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ABSTRACT

In this thesis, we consider portfolio optimization problem in i.i.d. discrete-time markets

under two different scenarios, where the market is modeled by a sequence of price relative

vectors with log-normal distribution and with arbitrary discrete distributions. We provide

novel approaches for both of these scenarios and introduce optimal portfolio selection algo-

rithms that maximizes the expected cumulative wealth in i.i.d. markets with proportional

transaction costs.

In the first part, we study optimal investment in a financial market having a finite

number of assets from a signal processing perspective. We investigate how an investor

should distribute capital over these assets and when he should reallocate the distribution

of the funds over these assets to maximize the cumulative wealth over any investment

period. In particular, we introduce a portfolio selection algorithm that maximizes the

expected cumulative wealth in i.i.d. two-asset discrete-time markets where the market levies

proportional transaction costs in buying and selling stocks. We achieve this using “threshold

rebalanced portfolios”, where trading occurs only if the portfolio breaches certain thresholds.

Under the assumption that the price relative sequences have log-normal distribution from the

Black-Scholes model, we evaluate the expected wealth under proportional transaction costs

and find the threshold rebalanced portfolio that achieves the maximal expected cumulative

wealth over any investment period. Our derivations can be readily extended to markets

having more than two stocks, where these extensions are pointed out in the thesis. As

predicted from our derivations, we significantly improve the achieved wealth over portfolio

selection algorithms from the literature on historical data sets.

In the second part, we first construct portfolios that achieve the optimal expected growth

in i.i.d. discrete-time two-asset markets under proportional transaction costs. We then ex-

tend our analysis to cover markets having more than two stocks. The market is modeled

by a sequence of price relative vectors with arbitrary discrete distributions, which can also

be used to approximate a wide class of continuous distributions. To achieve the optimal
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growth, we use threshold portfolios, where we introduce a recursive update to calculate the

expected wealth. We then demonstrate that under the threshold rebalancing framework, the

achievable set of portfolios elegantly form an irreducible Markov chain under mild technical

conditions. We evaluate the corresponding stationary distribution of this Markov chain,

which provides a natural and efficient method to calculate the cumulative expected wealth.

Subsequently, the corresponding parameters are optimized yielding the growth optimal port-

folio under proportional transaction costs in i.i.d. discrete-time two-asset markets. As a

widely known financial problem, we next solve optimal portfolio selection in discrete-time

markets constructed by sampling continuous-time Brownian markets. For the case that the

underlying discrete distributions of the price relative vectors are unknown, we provide a

maximum likelihood estimator that is also incorporated in the optimization framework in

our simulations.



ÖZETÇE

Bu tez çalışmasında, bağımsız özdeşçe dağılmış zamanda ayrık piyasalarda portföy eniy-

ileme problemi piyasanın logaritmik Gauss dağılımına sahip ve gelişigüzel ayrık dağılıma

sahip göreli fiyat vektörleri ile modellendiği senaryolar olmak üzere iki farklı senaryo üzerinde

incelenmektedir. Bu senaryoların her ikisi için yeni yaklaşımlara yer verilmekte ve orantılı

hareket masrafı bulunan bağımsız özdeşçe dağılmış piyasalarda beklenen birikimli sermayeyi

enbüyüten portföy seçim algoritmaları sunulmaktadır.

İlk olarak, sonlu sayıda aktife sahip mali piyasalarda en iyi yatırım, işaret işleme bakış

açısından çalışılmaktadır. Yatırımcının birikimli sermayesini herhangi yatırım döneminde

enbüyütmesi için elindeki sermayesini aktifler üzerinde nasıl dağıtması gerektiği ve ne zaman

bu dağılımı yeniden tahsis etmesi gerektiği incelenmektedir. Özellikle aktif alım ve satımında

orantılı hareket masrafı toplayan, bağımsız özdeşçe dağılmış iki aktifli, zamanda ayrık

piyasalarda beklenen birikimli sermayeyi enbüyüten portföy seçim algoritması sunulmak-

tadır. Bu, alım-satımın yalnızca portföy belirli eşik değerlerini ihlal ettiğinde gerçekleştiği

“Eşik Değerinde Yeniden Dengelenen Portföyler” kullanılarak gerçekleştirilmektedir. Göreli

fiyat dizilerinin Black-Scholes modelindeki logaritmik Gauss dağılımına sahip olduğu varsayımı

altında orantılı hareket masrafları göz önüne alındığında beklenen sermaye belirlenmekte ve

herhangi yatırım döneminde en iyi beklenen birikimli sermayeyi elde eden eşik değerinde

yeniden dengelenen portföy bulunmaktadır. Bu tezdeki türetmeler kolaylikla ikiden fazla

aktifi bulunan piyasalara genellenebilmekte ve bu genellemelere tezdeki gereken yerlerde yer

verilmektedir. Türetmelerden tahmin edildiği üzere geçmiş veri kümelerinde, literatürdeki

portföy seçim algoritmalarına nazaran kazanılan sermayede önemli artış elde edilmektedir.

İkinci bölümde ise, öncelikle orantılı hareket masrafı toplayan, bağımsız özdeşçe dağılmış

iki aktifli, zamanda ayrık piyasalarda beklenen birikimli sermayeyi enbüyüten portföy ku-

rulmaktadır. Daha sonra bu analizler ikiden fazla aktifi bulunan piyasaları kapsayacak

şekilde genişletilmektedir. Piyasa geniş bir sürekli dağılım sınıfını da yaklaşıklamakta kul-

lanılabilen gelişigüzel ayrık dağılıma sahip göreli fiyat vektör dizisi ile modellenmektedir. En
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iyi büyümeyi elde etmek için eşik değeri portföyleri kullanılmakta ve beklenen sermayeyi

hesaplamak için bir özyineli güncelleme yöntemi sunulmaktadır. Daha sonra eşik değerinde

yeniden dengeleme yöntemi çerçevesinde, portföylerin alabileceği değerler kümesinin ılımlı

teknik koşullar altında bir indirgenemez Markov zinciri oluşturduğu gösterilmektedir. Bu

Markov zincirine karşılık gelen durağan dağılım değerlendirilmekte ve beklenen birikimli

sermayenin hesaplanması için doğal ve etkin bir yöntem sağlanmaktadır. Ardından karşılık

gelen parametreler eniyilenmekte ve orantılı hareket masrafı toplayan, bağımsız özdeşçe

dağılmış iki aktifli, zamanda ayrık piyasalarda en iyi büyümeli portföy sunulmaktadır. Daha

sonra yaygın olarak bilinen bir finans problemi olan, zamanda sürekli Brown piyasalarının

örneklenmesi ile oluşturulan zamanda ayrık piyasalarda en iyi portföy seçimi problemi

çözülmektedir. Göreli fiyat vektörlerinin baz alınan ayrık dağılımının bilinmediği durumlar

için en büyük olabilirlik kestirimi sunulmakta ve ayrıca benzetimlerdeki eniyileme çerçevesi

ile ilintilendirilmektedir.
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Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

Since the recent global crises have demonstrated the importance of sound financial mod-

eling and reliable data processing, financial applications have attracted a growing interest

from the signal processing community [30,36]. The financial markets produce vast amounts

of temporal data ranging from stock prices to interest rates, which make them ideal media

to apply signal processing methods. Furthermore, due to the integration of high perfor-

mance, low-latency computing resourses and the financial data collection infrastructures,

signal processing algorithms can be readily leveraged with full potential in financial stock

markets. This thesis focuses particularly on the portfolio selection problem, which is one the

most important financial applications and has already attracted substantial interest from

the signal processing community [2–4,43,44].

Determining the optimum portfolio and the best portfolio rebalancing strategy that

maximize the wealth in discrete-time markets with no transaction fees has been heavily

investigated in information theory [13,14], machine learning [20,39,47] and signal process-

ing [25–28] fields. Assuming that the portfolio rebalancings, i.e., adjustments by buying

and selling stocks, require no transaction fees and with some further mild assumptions on

the stock prices, the portfolio that achieves maximum wealth is shown to be a constant

rebalanced portfolio (CRP) [14,15]. A CRP is a portfolio strategy where the distribution of

funds over the stocks are reallocated to a predetermined structure, also known as the target

portfolio, at the start of each investment period. CRPs constitute a subclass of a more

general portfolio rebalancing class, the calendar rebalancing portfolios, where the portfolio

vector is rebalanced to a target vector on a periodic basis [29]. Numerous studies have been

carried out to asymptotically achieve the performance of the best CRP tuned to the indi-

vidual sequence of stock prices albeit either with different performance bounds or different

performance results on historical data sets [14, 20, 47]. CRPs under transaction costs are
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further investigated in [8], where a sequential algorithm using a weighting similar to that

introduced in [15], is also shown to be competitive under transaction costs; i.e., asymptot-

ically achieving the performance of the best CRP under transaction costs. However, we

emphasize that maintaining a CRP requires potentially significant trading due to possible

rebalancings at each investment period [27]. As shown in [27], even the performance of the

best CRP is severally affected by moderate transaction fees rendering CRPs ineffective in

real life stock markets. Hence, it may not be enough to try to achieve the performance of the

best CRP if the cost of rebalancing outweighs that which could be gained from rebalancing

at every investment period. Clearly, one can potentially obtain significant gain in wealth

by including unavoidable transactions fees in the market model and perform reallocation

accordingly.

Along these lines, the optimal portfolio selection problem under transactions costs is

extensively investigated for continuous-time markets [17, 31, 35, 41], where growth optimal

policies that keep the portfolio in closed compact sets by trading only when the portfolio

hits the compact set-boundaries are introduced. Naturally, the results for the continuous

markets cannot be straightforwardly extended to the discrete-time markets, where contin-

uous trading is not allowed. However, it has been shown in [21] that under certain mild

assumptions on the sequence of stock prices, similar no trade zone portfolios achieve the

optimal growth rate even for discrete-time markets under proportional transaction costs.

For markets having two stocks; i.e., two-asset stock markets, these no trade zone portfolios

correspond to threshold portfolios; i.e., the no trade zone is defined by thresholds around the

target portfolio. As an example, for a market with two stocks, the portfolio is represented

by a vector b = [b 1 − b]T , b ∈ [0, 1], assuming only long positions [29], where b is the ratio

of the capital invested in the first stock. For this market, the no rebalancing region around

a target portfolio b = [b 1 − b]T , b ∈ [0, 1], is given by a threshold ε, min{b, 1 − b} ≥ ε ≥ 0,

such that the corresponding portfolio at any investment period is rebalanced to a desired

vector if the ratio of the wealth in the first stock breaches the interval (b−ε, b+ε). In partic-

ular, unlike a calendar rebalancing portfolio, e.g., a CRP, a threshold rebalanced portfolio

(TRP) rebalances by buying and selling stocks only when the portfolio breaches the preset

boundaries, or “thresholds”, and otherwise does not perform any rebalancing. Intuitively,

by limiting the number of rebalancings due to this non rebalancing regions, threshold port-
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folios are able to avoid hefty transactions costs associated with excessive trading unlike

calendar portfolios. Although TRPs are shown to be optimal in i.i.d. discrete-time two-

asset markets (under certain technical conditions) [21], finding the TRP that maximizes the

expected growth of wealth under proportional transaction costs has not been solved, except

for basic scenarios [21], to the best of our knowledge.

This thesis is based on two papers [45,46]. In the first part of this thesis, we analyze i.i.d.

discrete-time markets represented by the sequence of price relatives (defined as the ratio of

the opening price to the closing price of stocks), where the sequence of price relatives follow

log-normal distributions. In the second part, instead of using a continuous distribution, we

implement discrete distributions. The sequence of price relative vectors are assumed to have

“discrete” distributions; however, the discrete distributions on the vector of price relatives

are arbitrary.

1.1 Log-Normal Price Relatives

In the first part of this thesis, we evaluate the expected wealth achieved by a TRP over

any finite investment period given any target portfolio and threshold for two-asset discrete-

time stock markets subject to proportional transaction fees. We emphasize that we study

a two-asset market for notational simplicity and our derivations can be readily extended

to markets having more than two assets as pointed out in the thesis where needed. We

consider i.i.d. discrete-time markets represented by the sequence of price relatives (defined

as the ratio of the opening price to the closing price of stocks), where the sequence of

price relatives follow log-normal distributions. Note that the log-normal distribution is

the assumed statistical model for price relative vectors in the well-known Black-Scholes

model [29, 32]. This distribution accurately models real life stock prices which has been

shown in many empirical studies [29]. Log-normal distribution which is extensively used in

the financial literature is shown to accurately model empirical price relative vectors [9].

Under this setup, we provide an iterative relation that efficiently and recursively cal-

culates the expected wealth in any i.i.d. market over any investment period. The terms

in this recursion are evaluated by a certain multivariate Gaussian integral. We then use

a randomized algorithm to calculate the given integral and obtain the expected growth.

This expected growth is then optimized by a brute force method to yield the optimal target
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portfolio and the threshold to maximize the expected wealth over any investment period.

1.2 Discrete Price Relatives

In the second part, the sequence of price relative vectors are assumed to have “discrete”

distributions; however, the discrete distributions on the vector of price relatives are arbitrary.

The corresponding discrete distributions can also be used to approximate a wide class of

continuous distributions on the price relatives that satisfy certain regularity conditions by

appropriately increasing the size of the discrete sample space. The detailed market model

is provided in Section IV. Under this general market model, we use “threshold rebalanced

portfolios” (TRP)s, which are shown to yield optimal growth in general i.i.d. discrete-time

two-asset markets.

We first recursively calculate the expected wealth achieved by a TRP over any invest-

ment period and then optimize the corresponding TRP to maximize expected wealth. We

demonstrate that under certain technical conditions, the achievable portfolios in the TRP

framework form an irreducible homogenous Markov chain with a finite number of states.

This Markov chain can then be elegantly leveraged to calculate the expected growth. Sub-

sequently, the parameters of the TRPs are optimized to achieve the maximum growth using

a brute force search. Furthermore, we also solve the optimal portfolio selection problem in

discrete-time markets produced by sampling continuous-time Brownian markets extensively

studied in the financial literature [29].

1.3 Contributions

The contributions of this thesis are as follows. We first provide an iterative relation that

efficiently and recursively calculates the expected wealth for the case where the sequence of

price relatives follow log-normal distributions by evaluating a certain multivariate Gaussian

integral. We then provide a randomized algorithm to calculate the given integral and obtain

the expected growth. This expected growth is then optimized by a brute force method to

yield the optimal target portfolio and threshold to maximize the expected wealth over

any investment period. Furthermore, we also provide a maximum-likelihood estimator to

estimate the parameters of the log-normal distribution from the sequence of price relative

vectors, which is incorporated into the algorithmic framework in Simulations section since
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these parameters are naturally unknown in real life markets.

In the second part, we recursively evaluate the expected achieved wealth of a threshold

portfolio for any b and ε over any investment period for the case where the sequence of price

relative vectors have discrete distributions. We then demonstrate that under the threshold

rebalancing framework, the achievable set of portfolios form an irreducible Markov chain

under mild technical conditions. We evaluate the corresponding stationary distribution of

this Markov chain, which provides a natural and efficient method to calculate the cumu-

lative expected wealth. Subsequently, the corresponding parameters are optimized using a

brute force approach yielding the growth optimal investment portfolio under proportional

transaction costs in i.i.d. discrete-time two-asset markets. As a well studied problem,

we also solve optimal portfolio selection in discrete-time markets constructed by sampling

continuous-time Brownian markets. For the case that the underlying discrete distributions

of the price relative vectors are unknown, we provide a maximum likelihood estimator to

estimate the corresponding distributions that is incorporated in the optimization framework

in the Simulations section.

1.4 Content

Chapter 2 begins with a detailed description of the market and the TRPs. We then calculate

the expected wealth for the market where the sequence of price relatives follow log-normal

distributions using a TRP in an i.i.d. two-asset discrete-time market under proportional

transaction costs over any investment period in Section 2.1. First, we provide an iterative

relation to recursively calculate the expected wealth growth. The terms in the iterative

algorithm are calculated using a certain form of multivariate Gaussian integrals. We provide

a randomized algorithm to calculate these integrals in Section 2.2. The maximum-likelihood

estimation of the parameters of the log-normal distribution is given in Section 2.3. Section

4 presents the simulations of the iterative relation and the optimization of the expected

wealth growth with respect to the TRP parameters using the ML estimator.

In Chapter 3, we investigate threshold rebalancing portfolios for the discrete market

where the sequence of price relatives have discrete distributions. We first introduce a recur-

sive update in Section 3.1. We then show that the TRP framework can be analyzed using

finite state Markov chains in Section 3.2 and Section 3.3. The special Brownian market is
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analyzed in Section 3.4. The maximum likelihood estimator is derived in Section 3.5. We

simulate the performance of our algorithms in Section 4.

Finally in Chapter 5, we summarize this work and give concluding remarks.

1.5 Notations

Throughout this document, boldface letters and regular letters with subscripts denote vec-

tors and individual elements of vectors, respectively. Furthermore, capital letters and low-

ercase letters denote random variables and individual realizations of the corresponding ran-

dom variable, respectively. The vector [a1, a2, . . . , an]T is denoted by an. The abbreviations

“i.i.d.”, “p.d.f.”, and “w.l.o.g.” are shorthands for the terms “independent identically dis-

tributed”, and “probability distribution function”, respectively. The time index is shown

in the subscripts. The operator E[.] denotes the expectation operator. Here, N (µ,σ2) and

lnN (µ,σ2) denotes the Gaussian and Log-Normal distribution with mean µ and variance

σ2, respectively.
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Chapter 2

OPTIMAL INVESTMENT UNDER TRANSACTION COSTS: A

THRESHOLD REBALANCED PORTFOLIO APPROACH

In this chapter, we study the investment problem in a financial market having a finite

number of assets. We concentrate on how an investor should distribute capital over these

assets and when he should reallocate the distribution of the funds over those assets in time

to maximize the overall cumulative wealth. In financial terms, distributing ones capital

over various assets is known as the portfolio management problem and reallocation of this

distribution by buying and selling stocks is referred as the rebalancing of the given portfo-

lio [29]. Due to obvious reasons, the portfolio management problem has been investigated

in various different fields from financial engineering [32], machine learning to information

theory [13], with a significant room for improvement as the recent financial crises demon-

strated. To this end, we investigate the portfolio management problem in discrete-time

markets when the market levies proportional transaction costs in trading while buying and

selling stocks, which accurately models a wide range of real life markets [29,32]. In discrete

time markets, we have a finite number of assets and the reallocation of wealth (or rebalanc-

ing of the capital) over these assets is only allowed at discrete investment periods, where

the investment period is arbitrary, e.g., each second, minute or each day [13,14]. Under this

framework, we introduce algorithms that achieve the maximal expected cumulative wealth

under proportional transaction costs in i.i.d. discrete-time markets extensively studied in

the financial literature [29, 32]. We further illustrate that our algorithms significantly im-

prove the achieved wealth over the well-known algorithms in the literature on historical data

sets under realistic transaction costs, as anticipated from our derivations. The precise prob-

lem description including the market and transaction cost models are provided in Section

2.2.

In this part, we first evaluate the expected wealth achieved by a TRP over any finite

investment period given any target portfolio and threshold for two-asset discrete-time stock
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markets subject to proportional transaction fees. We emphasize that we study two-asset

market for notational simplicity and our derivations can be readily extended to markets

having more than two assets as pointed out in the chapter where needed. We consider i.i.d.

discrete-time markets represented by the sequence of price relatives (defined as the ratio of

the opening price to the closing price of stocks), where the sequence of price relatives follow

log-normal distributions. Note that the log-normal distribution is the assumed statistical

model for price relative vectors in the well-known Black-Scholes model [29, 32] and this

distribution is shown to accurately model real life stock prices by many empirical studies [29].

Under this setup, we provide an iterative relation that efficiently and recursively calculates

the expected wealth by evaluating a certain multivariate Gaussian integral. We then provide

a randomized algorithm to calculate the given integral and obtain the expected growth.

This expected growth is then optimized by a brute force method to yield the optimal

target portfolio and threshold to maximize the expected wealth over any investment period.

