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ABSTRACT

In this thesis, we consider portfolio optimization problem in i.i.d. discrete-time markets
under two different scenarios, where the market is modeled by a sequence of price relative
vectors with log-normal distribution and with arbitrary discrete distributions. We provide
novel approaches for both of these scenarios and introduce optimal portfolio selection algo-
rithms that maximizes the expected cumulative wealth in i.i.d. markets with proportional
transaction costs.

In the first part, we study optimal investment in a financial market having a finite
number of assets from a signal processing perspective. We investigate how an investor
should distribute capital over these assets and when he should reallocate the distribution
of the funds over these assets to maximize the cumulative wealth over any investment
period. In particular, we introduce a portfolio selection algorithm that maximizes the
expected cumulative wealth in i.i.d. two-asset discrete-time markets where the market levies
proportional transaction costs in buying and selling stocks. We achieve this using “threshold
rebalanced portfolios”, where trading occurs only if the portfolio breaches certain thresholds.
Under the assumption that the price relative sequences have log-normal distribution from the
Black-Scholes model, we evaluate the expected wealth under proportional transaction costs
and find the threshold rebalanced portfolio that achieves the maximal expected cumulative
wealth over any investment period. Our derivations can be readily extended to markets
having more than two stocks, where these extensions are pointed out in the thesis. As
predicted from our derivations, we significantly improve the achieved wealth over portfolio
selection algorithms from the literature on historical data sets.

In the second part, we first construct portfolios that achieve the optimal expected growth
in i.i.d. discrete-time two-asset markets under proportional transaction costs. We then ex-
tend our analysis to cover markets having more than two stocks. The market is modeled
by a sequence of price relative vectors with arbitrary discrete distributions, which can also

be used to approximate a wide class of continuous distributions. To achieve the optimal
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growth, we use threshold portfolios, where we introduce a recursive update to calculate the
expected wealth. We then demonstrate that under the threshold rebalancing framework, the
achievable set of portfolios elegantly form an irreducible Markov chain under mild technical
conditions. We evaluate the corresponding stationary distribution of this Markov chain,
which provides a natural and efficient method to calculate the cumulative expected wealth.
Subsequently, the corresponding parameters are optimized yielding the growth optimal port-
folio under proportional transaction costs in i.i.d. discrete-time two-asset markets. As a
widely known financial problem, we next solve optimal portfolio selection in discrete-time
markets constructed by sampling continuous-time Brownian markets. For the case that the
underlying discrete distributions of the price relative vectors are unknown, we provide a
maximum likelihood estimator that is also incorporated in the optimization framework in

our simulations.



OZETCE

Bu tez ¢aligmasinda, bagimsiz 6zdegge dagilmig zamanda ayrik piyasalarda portfoy eniy-
ileme problemi piyasanin logaritmik Gauss dagilimina sahip ve gelisigiizel ayrik dagilima
sahip goreli fiyat vektorleri ile modellendigi senaryolar olmak tizere iki farkl senaryo tizerinde
incelenmektedir. Bu senaryolarin her ikisi i¢in yeni yaklagimlara yer verilmekte ve orantili
hareket masrafi bulunan bagimsiz 6zdesce dagilmig piyasalarda beklenen birikimli sermayeyi
enbiiyiiten portfoy secim algoritmalar: sunulmaktadir.

Ik olarak, sonlu sayida aktife sahip mali piyasalarda en iyi yatirim, isaret isleme bakusg
acisindan caligilmaktadir. Yatirimcinin birikimli sermayesini herhangi yatirim doneminde
enbiiylitmesi i¢in elindeki sermayesini aktifler tizerinde nasil dagitmasi gerektigi ve ne zaman
bu dagilimi yeniden tahsis etmesi gerektigi incelenmektedir. Ozellikle aktif alim ve satiminda
orantili hareket masrafi toplayan, bagimsiz 6zdesce dagilmig iki aktifli, zamanda ayrik
piyasalarda beklenen birikimli sermayeyi enbiiyiiten portfOy secim algoritmasi sunulmak-
tadir. Bu, alim-satimin yalnizca portfoy belirli esik degerlerini ihlal ettiginde gerceklestigi
“Egik Degerinde Yeniden Dengelenen Portfoyler” kullanilarak gergeklestirilmektedir. Goreli
fiyat dizilerinin Black-Scholes modelindeki logaritmik Gauss dagilimina sahip oldugu varsayimi
altinda orantili hareket masraflar1 géz 6niine alindiginda beklenen sermaye belirlenmekte ve
herhangi yatirim doneminde en iyi beklenen birikimli sermayeyi elde eden esik degerinde
yeniden dengelenen portfoy bulunmaktadir. Bu tezdeki tiiretmeler kolaylikla ikiden fazla
aktifi bulunan piyasalara genellenebilmekte ve bu genellemelere tezdeki gereken yerlerde yer
verilmektedir. Tiiretmelerden tahmin edildigi iizere ge¢mis veri kiimelerinde, literatiirdeki
portfoy secim algoritmalarina nazaran kazanilan sermayede 6énemli artig elde edilmektedir.

Ikinci boliimde ise, éncelikle orantilh hareket masrafi toplayan, bagimsiz ézdesce dagilmis
iki aktifli, zamanda ayrik piyasalarda beklenen birikimli sermayeyi enbiiyiiten portfoy ku-
rulmaktadir. Daha sonra bu analizler ikiden fazla aktifi bulunan piyasalar1 kapsayacak
sekilde genisletilmektedir. Piyasa genig bir stirekli dagilim smifin1 da yaklagiklamakta kul-

lanilabilen gelisigiizel ayrik dagilima sahip goreli fiyat vektor dizisi ile modellenmektedir. En
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iyi biiyiimeyi elde etmek icin esik degeri portfoyleri kullanilmakta ve beklenen sermayeyi
hesaplamak ic¢in bir 6zyineli glincelleme yontemi sunulmaktadir. Daha sonra esik degerinde
yeniden dengeleme yontemi gergevesinde, portfoylerin alabilecegi degerler kiimesinin iliml
teknik kogullar altinda bir indirgenemez Markov zinciri olugturdugu gosterilmektedir. Bu
Markov zincirine karsilik gelen duragan dagilim degerlendirilmekte ve beklenen birikimli
sermayenin hesaplanmasi icin dogal ve etkin bir yontem saglanmaktadir. Ardindan karsilik
gelen parametreler eniyilenmekte ve orantili hareket masrafi toplayan, bagimsiz 6zdesce
dagilmus iki aktifli, zamanda ayrik piyasalarda en iyi biiytimeli portfoy sunulmaktadir. Daha
sonra yaygin olarak bilinen bir finans problemi olan, zamanda siirekli Brown piyasalarinin
orneklenmesi ile olusturulan zamanda ayrik piyasalarda en iyi portféy secimi problemi
¢oziilmektedir. Goreli fiyat vektorlerinin baz alinan ayrik dagiliminin bilinmedigi durumlar
icin en biiytk olabilirlik kestirimi sunulmakta ve ayrica benzetimlerdeki eniyileme cercevesi

ile ilintilendirilmektedir.
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Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

Since the recent global crises have demonstrated the importance of sound financial mod-
eling and reliable data processing, financial applications have attracted a growing interest
from the signal processing community [30,36]. The financial markets produce vast amounts
of temporal data ranging from stock prices to interest rates, which make them ideal media
to apply signal processing methods. Furthermore, due to the integration of high perfor-
mance, low-latency computing resourses and the financial data collection infrastructures,
signal processing algorithms can be readily leveraged with full potential in financial stock
markets. This thesis focuses particularly on the portfolio selection problem, which is one the
most important financial applications and has already attracted substantial interest from
the signal processing community [2—4,43,44].

Determining the optimum portfolio and the best portfolio rebalancing strategy that
maximize the wealth in discrete-time markets with no transaction fees has been heavily
investigated in information theory [13,14], machine learning [20,39,47] and signal process-
ing [25-28] fields. Assuming that the portfolio rebalancings, i.e., adjustments by buying
and selling stocks, require no transaction fees and with some further mild assumptions on
the stock prices, the portfolio that achieves maximum wealth is shown to be a constant
rebalanced portfolio (CRP) [14,15]. A CRP is a portfolio strategy where the distribution of
funds over the stocks are reallocated to a predetermined structure, also known as the target
portfolio, at the start of each investment period. CRPs constitute a subclass of a more
general portfolio rebalancing class, the calendar rebalancing portfolios, where the portfolio
vector is rebalanced to a target vector on a periodic basis [29]. Numerous studies have been
carried out to asymptotically achieve the performance of the best CRP tuned to the indi-
vidual sequence of stock prices albeit either with different performance bounds or different

performance results on historical data sets [14,20,47]. CRPs under transaction costs are
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further investigated in [8], where a sequential algorithm using a weighting similar to that
introduced in [15], is also shown to be competitive under transaction costs; i.e., asymptot-
ically achieving the performance of the best CRP under transaction costs. However, we
emphasize that maintaining a CRP requires potentially significant trading due to possible
rebalancings at each investment period [27]. As shown in [27], even the performance of the
best CRP is severally affected by moderate transaction fees rendering CRPs ineffective in
real life stock markets. Hence, it may not be enough to try to achieve the performance of the
best CRP if the cost of rebalancing outweighs that which could be gained from rebalancing
at every investment period. Clearly, one can potentially obtain significant gain in wealth
by including unavoidable transactions fees in the market model and perform reallocation
accordingly.

Along these lines, the optimal portfolio selection problem under transactions costs is
extensively investigated for continuous-time markets [17,31,35,41], where growth optimal
policies that keep the portfolio in closed compact sets by trading only when the portfolio
hits the compact set-boundaries are introduced. Naturally, the results for the continuous
markets cannot be straightforwardly extended to the discrete-time markets, where contin-
uous trading is not allowed. However, it has been shown in [21] that under certain mild
assumptions on the sequence of stock prices, similar no trade zone portfolios achieve the
optimal growth rate even for discrete-time markets under proportional transaction costs.
For markets having two stocks; i.e., two-asset stock markets, these no trade zone portfolios
correspond to threshold portfolios; i.e., the no trade zone is defined by thresholds around the
target portfolio. As an example, for a market with two stocks, the portfolio is represented
by a vector b= [b 1 —b]7, b € [0, 1], assuming only long positions [29], where b is the ratio
of the capital invested in the first stock. For this market, the no rebalancing region around
a target portfolio b =[b 1 —b]T, b € [0,1], is given by a threshold ¢, min{b, 1 — b} > € > 0,
such that the corresponding portfolio at any investment period is rebalanced to a desired
vector if the ratio of the wealth in the first stock breaches the interval (b—e, b+¢). In partic-
ular, unlike a calendar rebalancing portfolio, e.g., a CRP, a threshold rebalanced portfolio
(TRP) rebalances by buying and selling stocks only when the portfolio breaches the preset
boundaries, or “thresholds”, and otherwise does not perform any rebalancing. Intuitively,

by limiting the number of rebalancings due to this non rebalancing regions, threshold port-
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folios are able to avoid hefty transactions costs associated with excessive trading unlike
calendar portfolios. Although TRPs are shown to be optimal in i.i.d. discrete-time two-
asset markets (under certain technical conditions) [21], finding the TRP that maximizes the
expected growth of wealth under proportional transaction costs has not been solved, except
for basic scenarios [21], to the best of our knowledge.

This thesis is based on two papers [45,46]. In the first part of this thesis, we analyze i.i.d.
discrete-time markets represented by the sequence of price relatives (defined as the ratio of
the opening price to the closing price of stocks), where the sequence of price relatives follow
log-normal distributions. In the second part, instead of using a continuous distribution, we
implement discrete distributions. The sequence of price relative vectors are assumed to have
“discrete” distributions; however, the discrete distributions on the vector of price relatives

are arbitrary.

1.1 Log-Normal Price Relatives

In the first part of this thesis, we evaluate the expected wealth achieved by a TRP over
any finite investment period given any target portfolio and threshold for two-asset discrete-
time stock markets subject to proportional transaction fees. We emphasize that we study
a two-asset market for notational simplicity and our derivations can be readily extended
to markets having more than two assets as pointed out in the thesis where needed. We
consider i.i.d. discrete-time markets represented by the sequence of price relatives (defined
as the ratio of the opening price to the closing price of stocks), where the sequence of
price relatives follow log-normal distributions. Note that the log-normal distribution is
the assumed statistical model for price relative vectors in the well-known Black-Scholes
model [29,32]. This distribution accurately models real life stock prices which has been
shown in many empirical studies [29]. Log-normal distribution which is extensively used in
the financial literature is shown to accurately model empirical price relative vectors [9].
Under this setup, we provide an iterative relation that efficiently and recursively cal-
culates the expected wealth in any i.i.d. market over any investment period. The terms
in this recursion are evaluated by a certain multivariate Gaussian integral. We then use
a randomized algorithm to calculate the given integral and obtain the expected growth.

This expected growth is then optimized by a brute force method to yield the optimal target
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portfolio and the threshold to maximize the expected wealth over any investment period.

1.2 Discrete Price Relatives

In the second part, the sequence of price relative vectors are assumed to have “discrete”
distributions; however, the discrete distributions on the vector of price relatives are arbitrary.
The corresponding discrete distributions can also be used to approximate a wide class of
continuous distributions on the price relatives that satisfy certain regularity conditions by
appropriately increasing the size of the discrete sample space. The detailed market model
is provided in Section IV. Under this general market model, we use “threshold rebalanced
portfolios” (TRP)s, which are shown to yield optimal growth in general i.i.d. discrete-time
two-asset markets.

We first recursively calculate the expected wealth achieved by a TRP over any invest-
ment period and then optimize the corresponding TRP to maximize expected wealth. We
demonstrate that under certain technical conditions, the achievable portfolios in the TRP
framework form an irreducible homogenous Markov chain with a finite number of states.
This Markov chain can then be elegantly leveraged to calculate the expected growth. Sub-
sequently, the parameters of the TRPs are optimized to achieve the maximum growth using
a brute force search. Furthermore, we also solve the optimal portfolio selection problem in
discrete-time markets produced by sampling continuous-time Brownian markets extensively

studied in the financial literature [29].

1.3 Contributions

The contributions of this thesis are as follows. We first provide an iterative relation that
efficiently and recursively calculates the expected wealth for the case where the sequence of
price relatives follow log-normal distributions by evaluating a certain multivariate Gaussian
integral. We then provide a randomized algorithm to calculate the given integral and obtain
the expected growth. This expected growth is then optimized by a brute force method to
yield the optimal target portfolio and threshold to maximize the expected wealth over
any investment period. Furthermore, we also provide a maximume-likelihood estimator to
estimate the parameters of the log-normal distribution from the sequence of price relative

vectors, which is incorporated into the algorithmic framework in Simulations section since
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these parameters are naturally unknown in real life markets.

In the second part, we recursively evaluate the expected achieved wealth of a threshold
portfolio for any b and € over any investment period for the case where the sequence of price
relative vectors have discrete distributions. We then demonstrate that under the threshold
rebalancing framework, the achievable set of portfolios form an irreducible Markov chain
under mild technical conditions. We evaluate the corresponding stationary distribution of
this Markov chain, which provides a natural and efficient method to calculate the cumu-
lative expected wealth. Subsequently, the corresponding parameters are optimized using a
brute force approach yielding the growth optimal investment portfolio under proportional
transaction costs in i.i.d. discrete-time two-asset markets. As a well studied problem,
we also solve optimal portfolio selection in discrete-time markets constructed by sampling
continuous-time Brownian markets. For the case that the underlying discrete distributions
of the price relative vectors are unknown, we provide a maximum likelihood estimator to
estimate the corresponding distributions that is incorporated in the optimization framework

in the Simulations section.

1.4 Content

Chapter 2 begins with a detailed description of the market and the TRPs. We then calculate
the expected wealth for the market where the sequence of price relatives follow log-normal
distributions using a TRP in an i.i.d. two-asset discrete-time market under proportional
transaction costs over any investment period in Section 2.1. First, we provide an iterative
relation to recursively calculate the expected wealth growth. The terms in the iterative
algorithm are calculated using a certain form of multivariate Gaussian integrals. We provide
a randomized algorithm to calculate these integrals in Section 2.2. The maximum-likelihood
estimation of the parameters of the log-normal distribution is given in Section 2.3. Section
4 presents the simulations of the iterative relation and the optimization of the expected
wealth growth with respect to the TRP parameters using the ML estimator.

In Chapter 3, we investigate threshold rebalancing portfolios for the discrete market
where the sequence of price relatives have discrete distributions. We first introduce a recur-
sive update in Section 3.1. We then show that the TRP framework can be analyzed using

finite state Markov chains in Section 3.2 and Section 3.3. The special Brownian market is
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analyzed in Section 3.4. The maximum likelihood estimator is derived in Section 3.5. We
simulate the performance of our algorithms in Section 4.

Finally in Chapter 5, we summarize this work and give concluding remarks.

