ω ∈ R such that iω ∈ Λ(H(σ)) if and only if σk(A−

iωIn) = σ for some k ∈ [1, n].

The Bisection Algorithm is simply based on Theorem 4.1.1. It uses naive lower

and upper bounds, namely β(A) ≥ 0 and β(A) ≤ 1
2‖A+A∗‖2, respectively

Algorithm 1 Bisection Algorithm

1: INPUT: A ∈ Cn×n stable matrix, desired tolerance:ε > 0
2: Initialization: α← 0, and γ ← 1

2‖A+A∗‖2
3: σ ←

√
γmax(ε, α)

4: While γ > 10 max(ε, α) do
5: loop
6: if H(σ) has an eigenvalue with zero real part then
7: γ ← σ
8: else
9: α← σ

10: end if
11: end loop
12: OUTPUT α, γ such that β(A) ∈ [α, γ].

Algorithm 1 starts with these naive bounds α = 0 and γ = 1
2‖A+A∗‖2 initially.

Then it chooses a point σ ∈ (α, γ). By using Theorem 4.1.1, it updates either α or

γ. Finding the eigenvalues of H(σ) is the most expensive computational step above.

On exit, it returns σ which is an approximation for the distance to instability.
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4.1.2 Boyd and Balakrisnan’s Method

Originally, Boyd and Balakrishnan’s method was used to compute the H∞-norm of

a given transfer function. However, by simple modification, it can be adopted to

compute the distance to instability of a given stable matrix A ∈ Cn×n.

The Boyd and Balakrishnan method is simply based on the Byers’ results specif-

ically Corollary 4.1.2, level sets and frequency intervals. It finds all pure imaginary

eigenvalues of H(σ). Let us label these eigenvalues as iλ1, iλ2, . . . , iλk such that

λ1 ≥ λ2 ≥ . . . ≥ λk. By Corollary 4.1.2 these imaginary eigenvalues would yield all λ

such that σ = σmin(A−λiIn). Then the algorithm determines the frequency intervals

I1, I2, . . . , I` in which f(λ) = σmin(A − λiIn) ≤ σ. The next estimate for β(A) is

given by

σ = min
j=1,...,`

σmin(A− sjiIn)

where sj is the midpoint of the interval Ij .

Algorithm 2 Boyd and Balakrishnan Algorithm

1: INPUT: A ∈ Cn×n stable matrix, desired tolerance:ε > 0
2: Initialization: σ ← 1

2‖A+A∗‖2
3: Compute all pure imaginary eigenvalues iλ1, iλ2, . . . , iλk of H(σ)

where λ1 ≥ λ2 ≥ . . . ≥ λk.
4: Find all frequency interval I1, I2, . . . , I` in which σmin(A− λiIn) ≤ σ.
5: Define sj as the midpoint of Ij for j = 1, . . . , `
6: Update σ = minj=1,...,` σmin(A− sjiIn)− ε
7: Repeat step 3-7 until convergence ( Terminate if no such λ is found at step 3)
8: OUTPUT σ ∈ [β(A)− ε, β(A)]

The Boyd and Balakrishnan algorithm converges quadratically, however it has

some disadvantages. At each step, as in Byers’ Algorithm, it needs to solve a 2n× 2n

eigenvalue problem. Also, it needs to solve singular value decompositions for n × n

matrices to determine σ. As n gets larger, these calculations become expensive. He

and Watson’s [9] algorithm attempts to reduce the cost of 2n×2n eigenvalue problem

by using inverse power iteration, and their algorithm works efficiently especially for
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sparse matrices.

4.1.3 Freitag and Spence’s Method

Freitag and Spence have recently devised a new quadratically convergent algorithm

[26]. A function h, seemingly not connected to f(ω) = σmin(A−ωiIn), will be derived

in this section such that its globally minimal value is the distance to instability.

Newton’s method is used to determine a locally optimal solution of h. The converged

local minimizer will be checked to see whether it is indeed a global minimizer by

means of Theorem 4.1.1. If it is not a global minimizer then a new initial point will

be determined without any significant work.

The rest of this section provides a brief description of the algorithm. The algorithm

is based on the following observation. Suppose ω∗ is a local minimizer of f(ω) =

σmin(A−ωiIn) and σ∗ = σmin(A−ωiIn). Then typically H(σ∗) has iω∗ as a multiple

defective eigenvalue, and H(σ) does not have any imaginary eigenvalue for σ < σ∗

provided σ∗ is the globally minimal value. Let σ∗ denote the smallest σ such that

H(σ) has a pure imaginary eigenvalue. Denote this imaginary eigenvalue with iλ∗

and associated the right eigenvector x. Assume that iλ∗ is a defective eigenvalue with

algebraic multiplicity two.

Then it can be shown that H(σ∗)− iλ∗ Jc

c∗ 0

 where J =

 0 In

−In 0


is nonsingular for all c ∈ Cn such that c∗x 6= 0. For the proof we refer to [26].

Therefore the linear system

M(σ, λ) :=

 H(σ)− iλ Jc

c∗ 0



 x

h

 =

 0

1

 (4.4)
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has a unique solution near (σ∗, λ∗). Observe that x and h are dependent on λ and σ.

Indeed by Cramer’s Rule

h(σ, λ) =
det(H(σ)− iλ)

det(M(σ, λ))

implying

h(σ, λ) = 0⇔ det(H(σ)− iλ) = 0

Specifically, h(σ∗, λ∗) = 0. Furthermore, under the assumptions that (i) iλ∗ is a

defective eigenvalue, (ii) c ∈ Cn is such that c∗x 6= 0, and (iii) A is a stable matrix, it

can be deduced that hλ(σ∗, λ∗) = 0.

Let

g(σ, λ) :=

 h(σ, λ)

hλ(σ, λ)

 ,
then (σ∗, λ∗) is a root of g(σ, λ). Since we intend to use Newton’s Method to find a

root of g(σ, λ), each iteration of Newton’s method requires the solution p of the linear

system g′(σ, λ)p = −g(σ, λ). Therefore we need to evaluate g(σ, λ) and its Jacobian

g′(σ, λ) =

 hσ(σ, λ) hλ(σ, λ)

hλσ(σ, λ) hλλ(σ, λ)

 .
The function values g(σ, λ) and its derivatives can be constructed by the following

steps. All these expressions can be obtained by differentiating (4.4) repeatedly.

i) The function values x(σ, λ), h(σ, λ) can be found by solving

M(σ, λ)

 x

h

 =

 0

1

 .
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ii) The derivatives with respect to λ xλ(σ, λ), hλ(σ, λ) can be found by solving

M(σ, λ)

 xλ

hλ

 =

 ix

0

 .

iii) The derivatives with respect to λ xσ(σ, λ), hσ(σ, λ) can be found by solving

M(σ, λ)

 xσ

hσ

 =

 Jx

0

 .

iv) The second derivatives with respect to λ xλλ(σ, λ), hλλ(σ, λ) can be found by

solving

M(σ, λ)

 xλλ

hλλ

 =

 2ixλ

0

 .
v) The second derivatives with respect to σ xλσ(σ, λ), hλσ(σ, λ) can be found by

solving

M(σ, λ)

 xλσ

hλσ

 =

 Jxλ + ixσ

0

 .
Note also that it can be shown that f(σ, λ) satisfying (4.4) is a real for all σ, λ ∈ R.

Therefore our problem is a real root finding problem.