Furthermore, we also provide a maximum-likelihood estimator to estimate the parameters of

the log-normal distribution from the sequence of price relative vectors, which is incorporated

into the algorithmic framework in Simulations section since these parameters are naturally

unknown in real life markets.

Portfolio management problem is studied with transaction costs in [23] on the horse race

setting, which is a special discrete-time market where only one of the asset pays off and the

others pay nothing on each period. This basic framework is then extended to general stock

markets in [21], where threshold portfolios are shown to be growth optimal for two-asset

markets. However, no algorithm, except for a special sampled Brownian market, is pro-

vided to find the optimal target portfolio or threshold in [21]. To achieve the performance

of the best TRP, a sequential algorithm is introduced in [22] that is shown to asymptotically

achieve the performance of the best TRP tuned to the underlying sequence of price relatives.

This algorithm uses a similar weighting introduced in [15] to construct the universal port-

folio. We emphasize that the universal investment strategies, e.g., [22], which are inspired

by universal source coding ideas, based on Bayesian type weighting, are heavily utilized to

construct sequential investment strategies [2, 3, 14, 25–28, 39, 47]. Although these methods

are shown to “asymptotically” achieve the performance of the best portfolio in the compe-

tition class of portfolios, their non-asymptotic performance is acceptable only if a sufficient
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number of candidate algorithms in the competition class is overly successful [27] to circum-

vent the loss due to Bayesian type averaging. Since these algorithms are usually designed in

a min-max (or universal) framework and hedge against (or should even work for) the worst

case sequence, their average (or generic) performance may substantially suffer [10, 16, 20].

In our simulations, we show that our introduced algorithm readily outperforms a wide class

of universal algorithms on the historical data sets, including [22]. Note that to reduce the

negative effect of the transaction costs in discrete time markets, semiconstant rebalanced

portfolio (SCRP) strategies have also been proposed and studied in [8,20,27]. Different than

a CRP and similar to the TRPs, an SCRP rebalances the portfolio only at the determined

periods instead of rebalancing at the start of each period. Since for an SCRP algorithm

rebalancing occurs less frequently than a CRP, using an SCRP strategy may improve the

performance over CRPs when transaction fees are present. However, no formulation exists

to find the optimal rebalancing times for SCRPs to maximize the cumulative wealth. Al-

though there exist universal methods [27, 39] that achieve asymptotically the performance

of the best SCRP tuned to the underlying sequence of price relatives, these methods suffer

in realistic markets since they are tuned to the worst case scenario [27] as demonstrated in

the Simulations section.

2.1 Problem Description

In this chapter, all vectors are column vectors and represented by lower-case bold letters.

Consider a market with m stocks and let {x(t)}t≥1 represent the sequence of price rel-

ative vectors in this market, where x(t) = [x1(t), x2(t), . . . , xm(t)]T with xi(t) ∈ +
p for

i ∈ {1, 2, . . . ,m}. At each investment period, say period t, b(t) represents the vector of

portfolios such that bi(t) is the fraction of money invested on the ith stock. We allow only

long-trading such that
∑m

i=1 bi(t) = 1 and bi(t) ≥ 0. After the price relative vector x(t) is

revealed, we earn bT (t)x(t) at the period t. Assuming we started investing using 1 dollars,

at the end of n periods, the wealth growth in a market with no transaction costs is given

by

S(n) =
n

∏

t=1

bT (t)x(t). (2.1)
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If we use the well known the CRP [13], then we earn

n
∏

t=1

bTx(t),

at the end of n periods ignoring the transaction costs. This method is called “constant

rebalancing” since at the start of each investment period t, the portfolio vector b(t) =

[b1(t), b2(t), . . . , bm(t)] is adjusted, or rebalanced, to a predetermined constant portfolio

vector b = [b1, b2, . . . , bm] where
∑m

i=1 bi = 1. As an example, at the start of each investment

period t, since we invested using b at the investment period t− 1 and observed x(t− 1), the

current portfolio vector, say bold(t),

bold(t)
"
=

[

b1x1(t − 1)
∑m

i=1 bixi(t − 1)
, . . . ,

bmxm(t − 1)
∑m

i=1 bixi(t − 1)

]T

,

should be adjusted back to b. If we assume a symmetric proportional transaction cost with

cost ratio c for both selling and buying, then we need to spend approximately
∑m

i=1 bi,old(t)S(t)|bi,old(t)−

bi|c dollars for rebalancing. Note that if the transaction costs are not symmetric, the anal-

ysis follows by assuming c = csell + cbuy by [8], where csell and cbuy are the proportional

transaction costs in selling and buying, respectively. Since a CRP should be rebalanced back

to its initial value at the start of each investment period, a transaction fee proportional to

the wealth growth up to the current period, i.e., S(t), is required for each period t. Hence,

constantly rebalancing at each time t may be unappealing for large c.

To avoid such frequent rebalancing, we use TRPs, where we denote a TRP with a target

vector b and a threshold ε (with certain abuse of notation) as “TRP with (b, ε)”. For a

sequence of price relatives vectors xn "
= [x(1),x(2), . . . ,x(n)] with x ∈ +

m, a TRP with

(b, ε) rebalances the portfolio to b at the first time τ satisfying

bj
∏τ

t=1 xj(t)
∑m

k=1 bk
∏τ

t=1 xk(t)
/∈ [bj − εj , bj + εj] (2.2)

for any j ∈ {1, 2, . . . ,m}, thresholds εj, and does not rebalance otherwise, i.e., while the

portfolio vector stays in the no rebalancing region. Starting from the first period of a no

rebalancing region, i.e., where the portfolio is rebalanced to the target portfolio b, say t = 1
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Figure 2.1: A sample scenario for threshold rebalanced portfolios.

for this example, the wealth gained during any no rebalancing region is given by

W (xn|bn ∈ Enc
n ) =

m
∑

k=1

bk

n
∏

t=1

xk(t), (2.3)

where bn = [b(1),b(2), . . . ,b(n)] with b(t) is the portfolio at period t and Enc
n is the length

n no rebalancing region defined as

Enc
n = {bn | b(1) = b, bj(t) ∈ (bj − εj, bj + εj), j ∈ {1, 2, . . . ,m}, t ∈ {1, 2, . . . , n}}. (2.4)

A TRP pays a transaction fee when the portfolio vector leaves the predefined no rebalancing

region, i.e., goes out of the no rebalancing region Enc
n , and rebalanced back to its target

portfolio vector b. Since the TRP may avoid constant rebalancing, it may avoid excessive

transaction fees while securing the portfolio to stay close the target portfolio b, when we

have heavy transaction costs in the market.

For notational clarity, in the remaining of the chapter, we assume that the number of

stocks in the market is equal to 2, i.e., m = 2. Note that our results can be readily extended

to the case when m > 2. We point out the necessary modifications to extend our derivations

to the case m > 2. Then, the threshold rebalanced portfolios are described as follows.
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Given a TRP with target portfolio b = [b, 1 − b]T with b ∈ [0, 1] and a threshold ε, the

no rebalancing region of a TRP with (b, ε) is represented by (b−ε, b+ε). Given a TRP with

(b− ε, b + ε), we only rebalance if the portfolio leaves this region, which can be found using

only the first entry of the portfolio (since there are two stocks), i.e., if b1,old(t) /∈ (b−ε, b+ε).

In this case, we rebalance b1,old(t) to b. Fig. 2.1 represents a sample TRP in a discrete-time

two-asset market and when the portfolio is rebalanced back to its initial value if it leaves

the no rebalancing interval.

Before our derivations, we emphasize that the performance of a TRP is clearly effected

by the threshold and the target portfolio. As an example, choosing a small threshold ε, i.e., a

low threshold, may cause frequent rebalancing, hence one can expect to pay more transaction

fees as a result. However, choosing a small ε secures the TRP to stay close to the target

portfolio b. Choosing a larger threshold ε, i.e., a high threshold, avoids frequent rebalancing

and degrades the excessive transaction fees. Nevertheless, the portfolio may drift to risky

values that are distant from the target portfolio b under large threshold. Furthermore,

we emphasize that proportional transaction cost c is a key factor in determining the ε.

Under mild stochastic assumptions it has been shown in [14, 15] that in a market with no

transaction costs, CRPs achieve the maximum possible wealth. Therefore in a market with

no transaction costs, i.e., c = 0, the maximum wealth can be achieved when we choose a

zero threshold, i.e., ε = 0 and a target portfolio b∗ = arg max
b

E[log(bx1 + (1− b)x2)], where

x1 and x2 represent the price relatives of two-asset market [15]. On the other hand, in a

market with high transaction costs, choosing a high threshold, i.e., a large ε, eliminates

the unappealing effect of transaction costs. For instance, for the extreme case where the

transaction cost is infinite, i.e., c = ∞, the best TRP should either have ε = 1 or b ∈ {0, 1}

to ensure that no rebalancing occurs.

In this chapter, we assume that the price relative vectors have a log-normal distribution

following the well-known Black-Scholes model [29]. This distribution that is extensively

used in financial literature is shown to accurately model empirical price relative vectors [9].

Hence, we assume that x(t) = [x1(t), x2(t)]T has an i.i.d. log-normal distribution with mean

µ = [µ1, µ2] and standard deviation σ = [σ1,σ2], respectively, i.e., x(t) ∼ lnN (µ,σ2). In

this chapter, we first optimize the wealth achieved by a TRP for the discrete-time market,

where the distributions of the price relatives are known. We then provide a ML estimator
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for these parameters to cover the case where the means and variances are unknown. The ML

estimator is incorporated in the algorithmic framework in the Simulations section since the

corresponding parameters are unknown in real life markets. The details of the maximum-

likelihood estimation are given in Section 2.3.

2.2 Threshold Rebalanced Portfolios

In this section, we analyze the TRPs in a discrete-time market with proportional transaction

costs as defined in Section 2.1. We first introduce an iterative relation, as a theorem, to

recursively evaluate the expected achieved wealth of a TRP over any investment period. The

terms in this iterative equation are calculated using a certain form of multivariate Gaussian

integrals. We provide a randomized algorithm to calculate these integrals. We then use the

given iterative equation to find the optimal ε and b that maximize the expected wealth over

any investment period.

2.2.1 An Iterative Equation to Calculate the Expected Wealth

In this section, we introduce an iterative equation to evaluate the expected cumulative

wealth of a TRP with (b− ε, b + ε) over any period n, i.e., E[S(n)]. As seen in Fig. 2.2, for

a TRP with (b − ε, b + ε), any investment scenario can be decomposed as the union of con-

secutive no-crossing blocks such that each rebalancing instant, to the initial b, signifies the

end of a block. Hence, based on this observation, the expected gain of a TRP between any

consecutive crossings, i.e., the gain during the no rebalancing regions, directly determines

the overall expected wealth growth. Hence, we first calculate the conditional expected gain

of a TRP over no rebalancing regions and then introduce the iterative relation based on

these derivations.

For a TRP with (b − ε, b + ε), we call a no rebalancing region of length n as “period

n with no-crossing” such that the TRP with the initial and target portfolio b = [b, 1 − b]

stays in the (b− ε, b+ ε) interval for n−1 consecutive investment periods and crosses one of

the thresholds at the nth period. We next calculate the expected gain of a TRP over any

no-crossing period as follows.

The wealth growth of a TRP with (b − ε, b + ε) for a period τ with no-crossing can be
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written as 1

Snc(τ)
"
= b

τ
∏

t=1

[x1(t)] + (1 − b)
τ

∏

t=1

[x2(t)], (2.5)

without the transaction cost that arises at the last period. To find the total achieved

wealth for a period τ with no-crossing, we need to subtract the transaction fees from (2.5).

If portfolio b1(t) crosses the threshold at the investment period t = τ , then we need to

rebalance it back to b, i.e., b1(t) = b and approximately pay

Snc(τ)c

∣

∣

∣

∣

b
∏τ

t=1(x1(t))

b
∏τ

t=1(x1(t)) + (1 − b)
∏τ

t=1(x2(t))
− b

∣

∣

∣

∣

, (2.6)

where c represents the symmetrical commission cost, to rebalance two stocks, i.e., b1,old(τ+1)

to b, and b2,old(τ + 1) = 1− b1,old(τ + 1) to 1− b. Hence, the net overall gain for a period τ

with no-crossing becomes

S(τ) = Snc(τ) − Snc(τ)c

∣

∣

∣

∣

b
∏τ

t=1(x1(t))

b
∏τ

t=1(x1(t)) + (1 − b)
∏τ

t=1(x2(t))
− b

∣

∣

∣

∣

= b
τ

∏

t=1

[x1(t)] + (1 − b)
τ

∏

t=1

[x2(t)] − c(b − b2)

∣

∣

∣

∣

∣

τ
∏

t=1

[x1(t)] −
τ

∏

t=1

[x2(t)]

∣

∣

∣

∣

∣

= ζ1

τ
∏

t=1

[x1(t)] + ζ2

τ
∏

t=1

[x2(t)], (2.7)

where ζ1
"
= b− 2c(b− b2) and ζ2

"
= 1− b + 2c(b− b2) for b + ε hitting and ζ1

"
= b + 2c(b− b2)

and ζ2
"
= 1 − b − 2c(b − b2) for b − ε hitting. Thus, the conditional expected gain of a TRP

conditioned on that the portfolio stays in a no rebalancing region until the last period of

the region can be found by calculating the expected value of (2.7). Since, we now have

the conditional expected gains, we next introduce an iterative relation to find the expected

wealth growth of a TRP with (b − ε, b + ε) for period n, E[S(n)], by using the expected

gains of no-crossing periods as shown in Fig. 2.2.

In order to calculate the expected wealth E[S(n)] iteratively, let us first define the

variable R(τ), which is the expected cumulative gain of all possible portfolios that hit any

1This is the special case of (2.3) for m = 2.
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Figure 2.2: No-crossing intervals of threshold rebalanced portfolios.

of the thresholds first time at the τth period, i.e.,

R(τ) = E
[

S(τ)
∣

∣

∣
bτ ∈ E fc

τ

]

, (2.8)

where E fc
τ denotes the set of all possible portfolios with initial portfolio b and that stay in

the no rebalancing region for τ − 1 consecutive periods and hits one of the b − ε or b + ε

boundary at the τth period, i.e.,

E fc
τ

"
= {bτ ∈ Bτ (b, ε) | b(1) = b, b(i) ∈ (b − ε, b + ε)∀i ∈ {2, . . . , τ − 1}, b(τ) /∈ (b − ε, b + ε)}.

(2.9)

Here, Bτ (b, ε) is defined as the set of all possible threshold rebalanced portfolios with initial

and target portfolio b and a no rebalancing interval (b − ε, b + ε). Similarly we define the

variable T (τ), which is the expected growth of all possible portfolios of length τ with no

threshold crossings, i.e.,

T (τ) = E
[

S(τ)
∣

∣

∣
bτ ∈ Enc

τ

]

, (2.10)
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where Enc
τ denotes the set of portfolios with initial portfolio b and that stay in the no

rebalancing region for τ consecutive periods, i.e.,2

Enc
τ

"
= {bτ ∈ Bτ (b, ε) | b(1) = b, b(i) ∈ [b − ε, b + ε]∀i ∈ {2, . . . , τ}}. (2.11)

Given the variables R(τ) and T (τ), we next introduce a theorem that iteratively cal-

culates the expected wealth growth of a TRP over any period n. Hence, to calculate the

expected achieved wealth, it is sufficient to calculate R(τ), T (τ), threshold crossing proba-

bilities P
(

bn ∈ E fc
n

)

and P (bn ∈ Enc
n ), which are explicitly evaluated in the next section.

Theorem 2.2.1 The expected wealth growth of a TRP (b− ε, b + ε), i.e. E[S(n)], over any

i.i.d. sequence of price relative vectors xn = [x(1),x(2), . . . ,x(n)], satisfies

E[S(n)] =
n

∑

i=1

P (E fc
i )R(i)E[S(n − i)] + P (Enc

n )T (n), (2.12)

where we define S0 = 1, R(n) in (2.8), T (n) in (2.10), E fc
i in (2.11) and Enc

n in (2.9).

We emphasize that by Theorem 2.2.1, we can recursively calculate the expected growth

of any TRP over any i.i.d. discrete-time market under proportional transaction costs. The-

orem 2.2.1 holds for i.i.d. markets having either m = 2 or m > 2 provided that the

corresponding terms in (2.12) can be calculated.

Proof: By using the law of total expectation [40], E[S(n)] can be written as

E[S(n)] =

∫

bn∈Bn(b,ε)
E[S(n)|bn]P (bn)dbn, (2.13)

where Bn(b, ε) is defined as the set of all possible TRPs with the initial and target portfolio

b and threshold ε. To obtain (2.12), we consider all possible portfolios as a union of n + 1

disjoint sets: (1) the portfolios which cross one of the thresholds first time at the 1st

2This is the special case of the definition in (2.4) for m = 2.
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period; (2) the portfolios which cross one of the thresholds first time at the 2nd period;

and continuing in this manner, (3) the portfolios which cross one of the thresholds first

time at the nth period; and finally (4) the portfolios which do not cross the thresholds

for n consecutive periods. Clearly these market portfolio sets are disjoint and their union

provides all possible portfolio paths. Hence (2.13) can also be written as

E[S(n)] =
n

∑

i=1

∫

bi
1∈E fc

i ,bn
i+1∈Bn−i(b,ε)

E[S(n)|bi
1 ∈ E fc

i ,bn
i+1 ∈ Bn−i(b, ε)]P (bi

1 ∈ E fc
i ,bn

i+1 ∈ Bn−i(b, ε))db
n

+

∫

bn∈Enc
n

E[S(n)|bn ∈ Enc
n ]P (bn ∈ Enc

n )dbn, (2.14)

where b
j
i
"
= [b(i), b(i + 1), . . . , b(j)]. To continue with our derivations, we define Si→j as the

wealth growth from the period i to period j, i.e., Si→j
"
= S(j)

S(i) . Assume that in the period τ ,

the portfolio crosses one of the thresholds and a rebalancing occurs. In that case, regardless

of the portfolios before the period τ , the portfolio is rebalanced back to its initial value in the

τth period, i.e., to [b, 1− b]T . Since the price relative vectors are independent over time, we

can conclude that the portfolios before the period τ are independent from the portfolios after

the period τ , i.e., b(τ) = b and every portfolio b(i) for i ∈ {1, 2, . . . , τ − 1} are independent

from the portfolios b(j) for j ∈ {τ + 1, τ + 2, . . . , n}. Hence, the investment period where

the portfolio path crosses one of the thresholds, i.e., τ , divides the whole investment block

into uncorrelated blocks in terms of price relative vectors and portfolios. Thus, the wealth

growth acquired up to the period τ , S1→τ , is uncorrelated to the wealth growth acquired

after that period, i.e., Sτ+1→n. Hence, if we assume that a threshold crossing occurs at the

period τ , then we have

E
[

S(n)|bτ
1 ∈ E fc

τ ,bn
τ+1 ∈ Bn−τ (b, ε)

]

= E
[

S1→τSτ+1→n|bτ
1 ∈ E fc

τ ,bn
τ+1 ∈ Bn−τ (b, ε)

]

= E
[

S1→τ |bi
1 ∈ E fc

i

]

E
[

Sτ+1→n|bn
i+1 ∈ Bn−i(b, ε)

]

.

(2.15)
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Applying (2.15) to (2.14), we get

E [S(n)] =
n

∑

i=1

∫

bi
1∈E fc

i ,bn
i+1∈Bn−i(b,ε)

E
[

S1→i|bi
1 ∈ E fc

i

]

E
[

Si+1→n|b(i) = b,bn
i+1 ∈ Bn−i(b, ε)

]

× P
(

bi
1 ∈ E fc

i

)

P
(

bn
i+1 ∈ Bn−i(b, ε)

)

dbn +

∫

bn∈Enc
n

E [S(n)|bn ∈ Enc
n ]

× P (bn ∈ Enc
n ) dbn. (2.16)

Since the integral in (2.16) can be decomposed into two disjoint integrals, (2.14) yields

E[S(n)] =
n

∑

i=1

∫

bi
1∈E fc

i

E[S1→i|bi
1 ∈ E fc

i ]P (bi
1 ∈ E fc

i )dbi
1

×
∫

bn
i+1∈Bn−i(b,ε)

E[Si+1→n|b(i) = b,bn
i+1 ∈ Bn−i(b, ε)]P (bn

i+1 ∈ Bn−i(b, ε))db
n
i+1

+

∫

bn∈Enc
n

E[S(n)|bn ∈ Enc
n ]P (bn ∈ Enc

n )dbn. (2.17)

We next write (2.17) as a recursive equation.