1.5 Notations

Throughout this document, boldface letters and regular letters with subscripts denote vec-
tors and individual elements of vectors, respectively. Furthermore, capital letters and low-
ercase letters denote random variables and individual realizations of the corresponding ran-
dom variable, respectively. The vector [a1,ag, ... ,an]T is denoted by a™. The abbreviations
“Li.d.”, “p.d.f.”, and “w.l.o.g.” are shorthands for the terms “independent identically dis-
tributed”, and “probability distribution function”, respectively. The time index is shown
in the subscripts. The operator E[.] denotes the expectation operator. Here, N'(y,o?) and
In N (i, 02) denotes the Gaussian and Log-Normal distribution with mean p and variance

o2, respectively.
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Chapter 2

OPTIMAL INVESTMENT UNDER TRANSACTION COSTS: A
THRESHOLD REBALANCED PORTFOLIO APPROACH

In this chapter, we study the investment problem in a financial market having a finite
number of assets. We concentrate on how an investor should distribute capital over these
assets and when he should reallocate the distribution of the funds over those assets in time
to maximize the overall cumulative wealth. In financial terms, distributing ones capital
over various assets is known as the portfolio management problem and reallocation of this
distribution by buying and selling stocks is referred as the rebalancing of the given portfo-
lio [29]. Due to obvious reasons, the portfolio management problem has been investigated
in various different fields from financial engineering [32], machine learning to information
theory [13], with a significant room for improvement as the recent financial crises demon-
strated. To this end, we investigate the portfolio management problem in discrete-time
markets when the market levies proportional transaction costs in trading while buying and
selling stocks, which accurately models a wide range of real life markets [29,32]. In discrete
time markets, we have a finite number of assets and the reallocation of wealth (or rebalanc-
ing of the capital) over these assets is only allowed at discrete investment periods, where
the investment period is arbitrary, e.g., each second, minute or each day [13,14]. Under this
framework, we introduce algorithms that achieve the maximal expected cumulative wealth
under proportional transaction costs in i.i.d. discrete-time markets extensively studied in
the financial literature [29,32]. We further illustrate that our algorithms significantly im-
prove the achieved wealth over the well-known algorithms in the literature on historical data
sets under realistic transaction costs, as anticipated from our derivations. The precise prob-
lem description including the market and transaction cost models are provided in Section
2.2.

In this part, we first evaluate the expected wealth achieved by a TRP over any finite

investment period given any target portfolio and threshold for two-asset discrete-time stock
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markets subject to proportional transaction fees. We emphasize that we study two-asset
market for notational simplicity and our derivations can be readily extended to markets
having more than two assets as pointed out in the chapter where needed. We consider i.i.d.
discrete-time markets represented by the sequence of price relatives (defined as the ratio of
the opening price to the closing price of stocks), where the sequence of price relatives follow
log-normal distributions. Note that the log-normal distribution is the assumed statistical
model for price relative vectors in the well-known Black-Scholes model [29, 32] and this
distribution is shown to accurately model real life stock prices by many empirical studies [29].
Under this setup, we provide an iterative relation that efficiently and recursively calculates
the expected wealth by evaluating a certain multivariate Gaussian integral. We then provide
a randomized algorithm to calculate the given integral and obtain the expected growth.
This expected growth is then optimized by a brute force method to yield the optimal
target portfolio and threshold to maximize the expected wealth over any investment period.
Furthermore, we also provide a maximum-likelihood estimator to estimate the parameters of
the log-normal distribution from the sequence of price relative vectors, which is incorporated
into the algorithmic framework in Simulations section since these parameters are naturally
unknown in real life markets.

Portfolio management problem is studied with transaction costs in [23] on the horse race
setting, which is a special discrete-time market where only one of the asset pays off and the
others pay nothing on each period. This basic framework is then extended to general stock
markets in [21], where threshold portfolios are shown to be growth optimal for two-asset
markets. However, no algorithm, except for a special sampled Brownian market, is pro-
vided to find the optimal target portfolio or threshold in [21]. To achieve the performance
of the best TRP, a sequential algorithm is introduced in [22] that is shown to asymptotically
achieve the performance of the best TRP tuned to the underlying sequence of price relatives.
This algorithm uses a similar weighting introduced in [15] to construct the universal port-
folio. We emphasize that the universal investment strategies, e.g., [22], which are inspired
by universal source coding ideas, based on Bayesian type weighting, are heavily utilized to
construct sequential investment strategies [2,3,14,25-28,39,47]. Although these methods
are shown to “asymptotically” achieve the performance of the best portfolio in the compe-

tition class of portfolios, their non-asymptotic performance is acceptable only if a sufficient
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number of candidate algorithms in the competition class is overly successful [27] to circum-
vent the loss due to Bayesian type averaging. Since these algorithms are usually designed in
a min-max (or universal) framework and hedge against (or should even work for) the worst
case sequence, their average (or generic) performance may substantially suffer [10, 16, 20].
In our simulations, we show that our introduced algorithm readily outperforms a wide class
of universal algorithms on the historical data sets, including [22]. Note that to reduce the
negative effect of the transaction costs in discrete time markets, semiconstant rebalanced
portfolio (SCRP) strategies have also been proposed and studied in [8,20,27]. Different than
a CRP and similar to the TRPs, an SCRP rebalances the portfolio only at the determined
periods instead of rebalancing at the start of each period. Since for an SCRP algorithm
rebalancing occurs less frequently than a CRP, using an SCRP strategy may improve the
performance over CRPs when transaction fees are present. However, no formulation exists
to find the optimal rebalancing times for SCRPs to maximize the cumulative wealth. Al-
though there exist universal methods [27,39] that achieve asymptotically the performance
of the best SCRP tuned to the underlying sequence of price relatives, these methods suffer
in realistic markets since they are tuned to the worst case scenario [27] as demonstrated in

the Simulations section.

2.1 Problem Description

In this chapter, all vectors are column vectors and represented by lower-case bold letters.
Consider a market with m stocks and let {x(t)};>1 represent the sequence of price rel-
ative vectors in this market, where x(t) = [z1(t),z2(t), ..., zm(t)] with z;(t) € R} for
i € {1,2,...,m}. At each investment period, say period t, b(t) represents the vector of
portfolios such that b;(t) is the fraction of money invested on the ith stock. We allow only
long-trading such that » ;" b;(t) = 1 and b;(t) > 0. After the price relative vector x(t) is
revealed, we earn b” (t)x(t) at the period t. Assuming we started investing using 1 dollars,
at the end of n periods, the wealth growth in a market with no transaction costs is given

by

S(n) =T b" (t)x(t). (2.1)
t=1
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If we use the well known the CRP [13], then we earn

n

[Tp"x®),

t=1

at the end of n periods ignoring the transaction costs. This method is called “constant
rebalancing” since at the start of each investment period ¢, the portfolio vector b(t) =
[b1(t),b2(t),...,by(t)] is adjusted, or rebalanced, to a predetermined constant portfolio
vector b = [b1, b, ..., by] where Y /" | b; = 1. As an example, at the start of each investment
period ¢, since we invested using b at the investment period ¢ — 1 and observed z(t — 1), the

current portfolio vector, say beq(t),

é blazl(t — 1) bmxm(t — 1) T

old(t) Z?ll bzxz(t — 1)’ ’ Z?ll bZ:EZ(t — 1) ’

should be adjusted back to b. If we assume a symmetric proportional transaction cost with
cost ratio ¢ for both selling and buying, then we need to spend approximately Y ;" | b; o1a(t).S(¢)[b; o1a (t)—
b;|c dollars for rebalancing. Note that if the transaction costs are not symmetric, the anal-
ysis follows by assuming ¢ = cgell + Cpuy by [8], Where cgei and cpyy are the proportional
transaction costs in selling and buying, respectively. Since a CRP should be rebalanced back
to its initial value at the start of each investment period, a transaction fee proportional to
the wealth growth up to the current period, i.e., S(t), is required for each period ¢t. Hence,
constantly rebalancing at each time ¢ may be unappealing for large c.

To avoid such frequent rebalancing, we use TRPs, where we denote a TRP with a target
vector b and a threshold e (with certain abuse of notation) as “TRP with (b,€)”. For a
sequence of price relatives vectors x" 2 [x(1),x(2),...,x(n)] with x € R}, a TRP with

mo

(b, €) rebalances the portfolio to b at the first time 7 satisfying

b [Ty (1)
> ey b [Ty 2k (2)

¢ [bj —€j,b; + €] (2.2)

for any j € {1,2,...,m}, thresholds €;, and does not rebalance otherwise, i.e., while the
portfolio vector stays in the no rebalancing region. Starting from the first period of a no

rebalancing region, i.e., where the portfolio is rebalanced to the target portfolio b, say t = 1
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Figure 2.1: A sample scenario for threshold rebalanced portfolios.

for this example, the wealth gained during any no rebalancing region is given by

W(x"b" € &) = b [ [ z(0), (2.3)
k=1 =1

t
where b™ = [b(1),b(2),...,b(n)] with b(¢) is the portfolio at period ¢ and £:¢ is the length

n no rebalancing region defined as
ESC = {bn ’ b(l) = b,bj(t) S (b] — Ej,bj + Ej),j S {1,2, o ,m},t S {1,2, o ,n}} (24)

A TRP pays a transaction fee when the portfolio vector leaves the predefined no rebalancing
region, i.e., goes out of the no rebalancing region &£,°, and rebalanced back to its target
portfolio vector b. Since the TRP may avoid constant rebalancing, it may avoid excessive
transaction fees while securing the portfolio to stay close the target portfolio b, when we
have heavy transaction costs in the market.

For notational clarity, in the remaining of the chapter, we assume that the number of
stocks in the market is equal to 2, i.e., m = 2. Note that our results can be readily extended
to the case when m > 2. We point out the necessary modifications to extend our derivations

to the case m > 2. Then, the threshold rebalanced portfolios are described as follows.
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Given a TRP with target portfolio b = [b,1 — b]T with b € [0,1] and a threshold ¢, the
no rebalancing region of a TRP with (b, €) is represented by (b—¢,b+¢). Given a TRP with
(b—€,b+ €), we only rebalance if the portfolio leaves this region, which can be found using
only the first entry of the portfolio (since there are two stocks), i.e., if by q14(t) ¢ (b—€,b+e).
In this case, we rebalance by 14(t) to b. Fig. 2.1 represents a sample TRP in a discrete-time
two-asset market and when the portfolio is rebalanced back to its initial value if it leaves
the no rebalancing interval.

Before our derivations, we emphasize that the performance of a TRP is clearly effected
by the threshold and the target portfolio. As an example, choosing a small threshold €, i.e., a
low threshold, may cause frequent rebalancing, hence one can expect to pay more transaction
fees as a result. However, choosing a small € secures the TRP to stay close to the target
portfolio b. Choosing a larger threshold ¢, i.e., a high threshold, avoids frequent rebalancing
and degrades the excessive transaction fees. Nevertheless, the portfolio may drift to risky
values that are distant from the target portfolio b under large threshold. Furthermore,
we emphasize that proportional transaction cost ¢ is a key factor in determining the e.
Under mild stochastic assumptions it has been shown in [14,15] that in a market with no
transaction costs, CRPs achieve the maximum possible wealth. Therefore in a market with
no transaction costs, i.e., ¢ = 0, the maximum wealth can be achieved when we choose a
zero threshold, i.e., e = 0 and a target portfolio b* = arg max E[log(bx; + (1 — b)z2)], where
x1 and xo represent the price relatives of two-asset marliiet [15]. On the other hand, in a
market with high transaction costs, choosing a high threshold, i.e., a large ¢, eliminates
the unappealing effect of transaction costs. For instance, for the extreme case where the
transaction cost is infinite, i.e., ¢ = 0o, the best TRP should either have e =1 or b € {0,1}
to ensure that no rebalancing occurs.

In this chapter, we assume that the price relative vectors have a log-normal distribution
following the well-known Black-Scholes model [29]. This distribution that is extensively
used in financial literature is shown to accurately model empirical price relative vectors [9].
Hence, we assume that x(t) = [z1(t), x2(¢)]” has an i.i.d. log-normal distribution with mean
p = [1, p2] and standard deviation & = [0y, 2], respectively, i.e., x(t) ~ InN(u,?). In
this chapter, we first optimize the wealth achieved by a TRP for the discrete-time market,

where the distributions of the price relatives are known. We then provide a ML estimator
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for these parameters to cover the case where the means and variances are unknown. The ML
estimator is incorporated in the algorithmic framework in the Simulations section since the
corresponding parameters are unknown in real life markets. The details of the maximum-

likelihood estimation are given in Section 2.3.

2.2 Threshold Rebalanced Portfolios

In this section, we analyze the TRPs in a discrete-time market with proportional transaction
costs as defined in Section 2.1. We first introduce an iterative relation, as a theorem, to
recursively evaluate the expected achieved wealth of a TRP over any investment period. The
terms in this iterative equation are calculated using a certain form of multivariate Gaussian
integrals. We provide a randomized algorithm to calculate these integrals. We then use the
given iterative equation to find the optimal € and b that maximize the expected wealth over

any investment period.

2.2.1 An Iterative Equation to Calculate the Expected Wealth

In this section, we introduce an iterative equation to evaluate the expected cumulative
wealth of a TRP with (b — €,b+ €) over any period n, i.e., E[S(n)]. As seen in Fig. 2.2, for
a TRP with (b —€,b+ €), any investment scenario can be decomposed as the union of con-
secutive no-crossing blocks such that each rebalancing instant, to the initial b, signifies the
end of a block. Hence, based on this observation, the expected gain of a TRP between any
consecutive crossings, i.e., the gain during the no rebalancing regions, directly determines
the overall expected wealth growth. Hence, we first calculate the conditional expected gain
of a TRP over no rebalancing regions and then introduce the iterative relation based on
these derivations.

For a TRP with (b — €,b + €), we call a no rebalancing region of length n as “period
n with no-crossing” such that the TRP with the initial and target portfolio b = [b,1 — b]
stays in the (b—¢€, b+ €) interval for n — 1 consecutive investment periods and crosses one of
the thresholds at the nth period. We next calculate the expected gain of a TRP over any
no-crossing period as follows.

The wealth growth of a TRP with (b —€,b + ¢€) for a period 7 with no-crossing can be
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written as

= bH w1(8)] + (1= 0) [[[z2(1)], (2:5)

without the transaction cost that arises at the last period. To find the total achieved
wealth for a period 7 with no-crossing, we need to subtract the transaction fees from (2.5).
If portfolio b;(t) crosses the threshold at the investment period ¢ = 7, then we need to

rebalance it back to b, i.e., b1 (t) = b and approximately pay

Suel7) O[T (21(1)) Ly,

VT @ ®) + (- ) [Ty (220) (2:6)

where c represents the symmetrical commission cost, to rebalance two stocks, i.e., by o1a(7+1)
to b, and bg o1d(7 +1) =1 — b1 o1a(7 + 1) to 1 —b. Hence, the net overall gain for a period 7

with no-crossing becomes

S(1) = Sne(7) — Sne(T)c

bIIs(21(?)) _ b‘
bIIi—1 (@1 () + (1 = 0) [Ti—y (w2(1))
=b ][l (t)] l—bH ] —c(b— ) |[[lzr(®)] — [ ]

t =1

=1 t=1 t=1
= H xl —|— (s H 1‘2 (27)

where ¢ 2 b— 2c(b—b2) and (o 21— b+ 2c(b — b2) for b+ ¢ hitting and ¢; 2 b+ 2c(b — b?)
and (o 2 1 —b—2¢(b—b?) for b — € hitting. Thus, the conditional expected gain of a TRP
conditioned on that the portfolio stays in a no rebalancing region until the last period of
the region can be found by calculating the expected value of (2.7). Since, we now have
the conditional expected gains, we next introduce an iterative relation to find the expected
wealth growth of a TRP with (b — €,b + €) for period n, F[S(n)], by using the expected
gains of no-crossing periods as shown in Fig. 2.2.

In order to calculate the expected wealth E[S(n)] iteratively, let us first define the

variable R(7), which is the expected cumulative gain of all possible portfolios that hit any

!This is the special case of (2.3) for m = 2.
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Figure 2.2: No-crossing intervals of threshold rebalanced portfolios.

of the thresholds first time at the 7th period, i.e.,
R(r)=E [5(7) ‘ b” € f:jC] : (2.8)

where £ denotes the set of all possible portfolios with initial portfolio b and that stay in
the no rebalancing region for 7 — 1 consecutive periods and hits one of the b — € or b+ €

boundary at the 7th period, i.e.,

£ 2 4bT € Bo(b,e) |b(1) = b,b(i) € (b—e,b+e)Vi € {2,....,7—1},b(r) ¢ (b—e,b+¢)}.

(2.9)

Here, B, (b, €) is defined as the set of all possible threshold rebalanced portfolios with initial
and target portfolio b and a no rebalancing interval (b — €,b + ¢). Similarly we define the
variable T'(7), which is the expected growth of all possible portfolios of length 7 with no

threshold crossings, i.e.,

T(r)=E [5(7) ( b € 5:6} , (2.10)
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where &£¢ denotes the set of portfolios with initial portfolio b and that stay in the no

rebalancing region for 7 consecutive periods, i.e.,?

£8¢ 2 b € B, (b,e) [b(1) = b,b() € [b—e,b+ Wi € {2,..., 7}, (2.11)

Given the variables R(7) and T'(7), we next introduce a theorem that iteratively cal-
culates the expected wealth growth of a TRP over any period n. Hence, to calculate the
expected achieved wealth, it is sufficient to calculate R(7), T'(T), threshold crossing proba-

bilities P (b" € cf}ff) and P (b™ € £7¢), which are explicitly evaluated in the next section.

Theorem 2.2.1 The expected wealth growth of a TRP (b—e€,b+¢€), i.e. E[S(n)], over any

i.i.d. sequence of price relative vectors x™ = [x(1),x(2),...,x(n)], satisfies
E[S(n)] =Y P(EF)R()E[S(n — i)] + P(E3°)T(n), (2.12)
i=1

where we define So = 1, R(n) in (2.8), T'(n) in (2.10), E€ in (2.11) and EX¢ in (2.9).

We emphasize that by Theorem 2.2.1, we can recursively calculate the expected growth
of any TRP over any i.i.d. discrete-time market under proportional transaction costs. The-
orem 2.2.1 holds for i.i.d. markets having either m = 2 or m > 2 provided that the

corresponding terms in (2.12) can be calculated.