The computation of an LU-factorization of the (2n+ 1)× (2n+ 1) matrix M(σ, λ)

requires 16
3 n

3 flops, and this dominates the work needed for forward and back sub-

stitutions. If we need m Newton steps for convergence, then the algorithm requires

m16
3 n

3 flops in addition to the work to solve 2n× 2n eigenvalue problems.
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Algorithm 3 Freitag and Spence Algorithm

1: INPUT: Initial points (σ0, λ0), c ∈ C such that M(σ0, λ0) is nonsingular, desired
tolerance ε > 0 and maximum number of iterations maxiter ∈ Z+

2: k ← 0
3: While { desired accuracy is satisfied and k ≤ maxiter } do
4: loop
5: [Lk, Uk]← LU − factorization of M(σk, λk)

6: (xk, hk)←Solve LkUk

[
x
h

]
=

[
0
1

]
by forward and back substitution

7: (xkλ, h
k
λ)←Solve LkUk

[
xλ
hλ

]
=

[
ixk

0

]
by forward and back substitution

8: gk ←
[
hk

hkλ

]
9: (xkσ, h

k
σ)←Solve LkUk

[
xσ
hσ

]
=

[
Jxk

0

]
by forward and back substitution

10: (xkλλ, h
k
λλ)←Solve LkUk

[
xλλ
hλλ

]
=

[
2ixkλ

0

]
by forward and back substitution

11: (xkλσ, h
k
λσ)←Solve LkUk

[
xλσ
hλσ

]
=

[
Jxkλ + ixkσ

0

]
by forward and back substi-

tution

12: Gk ←
[
hkσ hkλ
hkλσ hkλλ

]
13: pk ← −(Gk)\gk
14: (σk+1, λk+1)← (σk, λk) + pk
15: k ← k + 1.
16: end loop
17: if H(σk(1− ε)) does have a pure imaginary eigenvalue then
18: GO TO step 2
19: else
20: return σ∗ ← σk
21: end if
22: OUTPUT (σ∗, λ∗) where β(A) ∈ [σk(1− ε), σk].
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4.2 Distance to Uncontrollability

In this section we present Byers’ method [38], which constructs one dimensional and

two dimensional grids to minimize σmin ([A− λIn, B]), Gu’s bisection algorithm [31],

which is the first algorithm that computes the globally minimal value of σmin([A −

λIn, B]) within a factor of two without depending on a grid, Burke, Lewis and

Overton’s trisection algorithm [21], which computes µ(A,B) to any desired precision,

and Gu, Mengi, Overton, Xia and Zhu’s algorithm[30], which uses inverse iteration

and shift-and-invert preconditioned Arnoldi to reduce the complexity of the trisection

algorithm.

4.2.1 Byers’ Method

i) Algorithm based on two dimensional optimization problem: Distance to

uncontrollability is a nonconvex global eigenvalue optimization problem of the form

min
λ
f(λ) where f(λ) := σmin ([A− λIn, B]) .

Byers’ method is a grid-based algorithm. It evaluates f(λ) so many times so that it

needs an efficient way for these function evaluations. Observe that for any unitary

matrix Q ∈ Cn×n, we have

σmin ([A− λIn, B]) = σmin

Q∗[A− λIn, B]

 Q 0

0 In


 = σmin ([Q∗AQ− λIn, Q∗B]) .

Therefore Byers’ algorithm initially computes a Hessenberg factorization of A. Let

Ã = Q∗AQ be Hessenberg and B̃ = Q∗B, then unitary matrices U, V in terms of

Givens’ rotators can be constructed at a cost of O(n2m) such that U [Ã−λIn, B̃]V =

[R, 0] is upper triangular. Therefore evaluating f(λ) costs O(n2m) after finding Q

initially as described above.
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Instead of searching all complex plane, we will search for λ, which is an estimation

to a global minimizer of f(λ), over |λ| ≤ 2(‖[A B]‖2). This observation is a direct

corollary of Wielandt-Hoffman theorem applied to the singular value decomposition

of [A− λIn, B]. We divide the region into squares with side-lengths equal to ε
√

2 to

satisfy ε accuracy. Since the function is Lipschitz continuous with Lipschitz constant

one, the difference between f(λ) and f(λ+δλ) cannot exceed |δλ|. Consequently, it is

sufficient to evaluate the function only at the grid points. The prescribed ε-accuracy

is ensured as the distance of the global minimizer to one of the grid-points is ε or

smaller. Unfortunately, this requires too many evaluations of f(λ), e.g., for ε = 10−3

we need 106

2 evaluations. Even though this method is reliable, the number of function

evaluations needs to be reduced.

Let

g(z) := λmin

[A− zIn B]

 A∗ − z̄In

B∗


 .

Rellich’s work shows that g(z) is analytic everywhere except at a discrete set of

values of z, and the second derivative satisfies |g′′(z)| ≤ 2 whenever the function is

analytic. Let h(z) be the quadratic function interpolating g(z) at z1, z2, z3 ∈ C. If z

is inside the simplex with vertices z1, z2, z3, then it can be shown that g2(z) ≥ h(z),

implying minz g(z) ≥
√

minz h(z). By this action we can construct a lower bound

for minz g(z) at every step efficiently, since evaluating the right hand side is a trivial

quadratic programming problem.

Let S denote the set of defined simplices, and `S denote a lower bound for minz g(z)

over a given simplex S. The algorithm keeps a set of simplices which may contain the

global minimizer of g. An upper bound for the distance to uncontrollability is given

by the square root of the smallest value of g(z) over all defined vertices. Also, for

each simplex, the algorithm finds a lower bound `S , and discards the simplices which

cannot contain a global minimizer, i.e., its lower bound `S is greater than the upper
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bound provided by the function values. The feasible simplices are subdivided until

the upper bound and lower bound are within the desired tolerance.

Algorithm 4 Two dimensional Algorithm

1: INPUT: A ∈ Cn×n, B ∈ Cn×m, desired tolerance ε > 0
2: Initialization: z ← 2‖[A,B]‖2; S← {(−z− iz,−z+ iz, z+ iz), (−z− iz, z− iz, z+
iz)}; lb = {`S : S ∈ S}; ub = min{g(z), g(zi), g(−zi), g(−z)}

3: While ub− lb > ε do
4: loop
5: Define T ← {S ∈ S : `S ≤ ub};
6: v ← mins∈T g(ws), where ws is the center of the simplex S;
7: ub← min{v, ub};
8: U ← {S ∈ T : `S ≤ ub};
9: S← { divide all S ∈ U into three by introducing the vertex wS};

10: Calculate `S for all simplices in S.
11: lb ← min{`S : S ∈ S};
12: end loop
13: OUTPUT lb, ub ∈ R such that

√
ub ≥ µ(A,B) ≥

√
lb with ub− lb ≥ ε.

Observe that subdivisions at an iteration cost only O(n2m) × number of simplices.

However long and thin simplices may yield numerical problems. Also it is hard to

predict the shape of the simplices beforehand.

ii) Algorithm based on one dimensional optimization problem: We have a

two dimensional optimization problem of the form

min
x,y

σmin ([A− (x+ iy)In, B]) .

Furthermore our feasible region F = {(x, y) : x, y ≤ 2‖[A,B]‖2} is bounded meaning

min
x,y

σmin ([A− (x+ iy)In, B]) = min
x

min
y
σmin ([A− (x+ iy)In, B]) .

