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ABSTRACT

The admission decision is one of the fundamental categories of demand-management

decisions. In the dynamic model of the single-resource capacity control problem, distribution

of demand at each stage is known, but it is either �xed or time-dependent. However,

in reality demand may depend on the current external environment which represents the

prevailing economic, �nancial, social or other factors that a¤ect customer behavior. In

this thesis, we formulate a Markov decision process (MDP) model in which the state of the

process is described by the remaining inventory level and the current environment. We derive

some structural results for this MDP model, including the existence of an environment-

dependent threshold policy and a comparison of threshold levels in di¤erent environments.

Then we extend our study to a dynamic pricing problem in which there is only one type of

product and the objective is to �nd the optimal pricing policy to maximize the revenue of

the �rm. Another important research topic of revenue management is modeling consumer

behavior. In such models, the change in consumer behavior towards the set of products

o¤ered is also considered. We formulate a discrete choice model of consumer behavior in

�uctuating demand environment with a Markovian structure. We derive some structural

results on the optimal policy for revenue management. Even though there may be an

environment process, we may not observe it directly. We also model such a problem in

which we just observe an external process that gives a probability distribution for the true

state of the current environment. This model can be classi�ed as Hidden Markov Decision

Process and we derive structural results for it. We also present some computational results

for all these three models in order to illustrate our structural properties.
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ÖZETÇE

Kabul kararlar¬talep yönetim kararlar¬n¬n temel kategorilerindendir. Tek kaynakl¬kapa-

site kontrol problemlerinin dinamik versiyonunda, talebin olas¬l¬k da¼g¬l¬m¬n¬n bilindi¼gi ve

başka d¬̧s etkenlerden ba¼g¬ms¬z oldu¼gu varsay¬lmaktad¬r. Fakat gerçekte talep ekonomik,

�nansal, sosyal ya da müşterinin kararlar¬n¬etkileyen di¼ger etkenleri içinde bar¬nd¬ran anl¬k

d¬̧s çevreye ba¼g¬ml¬olarak de¼gi̧sebilir. Bu tezde, karar de¼gi̧skeni kalan envanter seviyesi ve

anl¬k çevre olan bir Markov Karar Süreci modeli oluşturulup bu modelin yap¬sal sonuçlar¬

incelenecektir. Bu yap¬sal sonuçlar aras¬nda anl¬k çevreye ba¼g¬ml¬eşik de¼geri politikas¬n¬n

varl¬¼g¬ve bu eşik de¼gerlerinin farkl¬çevrelerdeki k¬yaslamas¬yer almaktad¬r. Bu çal¬̧sman¬n

sonuçlar¬ tek ürünün �yatland¬r¬ld¬¼g¬ ve amac¬n beklenen hast¬lat¬n¬ ençoklayacak �yat-

land¬rma politikas¬n¬bulmak oldu¼gu dinamik �yatland¬rma problemi için de geni̧sletilmi̧stir.

Has¬lat yönetimindeki bir başka genel araşt¬rma konusu da müşteri davran¬̧slar¬na göre mo-

dellemedir. Bu modellerde i̧sletme taraf¬ndan müşteriye küme olarak sunulan ürünlere karş¬

müşterinin davran¬̧slar¬da dikkate al¬n¬r. Bu tezde, yukar¬da bahsedilen çevre bazl¬mod-

ellere ek olarak, Markov yap¬da de¼gi̧sen çevredeki müşteri davran¬̧s karar modeli oluşturul-

muş ve yap¬sal sonuçlar incelenmi̧stir. Tüm bunlara ek olarak, çevre sürecinin direk gözle-

nemedi¼gi koşullar da dikkate al¬nm¬̧st¬r. Böyle bir durum için de çevrenin o andaki durum

de¼gi̧skeni hakk¬nda olas¬l¬k da¼g¬l¬m¬bilinen bir d¬̧s etkenler sürecinin de içinde oldu¼gu bir

model oluşturulmuştur. Sakl¬Markov Karar Süreci s¬n¬f¬na giren bu model için de yap¬sal

sonuçlar elde edilmi̧stir. Her üç modelde de bulunan yap¬sal sonuçlar¬örneklendirmek ve

zenginleştirmek ad¬na hesaplamal¬sonuçlar kullan¬lm¬̧st¬r.
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NOMENCLATURE

Xt : Random environment at time t

P : Transition matrix of environment process

x : Inventory level

rja : Probability that fare class a arrives in environment j

qjab : Probability that b units of product is requested when a arrives in environment j

c : Reward function

Fj : Distribution of price that customer is willing to pay

P ja (S) : Probability that product a is chosen when S is o¤ered in environment j

�j : Probability of an arrival in environment j

Yt : Observation at time t

E : Emission matrix

�t : belief vector at time t

x
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Chapter 1

INTRODUCTION

Revenue management is a �eld that originates in the Airline Deregulation Act of 1978

(Talluri and van Ryzin [30]). There have been many studies since 1978 on di¤erent topics of

revenue management. One of these topics is single resource capacity control. It is common

in airline companies to sell identical seats at di¤erent fares. The major issue is the decision

process of accepting or rejecting a booking request of a certain class.

Despite the improvements on models in the revenue management literature, most of

the models assume that the arrival process of fare classes is either time independent or

dependent with a known rate. Van Ryzin [33] emphasizes the needs for better demand

modeling for revenue management. In particular, he mentions that standard demand models

in revenue management treat causal variations based on external factors as noise. The

environment-based framework addresses this issue. Van Ryzin [33] points out short term

market conditions as a signi�cant factor. These include competitors� availabilities and

prices. Airline industry is also a very competitive �eld, customers make their decisions

according to the available options for the �ight which they want to use and companies

need to consider the strategies of other competitors. In addition, there is evidence that the

aggregate demand is a¤ected by external market forces such as currency exchange rates and

energy prices. Finally, weather conditions, such as forecasted snow storms or heat waves

are important short term external factors that are known to impact demand in hotel and

airline revenue management. Although these external factors seem to be very di¤erent from

each other, they all in�uence the demand. This motivates the need for modeling the e¤ects

of such factors through an environment-dependent demand model. This kind of models are

investigated in inventory replenishment problems (See Song and Zipkin [28] Özekici and

Parlar [26]) Finally, there is reason to believe that environment-based demand may have a

bigger impact in revenue management problems than in inventory replenishment problems.

In inventory replenishment, the ordering decision helps absorbing some of the variability in
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demand. But in revenue management there is typically no replenishment opportunity and

demand variability has to be addressed only by admission or pricing decisions.

Although these external factors seem to be very di¤erent from each other, such a model

has not been discussed widely in a revenue management context. To our knowledge, the

only study that seems to be related to our work is done by Barz [5]. She considers an

in�nite horizon problem that guarantees the termination of the selling period before the

season ends by using absorbing states. On the other hand, this kind of model prevents us

from understanding the e¤ects of time on the optimal policy. Since we have a �nite selling

season, it is signi�cant to understand how the optimal policy changes in time. Therefore,

we consider a �nite horizon problem and investigate the structural properties related to

time. In addition to this, it is crucial to analyze the e¤ects of the environment on the

optimal policy in a random environment model. To our knowledge, our work is the only

one which makes such an analysis in revenue management context. We make some intuitive

assumptions on the environmental states to distinguish them, and we compare revenues

and optimal policies for di¤erent environmental states. Moreover, we analyze the e¤ects

of varying problem parameters. We �rst investigate the e¤ects of arrival probabilities and

reward on the optimal policy. Then, we vary the transition matrix of the environmental

process. In order to perform such an analysis, we use some assumptions which are made to

compare di¤erent environments.

We further extend our study to the related dynamic pricing problem. In this model, we

assume that there is only one type of product and �rm needs to choose a pricing policy in

order to maximize its revenue. We also investigate this problem in a randomly �uctuating

demand environment. We provide the structure of the optimal pricing policy including the

e¤ects of time and inventory level.

Consumer behavior modeling is another widely studied topic of the revenue management.

One of the consumer behavior models involves choosing from a given set of products o¤ered

to the consumer. This model considers the attitude of the customers towards to the changes

in set of products o¤ered. Moreover, we believe that demand for each product is a¤ected by

an external process. We model this environmental process by a Markov chain and consider

the general discrete choice model of consumer behavior in such a randomly �uctuating

demand environment. We provide the structure of the optimal policy including the e¤ects

of time and inventory level.

We also consider the case where the true state of the environmental process may not
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be directly observed. However, we assume that there is another process which provides

us information about the true state of the environment. We have a belief vector which is

actually the probability distribution for the true state of the environment and we update

this belief vector at each period by using information up to that period. We call this

the "observation process" and refer to the corresponding model as single resource capacity

control problem under a partially observed demand environment. We provide structural

results for the optimal policy.

The organization of this thesis is as follows. The next part contains relevant models in the

literature. In Chapter 3, we �rst model a Markov modulated single resource capacity control

problem and provide structural results, sensitivity analysis and numerical illustrations. We

also model a dynamic pricing problem and its structural properties in a randomly �uctuating

demand environment at the last section of this chapter. In Chapter 4, we introduce a

choice model of consumer behavior in a �uctuating demand environment and its structural

properties with a numerical example that illustrates these properties. We also provide a

hidden Markov model in Chapter 5 with some structural results. Finally, we present some

concluding remarks including some directions for future research in Chapter 6.
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Chapter 2

LITERATURE REVIEW

Since the Airline Deregulation Act of 1978, there have been many studies on di¤erent

topics of revenue management. In this thesis, we only study single resource allocation prob-

lem and dynamic pricing. We investigate some of the well-known models in these topics

by considering a randomly �uctuating demand environment. In Section 1, we �rst provide

the well-known literature related to the single resource allocation problem. Consumer be-

havior and pricing are other issues that �rms need to consider in order to increase their

revenues and we discuss these topics in Section 2. In addition to these topics, we provide

the literature related to Markov modulated demand models in Section 3. There are some

other topics such as network revenue management which are widely discussed in revenue

management and we provide a brief overview on some of these topics in Section 4. Also a

detailed overview for revenue management can be found in Talluri and van Ryzin [30] and

Chiang et al. [11].

2.1 Static and Dynamic Single Resource Allocation Problems

Although many airline companies have connected �ights, it has been always crucial to

analyze the single leg problem. In such a problem, there is only one resource and there

are multiple fares. The decision maker needs decide when to accept a request from a fare

class or to reject that request. When the decision maker accepts a request from a speci�c

fare class, then we may lose the chance of a request from a higher fare class afterwards.

Therefore, it is not always optimal to accept a request. Especially, when one considers the

fact that higher classes, such as business class, prefer to buy their tickets at a time close to

departure time of the plane, then one can easily understand that it is not always optimal

to accept a request from classes other than higher classes.

There are two main models in the study of single resource allocation problem. One of

them is the static model in which di¤erent fare classes arrive at di¤erent, nonoverlapping

time stages ordered in an increasing fare class prices. This type of model is �rst considered
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by Littlewood [24]. This model assumes that there are two fare classes with prices p1 > p2.

Corresponding demands are D1 and D2 with distribution F1 (�) and F2 (�) respectively. In
addition, this model assumes that second fare classes with price p2 arrives �rst. The decision

maker needs to decide a quantity, which is called a protection level, in order to leave that

amount of the capacity for the �rst fare class. Littlewood shows that this protection level

y� should satisfy

y� = F�11

�
1� p2

p1

�
This fundamental result has been generalized for the case where there are more than two

fare classes. However, customers may not arrive in an order where higher fare classes come

at a later time and customers may arrive randomly. Such cases are considered in dynamic

programming model of this problem. This is �rst analyzed by Lee and Hersh [23], and the

structure of the optimal policy is investigated by Lautenbacher and Stidham [21]. It has

been shown that there exists a threshold level for each fare class such that if the current

inventory level is larger than this level, then it is optimal to accept a request from that fare

class, otherwise it is optimal to reject the request.

In addition to such analysis, there are computational approaches to these models. Some

of these computational approaches are EMSR-a (expected marginal seat revenue-version a)

and EMSR-b (expected marginal seat revenue-version b) heuristics. These two heuristics

are studied by Belobaba [7]. He considers the static problem for both approaches. In order

to calculate a threshold level for a given fare class, Belobaba [7] uses the Littlewood rule

and takes that fare class as the second demand and one of the remaining fare classes as

the �rst demand in Littlewood rule. Consequently, there will be a threshold value by using

the Littlewood rule for each remaining fare classes. Then the addition of these threshold

levels will give us the approximate threshold level for the fare class that we initially want

to calculate. In EMSR-b, Belobaba [7] considers the total demand of the remaining fare

classes and calculates a weighted-average revenue for these classes. By using these values,

he �nds a threshold value.

2.2 Choice Model of Consumer Behavior and Dynamic Pricing

Consumer behavior modeling is another study of single resource allocation problems. In

the previous models, the case where customer may change their decisions according to the

current products o¤ered by the �rm is not considered. For example, one may prefer to buy
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an airplane ticket at most 100 dollars, however, if the �rm o¤ers a seat of 50 dollars worth,

then he or she may change his/her idea. In the previous models, customers cannot change

their preferences and they are willing to buy only one type of product. Shen and Su [27]

provide a detailed overview of the consumer behavior modeling in revenue management.