To accomplish this, we first note that

(i) R(i) is defined as the expected gain of TRPs with length i, which crosses one of the

thresholds first time at the i-th period, it follows that

R(i) = E
[

S(τ)
∣

∣

∣
bi ∈ E fc

i

]

(2.18)

=
1

P (E fc
i )

∫

bi
1∈E fc

i

E[S1→i|bi
1 ∈ E fc

i ]P (bi
1 ∈ E fc

i )dbi
1, (2.19)

where we write P (E fc
i ) instead of P (bi

1 ∈ E fc
i ).

(ii) Then, as the second term, T (n) is defined as the expected gain of TRPs of length n,

which does not cross one of the thresholds for n consecutive periods. This yields

T (n) = E
[

S(n)
∣

∣

∣
bn ∈ Enc

n

]

(2.20)

=
1

P (Enc
n )

∫

bn∈Enc
n

E[S(n)|bn ∈ Enc
n ]p(bn ∈ Enc

n )dbn. (2.21)

(iii) Finally, observe that the second integral in (2.17) is the expected wealth growth of a
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TRP of length n − i, i.e.,

E[S(n − i)] =

∫

bn
i+1∈Bn−i(b,ε)

E[Si+1→n|b(i) = b,bn
i+1 ∈ Bn−i(b, ε)]p(bn

i+1 ∈ Bn−i(b, ε))db
n
i+1,

(2.22)

where p(bn
i+1 ∈ Bn−i(b, ε)) = 1 by the definition of the set Bn−i(b, ε).

Hence, if we apply (2.19), (2.21) and (2.22) to (2.17), we can write (2.12) as

E[S(n)] =
n

∑

i=1

P (E fc
i )R(i)E[S(n − i)] + P (Enc

n )T (n), (2.23)

hence the proof follows.

Theorem 2.2.1 provides a recursion to iteratively calculate the expected wealth growth

E[S(n)], when R(τ) and T (τ) are explicitly calculated for a TRP with (b−ε, b+ε). Hence, if

we can obtain P
(

E fc
τ

)

R(τ) and P (Enc
τ ) T (τ) for any τ , then (2.12) yields a simple iteration

that provides the expected wealth growth for any period n. We next give the explicit

definitions of the events E fc
τ and Enc

τ in order to calculate the conditional expectations

R(τ) and T (τ). Following these definitions, we calculate P
(

E fc
τ

)

R(τ) and P (Enc
τ )T (τ) to

evaluate the expected wealth growth E[S(τ)], iteratively from Theorem 2.2.1 and find the

the optimal TRP, i.e., optimal b and ε, by using a brute force search.

In the next section, we provide the explicit definitions for E fc
τ and Enc

τ , and define the

conditions for staying in the no rebalancing region or hitting one of the boundaries to find

the corresponding probabilities of these events.

2.2.2 Explicit Calculations of R(n) and T (n)

In this section, we first define the conditions for the market portfolios to cross the corre-

sponding thresholds and calculate the probabilities for the events E fc
τ and Enc

τ . We then

calculate the conditional expectations R(n) and T (n) as certain multivariate Gaussian inte-

grals. The explicit calculation of multivariate Gaussian integrals are given in Section 2.2.3.

To get the explicit definitions of the events E fc
τ and Enc

τ , we note that we have two

different boundary hitting scenarios for a TRP, i.e., starting from the initial portfolio b, the
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portfolio can hit b − ε or b + ε. From b, the portfolio crosses b − ε boundary if

b
∏τ

t=1(x1(t))

b
∏τ

t=1(x1(t)) + (1 − b)
∏τ

t=1(x2(t))
≤ b − ε, (2.24)

where τ is the first time the crossing happens without ever hitting any of the boundaries

before. Since x1(i), x2(i) > 0 for all i, (2.24) happens if

τ
∏

t=1

x2(t)

x1(t)
≥ b(1 − b + ε)

(1 − b)(b − ε)
, (2.25)

which is equivalent to

Π2(τ) ≥ γ1Π1(τ),

where Π1(i)
"
=

∏i
t=1 x1(t), Π2(i)

"
=

∏i
t=1 x2(t) and γ1

"
= b(1−b+ε)

(1−b)(b−ε) . Since x(i)’s have log-

normal distributions, i.e., x(t) ∼ lnN (µ,σ2), Π1(i) and Π2(i) are log-normal, too [40].

Furthermore, to calculate the required probabilities, we note that

p (Π1(i),Π1(k − 1),Π1(k)) = p (Π1(i),Π1(k − 1)) p (Π1(k)|Π1(k − 1),Π1(i))

= p (Π1(i)) p (Π1(k − 1)|Π1(i)) p (Π1(k − 1)x1(k)|Π1(k − 1),Π1(i))

= p (Π1(i)) p (Π1(k − 1)|Π1(i)) p (Π1(k)|Π1(k − 1)) , (2.26)

∀i ∈ {0, 1, . . . , k−2}, where (2.26) follows since x(k) is independent of Π1(i) for k > i. Hence

Π1(i)’s form a Markov chain such that Π1(i) ↔ Π1(k − 1) ↔ Π1(k) ∀i ∈ {0, 1, . . . , k − 2}.

Following the similar, steps we also obtain that Π2(i) ↔ Π2(k − 1) ↔ Π2(k) ,∀i ∈

{0, 1, . . . , k − 2}. Note that, by extending the definitions Π1 and Π2 one can obtain

Π1,Π2, . . . ,Πm for the case m > 2. Furthermore, taking the logarithm of both sides of

(2.25) we have

Στ
1

"
=

τ
∑

t=1

z(t) ≥ θ1,

where z(t)
"
= ln

(

x2(t)
x1(t)

)

and θ1
"
= ln b(1−b+ε)

(1−b)(b−ε) = ln γ1. The partial sums of z(t)’s are defined

as Σk
i =

∑k
t=i z(t) for notational simplicity. Since x(t) ∼ lnN (µ,σ2), z(t)’s are Gaussian,

i.e. z(t) ∼ N (µ,σ2), where µ = µ2−µ1 and σ2 = σ2
1+σ2

2, their sums, Σk
i ’s, are Gaussian too.

Furthermore note that, Σk
1 =

∑k
t=1 z(t) =

∑k
t=1 ln

(

x2(t)
x1(t)

)

= ln
(

∏k
t=1

x2(t)
x1(t)

)

= ln Π2(k)
Π1(k) .
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Similarly with an initial value b, market portfolio crosses b + ε boundary if

b
∏τ

t=1(x1(t))

b
∏τ

t=1(x1(t)) + (1 − b)
∏τ

t=1(x2(t))
≥ b + ε, (2.27)

where τ is the first crossing time without ever hitting any of the boundaries before. Again,

since x1(i), x2(i) > 0 for all i, (2.27) happens if

τ
∏

t=1

x2(t)

x1(t)
≤ b(1 − b − ε)

(1 − b)(b + ε)
, (2.28)

which can be written of the form

Π2(t) ≤ γ2Π1(t).

Equation (2.28) yields

Στ
1 =

τ
∑

t=1

z(t) ≤ θ2,

where θ2
"
= ln b(1−b−ε)

(1−b)(b+ε) = ln γ2.

Hence, we can explicitly describe the event that the market threshold portfolio (b−ε, b+ε)

does not hit any of the thresholds for τ consecutive periods, Enc
τ , as the intersection of the

events as

Enc
τ

"
=

τ
⋂

i=1

{Σi
1 ∈ [θ2, θ1]} =

τ
⋂

i=1

{γ2Π1(i) ≤ Π2(i) ≤ γ1Π1(i)}. (2.29)

Similarly, the event of the market threshold portfolio (b−ε, b+ε) hitting any of the thresholds

first time at the τ -th period, E fc
τ , can be defined as the intersections of the events

E fc
τ

"
=

τ−1
⋂

i=1

{Σi
1 ∈ [θ2, θ1]}

⋂

[

{Στ ∈ [−∞, θ2)}
⋃

{Στ ∈ (θ1,∞]}
]

=
τ−1
⋂

i=1

{γ2Π1(i) ≤ Π2(i) ≤ γ1Π1(i)}
⋂

[

{Π2(τ) ≥ γ1Π1(τ)}
⋃

{Π2(τ) ≤ γ2Π1(τ)}
]

,

(2.30)

yielding the explicit definitions of the events E fc
τ in (2.30) and Enc

τ in (2.29). Note that the

definitions of Enc
τ and E fc

τ can be extended for the case m > 2 by employing the updated
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definitions of Π1,Π2, . . . ,Πm.

Since we have the quantitive definitions of the events E fc
τ and Enc

τ , we can express the

expected overall gain of τ -period no hitting portfolios, T (τ), as

T (τ) = E
[

S(τ)
∣

∣

∣
Enc

τ

]

= E
[

b
τ

∏

t=1

[x1(t)] + (1 − b)
τ

∏

t=1

[x2(t)]
∣

∣

∣
Enc

τ

]

= E
[

bΠ1(τ) + (1 − b)Π2(τ)
∣

∣

∣
Enc

τ

]

. (2.31)

The expectation E
[

bΠ1(τ) + (1 − b)Π2(τ)
∣

∣

∣
Enc

τ

]

can be expressed in an integral form as

E
[

bΠ1(τ) + (1 − b)Π2(τ)
∣

∣

∣ Enc
τ

]

=

∫ ∞

0

∫ ∞

0
(bπ1 + (1 − b)π2)

× P
(

Π1(τ) = π1,Π2(τ) = π2

∣

∣

∣
Enc

τ

)

dπ2dπ1 (2.32)

by definition of conditional expectation. Note that for the case m > 2 the double integral

in the definition of Tτ (2.32) is replaced by an m-dimensional integral over updated random

variables Π1,Π2, . . . ,Πm. Combining (2.32) and (2.31) yields

T (τ) =

∫ ∞

0

∫ ∞

0
(bπ1 + (1 − b)π2) P

(

Π1(τ) = π1,Π2(τ) = π2

∣

∣

∣
Enc

τ

)

dπ2dπ1

=
1

P (Enc
τ )

∫ ∞

0

∫ ∞

0
(bπ1 + (1 − b)π2) P (Π1(τ) = π1,Π2(τ) = π2)

× P
(

Enc
τ

∣

∣

∣
Π1(τ) = π1,Π2(τ) = π2

)

dπ2dπ1 (2.33)

by Bayes’ theorem that P (A|B) = P (B|A)P (A)
P (B) . If we write the explicit definition of Enc

τ
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given in (2.29), then we obtain

P (Enc
τ )T (τ) =

∫ ∞

0

∫ ∞

0
(bπ1 + (1 − b)π2) P (Π1(τ) = π1,Π2(τ) = π2) P

[

γ2Π1(1) ≤ Π2(1) ≤ γ1Π1(1)

, . . . , γ2Π1(τ) ≤ Π2(τ) ≤ γ1Π1(τ)
∣

∣

∣
Π1(τ) = π1,Π2(τ) = π2

]

dπ2dπ1

=

∫ ∞

0

∫ γ1π1

γ2π1

(bπ1 + (1 − b)π2) P (Π1(τ) = π1,Π2(τ) = π2)

× P
[

γ2
π1

∏τ
t=2 x1(t)

≤ π2
∏τ

t=2 x2(t)
≤ γ1

π1
∏τ

t=2 x1(t)
, γ2

π1
∏τ

t=3 x1(t)
≤ π2

∏τ
t=3 x2(t)

≤ γ1
π1

∏τ
t=3 x1(t)

, . . . , γ2
π1

x1(τ)
≤ π2

x2(τ)
≤ γ1

π1

x1(τ)

]

dπ2dπ1 (2.34)

where (2.34) follows by the definitions of Π1(i) and Π2(i), i.e., Π1(i) =
∏i

t=1 x1(t) =

Π1(τ)
Qτ

t=i+1 x1(t)
and Π2(i) =

∏i
t=1 x2(t) = Π2(τ)

Qτ
t=i+1 x2(t)

. If we rearrange the inequalities in (2.34)

to put the product terms together, which does not affect the direction of the inequality since

all terms are positive, then we obtain

P (Enc
τ )T (τ) =

∫ ∞

0

∫ γ1π1

γ2π1

(bπ1 + (1 − b)π2) P (Π1(τ) = π1,Π2(τ) = π2)P
[ π2

π1γ1
≤

τ
∏

t=2

x2(t)

x1(t)
≤ π2

π1γ2
,

π2

π1γ1
≤

τ
∏

t=3

x2(t)

x1(t)
≤ π2

π1γ2
, . . . ,

π2

π1γ1
≤ x2(τ)

x1(τ)
≤ π2

π1γ2

]

dπ2dπ1

=

∫ ∞

0

∫ γ1π1

γ2π1

(bπ1 + (1 − b)π2) P (Π1(τ) = π1,Π2(τ) = π2)P
(

Στ
2 ∈ [κ − θ1,κ − θ2],Σ

τ
3 ∈ [κ − θ1,κ − θ2],

. . . ,Στ
τ ∈ [κ − θ1,κ − θ2]

)

dπ2dπ1, (2.35)

which follows from the definition of Σk
i where κ

"
= ln π2

π1
. The first probability in (2.35) can

be calculated as

P (Π1(τ) = π1,Π2(τ) = π2) = P (Π1(τ) = π1)P (Π2(τ) = π2)

=
1

π1

√

2π τσ2
1

e
− (ln π1−τµ1)2

2 τσ2
1 +

1

π1

√

2π τσ2
2

e
− (ln π2−τµ2)2

2 τσ2
2 (2.36)

which follows since Π1(τ)
"
=

∏τ
t=1 x1(t) and Π2(τ)

"
=

∏τ
t=1 x2(t), we have Π1(τ) ∼ lnN (τµ1, τσ2

1)

and Π2(τ) ∼ lnN (τµ2, τσ2
2). Note that the corresponding terms in (2.35) is written as a

multi variable integral calculated in Section 2.2.3.
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Following similar steps, we can obtain the expected overall gain R(τ) as

R(τ) = E
[

S(τ)
∣

∣

∣
E fc

τ

]

= E

[

b
τ

∏

t=1

[x1(t)] + (1 − b)
τ

∏

t=1

[x2(t)] − 2c(b − b2)|
τ

∏

t=1

[x1(t)] −
τ

∏

t=1

[x2(t)]|
∣

∣

∣
E fc

τ

]

.

(2.37)

The conditional expectation E
[

S(τ)
∣

∣

∣
E fc

τ

]

can also be expressed in an integral form as

E
[

S(τ)
∣

∣

∣
E fc

τ

]

=

∫ ∞

0

∫ ∞

0
S(τ) P

(

Π1(τ) = π1,Π2(τ) = π2

∣

∣

∣
E fc

τ

)

dπ2dπ1, (2.38)

which follows from the definition of conditional expectation. Combining (2.38) and (2.37)

yields

R(τ) =

∫ ∞

0

∫ ∞

0
S(τ) P

(

Π1(τ) = π1,Π2(τ) = π2

∣

∣

∣
E fc

τ

)

dπ2dπ1

=
1

P (E fc
τ )

∫ ∞

0

∫ ∞

0
S(τ) P (Π1(τ) = π1,Π2(τ) = π2)

× P
(

E fc
τ

∣

∣

∣ Π1(τ) = π1,Π2(τ) = π2

)

dπ2dπ1, (2.39)

where (2.39) follows from the Bayes’ theorem. Note that the definition of R(τ) (2.39) can

be extended for the case m > 2 by replacing the double integral with an m-dimensional

integral over the updated random variables Π1,Π2, . . . ,Πm. If we replace the event E fc
τ with

its explicit definition in (2.30), then we get

P
(

E fc
τ

)

R(τ) =

∫ ∞

0

∫ ∞

0
(ζ1π1 + ζ2π2) P (Π1(τ) = π1,Π2(τ) = π2) P

[

γ2Π1(1) ≤ Π2(1) ≤ γ1Π1(1), . . . ,

γ2Π1(τ − 1) ≤ Π2(τ − 1) ≤ γ1Π1(τ − 1), γ1Π1(τ) ≤ Π2(τ)
∣

∣

∣
Π1(τ) = π1,Π2(τ) = π2

]

dπ2dπ1

+

∫ ∞

0

∫ ∞

0
(ζ3π1 + ζ4π2) P (Π1(τ) = π1,Π2(τ) = π2)P

[

γ2Π1(1) ≤ Π2(1) ≤ γ1Π1(1), . . . ,

γ2Π1(τ − 1) ≤ Π2(τ − 1) ≤ γ1Π1(τ − 1), γ2Π1(τ) ≥ Π2(τ)
∣

∣

∣
Π1(τ) = π1,Π2(τ) = π2

]

dπ2dπ1,

(2.40)

where ζ1
"
= b−2c(b−b2), ζ2 = 1−b+2c(b−b2) , ζ3 = b+2c(b−b2) and ζ4 = 1−b−2c(b−b2).

We next calculate the first integral in (2.40) and the second integral follows similarly.
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By the definitions of Π1(i) and Π2(i), we have Π1(i) =
∏i

t=1 x1(t) = Π1(τ)
Qτ

t=i+1 x1(t)
and

Π2(i) =
∏i

t=1 x2(t) = Π2(τ)
Qτ

t=i+1 x2(t)
, hence the first integral in (2.40) can be written as

∫ ∞

0

∫ ∞

γ1π1

(ζ1π1 + ζ2π2)P (Π1(τ) = π1,Π2(τ) = π2)P
[

γ2
π1

∏τ
t=2 x1(t)

≤ π2
∏τ

t=2 x2(t)
≤ γ1

π1
∏τ

t=2 x1(t)
,

γ2
π1

∏τ
t=3 x1(t)

≤ π2
∏τ

t=3 x2(t)
≤ γ1

π1
∏τ

t=3 x1(t)
, . . . , γ2

π1

x1(τ)
≤ π2

x2(τ)
≤ γ1

π1

x1(τ)

]

dπ2dπ1.

(2.41)

If we gather the product terms in (2.41) into the same fraction, then we obtain

∫ ∞

0

∫ ∞

γ1π1

(ζ1π1 + ζ2π2) P (Π1(τ) = π1,Π2(τ) = π2)P
[ π2

π1γ1
≤

τ
∏

t=2

x2(t)

x1(t)
≤ π2

π1γ2
,

π2

π1γ1
≤

τ
∏

t=3

x2(t)

x1(t)
≤ π2

π1γ2
, . . . ,

π2

π1γ1
≤ x2(τ)

x1(τ)
≤ π2

π1γ2

]

dπ2dπ1 (2.42)

=

∫ ∞

0

∫ ∞

γ1π1

(ζ1π1 + ζ2π2) P (Π1(τ) = π1,Π2(τ) = π2)P
(

Στ
2 ∈ [κ − θ1,κ − θ2],Σ

τ
3 ∈ [κ − θ1,κ − θ2],

. . . ,Στ
τ ∈ [κ − θ1,κ − θ2]

)

dπ2dπ1, (2.43)

which follows from the definition of Σk
i where κ

"
= ln π2

π1
. Following similar steps that yields

(2.43), we can calculate (2.40) as

P
(

E fc
τ

)

R(τ) =

∫ ∞

0

∫ ∞

γ1π1

(ζ1π1 + ζ2π2) P (Π1(τ) = π1,Π2(τ) = π2)P
(

Στ
2 ∈ [κ − θ1,κ − θ2],

Στ
3 ∈ [κ − θ1,κ − θ2], . . . ,Σ

τ
τ ∈ [κ − θ1,κ − θ2]

)

dπ2dπ1

+

∫ ∞

0

∫ γ2π1

0
(ζ3π1 + ζ4π2) P (Π1(τ) = π1,Π2(τ) = π2)P

(

Στ
2 ∈ [κ − θ1,κ − θ2],

Στ
3 ∈ [κ − θ1,κ − θ2], . . . ,Σ

τ
τ ∈ [κ − θ1,κ − θ2]

)

dπ2dπ1, (2.44)

where the probability P (Π1(τ) = π1,Π2(τ) = π2) can be obtained via (2.36). Hence to

calculate P (Enc
τ )T (τ) and P

(

E fc
τ

)

R(τ), we need to calculate the probability P
(

Στ
2 ∈ [κ −

θ1,κ − θ2],Στ
3 ∈ [κ − θ1,κ − θ2], . . . ,Στ

τ ∈ [κ − θ1,κ − θ2]
)

in (2.35) and (2.44).
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Following from the definition of Σk
i s, we have

p(Σk
i ,Σ

k
i+1,Σ

k
j ) = p(Σk

i+1,Σ
k
j )p(Σk

i |Σk
i+1,Σ

k
j )

= p(Σk
j )p(Σk

i+1|Σk
j )p(Σk

i+1 + z(i)|Σk
i+1,Σ

k
j )

= p(Σk
j )p(Σk

i+1|Σk
j )p(Σk

i |Σk
i+1) (2.45)

∀i ∈ {0, 1, . . . , k − 2}, where (2.45) follows since z(i) is independent of Σk
j for j > i. Then,

Σk
i ’s form a Markov chain such that Σk

j ↔ Σk
i+1 ↔ Σk

i ∀i ∈ {0, 1, . . . , k − 2} and j > i.