In what follows we use the notation h1(x) := miny σmin ([A− (x+ iy)In, B]) and

µ(A,B) := minx h1(x).
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Theorem 4.2.1. Let A ∈ Cn×n and B ∈ Cn×m. For all σ > 0, the inequality σ ≥

µ(A,B) holds if and only if there exist x, y ∈ R such that det(G−σIn−xK−iyL) = 0

where

G =


0 0 A∗

0 0 B∗

A B 0

, K =


0 0 In

0 0mm 0

In 0 0

, and L =


0 0 −In

0 0mm 0

In 0 0


The proof of Theorem 4.2.1 follows by rearranging det(G− σIn − xK − iyL) = 0

so that

det




0 0 (A− λIn)∗

0 0 B∗

(A− λIn) B 0

− σIn
 = 0

where λ = x + iy. For any x ∈ R and σ ∈ R+, this theorem also implies that

σ > h1(x) if and only if (G − σIn − xK) − λL has a pure imaginary generalized

eigenvalue. The function h1(x) can be evaluated based on this observation by means of

a bisection method. Unfortunately, the solution of the generalized eigenvalue problem

costs O(n3), and bisection method is not meant for the calculation of h1(x) with high

accuracy. A helpful observation is that we can use a modified version of the Boyd and

Balakrishnan method to evaluate h1(x) based on extracting the imaginary eigenvalues

of the pencil L(λ) := (G−σIn−xK)−λL. Still the method is too expensive, therefore

interpolation techniques are used in the two-dimensional case. Specifically, the facts

∣∣∣∣d(h1(x)2)

dx

∣∣∣∣ ≤ 1,

∣∣∣∣d2(h1(x)2)

dx2

∣∣∣∣ ≤ 2

are exploited. It follows from these facts that if f(x) = a + bx + cx2 interpolates

h1(x)2 at two points x1, x2 such that x1 < x2, then h1(x)2 ≥ f(x) for all x ∈ [x1, x2].

Algorithm 5 below keeps a set of intervals each of which may contain a global
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minimizer of h1, a lower bound for each of these intervals, a lower bound (lb) and a

upper bound (ub) for the function h1(x).

Algorithm 5 One dimensional Byers’ Algorithm

1: INPUT: A ∈ Cn×n, B ∈ Cn×m desired tolerance: ε > 0
2: Initialization: z ← 2‖[A,B]‖2; S← {[−z, z]}; lb = 0; ub = min{h1(−z), h1(z)}
3: While ub− lb > ε do
4: loop
5: U ← {l ∈ S : `l ≤ ub};
6: v ← minl∈U h1(ωl) where ωl is the midpoint of the lth interval;
7: ub← min{ub, v};
8: S =

{[
al,

al+bl
2

]
,
[
al+bl

2 , bl

]
: ∀[al, bl] ∈ U

}
;

9: calculate `l for each l ∈ S;
10: lb← min{`l : l ∈ S};
11: end loop
12: OUTPUT lb, ub ∈ R such that ub ≥ µ(A,B) ≥ lb with ub− lb ≤ ε.

Two algorithms mentioned above due to Byers are expensive. On the other hand,

they give approximate values for µ(A,B) with any desired accuracy.

4.2.2 Gu’s bisection Method

Gu presented a quadratically convergent algorithm based on generalized eigenvalue

problems that does not utilize a grid. Consider the objective function

f(x, y) := σmin([A− (x+ iy)In, B])

again such that µ(A,B) = minx,y f(x, y).

Theorem 4.2.2 (Gu). Let σ > µ(A,B). Then there exist x, y such that

f(x, y) = f(x+ η, y) = σ (4.5)

for all η ∈ (0, 2(σ − µ(A,B))].

Next we will outline the derivation of a generalized eigenvalue problem such that
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x is a real eigenvalue of this problem, if there exists (x, y) satisfying (4.5). For a

given x it can be shown that if f(x, y) = σ for some y, then iy is a pure imaginary

eigenvalue of a pencil L(λ) := A(σ, x) − λB(σ, x). Thus to check the existence of a

pair (x, y) satisfying (4.5) in Theorem 4.2.2 we need to determine whether two pencils

A(σ, x) − λB(σ, x) and A(σ, x + η) − λB(σ, x + η) share a common pure imaginary

eigenvalue. Now suppose that

A(σ, x)v1 = iyB(σ, x) (4.6)

A(σ, x+ η)v1 = iyB(σ, x+ η) (4.7)

for some nonzero v1, v2. Then the matrix equation

A(σ, x)XB(σ, x+ η)− B(σ, x)XA(σ, x+ η) = 0 (4.8)

must have a nonzero solution

X =

 X11 X12

X21 X22

 ∈ R2n×2n.

By vectorizing the matrix equation above an eigenvalue problem of the form Cu =

xDu of size 2n2 × 2n2 can be obtained. The pencil depends on σ as well as η. In

while control of the algorithm, we set η to a small positive number, then we check

if C − λD has a real eigenvalue σ. If it does, we will check whether the two pencils

A(σ, x)−λB(σ, x) and A(σ, x+η)−λB(σ, x+η) share a common imaginary eigenvalue.

If they have a common imaginary eigenvalue, then there exist x, y satisfies equation

(4.5), which implies µ(A,B) ≤ σ. On the other hand if there is no such pair, then

η > 2(σ− µ(A,B). This implies µ(A,B) > σ− η/2. By using this fact, we will halve

σ values repeatedly. Observe that, at termination, µ(A,B) satisfies the following
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inequality

σ − η/2 < µ(A,B) ≤ 2σ.

One needs to set η sufficiently small to have higher precision. Unfortunately, this

leads to numerical difficulties. For example, the comparison of imaginary eigenvalues

of two pencils mentioned above, cannot be carried out without rounding errors.

Algorithm 6 Gu’s Algorithm

1: INPUT: A ∈ Cn×n, B ∈ Cn×m
2: Initialization: σ ← σmin ([A,B])
3: calculate a pair of real numbers (x∗, y∗) and η by using Gu’s verification scheme.
4: While Gu’s verification scheme succeeds do
5: loop
6: σ ← σ

2
7: end loop
8: OUTPUT σ ∈ R such that σ − η

2 < µ(A,B) ≤ 2σ.

At each iteration while-control requires the solution of a 2n2 × 2n2 eigenvalue

problem. The efficiency may be improved by benefitting from the sparse matrix

computations and focusing only on the real eigenvalues of the pencil C − λD as we

shall see in Section 4.2.4.

4.2.3 Burke, Lewis and Overton’s Trisection Method

This section presents trisection algorithm, which is a variant of Gu’s algorithm. In-

stead of using the midpoints the trisection method divides an interval into three and

uses the one-third and two-third of the interval as the checkpoints.

The trisection algorithm starts with an upper bound (U) and a lower bound (L)

on the distance to uncontrollability of a pair (A,B). At each iteration, two quantities

are evaluated; δ1 is the one-third of the interval, δ2 is the two-third of the interval.

Gu’s verification scheme is applied with δ = δ1, and η = 2(δ1 − δ2). Theorem 4.2.2

implies that, if a pair (x, y) satisfying (4.5) exists for δ = δ1, then µ(A,B) ≤ δ1.

On the other hand, when no such pair exists, theinequality η > 2(δ1 − µ(A,B)) is
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satisfied. By simplifying this inequality, we have µ(A,B) > δ1 − η
2 = δ2. By using

these facts, one of L and U will be updated repeatedly. At each iteration, this update

reduces the feasible interval by a factor of 2/3.

Algorithm 7 Trisection Algorithm

1: INPUT: A ∈ Cn×n, B ∈ Cn×m, desired tolerance ε > 0
2: Initialization: L← 0 and U ← σmin ([A,B]);
3: While |U − L| > ε do
4: loop
5: δ1 ← L+ 2U−L3 and δ2 ← L+ U−L

3
6: perform Gu’s verification test which is a direct consequence of Theorem 4.2.2

given in Section 4.2.2.
7: if µ(A,B) ≤ δ1 then
8: U ← δ1;
9: end if

10: if µ(A,B) > δ2 then
11: L← δ2;
12: end if
13: end loop
14: OUTPUT L,U ∈ R such that L ≤ µ(A,B) ≤ U with |U − L| ≤ ε.