One of the consumer behavior models involves choosing from a given set of products o¤ered

to the consumer. This type of modeling is �rst investigated by [29] who refer to their model

as general discrete choice model of consumer behavior. There are other studies based on

the study of Talluri and van Ryzin. For example, Liu and van Ryzin [25] consider a similar

model in a network setting. Zhang and Adelman [37] also provide a dynamic programming

approximation to this network setting model.

Another issue that the �rm needs to take into account is the price of its product. Exten-

sive overview of pricing models are provided in Elmaghraby and Keskinocak [14], Yano and

Gilbert [35]. Since the capacity is �xed in the airline industry, we only provide the literature

related to the single-product dynamic pricing with no replenishment. For example, Gallego

and van Ryzin [16] consider a continuous-time dynamic pricing model with a continuous

demand. A discrete time version of this study has been studied by Bitran and Mondschein

[9]. In addition to this study, Lazear [22] considers a model in which prices can be updated

only at �xed time intervals. In such studies, structure of optimal pricing policy with respect

to time and inventory level is investigated.

2.3 Markov Modulation and Hidden Markov Models

In some cases, external factors can provide an information about the distribution of the

demand. These external factors are assumed to change according to a Markov chain. Such

studies are called Markov modulated problems when there is a randomly �uctuating de-

mand environment. We observe that �uctuating demand environment is widely accepted

in inventory systems. For example, Song and Zipkin [28] argue that demand depends on

external factors which they call the current state of the world. They also believe that this

current state of the world can be described economic and �nancial conditions. Financial

markets are often classi�ed as "bull" and "bear" according to investment sentiments. Öze-

kici and Parlar [26], and Gallego and Hu [15] provide other examples of Markov modulation

of customer demand in inventory management. A �uctuating demand environment is also

considered in dynamic pricing problems for inventory systems. Gayon et al. [17] investigate

possible pricing strategies in inventory systems under a �uctuating demand environment.
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Also work by Yim and Rajaram [36] is another paper that considers a pricing model with

Markov modulated demand.

There may be some cases in which there is an uncertainty on this classi�cation of states

depending on various �nancial indicators. Thus, the true state of the market may not be

known with certainty. We have an observation process that provides us information about

the true state of environment. Such processes are called hidden Markov processes or par-

tially observed Markov decision processes. For example, Treharne and Sox [31] consider an

inventory system where demand is partially observed and supplier has a in�nite capacity.

Arifo¼glu and Özekici [1] investigate a similar model where supplier has �nite capacity and

they show that optimal ordering policy is state-dependent base-stock policy. In these prob-

lems, the main decision is the replenishment amount; therefore, our hidden Markov model

is signi�cantly di¤erent than these problems. In addition to such studies, Aviv and Pazgal

[2] provide a dynamic pricing model where demand is partially observed. They also show

that optimal pricing policy depends on the belief vector which represents the probability

distribution of true state of the current environment.

2.4 Other Research Topics in Revenue Management

There are also other topics which are signi�cant in revenue management. For example,

models that consider risk-sensitivity are appropriate to the risk-averse managers. Since

demand is random, managers would want to minimize their risk too. Barz and Waldmann

[6] provide a model in which they maximize the utility instead of the revenue of the �rm.

They show that the structural properties of dynamic model for the single resource allocation

problem holds also in her model. Lan et al. [20] also provide a model for risk-averse managers

in which they consider lower and upper bounds for the demand of each fare class. They

claim that distribution of demand may not be easy to obtain, and only information that

manager has can be lower and upper bounds. In addition to such studies, Birbil et al. [8]

investigate the robust versions of static and dynamic models of single resource allocation

problem that is discussed in Section 1.

Another important research topic in revenue management is network capacity control.

Since this a multi-dimensional problem, most studies focus on approximations to this prob-

lem. For example, Kunnumkal and Topalo¼glu [19] provides an approximation method for

network revenue management problem with customer choice behavior by solving each �ight

leg as single-leg problem. Vulcano and van Ryzin [32] also study an approximation method
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for network revenue management under customer choice behavior by using a simulation-

based method.
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Chapter 3

SINGLE RESOURCE CAPACITY CONTROL PROBLEM

3.1 Model Formulation

We formulate a discrete time, �nite horizon (T periods) MDP model of the admission control

problem corresponding to single-leg capacity control.

Let Xt 2 f1; 2; � � � ;Mg denote the randomly �uctuating external environment. X =

fX0; X1; � � � ; XT g is assumed to be a Markov chain with transition matrix P where pij =

PfXt+1 = jjXt = ig:We assume that there is at most one arrival and that each arrival from
a fare class can request a �nite number of seats in each stage. The probability that fare class

a arrives at any stage is denoted by rja when the current environment is j. The probability

of no arrival in a given environment is denoted by rj0. Therefore,
PN
a=0 rja = 1 for any

j: Non-stationary demand scenarios can be handled by de�ning appropriate environment

and transition matrices. For each fare class a, suppose there is an upper bound Ba on the

number of fare products requested. Let qjab denote the probability that b units of inventory

is requested given that current environment is j and the requested fare product is a.

In each stage t, the �rm must choose the optimal number of seats to be sold for each fare

class. We assume that customers accept the scenario of a partial satisfaction of their request.

Brumelle and Walczak [10] showed that structural results on the optimal policy are not valid

in case of acceptance or rejection of the whole demand when there is no environment process

(Also, see Van Slyke and Young [34] and Çil et al. [12] for related issues). Therefore, we

only analyze the case where customers accept the partial satisfaction of their requests. For

each sold ticket, the reward is c (a) if the fare product is a: The transition probabilities

and reward function are assumed to be stationary and we suppose that the fare classes are

ordered so that c (a1) � c (a2) when a1 � a2: We let Z+ denote the set of positive integers
and R denote the set of real numbers.
We also use the following notations:
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vt(x; j) = expected maximum revenue from period t on, given that current inventory level

is x and environment is j:

�vt (x; j) = vt (x; j)� vt (x� 1; j)
(x)+ = max fx; 0g

U (b; x) = f0; 1; � � � ;min fb; xgg
The optimal expected revenue and the admission control policy for this problem can be

obtained by solving the following Bellman equation

vt(x; j) =
NX
a=1

rja
BaP
b=1

qjab max
u2U(b;x)

(
MX
k=1

pjkvt+1(x� u; k) + c(a)u
)

(3.1)

+rj0

MX
k=1

pjkvt+1(x; k)

with boundary conditions

vt(0; j) = 0 for j = 1; 2; :::;M .

vT (x; j) = 0 for any x 2 Z+ and j = 1; 2; :::;M .

For obtaining structural results, the following equivalent representation that uses the

de�nition of �vt turns out to be helpful

vt(x; j) =
NX
a=1

rja
BaP
b=1

qjab max
u2U(b;x)

(
c(a)u�

MX
k=1

pjk

�
uP
z=1

�vt+1(x+ 1� z; k)� vt+1(x; k)
�)

+ rj0

MX
k=1

pjkvt+1(x; k)

=
NX
a=1

rja
BaP
b=1

qjab max
u2U(b;x)

(
uP
z=1

 
c (a)�

MX
k=1

pjk�vt+1(x+ 1� z; k)
!)

+
MX
k=1

pjkvt+1(x; k)

(3.2)

where the sum is set to be zero when u = 0:

3.2 Structural Properties

In this section, we investigate some structural properties of the Markov-modulated single-

resource capacity control problem. To begin with, it is intuitive that if we have one more

inventory, then expected revenue should be larger. Similarly, expected revenue should be
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larger if we have more time to go. These claims can be easily proven by induction on t.

Second order properties are less trivial. Before proving the concavity of vt (x; j) in x, we

�rst state a lemma by Lautenbacher and Stidham [21].

Lemma 3.1 Suppose g : Z+ ! R is concave. Let f : Z+ ! R be de�ned by

f(x) = max
�=0;1;:::;m

f�p+ g (x� �)g

for any given p � 0, and nonnegative integer m � x. Then, f is concave in x � 0.

Using Lemma 3.1, we next establish the concavity of the value function in x for each

environment.

Theorem 3.2 vt(x; j) is a concave function in x for any environment j and time t.

Proof. Since vT (x; j) is zero for any x and j we have the concavity of vT (x; j) in x for

any j. Suppose that vt+1(x; j) is a concave function of x for any environment j:We can use

lemma 3.1 by taking g as
PM
k=1 pjkvt+1(x; k), p as c (a) ; and m as min fb; xg Therefore,

max
u2U(b;x)

(
MX
k=1

pjkvt+1(x� u; k) + c(a)u
)

(3.3)

is concave in x for any product a; batch size 0 � b � Ba: Since equation (3.1) is positive

linear combination of (3.3) and vt+1 (x; k), we have the concavity of vt(x; j) in x for any

environment j:

Theorem 3.2 establishes that �vt (x; j) decreases as we increase the inventory level x. By

considering (3.2), we can conclude that c (a)�
PM
k=1 pjk�vt+1(x+1�z; k) is decreasing in z:

Therefore, in (3.2) we should increase u � min fb; xg until c (a)�
PM
k=1 pjk�vt+1(x+1�z; k)

becomes negative or u is equal to min fb; xg : Since �vt (x; j) is decreasing in x for any j,
there is a threshold level la;jt which is de�ned as

la;jt = min

(
x : c (a) �

MX
k=1

pjk�vt+1(x; k)

)
: (3.4)

Explicitly, la;jt is the maximum quantity for the inventory level such that if the current

inventory level is less than la;jt it is optimal to reject any batch for fare class a in environment

j: However, if the inventory on hand is greater than or equal to la;jt , then demand for product

a is satis�ed until the inventory level drops to la;jt � 1.
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Hence the optimal decision for product a at stage t and environment j, when demand

is b; is

u� = min

��
x� la;jt + 1

�+
; b

�
: (3.5)

Theorem 3.2 implies that optimal admission control policies are of threshold (or booking

limit) type as in standard single-resource capacity control. The di¤erence in this case is

that the thresholds now depend on the current state of the environment. Nevertheless, such

policies are relatively easy to implement.

Since optimal thresholds are determined by the marginal value function via (3.4), we

next investigate the structure of this function. First, we analyze how the marginal value

function changes in time. Next proposition states a result on the marginal value of one

additional inventory over time.

Proposition 3.3 �vt+1 (x; j) � �vt (x; j) for any inventory level x, environment j and

time t:

Proof. Since vt (x; j) is increasing in x, �vt (x; j) � 0: Also �vT (x; j) = 0, which implies
that �vT (x; j) � �vT�1 (x; j) : Suppose �vt+2 (x; j) � �vt+1 (x; j) for any environment j
and inventory level x. Consider the following inequality,

max
u12U(b;x)

(
MX
k=1

pjkvt+2(x� u1; k) + c (a)u1

)
� max
u22U(b;x�1)

(
MX
k=1

pjkvt+2(x� 1� u2; k) + c (a)u2

)
�

max
u32U(b;x)

(
MX
k=1

pjkvt+1(x� u3; k) + c (a)u3

)
� max
u42U(b;x�1)

(
MX
k=1

pjkvt+1(x� 1� u4; k) + c (a)u4

)
(3.6)

for any a; and batch size 0 � b � Ba: It is su¢ cient to show that this inequality holds, in
order to conclude that �vt+1 (x; j) � �vt (x; j) ; since the remaining terms in �vt (x; j) �
�vt+1 (x; j) are clearly positive by using the induction hypothesis.

Let u�i be the optimal value of ui in (3.6). We should note that l
a;j
t+1 � l

a;j
t for any product

a and environment j. This can be easily seen by considering the induction hypothesis and

(3.4). As a result, we have u�3 � u�1. Also, we know that u�1 � u�2 is either 1 or zero. Same
reasoning is valid for u�3�u�4: If they are equal, then this is possible only either u�1 = u�2 = 0
or u�1 = u

�
2 = b:
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Therefore, there are six cases we need to consider for the possible values of u�1; u
�
2; u

�
3; u

�
4:

Case (u�1; u
�
2; u

�
3; u

�
4) Inequality (3.6) simpli�es to

1 (0; 0; 0; 0)
PM
k=1 pjk�vt+2 (x; k) �

PM
k=1 pjk�vt+1 (x; k)

2 (y2 + 1; y2; 0; 0) c (a) �
PM
k=1 pjk�vt+1 (x; k)

3 (b; b; 0; 0)
PM
k=1 pjk�vt+2 (x� b; k) �

PM
k=1 pjk�vt+1 (x; k)

4 (y2 + 1; y2; y1 + 1; y1) c (a) � c (a)
5 (b; b; y1 + 1; y1)

PM
k=1 pjk�vt+2 (x� b; k) � c (a)

6 (b; b; b; b)
PM
k=1 pjk�vt+2 (x� b; k) �

PM
k=1 pjk�vt+1 (x� b; k)

Here, y1 and y2 are integers such that 0 � y1 � y2 � b � 1. Case 1 and 6 are true
due to the induction hypothesis. Also case 4 is automatically true. In case 2, suppose thatPM
k=1 pjk�vt+1 (x; k) < c (a), then we should accept at least one customer when current

inventory level is x at stage t but u�3 = 0. Therefore, inequality in case 2 is true. In case

5, suppose that
PM
k=1 pjk�vt+2 (x� b; k) > c (a). Then, at time t + 1, accepted batch size

is less than b � 1 when current inventory level is x. However u�2 = b, which means that

the inequality in case 5 is also true. In case 3, we have c (a) �
PM
k=1 pjk�vt+1 (x; k) since

u�3 = 0. Also we have
PM
k=1 pjk�vt+2 (x� b; k) � c (a) since u�2 = b: Note that, these

inequalities can be shown by using the methodology used in case 2 and 5. Hence, we have

the inequality of case 3. Consequently, �vt decreases in t:

Please note that Theorem 3.2 and Proposition 3.3 extend the corresponding results in

Ayd¬n et al. [3] to a setting with multiple environments. With regard to Proposition 3.3, a

corresponding results in Ayd¬n et al. [3] establishes that admission thresholds decrease as

time increases when there is a single environment . When there are multiple environment

states, the environment also changes over time; hence, we cannot guarantee the decrease

of the thresholds over time when the environment changes. On the other hand, if the

environment does not change, then we can establish the admission threshold should decrease

in the next period. This result follows from comparing

MP
k=1

pjk�vt+1 (x; k) �
MP
k=1

pjk�vt (x; k)

which is obviously true by Proposition 3.3. Therefore, la;jt � la;jt+1 for any fare class a, time
t and environment j:
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Since demand varies according to the environment, optimal threshold levels change with

the environment. To better understand the e¤ects of the environment on the optimal thresh-

olds, we must classify and order the environments. To this end, we need some assumptions

on arrival probabilities and the transition matrix of the environmental process. The follow-

ing classi�cation is useful for this purpose.