Proof: By using the law of total expectation [40], E[S(n)] can be written as

E[S(n)] = /b e E[S(n)[b™ P(b™)db", (2.13)

where B,,(b, €) is defined as the set of all possible TRPs with the initial and target portfolio
b and threshold e. To obtain (2.12), we consider all possible portfolios as a union of n + 1

disjoint sets: (1) the portfolios which cross one of the thresholds first time at the 1st

2This is the special case of the definition in (2.4) for m = 2.
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period; (2) the portfolios which cross one of the thresholds first time at the 2nd period;
and continuing in this manner, (3) the portfolios which cross one of the thresholds first
time at the nth period; and finally (4) the portfolios which do not cross the thresholds
for n consecutive periods. Clearly these market portfolio sets are disjoint and their union

provides all possible portfolio paths. Hence (2.13) can also be written as

ElS(m)] =Y / E[S(n)[b} € £°,b%,, € Bui(b, | P(b € £, bl € Bu_i(b, c))db"
i—1 /bie&le bl eBn—i(b€)
+ / E[S(n)|b" € £ P(b" € £7¢)db", (2.14)
bregpe

where b’ 2 [b(7),b(i+1),...,b(j)]. To continue with our derivations, we define S;_,; as the
wealth growth from the period ¢ to period j, i.e., S;—; 2 % Assume that in the period 7,
the portfolio crosses one of the thresholds and a rebalancing occurs. In that case, regardless
of the portfolios before the period 7, the portfolio is rebalanced back to its initial value in the
7th period, i.e., to [b, 1 — b]T. Since the price relative vectors are independent over time, we
can conclude that the portfolios before the period 7 are independent from the portfolios after
the period 7, i.e., b(7) = b and every portfolio b(:) for i € {1,2,...,7 — 1} are independent
from the portfolios b(j) for j € {r + 1,7 + 2,...,n}. Hence, the investment period where
the portfolio path crosses one of the thresholds, i.e., 7, divides the whole investment block
into uncorrelated blocks in terms of price relative vectors and portfolios. Thus, the wealth
growth acquired up to the period 7, S1_.,, is uncorrelated to the wealth growth acquired

after that period, i.e., S;11_.,. Hence, if we assume that a threshold crossing occurs at the

period 7, then we have

E|S(n)|b] € &<, b2, | € B,_, (b, e)] _E [SHST+H|b; € &R B, € By (b, e)]
- B [Sl_,T]b’i = gﬂ E[Sr41n/b}sy € Bas(b,e)] .
(2.15)



Chapter 2: Optimal Investment Under Transaction Costs: A Threshold Rebalanced Portfolio
Approach 18

Applying (2.15) to (2.14), we get

E [sbi;bg c sﬂ E [Sis1-m|b(i) = b, bl y € By_s(b,€)]

E[S(n)) =§:j /

x P <b§ € €f°> P (b}, | € By—i(b,€)) db" +/ E[S(n)|b" € £

bregne

{egfebl  €B,_i(b,€)

x P (b" € £,°)db". (2.16)
Since the integral in (2.16) can be decomposed into two disjoint integrals, (2.14) yields

ElSm)] =3 / E[S1ifb € EFIP(b € EF)db]
i=1 Zleé'l.c
y / E[Sis1nlb(i) = b,bl'y € Bu_i(b, €)|P(bly; € Bu_i(b, €))dbl,,
b7, B (b,€)

+ / E[S(n)[b" € E*]P(b" € £2)db™. (2.17)
b’!LegﬁC

We next write (2.17) as a recursive equation.

To accomplish this, we first note that
(i) R(7) is defined as the expected gain of TRPs with length ¢, which crosses one of the
thresholds first time at the i-th period, it follows that

R(i)=E [5(7) ( b e g,fc] (2.18)
1 . ) .

= E[Si1_ibl € EFP(b € £F)db, 2.19

P(ngc) /bieé'zfc [ 1 ’ 1€¢ ] ( 1€¢ ) ( )

where we write P(£) instead of P(b} € £f).
(ii) Then, as the second term, T'(n) is defined as the expected gain of TRPs of length n,

which does not cross one of the thresholds for n consecutive periods. This yields

T(n) = B [5(n) [b" < )] (2.20)
1 n nc n nc n
T PEX) /bneggc E[S(n)[b™ € £,5Jp(b" € £,%)db". (2.21)

(iii) Finally, observe that the second integral in (2.17) is the expected wealth growth of a
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TRP of length n — 1, i.e.,

E[S(n —1i)] = / E[Sit1-nlb(i) = b, by € By—i(b, €)|p(biyy € By—i(b,€))dbq,
b7, €Bp—i(b,€)

(2.22)
where p(b}, | € B,_i(b,€)) = 1 by the definition of the set B, _;(b,¢).
Hence, if we apply (2.19), (2.21) and (2.22) to (2.17), we can write (2.12) as
E[S(n)] = Zn: P(EF)R(D)E[S(n — 1)) + P(E)T (n), (2.23)
i=1
hence the proof follows. ]

Theorem 2.2.1 provides a recursion to iteratively calculate the expected wealth growth
E[S(n)], when R(7) and T'(7) are explicitly calculated for a TRP with (b—e¢,b+¢€). Hence, if
we can obtain P () R(7) and P (2¢) T'(7) for any 7, then (2.12) yields a simple iteration
that provides the expected wealth growth for any period n. We next give the explicit
definitions of the events £ and £¢ in order to calculate the conditional expectations
R(7) and T(7). Following these definitions, we calculate P (£) R(r) and P (€2) T'(t) to
evaluate the expected wealth growth E[S(7)], iteratively from Theorem 2.2.1 and find the
the optimal TRP, i.e., optimal b and €, by using a brute force search.

In the next section, we provide the explicit definitions for £ and £2¢, and define the

conditions for staying in the no rebalancing region or hitting one of the boundaries to find

the corresponding probabilities of these events.

2.2.2  Ezxplicit Calculations of R(n) and T(n)

In this section, we first define the conditions for the market portfolios to cross the corre-
sponding thresholds and calculate the probabilities for the events £ and £2¢. We then
calculate the conditional expectations R(n) and T'(n) as certain multivariate Gaussian inte-
grals. The explicit calculation of multivariate Gaussian integrals are given in Section 2.2.3.

To get the explicit definitions of the events £ and €8¢, we note that we have two

different boundary hitting scenarios for a TRP, i.e., starting from the initial portfolio b, the
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portfolio can hit b — € or b+ €. From b, the portfolio crosses b — ¢ boundary if

b1Ti—y (21 (2)) .
o) + (=) () =0 © (2.24)

where 7 is the first time the crossing happens without ever hitting any of the boundaries

before. Since x1(i), x2(i) > 0 for all 4, (2.24) happens if

11[ zo(t) _ b(l—b+e) (2.25)

let 1—[))(1)—6)7

which is equivalent to

Hy(7) > M1l (7),

AN i RVAN i A _
where Iy (i) = [[,_; z1(t), IIa(d) = [[;_; 22(t) and v = % Since x(7)’s have log-
normal distributions, i.e., x(t) ~ InAN(p,0?), IT1(i) and T(i) are log-normal, too [40].

Furthermore, to calculate the required probabilities, we note that

p (M (3), My (k — 1),y (k) = p (111 (4), 1 (k — 1)) p (I (k) [Ty (k — 1), 114 (7))
p (M1 (7)) p (I (b — 1)|T1y (7)) p (11 (K — 1)1 (k)T (B — 1), 111 (4))

p (11 (7)) p (e (k — 1)|TT1(4)) p (1 (k)1 (B — 1)), (2.26)

Vi e {0,1,...,k—2}, where (2.26) follows since z(k) is independent of I1; (¢) for k > i. Hence
IT;(i)’s form a Markov chain such that IT; (i) < II;(k — 1) < II (k) Vi € {0,1,... .k —2}.
Following the similar, steps we also obtain that Ils(i) < Ila(k — 1) < IIa(k) ,Vi €
{0,1,...,k — 2}. Note that, by extending the definitions II; and II; one can obtain
114,105, ... ,II,, for the case m > 2. Furthermore, taking the logarithm of both sides of
(2.25) we have

T

5723 () = 61,

t=1

where z(t) Sln (i?g?) and 6, Sln % = In~;. The partial sums of z(t)’s are defined

as YF = Zt . 2(t) for notational simplicity. Since x(t) ~ In N (p,0?), z(t)’s are Gaussian,

|

i.e. 2(t) ~ N(p,02), where pu = pg—pu1 and 0% = o +03, their sums, $#’s, are Gaussian too.

Furthermore note that, % = Zle 2(t) = Zle In (?Ei > In (Ht 1 ifg > =In gjgzg
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Similarly with an initial value b, market portfolio crosses b + € boundary if

bl Ii (21(2))
bITi—i (z1(2)) + (1 —0) [T—; (z2(2))

> b+, (2.27)

where 7 is the first crossing time without ever hitting any of the boundaries before. Again,

since x1 (i), z2(i) > 0 for all 4, (2.27) happens if

s Jjgt 1—b—6)
Harl H=1-bb+e (2:28)

which can be written of the form

() < oIl (2).

Equation (2.28) yields

= ZT:Z(t) < 0y,

where 6y = ln % In~s.

Hence, we can explicitly describe the event that the market threshold portfolio (b—e, b+¢)
does not hit any of the thresholds for 7 consecutive periods, £7¢, as the intersection of the

events as
&= ﬂ {f € [62,01]} = m {72l (i) < Ha(i) < yIL(i)} (2.29)
i=1

Similarly, the event of the market threshold portfolio (b—e, b+¢) hitting any of the thresholds

first time at the 7-th period, £, can be defined as the intersections of the events

ghe & ﬂ{zl 02,001} () [{Z7 € [~00,02)} | {5+ € (01,001}

= m {72T11 (i) < Ta(d) < nTLi(0)} ) [{Hz > I (r)} ({Ta(7) < Ili(7)}],
1=1

(2.30)

yielding the explicit definitions of the events £ in (2.30) and £2¢ in (2.29). Note that the

definitions of £2¢ and £ can be extended for the case m > 2 by employing the updated
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definitions of 111,11, ..., IL,,.

Since we have the quantitive definitions of the events £ and £2¢, we can express the

expected overall gain of 7-period no hitting portfolios, T'(7), as

T(r) = E:S(T) ( 530]
= p[p] i)+ 0 -0 [ [leato)] | 2]
t=1 t=1
—E :le(T) + (1 - b)IIy(7) ‘ 5;?0]. (2.31)

The expectation F {le(T) + (1 — b)IIa(7) ‘ SSC} can be expressed in an integral form as

B[bL(r) + (- 0)(r) | €] = [ [7 0m+ (- b)ma)
o Jo
x P (HI(T) = 1, Ily(7) = ( g:C) dmadm;  (2.32)
by definition of conditional expectation. Note that for the case m > 2 the double integral

in the definition of T} (2.32) is replaced by an m-dimensional integral over updated random

variables II;,IIs, ..., II,,. Combining (2.32) and (2.31) yields

T(r) = /OOO /Ooo (b1 + (1 — b)) P (Hl(f) = 71, o (7) = 72 ( 5£C) dmadm

1 [ oo
— W/@ /0 (b + (1 — b)me) P (11 (1) = 71, a(1) = m2)

x P (gfc

Iy (1) = m,Ha(7) = 71'2) dmadmy (2.33)

by Bayes’ theorem that P(A|B) = %. If we write the explicit definition of £¢
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given in (2.29), then we obtain

5nc / / b7T1—|— 1—b)7T2) ( (’7’) :7T1,H2(T) :7T2)P|:’72H1(1) §H2(1) §71H1(1)

e ol (1) < Tho(7) < L (7)| (7)) = 71, Ta(7) = wg] dmadi

/ /er (bmy + (1 — byma) P(ITy(r) = 71, Ty(7) = 12)

271

x P[7 QL S VAL S S
2377 = T e S s 27T = T
thz 331@) [Ti—s 22(t) [l z1(t)” "=z z1(t) ~ [Tz z2(t)
™ T ™
— < —_ < dmod 2.34
) ’72331(7) = 332(7') _%961(7) TodTr ( 3 )

where (2.34) follows by the definitions of ITy(i) and IIy(i), i.e., (i) = [[i, #1(t) =
ﬁgl(t) and Ty (i) = [[_, z2(t) = #(122(” If we rearrange the inequalities in (2.34)
to put the product terms together, which does not affect the direction of the inequality since

all terms are positive, then we obtain

< m
e e Y
A0

Y171 T t
P(E)T / / (bry + (1 — b)mo) Py (7) = mp, Ha(r) = WQ)P[E <l o T
- my o ri(t) T om
e <Hx2 g— LE; < x2(T) < LE; }dﬂ'gdﬂ'l
™M 1—3 xl(t) 172 7Tl’Yl xl(T) 172

271

oo 1T

:/ / (b7‘(’1+(1—b)7‘(2) P(Hl(T):7T1,H2(T):7T2)P<272—€[H—@l,ﬂ—eg],zge[H—@l,ﬂ—eg],
0 Y
T

S [I{ — 91, K — 92]) d7T2d7T1, (2.35)

which follows from the definition of Ek where kK = ln . The first probability in (2.35) can

be calculated as

P(Hl(’f) == 7T1,H2(T) == 7T2) == P(Hl(’f) == 7T1)P(H2(T) == 7T2)

1 _ (nmy—7pp)? 1 _ (nmy—7pg)?
— e 2 TO‘% + e 2 ‘ro'%
2w TO’% T/ 27 TO'%

(2.36)

which follows since I1; (1) 2 [T;_; 1(t) and IIx(7) 2 17—, z2(t), we have Iy (1) ~ In N (71, 707)
and IIy(7) ~ In N (72, 703). Note that the corresponding terms in (2.35) is written as a

multi variable integral calculated in Section 2.2.3.
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Following similar steps, we can obtain the expected overall gain R(7) as

K

b (1) 1—bﬁ ) — 2¢(b — 0?)] H | [Tlz2(t) 1(531.
t=1

(2.37)

The conditional expectation E [S (1) ‘ &f_c] can also be expressed in an integral form as

)| ex] = /0 - /0 TSt P () = m, Ta(r) = 2 | £5) dmodmy,  (238)

which follows from the definition of conditional expectation. Combining (2.38) and (2.37)
yields

_ / h / T st P (My(7) = 0, o (7) = 7 | ) dmadmy
0 0 - -
_ ﬁ /0 /0 S(r) P(IL(r) = m, Ty(r) = m2)

x P (57f_c Hl(T) = 7'('1,1_[2(7') = 7T2> d7T2d7T1, (239)

where (2.39) follows from the Bayes’ theorem. Note that the definition of R(7) (2.39) can
be extended for the case m > 2 by replacing the double integral with an m-dimensional
integral over the updated random variables ITy, Iy, . . ., II,,,. If we replace the event £ with

its explicit definition in (2.30), then we get

5fc / / <17T1—|—<27T2) ( (7’) :7T1,H2(T) :7T2)P|:’72H1(1) §H2(1) S’ylnl(l),...
’721_[1(7' — 1) S HQ(T— 1) S ’711_[1(7' — 1),’711_[1( ) < Hg ‘ H1 ) = 7T1,H2( ) = 7T2] d7T2d7T1
[T @ ) P 1) = 7 Ta(r) = 7) P21 (1) < (1) < I (..
0 0

oIl (1 — 1) < IIx(7 — 1) < Ml (7 — 1), %Il (1) > Ha(7 ‘ (1) = m1, o (7) = 7T2] dmadmry,

(2.40)

where (3 2 b—2c(b—b?), (o = 1—b+2c(b—b%) , (3 = b+2c(b—b?) and {4 = 1 —b—2c(b—b?).

We next calculate the first integral in (2.40) and the second integral follows similarly.
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By the definitions of Iy (i) and ITy(i), we have TI;(i) = [['_, z1(t) = L (r)

j——o) and
(7)) = [T}oq z2(t) = ﬁ%, hence the first integral in (2.40) can be written as

/OOO/OO (Gim1 + Goma) P(ILi (1) = my, Ha(7) = m2) P o
s

<™ < m
V2 > =M )
171 [T z1(t) = [Ii—o 22(t) [[i—oz1(t)
T T T T ™2 1
Y2177 < T < N7 s )2 < < 71 ] d7T2d7T1'
[[i—sz1(t) — Ili=g z2(t) [Ti—3 21(2) w1 () T wa(T) 1(7)
(2.41)
If we gather the product terms in (2.41) into the same fraction, then we obtain
// (G + Goma) P(7) = m1, Tha(r) = ma) P2 ﬁ“t<
171 + G272 1(7) = m, (1) = m) P| —— S
Y171 171 19 ZEI t ’7
t
&SHJJI?() §£7.”’ 2 §$2(7—) < 2 }dﬂ'gdﬂ'l (2'42)
I () T me my  2(7) T ome
[ee]

1
/00/ (Gim + Gom) Py (1) = my, IIp(7) = 7T2)P(272— e
0 v

H—@l,ﬂ—eg],zg S [5—01,5—62],
..,E: c [I{— 91,/@— 92]) d7T2d7T1,

(2.43)

which follows from the definition of Ek where k = ln

. Following similar steps that yields
(2.43), we can calculate (2.40) as

P<€7f_0> R(T :/OOO [::1 (4171'1 —|—<27T2) P(Hl(T) :71'1,1_[2(7') :7T2)P<E72— c [I{—el,li—eﬂ

Y3 ek k—06,....5T €[k

T

3 [ 617 —91,/41—02]> d7T2d7T1
a1
"’/0 /0 (C3my + ) P(IL (1) = w1, a(7) = 7r2)P<E§ e

I{—91,I{—92],
236[/4—91,/{—92],...,

E: S [/{ — 91, K — 92]) d7T2d7T1, (2.44)

where the probability P(II(7) = m,IIa(7) = m2) can be obtained via (2.36)

. Hence to
calculate P (£2°) T () and P (£X) R(7), we need to calculate the probability P(ZT [k —

01,5 — 05),5% € [k — 01,6 — 0s],... ST € [ — Oy, 5 — 92]> in (2.35) and (2.44).
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Following from the definition of Efs, we have

(Ek 22—1—172;?) p(EH_l,Ek) (Ek|zz+17 )

= p(Z))p(SE [Z5)p(Z + 2(0) |55, 25)

= p(Z)p(SE [S5)p(ZF1E) (2.45)
Vi e {0,1,...,k — 2}, where (2.45) follows since z(i) is independent of Ek for j > i. Then,
¥k’s form a Markov chain such that Ef — Efﬂ « YFVie{0,1,...,k—2} and j > i.