Hence, we can write the probability

P
(

Στ
2 ∈ [κ − θ1,κ − θ2],Σ

τ
3 ∈ [κ − θ1,κ − θ2], . . . ,Σ

τ
τ ∈ [κ − θ1,κ − θ2]

)

=

∫ κ−θ2

κ−θ1

∫ κ−θ2

κ−θ1

. . .

∫ κ−θ2

κ−θ1

P (Στ
τ = s1,Σ

τ
τ−1 = s2, . . . ,Σ

τ
2 = sτ−1) dsτ−1dsτ−2 . . . ds1

=

∫ κ−θ2

κ−θ1

∫ κ−θ2

κ−θ1

. . .

∫ κ−θ2

κ−θ1

P (Στ
2 = sτ−1|Στ

3 = sτ−2)P (Στ
3 = sτ−2|Στ

4 = sτ−3) . . .

P (Στ
τ−1 = s2|Στ

τ = s1)P (Στ
τ = s1) dsτ−1dsτ−3 . . . ds2ds1, (2.46)

where (2.46) follows by the chain rule and Σi’s form a Markov chain. We can express the

conditional probabilities in (2.46), which are of the form P (Στ
i = sτ−i|Στ

i+1 = sτ−i−1), as

P (Στ
i = sτ−i+1|Στ

i+1 = sτ−i) = P (Στ
i+1 + z(i) = sτ−i+1|Στ

i+1 = sτ−i)

= P (sτ−i + z(i) = sτ−i+1|Στ
i+1 = sτ−i)

= P (z(i) = sτ−i+1 − sτ−i|Στ
i+1 = sτ−i)

= P (z(i) = sτ−i+1 − sτ−i) (2.47)

where (2.47) follows from the independence of z(i) and z(k)’s for i < k ≤ τ or the indepen-

dence of z(i) and Στ
i+1 =

∑τ
k=i+1 z(k). If we replace (2.47) with the conditional probabilities
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in (2.46) and use P (Στ
τ = s1) = P (z(τ) = s1), then we obtain

P
(

Στ
2 ∈ [κ − θ1,κ − θ2],Σ

τ
3 ∈ [κ − θ1,κ − θ2], . . . ,Σ

τ
τ ∈ [κ − θ1,κ − θ2]

)

=

∫ κ−θ2

κ−θ1

∫ κ−θ2

κ−θ1

. . .

∫ κ−θ2

κ−θ1

fz(sτ−1 − sτ−2)fz(sτ−2 − sτ−3) . . . fz(s2 − s1)fz(s1) dsτ−1dsτ−2 . . . ds2ds1

=

∫ κ−θ2

κ−θ1

∫ κ−θ2

κ−θ1

. . .

∫ κ−θ2

κ−θ1

(
1

2πσ2
)

τ−1
2 e

−1
2σ2

Pτ−1
i=2 (si−si−1−µ)2+(s1−µ)2 dsτ−1dsτ−2 . . . ds2ds1,

(2.48)

where (2.48) follows since z(i)’s are Gaussian, z ∼ N (µ,σ2), i.e., fz(.) is the normal distri-

bution. Hence in order to iteratively calculate the expected wealth growth of a TRP, we

need to calculate the multivariate Gaussian integral given in (2.48), which is investigated

in the next section.

2.2.3 Multivariate Gaussian Integrals

In order to complete calculation of the iterative equation in (2.12), we next evaluate the

definite multivariate Gaussian integral given in (2.48) on the multidimensional [κ−θ1,κ−θ2]n

space. We emphasize that the corresponding multivariate integral cannot be calculated

using common diagonalizing methods [42]. Although, in (2.48), the coefficient matrix of the

multivariate integral is symmetric positive-definite, common diagonalizing methods cannot

be directly applied since the integral bounds after a straightforward change of variables

dependent on yi. However, (2.48) can be represented as certain error functions of Gaussian

distributions.

We note that the multivariate Gaussian integral given in (2.48) is the “non-central

multivariate normal integral” or non-central MVN integral [18] and general MVN integrals

are in the form [18]

Φk(a,b,Σ) =
1

√

|Σ|(2π)k

∫ b1

a1

∫ b2

a2

. . .

∫ bk

ak

e
−1
2 xT Σ−1x dxk . . . dx2dx1, (2.49)

where Σ is a symmetric, positive definite covariance matrix. In our case, (2.48) is a non-

central MVN integral which can be written of the form (2.49) where k = τ − 1 and the

inverse of the covariance matrix is given by
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A Pseudo-code of QMC Algorithm for MVN Integrals:

1. get Σ, a, b, N , M and α
2. compute lower triangular Cholesky factor L for Σ, permuting a and b, and rows and columns of Σ for variable prioritization.
3. initialize P = 0, N = 0, V = 0, and q =

√
p with p = (2, 3, 5, . . . , pk) where pj is the j-th prime.

4. for i = 1, 2, . . . , M do
Ii = 0 and generate uniform random ∆ ∈ [0, 1]k shift vector.
for j = 1, 2, . . . , N do

w = |2(jq + ∆) − 1| ,

d1 = Φ
“

a1

l1,1

”

, e1 = Φ
“

b1
l1,1

”

and f1 = e1 − d1.

for m = 2, 3, . . . , k do
ym−1 = Φ−1(dm−1 + wm−1(em−1 − dm−1)),

dm = Φ

„

am−
Pm−1

n=1
lm,nyj

lm,m

«

,

em = Φ

„

bm−
Pm−1

n=1
lm,nyj

lm,m

«

,

fm = (em − dm)fm−1.
endfor
Ii = Ii + (fm − Ii)/j.

endfor
σ = (Ii − t)/i, P = P + σ, V = (i − 2)V/i + σ2 and E = α

√
V

endfor
5. output P ≈ Φk(a,b, Σ) with error estimate E.

Figure 2.3: A randomized QMC algorithm proposed in [18] to compute MVN probabilities
for hyper-rectangular regions.

Σ−1 =























2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

−1 2























which is a symmetric positive definite matrix with |Σ| = 1, the lower bound vector is of the

form

a =

















κ − θ1 − µ

κ − θ1 − 2µ
...

κ − θ1 − (τ − 1)µ
















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and the upper bound vector is given by

b =

















κ − θ2 − µ

κ − θ2 − 2µ
...

κ − θ2 − (τ − 1)µ

















where −kµ terms in the lower and the upper bounds follow from the non-central property

of (2.48). We emphasize that the MVN integral in (2.49) cannot be calculated in a closed

form [18] and most of the results on this integral correspond to either special cases or coarse

approximations [7,18]. Hence, in this part, we use the randomized QMC algorithm, provided

in Fig. 2.3 [18] for completeness, to compute MVN probabilities over hyper rectangular

regions. Here, the algorithm uses a periodized and randomized QMC rule [37] where the

output error estimate E in Fig. 2.3 is the usual Monte Carlo standard error based on N

samples of the randomly shifted QMC rule, and scaled by the confidence factor α. We

observe in our simulations that the algorithm in Fig. 2.3 produce satisfactory results on

the historical data [27]. We emphasize that different algorithms can be used instead of

the Quasi-Monte Carlo (QMC) algorithm to calculate the multivariable integrals in (2.48),

however, the derivations still hold.

2.3 Maximum-Likelihood Estimation of Parameters of the Log-Normal Distri-

bution

In this section, we give the MLEs for the mean and variance of the log-normal distribution

using the sequence of price relative vectors, which are used sequentially in the Simulations

section to evaluate the optimal TRPs. Since the investor observes the sequence of price

relatives sequentially, he or she needs to estimate µ and σ at each investment period to find

the maximizing b and ε. Without loss of generality we provide the MLE for x1(t), where

the MLE for x2(t) directly follows.

For these derivations, we assume that we observed a sequence of price relative vectors of

length N , i.e., (x1(1), x1(2), . . ., x1(N)). Note that the sample data need not to belong to N

consecutive periods such that the sequential representation is chosen for ease of presentation.
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Then, we find the parameters µ1 and σ2
1 that maximize the log-likelihood function

lnL(µ1,σ
2
1 |x1(1), x1(2), . . . , x1(N)) = ln f(x1(1), x1(2), . . . , x1(N) |µ1,σ

2
1) =

N
∑

i=1

ln f(x1(i) |µ1,σ1),

where f(x|µ1,σ2
1) = 1

x
√

2πσ1
2
e
− (ln x−µ1)2

2σ1
2 . The log-likelihood function in (2.50) can also be

written as

lnL(µ1,σ
2
1 |x1(1), x1(2), . . . , x1(N)) =

N
∑

i=1

ln
1

x1(i)
√

2πσ1
2
e
− (ln x1(i)−µ1)2

2σ1
2

=
N

∑

i=1

ln
1

x1(i)
√

2πσ1
2
−

N
∑

i=1

(ln x1(i) − µ1)2

2σ1
2

. (2.50)

We start with maximizing the log-likelihood function lnL with respect to µ1, i.e., find the

estimator µ̂1 that satisfies ∂ lnL
∂µ1

= 0. If we take the partial derivative of the expression in

(2.50) with respect to µ1, then we obtain

∂ lnL
∂µ1

=
N

∑

i=1

ln x1(i) − µ1

σ1
2

.

Hence µ1, which satisfies ∂L
∂µ1

= 0, or the ML estimator µ̂1 of µ1, can be found as

µ̂1 =
1

N

N
∑

i=1

ln x1(i). (2.51)

To find the ML estimator of the variance σ2
1 , we find σ̂2

1 that satisfies ∂ lnL
∂σ2

1
= 0. Since µ1

that satisfies ∂ l̂
∂µ1

= 0 in (2.51) does not depend on σ2
1 , we can use it in (2.50). Let us define

x̄1 =
∑N

i=1
ln x1(i)

N for notational clarity. By replacing x̄1 with µ1 in (2.51) and taking the

partial derivative of the expression with respect to σ2
1, we obtain

∂ lnL
∂σ2

1

= − N

2σ2
1

+
1

2(σ2
1)2

N
∑

i=1

(ln x1(i) − x̄1)
2.
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Hence

σ̂2
1 =

1

N

N
∑

i=1

(ln x1(i) − x̄1)
2. (2.52)

Following similar steps, the ML estimators for x2(t) yield

µ̂2 =
1

N

N
∑

i=1

ln x2(i), (2.53)

and

σ̂2
2 =

1

N

N
∑

i=1

(ln x2(i) − x̄2)
2, (2.54)

where x̄2
"
=

∑N
i=1

lnx2(i)
N . Note that the ML estimators µ̂1, σ̂2

1, µ̂2 and σ̂2
2 are consistent [38],

i.e., they converge to the true values as the size of the data set goes to infinity, i.e., N → ∞

[40].

2.4 Simulations

In this section, we illustrate the performance our algorithm under different scenarios. We

first use TRPs over simulated data of two stocks, where each stock is generated from a

log-normal distribution. We then continue to test the performance over the historical “Ford

- MEI Corporation” stock pair chosen for its volatility [12] from the New York Stock Ex-

change. As the final set of experiments, we use our algorithm over the historical data

set from [10] and illustrate the average performance. In all these trials, we compare the

performance of our algorithm with portfolio selection strategies from [13,22,27].

In the first example, each stock is generated from a log-normal distribution such that

x1(t) ∼ lnN (0.006, 0.05) and x2(t) ∼ lnN (0.003, 0.05), where the mean and variance values

are arbitrarily selected. We observe that the results do not depend on a particular choice of

model parameters as long as they resemble real life markets. We simulate the performance

over 1100 investment periods. Since the mean and variance parameters are not known by

the investor, we use the ML estimators from Section 2.3, which are then used to determine

the target portfolio b and the threshold value ε. We start by calculating the ML estimators
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using the initial 200 samples and find the target portfolio b = [b1 − b] and the threshold

ε that maximize the expected wealth growth by a brute-force search. Then, we use the

corresponding bb and ε during the following 200 samples. In similar lines, we calculate

and use the optimal TRP for a total of 900 days, where b and are estimated over every

window of 200 samples and used in the following window of 200 samples. We choose a

window of size 200 samples to get reliable estimates for the means and variances based

on the size of the overall data. In Fig. 2.4, we show the performances of: this sequential

TRP algorithm “TRP”, the Covers universal portfolio selection algorithm [13] “Cover”,

the Iyengars universal portfolio algorithm [22] “Iyengar” and a semiconstant rebalanced

portfolio (SCRP) algorithm [27] “SCRP”, where the parameters are chosen as suggested

in [15]. As seen in Fig. 2.4, the TRP with the parameters sequentially calculated using

the ML estimators is the best rebalancing strategy among the others as expected from

our derivations. In Fig. 2.4b and Fig. 2.4a, we present results for a mild transaction cost

c = 0.01 and a hefty transaction cost c = 0.025, respectively, where c is the fraction paid

in commission for each transaction, i.e., c = 0.01 is a 1% commission. We observe that the

performance of the TRP algorithm is better than the other algorithms for these transaction

costs. However, the relative gain is larger for the large transaction cost since the TRP

approach, with the optimal parameters chosen as in this part, can hedge more effectively

against the transaction costs.

As the next example, we apply our algorithm to historical data from [13] from the New

York Stock Exchange collected over a 22-year period. We first apply algorithms on the

“Ford - MEI Corporation” pair as shown in Fig. 2.5, which are chosen because of their

volatility [12]. In Fig. 2.5, we plot the wealth growth of: the sequential TRP algorithm with

the optimal parameters sequentially calculated, the Covers universal portfolio, the Iyengars

universal portfolio and the SCRP algorithm with the suggested parameters in [27]. We use

the ML estimators to choose the optimal TRP as in the first set of experiments, however,

since the historical data contains 5651 days we use a window of size 1000 days. Hence,

the performance results are shown over 4651 days. As seen from Fig. 2.5, the proposed

TRP algorithm significantly outperforms other algorithms for this data set. Similar to the

simulated data case, we investigate the performance of the TRP algorithm under different

transaction costs, i.e., a moderate transaction cost c = 0.01 in Fig. 2.5b and a hefty transac-
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tion cost c = 0.025 in Fig. 2.5a. Comparing the results from the Fig. 2.5a and Fig. 2.5b, we

conclude that the TRP with the optimal sequential parameter selection can better handle

the transaction costs when the stocks are volatile for this experiment.

Finally, to remove any bias on a particular stock pair, we show the average performance of

the TRP algorithm over randomly selected stock pairs from the historical data set from [13].

The total set includes 34 different stocks, where the Iroquois stock is removed due to its

peculiar behavior. We first randomly select pairs of stocks and invest using: the sequential

TRP algorithm with the sequential ML estimators, the Covers universal portfolio algorithm,

the Iyengars universal portfolio algorithm and the SCRP algorithm. The sequential selection

of the optimal TRP parameters are performed similar to the previous case, i.e., we use ML

estimators on an investment block of 1000 days and use the calculated optimal TRP in the

next block of 1000 days. For each stock pair, we simulate the performance of the algorithms

over 4651 days. In Fig. 2.6, we present the wealth achieved by these algorithms, where

the results are averaged over 10 independent trials. We present the achieved wealth over

random sets of stock pairs under a moderate transaction cost c = 0.01 in Fig. 2.6b and a

hefty transaction cost c = 0.025 in Fig. 2.6a. As seen from the figures, the TRP algorithm

with the ML estimators readily outperforms the other strategies under different transaction

costs on this historical data set.

2.5 Conclusions

In this chapter, we studied an important financial application, the portfolio selection prob-

lem, from a signal processing perspective. We investigated the portfolio selection problem

in i.i.d. discrete time markets having a finite number of assets, when the market levies

proportional transaction fees for both buying and selling stocks. We introduced algorithms

based on threshold rebalanced portfolios that achieve the maximal growth rate when the se-

quence of price relatives have the log-normal distribution from the well-known Black-Scholes

model [29]. Under this setup, we provide an iterative relation that efficiently and recursively

calculates the expected wealth in any i.i.d. market over any investment period. The terms

in this recursion are evaluated by a certain multivariate Gaussian integral. We then use a

randomized algorithm to calculate the given integral and obtain the expected growth. This

expected growth is then optimized by a brute force method to yield the optimal target port-



Chapter 2: Optimal Investment Under Transaction Costs: A Threshold Rebalanced Portfolio
Approach 34

folio and the threshold to maximize the expected wealth over any investment period. We

also provide a maximum-likelihood estimator to estimate the parameters of the log-normal

distribution from the sequence of price relative vectors. As predicted from our derivations,

we significantly improve the achieved wealth over portfolio selection algorithms from the

literature on the historical data set from [13].
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Figure 2.4: Performance of various portfolio investment algorithms on a Log-normally simulated
two-stock market. (a) Wealth growth under hefty transaction cost (c=0.025). (b) Wealth growth
under moderate transaction cost (c=0.01).
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Figure 2.5: Performance of various portfolio investment algorithms on Ford - MEI Corporation
pair. (a) Wealth growth under hefty transaction cost (c=0.025). (b) Wealth growth under moderate
transaction cost (c=0.01).
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Figure 2.6: Average performance of various portfolio investment algorithms on random stock pairs.
(a) Wealth growth under hefty transaction cost (c=0.025). (b) Wealth growth under moderate
transaction cost (c=0.01).
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Chapter 3

GROWTH OPTIMAL PORTFOLIOS IN DISCRETE-TIME MARKETS

UNDER TRANSACTION COSTS

In this chapter, we study investment problem in markets that allow trading at discrete

periods, where the discrete period is arbitrary, e.g., it can be seconds, minutes or days [29].