4.2.4 Gu, Mengi, Overton, Xia and Zhu’s Method

This paper presents a new fast verification scheme and two new real eigenvalue search-

ing strategies to reduce the cost of Gu’s method. In the new verification scheme it

is still necessary to find the real eigenvalues of 2n2 × 2n2 matrices. So if the QR-

algorithm is used, there would be no efficiency gain over Gu’s method. Therefore this

paper takes advantage of the preconditioned Arnoldi method, which costs O(n3), to

find the eigenvalue closest to a given real number. For extracting the real eigenvalues

“divide and conquer” and “adaptive progress” methods are suggested. It has been

proven that extracting all real eigenvalues costs O(n4) for the divide and conquer

method on average [30]. For the adaptive progress method, no such analysis has been

performed. But, in practice, it is observed that the divide and conquer method is

much more efficient.
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We first describe the new verification scheme in detail, then we will present the

adaptive progress and divide and conquer schemes for real eigenvalue extraction.

According to Theorem 4.2.2, there exist x, y such that σmin ([A− (x+ iy)In, B]) =

σmin ([A− (x+ η + iy)In, B]) = σ for all η ∈ (0, 2(σ − µ(A,B))) meaning

[A− (x+ iy)In, B]

 u1

v1

 = σz1 A∗ − (x− iy)In

B∗

 z1 = σ

 u1

v1

 ,
(4.9)

and

[A− (x+ η + iy)In, B]

 u2

v2

 = σz2 A∗ − (x+ η − iy)In

B∗

 z2 = σ

 u2

v2


(4.10)

for some u1, u2, z1, z2 ∈ Cn and v1, v2 ∈ Cm not all zero.

By noting that v1 = 1
σB
∗z1 and defining B̂ := BB∗−σIn

σ from (4.9) we have

H(x)

 z1

u1

 = iy

 z1

u1

 , where H(x) :=

 −(A∗ − xI) σIn

B̂ A− xIn

 .
Similarly, we can deduce from (4.10) that

H(x+ η)

 z2

u2

 = iy

 z2

u2

 .
Therefore H(x) and −H(x+ η)∗ share the common pure eigenvalue iy implying that
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the matrix equation

H(x)X +XH(x+ η)∗ = −(A∗ − xIn) σIn

B̂ A− xI

X +X

 −A∗ − (x+ η)In σIn

B̂ A− (x+ η)In


∗

= 0

(4.11)

has a nonzero solution. Let vec(X) denote the vector formed by stacking the columns

of X. We will benefit from the identity

vec(AXB) = (BT ⊗A)vec(X)

where ⊗ denotes the Kronecker product. By the partitioning

X =

 X11 X12

X21 X22

 ,
writing equation (4.11) in vectorial form, applying the identity above and rearranging,

we obtain



−A∗1 −AT2 σIn σIn 0

BT
2 −A∗1 + Ā2 0 σIn

B1 0 A1 −AT2 σIn

0 B1 BT
2 A1 + Ā2





vec(X11)

vec(X12)

vec(X21)

vec(X22)


=



−2xvec(X11)

0

0

−2xvec(X22)


where A1 = In⊗A, A2 = (A− ηIn)⊗ In, B1 = In⊗ B̂, B2 = B̂⊗ In and Ā2 denotes

the complex conjugate of A2 entry-wise.

Eliminating vec(X12) and vec(X21) in the equation above yields the eigenvalue

problem

Av = xv, where v =

 vec(X11)

vec(X22)

 (4.12)
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and

A = 1
2

 A∗1 +A2 0

0 A1 + Ā2

−
1
2


 −σIn −σIn

B1 BT
2


 −A∗1 + Ā2 0

0 A1 +AT2


−1  BT

2 σIn

B1 σIn


 .

To summarize we deduce the following; if there exists (x, y) satisfying (4.5) in

Theorem 4.2.2, then A must have x as a real eigenvalue. For each real eigenvalue x

of A, we also need to check whether H(x) and H(x + η) have the same imaginary

eigenvalue in order to ensure (4.5) in Theorem 4.2.2. The trisection algorithm can be

applied based on this numerical verification. The real innovative idea in this algorithm

is the efficient extraction of the real eigenvalues of A as described next.

By using the direct Sylvester equation solvers, for instance the one in [40], and

the inverse iteration one can compute the eigenvalue of A closest to any σ ∈ C at a

cost of O(n3). This is due to the special structure of A, specifically due to the fact

that it is derived from a Sylvester equation of size 2n× 2n. The details are presented

in [30]. The algorithms that extract the real eigenvalues of A use this scheme for

computing the eigenvalue closest to σ ∈ C as a basic block. Two algorithms, an

adaptive progress and a divide and conquer algorithm, are presented below for real

eigenvalue extraction.

Adaptive Progress: We assume that a positive number such that

d ≤ min
λi,λj are distinct

|λi − λj |

is known a priori. Also, we assume that a bound D exists such that all real eigen-

values lie in [−D,D]. The algorithm starts with the rightmost point ν = D as a

shift. By using the inverse iteration the eigenvalue λ closest to ν can be found. If
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λ is real and if it is an eigenvalue that is discovered by the algorithm before, then

there is no real eigenvalue in (λ − d, λ] and (ν − |λ − ν|, ν], therefore the new shift

can be chosen as ν = ν −max{|λ − ν|, d − |λ − ν|}. If it is real and not discovered,

the updated shift will be λ − d. Finally, if λ is not real, there are no eigenvalues

inside two circles, centered at ν and λ with radius |λ− ν| and d, respectively. In this

case ν is set to be the left most intersection point of these two circles with the real line.

Algorithm 8 Adaptive Progress

1: INPUT: A ∈ Cn×n, D ∈ R (the upper bound for the real eigenvalues), d ∈ R
(the distance between two closest eigenvalues)

2: Initialization: ν ← D, Λ← {};
3: While ν ≥ −D do
4: loop
5: Find the eigenvalue λ closest to ν by using the inverse iteration.
6: if λ is real and discovered then
7: ν ← ν −max{|λ− ν|, d− |λ− ν|};
8: end if
9: if λ is real and not discovered then

10: ν ← λ− d;
11: Λ← Λ ∪ {λ};
12: end if
13: if λ = α+ iβ where β is nonzero then
14: if d ≥ |β| then ν ← min{α−

√
d2 − β2, ν − |ν − λ|}, else ν ← ν − |ν − λ|;

15: end if
16: end loop
17: OUTPUT Λ, the set of all real eigenvalue of the given matrix A.

There are some disadvantages in using the adaptive progress algorithm. The first

one is that it requires d, the minimum distance between the two closest eigenvalues.

For reliability d needs to be set very small and this action increases the number of

iterations. The other disadvantage of the algorithm is the need for the upper bound

D on the real eigenvalues. Again for reliability, the upper bound must be chosen very

large, but this clearly degrades the efficiency.

Divide and Conquer: For this method, the distance d is not needed. However
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upper and lower bounds for the real eigenvalues are required. The basic idea of the

algorithm is that for a given interval find the eigenvalue closest to the midpoint of the

interval. Then divide the interval into three subintervals, where subintervals are of the

form undiscovered, discovered and undiscovered from left to the right. Then call the

algorithm again for the undiscovered parts. The discovered subinterval corresponds

to an interval where it is known that no eigenvalues lie. This recursion will continue

until the whole interval is completely discovered. It has been proven that extracting

all of the real eigenvalues requires O(n4) operations on average and O(n5) operations

in the worst case [30].