Hence, we can write the probability

P( pIA [/—@—91, 92 23 [I{—el,li—eﬂ E:E[I{—el,li—eﬂ)

/ / / = 81,21_1 == 82,...,272— == 87—_1)(187—_1(187—_2...(181
k—01 k—01 K—01

K— 92 K— 92 R— 92
= L P = sl = s ) PO = 5ol = 5

P ET 1 —82|E —81 P E: )dST 1d87— 3. d82d81, (2.46)

where (2.46) follows by the chain rule and 3;’s form a Markov chain. We can express the

conditional probabilities in (2.46), which are of the form P(X] = s, ;X7 ;| = s, 1), as

P(X] = sr—it1|X7 = 87—i) = P(3] 1 + 2(1) = s7—it1|X7 41 = 5r—i)
= P(sr—i +2(i) = sr—i41|E]11 = 857-4)
= P(2(i) = s7—iy1 — $7—i| X[ = 57-4)
= P(2(i) = Sr—i+1 — Sr—i) (2.47)

where (2.47) follows from the independence of z(i) and z(k)’s for i < k < 7 or the indepen-
dence of z(i) and X7, | = > 7). _; ., 2(k). If we replace (2.47) with the conditional probabilities
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in (2.46) and use P(XT = s1) = P(2(7) = s1), then we obtain

P(Eg S [/4—91,/4—92],273— S [/4—91,/4—92],...,2: S [/4—91,/{—92]>
Kk—02 Kk—02 K—02
= / / / fo(sr—1 = 87-2)fa(Sr—2 — 87-3) ... fs(s2 — s1) f2(s1) ds;—1dsr—a ... dsadsy
Kk—01 k—01 K—01

H—GQ f{—92 H—GZ 1 1 1 —1 2 2
_ / / / (_)TepZi:2 (si—si—1—p)*+(s1—p) dsr_1ds,_s...dsodsy,
K—el K—el 5_91

2mo?

(2.48)

where (2.48) follows since z(i)’s are Gaussian, z ~ N (i, 0?), i.e., f.(.) is the normal distri-
bution. Hence in order to iteratively calculate the expected wealth growth of a TRP, we
need to calculate the multivariate Gaussian integral given in (2.48), which is investigated

in the next section.

2.2.3  Multivariate Gaussian Integrals

In order to complete calculation of the iterative equation in (2.12), we next evaluate the
definite multivariate Gaussian integral given in (2.48) on the multidimensional [k—01, k—02]"
space. We emphasize that the corresponding multivariate integral cannot be calculated
using common diagonalizing methods [42]. Although, in (2.48), the coefficient matrix of the
multivariate integral is symmetric positive-definite, common diagonalizing methods cannot
be directly applied since the integral bounds after a straightforward change of variables
dependent on y;. However, (2.48) can be represented as certain error functions of Gaussian
distributions.

We note that the multivariate Gaussian integral given in (2.48) is the “non-central
multivariate normal integral” or non-central MVN integral [18] and general MVN integrals

are in the form [18§]

Dy(a,b, %) X' BT g daoda, (2.49)

marl [
= e
|2|(27T)k a1 Jaz ag

where X is a symmetric, positive definite covariance matrix. In our case, (2.48) is a non-
central MVN integral which can be written of the form (2.49) where k¥ = 7 — 1 and the

inverse of the covariance matrix is given by
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A Pseudo-code of QMC Algorithm for MVN Integrals:
1. get 3, a, b, N, M and «

2. compute lower triangular Cholesky factor L for 3, permuting a and b, and rows and columns of 3 for variable prioritization.
3. initialize P =0, N =0, V =0, and q = \/p with p = (2,3,5,...,p)) where p; is the j-th prime.
4. fori=1,2,..., M do
I; = 0 and generate uniform random A € [0, 1]* shift vector.
for j=1,2,...,N do
d1:<I><l‘11—Y1> , e1 :@(%) and f1 =e; —d;.
for m=2,3,...,k do
Ym—1 = <I>71(d'm71 + wmfl(emfl - d’In71))7

m—1
m = lm nYj
Ay = @ (St Lty )
m—1 )
e = B bmlen;;nlm,ny])7
fm = (em - dm)fmfl-
endfor
Ii = Iz‘ + (fm - IL)/]
endfor

o=U;—t))i, P=P+0,V=_>-2V/i+o?and E=aVV
endfor

5. output P = ®(a, b, X) with error estimate E.

Figure 2.3: A randomized QMC algorithm proposed in [18] to compute MVN probabilities
for hyper-rectangular regions.

which is a symmetric positive definite matrix with |2| = 1, the lower bound vector is of the
form

k=01 —pn
k—01—2u

k=01 —(T—1)p
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and the upper bound vector is given by

K—"0—pu
/{—92—2#

k=0 — (7= 1)u

where —ku terms in the lower and the upper bounds follow from the non-central property
of (2.48). We emphasize that the MVN integral in (2.49) cannot be calculated in a closed
form [18] and most of the results on this integral correspond to either special cases or coarse
approximations [7,18]. Hence, in this part, we use the randomized QMC algorithm, provided
in Fig. 2.3 [18] for completeness, to compute MVN probabilities over hyper rectangular
regions. Here, the algorithm uses a periodized and randomized QMC rule [37] where the
output error estimate E in Fig. 2.3 is the usual Monte Carlo standard error based on N
samples of the randomly shifted QMC rule, and scaled by the confidence factor a. We
observe in our simulations that the algorithm in Fig. 2.3 produce satisfactory results on
the historical data [27]. We emphasize that different algorithms can be used instead of
the Quasi-Monte Carlo (QMC) algorithm to calculate the multivariable integrals in (2.48),

however, the derivations still hold.

2.8 Maximum-Likelihood Estimation of Parameters of the Log-Normal Distri-

bution

In this section, we give the MLEs for the mean and variance of the log-normal distribution
using the sequence of price relative vectors, which are used sequentially in the Simulations
section to evaluate the optimal TRPs. Since the investor observes the sequence of price
relatives sequentially, he or she needs to estimate p and o at each investment period to find
the maximizing b and e. Without loss of generality we provide the MLE for x;(t), where
the MLE for zo(t) directly follows.

For these derivations, we assume that we observed a sequence of price relative vectors of
length N, i.e., (z1(1),21(2),..., x1(N)). Note that the sample data need not to belong to NV

consecutive periods such that the sequential representation is chosen for ease of presentation.
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Then, we find the parameters ;1 and 0% that maximize the log-likelihood function

InL(p1, 0% |21(1),21(2),...,21(N)) = In f(x1(1),21(2),...,21(N) | p1,0%) Zlnf x1(3) | 1, 01),

(na—p;)?

2y _ 1 S T L
where f(x|p1,07) = me 2217 . The log-likelihood function in (2.50) can also be
written as

N ; 2
1 _(lnxl(z)ful)
InL(p1,02 | z1(1),21(2),...,2z1(N)) = In— e 2072
(lul l| 1( ) 1( ) 1( )) ; Z'l(l)\/m
N N .
1 (Iny (i) — pa)?
=Y L (2.50)

1 xl(i)\/27'('0'12

20
i—1 1

.
Il

We start with maximizing the log-likelihood function In £ with respect to puq, i.e., find the

estimator 7 that satisfies 881%15 = 0. If we take the partial derivative of the expression in

(2.50) with respect to p1, then we obtain

OlnL g: Inzy (i) — g
=2

O i—1

Hence pi1, which satisfies 86_51 = 0, or the ML estimator ji; of u1, can be found as

N
I Z nwq(i (2.51)

To find the ML estimator of the variance 0%, we find 0'1 that satisfies an2 = 0. Since p;

that satisfies £~ = 0 in (2.51) does not depend on o, we can use it in (2.50). Let us define

i = va 1 lnml(l) for notational clarity. By replacing #7 with p; in (2.51) and taking the

partial derivative of the expression with respect to %, we obtain

N
Oln L N 2
T‘%__ﬁ—i_ ':E lnl’l —:E1 .
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Hence
N
Z Inz (i) — @)% (2.52)

Following similar steps, the ML estimators for z,(t) yield

1 N
=5 > Inwy(i), (2.53)
i=1
and
A N
03 = Z In 2o (i) — @), (2.54)
where 7 2 Zf\il % Note that the ML estimators (i1, o:%, 1o and o:% are consistent [38],

i.e., they converge to the true values as the size of the data set goes to infinity, i.e., N — oo

[40].

2.4 Simulations

In this section, we illustrate the performance our algorithm under different scenarios. We
first use TRPs over simulated data of two stocks, where each stock is generated from a
log-normal distribution. We then continue to test the performance over the historical “Ford
- MEI Corporation” stock pair chosen for its volatility [12] from the New York Stock Ex-
change. As the final set of experiments, we use our algorithm over the historical data
set from [10] and illustrate the average performance. In all these trials, we compare the
performance of our algorithm with portfolio selection strategies from [13,22,27].

In the first example, each stock is generated from a log-normal distribution such that
21(t) ~ In N(0.006,0.05) and z2(t) ~ In N (0.003,0.05), where the mean and variance values
are arbitrarily selected. We observe that the results do not depend on a particular choice of
model parameters as long as they resemble real life markets. We simulate the performance
over 1100 investment periods. Since the mean and variance parameters are not known by
the investor, we use the ML estimators from Section 2.3, which are then used to determine

the target portfolio b and the threshold value e. We start by calculating the ML estimators
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using the initial 200 samples and find the target portfolio b = [b1 — b] and the threshold
e that maximize the expected wealth growth by a brute-force search. Then, we use the
corresponding bb and e during the following 200 samples. In similar lines, we calculate
and use the optimal TRP for a total of 900 days, where b and are estimated over every
window of 200 samples and used in the following window of 200 samples. We choose a
window of size 200 samples to get reliable estimates for the means and variances based
on the size of the overall data. In Fig. 2.4, we show the performances of: this sequential
TRP algorithm “TRP”, the Covers universal portfolio selection algorithm [13] “Cover”,
the Iyengars universal portfolio algorithm [22] “Iyengar” and a semiconstant rebalanced
portfolio (SCRP) algorithm [27] “SCRP”, where the parameters are chosen as suggested
in [15]. As seen in Fig. 2.4, the TRP with the parameters sequentially calculated using
the ML estimators is the best rebalancing strategy among the others as expected from
our derivations. In Fig. 2.4b and Fig. 2.4a, we present results for a mild transaction cost
¢ = 0.01 and a hefty transaction cost ¢ = 0.025, respectively, where ¢ is the fraction paid
in commission for each transaction, i.e., ¢ = 0.01 is a 1% commission. We observe that the
performance of the TRP algorithm is better than the other algorithms for these transaction
costs. However, the relative gain is larger for the large transaction cost since the TRP
approach, with the optimal parameters chosen as in this part, can hedge more effectively
against the transaction costs.

As the next example, we apply our algorithm to historical data from [13] from the New
York Stock Exchange collected over a 22-year period. We first apply algorithms on the
“Ford - MEI Corporation” pair as shown in Fig. 2.5, which are chosen because of their
volatility [12]. In Fig. 2.5, we plot the wealth growth of: the sequential TRP algorithm with
the optimal parameters sequentially calculated, the Covers universal portfolio, the Iyengars
universal portfolio and the SCRP algorithm with the suggested parameters in [27]. We use
the ML estimators to choose the optimal TRP as in the first set of experiments, however,
since the historical data contains 5651 days we use a window of size 1000 days. Hence,
the performance results are shown over 4651 days. As seen from Fig. 2.5, the proposed
TRP algorithm significantly outperforms other algorithms for this data set. Similar to the
simulated data case, we investigate the performance of the TRP algorithm under different

transaction costs, i.e., a moderate transaction cost ¢ = 0.01 in Fig. 2.5b and a hefty transac-
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tion cost ¢ = 0.025 in Fig. 2.5a. Comparing the results from the Fig. 2.5a and Fig. 2.5b, we
conclude that the TRP with the optimal sequential parameter selection can better handle
the transaction costs when the stocks are volatile for this experiment.

Finally, to remove any bias on a particular stock pair, we show the average performance of
the TRP algorithm over randomly selected stock pairs from the historical data set from [13].
The total set includes 34 different stocks, where the Iroquois stock is removed due to its
peculiar behavior. We first randomly select pairs of stocks and invest using: the sequential
TRP algorithm with the sequential ML estimators, the Covers universal portfolio algorithm,
the Iyengars universal portfolio algorithm and the SCRP algorithm. The sequential selection
of the optimal TRP parameters are performed similar to the previous case, i.e., we use ML
estimators on an investment block of 1000 days and use the calculated optimal TRP in the
next block of 1000 days. For each stock pair, we simulate the performance of the algorithms
over 4651 days. In Fig. 2.6, we present the wealth achieved by these algorithms, where
the results are averaged over 10 independent trials. We present the achieved wealth over
random sets of stock pairs under a moderate transaction cost ¢ = 0.01 in Fig. 2.6b and a
hefty transaction cost ¢ = 0.025 in Fig. 2.6a. As seen from the figures, the TRP algorithm
with the ML estimators readily outperforms the other strategies under different transaction

costs on this historical data set.

2.5 Conclusions

In this chapter, we studied an important financial application, the portfolio selection prob-
lem, from a signal processing perspective. We investigated the portfolio selection problem
in i.i.d. discrete time markets having a finite number of assets, when the market levies
proportional transaction fees for both buying and selling stocks. We introduced algorithms
based on threshold rebalanced portfolios that achieve the maximal growth rate when the se-
quence of price relatives have the log-normal distribution from the well-known Black-Scholes
model [29]. Under this setup, we provide an iterative relation that efficiently and recursively
calculates the expected wealth in any i.i.d. market over any investment period. The terms
in this recursion are evaluated by a certain multivariate Gaussian integral. We then use a
randomized algorithm to calculate the given integral and obtain the expected growth. This

expected growth is then optimized by a brute force method to yield the optimal target port-
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folio and the threshold to maximize the expected wealth over any investment period. We
also provide a maximum-likelihood estimator to estimate the parameters of the log-normal
distribution from the sequence of price relative vectors. As predicted from our derivations,
we significantly improve the achieved wealth over portfolio selection algorithms from the

literature on the historical data set from [13].
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Figure 2.4: Performance of various portfolio investment algorithms on a Log-normally simulated
two-stock market. (a) Wealth growth under hefty transaction cost (¢=0.025). (b) Wealth growth
under moderate transaction cost (¢=0.01).
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Figure 2.5: Performance of various portfolio investment algorithms on Ford - MEI Corporation

pair. (a) Wealth growth under hefty transaction cost (¢=0.025). (b) Wealth growth under moderate
transaction cost (¢=0.01).
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Figure 2.6: Average performance of various portfolio investment algorithms on random stock pairs.
(a) Wealth growth under hefty transaction cost (c=0.025). (b) Wealth growth under moderate
transaction cost (¢=0.01).
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Chapter 3

GROWTH OPTIMAL PORTFOLIOS IN DISCRETE-TIME MARKETS
UNDER TRANSACTION COSTS

In this chapter, we study investment problem in markets that allow trading at discrete
periods, where the discrete period is arbitrary, e.g., it can be seconds, minutes or days [29].
Furthermore the market levies transaction fees for both selling and buying an asset propor-
tional to the volume of trading at each transaction, which accurately models a broad range
of financial markets [8,29]. In our discussions, we first consider markets with two assets,
i.e., two-asset markets. We emphasize that the two-stock markets are extensively studied
in financial literature and are shown to accurately model a wide range of financial appli-
cations [29], e.g., the practically significant “Stock and Bond Market”, where an investor
holds a portfolio between a set of stocks and U.S. treasury bonds [12]. We then extend our
analysis to markets having more than two assets, i.e., m-stock markets, where m is arbitrary
but determined by the investor. Following the extensive literature [14,27,29,32,33,44]|, the
market is modelled by a sequence of price relative vectors, say {X (n)}n,>1, X(n) € [0,00)™,
where each entry of X (n), i.e., X;(n) € [0, 00), is the ratio of the closing price to the opening
price of the ith stock per investment period. In this sense, each entry of X (n) quantifies the
gain (or the loss) of that asset at each investment period. The sequence of price relative vec-
tors is assumed to have an i.i.d. “discrete” distribution [29,32,33,44], however, the discrete
distributions on the vector of price relatives are arbitrary. In this sense, the corresponding
discrete distributions can approximate a wide class of continuous distributions on the price
relatives that satisfy certain regularity conditions by appropriately increasing the size of the
discrete sample space. We first assume that we know the discrete distributions on the price
relative vectors and then extend our analysis to cover when the underlying distributions are
unknown. We emphasize that the i.i.d. assumption on the sequence of price relative vectors
is shown to hold in most realistic markets [21,29]. The detailed market model is provided

in Section IV. At each investment period, the diversification of the capital over these assets
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is represented by a portfolio vector b(n), where 1 > b;(n) > 0, >, bj(n) = 1, and b;(n)
is the ratio of the capital invested in the ith asset at investment period n. Note that if we
invest using b(n), we earn (or loose) b? (n)X (n) at the investment period n after X (n) is

revealed. Given that we start with one dollars, after an investment period of N days, we
N

n=

have a growth of wealth [[)_, b*(n)X (n). Under this general market model, we provide
algorithms that maximize the expected growth over any period N by using “threshold re-
balanced portfolios” (TRP)s, which are extensively used in Stock and Bond Markets [29]
and are shown to yield optimal growth in general i.i.d. discrete-time markets [21].