De�nition 3.4 A Markov chain is said to be IFR (Increasing Failure Rate) if the rows of

its transition probability matrix are in increasing stochastic order, i.e.,

f (i) =
MP
j=k

pij

is nondecreasing in i for all k = 1; :::;M . Similarly, a matrix X is said to be IFR if the

rows of X are in increasing stochastic order.

In reliability theory, life distribution classi�cations, like IFR, play a crucial role in identi-

fying the structure of optimal maintenance policies. This usually leads to optimal threshold

policies since the IFR property implies the increasing marginal deterioration of the system.

An example is the age replacement policy which states that the system is replaced as soon

as its age exceeds a critical level. The reader is referred to Barlow and Porschan [4] for basic

concepts on life distribution classi�cations, and Keilson and Kesten [18] for classi�cations

of Markov chains using their transition matrices. In our context, we need to impose similar

restrictions on the environmental process so that the state becomes more or less �desirable�

in generating revenue.

Let R be a matrix such that Rj;a = rja, and suppose R is IFR. This implies that

environments are ordered in terms of the arrival probability of customers from higher fare

classes. For example, suppose we have 2 environments, then the second environment is said

to be �better�than the �rst one if it is more probable to have a demand for higher reward

products in the second environment.

Let B = max fBa : a = 1; 2; � � � ; Ng and set qjab = 0 for any Ba < b � B: Also, let

Q denote a 3 dimensional matrix whose (j; a; b)th component is qjab as de�ned above.

Then we de�ne 2 dimensional submatrices of Q where we �x one component of Q: Let the

�xed component be denoted as a superscript while the other components are denoted by

subscripts. We also assume that the matrix Q(a)jb is IFR for a �xed a. Finally, we also

assume that Q(i)ab is IFR for �xed i.



Chapter 3: Single Resource Capacity Control Problem 15

Last, we need a condition on the transition matrix P of environment process. We assume

that P is IFR. This is also plausible. If the index of an environment i is higher than another

environment j; then we call i a �better�environment than j by the explanation above. Since

environment i is better than j; it is more likely for environment i to make a transition to an

environment that is better than an arbitrary given environment. Intuitively, the probability

that the current environment will transition in the future to a better environment increases

as the level of the current environment increases. We now summarize all of these conditions.

Condition 3.5 (1) P is IFR.

(2) R is IFR.

(3) Q(a)jb is IFR for any product a:

(4) Q(j)ab is IFR for any environment j:

The above condition imposes an order on the environments. This order is a minimal

requirement for obtaining structural results as a function of the environment. When the

condition holds, j is a more favorable environment than i where i � j: Let us discuss

the modeling implications of Condition 3.5. Condition 3.5 (1) concerns the environment

transitions. The environment transitions need to have a smoothness property where better

current environments are likelier to lead to better future environments which seems natural

for most applications. Condition 3.5 (2) can be viewed as a consequence of the environment

classi�cation where better current states have a more favorable demand arrival distribution.

Without this condition, environment states do not necessarily have a natural order which

prevents monotonicity. Condition 3.5 (3) states that batch sizes are likelier to be larger in

better environments which also appears natural. Condition 3.5 (4) imposes constraints on

the demand batch size as a function of the class of customers. This condition is automatically

satis�ed for the frequently encountered case of unit demand arrivals (see Talluri and van

Ryzin [30]) and for the case where the batch sizes are not class dependent.

We �rst investigate the expected maximum revenue from period t on for di¤erent envi-

ronments at stage t under Condition 3.5. In particular, in the next proposition, we establish

that the maximum expected revenue increases when the environment gets better .

Proposition 3.6 Under Condition 3.5, vt (x; i) � vt (x; j) for any inventory level x, envi-
ronment i � j and time t:

Proof. For t = T we have the result trivially since vT (x; i) = 0 for any inventory level x and

environment i: Suppose vt+1 (x; i) � vt+1 (x; j) for any i � j: We provide some de�nitions
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to make the proof clearer. Let

W (a; b; j) = max
u2U(b;x)

(
MX
k=1

pjkvt+1(x� u; k) + c(a)u
)

and

S (a; j) =
BP
b=1

qjabW (a; b; j)

S (0; j) =
MP
k=1

pjkvt+1 (x; k)

for a = 1; 2; :::N: Then, we need to show the following

NP
a=0

riaS (a; i) �
NP
a=0

rjaS (a; j)

First of all, it is clear that W (a; b; j) is nondecreasing in b, and a: Also, since P is

IFR, by the induction hypothesis we know that W (a; b; j) is nondecreasing in j: Hence

S (a; j) is nondecreasing in j; because Q(a)jb is IFR. Also, by induction hypothesis we know

S (0; j) is nondecreasing in j:We also need to show that S (a; j) is a nondecreasing function

in a: Take a 2 f1; 2; � � � ; Ng ; since W (a; b; j) is nondecreasing in a and Q(j)ab is IFR, we

know that S (a; j) is nondecreasing in the domain f1; 2; :::; Ng : It is also easy to show that
S (0; j) � S (1; j) hence S (a; j) is nondecreasing in a. Since S (a; i) � S (a; j) and S (a; j)
is a nondecreasing function in a, we have vt (x; i) � vt (x; j) by using the IFR property of
R.

From a practical perspective, Proposition 3.6 states that better starting environments

lead to better expected revenues. Second, we consider the e¤ect of the environment on the

expected marginal value of one additional inventory. This value is important in understand-

ing the structure of threshold values in di¤erent environments.

Proposition 3.7 Under Condition 3.5, �vt (x; i) � �vt (x; j) for any inventory level x,

environment i � j and time t:

Proof. Clearly, we have �vT (x; i) = �vT (x; j) = 0: Suppose �vt+1 (x; i) � �vt+1 (x; j)

for any i � j: Let

W (a; b; j) = max
u2U(b;x)

(
MX
k=1

pjkvt+1(x� u; k) + c(a)u
)
� max
u2U(b;x�1)

(
MX
k=1

pjkvt+1(x� 1� u; k) + c(a)u
)
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for a = 1; 2; :::; N: Also de�ne,

S (a; j) =
BP
b=1

qjabW (a; b; j)

S (0; j) =
MP
k=1

pjk (vt+1(x; k)� vt+1 (x� 1; k))

for a = 1; 2; :::; N: After making these de�nitions, we need to show

MP
a=0

riaS (a; i) �
MP
a=0

rjaS (a; j)

for any environment i � j: First of all we will show W (a; b; i) � W (a; b; j) for any

a 2 f1; 2; :::; Ng and b: Let u�1 be the optimal decision when current inventory is x and
environment is i, and let u�2 be the optimal decision when the current inventory is x�1 and
environment is i (u�3 and u

�
4 are also de�ned in a similar fashion for environment j). Using

the same reasoning that we used in the proof of the Proposition 3.3, we have the following

relations and results by noting that la;jt � la;it :
C (u�1; u

�
2; u

�
3; u

�
4) Inequality W (a; b; i) �W (a; b; j) simpli�es to

1 (0; 0; 0; 0)
MP
k=1

pik�vt+1 (x; k) �
MP
k=1

pjk�vt+1 (x; k)

2 (y2 + 1; y2; 0; 0) c (a) �
MP
k=1

pjk�vt+1 (x; k)

3 (b; b; 0; 0)
MP
k=1

pik�vt+1 (x� b; k) �
MP
k=1

pjk�vt+1 (x; k)

4 (y2 + 1; y2; y1 + 1; y1) c (a) � c (a)

5 (b; b; y1 + 1; y1)
MP
k=1

pik�vt+1 (x� b; k) � c (a)

6 (b; b; b; b)
MP
k=1

pik�vt+1 (x� b; k) �
MP
k=1

pjk�vt+1 (x� b; k)

Here, y1 and y2 are integers such that 0 � y1 � y2 � b�1: Note that case 6 and case 1 are
obviously true due to the induction hypothesis and the IFR property of P. The remaining

cases are true as explained in the proof of Proposition 3.3.

Secondly, we will show that W (a; b; i) is nondecreasing in ordered quantity b for any i

and a 2 f1; 2; :::; Ng : Take 1 � b < B: Let u�1 be the optimal decision when current inventory
is x and ordered quantity is b, and let u�2 be the optimal decision when the current inventory

is x�1 and ordered quantity is b (u�3 and u�4 are also de�ned in a similar fashion for ordered
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quantity b+ 1). We have 4 cases,

C (u�3u
�
4) Results W (a; b; i) < W (a; b+ 1; i) reduces to

1 (0; 0) (u�1; u
�
2) = (0; 0)

MP
k=1

pik�vt+1 (x; k) �
MP
k=1

pik�vt+1 (x; k)

2 (b+ 1; b+ 1)
x� la;jt � b+ 1
(u�1; u

�
2) = (b; b)

MP
k=1

pik�vt+1 (x� b; k) �
MP
k=1

pik�vt+1 (x� b� 1; k)

3 (b+ 1; b)
x� la;jt = b

(u�1; u
�
2) = (b; b)

MP
k=1

pik�vt+1 (x� b; k) � c (a)

4 (y; y � 1) (u�1; u
�
2) = (y; y � 1) c (a) � c (a)

where 1 � y < b + 1: Case 1 and 4 are obviously true since right-hand side and left-hand

side are equal in both cases. Case 2 is also true since �vt+1 (x) is nonincreasing in x: In case

3, suppose
PM
k=1 pik�vt+1 (x� b; k) > c (a). Then this fact contradicts with l

a;j
t = x� b.

Clearly, S (0; i) � S (0; j) since P is IFR. Since W (a; b; i) � W (a; b; j) and W (a; b; i)

is nondecreasing in ordered quantity b for any i and a 2 f1; 2; :::; Ng ; by using the IFR
property of Q(a)jb we have

S (a; i) � S (a; j)

for any a 2 f0; 1; :::; Ng. Now, it is su¢ cient to show that S (a; j) is nondecreasing in a to
show�vt (x; i) � �vt (x; j) because we can use the IFR property ofR to conclude our result.
Take a1; a2 2 f1; 2; :::; Ng with a1 � a2: Since c (a1) � c (a2) ; we know that l

a1;j
t � la2;jt :

Also, we have already shown that W (a; b; j) is nondecreasing in b. It is su¢ cient to prove

W (a1; b; j) �W (a2; b; j), then we can use the IFR property of Q
(j)
ab and W (a; b; j)�s being

nondecreasing in b to conclude that S (a1; j) � S (a2; j) : Let u�1 be the optimal decision

when current inventory is x and product type is a1, and let u�2 be the optimal decision when

the current inventory is x�1 and product type is a1 (u�3 and u�4 are also de�ned in a similar
fashion for product type a2). Then, there are six cases for the values of (u�1; u

�
2; u

�
3; u

�
4) as
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before.

C (u�1; u
�
2; u

�
3; u

�
4) Inequality W (a1; b; i) �W (a2; b; i) simpli�es to

1 (0; 0; 0; 0)
MP
k=1

pik�vt+1 (x; k) �
MP
k=1

pik�vt+1 (x; k)

2 (0; 0; y1 + 1; y1)
MP
k=1

pik�vt+1 (x; k) � c (a2)

3 (0; 0; b; b)
MP
k=1

pik�vt+1 (x; k) �
MP
k=1

pik�vt+1 (x� b; k)

4 (y2 + 1; y2; y1 + 1; y1) c (a1) � c (a2)

5 (y2 + 1; y2; b; b) c (a1) �
MP
k=1

pik�vt+1 (x� b; k)

6 (b; b; b; b)
MP
k=1

pik�vt+1 (x� b; k) �
MP
k=1

pik�vt+1 (x� b; k)

Here, y1 and y2 are integers such that 0 � y2 � y1 � b � 1: Note that in case 1 and 6,
right hand sides and left hand sides are identical. Case 4 is true since c (a1) � c (a2) : In

case 2, suppose
PM
k=1 pik�vt+1 (x; k) > c (a2) then we should not sell any product of type

a2 when current inventory level is x at time t, but u�3 = y1 + 1 � 1: Case 3 is also true

since �vt+1 (x) is nonincreasing in x: In case 5, suppose c (a1) >
PM
k=1 pik�vt+1 (x� b; k).