Furthermore the market levies transaction fees for both selling and buying an asset propor-

tional to the volume of trading at each transaction, which accurately models a broad range

of financial markets [8, 29]. In our discussions, we first consider markets with two assets,

i.e., two-asset markets. We emphasize that the two-stock markets are extensively studied

in financial literature and are shown to accurately model a wide range of financial appli-

cations [29], e.g., the practically significant “Stock and Bond Market”, where an investor

holds a portfolio between a set of stocks and U.S. treasury bonds [12]. We then extend our

analysis to markets having more than two assets, i.e., m-stock markets, where m is arbitrary

but determined by the investor. Following the extensive literature [14,27,29,32,33,44], the

market is modelled by a sequence of price relative vectors, say {X(n)}n≥1, X(n) ∈ [0,∞)m,

where each entry of X(n), i.e., Xi(n) ∈ [0,∞), is the ratio of the closing price to the opening

price of the ith stock per investment period. In this sense, each entry of X(n) quantifies the

gain (or the loss) of that asset at each investment period. The sequence of price relative vec-

tors is assumed to have an i.i.d. “discrete” distribution [29,32,33,44], however, the discrete

distributions on the vector of price relatives are arbitrary. In this sense, the corresponding

discrete distributions can approximate a wide class of continuous distributions on the price

relatives that satisfy certain regularity conditions by appropriately increasing the size of the

discrete sample space. We first assume that we know the discrete distributions on the price

relative vectors and then extend our analysis to cover when the underlying distributions are

unknown. We emphasize that the i.i.d. assumption on the sequence of price relative vectors

is shown to hold in most realistic markets [21, 29]. The detailed market model is provided

in Section IV. At each investment period, the diversification of the capital over these assets
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is represented by a portfolio vector b(n), where 1 ≥ bi(n) ≥ 0,
∑m

i=1 bi(n) = 1, and bi(n)

is the ratio of the capital invested in the ith asset at investment period n. Note that if we

invest using b(n), we earn (or loose) bT (n)X(n) at the investment period n after X(n) is

revealed. Given that we start with one dollars, after an investment period of N days, we

have a growth of wealth
∏N

n=1 bT (n)X(n). Under this general market model, we provide

algorithms that maximize the expected growth over any period N by using “threshold re-

balanced portfolios” (TRP)s, which are extensively used in Stock and Bond Markets [29]

and are shown to yield optimal growth in general i.i.d. discrete-time markets [21].

Under mild assumptions on the sequence of price relatives and without any transaction

costs, Cover et. al [14] showed that the portfolio that achieves the maximal growth is a

constant rebalanced portfolio (CRP) in i.i.d. discrete-time markets. A CRP is a portfolio

investment strategy where the fraction of wealth invested in each stock is kept constant

at each investment period. A problem extensively studied in this framework is to find

sequential portfolios that asymptotically achieve the wealth of the best CRP tuned to the

underlying sequence of price relatives. This amounts to finding a daily trading strategy

that has the ability to perform as well as the best asset diversified, constantly rebalanced

portfolio. Several sequential algorithms are introduced that achieve the performance of

the best CRP either with different convergence rates or performance on historical data

sets [1, 14, 20, 24, 47]. Even under transaction costs, sequential algorithms are introduced

that achieve the performance of the best CRP [8]. Nevertheless, we emphasize that keeping

a CRP may require extensive trading due to possible rebalancing at each investment period

deeming CRPs, or even the best CRP, ineffective in realistic markets even under mild

transaction costs [27].

In continuous-time markets, however, it has been shown that under transaction costs,

the optimal portfolios that achieve the maximal wealth are certain class of “no-trade zone”

portfolios [11, 17, 41]. In simple terms, a no-trade zone portfolio has a compact closed

set such that the rebalancing occurs if the current portfolio breaches this set, otherwise no

rebalancing occurs. Clearly, such a no-trade zone portfolio may avoid hefty transaction costs

since it can limit excessive rebalancing by defining appropriate no-trade zones. Analogous

to continuous time markets, it has been shown in [21] that in two-asset i.i.d. markets

under proportional transaction costs, compact no-trade zone portfolios are optimal such
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that they achieve the maximal growth under mild assumptions on the sequence of price

relatives. In two-asset markets, the compact no trade zone is represented by thresholds,

e.g., if at investment period n, the portfolio is given by b(n) = [b(n) (1 − b(n))]T , where

1 ≥ b(n) ≥ 0, then rebalancing occurs if b(n) /∈ (α,β), given the thresholds α, β, where

1 ≥ β ≥ α ≥ 0. Similarly, the interval (α,β) can be represented using a target portfolio b

and a region around it, i.e., (b−ε, b+ε), where min{b, 1−b} ≥ ε ≥ 0 such that α = b−ε and

β = b + ε. Extension of TRPs to markets having more than two stocks is straightforward

and explained in Section 3.2.2.

However, how to construct the no-trade zone portfolio, i.e., selecting the thresholds

that achieve the maximal growth, has not yet been solved except in elementary scenarios

[21]. We emphasize that a sequential universal algorithm that asymptotically achieves

the performance of the best TRP specifically tuned to the underlying sequence of price

relatives is introduced in [22]. This algorithm leverages Bayesian type weighting from [14]

inspired from universal source coding and requires no statistical assumptions on the sequence

of price relatives. In similar lines, various different universal sequential algorithms are

introduced that achieve the performance of the best algorithm in different competition

classes in [2, 5, 16, 25–28, 39]. However, we emphasize that the performance guarantees

in [22] (and in [2, 5, 16, 25–27, 39]) on the performance, although without any stochastic

assumptions, is given for the worst case sequence and only optimal in the asymptotic. For

any finite investment period, the corresponding order terms in the upper bounds may not be

negligible in financial markets, although they may be neglected in source coding applications

(where these algorithms are inspired from). We demonstrate that our algorithm readily

outperforms these universal algorithms over historical data [14], where similar observations

are reported in [10,28].

Our main contributions are as follows. We first consider two-asset markets and recur-

sively evaluate the expected achieved wealth of a threshold portfolio for any b and ε over any

investment period. We then extend this analysis to markets having more than two-stocks.

We next demonstrate that under the threshold rebalancing framework, the achievable set of

portfolios form an irreducible Markov chain under mild technical conditions. We evaluate

the corresponding stationary distribution of this Markov chain, which provides a natural

and efficient method to calculate the cumulative expected wealth. Subsequently, the corre-
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sponding parameters are optimized using a brute force approach yielding the growth optimal

investment portfolio under proportional transaction costs in i.i.d. discrete-time two-asset

markets. We note that for the case with irreducible Markov chain, which covers practi-

cally all scenarios, the optimization of the parameters is offline and carried out only once.

However, for the case with recursive calculations, the algorithm requires an exponential

computational complexity in terms of number of states. However, in our simulations, we

observe that a reduced complexity form of the recursive algorithm that keeps only a constant

number of states by appropriately pruning provides nearly identical results to the “optimal”

algorithm. Furthermore, as a well studied problem, we also solve optimal portfolio selec-

tion in discrete-time markets constructed by sampling continuous-time Brownian markets.

When the underlying discrete distributions of the price relative vectors are unknown, we

provide a maximum likelihood estimator to estimate the corresponding distributions that

is incorporated in the optimization framework in the Simulations section. For all these

approaches, we also provide the corresponding complexity bounds.

3.1 Problem Description

We consider discrete-time stock markets under transaction costs. We first consider a market

with two stocks and then extend the analysis to markets having more than two stock. We

model the market using a sequence of price relative vectors X(n). A vector of price relatives

X(n) = [X1(n), . . . ,Xm(n)]T represents the change in the prices of the assets over invest-

ment period n in a market with m assets, i.e., Xi(n) is the ratio of the closing to the opening

price of the ith stock over period n. For a market having two assets X(n) = [X1(n)X2(n)]T .

We assume that the price relative sequences X1(n) and X2(n) are independent and identi-

cally distributed (i.i.d.) over with possibly different discrete sample spaces X1 and X2, i.e.,

X1(n) ∈ X1 and X2(n) ∈ X2, respectively [21]. For technical reasons, in our derivations, we

assume that the sample space is X "
= X1 ∪X2 = {x1, x2, . . . , xK} for both X1(n) and X2(n)

where |X | = K is the cardinality of the set X . The probability mass function (pmf) of X1(n)

is p1(x)
"
= Pr(X1 = x) and the probability mass function of X2(n) is p2(x)

"
= Pr(X2 = x).

We define pi,1 = p1(xi) and pi,2 = p2(xi) for xi ∈ X and the probability mass vectors

p1 = [p1,1 p2,1 . . . pK,1]
T and p2 = [p1,2 p2,2 . . . pK,2]

T , respectively. Here, we first assume

that the corresponding probability mass vectors p1 and p2 are known. We then extend



Chapter 3: Growth Optimal Portfolios in Discrete-time Markets Under Transaction Costs 42

our analysis where p1 and p2 are unknown and sequentially estimated using a maximum

likelihood estimator in Section 3.3.

An allocation of wealth over two stocks is represented by the portfolio vector b(n) =

[b(n) 1 − b(n)], where b(n) and 1− b(n) represents the proportion of wealth invested in the

first and second stocks, respectively, for each investment period n. In two stock markets,

the portfolio vector b = [b 1 − b] is completely characterized by the proportion b of the

total wealth invested in the first stock. For notational clarity, we use b(n) to represent b1(n)

throughout the chapter.

We denote a threshold rebalancing portfolio with an initial and target portfolio b and a

threshold ε by TRP(b,ε). At each market period n, an investor rebalances the asset allocation

only if the portfolio leaves the interval (b− ε, b + ε). When b(n) -∈ (b− ε, b + ε), the investor

buys and sells stocks so that the asset allocation is rebalanced to the initial allocation, i.e.,

b(n) = b, and he/she has to pay transaction fees. We emphasize that the rebalancing can

be made directly to the closest boundary instead of to b as suggested in [21], however, we

rebalance to b for notational simplicity and our derivations hold for that case also. We

model transaction cost paid when rebalancing the asset allocation by a fixed proportional

cost c ∈ (0, 1) [8, 21,27]. For instance, if the investor buys or sells S dollars of stocks, then

he/she pays cS dollars of transaction fees. Although we assume a symmetric transaction

cost ratio, all the results can be carried over to markets with asymmetric costs [21, 27].

Let S(N) denote the achieved wealth at investment period N and assume, without loss of

generality, that the initial wealth of the investor is 1 dollars. For example, if the portfolio

b(n) does not leave the interval (b − ε, b + ε) and the allocation of wealth is not rebalanced

for N investment periods, then the current proportion of wealth invested in the first stock

is given by

b(N) =
b
∏N

n=1 X1(n)

b
∏N

n=1 X1(n) + (1 − b)
∏N

n=1 X2(n)

and achieved wealth is given by

S(N) = b
N
∏

n=1

X1(n) + (1 − b)
N
∏

n=1

X2(n).

If the portfolio leaves the interval (b−ε, b+ε) at period N , i.e., b(N) -∈ (b−ε, b+ε), then the
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investor rebalances the asset distribution to the initial distribution and pays approximately

S(N)|b(N) − b|c dollars for transaction costs [8].

In the next section, we first evaluate the expected achieved wealth E[S(N)] so that we

can optimize b and ε. We also analyze the number of calculations required to evaluate

E[S(N)], i.e., the complexity of the algorithm. We extend our results on expected achieved

wealth to markets having more than two assets, i.e., m-asset markets. We then present

conditions under which the set of all achievable portfolios has finite elements and derive

the expected achieved wealth under these conditions. Finally, we consider the well-known

Brownian market with two stocks and find the expected wealth growth [17,21] which is then

optimized.

3.2 Threshold Rebalanced Portfolios

In this section, we investigate threshold rebalancing portfolios in discrete-time two-asset

markets under proportional transaction costs. We first calculate the expected achieved

wealth at a given investment period by an iterative algorithm. Then, we present an upper

bound on the complexity of the algorithm. We also extend the expected achieved wealth

calculations to markets having more than two assets, i.e., m-asset markets for an arbitrary

m. We next give the necessary and sufficient conditions such that the achievable portfolios

are finite at any investment period. This result is important when we calculate the expected

achieved wealth since the complexity of the algorithm does not grow when the set of achiev-

able portfolios is finite at any period. We also show that the portfolio sequence converges to

a stationary distribution and derive the expected achieved wealth. Based on the calculation

of the expected achieved wealth, we optimize b and ε using a brute-force search. Finally,

with these derivations, we consider the well-known discrete-time two-asset Brownian mar-

ket with proportional transaction costs and investigate the asymptotic expected achieved

wealth to optimize b and ε.

3.2.1 An Iterative Algorithm

In this section, we calculate the expected wealth growth of a TRP with an iterative algorithm

and find an upper bound on the complexity of the algorithm. To accomplish this, we

first define the set of achievable portfolios at each investment period since the iterative
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Figure 3.1: Block diagram representation of N period investment.

calculation of the expected achieved wealth is based on the achievable portfolio set. We

next introduce the portfolio transition sets and the transition probabilities of achievable

portfolios at successive investment periods in order to find the probability of each portfolio

state iteratively. We evaluate the expected achieved wealth E[S(N)] at a given investment

period N based on the set of achievable portfolios, the transition probabilities and the set

of price relative vectors connecting the portfolio states. We then optimize b and ε using a

brute-force search.

We define the set of achievable portfolios at each investment period as follows. Since the

sample space of the price relative sequences X1(n) and X2(n) is finite, i.e., |X | = K, the

set of achievable portfolios at period N can only have finitely many elements. We define

the set of achievable portfolios at period N as BN = {b1,N , . . . , bMN ,N}, where MN
"
= |BN |

is the size of the set BN for N ≥ 1. As an example, we have

B1 =

{

b1,1, . . . , bM1,1 | bl,1 =
bu

bu + (1 − b)v
∈ (b − ε, b + ε) or bl,1 = b, u, v ∈ X

}

.

As illustrated in Fig. 3.1, for each achievable portfolio bl,N ∈ BN , there is a certain set of

portfolios in BN−1 that are connected to bl,n, by definition of bl,n. At a given investment
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period N , the set of achievable portfolios BN is given by

BN =

{

b1,N , . . . , bMN ,N | bl,N =
bk,N−1u

bk,N−1u + (1 − bk,N−1)v
∈ (b − ε, b + ε) or bl,N = b, u, v ∈ X

}

.

We let, without loss of generality, b1,N = b for each N ∈ N. Note that in Fig. 3.1, the size

of the set of achievable portfolios at each period may grow in the next period depending

on the set of price relative vectors. We next define the transition probabilities as qk,l,N =

Pr (b(N) = bl,N |b(N − 1) = bk,N−1) for k = 1, . . . ,MN−1 and l = 1, . . . ,MN and the set of

achievable portfolios that are connected to bl,N , i.e., the portfolio transition set, as Nl,N =

{bk,N−1 ∈ BN−1 | qk,l,N > 0, k = 1, . . . ,MN−1} for l = 1, . . . ,MN . Hence, the probability

of each portfolio state is given by

Pr (b(N) = bl,N ) =
∑

bk,N−1∈BN−1

Pr (b(N) = bl,N |b(N − 1) = bk,N−1) Pr (b(N − 1) = bk,N−1)

=
∑

bk,N−1∈Nl,N

qk,l,NPr (b(N − 1) = bk,N−1) (3.1)

for l = 1, . . . ,MN . Therefore, we can calculate the probability of achievable portfolios iter-

atively. Using these iterative equations, we next iteratively calculate the expected achieved

wealth E[S(N)] at each period as follows.

By definition of BN and using the law of total expectation [6], the expected achieved

wealth at investment period N can be written as

E[S(N)] =
MN
∑

l=1

Pr (b(N) = bl,N )E [S(N)|b(N) = bl,N ] . (3.2)

To get E[S(N)] in (3.2) iteratively, we evaluate Pr (b(N) = bl,N )E [S(N)|b(N) = bl,N ] for

each l = 1, . . . ,MN from Pr (b(N − 1) = bk,N−1)E[S(N − 1)|b(N − 1) = bk,N−1] for k =

1, . . . ,MN−1. To achieve this, we first find the transition probabilities (not the state prob-

abilities) between the achievable portfolios.

We define the set of price relative vectors that connect bk,N−1 to bl,N as Uk,l,N where

Uk,l,N =

{

w = [w1 w2]
T ∈ X 2 | bl,N =

w1bk,N−1

w1bk,N−1 + w2(1 − bk,N−1)

}
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for k = 1, . . . ,MN−1 and l = 2, . . . ,MN . We consider the price relative vectors that connect

bk,N−1 to b1,N = b separately since, in this case, there are two cases depending on whether

the portfolio leaves the interval (b − ε, b + ε) or not. We define Uk,1,N as

Uk,1,N = Vk,1,N ∪Rk,1,N ,

where Vk,1,N is the set of price relative vectors that connect bk,N−1 to b1,N = b such that

the portfolio does not leave the interval (b − ε, b + ε) at period N , i.e.,

Vk,1,N =

{

w = [w1 w2]
T ∈ X 2 |

w1bk,N−1

w1bk,N−1 + w2(1 − bk,N−1)
= b

}

,

and Rk,1,N is the set of price relative vectors that connect bk,N−1 to b1,N such that the

portfolio leaves the interval (b − ε, b + ε) at period N and is rebalanced to b1,N = b, i.e.,

Rk,1,N =

{

w = [w1 w2]
T ∈ X 2 |

w1bk,N−1

w1bk,N−1 + w2(1 − bk,N−1)
-∈ (b − ε, b + ε)

}

.

Then, the transition probabilities are given by

qk,l,N = Pr (b(N) = bl,N |b(N − 1) = bk,N−1) = Pr (X(N) ∈ Uk,l,N)

=
∑

w=[w1 w2]
T ∈Uk,l,N

p1(w1)p2(w2) (3.3)

for k = 1, . . . ,MN−1 and l = 1, . . . ,MN so that we can calculate Pr (b(N)) = bl,N ) iteratively

for each l = 1, . . . ,MN by (3.1). Since we have recursive equations for the state probabilities,

we next perform the iterative calculation of the expected achieved wealth based on the

achievable portfolio sets and the transition probabilities.

Given the recursive formulation for the state probabilities, we can evaluate the term

Pr (b(N) = bl,N) E[S(N)|b(N) = bl,N ] for l = 1, . . . ,MN from Pr (b(N − 1) = bk,N−1) E[S(N−

1)|b(N − 1) = bk,N−1] for k = 1, . . . ,MN−1 iteratively to calculate E[S(N)] by (3.2) as fol-

lows. To evaluate Pr (b(N) = bl,N ) E[S(N)|b(N) = bl,N ], we need to consider two cases

separately based on the value of bl,N .

In the first case, we see that if the portfolio b(N) = bl,N , where l = 2, . . . , N , then the

portfolio does not leave the interval (b − ε, b + ε) at period N . Hence, no transaction cost
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is paid so that we can express Pr (b(N) = bl,N) E[S(N)|b(N) = bl,N ] as a summation of the

conditional expectations for all bk,N−1 ∈ Nl,N by the law of total expectation [6] as

Pr (b(N) = bl,N) E[S(N)|b(N) = bl,N ]

=
∑

bk,N−1∈Nl,N

E [S(N)|b(N) = bl,N , b(N − 1) = bk,N−1] Pr (b(N − 1) = bk,N−1|b(N) = bl,N) Pr (b(N) = bl,N)

=
∑

bk,N−1∈Nl,N

E [S(N)|b(N) = bl,N , b(N − 1) = bk,N−1] Pr (b(N − 1) = bk,N−1) qk,l,N ,

(3.4)

where (3.4) follows from Bayes’ theorem [40]. We note that given b(N − 1) = bk,N−1

and b(N) = bl,N , the price relative vector X(N) can take values from Uk,l,N and qk,l,N =

Pr (X(N) ∈ Uk,l,N) so that (3.4) can be written as a summation of the conditional expecta-

tions for all X(N) = w ∈ Uk,l,N [6] after replacing qk,l,N

Pr (b(N) = bl,N )E[S(N)|b(N) = bl,N ]

=
∑

bk,N−1∈Nl,N

∑

w=[w1 w2]
T ∈Uk,l,N

E [SN |b(N) = bl,N , b(N − 1) = bk,N−1,X(N) = w]

× Pr (b(N − 1) = bk,N−1) Pr (X(N) = w|X(N) ∈ Uk,l,N) Pr (X(N) ∈ Uk,l,N) . (3.5)

Now, given that b(N − 1) = bk,N−1, b(N) = bl,N and X(N) = w = [w1 w2]
T , we observe

that Pr (X(N) = w|X(N) ∈ Uk,l,N) Pr (X(N) ∈ Uk,l,N) = Pr (X(N) = w) and

E [SN |b(N) = bl,N , b(N − 1) = bk,N−1,X(N) = w]

= E [S(N − 1)(bk,N−1w1 + (1 − bk,N−1)w2)|b(N − 1) = bk,N−1] , (3.6)

and by using (3.6) in (3.5), we have

Pr (b(N) = bl,N ) E[S(N)|b(N) = bl,N ]

=
∑

bk,N−1∈Nl,N

∑

w=[w1 w2]
T ∈Uk,l,N

E [S(N − 1)(bk,N−1w1 + (1 − bk,N−1)w2)|b(N − 1) = bk,N−1]

× Pr (b(N − 1) = bk,N−1) Pr (X(N) = w) .
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Therefore, we can write Pr (b(N) = bl,N) E[S(N)|b(N) = bl,N ] from Pr (b(N − 1) = bk,N−1) E[S(N−

1)|b(N − 1) = bk,N−1] as

Pr (b(N) = bl,N ) E[S(N)|b(N) = bl,N ]

=
∑

bk,N−1∈Nl,N

Pr (b(N − 1) = bk,N−1) E [S(N − 1)|b(N − 1) = bk,N−1]

×
∑

w=[w1 w2]
T∈Uk,l,N

(bk,N−1w1 + (1 − bk,N−1)w2)p1(w1)p2(w2) (3.7)

for l = 2, . . . ,MN , where we use Pr (X(N) = w) = p1(w1)p2(w2).