Under mild assumptions on the sequence of price relatives and without any transaction
costs, Cover et. al [14] showed that the portfolio that achieves the maximal growth is a
constant rebalanced portfolio (CRP) in ii.d. discrete-time markets. A CRP is a portfolio
investment strategy where the fraction of wealth invested in each stock is kept constant
at each investment period. A problem extensively studied in this framework is to find
sequential portfolios that asymptotically achieve the wealth of the best CRP tuned to the
underlying sequence of price relatives. This amounts to finding a daily trading strategy
that has the ability to perform as well as the best asset diversified, constantly rebalanced
portfolio. Several sequential algorithms are introduced that achieve the performance of
the best CRP either with different convergence rates or performance on historical data
sets [1,14,20,24,47]. Even under transaction costs, sequential algorithms are introduced
that achieve the performance of the best CRP [8]. Nevertheless, we emphasize that keeping
a CRP may require extensive trading due to possible rebalancing at each investment period
deeming CRPs, or even the best CRP, ineffective in realistic markets even under mild
transaction costs [27].

In continuous-time markets, however, it has been shown that under transaction costs,
the optimal portfolios that achieve the maximal wealth are certain class of “no-trade zone”
portfolios [11,17,41]. In simple terms, a no-trade zone portfolio has a compact closed
set such that the rebalancing occurs if the current portfolio breaches this set, otherwise no
rebalancing occurs. Clearly, such a no-trade zone portfolio may avoid hefty transaction costs
since it can limit excessive rebalancing by defining appropriate no-trade zones. Analogous
to continuous time markets, it has been shown in [21] that in two-asset ii.d. markets

under proportional transaction costs, compact no-trade zone portfolios are optimal such
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that they achieve the maximal growth under mild assumptions on the sequence of price
relatives. In two-asset markets, the compact no trade zone is represented by thresholds,
e.g., if at investment period n, the portfolio is given by b(n) = [b(n) (1 — b(n))]”, where
1 > b(n) > 0, then rebalancing occurs if b(n) ¢ (a,3), given the thresholds «, 3, where
1 > > «a > 0. Similarly, the interval (a, 3) can be represented using a target portfolio b
and a region around it, i.e., (b—¢€,b+€), where min{b, 1 —b} > € > 0 such that « = b—e€ and
0 = b+ e. Extension of TRPs to markets having more than two stocks is straightforward
and explained in Section 3.2.2.

However, how to construct the no-trade zone portfolio, i.e., selecting the thresholds
that achieve the maximal growth, has not yet been solved except in elementary scenarios
[21]. We emphasize that a sequential universal algorithm that asymptotically achieves
the performance of the best TRP specifically tuned to the underlying sequence of price
relatives is introduced in [22]. This algorithm leverages Bayesian type weighting from [14]
inspired from universal source coding and requires no statistical assumptions on the sequence
of price relatives. In similar lines, various different universal sequential algorithms are
introduced that achieve the performance of the best algorithm in different competition
classes in [2, 5,16, 2528, 39]. However, we emphasize that the performance guarantees
in [22] (and in (2,5, 16,25-27,39]) on the performance, although without any stochastic
assumptions, is given for the worst case sequence and only optimal in the asymptotic. For
any finite investment period, the corresponding order terms in the upper bounds may not be
negligible in financial markets, although they may be neglected in source coding applications
(where these algorithms are inspired from). We demonstrate that our algorithm readily
outperforms these universal algorithms over historical data [14], where similar observations
are reported in [10,28].

Our main contributions are as follows. We first consider two-asset markets and recur-
sively evaluate the expected achieved wealth of a threshold portfolio for any b and € over any
investment period. We then extend this analysis to markets having more than two-stocks.
We next demonstrate that under the threshold rebalancing framework, the achievable set of
portfolios form an irreducible Markov chain under mild technical conditions. We evaluate
the corresponding stationary distribution of this Markov chain, which provides a natural

and efficient method to calculate the cumulative expected wealth. Subsequently, the corre-
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sponding parameters are optimized using a brute force approach yielding the growth optimal
investment portfolio under proportional transaction costs in i.i.d. discrete-time two-asset
markets. We note that for the case with irreducible Markov chain, which covers practi-
cally all scenarios, the optimization of the parameters is offline and carried out only once.
However, for the case with recursive calculations, the algorithm requires an exponential
computational complexity in terms of number of states. However, in our simulations, we
observe that a reduced complexity form of the recursive algorithm that keeps only a constant
number of states by appropriately pruning provides nearly identical results to the “optimal”
algorithm. Furthermore, as a well studied problem, we also solve optimal portfolio selec-
tion in discrete-time markets constructed by sampling continuous-time Brownian markets.
When the underlying discrete distributions of the price relative vectors are unknown, we
provide a maximum likelihood estimator to estimate the corresponding distributions that
is incorporated in the optimization framework in the Simulations section. For all these

approaches, we also provide the corresponding complexity bounds.

3.1 Problem Description

We consider discrete-time stock markets under transaction costs. We first consider a market
with two stocks and then extend the analysis to markets having more than two stock. We
model the market using a sequence of price relative vectors X (n). A vector of price relatives
X(n) = [X1(n), ..., Xm(n)]" represents the change in the prices of the assets over invest-
ment period n in a market with m assets, i.e., X;(n) is the ratio of the closing to the opening
price of the ith stock over period n. For a market having two assets X(n) = [X1(n) X2(n)]”.
We assume that the price relative sequences X;(n) and Xs(n) are independent and identi-
cally distributed (i.i.d.) over with possibly different discrete sample spaces &} and A», i.e.,
X1(n) € Xy and X5(n) € Xy, respectively [21]. For technical reasons, in our derivations, we
assume that the sample space is X e Xy UXy = {x1,29,...,2x} for both X;(n) and Xa(n)
where |X| = K is the cardinality of the set X'. The probability mass function (pmf) of X;(n)
is p1(x) 2 Pr(X; = z) and the probability mass function of Xo(n) is pa(x) 2 Pr(X, = z).
We define p;1 = pi(z;) and p;o = pa(x;) for ; € X and the probability mass vectors
P =[p11p21 --- pK71]T and p2 = [p12p22 ... pKQ]T, respectively. Here, we first assume

that the corresponding probability mass vectors p; and po are known. We then extend
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our analysis where p; and po are unknown and sequentially estimated using a maximum
likelihood estimator in Section 3.3.

An allocation of wealth over two stocks is represented by the portfolio vector b(n) =
[b(n) 1 — b(n)], where b(n) and 1 — b(n) represents the proportion of wealth invested in the
first and second stocks, respectively, for each investment period n. In two stock markets,
the portfolio vector b = [b1 — b] is completely characterized by the proportion b of the
total wealth invested in the first stock. For notational clarity, we use b(n) to represent by (n)
throughout the chapter.

We denote a threshold rebalancing portfolio with an initial and target portfolio b and a
threshold € by TRP(b,e). At each market period n, an investor rebalances the asset allocation
only if the portfolio leaves the interval (b—e¢,b+¢). When b(n) & (b—¢€,b+ €), the investor
buys and sells stocks so that the asset allocation is rebalanced to the initial allocation, i.e.,
b(n) = b, and he/she has to pay transaction fees. We emphasize that the rebalancing can
be made directly to the closest boundary instead of to b as suggested in [21], however, we
rebalance to b for notational simplicity and our derivations hold for that case also. We
model transaction cost paid when rebalancing the asset allocation by a fixed proportional
cost ¢ € (0,1) [8,21,27]. For instance, if the investor buys or sells S dollars of stocks, then
he/she pays ¢S dollars of transaction fees. Although we assume a symmetric transaction
cost ratio, all the results can be carried over to markets with asymmetric costs [21,27].
Let S(N) denote the achieved wealth at investment period N and assume, without loss of
generality, that the initial wealth of the investor is 1 dollars. For example, if the portfolio
b(n) does not leave the interval (b — €,b+ €) and the allocation of wealth is not rebalanced
for N investment periods, then the current proportion of wealth invested in the first stock

is given by

_ DI,y X1 ()
bIT0Z, X1(n) + (1= b) TIA, Xa(n)

b(N)

and achieved wealth is given by

N N
SNy =b ] X1(n) + (1 =) ] Xa(n).
n=1

n=1

If the portfolio leaves the interval (b—e,b+¢€) at period N, i.e., b(N) & (b—e€,b+€), then the
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investor rebalances the asset distribution to the initial distribution and pays approximately
S(N)|b(N) — blc dollars for transaction costs [8].

In the next section, we first evaluate the expected achieved wealth E[S(N)] so that we
can optimize b and e. We also analyze the number of calculations required to evaluate
E[S(N)], i.e., the complexity of the algorithm. We extend our results on expected achieved
wealth to markets having more than two assets, i.e., m-asset markets. We then present
conditions under which the set of all achievable portfolios has finite elements and derive
the expected achieved wealth under these conditions. Finally, we consider the well-known
Brownian market with two stocks and find the expected wealth growth [17,21] which is then

optimized.

3.2 Threshold Rebalanced Portfolios

In this section, we investigate threshold rebalancing portfolios in discrete-time two-asset
markets under proportional transaction costs. We first calculate the expected achieved
wealth at a given investment period by an iterative algorithm. Then, we present an upper
bound on the complexity of the algorithm. We also extend the expected achieved wealth
calculations to markets having more than two assets, i.e., m-asset markets for an arbitrary
m. We next give the necessary and sufficient conditions such that the achievable portfolios
are finite at any investment period. This result is important when we calculate the expected
achieved wealth since the complexity of the algorithm does not grow when the set of achiev-
able portfolios is finite at any period. We also show that the portfolio sequence converges to
a stationary distribution and derive the expected achieved wealth. Based on the calculation
of the expected achieved wealth, we optimize b and € using a brute-force search. Finally,
with these derivations, we consider the well-known discrete-time two-asset Brownian mar-
ket with proportional transaction costs and investigate the asymptotic expected achieved

wealth to optimize b and e.

3.2.1 An Iterative Algorithm

In this section, we calculate the expected wealth growth of a TRP with an iterative algorithm
and find an upper bound on the complexity of the algorithm. To accomplish this, we

first define the set of achievable portfolios at each investment period since the iterative
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Figure 3.1: Block diagram representation of N period investment.

calculation of the expected achieved wealth is based on the achievable portfolio set. We
next introduce the portfolio transition sets and the transition probabilities of achievable
portfolios at successive investment periods in order to find the probability of each portfolio
state iteratively. We evaluate the expected achieved wealth E[S(NNV)] at a given investment
period N based on the set of achievable portfolios, the transition probabilities and the set
of price relative vectors connecting the portfolio states. We then optimize b and € using a
brute-force search.
We define the set of achievable portfolios at each investment period as follows. Since the
sample space of the price relative sequences X;(n) and Xs(n) is finite, i.e., |X| = K, the
set of achievable portfolios at period N can only have finitely many elements. We define

the set of achievable portfolios at period N as By = {b1 n,...,bmy ~N}, where My = | By |

is the size of the set By for NV > 1. As an example, we have

bu
Bl = {b171,...,bM1’1|bl71:m E(b—E,b+€) Orbhl:b, U,'UGX}.

As illustrated in Fig. 3.1, for each achievable portfolio b; ny € By, there is a certain set of

portfolios in By_1 that are connected to b, by definition of b;,,. At a given investment
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period N, the set of achievable portfolios By is given by

br,N—1U
b, N—1u+ (1 — b, v—1)v

By = {bl,Na---,bMN,N“)l,N: S (b—E,b—I—E) OrbLN:b, u,UGX}.

We let, without loss of generality, by y = b for each N € N. Note that in Fig. 3.1, the size
of the set of achievable portfolios at each period may grow in the next period depending
on the set of price relative vectors. We next define the transition probabilities as g;; n =
Pr(b(N) =b n|b(N —1) =bpny—1) for k=1,...,Mn_y and [ = 1,..., My and the set of
achievable portfolios that are connected to by n, i.e., the portfolio transition set, as Nj y =
{bp,N—1 € Bn-1 | qryn >0, k=1,...,Mn_1} for l =1,..., My. Hence, the probability

of each portfolio state is given by

Pr(b(N)=bn)= >  Pr(bo(N)=bnb(N —1)=bpn_1)Pr(b(N —1) = by n_1)
b, N—1EBN_1

= > @rnPr(O(N —1) =ben1) (3.1)
b, N—1EN, N

for I =1,..., My. Therefore, we can calculate the probability of achievable portfolios iter-

atively. Using these iterative equations, we next iteratively calculate the expected achieved
wealth E[S(N)] at each period as follows.
By definition of By and using the law of total expectation [6], the expected achieved

wealth at investment period N can be written as
My
E[S(N)] =Y Pr(b(N) = b,n) E[S(N)[b(N) = bin]. (3.2)
=1

To get E[S(N)] in (3.2) iteratively, we evaluate Pr (b(N) = b, n) E [S(N)|b(N) = by n] for
each | = 1,..., My from Pr(b(N —1) = by n_1) E[S(N — 1)[b(N — 1) = by n—_1] for k =
1,...,My_1. To achieve this, we first find the transition probabilities (not the state prob-
abilities) between the achievable portfolios.

We define the set of price relative vectors that connect by ny—1 to by n as Uy v where

b N—
Z/{k,l,N _ {W _ [wl wz]T e X2 | bl,N _ w1 k,N—1 }

wibg, N—1 + wa(l — by, N—1)
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fork=1,..., My_1andl=2,..., My. We consider the price relative vectors that connect
bi,n—1 to by Ny = b separately since, in this case, there are two cases depending on whether

the portfolio leaves the interval (b —€,b+ €) or not. We define Uy, 1 y as

Up 1N = Viin URE 1N,

where Vj, 1 v is the set of price relative vectors that connect by y_1 to by xy = b such that

the portfolio does not leave the interval (b —€,b + €) at period N, i.e.,

wibg, N—1
Viin =AW= T e x? ’ = b} ,
LN {W oy wo] | wibg N1 + wa(l — by N—1)

and Ry 1 n is the set of price relative vectors that connect by ny—1 to by n such that the

portfolio leaves the interval (b — €,b+ €) at period N and is rebalanced to by y = b, i.e.,

be,N—1
R = W = (w1 W T€X2 o 5 b_€7b+6 ’
k,1,N { [w1 wo] | wibg N1 + wa(l — by N—1) # :

Then, the transition probabilities are given by

QI N = Pr (b(N) = bLN’b(N — 1) = bk,N—l) =Pr (X(N) S Z/{k,l,N)

= > pi(wi)pa(wz)  (3.3)
w=lwi wa]” €Up1, v
fork=1,...,My_iandl =1,..., My so that we can calculate Pr (b(N)) = b; y) iteratively
foreach I =1,..., My by (3.1). Since we have recursive equations for the state probabilities,
we next perform the iterative calculation of the expected achieved wealth based on the
achievable portfolio sets and the transition probabilities.

Given the recursive formulation for the state probabilities, we can evaluate the term
Pr(b(N) =b n) E[S(N)|b(N) =b n]forl=1,..., My from Pr (b(N — 1) = by n—1) E[S(N—
DIb(N —1) = by n—1] for k =1,..., Mn_; iteratively to calculate E[S(N)] by (3.2) as fol-
lows. To evaluate Pr(b(N) = b, n) E[S(N)|b(N) = by n], we need to consider two cases
separately based on the value of by y.

In the first case, we see that if the portfolio b(IN) = b n, where [ = 2,..., N, then the

portfolio does not leave the interval (b — €,b + €) at period N. Hence, no transaction cost
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is paid so that we can express Pr (b(N) = by ) E[S(N)|b(N) = by ] as a summation of the

conditional expectations for all by y_1 € /\/l ~ by the law of total expectation [6] as

Pr(b(N) = by,n) E[S(N)[b(N) = by,n]
= > E[S(N)[B(N) =byn,b(N = 1) = b y_1] Pr (B(N — 1) = b y_1[b(N) = b ) Pr (b(N) = by )

b, N—1EN | N

= > E[S(N)[B(N) =byn,b(N = 1) = b y_1] Pr (6(N — 1) = b y_1) k1,

b N—1ENI N

(3.4)

where (3.4) follows from Bayes’ theorem [40]. We note that given b(N — 1) = by ny—1
and b(N) = by, the price relative vector X(NN) can take values from Uy ny and gx ;N =
Pr (X(N) € Uy n) so that (3.4) can be written as a summation of the conditional expecta-
tions for all X(IV) = w € Uy n [6] after replacing qx; n

Pr (b(N) = by, n) E[S(N)[b(N) = by, n]

)

- ¥ 3 E[SN|b(N) = by n,b(N —1) = b n—1, X(N) = W]

bk, N—1ENLN w=[w1 wa]T €Uy 1 n

x Pr (b(N — 1) = bk,N—l) Pr (X(N) = W‘X(N) S uk,l,N) Pr (X(N) S uk,l,N) . (35)

Now, given that b(N — 1) = by n—1, b(N) = by and X(N) = w = [w ws]”, we observe
that Pr(X(N) = w|X(N) € Uy .n) Pr(X(N) € Uy n) = Pr(X(N) = w) and

E [SN’b(N) = bl’N,b(N — 1) = bk’N_l,X(N) = W]

= E[S(N = 1)(bg,n—1w1 + (1 = b n—1)w2)[b(N — 1) = by n-1], (3.6)
and by using (3.6) in (3.5), we have

Pr (b(N) = by, n) E[S(N)|b(N) = by, n]

)

= Z Z E [S(N — 1)(bk,N_1w1 + (1 — bk7N_1)w2)\b(N — 1) = bk,N—l]

bk, N—1ENLN w=[w1 wa]T €Uy 1N

X Pr(b(N —1) =bpn_1) Pr(X(N) =w).
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Therefore, we can write Pr (b(N) = b n) E[S(N)|b(N) = by y] from Pr (b(N — 1) = by y—1) E[S(N—
1)’[)(]\7 — 1) = bk,N—l] as

Pr (b(N) = by,n) E[S(N)|b(N) = bi,n]

= > Pr(b(N-1)=0bpn_1) E[S(N = D|b(N — 1) = by, y_1]

be, N—1EN N

X Z (b, n—1w1 + (1 — by Nn—1)w2)p1 (w1)p2(w2) (3.7)

w:[w1 wz}Teuk,l,N

for 1 =2,..., My, where we use Pr(X(N) = w) = p1(w1)p2(w2).