Since y2 = u�2 � b � 1, we have x � b + 1 � la;jt and this result contradicts with our

assumption. Therefore S (a1; i) � S (a2; i) for a1; a2 2 f1; 2; :::; Ng : Also, we need to show
S (0; i) � S (1; i) : We have the following inequality since W (1; b; i) is nondecreasing in b:

W (1; 1; i) = max
u12f0;1g

(
MX
k=1

pikvt+1(x� u; k) + c(1)u
)
� max
u22f0;1g

(
MX
k=1

pikvt+1(x� 1� u; k) + c(1)u
)

� S (1; i) =
BP
b=1

qj1bW (1; b; i)

It is su¢ cient to show W (1; 1; i) � S (0; i) : Note that we have u�1 � u�2. Therefore, we
have 3 cases,

C (u�1; u
�
2) Inequality W (1; 1; i) � S (0; i) reduces to

1 (1; 1)
MP
k=1

pik�vt+1 (x� 1; k) �
MP
k=1

pik�vt+1(x; k)

2 (0; 0)
MP
k=1

pik�vt+1 (x; k) �
MP
k=1

pik�vt+1(x; k)

3 (1; 0) c (1) �
MP
k=1

pik�vt+1(x; k)
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Case 2 is obviously true, also case 1 is true since �vt+1 (x) is nonincreasing in x: In case

3 suppose
PM
k=1 pik�vt+1(x; k) > c (a) but this contradicts with u

�
1 = 1:

Hence, S (a1; i) � S (a2; i) for a1; a2 2 f0; 1; :::; Ng and S (a; i) � S (a; j) for i � j: Since
R is IFR, we have

�vt (x; i) =
MP
a=0

riaS (a; i) �
MP
a=0

rjaS (a; j) = �vt (x; j)

Let us discuss the implication of this proposition. Since the admission policy is deter-

mined by the structure of the di¤erence �vt (x; j), and since this di¤erence increases in j,

we can conclude that la;jt increases in j. Since the demand for a more valuable product will

increase in probability as the environment gets better, it is optimal to protect the stock

more in a better environment. For implementation purposes, this implies that the optimal

admission thresholds are non-decreasing in more favorable environments. By using Propo-

sitions 3.3 and 3.7, we have the following immediate result that extends the property in

Proposition 3.7 to di¤erent time periods.

Corollary 3.8 Under Condition 3.5, �vt+1 (x; i) � �vt (x; j) for any inventory level x,

environment i � j and time t:

By this corollary, we know that the threshold level of a product in a given stage will

decrease in the next stage if the environment of the next stage is worse than the one in

the previous stage. However, we cannot guarantee the decrease of the threshold if the

environment of the next stage is better than the one in the previous stage. This is explored

further in Section 4.

3.3 Sensitivity Analysis

In this section, we will provide results on the sensitivity of the structural properties on the

model parameters. A recent paper by Çil et al. [13] presents a general approach for this

type of analysis and Ayd¬n et al. [3] presents corresponding results for a standard single-leg

capacity control problem.

First, by setting zjab = qjabrja, we will use the following equivalent form of our problem

vt(x; j) =

NX
a=1

BaP
b=1

zjab max
u2U(b;x)

(
MX
k=1

pjkvt+1(x� u; k) + c(a)u
)
+ rj0

MX
k=1

pjkvt+1(x; k) (3.7)



Chapter 3: Single Resource Capacity Control Problem 21

with boundary conditions vt (0; j) = 0 and vT (x; j) = 0 for all x and t. We show the e¤ects

of changing components of arrival probabilities (Z), transition matrix (P), and reward

function (c). We will change a component of these matrices or the reward function by a

small amount and explore the e¤ects of this change under some speci�c conditions.

We �rst provide the results on the e¤ects of varying the arrival probabilities. Ayd¬n et

al. [3] also considers a similar study on the e¤ects of parameters, where only the �ctitious

event probability is decreased when a given arrival probability is increased. We employ a

more general approach and consider decreasing any other arrival probability.

Let us increase ziab by � � 0 for a given environment i, class a � 1 and batch size b. In
order to have a valid probability distribution we will reduce zia2b2 by � where 1 � a2 � a

and b2 � b. Here, � should be small enough in order to have both ziab + � and zia2b2 � � lie
in the interval [0; 1]. Let v�t (x; j) be the value function for the modi�ed system.

Proposition 3.9 v�t (x; j) � vt (x; j) for any environment j; time t and inventory level x:

Proof. Clearly v�T (x; j) = vT (x; j) = 0; suppose v�t+1 (x; j) � vt+1 (x; j) for any environ-

ment j and inventory level x: For a given product a, and amount b 2 f1; 2; :::; Bag ; by using
the induction hypothesis we know

MX
k=1

pjkvt+1(x� u; k) + c(a)u �
MX
k=1

pjkv
�
t+1(x� u; k) + c(a)u:

for any 0 � u � min fb; xg : Hence we have

max
u2U(b;x)

(
MX
k=1

pjkvt+1(x� u; k) + c(a)u
)
� max
u2U(b;x)

(
MX
k=1

pjkv
�
t+1(x� u; k) + c(a)u

)
(3.8)

Consider any environment j 6= i: Then v�t (x; j) � vt (x; j) which is clear from inequality

(3.8). When we consider i as an environment, it is su¢ cient to show the following

max
u2U(b2;x)

(
MX
k=1

pikv
�
t+1(x� u; k) + c(a2)u

)
� max
u2U(b;x)

(
MX
k=1

pikv
�
t+1(x� u; k) + c(a)u

)

Note that, since b2 � b and a2 � a we know

max
u2U(b2;x)

(
MX
k=1

pikv
�
t+1(x� u; k) + c(a2)u

)
� max
u2U(b;x)

(
MX
k=1

pikv
�
t+1(x� u; k) + c(a2)u

)
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and

max
u2U(b;x)

(
MX
k=1

pjkv
�
t+1(x� u; k) + c(a2)u

)
� max
u2U(b;x)

(
MX
k=1

pjkv
�
t+1(x� u; k) + c(a)u

)
Hence we have the result.

Proposition 3.9 formalizes that increased demand from more valuable classes improves

expected revenues. Next, we consider the e¤ects of varying arrival probabilities on the ex-

pected marginal value of one additional inventory, since admission thresholds are determined

by this value. The marginal value for the modi�ed system is denoted by �v�t (x; j).

Proposition 3.10 �v�t (x; j) � �vt (x; j) for any environment j; time t and inventory level
x:

Proof. Clearly, �v�T (x; j) = �vT (x; j) = 0: Suppose �v�t+1 (x; j) � �vt+1 (x; j) for any

environment j and inventory level x: Consider any environment j 6= i: Then as done in

proposition 3.3, it can be shown that �v�t (x; j) � �vt (x; j) : When we consider i as an

environment, it is su¢ cient to show the following inequality,

max
u2U(b2;x)

(
MX
k=1

pikv
�
t+1(x� u; k) + c(a2)u

)
� max
u2U(b2;x�1)

(
MX
k=1

pikv
�
t+1(x� 1� u; k) + c(a2)u

)
�

max
u2U(b;x)

(
MX
k=1

pikv
�
t+1(x� u; k) + c(a)u

)
� max
u2U(b;x�1)

(
MX
k=1

pikv
�
t+1(x� 1� u; k) + c(a)u

)
Note that the right and left hand sides are similar to the de�nition of W (a; b; j) in the

proof of proposition 3.7 , and W is nondecreasing in b: (None of the IFR properties are used

to show this, hence the same proof is also valid in here.) Therefore, it is su¢ cient to show,

max
u2U(b;x)

(
MX
k=1

pikv
�
t+1(x� u; k) + c(a2)u

)
� max
u2U(b;x�1)

(
MX
k=1

pikv
�
t+1(x� 1� u; k) + c(a2)u

)
�

max
u2U(b;x)

(
MX
k=1

pikv
�
t+1(x� u; k) + c(a)u

)
� max
u�U(b;x)

(
MX
k=1

pikv
�
t+1(x� 1� u; k) + c(a)u

)
Also we know that W is nondecreasing in a as done in the proof of proposition 3.7.

(Again the IFR properties are not used to show this.) Hence, �v�t (x; j) � �vt (x; j) for any
environment j and inventory level x:
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Since expected marginal value of one additional inventory is greater in the modi�ed

system, the threshold level of the modi�ed system for a given product, time and environment

is greater than the one of the original model. In other words, la;jt � la;jt;� where l
a;j
t;� denotes

the threshold level in the modi�ed system. Please note that an increase in some arrival

probability at a given environment i causes the admission thresholds in all environments j

to increase. Propositions 3.9 and 3.10 extend the corresponding results in Ayd¬n et al. [3]

to multiple environment states.

Second, we analyze the e¤ects of changing a component of P which is assumed to be

IFR. Suppose we increase pij by � � 0: To have a valid distribution, we need to reduce

another component in the ith row of P with a column index smaller than j by �. Again, �

should be small enough to make the changed components lie in [0; 1] interval. These changes

must preserve the IFR property of P. Let the modi�ed solution be denoted by v�t (x; j) and

the transition probability matrix by P�: We have only changed the ith row of P; hence the

remaining rows of P� are identical to P: First, we compare the expected revenue of these

two systems.

Proposition 3.11 Under Condition 3.5, v�t (x; j) � vt (x; j) for any environment j; time t
and inventory level x:

Proof. Clearly, v�T (x; j) = vT (x; j) = 0: Suppose v�t+1 (x; j) � vt+1 (x; j) : It is easy to

verify v�t (x; j) � vt (x; j) when j 6= i since components of P remain same except the ith row.
Now, suppose that the current environment is i: Take any a 2 f1; 2; :::; Ng and 1 � b � Ba:
It is su¢ cient to show

max
u2U(b;x)

(
MX
k=1

pjkvt+1(x� u; k) + c(a)u
)
� max
u2U(b;x)

(
MX
k=1

p�jkv
�
t+1(x� u; k) + c(a)u

)

By proposition 3.6, we know that vt+1(x�u; k) and also v�t+1(x�u; k) are nondecreasing
function in k: Therefore,

MX
k=1

pjkvt+1(x� u; k) �
MX
k=1

p�jkv
�
t+1(x� u; k)

for any u 2 f0; 1; :::;min fb; xgg
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Proposition 3.11 establishes that a better environment probability transition matrix

leads to higher expected revenues. For practical purposes, this implies that more favorable

forecasts of future demand environments results in improved expected revenues.

Next, we investigate the e¤ects of such a change on the optimal policy As done in the

previous analysis on Z, we focus on the expected marginal value of one additional inventory

level. The marginal value of the modi�ed system is denoted by �v�t (x; j) : In the next

proposition we show that marginal value of the modi�ed system is greater than the original

system.

Proposition 3.12 Under Condition 3.5, �v�t (x; j) � �vt (x; j) for any environment j;

time t and inventory level x:

Proof. Clearly, �v�T (x; j) = �vT (x; j) = 0: Suppose �v�t+1 (x; j) � �vt+1 (x; j) for any

environment j and inventory level x: Consider any environment j 6= i; then it is easy to

verify �v�t (x; j) � �vt (x; j) as done in the proof of proposition 3.3, because jth row of P
and P� are identical. When the environment is i; it is su¢ cient to show

max
u12U(b;x)

(
MX
k=1

pikvt+1(x� u1; k) + c (a)u1

)
� max
u22U(b;x�1)

(
MX
k=1

pikvt+1(x� 1� u2; k) + c (a)u2

)
�

max
u32U(b;x)

(
MX
k=1

p�ikv
�
t+1(x� u3; k) + c (a)u3

)
� max
u42U(b;x�1)

(
MX
k=1

p�ikv
�
t+1(x� 1� u4; k) + c (a)u4

)

for any 1 � a � N; 1 � b � Ba: Since �v�t+1 (x; j) � �vt+1 (x; j) and �v�t (x; k) is

nondecreasing in k;
MX
k=1

p�ik�v
�
t+1 (x; k) �

MX
k=1

pik�vt+1 (x; k)

Then la;jt;� � l
a;j
t : Let u

�
i be the optimal value of ui in the inequality above. As a result,

we have u�3 � u�1. Also, we know that u�1�u�2 is either 1 or zero. The same reasoning is valid
for u�3 � u�4: If they are equal, then this is possible only either u�1 = u�2 = 0 or u�1 = u�2 = b:

Therefore, there are six cases we need to consider for the possible values of u�1; u
�
2; u

�
3; u

�
4:
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Case (u�1; u
�
2; u

�
3; u

�
4) Inequality simpli�es to

1 (0; 0; 0; 0)
MP
k=1

pik�vt+1 (x; k) �
MP
k=1

p�ik�v
�
t+1 (x; k)

2 (y2 + 1; y2; 0; 0) c (a) �
MP
k=1

p�ik�v
�
t+1 (x; k)

3 (b; b; 0; 0)
MP
k=1

pik�vt+1 (x� b; k) �
MP
k=1

p�ik�v
�
t+1 (x; k)

4 (y2 + 1; y2; y1 + 1; y1) c (a) � c (a)

5 (b; b; y1 + 1; y1)
MP
k=1

pik�vt+1 (x� b; k) � c (a)

6 (b; b; b; b)
MP
k=1

pik�vt+1 (x� b; k) �
MP
k=1

p�ik�v
�
t+1 (x� b; k)

Here, y1 and y2 are integers such that 0 � y1 � y2 � b � 1: Case 1 is obviously true as

shown above. In case 5, suppose
MP
k=1

pik�vt+1 (x� b; k) > c (a), then accepted batch size

should be less than b at time t when current inventory level is x; but this result contradicts

with u�2 = b: Similarly, in case 2, suppose c (a) >
MP
k=1

p�ik�v
�
t+1 (x; k). Then, we need to

satisfy at least one of the requested amount at time t in modi�ed system when current

inventory level is x, but we have u�3 = 0: In case 3, we have c (a) �
MP
k=1

p�ik�v
�
t+1 (x; k)

since u�3 = 0. Also we have
MP
k=1

pik�vt+1 (x� b; k) � c (a) since u�2 = b: Note that, these

inequalities can be shown by using the methodology used in case 2 and 5. Hence we have

the inequality of case 3. Case 6 is also true by the induction assumption and the fact that

�v�t+1 (x; k) is nondecreasing function of k: Therefore, we have �v
�
t (x; j) � �vt (x; j) for

any environment j; time t and inventory level x:

As explained before, since the expected marginal value of an additional inventory is

greater in the modi�ed system, threshold level of the modi�ed system is greater than the

one of the original system. (i.e., la;jt;� � l
a;j
t ). A more advantageous environment transition

structure leads to higher admission thresholds for all environments.