Algorithm 9 Divide and Conquer

1: INPUT:A ∈ Cn×n, L,U ∈ R (the lower and upper bound for the real eigenvalues,
respectively)

2: Initialization: ν ← U+L
2 ;

3: Find the eigenvalue λ closest to ν by using the inverse iteration.
4: if U − L < 2|λ− ν| then
5: interval contains no eigenvalue return { }.
6: else
7: Λleft ← call divide-and-conquer algorithm recursively with Ln, Un as the lower

and upper bounds where Ln = L and Un = ν − |λ− ν|;
8: Λright ← call divide-and-conquer algorithm recursively with lower bound Ln =

ν + |λν| and upper bound Un = U .
9: if λ is real then return (λ ∪ Λleft ∪ Λright) else return (Λleft ∪ Λright)

10: OUTPUT Λ, the set of all real eigenvalues of the matrix A.
11: end if

4.3 H∞ norm

In this section, we start with the bisection method by Boyd, Balakrishnan and

Kabamba [42]. (See [18] for a similar algorithm due to Robel). Then we present

Boyd and Balakrishnan’s quadratically convergent algorithm [43], which is widely-

used. Finally, we state how Bruinsma and Steinbuch’s Algorithm [33] chooses the
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starting point to speed up the convergence of the algorithm due to Boyd and Balakr-

ishnan.

4.3.1 Bisection method by Boyd, Balakrishnan and Kabamba

Recall that

‖H‖∞ = max
ω∈R

σmax (H(iω)))

where H(s) denotes the transfer function of the system.

We first establish a connection between the singular values of the transfer function

and the eigenvalues of the Hamiltonian matrix

Mγ =

 A 0

0 −AT

+

 B 0

0 −CT


 −D −γIn

γIn −DT


 C 0

0 BT


=

 A−BR−1DTC −γBR−1BT

γCTS−1C −aT + CTDR−1B


(4.13)

for a given γ > 0 where R = DTD − γ2In and S = DDT − γ2In.

The following theorem can be considered as a generalization of Theorem 4.1.1 for

the distance to instability.

Theorem 4.3.1. For any ω ∈ R, the scalar γ is a singular value of H(iω) if and

only if Mγ has the pure imaginary eigenvalue iω.

The next theorem enables us to check whether our estimates γk satisfy ‖H‖∞ ≥ γk

or ‖H‖∞ < γk.

Theorem 4.3.2. Let A be a stable matrix and γ > σmax(D). Then Mγ has at least

one pure imaginary eigenvalue if and only if ‖H‖∞ ≥ γ.

Proof. Note that σmax(D) = limt→∞ σmax(H(it)). Suppose ‖H‖∞ ≥ γ > σmax(D).

By the continuity of σmax(H(iω)), for all γ ∈ (σmax(D), ‖H‖∞] there must exists an
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ω such that σmax(H(iω)) = γ. Now by Theorem 4.3.1 Mγ has the pure imaginary

eigenvalue iω.

Conversely if Mγ has a pure imaginary eigenvalue iω, then by Theorem 4.3.1

‖H‖∞ ≥ σmax(H(iω)) ≥ γ.

We will use the bounds for the H∞-norm of the transfer function derived by Enns

[11] and Glover [22] given by

lb = max{σmax(D), σH1}, (4.14)

ub = σmax(D) + 2
∑

i σHi (4.15)

where σHi denotes the Hankel singular values of the system {A,B,C,D}, and σH1

denotes the largest Hankel singular value.

The bisection Algorithm is given below. Observe that, at termination γlb+γub
2 is

guaranteed to approximate the H∞-norm of the transfer function within a relative

accuracy of ε. Unfortunately, the algorithm converges linearly, and as n gets larger,

it is expensive to evaluate the eigenvalues of Mγ as well as the initial bounds.

Algorithm 10 Bisection Algorithm for ‖H‖∞-norm

1: INPUT: A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m and the desired
tolerance ε > 0

2: Initialization: γlb ← lb from equation (4.14) and γub ← ub from equation (4.15);
3: repeat
4: γ ← γlb+γub

2 ;
5: if Mγ has at least one pure imaginary eigenvalue then
6: γlb ← γ;
7: else
8: γub ← γ;
9: end if

10: until(γub − γlb ≤ 2εγlb)
11: OUTPUT γlb and γub satisfying γub−γlb

2γlb
≤ ε.
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4.3.2 Boyd and Balakrishnan Method

The algorithm is tailored based on Theorem 4.3.1. Let iω1, . . . , iωr denote the pure

imaginary eigenvalues of Mγ . Then we can determine the frequency intervals Ik for

k = 1, . . . , ` where σmax(H(iω)) > γ, ∀ω ∈ Ik. By Theorem 4.3.1 the set {ω1, . . . , ωr}

is a superset of the set of points satisfying σmax(H(iω)) = σ. Specifically if ω1, ω2

denote two consecutive ω values such that σmax(H(iω)) = γ, by checking whether

σmax

(
H

(
i
(ω1 + ω2)

2

))
> σ

we can decide whether [ω1, ω2] is one of those frequency intervals. We will define the

new value of γ by γ := maxk=1,...,` σmax(H(iω̂k)) where ω̂k is the midpoint of Ik.

Algorithm 11 Boyd and Balakrishnan Algorithm

1: INPUT: A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m and the desired
tolerance ε > 0

2: Initialization: γ ← σmax(D);
3: repeat
4: find the frequency interval I1, . . . , I` in which σmax(H(iω)) > γ(1 + ε).
5: if ` > 0 then
6: ω̂k ← midpoints of Ik for k = 1, . . . , `;
7: γ ← maxk=1,...,` σmax(H(iω̂k))
8: end if
9: until(` = 0)

10: OUTPUT γ such that γ ≤ ‖H‖∞ ≤ γ(1 + ε).

Normally lower bound for γ is chosen as σmax(D), which is very cheap to compute.

However one can prefer the lower bound given in (4.14). On the other hand, compu-

tation of the Hankel singular values requires the solution of two Lyapunov equations

with dimension n, which is rather expensive. Many systems attain their ‖H‖∞-norm

at frequency ω = 0. One reasonable choice suggested by Bruinsma and Steinbuch is

γ = max{σmax(H(0)), σmax(D), σmax(H(iωp))} (4.16)



CHAPTER 4. EXISTING NUMERICAL ALGORITHMS 56

where ωp = |λi| and λi is a pole of H(s) satisfying λi = arg max
∣∣∣ Im(λi)
Re(λi)

1
|λi|

∣∣∣. Bruinsma

and Steinbuch’s method is the same as Algorithm 11, but with the initial guess for γ

given by (4.16). This initialization reduces the number of function evaluations.

4.4 Numerical Radius

The numerical radius of a matrix A ∈ Cn×n can be posed as the eigenvalue optimiza-

tion problem

r(A) = λmax(H(Aeiθ)),

where H(A) = (A + A∗)/2. Here we present level-set ideas for the computation of

the numerical radius. Specifically this section concerns an algorithm due to He and

Watson and a modified Boyd and Balakrishnan method.

4.4.1 He and Watson Algorithm

In this section we give the steps of a simple iterative algorithm, which we call simple

iteration, and a corollary which is necessary to describe the algorithm in detail.

Simple iteration: Let z0 be an initial nonzero complex vector. For k = 1, 2, . . .,

define ωk−1 := z∗k−1Azk−1, and an zk as

γkzk = ωk−1A
∗zk−1 + w̄k−1Azk−1

where γk is such that ‖zk‖ = 1. It has been shown by Watson that this iteration

will converge to a locally maximal value of f(θ) := λmax

(
H(Aeiθ)

)
. However, it does

not converge to a globally maximal value in general. To check whether a converged

locally maximal value α is a globally maximal value the following theorem can be

used.

Theorem 4.4.1 (He and Watson). The pencil R(α) − λS has an eigenvalue on the
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unit circle or is singular if and only if H(Aeiθ) has α as one of its eigenvalues, where

R(α) =

 2αIn −A∗

In 0

 and S =

 A 0

0 In

 . (4.17)

Proof. First observe that

R(α)− eiθS =

 2αIn − eiθA −A∗

In −eiθIn

 .
This matrix is singular if and only if eiθA+e−iθA∗−2αIn is singular. Therefore there

exists a nonzero vector v such that (eiθA+ e−iθA∗− 2αIn)v = 0. By rearranging this

equation, we have (
eiθA+ e−iθA∗

2

)
v = αv, (4.18)

that is H(Aeiθ) has α as one of its eigenvalues.