In the second case, if the portfolio b(N) = b1,N , then there are two sets of price relative

vectors that connect bk,N−1 to b1,N , i.e., Vk,1,N and Rk,1,N . Depending on the value of the

price vector, the portfolio may be rebalanced to b1,N = b. If X(N) ∈ Vk,1,N , then the port-

folio is not rebalanced and no transaction fee is paid. If X(N) ∈ Rk,1,N , then the portfolio is

rebalanced and transaction cost is paid. We can find Pr (b(N) = b1,N )E[S(N)|b(N) = b1,N ]

from Pr (b(N − 1) = bk,N−1) E[S(N − 1)|b(N − 1) = bk,N−1] as a summation of the condi-

tional expectations for all bk,N−1 ∈ N1,N [6] as

Pr (b(N) = b1,N )E[S(N)|b(N) = b1,N ]

=
∑

bk,N−1∈N1,N

E [S(N)|b(N) = b1,N , b(N − 1) = bk,N−1] Pr (b(N − 1) = bk,N−1|b(N) = b1,N )

× Pr (b(N) = b1,N )

=
∑

bk,N−1∈N1,N

E [S(N)|b(N) = b1,N , b(N − 1) = bk,N−1] Pr (b(N − 1) = bk,N−1) qk,l,N .

(3.8)

We note that given b(N − 1) = bk,N−1 and b(N) = b1,N , the price relative vector X(N) can

take values from Vk,1,N or Rk,1,N , qk,l,N = Pr (X(N) ∈ Uk,l,N) and Pr (X(N) = w|X(N) ∈ Uk,l,N)
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×Pr (X(N) ∈ Uk,l,N) = Pr (X(N) = w) which yields in (3.8) that

Pr (b(N) = b1,N ) E[S(N)|b(N) = b1,N ]

=
∑

bk,N−1∈Nl,N











∑

w=[w1 w2]
T ∈Vk,1,N

E [SN |b(N) = bl,N , b(N − 1) = bk,N−1,X(N) = w]

×Pr (b(N − 1) = bk,N−1) Pr (X(N) = w)

+
∑

w=[w1 w2]T ∈Rk,1,N

E [SN |b(N) = bl,N , b(N − 1) = bk,N−1,X(N) = w]

× Pr (b(N − 1) = bk,N−1) Pr (X(N) = w)











.

If X(N) = w ∈ Vk,1,N , then it follows that

E [SN |b(N) = b1,N , b(N − 1) = bk,N−1,X(N) = w]

= E [S(N − 1)(bk,N−1w1 + (1 − bk,N−1)w2)|b(N − 1) = bk,N−1] . (3.9)

If X(N) = w ∈ Rk,1,N , then transaction cost is paid which results

E [SN |b(N) = b1,N , b(N − 1) = bk,N−1,X(N) = w]

= E

[

S(N − 1)(bk,N−1w1 + (1 − bk,N−1))

(

1 − c

∣

∣

∣

∣

bk,N−1w1

bk,N−1w1 + (1 − bk,N−1)w2
− b

∣

∣

∣

∣

)

∣

∣b(N − 1) = bk,N−1

]

.

(3.10)
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Hence, we can write (3.8) after using (3.9) and (3.10) as

Pr (b(N) = b1,N )E[S(N)|b(N) = b1,N ]

=
∑

bk,N−1∈N1,N

Pr (b(N − 1) = bk,N−1)

×











∑

w=[w1 w2]
T∈Vk,1,N

Pr (X(N) = w)E [S(N − 1)(bk,N−1w1 + (1 − bk,N−1)w2)|b(N − 1) = bk,N−1]

+
∑

w=[w1 w2]
T∈Rk,1,N

Pr (X(N) = w) (3.11)

×E

[

S(N − 1)(bk,N−1w1 + (1 − bk,N−1))

(

1 − c

∣

∣

∣

∣

bk,N−1w1

bk,N−1w1 + (1 − bk,N−1)w2
− b

∣

∣

∣

∣

)

∣

∣b(N − 1) = bk,N−1

]











.

Thus, we can write Pr (b(N) = b1,N )E[S(N)|b(N) = b1,N ] from Pr (b(N − 1) = bk,N−1) E[S(N−

1)|b(N − 1) = bk,N−1] as

Pr (b(N) = b1,N )E[S(N)|b(N) = b1,N ]

=
∑

bk,N−1∈N1,N

Pr (b(N − 1) = bk,N−1)E [S(N − 1)|b(N − 1) = bk,N−1]

×











∑

w=[w1 w2]
T∈Vk,1,N

(bk,N−1w1 + (1 − bk,N−1)w2)p1(w1)p2(w2) (3.12)

+
∑

w=[w1 w2]
T ∈Rk,1,N

(bk,N−1w1 + (1 − bk,N−1))

(

1 − c

∣

∣

∣

∣

bk,N−1w1

bk,N−1w1 + (1 − bk,N−1)w2
− b

∣

∣

∣

∣

)

p1(w1)p2(w2)











,

which yields the recursive expressions for Pr (b(N) = bl,N) E[S(N)|b(N) = bl,N ] iteratively

for each l = 1, . . . ,MN with (3.7) and (3.12).

Hence, in the first case where the portfolio b(N) = bl,N for l = 2, . . . MN , we can calculate

E [S(N)|b(N) = bl,N ] Pr (b(N) = bl,N ) from E [S(N − 1)|b(N − 1) = bk,N−1] Pr (b(N − 1) = bk,N−1)

for bk,N−1 ∈ Nl,N by (3.7). In the second case where the portfolio b(N) = b1,N = b,

we can calculate E [SN |b(N) = b1,N ] Pr (b(N) = b1,N ) from E [S(N − 1)|b(N − 1) = bk,N−1]

×Pr (b(N − 1) = bk,N−1) for bk,N−1 ∈ N1,N by (3.12). Therefore, we can evaluate E[S(N)]

iteratively by (3.2). Since, we have the recursive formulation, we can optimize b and ε by a
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brute force search as shown in the Simulations section. For this recursive evaluation, we have

to find the set of achievable portfolios at each investment period to compute E[S(N)] by

(3.2). Hence, we next analyze the number of calculations required to evaluate the expected

achieved wealth E[S(N)].

Complexity Analysis of the Iterative Algorithm

We next investigate the number of achievable portfolios at a given market period to deter-

mine the complexity of the iterative algorithm. We show that the set of achievable portfolios

at period N is equivalent to the set of achievable portfolios when the portfolio b(n) does

not leave the interval (b − ε, b + ε) for N investment periods. We first demonstrate that if

the portfolio never leaves the interval (b − ε, b + ε) for N periods, then b(N) is given by

b(N) =
1

1 + 1−b
b e

PN
n=1 Z(n)

,

where Z(n)
"
= ln X2(n)

X1(n) with a sample space Z =
{

z = ln u
v | u, v ∈ X

}

where |Z| = M .

Then, we argue that the number of achievable portfolios at period N , MN , is equal to the

number of different values that the sum
∑N

n=1 Z(n) can take when the portfolio does not

leave the interval (b−ε, b+ε) for N investment periods. We point out that M ≤ K2−K +1

since the price relative sequences X1(n) and X2(n) are elements of the same sample space

X with |X | = K and by using this, we find an upper bound on the number of achievable

portfolios.

Lemma 3.2.1 The number of achievable portfolios at period N , MN , is equal to the number

of different values that the sum
∑N

n=1 Z(n) can take when the portfolio b(n) does not leave

the interval (b − ε, b + ε) for N investment periods and is bounded by
(N+K2−K

N

)

, i.e.,

MN = |BN | ≤
(N+K2−K

N

)

.

Proof: The proof is in the Appendix A.

Remark 3.2.1 Note that the complexity of calculating E[S(N)] is bounded by O
(

∑N
n=1

(n+K2−K
n

)

/N
)

since at each period n = 1, . . . , N , we calculate E[S(n)] as a summation of Mn terms, i.e.,

E[S(n)] =
∑Mn

l=1 E[S(n)|b(n) = bl,n]Pr (b(n) = bl,n) and Mn ≤
(n+K2−K

n

)

.
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In the next section, we extend the given iterative algorithm to calculate the expected

achieved wealth in a market with m-assets, where m is an arbitrary number determined

by the investor. This result implies that the given optimal threshold rebalanced portfolio

method can be employed not only in a two asset market like “Stock and Bond market”, but

a general stock market where an investor diversify capital into several assets.

3.2.2 Generalization of the Iterative Algorithm to the m-asset Market Case

In this section, we generalize the iterative method introduced in Section 3.2.1 to a mar-

ket with m assets where m ∈ +. We model the market as a sequence of i.i.d. price

relative vectors X(n) = [X1(n) X2(n) . . . Xm(n)], where Xi(n) ∈ X and the p.m.f. of

Xi(n) is pi(x)
"
= Pr(Xi(n) = x). For m-asset case, the portfolio vector is given by

b(n) = [b1(n) b2(n) . . . bm(n)], target portfolio vector is defined as b = [b1 b2 . . . bm] and the

threshold vector is given by ε = [ε1 ε2 . . . εm]. Along these lines, TRP(b, ε) rebalances the

wealth allocation b(n) to b only when b(n) /∈ bε "
= [b1 − ε1, b1 + ε1]× [b2− ε2, b2 + ε2]× . . .×

[bm − εm, bm + εm]. In this case, if the wealth allocation is not rebalanced for N investment

periods, then the proportion of wealth invested in the ith asset becomes

bi(N) =
bi

∏N
n=1 Xi(N)

∑m
k=1 bk

∏N
n=1 Xk(N)

and achieved wealth is given by

S(N) =
m

∑

k=1

bk

N
∏

n=1

Xk(N).

We define the set of achievable portfolios at period N as

BN =

{

b1,N ,b2,N , . . . ,bMN ,N | bk,N =
bl,N−1 ◦ x

xTbl,N−1
∈ bεorbk,N = b, x ∈ Xm

}

where MN = |BN |. In accordance with the definitions given in 2-asset market case, the

definitions of the portfolio transition sets and the transition probabilities of achievable

portfolios follows. Then similar to the iterative algorithm introduced in Section 3.2.1 and

the equations (3.7) and (3.12), we can evaluate the term Pr (b(N) = bl,N )E[S(N)|b(N) =

bl,N ] for l = 1, . . . ,MN from Pr (b(N − 1) = bk,N−1)E[S(N − 1)|b(N − 1) = bk,N−1] for
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k = 1, . . . ,MN−1 iteratively to calculate E[S(N)]. Therefore for m-asset market case, by

using

E[S(N)] =
MN
∑

l=1

Pr (b(N) = bl,N )E [S(N)|b(N) = bl,N ] ,

the expected achieved wealth E[S(N)] can be evaluated iteratively.

In the next section, we show that the set of all achievable portfolios, B "
= ∪∞

n=1Bn, is finite

under mild technical conditions. This result is important when we analyze the asymptotic

behavior of the expected achieved wealth since the the complexity of the algorithm that

evaluates E[S(n)] is constant when the set of achievable portfolios is finite. We demonstrate

that the portfolio sequence forms a Markov chain with a finite state space and converges to

a stationary distribution. Finally, we analyze the limiting behavior of the expected achieved

wealth and then optimize b and ε with a brute-force algorithm.

3.2.3 Finitely Many Achievable Portfolios

In this section, we investigate the cardinality of the set of achievable portfolios B and demon-

strate that B is finite under certain conditions in the following theorem, Theorem 3.2.1. This

result is significant since when B is finite, we can derive a recursive update with a constant

complexity, i.e., the number of states does not grow, to calculate the expected achieved

wealth at any investment period. Then, we can investigate the limiting behavior of the

expected achieved wealth using this update to optimize b and ε. Before providing the main

theorem, we first state a couple of lemmas that are used in the derivation of the main result

of this section.

We first point out that in Lemma 3.2.1, we showed that the number of achievable

portfolios at period N is equal to the number of different values that the sum
∑N

n=1 Z(n)

can take when the portfolio b(n) does not leave the interval (b − ε, b + ε) for N investment

periods. Then, we observed that the cardinality of the set B is equal to the number of

different values that the sum
∑N

n=1 Z(n) can take for any N ∈ N when the portfolio b(n)

never leaves the interval (b − ε, b + ε). We next show that the portfolio b(n) does not leave

the interval (b − ε, b + ε) for N periods if and only if the sum
∑k

n=1 Z(n) ∈ (α2,α1) for

k = 1, . . . , N , where α1
"
= ln b(1−b+ε)

(1−b)(b−ε) > 0 and α2
"
= ln b(1−b−ε)

(1−b)(b+ε) < 0. Moreover, we



Chapter 3: Growth Optimal Portfolios in Discrete-time Markets Under Transaction Costs 54

also prove that the number of achievable portfolios is equal to the cardinality of the set

M ∩ (α2,α1) where we define the set M as

M = {m1z1 + m2z2 + . . . + mM+zM+ | mi ∈ Z, zi ∈ Z+ for i = 1, . . . ,M+}, (3.13)

Z+ "
= {z ∈ Z | z ≥ 0}, M+ "

= |Z+|. Note that Z+ is the set of positive elements of the set

Z and any value that the sum
∑N

n=1 Z(n) can take is an element of M. Hence, if we can

demonstrate that the set M ∩ (α2,α1) is finite under certain conditions, then it yields the

cardinality of the set B since B is finite if and only if M ∩ (α2,α1) is finite.

In the following lemma, we prove that the portfolio b(n) does not leave the interval

(b − ε, b + ε) for N periods if and only if the sum
∑k

n=1 Z(n) ∈ (α2,α1) for k = 1, . . . , N .

Lemma 3.2.2 The portfolio b(n) does not leave the interval (b− ε, b + ε) for N investment

periods if and only if the sum
∑k

n=1 Z(n) ∈ (α2,α1) for k = 1, . . . , N .

Proof: The proof is in the Appendix B.

In the following lemma, we demonstrate that if the condition |z| < min{|α1|, |α2|} is

satisfied for each z ∈ Z+, then for any element m ∈ M∩ (α2,α1), there exists an N -period

market scenario where the portfolio does not leave the interval (b−ε, b+ε) for N investment

periods and {Z(n) = Z(n)}N
n=1 such that m =

∑N
n=1 Z(n) for some {Z(n)}N

n=1 ∈ Z and

N ∈ N. It follows that the set of different values that the sum
∑N

n=1 Z(n) can take for any

N ∈ N when the portfolio never leaves the interval (b − ε, b + ε) for N investment periods

is equivalent to the set M ∩ (α2,α1). Hence, we show that the cardinality of the set of

achievable portfolios is equal to the cardinality of the set M ∩ (α2,α1). After this lemma,

we present conditions under which the set M∩ (α2,α1) is finite so that the set of achievable

portfolios is also finite.

Lemma 3.2.3 If |z| < min{|α1|, |α2|} for z ∈ Z+, then any element of M ∩ (α2,α1)

can be written as a sum
∑N

n=1 Z(n) for some N ∈ N where {Z(n) = Z(n)}N
n=1 ∈ Z and

∑k
n=1 Z(n) ∈ (α2,α1) for k = 1, . . . , N .

Proof: In Lemma 3.2.1, we showed that for any investment period N , the number of

different portfolio values that b(N) can take is equal to the number of different values that
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the sum
∑N

n=1 Z(n) can take where
∑k

n=1 Z(n) ∈ (α2,α1) for k = 1, . . . , N . Since this is

true for any investment period N , it follows that the number of all achievable portfolios is

equal to the number of different values that the sum
∑N

n=1 Z(n) can take for any N ∈ N

such that
∑N

n=1 Z(n) ∈ (α2,α1).

Here, we show that if m ∈ M ∩ (α2,α1), then there exists a sequence {Z(n)}N
n=1 ∈ Z

for some N ∈ N such that m =
∑N

n=1 Z(n) and
∑k

n=1 Z(n) ∈ (α2,α1) for k = 1, . . . , N .

Let m ∈ M ∩ (α2,α1). Then, it can be written as m = m1z1 + . . . + mM+zM+ for some

mi ∈ Z and zi ∈ Z+, i = 1, . . . ,M+. We define S(k) =
∑k

n=1 Z(n) for k ≥ 1 and construct

a sequence {Z(n)}N
n=1 ∈ Z for some N ∈ N such that m =

∑N
n=1 Z(n) and S(k) ∈ (α2,α1)

for each k = 1, . . . , N as follows. We choose zi ∈ Z+ such that mi > 0, let Z(1) = zi and

decrease mi by 1. We see that S(1) = Z(1) ∈ (α2,α1) since zi < min{|α1|, |α2|}. Next, we

choose zj ∈ Z+ such that mj < 0, let Z(2) = −zj and increase mj by 1. Then, it follows

that S(2) = Z(1) + Z(2) = zi − zj ∈ (α2,α1) since zi, zj < min{|α1|, |α2|}. At any time

k ≥ 3, if

• S(k) ≥ 0, we choose zl ∈ Z+ such that ml < 0, let Z(k+1) = −zl and increase ml by

1. Note that S(k +1) ∈ (α2,α1) since S(k) ∈ (α2,α1), S(k) ≥ 0 and Z(k+1) < 0. Now

assume that there exists no zl ∈ Z+ such that ml < 0, i.e., mj ≥ 0 for j = 1, . . . ,M .

If we let I
"
= {j ∈ {1, . . . ,M} | mj ≥ 0} = {k1, . . . , kT } where T

"
= |I| and

Z(l) = zkj
, l = k + 1 +

j−1
∑

i=1

ki, . . . , k +
j

∑

i=1

ki

for j = 1, . . . , T , then we get that m = S(N) =
∑N

n=1 Z(n) where N = k+
∑T

i=1 ki. We

observe that Si ∈ (α2,α1) for i = k + 1, . . . , N since m ∈ (α2,α1),
∑T

j=1 mkj
xkj

≥ 0

and S(k) > 0.

• S(k) < 0, we choose zl ∈ Z+ such that ml > 0, let Z(k+1) = zl and decrease ml by 1.

Note that S(k+1) ∈ (α2,α1) since S(k) ∈ (α2,α1), S(k) < 0 and Z(k+1) ≥ 0. Assume

that there exists no zl ∈ Z+ such that ml ≥ 0, i.e., mj < 0 for j = 1, . . . ,M . If we let

J
"
= {j ∈ {1, . . . ,M} | mj ≤ 0} = {k1, . . . , kW } where W

"
= |J | and

Z(l) = zkj
, l = k + 1 +

j−1
∑

i=1

ki, . . . , k +
j

∑

i=1

ki
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for j = 1, . . . ,W , then we get that m = S(N) =
∑N

n=1 Z(n) where N = k +
∑W

i=1 ki.

We see that Si ∈ (α2,α1) for i = k + 1, . . . , N since m ∈ (α2,α1),
∑W

j=1 mkj
xkj

≤ 0

and S(k) < 0.

Therefore, we can write m =
∑N

n=1 Z(n) for some N ≥ 1 where {Z(n)}N
n=1 ∈ Z and

∑k
n=1 Z(n) ∈ (α2,α1) for k = 1, . . . , N .