Now, we investigate the sensitivity of the marginal value function in the reward of each

fare class. We will increase the reward of a speci�c product and try to see its impact. We

de�ne �v�t+1 (x; k) as the marginal value of an additional inventory. We have the following

proposition about the e¤ects of reward on the marginal value.

Proposition 3.13 �v�t (x; j) � �vt (x; j) if c (N) is increased by � � 0.
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Proof. We denote the modi�ed function of price as c� (a) where c (a) and c� (a) are identical

expect a = N: At the terminal stage we trivially have �v�T (x; j) = �vT (x; j) = 0 or any

inventory level x and environment j: Suppose �v�t+1 (x; j) � �vt+1 (x; j) for 8x; j: It is
su¢ cient to show,

max
u12U(b;x)

(
MX
k=1

pikvt+1(x� u1; k) + c (a)u1

)
� max
u22U(b;x�1)

(
MX
k=1

pikvt+1(x� 1� u2; k) + c (a)u2

)
�

max
u32U(b;x)

(
MX
k=1

pikv
�
t+1(x� u3; k) + c� (a)u3

)
� max
u42U(b;x�1)

(
MX
k=1

pikv
�
t+1(x� 1� u4; k) + c� (a)u4

)
(3.9)

for any 1 � a � N; 1 � b � Ba:When a 6= N; then this inequality is true by a similar proof to
that of proposition 3.3. In case of a = N; we know that threshold level is always 0; therefore,

optimal quantity is u�3 = min fb; xg when inventory level is x. Similarly u�1 = min fb; xg ;
u�2 = min fb; x� 1g = u�4:

Case (u�1; u
�
2; u

�
3; u

�
4) Inequality (3.9) simpli�es to

1 (b; b; b; b)
MP
k=1

pik�vt+1(x� b; k) �
MP
k=1

pik�v
�
t+1(x� b; k)

2 (0; 0; 0; 0)
MP
k=1

pik�vt+1(x; k) �
MP
k=1

pik�v
�
t+1(x; k)

3 (x; x� 1; x; x� 1) c (N) � c� (N)

Case 3 is true due to the increase in c (N) : Case 1 and 2 are also true by the induction

hypothesis.

Proposition 3.13 establishes increasing the reward of the highest class leads to higher

admission thresholds: la;jt;� � l
a;j
t . As before, somewhat surprisingly, a positive perturbation

of c(N) requires a stronger protection for class N and therefore has a non-decreasing e¤ect

for all admission thresholds. Please note a corresponding result exists in Ayd¬n et al. [3]

for the case with a single environment state.

We have also investigated the e¤ect of increasing the reward of any other product rather

than the one with the highest reward. It is not always true that the marginal value of an

additional inventory in a modi�ed system is greater than the one in the original system or

vice versa. We have a counter-example in the next section.
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3.4 Numerical Illustrations

In our illustrations, we assume that an arrival customer demands only one product, this

implies that Ba = 1 for any product a: First, we illustrate that the threshold level decreases

as time increases and increases as the environment gets better. The transition matrix,

reward vector, and arrival probability matrix are respectively:

P =

"
0:95 0:05

0:05 0:95

#
c (a) =

8>>>>><>>>>>:
0 if a = 0

50 if a = 1

100 if a = 2

200 if a = 3

R =

"
0:7 0:2 0:1 0

0:1 0:2 0:2 0:5

#
(3.10)

with planning horizon T = 500. Note that 0 in vector c stands for the reward of the �ctitious

event. We only show the last 10 threshold levels in our tables. Note that R has the IFR

property, hence we can label the �rst row of R as a bad environment and the second row as

a good environment. Threshold levels for fare class 1 (with reward 50) and 2 (with reward

100) are given in Table 3.1. Recall that la;jt stands for the threshold level of fare class a

at time t in environment j: As we expect, the threshold level decreases as time increases

for any environment and the threshold level of a better environment is higher at any given

time. Also we know that the threshold level for fare class 3 (with reward 200) is always

1 for any environment and time. Since, we always accept a request for the fare class with

the highest reward. Finally, recall that Corollary 1 established that �vt+1(x; i) � �vt(x; j)
for i � j. It can be observed from Table 1 that the condition i � j is crucial. In fact, we
observe that l1;16 � l1;27 . Therefore, the threshold is not necessarily monotone in all cases.

Table 3.1: Threshold levels for fare classes 1 and 2 in both environments

Time t 1 2 3 4 5 6 7 8 9 10

l1;1t 4 4 3 3 3 2 2 1 1 1

l1;2t 8 8 7 6 5 5 4 3 2 1

l2;1t 2 1 1 1 1 1 1 1 1 1

l2;2t 6 5 5 4 4 3 3 2 2 1

Next, we investigate the e¤ects of changing the parameters of the problem. Suppose that

we decrease the arrival probability of fare class 3 from 0:5 to 0:1 and increase the arrival
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probability of fare class 1 from 0:2 to 0:6 in environment 2, then we compare the threshold

levels for fare classes 1 and 2 in both systems. See Tables 3.2 and 3.3 for these threshold

levels. As expected, threshold levels for fare classes 1 and 2 are smaller in the modi�ed

system in any environment.

Table 3.2: Threshold levels of fare class 1 (Change in arrival probability of fare class 1)

Time t 1 2 3 4 5 6 7 8 9 10

l1;1t 4 4 3 3 3 2 2 1 1 1

l1;1t;� 3 3 3 2 2 2 1 1 1 1

l1;2t 8 8 7 6 5 5 4 3 2 1

l1;2t;� 5 5 5 4 4 3 3 2 2 1

Table 3.3: Threshold levels of fare class 2 (Change in arrival probability of fare class 1)

Time t 1 2 3 4 5 6 7 8 9 10

l2;1t 2 1 1 1 1 1 1 1 1 1

l2;1t;� 1 1 1 1 1 1 1 1 1 1

l2;2t 6 5 5 4 4 3 3 2 2 1

l2;2t;� 2 2 2 2 2 2 1 1 1 1

We also change the entries of P while the modi�ed P matrix still has the IFR property.

Suppose that we have the following modi�ed P

P� =

"
0:05 0:95

0:05 0:95

#
(3.11)

which is obtained by changing the �rst row of the transition matrix. The threshold levels

for fare class 2 in the modi�ed system is greater than the one in the original system as

shown in Table 3.4 for environment 1.

Further, we increase the reward of the third fare class, which is the most expensive one,

from 200 to 250. Threshold levels for fare classes 1 and 2 are given in the Tables 3.5 and

3.6.
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Table 3.4: Threshold levels of fare class 2 in environment 1 (Change in transition matrix)

Time t 1 2 3 4 5 6 7 8 9 10

l2;1t 2 1 1 1 1 1 1 1 1 1

l2;1t;� 7 6 5 5 4 4 3 2 2 1

Table 3.5: Threshold levels of fare class 1 (Change in price of fare class 1)

Time t 1 2 3 4 5 6 7 8 9 10

l1;1t 4 4 3 3 3 2 2 1 1 1

l1;1t;� 5 4 4 3 3 2 2 1 1 1

l1;2t 8 8 7 6 5 5 4 3 2 1

l1;2t;� 9 8 7 6 6 5 4 3 2 1

Table 3.6: Threshold levels of fare class 2 (Change in price of fare class 1)

Time t 1 2 3 4 5 6 7 8 9 10

l2;1t 2 1 1 1 1 1 1 1 1 1

l2;1t;� 3 2 2 2 1 1 1 1 1 1

l2;2t 6 5 5 4 4 3 3 2 2 1

l2;2t;� 6 6 5 5 4 4 3 3 2 1

The threshold levels for fare classes 1 and 2 of the modi�ed system are greater in both

environments. We also provide a counter-example for the case when the reward of any

other fare class rather than the most expensive one is changed. Suppose that we change the

reward of fare class 2 from 100 to 150. The threshold levels of fare class 1 in environment

1 and fare class 2 in environment 2 are given in Table 3.7.

Note that the threshold levels of product one increase; however, the threshold levels of

fare class two decrease. Therefore, it is not always true that expected marginal value of an

additional inventory decreases (or increases) as we increase the reward of a fare class which

is not the most expensive.

Remember that when R is IFR, we can order the environments. In addition to this

property, if P is IFR, we know that la;jt � la;it whenever j � i: However, we cannot conclude
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Table 3.7: Threshold levels for fare classes 1 and 2 (Change in price of product 2)

Time t 1 2 3 4 5 6 7 8 9 10

l1;1t 4 4 3 3 3 2 2 1 1 1

l1;1t;� 5 4 4 3 3 2 2 2 1 1

l2;2t 6 5 5 4 4 3 3 2 2 1

l2;2t;� 4 4 4 3 3 3 2 2 1 1

the same result when P is not IFR. We have the following counter-example to show this

claim. We use the same problem parameters except the matrix

P =

"
0:05 0:95

0:95 0:05

#
(3.12)

which is not IFR anymore. The threshold levels for fare class 1 (with price 50) are given

in the Table 3.8. Even though environment 2 can be considered better than environment

1, threshold levels of fare class 1 at times 3, 5; 7 and 9 in environment 1 are greater than

those in environment 2:

Table 3.8: Threshold levels for fare class 1 when P is not IFR

Time t 1 2 3 4 5 6 7 8 9 10

l1;1t 6 5 5 4 4 3 3 2 2 1

l1;2t 6 5 4 4 3 3 2 2 1 1

3.5 The E¢ ciency of the Environment-Based Model

To assess the performance of our environment based model, we consider a 2-environment

problem in which arriving customers demand only one product at a time. In this setting,

we compare the expected revenues from our model to a simple but reasonable benchmark

approach where the system manager incorrectly believes that the system will always remain

in one of the environment states (i.e. the environment will not �uctuate). In this case, the

manager solves a simpler standard dynamic program to �nd the optimal admission policy.



Chapter 3: Single Resource Capacity Control Problem 31

To implement the benchmark approach, let us de�ne wjt (x), the maximum expected total

revenue when the environment j is the environment believed to be true by the manager.

The corresponding optimal policy can be formulated by the Bellman equation

wjt (x) =
NP
a=1

rjamax
n
wjt+1 (x� 1) + c (a) ; w

j
t+1 (x)

o
+ rj0w

j
t+1 (x) (3.13)

with boundary conditions wjT (x) = 0 and w
j
t (0) = 0 for all x and t. R and P are as given

in (3.10) and c(0) = 0, c(1) = 50, c (3) = 200 and we vary c(2) between 65 and 185 (using

a step-size of 30).

For each environment state, we compute the optimal admission policy and use this

policy in our environment-based model and calculate the corresponding expected revenue

for an initial inventory level of 200 and planning horizon of 500 starting with environment

1. In addition, we compute the expected optimal revenue using the environment-dependent

model for the same parameters. Figure 3.1 reports the the percentage di¤erences in expected

revenues due to using a simpler model for di¤erent values of c(2). It can be observed that

the di¤erence is consistently over 15% when the manager employs the good environment

state (maybe due to optimistic expectations). On the other hand, the di¤erence varies

signi�cantly and appears to be an increasing as a function of c(2) when the manager employs

the bad environment state.