In case α is only a locally optimal solution, a better estimate for r(A) is provided

by the next corollary.

Corollary 4.4.2. For a given α, let v be an eigenvector of the pencil R(α) − λS

associated with an eigenvalue η on the unit circle. If z is formed from the last n

components of v and normalized to be a unit vector, then |z∗Az| ≥ α.

Proof. Let [vT1 vT2 ]T be an eigenvector of R(α) − ηS where η is on the unit circle.

Clearly, v2 is nonzero, then by using the definitions of R(α), S and defining z := v2
‖v2‖ ,

we have

ηAz + η̄A∗z

2
= αz.

Multiplying from the left by z∗, we obtain |z∗Az| ≥ <(ηz∗Az) = α.

The algorithm summarized here is dominated by the QZ algorithm for calculating
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Algorithm 12 He and Watson

1: INPUT: A ∈ Rn×n and the desired tolerance ε > 0
2: Initialization: lb← 0, ub← ‖A‖1 and z0 is any complex vector;
3: While ub− lb > 2ε, do
4: z ← run simple iteration with the initial vector z0;
5: lb← max{lb, |z∗Az|};
6: Extract the unit eigenvalues of R(α)− λS for α = lb+ ε.
7: if (4.18) has no eigenvalue then
8: ub← lb+ ε; return
9: else

10: z0 ← last n components of an eigenvector of R(α)− λS associated with a unit
eigenvalue normalized to be a unit vector.

11: ub← |z∗0Az0|;
12: go to step 4
13: end if
14: OUTPUT lower bound lb for r(A) such that lb ≤ r(A) ≤ lb+ ε.

the eigenvalues of R(α)− λS which costs 368× n3 flops, and thus is quite expensive.

On the other hand, in most circumstances only one call to the QZ solver is required.

4.4.2 Modified Boyd and Balakrishnan Method

Thereom 4.4.1 provides the capability to find all θ such that f(θ) = λmax(H(Aeiθ)) =

α. Therefore the Boyd and Balakrishnan idea from the previous section to compute

the ‖H‖∞ is applicable. At the jth step, given an estimate rj for r(A), we find all θ

such that f(θ) = rj . Then the intervals Ijk such that

Ijk = {[akj , bkj ] : f(θ) > rj , where θ ∈ [akj , b
k
j ]}

can be determined. Next we evaluate f at the midpoints of these intervals, and set

rj+1 to the maximum value attained by f among these midpoints.

Algorithm 13 is an extension of the Boyd and Balakrishnan algorithm originally

introduced for the H∞-norm, thus a similar convergence analysis is valid. Specifically,

this algorithm converges quadratically to a global solution. On the other hand, finding



CHAPTER 4. EXISTING NUMERICAL ALGORITHMS 59

Algorithm 13 Modified Boyd and Balakrishnan Algorithm

1: INPUT: A ∈ Cn×n, and a desired tolerance ε
2: Initialization: j ← 0, φ0 ← [0] and r0 ← 0;
3: repeat
4: Find θ values such that f(θ) = rj .
5: Find the intervals Ijk for k = 1, . . . ,mj , where f(θ) > rj for all θ ∈ Ijk.

6: φj ← {φjk : k = 1, . . . ,mj} where φjk is the midpoint of Ijk;
7: rj+1 ← max{f(θ) : θ ∈ φj}
8: j ← j + 1
9: until (rj+1 − rj < ε)

10: OUTPUT rj an estimate for r(A).

the eigenvalues of the pencil R(α) + λS is still necessary. One can benefit from the

fact that R(α) + λS is symplectic, which implies that this problem can be reduced

to a Hamiltonian eigenvalue problem and solved by means of a structure preserving

algorithm respecting the Hamiltonian structure [34]. This reduces the computational

complexity slightly. More importantly, the unit eigenvalues can be extracted reliably

by exploiting the symplectic structure.



Chapter 5

Derivation of an Eigenvalue

Optimization Algorithm

This chapter derives generic one-dimensional and multi-dimensional algorithms for

the global solution of eigenvalue optimization problems, also described in [32]. We

also discuss how the algorithm can be implemented efficiently by exploiting the ob-

servations due to Breiman and Cutler [23].

5.1 One Dimensional Algorithm

We assume A(ε) : R→ Cn×n is a Hermitian, analyic matrix function. It was discussed

in Chapter 2 that the eigenvalues of such matrix functions can be ordered so that each

eigenvalue is an analytic function of ε. Thus ordering the eigenvalues of A(ε) from

largest to smallest causes these eigenvalue functions intersect each other at finitely

many isolated points on a finite interval. These intersection points do not violate the

continuity, but analyticity. On the other hand, piece-wise analyticity is preserved, but

the eigenvalue functions are not differentiable at these isolated points. Nevertheless,

for the sake of simplicity we assume that the eigenvalue function λ(ε) to be optimized

60
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is analytic everywhere. This is a reasonable assumption for many functions of interest.

For instance for a generic matrix A, the multiplicity of σmin(A − ωiIn) is one at all

ω ∈ R, similarly for λmax

(
Aeiθ+Ae−iθ

2

)
and for all θ ∈ [0, 2π].

We derive a quadratic model about a given xk ∈ R, which lies underneath the

objective eigenvalue function λ(ε). Due to the analyticity of λ(ε) we have

λ(x) = λ(xk) +

∫ x

xk

λ′(t) dt. (5.1)

As mentioned before we assume the knowledge of an upper bound γ on the second

derivatives satisfying ∣∣λ′′(x)
∣∣ ≤ γ ∀x ∈ R.

Consequently, for all t ∈ R we have

λ′(t) ≥ λ′(xk)− γ(t− xk). (5.2)

By substituting the lower bound given by (5.2) for λ′(t) in (5.1), we obtain the

following inequality

λ(x) ≥ λ(xk) +
∫ x
xk
λ′(xk)− γ(t− xk) dt

= λ(xk) + λ′(xk)(x− xk)− γ
2 (x− xk)2.

(5.3)

We conclude with

qk(x) := λ(xk) + λ′(xk)(x− xk)−
γ

2
(x− xk)2 ≤ λ(x) (5.4)

for all x ∈ R. More generally for piece-wise analytic and continuous eigenvalue

functions it is possible to extend the derivation above yielding piece-wise quadratic

models lying underneath the eigenvalue functions (see [32] for details). The algorithm
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largely depends on the piece-wise quadratic functions

Ms(x) := max
k=0,...,s

qk(x)

The outline of the algorithm is given below. Initially it constructs the two

quadratic models about the end points of a given interval [x, x] containing a global

minimizer. Their intersection point is the starting point x0 for the algorithm and

M0(x) := q0(x) is the initial quadratic model. The algorithm keeps track of a se-

quence {xk} of estimates for a global minimizer of λ(ε) as well as a sequence {Mk}

of piece-wise quadratic models. The point xk+1 is selected as a global minimizer of

Mk(x). At the kth iteration, a quadratic model qk+1(x) about xk+1 is constructed

and Mk+1(x) is set to the maximum of Mk(x) and qk+1(x). The algorithm termi-

nates whenever
∣∣minj=0,...,s λ(xj)−minx∈[x,x]Ms(x)

∣∣ is less than or equal to a given

tolerance.