In the second case, if the portfolio b(N) = by v, then there are two sets of price relative
vectors that connect by y_1 to by n, i.e., Vi1 v and Ry 1 n. Depending on the value of the
price vector, the portfolio may be rebalanced to by y = b. If X(N) € Vj, 1 v, then the port-
folio is not rebalanced and no transaction fee is paid. If X(IV) € Ry 1 v, then the portfolio is
rebalanced and transaction cost is paid. We can find Pr (b(IN) = by n) E[S(N)|b(N) = b1 n]
from Pr (b(N — 1) = by ny—1) E[S(N — 1)[b(N — 1) = b, ny—1] as a summation of the condi-

tional expectations for all by y_1 € N7 n [6] as

Pr(b(N) = b1,n) E[S(N)[b(N) = b1,N]

= Z E[S(N)|b(N) = by n,b(N — 1) = b y—1] Pr(b(N — 1) = by y-1/b(N) = b1 n)
be,N—1EN1,N

x Pr (b(N) = bl,N)

= Y E[S(N)[B(N) =byn,b(N = 1) = b y_1] Pr (b(N = 1) = b y—_1) qr,n-
be,N—1EN1,N

(3.8)

We note that given b(N — 1) = by y—1 and b(N) = by y, the price relative vector X(NN) can
take values from Vj, 1 n or Ry.1.n, gk v = Pr(X(N) € Uy n) and Pr (X(N) = w|X(V) € Uy )
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xPr(X(N) € Uy n) = Pr(X(N) = w) which yields in (3.8) that
Pr (b(N) = b1,n) E[S(N)|b(N) = b1,n]

= Z Z E[SN[b(N) = by n,b(N — 1) = by -1, X(N) = W]

b, N—1ENLN | w=[w1 w2]T Vi1 N
XPr(b(N — 1) = b n—1) Pr(X(N) =w)

+ > E[Sn|b(N) = by,n,b(N = 1) = b y—1,X(N) = w]

w=[w1 wa]TERE 1 N

x Pr(b(N — 1) = by y_1) Pr(X(N) = w)

If X(N)=w € V1N, then it follows that

E [SN|b(N) = bLN,b(N - 1) == bk7N_1,X(N) == W]

= E[S(N = 1)(bg,n—1w1 + (1 = b n—1)w2)[b(N — 1) = by n—1]. (3.9)
If X(N)=w € Ry1 n, then transaction cost is paid which results

E [SN‘b(N) = bLN,b(N — 1) = bk7N_1,X(N) = W]

b, N—1W1
b N—1w1 + (1 — by, N1

— B[SOV - )(buv-rin+ (1) (1

Yor b‘) |b(N —1) = brn—1] -

(3.10)
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Hence, we can write (3.8) after using (3.9) and (3.10) as

Pr(b(N) = bi,n) E[S(N)[b(N) = b1,n]

— Z Pr(b(N —1) = byn-1)

be,N—1€EN1, N

% Z Pr(X(N) =w) E[S(N —1)(bp,n-1w1 + (1 = bg, n—1)w2)[D(N — 1) = bg n_1]
w=[w1 w2] "€V 1N
+ > Pr(X(N) = w) (3.11)

w:[wl wz]TeRk’lyN

b, N—1w1
b, N—1w1 + (1 — by y—1)wo

<B [0V~ Dby + (b)) (1

- b‘) |b(N — 1) = b n—1

Thus, we can write Pr (b(N) = by n) E[S(N)|b(N) = by n] from Pr (b(N — 1) = by n—1) E[S(N—
DIb(N = 1) = bg,n—1] as

Pr(b(N) = bi,n) E[S(N)[b(N) = b1,N]

= > Pr(o(N-1)=bn-1) E[S(N = 1)[b(N —1) = b y_1]

be,N—1€EN1, N

X Z (b, n—1w1 + (1 — by n—1)w2)p1 (w1)p2(w2) (3.12)

w=[wy ’IUQ}TEV,ICJ,N

b, N—1w1
b N—1w1 + (1 — b y—1)wo

+ Z (bk,N—lwl +(1- bk7N—1)) (1 —c

w=[w1 wa]TERk 1 N

- b\) pr (w1 )pa(uwn) §

which yields the recursive expressions for Pr (b(N) = b; ) E[S(N)|b(N) = by n]| iteratively
for each I =1,..., My with (3.7) and (3.12).

Hence, in the first case where the portfolio b(N) = b x for I = 2,... My, we can calculate
E[S(N)[b(N) = b;,n] Pr (b(N) = by,n) from E [S(N = 1)[b(N — 1) = by n—1] Pr (b(N — 1) = b,n-1)
for by n—1 € Njn by (3.7). In the second case where the portfolio b(N) = by n = b,
we can calculate E [Sy|b(N) = by n] Pr (b(N) = by n) from E[S(N —1)|b(N — 1) = b, n—1]

XPr (b(N — 1) = b, ny—1) for by n—1 € N1 n by (3.12). Therefore, we can evaluate E[S(N)]

iteratively by (3.2). Since, we have the recursive formulation, we can optimize b and € by a
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brute force search as shown in the Simulations section. For this recursive evaluation, we have
to find the set of achievable portfolios at each investment period to compute E[S(N)]| by
(3.2). Hence, we next analyze the number of calculations required to evaluate the expected

achieved wealth E[S(N)].

Complexity Analysis of the Iterative Algorithm

We next investigate the number of achievable portfolios at a given market period to deter-
mine the complexity of the iterative algorithm. We show that the set of achievable portfolios
at period N is equivalent to the set of achievable portfolios when the portfolio b(n) does
not leave the interval (b — €,b + €) for N investment periods. We first demonstrate that if

the portfolio never leaves the interval (b —€,b 4 ¢€) for IV periods, then b(/N) is given by

1

b(N) = ,
() 1+ 103, 2

where Z(n) 2 ln%—gg with a sample space Z = {z=In% |u,v € X} where |Z| = M.
Then, we argue that the number of achievable portfolios at period N, My, is equal to the
number of different values that the sum 25:1 Z(n) can take when the portfolio does not
leave the interval (b—e¢,b+¢€) for N investment periods. We point out that M < K? — K +1
since the price relative sequences Xj(n) and Xs(n) are elements of the same sample space

X with |X| = K and by using this, we find an upper bound on the number of achievable

portfolios.

Lemma 3.2.1 The number of achievable portfolios at period N, My, is equal to the number

of different values that the sum Zﬁf:l Z(n) can take when the portfolio b(n) does not leave

the interval (b — €,b + €) for N investment periods and is bounded by (NHJ(VQ_K), i.e.,

My = |By| < (VFEI-H).

Proof: The proof is in the Appendix A. L]

Remark 3.2.1 Note that the complezity of calculating E[S(N)] is bounded by O (Egzl ("+K2_K) /N)

n

since at each period n =1,..., N, we calculate E[S(n)] as a summation of M, terms, i.e.,

E[S(n)] = M2 E[S(n)|b(n) = byu]Pr (b(n) = b,) and M, < ("FE=K).
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In the next section, we extend the given iterative algorithm to calculate the expected
achieved wealth in a market with m-assets, where m is an arbitrary number determined
by the investor. This result implies that the given optimal threshold rebalanced portfolio
method can be employed not only in a two asset market like “Stock and Bond market”, but

a general stock market where an investor diversify capital into several assets.

3.2.2  Generalization of the Iterative Algorithm to the m-asset Market Case

In this section, we generalize the iterative method introduced in Section 3.2.1 to a mar-
ket with m assets where m € Z*. We model the market as a sequence of i.i.d. price
relative vectors X(n) = [Xi(n) Xa(n)... X, (n)], where X;(n) € X and the p.m.f. of
Xi(n) is pi(x) 2 Pr(X;(n) = z). For m-asset case, the portfolio vector is given by
b(n) = [b1(n) ba(n)...by(n)], target portfolio vector is defined as b = [by b ... b,,] and the
threshold vector is given by € = [e1 €3...€,]. Along these lines, TRP(b, €) rebalances the
wealth allocation b(n) to b only when b(n) ¢ b€ 2 [b1 —€1,b1 +€1] X [bg —€9,ba + €3] X ... X

(b, — €m, b + €]. In this case, if the wealth allocation is not rebalanced for N investment

periods, then the proportion of wealth invested in the ith asset becomes

_ bi ngl XZ(N)
Sl bk Ty Xe(IV)

bi(IV)

and achieved wealth is given by

m N
S(N) => b [ Xe(N).
k=1

n=1

We define the set of achievable portfolios at period N as

b;n_10x%x
By = {b:[’N,bQ’N,. .. 7bMN,N ’ bk,N = 17TN71 S bEOI‘kaV =b, x€ Xm}
x'by -1
where My = |By|. In accordance with the definitions given in 2-asset market case, the

definitions of the portfolio transition sets and the transition probabilities of achievable
portfolios follows. Then similar to the iterative algorithm introduced in Section 3.2.1 and
the equations (3.7) and (3.12), we can evaluate the term Pr (b(N) = b; y) E[S(N)|b(N) =
by n] for I =1,..., My from Pr(b(N — 1) = by ny_1) E[S(N — 1)|b(N — 1) = by x_;] for
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k=1,...,My_; iteratively to calculate E[S(N)]. Therefore for m-asset market case, by

using

E[S(N)] = Y Pr(b(N) =biy) E[S(N)[b(N) = bin],
1=1
the expected achieved wealth E[S(N)] can be evaluated iteratively.

In the next section, we show that the set of all achievable portfolios, B = Uo2 1 By, is finite
under mild technical conditions. This result is important when we analyze the asymptotic
behavior of the expected achieved wealth since the the complexity of the algorithm that
evaluates E[S(n)] is constant when the set of achievable portfolios is finite. We demonstrate
that the portfolio sequence forms a Markov chain with a finite state space and converges to
a stationary distribution. Finally, we analyze the limiting behavior of the expected achieved

wealth and then optimize b and € with a brute-force algorithm.

3.2.8  Finitely Many Achievable Portfolios

In this section, we investigate the cardinality of the set of achievable portfolios B and demon-
strate that B is finite under certain conditions in the following theorem, Theorem 3.2.1. This
result is significant since when B is finite, we can derive a recursive update with a constant
complexity, i.e., the number of states does not grow, to calculate the expected achieved
wealth at any investment period. Then, we can investigate the limiting behavior of the
expected achieved wealth using this update to optimize b and e. Before providing the main
theorem, we first state a couple of lemmas that are used in the derivation of the main result
of this section.

We first point out that in Lemma 3.2.1, we showed that the number of achievable
portfolios at period N is equal to the number of different values that the sum Zﬁf:l Z(n)
can take when the portfolio b(n) does not leave the interval (b — €,b + €) for N investment
periods. Then, we observed that the cardinality of the set B is equal to the number of
different values that the sum zgzl Z(n) can take for any N € N when the portfolio b(n)
never leaves the interval (b —€,b+ €). We next show that the portfolio b(n) does not leave
the interval (b — €,b + €) for N periods if and only if the sum 22:1 Z(n) € (ag,aq) for

k = 17"'>N7 where a1 é IHM > 0 and (6% é In (b(l_b_e)

(1—0)(b—€) T—notre < 0. Moreover, we
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also prove that the number of achievable portfolios is equal to the cardinality of the set

M N (a2, a1) where we define the set M as
M ={miz1 +mazo+ ... +mpyr2pys | mi €72, z;€ ZVfori=1,...,M*}, (3.13)

z+t2 {z€Z|2z>0}, MT 2 |Z7F|. Note that ZT is the set of positive elements of the set
Z and any value that the sum 27127:1 Z(n) can take is an element of M. Hence, if we can
demonstrate that the set M N (ag, 1) is finite under certain conditions, then it yields the
cardinality of the set B since B is finite if and only if M N (ag,aq) is finite.

In the following lemma, we prove that the portfolio b(n) does not leave the interval

(b—€,b+¢€) for N periods if and only if the sum 22:1 Z(n) € (ag,aq) for k=1,...,N.

Lemma 3.2.2 The portfolio b(n) does not leave the interval (b—€,b+¢€) for N investment
periods if and only if the sum Zﬁzl Z(n) € (ag,aq) fork=1,...,N.

Proof: The proof is in the Appendix B. Ul

In the following lemma, we demonstrate that if the condition |z| < min{|a;]|, |as|} is
satisfied for each z € ZT, then for any element m € M N (a9, aq), there exists an N-period
market scenario where the portfolio does not leave the interval (b—e, b+ ¢€) for N investment
periods and {Z(n) = ZM}N_| such that m = S | Z( for some {Z(M}N | € Z and
N e N. It follows that the set of different values that the sum Zﬁf:l Z(n) can take for any
N € N when the portfolio never leaves the interval (b — €,b + €) for N investment periods
is equivalent to the set M N (ag,a1). Hence, we show that the cardinality of the set of
achievable portfolios is equal to the cardinality of the set M N (awg, a1). After this lemma,
we present conditions under which the set M N (a2, aq) is finite so that the set of achievable

portfolios is also finite.

Lemma 3.2.3 If |z| < min{|ai|,|az|} for z € ZT, then any element of M N (a2, 1)
can be written as a sum Zivzl Z™ for some N € N where {Z(n) = ZMW}N_, € Z and

Sk ZM € (ag,aq) fork=1,...,N.

n=1

Proof: In Lemma 3.2.1, we showed that for any investment period N, the number of

different portfolio values that b(IN) can take is equal to the number of different values that
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the sum S22 Z(n) can take where 32%_ Z(n) € (ag, ;) for k = 1,...,N. Since this is
true for any investment period N, it follows that the number of all achievable portfolios is
equal to the number of different values that the sum 25:1 Z(n) can take for any N € N
such that > Z(n) € (aa, o).

Here, we show that if m € M N (ag,a1), then there exists a sequence {Z(”) N ez
for some N € N such that m = Zivzl Z™ and 22:1 Z" € (ag,a;) for k =1,...,N.
Let m € M N (g, 7). Then, it can be written as m = miz1 + ... + mys+ 2+ for some
mi€Zand z € Z%,i=1,..., M*. We define S(k) = SF_, Z( for k > 1 and construct
a sequence {ZMN_ ¢ Z for some N € N such that m = 27]:7:1 Z™ and S(k) € (az, o)
for each k = 1,..., N as follows. We choose z; € ZT such that m; > 0, let ZM) = 5 and
decrease m; by 1. We see that S(1) = Z() € (ag, 1) since z; < min{|ay |, |az|}. Next, we
choose z; € Z* such that m; < 0, let Z® = —z; and increase m; by 1. Then, it follows
that S(2) = ZW + Z® = 2, — 2; € (ag, 1) since z;,2; < min{|aq], |az|}. At any time
k>3, if

e S(k) >0, we choose z; € ZT such that m; < 0, let Z+1) — _ 2 and increase m; by
1. Note that S(k+1) € (az, o) since S(k) € (az, 1), S(k) > 0 and Z*+1) < 0. Now
assume that there exists no z; € Z% such that m; <0, i.e., mj; >0 for j =1,..., M.

If we let T2 {j € {1,...,M} | m; >0} = {k1,..., kr} where T 2 |I| and

j—1 J
Z0 =z, I=k+1+ kiyooosk+ > ki
i=1 i=1

forj=1,...,T, then we get that m = S(N) = 25:1 Z™ where N = k‘+ZZT:1 k;. We
observe that S; € (ag, 1) for i = k+1,..., N since m € (a9, aq), 25;1 mp,; T, > 0
and S(k) > 0.

e S(k) < 0, we choose z € Z*t such that m; > 0, let Z*+1) = 2 and decrease m; by 1.
Note that S(k-+1) € (a9, aq) since S(k) € (ag,a1), S(k) < 0 and Z*++D > 0. Assume
that there exists no z; € Z% such that m; >0, i.e., mj <0 for j =1,..., M. If we let
JEje{l,...,M}|m; <0} ={ki,... kw} where W 2 |J| and

Jj—1 J

i=1 =1
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for j =1,...,W, then we get that m = S(N) = zgzl Z™ where N =k + ZZVL k;.
We see that S; € (ag,aq) for i = k+1,...,N since m € (ag,a1), ijil my T, <0

and S(k) < 0.

Therefore, we can write m = Zi:[:l Z™ for some N > 1 where {ZM}N_ | ¢ Z and

zgle(”)E(ag,al) fork=1,...,N. O

Hence, we showed that if the condition |z| < min{|aq|, |az|} is satisfied for each z € ZT,
then any element of the set MN (a2, a1) can be written as a sum zgzl Z(n) for some N € N
when the portfolio does not leave the interval (b — €,b + €) for N investment periods. It
follows that the set of different values that the sum Zivzl Z(n) can take for any N € N when
the portfolio does not leave the interval (b—e, b+€) for N investment periods is equivalent to
the set M N (ag, a1). Thus, the number of achievable portfolios is equal to the cardinality of
the set M N (ag,a1). In the following theorem, we demonstrate that if |z| < min{|aq|, |ae|}
for z € Z* and the set M has a minimum positive element, then M N (a9, aq) is finite.
Hence, the set of achievable portfolios is also finite under these conditions. Otherwise, we
show that the set MN (a2, ) contains infinitely many elements so that the set of achievable
portfolios is also infinite. Thus, we show that the set of achievable portfolios is finite if and

only if the minimum positive element of the set M exists.