Next, we explore how the bene�ts of the environment-based model are a¤ected by the

demand pro�le similarity or dissimilarity in di¤erent environments. We use c and P as given

in (3.10) and we de�ne R (�) (where � = 0; 0:1; 0:2; 0:3; 0:4) as follows:

R (�) =

"
0:7� � 0:2 0:1 0 + �

0:1 0:2 0:2 0:5

#
:

Please note that increasing the value of � makes the demand pro�les in the two environ-

ments more similar. Therefore, when � = 0 the demand pro�les are very di¤erent from each

other and when � = 0:4, the demand pro�les are fairly similar. For each �, we repeat the

same investigation as above and compare the revenues in an environment-based model with

a �xed environment model. The percentage di¤erences as a function of the environment are

reported in Table 3.9. As can be observed from the table, there is signi�cant value in using

the environment-based model when the demand pro�les are di¤erent but as expected this

value diminishes as the demand pro�les of the di¤erent environments become similar.
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Figure 3.1: E¤ects of Environment
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Finally, we investigate the e¤ect of total demand rate di¤erence between the environ-

ments. The situation in mind we have is external factors that a¤ect the aggregate demand

rate in varying degrees. In particular, if the demand rate in the �rst environment for a

given demand class a (a = 1; 2; 3) is r1a, then the corresponding demand rate in the

second environment is �r1a where 0 < � < 1. For the numerical experimentation, we use c

as given in (3.10) and the other parameters are given below.

R (�) =

"
1� 0:9� 0:4� 0:3� 0:2�

0:1 0:4 0:3 0:2

#
; P1 =

"
0:9 0:1

0:1 0:9

#
; P2 =

"
0:7 0:3

0:1 0:9

#
; P3 =

"
0:5 0:5

0:5 0:5

#

Using the above parameters, we experiment with three levels of � and repeat the earlier

experimentation by comparing the revenues using the environment-based dynamic program

versus revenues obtained by solving simpler single environment models. Please note that

we also use three di¤erent transition matrices. The results are reported in Table 3.10. Once
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Table 3.9: Percentage di¤erence as function of R

� 0 0:1 0:2 0:3 0:4

Good Env. 8.06 4.69 1.78 0.26 0.0017

Bad Env. 15.71 11.63 5.46 3.57 0.0060

again, the bene�ts of using the environment-based model are important when the demand

pro�les (aggregate demand rates in this experiment) are di¤erent.

Table 3.10: Percentage di¤erence when the total demand rate �uctuates

P1 P2 P3

� Good Env. Bad Env. Good Env. Bad Env. Good Env. Bad Env.

0:25 3:56 8:15 0:20 17:34 3:62 8:49

0:5 0:62 3:18 0:07 5:13 0:51 3:10

0:75 0:07 0:06 0:01 0:13 0:06 0:06

3.6 Extension: Markov Modulated Dynamic Pricing

In this section, we extend our investigation to a corresponding dynamic pricing problem. A

similar continuous-time problem with replenishment has been explored by Gayon et al. [17].

In dynamic pricing, customers are not segmented to di¤erent classes but they have di¤erent

purchasing probabilities as a function of the o¤ered price. The goal is to �nd the price to

charge in a given state to maximize the expected revenue. We assume that there is only

one customer in each stage and his willingness to pay is a random variable which depends

on the current environment. If the current environment is j then the price he is willing to

pay Wj has a distribution Fj (v) = P fWj � vg : The distribution function is assumed to
be di¤erentiable and we denote the density by fj (p). We also assume that the distribution

function has an inverse F�1j . Let vt (x; j) be the expected maximum revenue from period

t on, given that current inventory level is x and environment is j. The manager needs to

choose the price of the product in each stage t with a given environment j and inventory
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level x. Therefore, we now have the following Bellman equation

vt (x; j) = max
p�0

(
(1� Fj(p))

 
p+

NX
k=1

pjkvt+1 (x� 1; k)
!
+ Fj(p)

NX
k=1

pjkvt+1 (x; k)

)

with vT (x; j) = 0 and vt (0; j) = 0 as boundary conditions. Since distribution function is

one-to-one, there exists a unique p such that d = �Fj (p) = 1 � Fj (p) for any 0 � d � 1.

Therefore, we have the following equivalent formulation

vt (x; j) = max
0�d�1

(
d

 
pj (d) +

NX
k=1

pjkvt+1 (x� 1; k)
!
+ (1� d)

NX
k=1

pjkvt+1 (x; k)

)

where pj (d) = F�1j (1� d). By using �vt (x; j) = vt (x; j)� vt (x� 1; j), we have

vt (x; j) = max
0�d�1

(
dpj (d)� d

NX
k=1

pjk�vt+1 (x; k)

)
+

NX
k=1

pjkvt+1 (x; k) (3.14)

In (3.14), dpj (d) is the expected revenue during the current stage. Let Hj (d) be the

derivative of dpj (d) with respect to d; we make the following standard assumption as in

Talluri and van Ryzin [30].

Condition 3.14 For any environment j; Hj (d) is a decreasing function in d, and this

condition also implies that Hj
�
�Fj (p)

�
= p� (1� Fj (p)) =fj (p) is increasing function of p:

By using this condition, we know that inner part of the maximization problem is a

concave function in d, therefore; the optimal solution can be found by using

Hj (d
�) =

NX
k=1

�vt+1 (x; k) (3.15)

For the rest of this section, we assume that d� 2 (0; 1). To gain insights on the the
structure of the optimal pricing policy we need to investigate the structure of �vt: First,

we show that marginal revenue decreases as we have more inventory.

Proposition 3.15 �vt (x; i) is a decreasing function of x for any environment i and time

t.
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Proof. We know that vT (x; j) = 0, therefore �vT (x; j) = 0: Assume that �vt+1 is

increasing function of x: Then

�vt (x� 1; j)��vt (x; j) =
NX
k=1

pjk�vt+1 (x� 1; k)�
NX
k=1

pjk�vt+1 (x; k)

+ max
0�d�1

(
dpj (d)� d

NX
k=1

pjk�vt+1 (x� 1; k)
)

� max
0�d�1

(
dpj (d)� d

NX
k=1

pjk�vt+1 (x� 2; k)
)

� max
0�d�1

(
dpj (d)� d

NX
k=1

pjk�vt+1 (x; k)

)

+ max
0�d�1

(
dpj (d)� d

NX
k=1

pjk�vt+1 (x� 1; k)
)

Let d1 be optimal solution for max0�d�1
n
dpj (d)� d

PN
k=1 pjk�vt (x; k)

o
and d2 be

optimal solution for max0�d�1
n
dpj (d)� d

PN
k=1 pjk�vt (x� 2; k)

o
, then we have

�vt (x� 1; j)��vt (x; j) �
NX
k=1

pjk�vt+1 (x� 1; k)�
NX
k=1

pjk�vt+1 (x; k)

+d1pj (d1)� d1
NX
k=1

pjk�vt+1 (x� 1; k)

�d2pj (d2) + d2
NX
k=1

pjk�vt+1 (x� 2; k)

�d1pj (d1) + d1
NX
k=1

pjk�vt+1 (x; k)

+d2pj (d2)� d2
NX
k=1

pjk�vt+1 (x� 1; k)

After cancellations and rearranging the terms, we have

�vt (x� 1; j)��vt (x; j) � (1� d1)
NX
k=1

pjk (�vt+1 (x� 1; k)��vt+1 (x; k))

+d2

NX
k=1

pjk (�vt+1 (x� 2; k)��vt+1 (x� 1; k))
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Since 0 � d1; d2 � 1, right hand side of the last inequality is greater than 0 by using the
induction hypothesis. Hence we have the result.

Under Condition 3.14, Proposition 3.15 implies that the optimal prices are non-increasing

in the inventory on hand. Next, explore the e¤ect of time on the marginal revenue.

Proposition 3.16 �vt (x; i) is a decreasing function of t for any environment i and inven-

tory level x.

Proof. We know that �vT (x; j) = 0. Also, one can easily show that vt (x; j) is an increas-

ing function of x by using induction. Therefore, �vT (x; j) � �vT�1 (x; j) : Assume that

�vt+1 (x; j) � �vt (x; j) for any inventory level x and environment j: Then

�vt�1 (x; j)��vt (x; j) =
NX
k=1

pjk�vt (x; k)�
NX
k=1

pjk�vt+1 (x; k)

+ max
0�d�1

(
dpj (d)� d

NX
k=1

pjk�vt (x; k)

)

� max
0�d�1

(
dpj (d)� d

NX
k=1

pjk�vt (x� 1; k)
)

� max
0�d�1

(
dpj (d)� d

NX
k=1

pjk�vt+1 (x; k)

)

+ max
0�d�1

(
dpj (d)� d

NX
k=1

pjk�vt+1 (x� 1; k)
)

Let d2 be optimal solution for max0�d�1
n
dpj (d)� d

PN
k=1 pjk�vt (x� 1; k)

o
and d3 be



Chapter 3: Single Resource Capacity Control Problem 37

the optimal solution for max0�d�1
n
dpj (d)� d

PN
k=1 pjk�vt+1 (x; k)

o
: Then

�vt�1 (x; j)��vt (x; j) �
NX
k=1

pjk (�vt (x; k)��vt+1 (x; k))

+d3pj (d3)� d3
NX
k=1

pjk�vt (x; k)

�d2pj (d2) + d2
NX
k=1

pjk�vt (x� 1; k)

�d3pj (d3) + d3
NX
k=1

pjk�vt+1 (x; k)

+d2pj (d2)� d2
NX
k=1

pjk�vt+1 (x� 1; k)

After cancellations and rearranging the terms we have

�vt�1 (x; j)��vt (x; j) � (1� d3)
NX
k=1

pjk (�vt (x; k)��vt+1 (x; k))

+d2

NX
k=1

pjk (�vt (x� 1; k)��vt+1 (x� 1; k))

By using the induction hypothesis and 0 � d 2; d3 � 1; we have the result.
Proposition 3.16 provides further insights on the structure of the optimal pricing policy.

Under Condition 3.14, Proposition 3.16 implies that the optimal prices are non-increasing

in the remaining time for the same inventory level and environment. While the optimal

price paths need to be non-increasing in general, they are so when the environment does

not �uctuate.

3.7 Conclusion and Future Research

We investigated a single resource capacity control problem with a �uctuating demand envi-

ronment. Modeling �uctuating demand through a Markov-modulated environment process

is widely accepted in the inventory control literature. But there has not been much work

on such models in capacity control problems rooted in revenue management.

We were able to provide a fairly complete set of structural results on the optimal ad-

mission policy under a Markov-modulated demand process. The structural results comprise
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the existence of environment-based thresholds but also extend to the e¤ect of the time, en-

vironments and various problem parameters. Some extensions of the model follow relatively

easily as in the dynamic pricing case presented in Section 3.6. Other extensions such as

network revenue management merit further research. Another interesting and challenging

line of extension is to consider uncertain environment transition rates.
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Chapter 4

CHOICE MODEL OF CONSUMER BEHAVIOR

4.1 Model Formulation

We formulate a discrete time, �nite horizon (T periods) Markov decision process (MDP)

model of the general discrete choice model of consumer behavior under a �uctuating demand

environment. Let Xt 2 f1; 2; � � � ;Mg denote the environment. X = fX0; X1; � � � ; XT g is
assumed to be a Markov chain with transition matrix P where pij = PfXt+1 = jjXt = ig:
We assume that there is at most one arrival during each time interval. We denote the

probability of arrival in environment j by �j .

Each customer makes a decision according to the current environment and set of products

o¤ered by the �rm. Therefore, �rm�s objective is to choose the optimal set of products to

o¤er to maximize its expected revenue. Let N be the �nite set of all products that can be

o¤ered by the �rm. Let P ja (S) denote the probability that a product of type a 2 S has been
chosen in environment j given that the set of o¤ered products is S. Similarly, we de�ne

P j0 (S) as the probability of no purchase in environment j when the �rm o¤ers product set

S � N .
For each product a that is sold the reward is c (a). The transition probabilities and

reward function are assumed to be stationary and we suppose without loss of generality that

the fare classes are ordered so that c (a1) � c (a2) when a1 � a2: We let R = (�1;+1)
denote the set of real numbers and R+ = [0;+1) denote the set of positive real numbers.
We also use the following notations:

vt(x; j) = expected maximum revenue from period t until period T given that the

current inventory level is x and the environment is j:

�vt (x; k) = vt (x; k)� vt (x� 1; k)

The optimal solution to this problem can be obtained by solving the following Bellman
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equation

vt(x; j) = max
S�N

f
X
a2S

�jP
j
a (S)

 
c (a) +

MX
k=1

pjkvt+1 (x� 1; k)
!

(4.1)

+
�
�jP

j
0 (S) + 1� �j

� MX
k=1

pjkvt+1 (x; k)g

= max
S�N

(X
a2S

�jP
j
a (S)

 
c (a)�

MX
k=1

pjk�vt+1 (x; k)

!)
+

MX
k=1

pjkvt+1 (x; k)

with the following boundary conditions

vt (0; j) = 0 for any environment j; t = 1; � � � ; T;
vT (x; j) = 0 for any inventory level x, environment j:

Talluri and van Ryzin [29] suggest the reformulation for the choice model in a way

that uses the total probability of purchase and the total expected revenue when the o¤ered

product set is S: We adapt this reformulation to the environment based model and write

vt (x; j) = �j max
S�N

f(Rj (S)�Qj (S)
MX
k=1

pjk�vt+1 (x; k)g+
MX
k=1

pjkvt+1 (x; k) (4.2)

where

Qj(S) =
P
a2S

P ja (S) = 1� P
j
0 (S) (4.3)

and

Rj (S) =
P
a2S

c (a)P ja (S) . (4.4)

Note that Qj (S) and Rj (S) respectively denote the probability that a product will be

purchased and the expected revenue if S is o¤ered in environment j. To understand the

structure of the optimal sets, we now de�ne environment based e¢ cient sets.