Algorithm 14 One-dimensional Algorithm

1: INPUT: An analytic function λ(x), the bound γ on second derivatives, initial
box [x, x] and a desired tolerance ε

2: let x0 be the intersection of the quadratic models about x and x.
3: k ← 0;
4: repeat
5: xk+1 ← arg minx∈[x,x]Mk(x) and lb← minx∈[x,x]Mk(x);
6: ub← minj=0,...,k λ(xj);
7: Evaluate λ(xk+1) and λ′(xk+1).
8: qk+1 ← form the quadratic model about xk+1;
9: Mk+1(x)← max{Mk(x), qk+1(x)};

10: k ← k + 1;
11: until (ub− lb < ε)
12: OUTPUT lb and ub such that lb ≤ λ(x∗) ≤ ub with ub − lb ≤ ε, where x∗ is a

global minimizer of λ(x).

Evaluation of λ(x) at a given value xk+1 requires the solution of an n×n Hermitian

eigenvalue problem at each iteration. Once λ(xk+1), that is the eigenvalue and the

associated eigenvector, are evaluated, the derivative λ′(xk+1) can be evaluated without
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any significant work due to formula (2.13).

5.2 Multi-Dimensional Algorithm

Suppose A(ε) : Rd → Cn×n is Hermitian and an analytic function of ε. Then the

eigenvalues along any direction p can be ordered so that each eigenvalue is analytic

in the direction p. If the eigenvalues are sorted from largest to smallest, they are

continuous and piece-wise analytic along p. However, as in Section 5.1, for the sake of

simplicity we assume each sorted eigenvalue is analytic along any direction p. Again

this is a reasonable assumption for many eigenvalue functions of interest, for instance

for σmin([A − zI, B]) over z ∈ C as the corresponding eigenvalue functions do not

cross each other generically and therefore analytic along any direction. Extensions to

piece-wise analytic case are given in [32].

First, we derive the quadratic model about xk ∈ Rd which lie underneath the

objective function. Let x ∈ Rd and define φ(α) := λ(xk+αp) where p is the direction,

defined as p := (x−xk)
‖x−xk‖ , and λ is the eigenvalue function to be minimized that is

analytic along p.

Since λ is analytic along p, we have

λ(x) = λ(xk) +

∫ ‖x−xk‖
0

φ′(t)dt. (5.5)

As in Section 5.1, we assume the knowledge of a γ such that

∣∣φ′′(α)
∣∣ ≤ γ, ∀α ∈ R and ∀p ∈ Rd. (5.6)

Thus we have the inequality

φ′(t) ≥ φ′(0)− γt

holding for all t ∈ R. Substitute the last inequality in (5.5), and integrate the right-
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hand side of (5.5). Finally use the identity φ′(0) = ∇λ(xk)
T p = ∇λ(xk)

T x−xk
‖x−xk‖ to

get

qk(x) := λ(xk) +∇λ(xk)
T (x− xk)−

γ

2
‖x− xk‖2 ≤ λ(x). (5.7)

The algorithm in the multi-variate case (Algorithm 15) to solve the eigenvalue

optimization problem

min
x∈B

λ(x) (5.8)

with

B := B(x1, x1, . . . , xd, xd) := {x ∈ Rd : xj ∈ [xj , xj ] for j = 1, . . . , d} (5.9)

is the same as the univariate case described in Section 5.1

In the multi-variate algorithm a major computational difficulty is the solution of

the optimization problem

min
x∈B
Mk(x) := max

`=0,...,k
q`(x) (5.10)

at the kth iteration. Recall that xk+1 is chosen as the global minimizer of this problem.

This problem can equivalently be posed as k + 1 quadratic programs of the form

minimizex∈Rd qp(x)

subject to qp(x) ≥ q`(x), ` 6= p

xj ∈ [xj , xj ], j = 1, . . . , d

(5.11)

for p = 0, . . . , k. Observe that all the quadratic models have the same curvature,

which implies that all constraints above are linear. The solution is guaranteed to

be attained at one of the vertices. Unfortunately, since the quadratic models have

negative curvature, the problem is non-convex, i.e., there may be locally, but not
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globally, optimal solutions. Consequently, qp(x) needs to be evaluated at all ver-

tices of the feasible region. Suppose we have ` linear constraints (including the box

constraints), then we have at most

 `

d

 vertices. For higher dimensional case,

solving this quadratic problem is NP-hard as the number of vertices grows exponen-

tially. Currently, we have an implementation of the algorithm working efficiently in

the two-dimensional case.

Algorithm 15 Multidimensional Algorithm

1: INPUT: An eigenvalue function λ : Rd → R that is analytic along any direction
p ∈ Rd, a scalar γ > 0 that is an upper bound on |φ′′(α)| at all α and p ∈ Rd, a
set B given by (5.9), and a tolerance parameter ε > 0.

2: x0 ← arbitrary point from the box B;
3: M0(x)← q0(x) which is the quadratic model about x0.
4: k ← 0;
5: repeat
6: xk+1 ← arg minx∈BMk(x) and lb← minx∈BMk(x);
7: ub← minj=0,...,k λ(xj);
8: Evaluate λ(xk+1) and ∇λ(xk+1).
9: qk+1(x) := λ(xk+1) +∇λ(xk+1)

T (x− xk+1)− (γ/2)‖x− xk+1‖2;
10: Mk+1(x)← max{Mk(x), qk+1(x)};
11: k ← k + 1;
12: until (ub− lb < ε)
13: xbest ← arg minj=0,...,k−1 λ(xj);
14: Output: lb, ub, xbest such that lb ≤ λ(x∗) ≤ ub = λ(xbest) with ub − lb ≤ ε,

where x∗ is a global minimizer of λ(x).

Now we present the convergence proof of Algorithm 15 given in [32].

Theorem 5.2.1. Let {xk} be the sequence of iterates generated by Algorithm 15.

Every limit point of this sequence is a global minimizer of the problem minx∈B λ(x).

Notation for the proof

Let µ := maxx∈B ‖∇λ(x)‖ with the assumption 1/µ := +∞ if µ = 0. Also λ is analytic

along every line in Rd implying the existence of a scalar γ > 0 satisfying (5.6). Also

note that {lbk} is such that lbk := minx∈BMk(x) is a non-decreasing sequence of



CHAPTER 5. DERIVATIONOF AN EIGENVALUE OPTIMIZATION ALGORITHM66

lower bounds on λ∗ := minx∈B λ(x), while {ubk} is such that ubk := minj=0,...,k λ(xj)

is a non-increasing sequence of upper bounds on λ∗.

Proof. The sequence {xk} has at least one limit point x∗ ∈ B, since B is a compact set.

Without loss of generality we may assume that {xk} itself is a convergent sequence.

Let lb∗ denote the limit of the bounded nondecreasing sequence {lbk}. We note

lbk ≤ λ∗ ≤ λ(xk) for k ≥ 0 implying

lb∗ ≤ λ∗ ≤ λ(x∗). (5.12)

We claim indeed λ(x∗) = lb∗. We prove this claim by contradiction. Assume that

there exists a real number δ > 0 such that

λ(x∗) ≥ lb∗ + δ. (5.13)

meaning for some k1 ∈ N we have

λ(xk) ≥ lb∗ +
δ

2
, for all k ≥ k1. (5.14)

Since x∗ is the limit of the sequence {xk}, there exists k2 ∈ N that satisfies

‖xk′ − xk′′‖ < min

{√
δ

6γ
,
δ

12µ

}
, for all k′ ≥ k′′ ≥ k2. (5.15)

Let k∗ denote the maximum of k1 and k2. For each k ≥ k∗, it follows from the

definition of the functions Mk(x) that

Mk(xk+1) ≥ Mk∗(xk+1) ≥ qk∗(xk+1),

= λ(xk∗) +∇λ(xk∗)
T (xk+1 − xk∗)−

γ

2
‖xk+1 − xk∗‖2.
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By using the Cauchy-Schwarz inequality as well as inequalities (5.14) and (5.15) we

get the following

lbk+1 =Mk(xk+1) ≥ λ(xk∗)− ‖∇λ(x∗)‖‖xk+1 − xk∗‖ −
γ

2
‖xk+1 − xk∗‖2

≥
(
lb∗ +

δ

2

)
−
(
µ · δ

12µ

)
−
(
γ

2
· δ

6γ

)
= lb∗ +

δ

3
.