Theorem 3.2.1 If |z| < min{|a1|, |az|} for z € Z1 and the set M has a minimum positive
element, i.e., if

0 = min{m € M | m > 0}

exists, then the set of achievable portfolio B = U2 B, is finite. If such a minimum positive

element does not exist, then B is countably infinite.

In Theorem 3.2.1 we present a necessary and sufficient condition for the achievable port-
folios to be finite. We emphasize that the required condition, i.e., |z| < min{|aq|, |ag|} for
2z € Z*, is a necessary required technical condition which assures that the TRP thresholds
are large enough to prohibit constant rebalancings at each investment period. In this sense,
this condition does not limit the generality of the TRP framework.

By Theorem 3.2.1, we establish the conditions for a unique stationary distribution of the

achievable portfolios. With the existence of a unique stationary distribution, in the next
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section, we provide the asymptotic behavior of the expected wealth growth by presenting
the growth rate.

Proof: For any investment period N, we showed in Lemma 3.2.1 that the number of
different portfolio values that b(IN) can take is equal to the number of different values that
the sum S| Z(n) can take where the sum ZI:L:I Z(n) € (ag,aq) for k=1,...,N. In the
Lemma 3.2.3, we showed that the set of different values that the sum 25:1 Z(n) can take
where the sum Zﬁ:l Z(n) € (ag,aq) for k =1,..., N is equivalent to the set M N (a, aq).
We let H be the set of values that the sum Zﬁf:l Z(n) € (ag,aq) can take for any N € N,
e, H={X"20 | {z0N_ ez Sk 2™ € (ag,a1)fork = 1,...,N, N € N}.
Now, assume that the minimum positive element § exists. We next illustrate that the sum
27127:1 Z™) for any sequence {Z(“)}gzl € Z can be written as kd for some k € Z, i.e.,
SN 20 = k.

Assume that there exists a sequence {Z(™}N_ € Z such that the sum Z = Zivzl zZn)
kd for any k € Z. If we divide the real line into intervals of length &, then Z should lie
in one of the intervals, i.e., there exists kg € Z such that kogd < Z < (ko + 1) so that we
can write Z = koo + n where 0 < n < 6. By definition of M, an integer multiple of any
element of M is also an element of M so that kgd € M since § € M. Moreover, for any
two elements of M, their difference is also an element of M so that n = Z — kgd € M since
Z € M and koo € M. However, this contradicts to the fact that § is the minimum positive
element of M since 0 < n < § and n € M. Hence, it follows that any element of H can be
written as kd for some k € Z. Note that there are finitely many elements in H since any
element h € H can be written as h = kd for some k € Z and as < h < aq. Since |B| = |H],
it follows that the set of achievable portfolios B is finite.

To show that if § does not exist then B contains infinitely many elements, we assume
that 6 does not exist. Since every finite set of real numbers has a minimum, there are
either countably infinitely many positive elements in the set M or none. We know that
there exists z; # 0 so that there are positive numbers in M. Therefore, there are infinitely
many elements in M. Now assume that there exists v; > 0 that can be written as a sum
25:1 Z™ for some N € N where {Z™}N_, € Z and 22:1 Z™ € (ag,a;). Then, by
Lemma 3.2.3, it follows that v; € M N (0,1) and since there exists no positive minimum

element of M, there exists 79 > 0 such that v5 < 1 so that 75 € M N (0,a1). In this way,
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we can construct a decreasing sequence {7,} such that v, € M N (0,a;) for each n € N.
Note that for any n € N, -, is also element of H by Lemma 3.2.3 so that there are countably

infinite elements in H. Hence, it follows that B has countably infinitely many elements. []

We showed that if |z| < min{|ay],|az|} for z € ZT and the minimum positive element of
the set M exists, then the set of achievable portfolios, B, is finite. If the minimum positive
element of the set M does not exist, then the set M N (a2, 1) is countably infinite so that
the number of achievable portfolios is also countably infinite. Hence, the set of achievable
portfolios is finite if and only if the minimum positive element of the set M exists. However,
Theorem 3.2.1 does not specify the exact number of achievable portfolios. In the following
corollary, we demonstrate that the number of achievable portfolios is |52 | if the set of

achievable portfolios is finite.

Corollary 3.2.1 If|z| < min{|aq],|as|} for z € ZT and § = min{m|m > 0m € M} exists,

then the number of achievable portfolios is[algaﬂl.

Proof: Assume that § exists and there exists # > 0 such that 6 can be written as a sum
25:1 Z™ for some N € N and {Z(n) = Z"W}N_| € Z such that Zﬁ:l ZM € (ag,aq) for
k=1,...,N. Note that such a 6 exists, e.g., § = z > 0 where z € Z7 since z € (az,a1).
Then, by Lemma 3.2.3, it follows that 6 € M N (0,a). Since § is the minimum positive
element of M, it follows that 0 < § < # and 6 € M N (0,1). Hence, by Lemma 3.2.3, we
get that 6 can be written as a sum Zﬁil Z™ for some N € N and {Z(")}ﬁil € Z where
ZI:L=1 AQNS (ag, 1) for k=1,..., N'. We note that J is an element of the set of different
values that the sum 25:1 Z(n) can take for any N € Nand Z(n) € Z forn =1,..., N such
that the portfolio does not leave the interval (b—e€,b+¢€). We showed in Theorem 3.2.1 that

any element of M can be written as kd for some k € Z so that the number of elements in

MnN(az,a1)is [*522]. Hence, it follows that there are exactly | “15°2 | achievable portfo-
lios since Lemma 3.2.3 implies that the set M N (aq, ) is equivalent to the set of different
values that the sum S-™_ Z(n) can take for any N € N and Z(n) € Z forn =1,...,N
such that the sum 22:1 Z(n) € (ag, 1) for each k = 1,..., N and the cardinality of the

latter set is equal to the number of achievable portfolios. L]

"Here, |x/y] is the largest integer less than or equal to /vy
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In Theorem 3.2.1, we introduce conditions on the cardinality of the set of all achievable
portfolio states, B, and showed that if |z| < min{|a1], |as|} for all z € Z1 and the minimum
positive element of the set M exists, then B is finite. This result is significant when we
analyze the asymptotic behavior of the expected achieved wealth, i.e., in the following,
we demonstrate that when B is finite, the portfolio sequence converges to a stationary
distribution. Hence, we can determine the limiting behavior of the expected achieved wealth
so that we can optimize b and €. To accomplish this, specifically, we first present a recursive
update to evaluate E[S(n)]. We then maximize g(b, €) 2 nh—{go Llog E[S(n)] over b and e
with a brute-force search, i.e., we calculate g(b,€) for different (b, €) pairs and find the one

that yields the maximum.

3.2.4  Finite State Markov Chain for Threshold Portfolios

If we assume that |z| < min{|ay],|az|} for all z € ZT and 6 = min{m € M | m > 0}
exists, then the set of all achievable portfolios B is finite. By Corollary 3.2.1, it follows
that there are exactly L = |*5%2| achievable portfolios. We let B = {b1,...,br} and,
without loss of generality, by = b. We define the probability mass vector of the portfolio
sequence as 7(n) = [my(n) ... 75(n)]" where m;(n) 2 pp (b(n) = b;). The portfolio sequence
b(n) forms a homogeneous Markov chain with a finite state space B since the transition
probabilities between states are independent of period n. We see that b(n) is irreducible
since each state communicates with other states so that all states are null-persistent since
B is finite [19]. Then, it follows that there exists a unique stationary distribution vector
T, le, ™= 7}1—{20 m(n). To calculate 7, we first observe that the set of portfolios that are
connected to by, ./\fl,n, and the set of price relative vectors that connect by to by, Uy, are
independent of investment period since the price relative sequences are i.i.d. for k =1,..., L
and [ = 1,...,L. Hence, we write Uy ;,, = Uy; and N;,, = N; for n € N. We next
note that the state transition probabilities are also independent of investment period and

write qi1n = Pr(b(n) =blb(n—1)=b;) =gy forn e N,k =1,...,Land [ =1,...,L.
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Therefore, we can write Pr (b(n) = b;) as

L

Pr(b(n) =b) = Y quPr(b(n—1)=b) =Y qePr(b(n—1) =bs), (3.14)
breN; k=1

where g = 0 if by, ¢ N;. Now, by using the definition of 7w(n) and (3.14), we get w(n+1) =

P7(n) for each n, where P is the state transition matrix, i.e., P;; = ¢; ;.

We next determine the limiting behavior of the expected achieved wealth E[S(n)] to
optimize b and € as follows. In Section 3.2.1, we showed that E[S(n)] can be calculated
iteratively by (3.2), (3.7) and (3.12). If we define the vector e(n) = [ey(n) ... er(n)]”
where e;(n) 2 pr (b(n) = b;) E[S(n)|b(n) = b;], then we can calculate E[S(n)] as the sum of
the entries of e(n) by (3.2), i.e.,

E[S(n)] = Pr(b(n) =b;) E[S(n)|b(n) =b;] = _ei(n) =1"e(n), (3.15)

i=1 =1

where 1 is the vector of ones. Hence, by definition of e(n), we can write

e(n+1) = Qe(n), (3.16)
where the matrix Q is given by
Q= (3.17)
> (bywy + (1 — by)ws) p1(w1)p2(we) - -- > (brwi + (1 — br)wa) p1(w1)p2(w2)
w=[w; wa]" €Uy 1 w=[w; wa]" €U, 1
> (bywy + (1 — b1)ws) p1(wi)p2(we) - > (brwi + (1 — br)wa) p1(w1)p2(w2)
| w=[w1 wa]T €l 1, w=[wy wa]T €Uy 1, ]

where we ignore rebalancing for presentation purposes. From (3.7) and (3.12), Q does not
depend on period n since there are finitely many portfolio states, i.e., Q is constant. If we

take rebalancing into account, then only the first row of the matrix Q changes and the other
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rows remain the same where

Q= > (brwy + (1 = br)wz) p1(w1)p2(ws2)

W:[wl ”UJQ]TGVJ"]

- > (bywy + (1 — by)ws) <1 —c

w:[w1 wz]TERjyl

bywq
blwl + (1 — bl)wg

- b‘) p1(wi)pz(wz),

V;11s the set of price relative vectors that connect b; to by = b without crossing the threshold
boundaries and R ;1 is the set of price relative vectors that connect b; to by = b by crossing
the threshold boundaries for ¢ = j,..., L. Note that we can find the matrix Q by using
the set of achievable portfolios B and the probability mass vectors p; and ps of the price
relative sequences.

Here, we analyze E[S(n)] as n — oo as follows. We assume that the matrix Q is
diagonalizable with the eigenvalues A1, ..., Ar and, without loss of generality, Ay > ... > Ap,
which is the case for a wide range of transaction costs [40]. Then, there exists a nonsingular
matrix B such that Q = BAB™! where A is the diagonal matrix with entries Ai,..., L.
We observe that the matrix Q has nonnegative entries. Therefore, it follows from Perron-
Frobenius Theorem [34] that the matrix Q has a unique largest eigenvalue A\; > 0 and any
other eigenvalue is strictly smaller than A\; in absolute value, i.e., A\; > |);| for j =2,..., L.

Then, the recursion (3.16) yields

e(n) = Q"e(0) = BA"B~le(0) = B
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Hence, the expected achieved wealth E[S(n)] is given by

B 'e(0) =u’ ‘ \%

L

n

= E UV
i=1

where u 2 [up ... ug)t =BT1 and v 2 [v1 ... vy] = B71e(0). Then, it follows that

L L n
1 1 . 1 . A
g(b,e) = nan;O - log E[S(n)] = nan;O - log {;:1 UV ] } nan;O - log { 1 LE:I UV; <)\—1> ] }

L
1
= lim log A1 + lim —log{ E W;V; <

= log /\1

n
since lim (i‘—;) =0 fori=2,...,L. Hence, we can optimize b and € as
n—oo

[b", €] = arg max g(b,e) = arg max log A;.
be[0,1],0<€ be[0,1],0<€
To maximize g(b,€), we evaluate it for different values of (b, €) pairs and find the pair that
maximizes g(b, €), i.e., by a brute-force search in the Simulations section.

In this section, we first demonstrated that the set of achievable portfolios is finite under
certain conditions. We then showed that the portfolio forms a Markov chain with a finite
state space and find the corresponding transition matrix and the stationary state proba-
bilities. When B is finite, we derived a recursive update with a constant complexity, i.e.,
the number of states does not grow, to calculate the expected achieved wealth. Finally, we
investigated the asymptotic behavior of the expected achieved wealth using this update to
optimize b and e with a brute-force search.

In the next section, we investigate the well-studied two-asset Brownian market model
with transaction costs. We first show that the set of achievable portfolios is finite and

calculate the state transition probabilities. Then, we calculate the asymptotic behavior of

)
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the expected achieved wealth to optimize b and e.

3.2.5 Two Stock Brownian Markets

In this section, we consider the well-known two-asset Brownian market, where stock price
signals are generated from a standard Brownian motion [17,21,41]. Portfolio selection
problem in continuous time two-asset Brownian markets with proportional transaction costs
was investigated in [41], where the growth optimal investment strategy is shown to be a
threshold portfolio. Here, as usually done in the financial literature [17], we first convert
the continuous time Brownian market by sampling to a discrete-time market [21]. Then,
we calculate the expected achieved wealth and optimize b and € to find the best portfolio
rebalancing strategy for a discrete-time Brownian market with transaction costs. Note that
although, the growth optimal investment in discrete-time two-asset Brownian markets with
proportional transaction costs was investigated in [21], the expected achieved wealth and
the optimal threshold interval (b — €,b + €) has not been calculated yet.

To model the Brownian two-asset market, we use the price relative vector X = [X; XQ]T
with X1 = 1 and Xy = ¥ where k is constant and Z is a random variable with Pr (Z = +1) =
%. This price relative vector is obtained by sampling the stock price processes of the contin-
uous time two-asset Brownian market [21,41]. We emphasize that this sampling results a
discrete-time market identical to the binomial model popular in asset pricing [21]. We first
present the set of achievable portfolios and the transition probabilities between portfolio
states. We then investigate the asymptotic behavior of the expected achieved wealth to
optimize b and e.

Since the price of the first stock is the same over investment periods, the portfolio leaves
the interval (b—e€, b+ ¢) if either the money in the second stock grows over a certain limit or
falls below a certain limit. If the portfolio b(n) does not leave the interval (b—e€,b+¢€) for N

investment periods, then the money in the first stock is b dollars and the money in the second

stock is (1 — b)eki for some —N < i < N so that the portfolio is b(N) = Wbb)eki' Note
. P . . . AN _b—
that W € (b—¢€,b+¢) if and only if ipin < i < ipmax, where ipin = E In %—‘2

2Here, [xz/y] is the largest integer greater or equal to the z/y.
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and 7yax 2 E In %J. Hence, the set of achievable portfolios is given by
S=<b = b li=1 ) —imin 1 = {b bs}
TV T bt (1= b)eltimm—Dk | " T fmax T fmin = {b1,...,bs},

AN . ..
where |S| = S and S = imax — imin + 1 and by;_;,_, = b. We see that the portfolio is
rebalanced to by_;_, = b only if it is in the state b; and Xy = e~k or if it is in the state bg

and Xy = e*. Therefore, the transition probabilities are given by

Pr (b;[b;)
% ci=2,...,8S—1landj=i+1 ;or i=1landj € {2,1 —imin}, or i =S5
= and j € {S — 1,1 — imin}

0 : otherwise,

where P(b;|b;) is the probability that the portfolio b(n) = b; given that b(n —1) = b; for any
period n. We now calculate F[S(n)] using (3.15) and (3.16) as follows. The sets of price

relative vectors that connect portfolio states are given by

{[1ek]"y ci=1,...,8—1landj=i+1, or i=Sandj=1— immn
Uj=S {[1e*]"} i=2...,S—Tlandj=i—1, or i=1landj=1—imp

)

%) : otherwise.

Hence, we can calculate the matrix Q defined in (3.17) as

b+ (1 =bj)er) :i=2,... ,Sandj=i—1
Qij=9 3(bj+(1—bj)e ™) :i=1,...,S—landj=i+1
0 : otherwise,

where we ignore rebalancing. If we take rebalancing into account, then

1 _ b1
i ==(b+ (1 =be ) (1- —b
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and

1
Qi—ipyin,s = 5(55 + (1= bg)eh) <1 —c

bs b
bs + (1 —bg)ekr ’

Then, by (3.15) and (3.16), E[S,,] is given by Q"e(0). Moreover, we maximize

1
g(b,e) = lim —log E[S,] = log A1,

n—oo n

where A1 is the largest eigenvalue of the matrix Q. Here, we optimize b and e with a
brute-force search, i.e., we find \; for different (b, €) pairs and find the one that achieves the
maximum.

In the next section, we sequentially estimate the probability mass vectors p; and po of

the price relative sequences X1(n) and Xs(n) using a maximum likelihood estimator.