De�nition 4.1 A set T is j�ine¢ cient if there exists probabilities � (S) for any S � N

with
P
S�N � (S) = 1 such that

Qj (T ) �
P
S�N

� (S)Qj (S) and Rj (T ) <
P
S�N

� (S)Rj (S) .

Otherwise, T is j�e¢ cient.
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The intuition behind the de�nition of an environment based ine¢ cient set is similar to

the interpretation of ine¢ cient sets in Talluri and van Ryzin [29]. A set T is j-ine¢ cient if

other sets S � N exist, such that the combination of their corresponding expected revenues

is strictly greater than the expected revenue of T (i:e:; Rj (T )); but the combination of their

corresponding probability of purchase is less than Qj (T ) :

Talluri and van Ryzin [29] show that it is never optimal to o¤er an ine¢ cient set. We also

have the same property and this can be shown by using the following version of Proposition

1 proven in Talluri and van Ryzin [29].

Proposition 4.2 A set T is j�e¢ cient if and only if, for some value v � 0; T is an

optimal solution to

max
S�N

�
Rj (S)� vQj (S)

	
.

By using this proposition and the fact that
PM
k=1 pjk�vt+1 (x; k) � 0, we have the

following important result.

Proposition 4.3 An j�ine¢ cient set cannot be optimal to (4.2).

Since N is a �nite set, we have �nite number of e¢ cient sets in each environment.

Talluri and van Ryzin [29] argued that e¢ cient sets can be ordered such that both expected

revenues and probabilities of purchase increases in order such that

Qj
�
Sj1

�
� Qj

�
Sj2

�
� ::: � Qj

�
Sjk

�
) Rj

�
Sj1

�
� Rj

�
Sj2

�
� ::: � Rj

�
Sjk

�
where Sjn corresponds to the nth e¢ cient set in environment j and k is the total number

of such sets. Talluri and van Ryzin [29] show this result by using the following version of

Lemma 2 which is also valid for our problem.

Lemma 4.4 The e¢ cient frontier �Rj : [0; 1]! R de�ned by

�Rj (q) = max

8><>:
P
S�N

� (S)Rj (S) :
P
S�N

� (S)Qj (S) � q;P
S�N

� (S) = 1; � (S) � 0

9>=>;
is concave increasing in q:
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4.2 Structural Properties

In this section, we obtain structural properties of the optimal policy for the choice model of

consumer behavior under a Markov modulated demand. We show the monotonicity results

corresponding to the structure of the optimal policy. First, we need some preliminary results

before stating them.

Lemma 4.5 If Rj
�
Sjl

�
� Qj(Sjl )v0 � Rj

�
Sjk

�
� Qj(Sjk)v0 for some v0 � 0 and environ-

ments l > k, then

Rj
�
Sjl

�
�Qj(Sjl )v � R

j
�
Sjk

�
�Qj(Sjk)v

for any 0 � v � v0:

Proof. Rj
�
Sjl

�
�Qj(Sjl )v0 � Rj

�
Sjk

�
�Qj(Sjk)v0 is equivalent to

Rj
�
Sjl

�
�Rj

�
Sjk

�
� v0

�
Qj(Sjl )�Q

j(Sjk)
�
:

Since l > k, we have Qj(Sjl ) � Qj(Sjk). Then, we have the following inequality by using

0 � v � v0,
v0

�
Qj(Sjl )�Q

j(Sjk)
�
� v

�
Qj(Sjl )�Q

j(Sjk)
�
:

Hence, we have the desired result.

Let k�j;t (x) be the index of the e¢ cient set that is optimal in environment j at time t

with an inventory level x. In case of equivalence, we take the set with the largest index. We

have the following proposition to understand the structure of the optimal policy.

Proposition 4.6 k�j;t (x) is decreasing as
PM
k=1 pjk�vt+1 (x; k) is increasing.

Proof. Let vj denote
PM
k=1 pjk�vt+1 (x; k) : Consider 0 � v

j
1 � v

j
2, and let ki be the index

among e¢ cient sets such that it solves maxk
n
Rj
�
Sjk

�
�Qj

�
Sjk

�
vji

o
for i = 1; 2: Suppose

k1 � k2; then we have

Rj
�
Sjk2

�
�Qj

�
Sjk2

�
vj2 � Rj

�
Sjk1

�
�Qj

�
Sjk1

�
vj2

since k2 is an optimal e¢ cient set for maxk
n
Rj
�
Sjk

�
�Qj

�
Sjk

�
vj2

o
: By using 0 � vj1 � v

j
2

and the previous lemma

Rj
�
Sjk2

�
�Qj

�
Sjk2

�
vj1 � Rj

�
Sjk1

�
�Qj

�
Sjk1

�
vj1.
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However, this inequality contradicts the optimality of k1 for maxk
n
Rj
�
Sjk

�
�Qj

�
Sjk

�
vj1

o
:

Let S�t (x; j) denote the optimal set that solves (4.1) so that

S� = fS�t (x; j) ; x = 0; 1; � � � ; N; j = 1; 2; � � � ;M; t = 0; 1; � � � ; Tg

is the optimal policy. We have the following proposition to show the e¤ects of the current

inventory level on the optimal policy.

Proposition 4.7 vt(x; j) is a concave function of x for any environment j and time t, i.e.,

�vt (x; j) � �vt (x� 1; j) :

Proof. Clearly �vT (x� 1; j) = 0 for any x. By induction, suppose �vt+1 (x; j) �
�vt+1 (x� 1; j) for any x and j: Then,

�vt (x� 1; j)��vt (x; j) =
MX
k=1

pjk�vt+1 (x� 1; k)�
MX
k=1

pjk�vt+1 (x; k)

+

MX
k=1

pjk
X

a2S�
t (x�1;j)

�jP
j
a (S

�
t (x� 1; j)) (c (a)��vt+1 (x� 1; k))

�
MX
k=1

pjk
X

a2S�
t (x�2;j)

�jP
j
a (S

�
t (x� 2; j)) (c (a)��vt+1 (x� 2; k))

�
MX
k=1

pjk
X

a2S�
t (x;j)

�jP
j
a (S

�
t (x; j)) (c (a)��vt+1 (x; k))

+

MX
k=1

pjk
X

a2S�
t (x�1;j)

�jP
j
a (S

�
t (x� 1; j)) (c (a)��vt+1 (x� 1; k))
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Since S�t (x; j) is the optimal set when inventory level is x, and the environment is j at time

t, any other set will be worse than this set. Hence, we have

�vt (x� 1; j)��vt (x; j) �
MX
k=1

pjk�vt+1 (x� 1; k)�
MX
k=1

pjk�vt+1 (x; k)

+

MX
k=1

pjk
X

a2S�
t (x�2;j)

�jP
j
a (S

�
t (x� 2; j)) (c (a)��vt+1 (x� 1; k))

�
MX
k=1

pjk
X

a2S�
t (x�2;j)

�jP
j
a (S

�
t (x� 2; j)) (c (a)��vt+1 (x� 2; k))

�
MX
k=1

pjk
X

a2S�
t (x;j)

�jP
j
a (S

�
t (x; j)) (c (a)��vt+1 (x; k))

+

MX
k=1

pjk
X

a2S�
t (x;j)

�jP
j
a (S

�
t (x; j)) (c (a)��vt+1 (x� 1; k))

After some cancellations, we obtain

�vt (x� 1; j)��vt (x; j) �
MX
k=1

pjk�(x; k)

+
MX
k=1

pjk
X

a2S�
t (x�2;j)

�jP
j
a (S

�
t (x� 2; j))�(x� 1; k)

�
MX
k=1

pjk
X

a2S�
t (x;j)

�jP
j
a (S

�
t (x; j))�(x; k)

where �(x; k) = �vt+1 (x� 1; k)��vt+1 (x; k) : This further leads to

�vt (x� 1; j)��vt (x; j) �
MX
k=1

pjk
X

a2S�
t (x�2;j)

�jP
j
a (S

�
t (x� 2; j))�(x� 1; k)

+
MX
k=1

pjk

0@1� X
a2S�

t (x;j)

�jP
j
a (S

�
t (x; j))

1A�(x; k)
after some mathematical manipulations. The right hand side of the inequality is positive

by using the induction hypothesis and the fact that
P

a2S�
t (x;j)

�jP
j
a (S�t (x; j)) � 1.

Proposition 4.8 �vt+1 (x; j) � �vt (x; j) for any inventory level x; environment j and

time t:
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Proof. Clearly�vT (x; j) = 0 ��vT�1 (x; j) for any x. By induction, suppose�vt+2 (x; j) �
�vt+1 (x; j) for any x and j: Then,

�vt (x; j)��vt+1 (x; j) =

MX
k=1

pjk�vt+1 (x; k)�
MX
k=1

pjk�vt+2 (x; k)

+
MX
k=1

pjk
X

a2S�
t (x;j)

�jP
j
a (S

�
t (x; j)) (c (a)��vt+1 (x; k))

�
MX
k=1

pjk
X

a2S�
t (x�1;j)

�jP
j
a (S

�
t (x� 1; j)) (c (a)��vt+1 (x� 1; k))

�
MX
k=1

pjk
X

a2S�
t+1(x;j)

�jP
j
a

�
S�t+1 (x; j)

�
(c (a)��vt+2 (x; k))

+
MX
k=1

pjk
X

a2S�
t+1(x�1;j)

�jP
j
a (S

�
t (x� 1; j)) (c (a)��vt+2 (x� 1; k))

Since S�t (x; j) is the optimal set when inventory level is x, and the environment is j at time

t, any other set will be worse than this set. Hence, we have

�vt (x; j)��vt+1 (x; j) �
MX
k=1

pjk�vt+1 (x; k)�
MX
k=1

pjk�vt+2 (x; k)

+

MX
k=1

pjk
X

a2S�
t+1(x;j)

�jP
j
a

�
S�t+1 (x; j)

�
(c (a)��vt+1 (x; k))

�
MX
k=1

pjk
X

a2S�
t (x�1;j)

�jP
j
a (S

�
t (x� 1; j)) (c (a)��vt+1 (x� 1; k))

�
MX
k=1

pjk
X

a2S�
t+1(x;j)

�jP
j
a

�
S�t+1 (x; j)

�
(c (a)��vt+2 (x; k))

+
MX
k=1

pjk
X

a2S�
t (x�1;j)

�jP
j
a (S

�
t (x� 1; j)) (c (a)��vt+2 (x� 1; k))
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After some cancellations, we obtain

�vt (x; j)��vt+1 (x; j) �
MX
k=1

pjk (�vt+1 (x; k)��vt+2 (x; k))

�
MX
k=1

pjk
X

a2S�
t+1(x;j)

�jP
j
a

�
S�t+1 (x; j)

�
�(x; k)

+
MX
k=1

pjk
X

a2S�
t (x�1;j)

�jP
j
a (S

�
t (x� 1; j))�(x� 1; k)

where �(x; k) = �vt+1 (x; k)��vt+2 (x; k) : This is equivalent to

�vt (x; j)��vt+1 (x; j) �
MX
k=1

pjk

0@1� X
a2S�

t+1(x;j)

�jP
j
a

�
S�t+1 (x; j)

�1A�(x; k)
+

MX
k=1

pjk
X

a2S�
t (x�1;j)

�jP
j
a (S

�
t (x� 1; j))�(x� 1; k)

The right hand side of the inequality is positive by using the induction hypothesis andP
a2S�

t+1(x;j)

�jP
j
a

�
S�t+1 (x; j)

�
� 1.

We have the following corollary for the structure of the optimal policy. This corollary is

proven by using Proposition 4.6, 4.7, and 4.8.

Corollary 4.9 k�j;t (x) increases as we increase the inventory level x, and it increases as t

increases, for any environment j.

Let us discuss the implications of this corollary. As time increases, probability of pur-

chase and expected revenue from the optimal set of products increase. In addition to that,

these values decrease as inventory level decreases. Since �rm manager will want to o¤er

products such that probability of purchase is high when there is more inventory or less time

to the end of the selling season.

4.3 Numerical Illustration

Suppose that there are 2 environments and 3 products which are labeled as K, L and M .

Then, we can o¤er 8 possible sets of products and we label these sets by numbers from 1 to

8. The demand probabilities P ja (S) are provided in Table 4.1.

We further suppose that the prices of the products are
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Product a K L M

Price c (a) 100 300 1000

and the arrival probabilities are

Environment j 1 2

Arrival probability �j 0:8 0:9

with planning horizon T = 11.