Since δ > 0, this contradicts our assumption that lb∗ is the limit of the non-decreasing

sequence {lbk}. Therefore, we have λ(x∗) < lb∗ + δ for all δ > 0, or equivalently

λ(x∗) ≤ lb∗. This combined with (5.12) yields λ(x∗) = lb∗ ≤ λ(x) for all x ∈ B.

Therefore, x∗ is a global minimizer of λ(x) over B.

5.3 The Deterministic Algorithm for Global Optimiza-

tion

The idea of using quadratic models of the form given by (5.7) was explored by Breiman

and Cutler in [23] in the context of global optimization. In particular they have

come up with remarkable observations for the solutions of the quadratic programs in

(5.11). Here we present some of their observations that would improve the efficiency

of Algorithm 15.

At the kth iteration Algorithm 15 solves k + 1 quadratic programs each of form

(5.11). Associated with each quadratic program there is a feasible region, which

is a polytope. Clearly these feasible regions are disjoint, and their union forms B.

Intuitively inside the feasible region for the jth quadratic model, this quadratic model

dominates the others, so the minimization ofMk(x) inside this region is same as the

minimization of qj(x). Figure 5.1 illustrates a possible partitioning of B into these

polytopes when k = 20. An efficient implementation of Algorithm 15 must update
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Figure 5.1: Polytope structure, k = 20

this polytope structure efficiently when a new quadratic model is added.

As shown in Figure 5.1 corresponding to a new quadratic model a new polytope

appears. Some previous vertices are contained inside this polytope, and are not

vertices anymore. These we call dead vertices. A dead vertex xD satisfies qk+1(xD) >

Mk(xD). We need to remove these dead vertices. Additionally we need to determine

the new vertices and their connections forming the boundary of the new polytope.

Finally we need to update the old polytopes adjacent to the new polytope (e.g., 11th,

9th, 5th, 13th, 18th regions in Figure 5.1).

At the kth step the minimum-valued vertex xk+1 ofMk(x) will be a dead vertex.

Additionally Breiman and Cutler established that the set of dead vertices at the kth

iteration is graph-connected. Therefore the set of dead vertices can be determined
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efficiently by starting from xk+1 and expanding to the adjacent vertices until vertices

that are not dead are reached. Additionally each new vertex of the new polytope

appears on the edge connecting a dead vertex to an adjacent vertex that is not dead.

This again is an observation due to Breiman and Cutler. The edges into these new

vertices also can be determined efficiently.



Chapter 6

Numerical Comparisons

We reserve this chapter for the numerical applications of Algorithm 15. Let us first

focus on the distance to instability problems. Specifically, we illustrate Algorithm 15

on matrices

An := Rn + iRn

where Rn is a random matrix with entries selected independently from a normal

distribution with zero mean and unit variance. If An is not a stable matrix, we

compute the eigenvalue decomposition and make the positive eigenvalues negative to

obtain a related stable matrix.

To apply Algorithm 15 we need a lower and an upper bound for a feasible interval

containing a global minimizer as well as an upper bound for the second derivatives

in absolute value. We assume that a global minimizer is contained in the interval

[−5, 5]. As for the bound on the second derivatives, we will use two which we nu-

merically observe as an upper bound for |f ′′(ω)| where f(ω) = σmin(A − iωIn). The

number of function evaluations by Algorithm 14 applied to calculate the distance to

instability for An for various n is presented in Table 6.1. The CPU times in seconds

are also provided in parenthesis. It can be observed that the asymptotic rate of con-

vergence appears to be linear, i.e., every two-decimal-digit accuracy requires about
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n / ε 10−4 10−6 10−8 10−10 10−12

100 37 (0.92) 55 (1.29) 72 (1.74) 83 (1.97) 100 (2.38)

400 45 (15.29) 64 (21.67) 80 (26.95) 96 (32.40) 114 (38.25)

800 43 (61.84) 57 (82.13) 69 (99.31) 81 (116.38) 90 (129.71)

Table 6.1: Number of function evaluations (or iterations) and cpu-times in seconds (in
parenthesis) of the one-dimensional algorithm on the random matrices An of various
sizes

n / ε 10−4 10−6 10−8 10−10

100 36 (0.87) 49 (0.98) 63 (1.25) 75 (1.52)

400 57 (15.17) 79 (19.77) 104 (26.01) 123 (29.99)

900 55 (96.66) 62 (111.46) 69 (122.47) 74 (132.31)

Table 6.2: Number of function evaluations (or iterations) and cpu-times in seconds
(in parenthesis) of the one-dimensional algorithm on the Poisson-random matrices Bn
of various sizes

fixed number of additional iterations for a given n in Table 6.1.

Secondly, we focus on the Crawford number. We illustrate Algorithm 14 on ma-

trices

Bn := Pn − iRn

of various sizes, where Pn is an n × n matrix obtained from a finite difference dis-

cretization of the Poisson operator. Here optimization needs to be performed on

[0, 2π]. We assume that the bound on the second derivative in absolute value is the 2-

norm of the associated matrix Bn. The number of function evaluations by Algorithm

14 applied to calculate the Crawford number for Bn for various n is listed in Table

6.2 together with the CPU times in seconds in parenthesis. The asymptotic rate of

convergence again appears to be linear.

Finally we apply Algorithm 15 to calculate the distance to defectiveness. We

illustrate Algorithm 15 on n×n tridiagonal matrices Tn for various n. In all examples

we set γ = 20. Also we assume that a global minimizer is contained in the box

[−1,−1]× [1, 1]. The inner minimization problems are solved by means of the secant

method. The number of function evaluations that the algorithm requires is given in
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n / ε 10−2 10−3 10−4

20 109 (34.05) 212 (61.74) 223 (67.08)

40 158 (153.06) 217 (212.07) 221 (220.29)

Table 6.3: Number of function evaluations (or iterations) and cpu-times in seconds
(in parenthesis) of Algorithm 15 for calculating the distance to defectiveness from
tridiagonal matrices of various sizes

Table 6.3. Again the CPU times are provided in parenthesis in the table.

For the two dimensional case, we use the mesh-adaptive version of the multi-

dimesional algorithm described in [32]. Instead of running the algorithm once on the

whole box, mesh-adaptive algorithm divides the initial box into smaller boxes, and

call the algorithm on each box. By this modification, the algorithm discards some

of the infeasible regions that do not contain a global minimizer efficiently. Also the

quadratic models capture the objective function much faster in smaller boxes. The

asymptotic rate of convergence cannot be interpreted directly, since the algorithm is

mesh-based.



Chapter 7

Conclusion

We presented a generic algorithm for the optimization of the eigenvalues of a Her-

mitian matrix function depending on its parameters analytically. Similar ideas were

explored in the general setting of global optimization by Breiman and Cutler, but,

to our knowledge, never considered in the context of eigenvalue optimization. The

convergence of the algorithm is given by Theorem 5.2.1. In practice we observe linear

convergence.

In the multi-dimensional case the algorithm requires the solutions of many quadratic

programs (i.e., optimization problems with quadratic objective functions and linear

constraints). It might be possible to solve these quadratic programs more efficiently by

incorporating the observations due to Breiman and Cutler concerning how to modify

the polytope structure when a new quadratic model is added.

The quadratic programs are NP-hard, but the solutions are guaranteed to be

attained at the vertices of the feasible regions. So far, we implemented the algorithm

to solve the global eigenvalue optimization problems in one and two dimensional

cases efficiently. In the near future, we will extend the implementation for higher

dimensional cases. For specific problems, we hope to derive naive bounds for second

derivatives and tight initial intervals containing global minimizers.
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