Hence, we showed that if the condition |z| < min{|α1|, |α2|} is satisfied for each z ∈ Z+,

then any element of the set M∩(α2,α1) can be written as a sum
∑N

n=1 Z(n) for some N ∈ N

when the portfolio does not leave the interval (b − ε, b + ε) for N investment periods. It

follows that the set of different values that the sum
∑N

n=1 Z(n) can take for any N ∈ N when

the portfolio does not leave the interval (b−ε, b+ε) for N investment periods is equivalent to

the set M∩(α2,α1). Thus, the number of achievable portfolios is equal to the cardinality of

the set M∩ (α2,α1). In the following theorem, we demonstrate that if |z| < min{|α1|, |α2|}

for z ∈ Z+ and the set M has a minimum positive element, then M ∩ (α2,α1) is finite.

Hence, the set of achievable portfolios is also finite under these conditions. Otherwise, we

show that the set M∩(α2,α1) contains infinitely many elements so that the set of achievable

portfolios is also infinite. Thus, we show that the set of achievable portfolios is finite if and

only if the minimum positive element of the set M exists.

Theorem 3.2.1 If |z| < min{|α1|, |α2|} for z ∈ Z+ and the set M has a minimum positive

element, i.e., if

δ = min{m ∈ M | m > 0}

exists, then the set of achievable portfolio B = ∪∞
n=1Bn is finite. If such a minimum positive

element does not exist, then B is countably infinite.

In Theorem 3.2.1 we present a necessary and sufficient condition for the achievable port-

folios to be finite. We emphasize that the required condition, i.e., |z| < min{|α1|, |α2|} for

z ∈ Z+, is a necessary required technical condition which assures that the TRP thresholds

are large enough to prohibit constant rebalancings at each investment period. In this sense,

this condition does not limit the generality of the TRP framework.

By Theorem 3.2.1, we establish the conditions for a unique stationary distribution of the

achievable portfolios. With the existence of a unique stationary distribution, in the next



Chapter 3: Growth Optimal Portfolios in Discrete-time Markets Under Transaction Costs 57

section, we provide the asymptotic behavior of the expected wealth growth by presenting

the growth rate.

Proof: For any investment period N , we showed in Lemma 3.2.1 that the number of

different portfolio values that b(N) can take is equal to the number of different values that

the sum
∑N

n=1 Z(n) can take where the sum
∑k

n=1 Z(n) ∈ (α2,α1) for k = 1, . . . , N . In the

Lemma 3.2.3, we showed that the set of different values that the sum
∑N

n=1 Z(n) can take

where the sum
∑k

n=1 Z(n) ∈ (α2,α1) for k = 1, . . . , N is equivalent to the set M∩ (α2,α1).

We let H be the set of values that the sum
∑N

n=1 Z(n) ∈ (α2,α1) can take for any N ∈ N,

i.e., H = {
∑N

n=1 Z(n) | {Z(n)}N
n=1 ∈ Z,

∑k
n=1 Z(n) ∈ (α2,α1)fork = 1, . . . , N, N ∈ N}.

Now, assume that the minimum positive element δ exists. We next illustrate that the sum
∑N

n=1 Z(n) for any sequence {Z(n)}N
n=1 ∈ Z can be written as kδ for some k ∈ Z, i.e.,

∑N
n=1 Z(n) = kδ.

Assume that there exists a sequence {Z(n)}N
n=1 ∈ Z such that the sum Z =

∑N
n=1 Z(n) -=

kδ for any k ∈ Z. If we divide the real line into intervals of length δ, then Z should lie

in one of the intervals, i.e., there exists k0 ∈ Z such that k0δ < Z < (k0 + 1)δ so that we

can write Z = k0δ + η where 0 < η < δ. By definition of M, an integer multiple of any

element of M is also an element of M so that k0δ ∈ M since δ ∈ M. Moreover, for any

two elements of M, their difference is also an element of M so that η = Z − k0δ ∈ M since

Z ∈ M and k0δ ∈ M. However, this contradicts to the fact that δ is the minimum positive

element of M since 0 < η < δ and η ∈ M. Hence, it follows that any element of H can be

written as kδ for some k ∈ Z. Note that there are finitely many elements in H since any

element h ∈ H can be written as h = kδ for some k ∈ Z and α2 < h < α1. Since |B| = |H|,

it follows that the set of achievable portfolios B is finite.

To show that if δ does not exist then B contains infinitely many elements, we assume

that δ does not exist. Since every finite set of real numbers has a minimum, there are

either countably infinitely many positive elements in the set M or none. We know that

there exists zi -= 0 so that there are positive numbers in M. Therefore, there are infinitely

many elements in M. Now assume that there exists γ1 > 0 that can be written as a sum
∑N

n=1 Z(n) for some N ∈ N where {Z(n)}N
n=1 ∈ Z and

∑k
n=1 Z(n) ∈ (α2,α1). Then, by

Lemma 3.2.3, it follows that γ1 ∈ M ∩ (0,α1) and since there exists no positive minimum

element of M, there exists γ2 > 0 such that γ2 < γ1 so that γ2 ∈ M ∩ (0,α1). In this way,
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we can construct a decreasing sequence {γn} such that γn ∈ M ∩ (0,α1) for each n ∈ N.

Note that for any n ∈ N, γn is also element of H by Lemma 3.2.3 so that there are countably

infinite elements in H. Hence, it follows that B has countably infinitely many elements.

We showed that if |z| < min{|α1|, |α2|} for z ∈ Z+ and the minimum positive element of

the set M exists, then the set of achievable portfolios, B, is finite. If the minimum positive

element of the set M does not exist, then the set M∩ (α2,α1) is countably infinite so that

the number of achievable portfolios is also countably infinite. Hence, the set of achievable

portfolios is finite if and only if the minimum positive element of the set M exists. However,

Theorem 3.2.1 does not specify the exact number of achievable portfolios. In the following

corollary, we demonstrate that the number of achievable portfolios is 0α1−α2
δ 1 if the set of

achievable portfolios is finite.

Corollary 3.2.1 If |z| < min{|α1|, |α2|} for z ∈ Z+ and δ = min{m|m > 0m ∈ M} exists,

then the number of achievable portfolios is0α1−α2
δ 11.

Proof: Assume that δ exists and there exists θ > 0 such that θ can be written as a sum
∑N

n=1 Z(n) for some N ∈ N and {Z(n) = Z(n)}N
n=1 ∈ Z such that

∑k
n=1 Z(n) ∈ (α2,α1) for

k = 1, . . . , N . Note that such a θ exists, e.g., θ = z > 0 where z ∈ Z+ since z ∈ (α2,α1).

Then, by Lemma 3.2.3, it follows that θ ∈ M ∩ (0,α1). Since δ is the minimum positive

element of M, it follows that 0 < δ ≤ θ and δ ∈ M ∩ (0,α1). Hence, by Lemma 3.2.3, we

get that δ can be written as a sum
∑N

′

n=1 Z(n) for some N
′ ∈ N and {Z(n)}N

′

n=1 ∈ Z where
∑k

n=1 Z(n) ∈ (α2,α1) for k = 1, . . . , N ′. We note that δ is an element of the set of different

values that the sum
∑N

n=1 Z(n) can take for any N ∈ N and Z(n) ∈ Z for n = 1, . . . , N such

that the portfolio does not leave the interval (b− ε, b+ ε). We showed in Theorem 3.2.1 that

any element of M can be written as kδ for some k ∈ Z so that the number of elements in

M∩ (α2,α1) is 0α1−α2
δ 1. Hence, it follows that there are exactly 0α1−α2

δ 1 achievable portfo-

lios since Lemma 3.2.3 implies that the set M∩ (α2,α1) is equivalent to the set of different

values that the sum
∑N

n=1 Z(n) can take for any N ∈ N and Z(n) ∈ Z for n = 1, . . . , N

such that the sum
∑k

n=1 Z(n) ∈ (α2,α1) for each k = 1, . . . , N and the cardinality of the

latter set is equal to the number of achievable portfolios.

1Here, !x/y" is the largest integer less than or equal to x/y
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In Theorem 3.2.1, we introduce conditions on the cardinality of the set of all achievable

portfolio states, B, and showed that if |z| < min{|α1|, |α2|} for all z ∈ Z+ and the minimum

positive element of the set M exists, then B is finite. This result is significant when we

analyze the asymptotic behavior of the expected achieved wealth, i.e., in the following,

we demonstrate that when B is finite, the portfolio sequence converges to a stationary

distribution. Hence, we can determine the limiting behavior of the expected achieved wealth

so that we can optimize b and ε. To accomplish this, specifically, we first present a recursive

update to evaluate E[S(n)]. We then maximize g(b, ε)
"
= lim

n→∞
1
n log E[S(n)] over b and ε

with a brute-force search, i.e., we calculate g(b, ε) for different (b, ε) pairs and find the one

that yields the maximum.

3.2.4 Finite State Markov Chain for Threshold Portfolios

If we assume that |z| < min{|α1|, |α2|} for all z ∈ Z+ and δ = min{m ∈ M | m > 0}

exists, then the set of all achievable portfolios B is finite. By Corollary 3.2.1, it follows

that there are exactly L = 0α1−α2
δ 1 achievable portfolios. We let B = {b1, . . . , bL} and,

without loss of generality, b1 = b. We define the probability mass vector of the portfolio

sequence as π(n) = [π1(n) . . . πL(n)]T where πi(n)
"
= Pr (b(n) = bi). The portfolio sequence

b(n) forms a homogeneous Markov chain with a finite state space B since the transition

probabilities between states are independent of period n. We see that b(n) is irreducible

since each state communicates with other states so that all states are null-persistent since

B is finite [19]. Then, it follows that there exists a unique stationary distribution vector

π, i.e., π = lim
n→∞

π(n). To calculate π, we first observe that the set of portfolios that are

connected to bl, Nl,n, and the set of price relative vectors that connect bk to bl, Uk,l,n, are

independent of investment period since the price relative sequences are i.i.d. for k = 1, . . . , L

and l = 1, . . . , L. Hence, we write Uk,l,n = Uk,l and Nl,n = Nl for n ∈ N. We next

note that the state transition probabilities are also independent of investment period and

write qk,l,n = Pr (b(n) = bl|b(n − 1) = bk) = qk,l for n ∈ N, k = 1, . . . , L and l = 1, . . . , L.
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Therefore, we can write Pr (b(n) = bl) as

Pr (b(n) = bl) =
∑

bk∈Nl

qk,lPr (b(n − 1) = bk) =
L

∑

k=1

qk,lPr (b(n − 1) = bk) , (3.14)

where qk,l = 0 if bk -∈ Nl. Now, by using the definition of π(n) and (3.14), we get π(n+1) =

Pπ(n) for each n, where P is the state transition matrix, i.e., Pij = qi,j.

We next determine the limiting behavior of the expected achieved wealth E[S(n)] to

optimize b and ε as follows. In Section 3.2.1, we showed that E[S(n)] can be calculated

iteratively by (3.2), (3.7) and (3.12). If we define the vector e(n) = [e1(n) . . . eL(n)]T

where ei(n)
"
= Pr (b(n) = bi) E[S(n)|b(n) = bi], then we can calculate E[S(n)] as the sum of

the entries of e(n) by (3.2), i.e.,

E[S(n)] =
L

∑

i=1

Pr (b(n) = bi) E[S(n)|b(n) = bi] =
L

∑

i=1

ei(n) = 1T e(n), (3.15)

where 1 is the vector of ones. Hence, by definition of e(n), we can write

e(n + 1) = Qe(n), (3.16)

where the matrix Q is given by

Q = (3.17)
















∑

w=[w1 w2]T ∈U1,1

(b1w1 + (1 − b1)w2) p1(w1)p2(w2) · · ·
∑

w=[w1 w2]T ∈UL,1

(bLw1 + (1 − bL)w2) p1(w1)p2(w2)

...
. . .

...
∑

w=[w1 w2]
T ∈U1,L

(b1w1 + (1 − b1)w2) p1(w1)p2(w2) · · ·
∑

w=[w1 w2]T ∈UL,L

(bLw1 + (1 − bL)w2) p1(w1)p2(w2)

















where we ignore rebalancing for presentation purposes. From (3.7) and (3.12), Q does not

depend on period n since there are finitely many portfolio states, i.e., Q is constant. If we

take rebalancing into account, then only the first row of the matrix Q changes and the other
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rows remain the same where

Q1,j =
∑

w=[w1 w2]
T∈Vj,1

(b1w1 + (1 − b1)w2) p1(w1)p2(w2)

+
∑

w=[w1 w2]
T ∈Rj,1

(b1w1 + (1 − b1)w2)

(

1 − c

∣

∣

∣

∣

b1w1

b1w1 + (1 − b1)w2
− b

∣

∣

∣

∣

)

p1(w1)p2(w2),

Vj,1 is the set of price relative vectors that connect bj to b1 = b without crossing the threshold

boundaries and Rj,1 is the set of price relative vectors that connect bj to b1 = b by crossing

the threshold boundaries for i = j, . . . , L. Note that we can find the matrix Q by using

the set of achievable portfolios B and the probability mass vectors p1 and p2 of the price

relative sequences.

Here, we analyze E[S(n)] as n → ∞ as follows. We assume that the matrix Q is

diagonalizable with the eigenvalues λ1, . . . ,λL and, without loss of generality, λ1 ≥ . . . ≥ λL,

which is the case for a wide range of transaction costs [40]. Then, there exists a nonsingular

matrix B such that Q = BΛB−1 where Λ is the diagonal matrix with entries λ1, . . . ,λL.

We observe that the matrix Q has nonnegative entries. Therefore, it follows from Perron-

Frobenius Theorem [34] that the matrix Q has a unique largest eigenvalue λ1 > 0 and any

other eigenvalue is strictly smaller than λ1 in absolute value, i.e., λ1 > |λj | for j = 2, . . . , L.

Then, the recursion (3.16) yields

e(n) = Qne(0) = BΛnB−1e(0) = B

















λn
1

λn
2

. . .

λn
L

















B−1e(0).
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Hence, the expected achieved wealth E[S(n)] is given by

E[S(n)] = 1T e(n) = 1TB

















λn
1

λn
2

. . .

λn
L

















B−1e(0) = uT

















λn
1

λn
2

. . .

λn
L

















v

=
L

∑

i=1

uiviλ
n
i ,

where u
"
= [u1 . . . uL]T = BT1 and v

"
= [v1 . . . vL] = B−1e(0). Then, it follows that

g(b, ε) = lim
n→∞

1

n
log E[S(n)] = lim

n→∞

1

n
log

{

L
∑

i=1

uiviλ
n
i

}

= lim
n→∞

1

n
log

{

λn
1

[

L
∑

i=1

uivi

(

λi

λ1

)n
]}

= lim
n→∞

log λ1 + lim
n→∞

1

n
log

{

L
∑

i=1

uivi

(

λi

λ1

)n
}

= log λ1

since lim
n→∞

(

λi
λ1

)n
= 0 for i = 2, . . . , L. Hence, we can optimize b and ε as

[b∗, ε∗] = arg max
b∈[0,1],0<ε

g(b, ε) = arg max
b∈[0,1],0<ε

log λ1.

To maximize g(b, ε), we evaluate it for different values of (b, ε) pairs and find the pair that

maximizes g(b, ε), i.e., by a brute-force search in the Simulations section.

In this section, we first demonstrated that the set of achievable portfolios is finite under

certain conditions. We then showed that the portfolio forms a Markov chain with a finite

state space and find the corresponding transition matrix and the stationary state proba-

bilities. When B is finite, we derived a recursive update with a constant complexity, i.e.,

the number of states does not grow, to calculate the expected achieved wealth. Finally, we

investigated the asymptotic behavior of the expected achieved wealth using this update to

optimize b and ε with a brute-force search.

In the next section, we investigate the well-studied two-asset Brownian market model

with transaction costs. We first show that the set of achievable portfolios is finite and

calculate the state transition probabilities. Then, we calculate the asymptotic behavior of
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the expected achieved wealth to optimize b and ε.

3.2.5 Two Stock Brownian Markets

In this section, we consider the well-known two-asset Brownian market, where stock price

signals are generated from a standard Brownian motion [17, 21, 41]. Portfolio selection

problem in continuous time two-asset Brownian markets with proportional transaction costs

was investigated in [41], where the growth optimal investment strategy is shown to be a

threshold portfolio. Here, as usually done in the financial literature [17], we first convert

the continuous time Brownian market by sampling to a discrete-time market [21]. Then,

we calculate the expected achieved wealth and optimize b and ε to find the best portfolio

rebalancing strategy for a discrete-time Brownian market with transaction costs. Note that

although, the growth optimal investment in discrete-time two-asset Brownian markets with

proportional transaction costs was investigated in [21], the expected achieved wealth and

the optimal threshold interval (b − ε, b + ε) has not been calculated yet.

To model the Brownian two-asset market, we use the price relative vector X = [X1 X2]
T

with X1 = 1 and X2 = ekZ where k is constant and Z is a random variable with Pr (Z = ±1) =

1
2 . This price relative vector is obtained by sampling the stock price processes of the contin-

uous time two-asset Brownian market [21, 41]. We emphasize that this sampling results a

discrete-time market identical to the binomial model popular in asset pricing [21]. We first

present the set of achievable portfolios and the transition probabilities between portfolio

states. We then investigate the asymptotic behavior of the expected achieved wealth to

optimize b and ε.

Since the price of the first stock is the same over investment periods, the portfolio leaves

the interval (b− ε, b+ ε) if either the money in the second stock grows over a certain limit or

falls below a certain limit. If the portfolio b(n) does not leave the interval (b− ε, b+ ε) for N

investment periods, then the money in the first stock is b dollars and the money in the second

stock is (1 − b)eki for some −N ≤ i ≤ N so that the portfolio is b(N) = b
b+(1−b)eki . Note

that b
b+(1−b)eki ∈ (b − ε, b + ε) if and only if imin ≤ i ≤ imax, where imin

"
=

⌈

1
k ln b(1−b−ε)

(1−b)(b+ε)

⌉

2

2Here, #x/y$ is the largest integer greater or equal to the x/y.
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and imax
"
=

⌊

1
k ln b(1−b+ε)

(1−b)(b−ε)

⌋

. Hence, the set of achievable portfolios is given by

S =

{

bi =
b

b + (1 − b)e(i+imin−1)k
| i = 1, . . . , imax − imin + 1

}

= {b1, . . . , bS},

where |S| = S and S
"
= imax − imin + 1 and b1−imin = b. We see that the portfolio is

rebalanced to b1−imin = b only if it is in the state b1 and X2 = e−k or if it is in the state bS

and X2 = ek. Therefore, the transition probabilities are given by

Pr (bi|bj)

=



















1
2 : i = 2, . . . , S − 1 and j = i ± 1 , or i = 1 and j ∈ {2, 1 − imin}, or i = S

and j ∈ {S − 1, 1 − imin}

0 : otherwise,

where P (bi|bj) is the probability that the portfolio b(n) = bi given that b(n−1) = bj for any

period n. We now calculate E[S(n)] using (3.15) and (3.16) as follows. The sets of price

relative vectors that connect portfolio states are given by

Ui,j =



















{
[

1 ek
]T } : i = 1, . . . , S − 1 and j = i + 1, or i = S and j = 1 − imin

{
[

1 e−k
]T } : i = 2, . . . , S − 1 and j = i − 1, or i = 1 and j = 1 − imin

∅ : otherwise.

Hence, we can calculate the matrix Q defined in (3.17) as

Qi,j =



















1
2(bj + (1 − bj)ek) : i = 2, . . . , S and j = i − 1

1
2(bj + (1 − bj)e−k) : i = 1, . . . , S − 1 and j = i + 1

0 : otherwise,

where we ignore rebalancing. If we take rebalancing into account, then

Q1−imin,1 =
1

2
(b1 + (1 − b1)e

−k)

(

1 − c

∣

∣

∣

∣

b1

b1 + (1 − b1)e−k
− b

∣

∣

∣

∣

)
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and

Q1−imin,S =
1

2
(bS + (1 − bS)ek)

(

1 − c

∣

∣

∣

∣

bS

bS + (1 − bS)ek
− b

∣

∣

∣

∣

)

.