3.3 Maximum Likelihood Estimators of The Probability Mass Vectors

In this section, we sequentially estimate the probability mass vectors p; and po correspond-
ing to X1(n) and Xy(n), respectively, using a maximum likelihood estimator (MLE). In
general, these vectors may not be known or change in time, hence, could be estimated at
each investment period prior to calculation of E[S(n)]. The maximum likelihood estimator
for a pmf on a finite set is well-known [40], but we provide the corresponding derivations here
for completeness. We consider, without loss of generality, the price relative sequence X;(n)
and assume that its realizations are given by Xj(n) = w, € X forn =1,..., N and estimate
p1. Similar derivations follow for the price relative sequence Xs2(n) and py. Note that as
demonstrated in the Simulations section, the corresponding estimation can be carried out
over a finite length window to emphasize the most recent data. We define the realization
vector w = [w, ..., wy]| and the probability mass function as py(x;) = pi(x;|0) = 0,, for
t=1,...,K and the parameter vector 0 2 [0z, ..,05.]. Then, the MLE of the probability

mass vector py is given by

Oy = arg max pi(wlf) = arg max Pr(X;(1) =w,..., Xi(N)=wpn|f). (3.18)
0:3° 5 | 0,,=1 0:3° 5 | 0,=1
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Since the price relative sequence X;(n) is i.i.d., it follows that

N

pi(wl0) = [ pr(wil0) = Hﬁwl HH@H“’Z‘% (3.19)

i=1 i=1j=1

where (3.19) follows since I(.) is the indicator function, i.e., I(w; = ;) = 1 if w; = x; and
I(w; = xj) = 0 if w; # x;. If we change the order of the product operators in (3.19), then

we obtain

K N K
p1(wlh) = H H HI(wl—acJ H H I(wl—acJ H 921 1 Hwi=x;) H 9916\?7
j=1

i=1j=1 Jj=1li=1

A . . .
where N; = Zf\il I(w; = xj), i.e., the number of realizations that are equal to z; € X for

j=1,..., K. Note that Zszl N; = N. Hence, we can write (3.18) as

K K

) 1 )
Ovpe = arg max pi(wl|f) = arg max H Hiv.” = arg max — log H Hiv? (3.20)
K _ K 1> ’ N K _ N X /
0:°K | 0.,=1 0:°K | 0,,=1 521 0:°K | 0,,=1 i=1

= arg max EK: N log 6,

0: 35 | 02, =1 = 1N v
where (3.20) follows that log(.) is a monotone increasing function. If we define the vector h =
[Pays- -5 hay ], where hy, 2 % for j =1,..., K, then we see that h,;, >0 for j=1,..., K
and ZJKZI h;; = 1. Since h and ¢ are probability vectors, i.e., their entries are nonnegative
and sum to one, it follows that D(h|@) 2 S hy; log (%) > 0 and D(h||#) = 0 if and

only if 8 = h, i.e., their relative entropy is nonnegative [15]. Therefore, we get that

K
Z % log 0, = Z he, log 0, = Z he, log (Z ) + Z ha, log hy,
=1

Ty

~D(h||6) + Z ha, log hay < Z i, log h,
j=1 j=1

where the equality is reached if and only if # = h. Hence, it follows that
K

N
Oyp = arg max pi(wlf) = arg max Z —Zlogl,, =h
0:3°K | 0.,=1 0: 3K 0x,=1 j—1
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so that we estimate the probability mass vector p; with h = [%, R %} at each invest-

ment period N where % is the proportion of realizations up to period N that are equal to

xj for x; € &.

3.4 Simulations

In this section, we demonstrate the performance of TRPs with several different examples.
We first analyze the performance of TRPs in a discrete-time two-asset Brownian market
introduced in Section 3.2.5. As the next example, we apply TRPs to historical data from
[13,27] collected from the New York Stock Exchange over a 22-year period and compare
the results to those obtained from other investment strategies [13,22,26,27]. Using the
historical data set, we first simulate the performance of TRPs, the semiconstant rebalanced
portfolio (SCRP) [27], the Iyengar’s algorithm [22], the Cover’s algorithm [13] and the
switching portfolio from [26] on a randomly selected stock pair. Finally, we then present
the average performance of TRPs on randomly selected pairs of stocks and show that the
performance of the TRP algorithm is significantly better than the portfolio investment
strategies from [13,22,26,27] in historical data sets as expected from Section III.

As the first scenario, we apply TRPs to a discrete-time two-asset Brownian market.
Under this well studied market in the financial literature [29], the price relative vector is
given by X = [X; XQ]T7 where X7 =1, Xy = ¢4 and Z = +1 with equal probabilities and
we set k = 0.03 [21]. Here, the sample spaces of the price relative sequences X7 and Xo
are X1 = {1} and Xy = {0.97,1.03}, respectively, and X = X; U Xy = {z1, z2, 23}, where
1 = 1, xo = 0.97, z3 = 1.03. Hence, the probability mass vectors of the price relative
sequences X7 and Xy are given by p; = [10 O]T and p2 = [0 0.5 0.5]T, respectively. Based
on this data, we evaluate the growth rate for different (b, €) pairs to find the best TRP that
maximizes the growth rate using the approach introduced in Section 3.2.5, i.e., we form
the matrix Q and evaluate the corresponding maximum eigenvalues to find the pair that
achieves the largest maximum eigenvalue since this pair also maximizes the growth rate.
Then, we invest 1 dollars in a randomly generated two-asset Brownian market using: the
TRP, labeled as, “TRP”, i.e., TRP(b,e) with calculated (b,e€) pair, the SCRP algorithm
with the target portfolio vector b = [0.5 0.5], labeled as “SCRP”, as suggested in [27], the

Iyengar’s algorithm, labeled as “Iyengar”, the Cover’s algorithm, labeled as “Cover”, and the
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switching portfolio, labeled as “Switching”, with parameters suggested in [26]. In Fig. 3.2,
we plot the wealth achieved by each algorithm for transaction costs ¢ = 0.01 and ¢ = 0.03,
where ¢ is the proportion paid when rebalancing, i.e, ¢ = 0.03 is a 3% commission. As
expected from the derivations in Section III, we observe that, in both cases, the performance
of the TRP algorithm is significantly better than the other algorithms under transaction
costs.

We next present results that illustrate the performance of TRPs on historical data sets
[13]. As for the first example, we present results on the stock pair Morris and Commercial
Metals (randomly selected) from the historical data sets [13,27] for a mild transaction cost
¢ = 0.015 and a hefty transaction cost ¢ = 0.03 to better illustrate the effect of transaction
costs. The data includes the price relative sequences of the stock pair for 5651 investment
periods (days). Since the brute force algorithm introduced in Section 3.2.1 requires the
sample spaces of the price relative sequences, we proceed as follows. We first calculate the
sample spaces and the probability mass vectors of the price relative sequences from the first
1000-day realizations of X; and X5, where the sample spaces are simply constructed by
quantizing the observed realizations into bins. We observed that the performance of the
TRP is not effected by the number of bins provided that there are an adequate number of
bins to approximate the continuous valued price relatives. Then, we optimize b and € using
the MLE introduced in Section IV and the brute force algorithm from Section III, and invest
using this TRP for the next 1000 periods, i.e., from period 1001 to period 2000. We then
update (b, €) pair using the first 2000-day realizations of the price relative vectors and invest
using the best TRP for the next 1000 periods. We repeat this process through all available
data. Hence, we invest on the two stocks using TRP for 4651 periods where we update (b, €)
pair at each 1000 periods. In Fig. 3.3, we present the performances of the TRP algorithm,
the SCRP algorithm, the Iyengar’s algorithm [22], the Cover’s algorithm and the switching
portfolio algorithm [26]. We observe that although the performance of the algorithms other
than the TRP degrade with increasing transaction cost, the performance of the TRP, using
the MLE, is not significantly effected since it can avoid excessive rebalancings. In both
cases, the TRP readily outperforms the other simulated algorithms for these simulations.

Finally, we illustrate the average performance of the threshold rebalancing strategy on a

number of stock pairs to avoid any bias to particular stock pairs. In this set of simulations,
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we first randomly select pairs of stocks from the historical data that includes 34 stocks (where
the Kin Ark stock is excluded) and invest using: the TRP algorithm, the SCRP algorithm,
the Cover’s algorithm, the Iyengar’s algorithm and the switching portfolio, under a mild
transaction cost ¢ = 0.015 and a hefty transaction cost ¢ = 0.03. In Fig. 3.4, we present the
wealth gain for each algorithm, where the results are averaged over randomly selected 10
independent stock pairs. We observe from these simulations that the average performance of
the TRP is better than the average performance of the other portfolio investment strategies

commonly used in the literature.

3.5 Conclusions

We studied growth optimal investment in i.i.d. discrete-time markets under proportional
transaction costs. Under this market model, we studied threshold portfolios that are shown
to yield the optimal growth. We first introduced a recursive update to calculate the expected
growth for a two-asset market and then extend our results to markets having more than two
assets. We next demonstrated that under the threshold rebalancing framework, the achiev-
able set of portfolios form an irreducible Markov chain under mild technical conditions. We
evaluated the corresponding stationary distribution of this Markov chain, which provides a
natural and efficient method to calculate the cumulative expected wealth. Subsequently, the
corresponding parameters are optimized using a brute force approach yielding the growth
optimal investment portfolio under proportional transaction costs in i.i.d. discrete-time
two-asset markets. We also solved the optimal portfolio selection in discrete-time markets
constructed by sampling continuous-time Brownian markets. For the case that the underly-
ing discrete distributions of the price relative vectors are unknown, we provide a maximum
likelihood estimator. We observed in our simulations, which include simulations using the
historical data sets from [13], that the introduced TRP algorithm significantly improves
the achieved wealth under both mild and hefty transaction costs as predicted from our

derivations.
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Wealth of TRP with ¢=0.01 — Two-Asset Brownian Market
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Figure 3.2: Performance of portfolio investment strategies in the two-asset Brownian market.
(a) Wealth gain with the cost ratio ¢ = 0.01. (b) Wealth gain with the cost ratio ¢ = 0.03.



Chapter 3: Growth Optimal Portfolios in Discrete-time Markets Under Transaction Costs 71

Wealth of TRP with ¢=0.015 — Morris and Commercial Metals
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Figure 3.3: Performance of portfolio investment strategies on the Morris-Commercial Metals
stock pair. (a) Wealth gains with the cost ratio ¢ = 0.015. (b) Wealth gains with the cost
ratio ¢ = 0.03.
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Wealth of TRP with ¢=0.015 — Average of 10 Stock Pairs
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Figure 3.4: Average performance of portfolio investment strategies on independent stock
pairs. (a) Wealth gain with the cost ratio ¢ = 0.015. (b) Wealth gain with the cost ratio
¢ = 0.03.
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Chapter 4

CONCLUSIONS

In this thesis, we considered portfolio optimization problem in i.i.d. discrete-time mar-
kets under two different scenarios, where the market is modeled by a sequence of price rela-
tive vectors with log-normal distribution and with arbitrary discrete distributions. Chapter
2 deals with maximizing the expected cumulative wealth in i.i.d. discrete-time markets
where the market levies proportional transaction costs under the assumption that the price
relative sequences have log-normal distribution and Chapter 3 is dedicated to construct port-
folios that achieve the optimal expected growth in i.i.d. discrete-time markets modeled by
a sequence of price relative vectors with arbitrary discrete distributions under proportional
transaction costs.

In Chapter 2, we investigated the portfolio selection problem in i.i.d. discrete time mar-
kets having a finite number of assets, when the market levies proportional transaction fees
for both buying and selling stocks. We introduced algorithms based on threshold rebalanced
portfolios that achieve the maximal growth rate when the sequence of price relatives have
the log-normal distribution from the well-known Black-Scholes model. Under this setup, we
provide an iterative relation that efficiently and recursively calculates the expected wealth in
any i.i.d. market over any investment period. The terms in this recursion are evaluated by
a certain multivariate Gaussian integral. We then use a randomized algorithm to calculate
the given integral and obtain the expected growth. This expected growth is then optimized
by a brute force method to yield the optimal target portfolio and the threshold to maximize
the expected wealth over any investment period. We also provide a maximum-likelihood es-
timator to estimate the parameters of the log-normal distribution from the sequence of price
relative vectors. As predicted from our derivations, we significantly improve the achieved
wealth over portfolio selection algorithms from the literature on the historical data set from.

In Chapter 3, we first introduced a recursive update to calculate the expected growth for

a two-asset market modeled by a sequence of price relative vectors with arbitrary discrete
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distributions and then extend our results to markets having more than two assets. We
next demonstrated that under the threshold rebalancing framework, the achievable set of
portfolios form an irreducible Markov chain under mild technical conditions. We evaluated
the corresponding stationary distribution of this Markov chain, which provides a natural
and efficient method to calculate the cumulative expected wealth. Subsequently, the corre-
sponding parameters are optimized using a brute force approach yielding the growth optimal
investment portfolio under proportional transaction costs in i.i.d. discrete-time two-asset
markets. We also solved the optimal portfolio selection in discrete-time markets constructed
by sampling continuous-time Brownian markets. For the case that the underlying discrete
distributions of the price relative vectors are unknown, we provide a maximum likelihood
estimator. We observed in our simulations, which include simulations using the historical
data sets from [13], that the introduced TRP algorithm significantly improves the achieved

wealth under both mild and hefty transaction costs as predicted from our derivations.
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Chapter 5

APPENDIX A

Proof of Lemma 3.2.1:

We analyze the cardinality of the set By of achievable portfolios at period N, My, as
follows. If we assume that an investor invests with a TRP(b,e) for N investment periods
and the sequence of price relative vectors are given by {[Xl (n) Xa(n)] = [X f") Xén)} }N_l
and the portfolio sequence is given by {b(n) = b, }._,, then we see that the portfolio corlllid
leave the interval at any period depending on the realizations of the price relative vector.
We define an N-period market scenario as a sequence of portfolios {b(n)}évzl. We can find
the number of achievable portfolios at period N as the number of different values that the
last element of N-period market scenarios can take. Here, we partition the set of N-period
market scenarios according to the last time the portfolio leaves the interval (b — €,b + €)
and show that any achievable portfolio at period IV can be achieved by an N-period market
scenario where the portfolio does no leave the interval (b—¢€,b+¢) for N periods as follows.

If we define the set P as the set of N-period market scenarios, i.e.,

N+1
P:{{bn}ivzlleEB"?n:lu7N}: U Pi7
=1

where P; is the set of N-period market scenarios where the portfolio leaves the interval

(b — €,b+ €) last time at period i, i.e.,
Pi = {{bn}gzl | bp € B, ,n=1,..., N, b(n)leavestheinterval (b — €, b + €) lasttimeatperiod i }

fori=1,..., N and Py is the set of N-period market scenarios where the portfolio does

not leave the interval (b —¢,b + €) for N investment periods, i.e.,

Pni1 = {{bn}i)’:l | b € B, ,n=1,..., N, b(n) neverleavestheinterval (b — €, b + ¢) forNperiods} .
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We point out that P;’s are disjoint, i.e., P; N'P; = & for ¢ # j and their union gives the
set of all N-period market scenarios, i.e., Uﬁi’;l P; = P so that they form a partition for
P. We see that the set By of achievable portfolios at period N is the set of last elements
of N-period market scenarios, i.e., By = {by | {bn}Y_; € P}. We next show that the last
element of any N-period market scenario from P; for ¢ = 1,..., N is also a last element of
an N-period market scenario from Pun41. Therefore, we demonstrate that any element of
the set By is achievable by a market scenario from Py 1 and By = {by | {b}2_; € Pni1}-

Assume that {bn}ﬁ;l € P; for some i € {1,..., N} so that b; = b, i.e., the portfolio is
rebalanced to b last time at period i. Note that by can also be achieved by an N-period
market scenario {b,"}jzl where the portfolio never leaves the interval (b—e, b+€), b;- = bit;
for j=1,...,N —iand X = X for j = N—i+1,...,N so that by = by_, = by.
Hence, it follows that the set of achievable portfolios at period NN is the set of achievable
portfolios by N-period market scenarios from Pyy1. We next find the number of different
values that b(N') can take where the portfolio does not leave the interval (b —¢€,b+¢€) for N
investment periods.

When the portfolio never leaves the interval (b—¢,b+¢) for N investment periods, b(IV)

is given by

bILL, Xi(n)

v = bHi]L Xi(n) +(1-10) szil Xo(n)

If we write the reciprocal of b(N) as

then we observe that the number of different values that the portfolio b(IN) can take is the
same as the number of different values that the sum 27127:1 Z(n) can take. Since the price
relative sequences X;(n) and Xy (n) are elements of the same sample space X with |X| = K,
it follows that |Z| = M < K? — K + 1. Since the number of different values that the sum
SN Z(n) can take is equal to (N]T/[Afl_l) and M < K2— K +1, it follows that the number of
achievable portfolios at period N is bounded by (N;Q(EI;K), ie., |By| = My < (N;;?j;(K)

and the proof follows.
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Chapter 6
APPENDIX B
Proof of Lemma 3.2.2:

If the portfolio does not leave the interval (b — €,b + ¢) for N investment periods, then

b(n) € (b—eb+e¢€)forn=1,...,N and it is not adjusted to b at these periods so that

_ ][y Xa1(4) b
P = T %)+ o T el © O Pt

for each n =1,..., N. Taking the reciprocal of b(n), we get that

7

b(1—b—e) X
L X0

(I-=0b)(b+e€

b(l1—b+e)
1-b)(b—¢)

)
)~ )T

(2

Noting that §i—8 = ¢Z() and taking the logarithm of each side, it follows that

(1) <In——F—= =0y,

buw—@:%<22. <%@$ﬁ>

Le, Y, Z(i) € (ag,0q) for n = 1,...,N. Now, if the portfolio leaves the interval (b —
€,b+ €) first time at period k for some k € {1,..., N}, then we get that b(k) > b+ € or
b(k) < b— e so that we get

k
ZZ(Z) > alorZZ(i) < g,
=1

1=1

e, Y8 Z(i) & (a2, ).
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