Then, by (3.15) and (3.16), E[Sn] is given by Qne(0). Moreover, we maximize

g(b, ε) = lim
n→∞

1

n
log E[Sn] = log λ1,

where λ1 is the largest eigenvalue of the matrix Q. Here, we optimize b and ε with a

brute-force search, i.e., we find λ1 for different (b, ε) pairs and find the one that achieves the

maximum.

In the next section, we sequentially estimate the probability mass vectors p1 and p2 of

the price relative sequences X1(n) and X2(n) using a maximum likelihood estimator.

3.3 Maximum Likelihood Estimators of The Probability Mass Vectors

In this section, we sequentially estimate the probability mass vectors p1 and p2 correspond-

ing to X1(n) and X2(n), respectively, using a maximum likelihood estimator (MLE). In

general, these vectors may not be known or change in time, hence, could be estimated at

each investment period prior to calculation of E[S(n)]. The maximum likelihood estimator

for a pmf on a finite set is well-known [40], but we provide the corresponding derivations here

for completeness. We consider, without loss of generality, the price relative sequence X1(n)

and assume that its realizations are given by X1(n) = wn ∈ X for n = 1, . . . , N and estimate

p1. Similar derivations follow for the price relative sequence X2(n) and p2. Note that as

demonstrated in the Simulations section, the corresponding estimation can be carried out

over a finite length window to emphasize the most recent data. We define the realization

vector w = [w1, . . . , wN ] and the probability mass function as pθ(xi) = p1(xi|θ) = θxi for

i = 1, . . . ,K and the parameter vector θ
"
= [θx1 , . . . , θxK

]. Then, the MLE of the probability

mass vector p1 is given by

θMLE = arg max
θ:

PK
i=1 θxi=1

p1(w|θ) = arg max
θ:

PK
i=1 θxi=1

Pr (X1(1) = w1, . . . ,X1(N) = wN |θ) . (3.18)
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Since the price relative sequence X1(n) is i.i.d., it follows that

p1(w|θ) =
N
∏

i=1

p1(wi|θ) =
N
∏

i=1

θwi =
N
∏

i=1

K
∏

j=1

θ
I(wi=xj)
xj , (3.19)

where (3.19) follows since I(.) is the indicator function, i.e., I(wi = xj) = 1 if wi = xj and

I(wi = xj) = 0 if wi -= xj. If we change the order of the product operators in (3.19), then

we obtain

p1(w|θ) =
N
∏

i=1

K
∏

j=1

θ
I(wi=xj)
xj =

K
∏

j=1

N
∏

i=1

θ
I(wi=xj)
xj =

K
∏

j=1

θ
PN

i=1 I(wi=xj)
xj =

K
∏

j=1

θ
Nj
xj ,

where Nj
"
=

∑N
i=1 I(wi = xj), i.e., the number of realizations that are equal to xj ∈ X for

j = 1, . . . ,K. Note that
∑K

j=1 Nj = N . Hence, we can write (3.18) as

θMLE = arg max
θ:

PK
i=1 θxi=1

p1(w|θ) = arg max
θ:

PK
i=1 θxi=1

K
∏

j=1

θ
Nj
xj = arg max

θ:
PK

i=1 θxi=1

1

N
log





K
∏

j=1

θ
Nj
xj



 (3.20)

= arg max
θ:

PK
i=1 θxi

=1

K
∑

j=1

Nj

N
log θxj ,

where (3.20) follows that log(.) is a monotone increasing function. If we define the vector h =

[hx1 , . . . , hxK
], where hxj

"
= Nj

N for j = 1, . . . ,K, then we see that hxj ≥ 0 for j = 1, . . . ,K

and
∑K

j=1 hxj = 1. Since h and θ are probability vectors, i.e., their entries are nonnegative

and sum to one, it follows that D(h‖θ)
"
=

∑K
i=1 hxj log

(

hxj

θxj

)

≥ 0 and D(h‖θ) = 0 if and

only if θ = h, i.e., their relative entropy is nonnegative [15]. Therefore, we get that

K
∑

j=1

Nj

N
log θxj =

K
∑

j=1

hxj log θxj =
K

∑

j=1

hxj log

(

θxj

hxj

)

+
K

∑

j=1

hxj log hxj

= −D(h‖θ) +
K

∑

j=1

hxj log hxj ≤
K

∑

j=1

hxj log hxj ,

where the equality is reached if and only if θ = h. Hence, it follows that

θMLE = arg max
θ:

PK
i=1 θxi

=1

p1(w|θ) = arg max
θ:

PK
i=1 θxi

=1

K
∑

j=1

Nj

N
log θxj = h



Chapter 3: Growth Optimal Portfolios in Discrete-time Markets Under Transaction Costs 67

so that we estimate the probability mass vector p1 with h =
[

N1
N , . . . , NK

N

]

at each invest-

ment period N where Nj

N is the proportion of realizations up to period N that are equal to

xj for xj ∈ X .

3.4 Simulations

In this section, we demonstrate the performance of TRPs with several different examples.

We first analyze the performance of TRPs in a discrete-time two-asset Brownian market

introduced in Section 3.2.5. As the next example, we apply TRPs to historical data from

[13, 27] collected from the New York Stock Exchange over a 22-year period and compare

the results to those obtained from other investment strategies [13, 22, 26, 27]. Using the

historical data set, we first simulate the performance of TRPs, the semiconstant rebalanced

portfolio (SCRP) [27], the Iyengar’s algorithm [22], the Cover’s algorithm [13] and the

switching portfolio from [26] on a randomly selected stock pair. Finally, we then present

the average performance of TRPs on randomly selected pairs of stocks and show that the

performance of the TRP algorithm is significantly better than the portfolio investment

strategies from [13,22,26,27] in historical data sets as expected from Section III.

As the first scenario, we apply TRPs to a discrete-time two-asset Brownian market.

Under this well studied market in the financial literature [29], the price relative vector is

given by X = [X1 X2]
T , where X1 = 1, X2 = ekZ and Z = ±1 with equal probabilities and

we set k = 0.03 [21]. Here, the sample spaces of the price relative sequences X1 and X2

are X1 = {1} and X2 = {0.97, 1.03}, respectively, and X = X1 ∪ X2 = {x1, x2, x3}, where

x1 = 1, x2 = 0.97, x3 = 1.03. Hence, the probability mass vectors of the price relative

sequences X1 and X2 are given by p1 = [1 0 0]T and p2 = [0 0.5 0.5]T , respectively. Based

on this data, we evaluate the growth rate for different (b, ε) pairs to find the best TRP that

maximizes the growth rate using the approach introduced in Section 3.2.5, i.e., we form

the matrix Q and evaluate the corresponding maximum eigenvalues to find the pair that

achieves the largest maximum eigenvalue since this pair also maximizes the growth rate.

Then, we invest 1 dollars in a randomly generated two-asset Brownian market using: the

TRP, labeled as, “TRP”, i.e., TRP(b,ε) with calculated (b, ε) pair, the SCRP algorithm

with the target portfolio vector b = [0.5 0.5], labeled as “SCRP”, as suggested in [27], the

Iyengar’s algorithm, labeled as “Iyengar”, the Cover’s algorithm, labeled as “Cover”, and the
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switching portfolio, labeled as “Switching”, with parameters suggested in [26]. In Fig. 3.2,

we plot the wealth achieved by each algorithm for transaction costs c = 0.01 and c = 0.03,

where c is the proportion paid when rebalancing, i.e, c = 0.03 is a 3% commission. As

expected from the derivations in Section III, we observe that, in both cases, the performance

of the TRP algorithm is significantly better than the other algorithms under transaction

costs.

We next present results that illustrate the performance of TRPs on historical data sets

[13]. As for the first example, we present results on the stock pair Morris and Commercial

Metals (randomly selected) from the historical data sets [13,27] for a mild transaction cost

c = 0.015 and a hefty transaction cost c = 0.03 to better illustrate the effect of transaction

costs. The data includes the price relative sequences of the stock pair for 5651 investment

periods (days). Since the brute force algorithm introduced in Section 3.2.1 requires the

sample spaces of the price relative sequences, we proceed as follows. We first calculate the

sample spaces and the probability mass vectors of the price relative sequences from the first

1000-day realizations of X1 and X2, where the sample spaces are simply constructed by

quantizing the observed realizations into bins. We observed that the performance of the

TRP is not effected by the number of bins provided that there are an adequate number of

bins to approximate the continuous valued price relatives. Then, we optimize b and ε using

the MLE introduced in Section IV and the brute force algorithm from Section III, and invest

using this TRP for the next 1000 periods, i.e., from period 1001 to period 2000. We then

update (b, ε) pair using the first 2000-day realizations of the price relative vectors and invest

using the best TRP for the next 1000 periods. We repeat this process through all available

data. Hence, we invest on the two stocks using TRP for 4651 periods where we update (b, ε)

pair at each 1000 periods. In Fig. 3.3, we present the performances of the TRP algorithm,

the SCRP algorithm, the Iyengar’s algorithm [22], the Cover’s algorithm and the switching

portfolio algorithm [26]. We observe that although the performance of the algorithms other

than the TRP degrade with increasing transaction cost, the performance of the TRP, using

the MLE, is not significantly effected since it can avoid excessive rebalancings. In both

cases, the TRP readily outperforms the other simulated algorithms for these simulations.

Finally, we illustrate the average performance of the threshold rebalancing strategy on a

number of stock pairs to avoid any bias to particular stock pairs. In this set of simulations,
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we first randomly select pairs of stocks from the historical data that includes 34 stocks (where

the Kin Ark stock is excluded) and invest using: the TRP algorithm, the SCRP algorithm,

the Cover’s algorithm, the Iyengar’s algorithm and the switching portfolio, under a mild

transaction cost c = 0.015 and a hefty transaction cost c = 0.03. In Fig. 3.4, we present the

wealth gain for each algorithm, where the results are averaged over randomly selected 10

independent stock pairs. We observe from these simulations that the average performance of

the TRP is better than the average performance of the other portfolio investment strategies

commonly used in the literature.

3.5 Conclusions

We studied growth optimal investment in i.i.d. discrete-time markets under proportional

transaction costs. Under this market model, we studied threshold portfolios that are shown

to yield the optimal growth. We first introduced a recursive update to calculate the expected

growth for a two-asset market and then extend our results to markets having more than two

assets. We next demonstrated that under the threshold rebalancing framework, the achiev-

able set of portfolios form an irreducible Markov chain under mild technical conditions. We

evaluated the corresponding stationary distribution of this Markov chain, which provides a

natural and efficient method to calculate the cumulative expected wealth. Subsequently, the

corresponding parameters are optimized using a brute force approach yielding the growth

optimal investment portfolio under proportional transaction costs in i.i.d. discrete-time

two-asset markets. We also solved the optimal portfolio selection in discrete-time markets

constructed by sampling continuous-time Brownian markets. For the case that the underly-

ing discrete distributions of the price relative vectors are unknown, we provide a maximum

likelihood estimator. We observed in our simulations, which include simulations using the

historical data sets from [13], that the introduced TRP algorithm significantly improves

the achieved wealth under both mild and hefty transaction costs as predicted from our

derivations.
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Figure 3.2: Performance of portfolio investment strategies in the two-asset Brownian market.
(a) Wealth gain with the cost ratio c = 0.01. (b) Wealth gain with the cost ratio c = 0.03.
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Figure 3.3: Performance of portfolio investment strategies on the Morris-Commercial Metals
stock pair. (a) Wealth gains with the cost ratio c = 0.015. (b) Wealth gains with the cost
ratio c = 0.03.
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Figure 3.4: Average performance of portfolio investment strategies on independent stock
pairs. (a) Wealth gain with the cost ratio c = 0.015. (b) Wealth gain with the cost ratio
c = 0.03.



Chapter 4: Conclusions 73

Chapter 4

CONCLUSIONS

In this thesis, we considered portfolio optimization problem in i.i.d. discrete-time mar-

kets under two different scenarios, where the market is modeled by a sequence of price rela-

tive vectors with log-normal distribution and with arbitrary discrete distributions. Chapter

2 deals with maximizing the expected cumulative wealth in i.i.d. discrete-time markets

where the market levies proportional transaction costs under the assumption that the price

relative sequences have log-normal distribution and Chapter 3 is dedicated to construct port-

folios that achieve the optimal expected growth in i.i.d. discrete-time markets modeled by

a sequence of price relative vectors with arbitrary discrete distributions under proportional

transaction costs.

In Chapter 2, we investigated the portfolio selection problem in i.i.d. discrete time mar-

kets having a finite number of assets, when the market levies proportional transaction fees

for both buying and selling stocks. We introduced algorithms based on threshold rebalanced

portfolios that achieve the maximal growth rate when the sequence of price relatives have

the log-normal distribution from the well-known Black-Scholes model. Under this setup, we

provide an iterative relation that efficiently and recursively calculates the expected wealth in

any i.i.d. market over any investment period. The terms in this recursion are evaluated by

a certain multivariate Gaussian integral. We then use a randomized algorithm to calculate

the given integral and obtain the expected growth. This expected growth is then optimized

by a brute force method to yield the optimal target portfolio and the threshold to maximize

the expected wealth over any investment period. We also provide a maximum-likelihood es-

timator to estimate the parameters of the log-normal distribution from the sequence of price

relative vectors. As predicted from our derivations, we significantly improve the achieved

wealth over portfolio selection algorithms from the literature on the historical data set from.

In Chapter 3, we first introduced a recursive update to calculate the expected growth for

a two-asset market modeled by a sequence of price relative vectors with arbitrary discrete
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distributions and then extend our results to markets having more than two assets. We

next demonstrated that under the threshold rebalancing framework, the achievable set of

portfolios form an irreducible Markov chain under mild technical conditions. We evaluated

the corresponding stationary distribution of this Markov chain, which provides a natural

and efficient method to calculate the cumulative expected wealth. Subsequently, the corre-

sponding parameters are optimized using a brute force approach yielding the growth optimal

investment portfolio under proportional transaction costs in i.i.d. discrete-time two-asset

markets. We also solved the optimal portfolio selection in discrete-time markets constructed

by sampling continuous-time Brownian markets. For the case that the underlying discrete

distributions of the price relative vectors are unknown, we provide a maximum likelihood

estimator. We observed in our simulations, which include simulations using the historical

data sets from [13], that the introduced TRP algorithm significantly improves the achieved

wealth under both mild and hefty transaction costs as predicted from our derivations.
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Chapter 5

APPENDIX A

Proof of Lemma 3.2.1:

We analyze the cardinality of the set BN of achievable portfolios at period N , MN , as

follows. If we assume that an investor invests with a TRP(b,ε) for N investment periods

and the sequence of price relative vectors are given by
{

[X1(n) X2(n)] =
[

X(n)
1 X(n)

2

]}N

n=1

and the portfolio sequence is given by {b(n) = bn}N
n=1, then we see that the portfolio could

leave the interval at any period depending on the realizations of the price relative vector.

We define an N -period market scenario as a sequence of portfolios {b(n)}N
n=1. We can find

the number of achievable portfolios at period N as the number of different values that the

last element of N -period market scenarios can take. Here, we partition the set of N -period

market scenarios according to the last time the portfolio leaves the interval (b − ε, b + ε)

and show that any achievable portfolio at period N can be achieved by an N -period market

scenario where the portfolio does no leave the interval (b− ε, b+ ε) for N periods as follows.

If we define the set P as the set of N -period market scenarios, i.e.,

P =
{

{bn}N
n=1 | bn ∈ Bn , n = 1, . . . , N

}

=
N+1
⋃

i=1

Pi,

where Pi is the set of N -period market scenarios where the portfolio leaves the interval

(b − ε, b + ε) last time at period i, i.e.,

Pi =
{

{bn}N
n=1 | bn ∈ Bn , n = 1, . . . , N, b(n) leavestheinterval (b − ε, b + ε) lasttimeatperiod i

}

for i = 1, . . . , N and PN+1 is the set of N -period market scenarios where the portfolio does

not leave the interval (b − ε, b + ε) for N investment periods, i.e.,

PN+1 =
{

{bn}N
n=1 | bn ∈ Bn , n = 1, . . . , N, b(n) neverleavestheinterval (b − ε, b + ε) forNperiods

}

.
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We point out that Pi’s are disjoint, i.e., Pi ∩ Pj = ∅ for i -= j and their union gives the

set of all N -period market scenarios, i.e.,
⋃N+1

i=1 Pi = P so that they form a partition for

P. We see that the set BN of achievable portfolios at period N is the set of last elements

of N -period market scenarios, i.e., BN = {bN | {bn}N
n=1 ∈ P}. We next show that the last

element of any N -period market scenario from Pi for i = 1, . . . , N is also a last element of

an N -period market scenario from PN+1. Therefore, we demonstrate that any element of

the set BN is achievable by a market scenario from PN+1 and BN = {bN | {bn}N
n=1 ∈ PN+1}.

Assume that {bn}N
n=1 ∈ Pi for some i ∈ {1, . . . , N} so that bi = b, i.e., the portfolio is

rebalanced to b last time at period i. Note that bN can also be achieved by an N -period

market scenario
{

b
′

n

}N

n=1
where the portfolio never leaves the interval (b−ε, b+ε), b

′

j = bi+j

for j = 1, . . . , N − i and X(j)
1 = X(j)

2 for j = N − i + 1, . . . , N so that b
′

N = b
′

N−i = bN .

Hence, it follows that the set of achievable portfolios at period N is the set of achievable

portfolios by N -period market scenarios from PN+1. We next find the number of different

values that b(N) can take where the portfolio does not leave the interval (b− ε, b + ε) for N

investment periods.

When the portfolio never leaves the interval (b− ε, b+ ε) for N investment periods, b(N)

is given by

b(N) =
b
∏N

i=1 X1(n)

b
∏N

i=1 X1(n) + (1 − b)
∏N

i=1 X2(n)
.

If we write the reciprocal of b(N) as

1

b(N)
= 1 +

1 − b

b

N
∏

n=1

X2(n)

X1(n)
= 1 +

1 − b

b
e

PN
n=1 Z(n),

then we observe that the number of different values that the portfolio b(N) can take is the

same as the number of different values that the sum
∑N

n=1 Z(n) can take. Since the price

relative sequences X1(n) and X2(n) are elements of the same sample space X with |X | = K,

it follows that |Z| = M ≤ K2 − K + 1. Since the number of different values that the sum
∑N

n=1 Z(n) can take is equal to
(N+M−1

M−1

)

and M ≤ K2−K+1, it follows that the number of

achievable portfolios at period N is bounded by
(N+K2−K

K2−K

)

, i.e., |BN | = MN ≤
(N+K2−K

K2−K

)

and the proof follows.
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Chapter 6

APPENDIX B

Proof of Lemma 3.2.2:

If the portfolio does not leave the interval (b − ε, b + ε) for N investment periods, then

b(n) ∈ (b − ε, b + ε) for n = 1, . . . , N and it is not adjusted to b at these periods so that

b(n) =
b
∏n

i=1 X1(i)

b
∏n

i=1 X1(i) + (1 − b)
∏n

i=1 X2(i)
∈ (b − ε, b + ε)

for each n = 1, . . . , N . Taking the reciprocal of b(n), we get that

b(1 − b − ε)

(1 − b)(b + ε)
<

n
∏

i=1

X2(i)

X1(i)
<

b(1 − b + ε)

(1 − b)(b − ε)
.

Noting that X2(i)
X1(i) = eZ(i) and taking the logarithm of each side, it follows that

ln
b(1 − b − ε)

(1 − b)(b + ε)
= α2 <

n
∑

i=1

Z(i) < ln
b(1 − b + ε)

(1 − b)(b − ε)
= α1,

i.e.,
∑n

i=1 Z(i) ∈ (α2,α1) for n = 1, . . . , N . Now, if the portfolio leaves the interval (b −

ε, b + ε) first time at period k for some k ∈ {1, . . . , N}, then we get that b(k) ≥ b + ε or

b(k) ≤ b − ε so that we get

k
∑

i=1

Z(i) ≥ α1or
k

∑

i=1

Z(i) ≤ α2,

i.e.,
∑k

i=1 Z(i) -∈ (α2,α1).
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