Table 4.1: Demand Probabilities

Set Label 1 2 3 4 5 6 7 8

a ? fKg fLg fMg fK;Lg fK;Mg fL;Mg fK;L;Mg
K 0 0:8 0 0 0:7 0:7 0 0:65

P 1a (S) L 0 0 0:5 0 0:15 0 0:4 0:1

M 0 0 0 0:2 0 0:1 0:2 0:1

0 1 0:2 0:5 0:8 0:15 0:2 0:4 0:15

Label 1 2 3 4 5 6 7 8

a ? fKg fLg fMg fK;Lg fK;Mg fL;Mg fK;L;Mg
K 0 0:9 0 0 0:55 0:65 0 0:55

P 2a (S) L 0 0 0:6 0 0:4 0 0:5 0:2

M 0 0 0 0:3 0 0:3 0:2 0:2

0 1 0:1 0:4 0:7 0:05 0:05 0:3 0:05

To �nd the e¢ cient sets, we �rst �nd Rj (S) and Qj (S) using these parameters by (4.3)

and (4.4). Hence, we have

Set Label 1 2 3 4 5 6 7 8

? fKg fLg fMg fK;Lg fK;Mg fL;Mg fK;L;Mg
R1 (S) 0 80 150 200 115 170 320 195

Q1 (S) 0 0:8 0:5 0:2 0:85 0:8 0:6 0:85

R2 (S) 0 90 180 300 175 365 350 315

Q2 (S) 0 0:9 0:6 0:3 0:95 0:95 0:7 0:95
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Then, we plot the scatter diagram of the corresponding values Rj(S) and Qj(S) for

any o¤er set S and j = 1; 2 to determine e¢ cient sets for both environments. We �nd

that fMg and fL;Mg are e¢ cient sets in environment 1 and fMg, fL;Mg and fK;Mg in
environment 2 by considering Figure 4.1. We now suppose that the transition matrix of the

Figure 4.1: E¤ects of Environment - Consumer Choice Model
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environmental process is

P =

"
0:95 0:05

0:05 0:95

#
.

To �nd the optimal set for any inventory level, environment and time, we use the labels

de�ned for any set in each environment. We search among all sets, in order to show that

ine¢ cient sets cannot be optimal. Also note that e¢ cient sets of environment 1 are fMg
and fL;Mg which are labeled 4 and 6 respectively. Since R1 (fMg) � R1 (fL;Mg), we label
fMg as the 1st e¢ cient set, and fL;Mg the 2nd e¢ cient set. Similarly, the e¢ cient sets
of environment 2 are fMg; fL;Mg and fK;Mg which are labeled 4, 7 and 6 respectively.
Since R1 (fMg) � R1 (fL;Mg) � R1 (fK;Mg), we label fMg; fL;Mg; and fK;Mg the 1st,
2nd and 3rd e¢ cient sets respectively. We use both labels by ijj where i is the index among
all sets, j is the index among e¢ cient sets to show the optimal sets. Table 4.2 shows the
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Table 4.2: Environment 1 - Optimal Sets

Env. 1 Time���! 1 2 3 4 5 6 7 8 9 10

1 4j1 4j1 4j1 4j1 4j1 4j1 4j1 4j1 7j2 7j2
2 4j1 4j1 4j1 4j1 4j1 7j2 7j2 7j2 7j2 7j2

" 3 4j1 4j1 7j2 7j2 7j2 7j2 7j2 7j2 7j2 7j2
x 4 7j2 7j2 7j2 7j2 7j2 7j2 7j2 7j2 7j2 7j2
# 5 7j2 7j2 7j2 7j2 7j2 7j2 7j2 7j2 7j2 7j2

6 7j2 7j2 7j2 7j2 7j2 7j2 7j2 7j2 7j2 7j2
7 7j2 7j2 7j2 7j2 7j2 7j2 7j2 7j2 7j2 7j2
8 7j2 7j2 7j2 7j2 7j2 7j2 7j2 7j2 7j2 7j2

optimal set for a given inventory level and time when the current environment is the �rst

one.

As we expect, only 4th and 7th sets are optimal, and none of the ine¢ cient sets is

optimal in environment 1. For a given inventory level, the index of the optimal set increases

from 1 to 2 as time increases. Similarly, for a given time, we observe an increase in the

index of the optimal set as inventory level increases. The optimal sets for environment 2 is

provided in Table 4.3.

Table 4.3: Environment 2 - Optimal Sets

Env. 2 Time���! 1 2 3 4 5 6 7 8 9 10

1 4j1 4j1 4j1 4j1 4j1 4j1 4j1 4j1 4j1 6j3
2 4j1 4j1 4j1 4j1 4j1 4j1 4j1 4j1 6j3 6j3

" 3 4j1 4j1 4j1 4j1 4j1 4j1 7j2 6j3 6j3 6j3
x 4 4j1 4j1 4j1 4j1 7j2 7j2 6j3 6j3 6j3 6j3
# 5 4j1 4j1 7j2 7j2 6j3 6j3 6j3 6j3 6j3 6j3

6 7j2 7j2 7j2 6j3 6j3 6j3 6j3 6j3 6j3 6j3
7 7j2 7j2 6j3 6j3 6j3 6j3 6j3 6j3 6j3 6j3
8 6j3 6j3 6j3 6j3 6j3 6j3 6j3 6j3 6j3 6j3

Recall that we have 3 e¢ cient sets in environment 2. We observe that only these sets
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are optimal and monotonicity results corresponding to the structure of the optimal policy

also hold in environment 2.

4.4 The E¢ ciency of the Environment Based Model

To evaluate the e¢ ciency of our environment based model, we mix the probabilities of

each product demanded so that Pa (S) = qP 1a (S) + (1� q) P 2a (S) where q 2 [0; 1] is the
probability mixture. Similarly, we mix the arrival probabilities by � = q �1+(1� q) �2. We
use the same problem parameters as we did in the preceding section. In addition to that,

we take the horizon length T = 500 and capacity 200. We consider the optimal policy of

the following new problem which is independent of the environment. The Bellman equation

is

wt(x) = max
S�N

f
X
a2S

�Pa (S) (c (a) + wt+1 (x� 1))

+ (�P0 (S) + 1� �)wt+1 (x)g

with boundary conditions wT (x) = 0 and wt (0) = 0 for all x and t.

By using this model, we obtain a policy that does not depend on the environment.

This gives a non-optimal policy for our environment based model. We use this policy in our

environment model and we calculate the corresponding revenue function value for time 0 and

inventory level 200 starting with environment 1. We compare this value with the revenue

function value for time 0, inventory level 200 and environment 1 by using the optimal policy

of the environment based model. This comparison and di¤erence is given for di¤erent values

of q in Figure 4.2.

In the environment based model, the inventory manager makes full use of the information

that is available at any time. The optimal product sets that are o¤ered depend on the

environment. In the mixed model, however, the information is either ignored or unavailable.

Instead, the manager considers a simpli�ed model where parameters for the next period are

the same as those of environment 1 with a mixing probability q or environment 2 with

probability 1 � q. Figure 4.2 clearly demonstrates the bene�t of our environment based
model.
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Figure 4.2: E¤ects of Environment - Consumer Choice Model
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4.5 Conclusion

In this chapter, we have established the structural properties of general discrete choice model

of consumer behavior with a randomly �uctuating demand environment. We focused on the

structure of the optimal policy and showed that main results of the general discrete choice

model of consumer behavior also hold in a randomly �uctuating demand environment. In

other words, we showed that only e¢ cient sets can be optimal and the index of the optimal

e¢ cient set has a monotonic structure in time and inventory level. Moreover, we have

illustrated the structural results and show the e¢ ciency of the environment based model.

A worthwhile extension would be to investigate the model in continuous time.
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Chapter 5

PARTIALLY OBSERVED DEMAND ENVIRONMENT

We formulate a discrete time, �nite horizon (duration T ) partially observable Markov

decision process (POMDP) model of single resource capacity control problem. We assume

that there is at most one arrival in each period. Let Xt 2 f1; 2; � � � ;Mg denote the environ-
ment at period t. X = fX0; X1; � � � ; XT g is assumed to be a Markov chain with transition
matrix P where pij = PfXn+1 = jjXn = ig. Let Dt 2 f0; 1; 2; � � � ; Ng denote the type
of fare class that arrives at period t. If Dt = 0; then there is no arrival at that period.

Probability that fare class of d arrives is denoted by rjd, and probability of no arrival is

denoted by rj0 when the current environment is j. Therefore,
PN
a=0 rja = 1 for any j.

Let Bt 2
�
1; 2; � � � ; Bd

	
the number of fare products requested when fare class d arrives

at period t. Probability that b units of the product is requested is denoted by qjdb given

that the current environment is j and fare class is d. Clearly, if Dt = 0 then Bt = 0 since

B0 = 0 trivially. Let Yt 2 z denote the observation at period t where z is a �nite set of

all possible observations. We suppose that Y gives partial information about the process X

and realization of process Y depends on the true state of the environment X such that

E (k; y) = P fYt = yjXt = kg

for some so-called emission matrix E. For each product sold, the reward is c (y; d) if obser-

vation is y, and fare class is d. The transition probabilities and reward function are assumed

to be stationary and we suppose that fare classes are ordered so that c (y; d1) � c (y; d2)

when d1 � d2. Note that c (y; 0) = 0.
We will use the following notations:

�Dt = (D0; D1; � � � ; Dt)
�Bt = (B0; B1; � � � ; Bt)
�Yt = (Y0; Y1; � � � ; Yt)
�t = (belief vector) conditional distribution of Xt given �Yt, �Dt�1 and �Bt�1:
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vt(x; y; d; b; �) = expected maximum revenue from period t until period T given that the

current inventory level is x and belief vector is �, and fare class is d

with a requested amount of b, and observation is y.

�vt(x; y; d; b; �) = vt(x; y; d; b; �)� vt(x� 1; y; d; b; �)
U (b; x) = f0; 1; � � � ;min fb; xgg

We suppose that the initial belief vector �0 is known. By using Bayesian updating we

have

�kn+1 = P
�
Xn+1 = kj �Dn; �Bn; �Yn+1

	
= T k�njDn;Bn;Yn+1

where

T k�jd;b;y = P
�
Xn+1 = kj �Dn�1; Dn = d; �Bn�1; Bn = b; �Yn; Yn+1 = y

	
=
P
�
Xn+1 = k; �Dn�1; Dn = d; �Bn�1; Bn = b; �Yn; Yn+1 = y

	
P
�
�Dn�1; Dn = d; �Bn�1; Bn = b; �Yn; Yn+1 = y

	

=

MP
j=1

P
�
Xn+1 = k; �Dn�1; Dn = d; �Bn�1; Bn = b; �Yn; Yn+1 = y;Xn = j

	
MP
j=1

MP
i=1
P
�
�Dn�1; Dn = d; �Bn�1; Bn = b; �Yn; Yn+1 = y;Xn = j;Xn+1 = i

	

=

MP
j=1

E (k; y) qjdbrjdpjk�
j

MP
j=1

MP
i=1

E (i; y) qjdbrjdpji�
j

for a = 1; 2; � � � ; N .
Assuming inventory level at the beginning of period t is x; observation at the beginning

of period t is y; fare class is d with a demand of b; and current conditional distribution of

true state of environment �; optimal solution to this problem can be obtained by solving

the following Bellman equation

vt(x; y; d; b; �) = max
u2U(b;x)

8<:c (y; d)u+
MX
j=1

�jHj
vt+1 (x� u; d; b; �)

9=; (5.1)
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where

Hj
f (x; d; b; �) =

MP
k=1

P
z2z

pjkE (k; z) I
j
f

�
x; z; T�jd;b;z

�
Ijf (x; z; �) =

NX
e=1

BeX
a=1

rjeqjeaf (x; z; e; a; �) + rj0f (x; z; 0; 0; �)

with the following boundary conditions

vt(0; d; b; �) = 0 for any �, d, b.

vT (x; d; b; �) = 0 for any x, �, d, and b.

By using the de�nition of �vt, this model is equivalent to

vt(x; y; d; b; �) = max
u2U(b;x)

8<: uP
k=1

0@c (y; d)� MX
j=1

�jHj
�vt+1

(x+ 1� k; d; b; �)

1A9=; (5.2)

+
MX
j=1

�jHj
vt (x; d; b; �)

where the sum is zero if u = 0:

5.1 Structural Properties

In this section, we obtain structural properties of this model. Intuitively, if we have one

more inventory, then expected revenue should be larger. Similarly, expected revenue should

be larger if we have more time to go. These claims can be easily shown by using induction.

Another important structural property is the concavity of vt (x; d; b; �) in x.

Theorem 5.1 vt(x; y; d; b; �) is a concave function in x for any fare class d, demand b,

belief vector �, and time t.

Proof. Since vT (x; y; d; b; �) is zero for any x and �, we have the concavity of vT (x; y; d; b; �)

for any �: Suppose that vt+1 (x; y; d; b; �) is a concave function of x for any y, d; b; and �:We

can use Lemma 3.1 by taking g as
PM
j=1 �

jHj
vt+1 (x� u; d; b; �) and m as min fb; xg : Note

that Ijvt+1
�
x� u; z; T�jd;b;y

�
is concave for any u 2 U (b; x) and y 2 z since Ijvt+1 is a positive

linear combination of vt+1. Similarly, H
j
vt+1 is also a concave function in x: Therefore, we
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have the concavity of function g by using the fact that �j � 0: Hence vt(x; y; d; b; �) de�ned
by (5.1) is concave in the current inventory level x.

Theorem 5.1 establishes that �vt (x; �) decreases as we increase the inventory level x.

By considering (5.2), we can conclude that

c (y; d)�
MX
j=1

�jHj
�vt+1

(x+ 1� k; d; b; �) (5.3)

is decreasing in k: Therefore, in (5.2), we should increase u until (5.3) becomes negative or

it is equal to min fb; xg : As a result, there is a threshold level

ld;b;y;�t = min

8<:x : c (y; d) �
MX
j=1

�jHj
�vt+1

(x; d; b; �)

9=; (5.4)

which is the maximum quantity for the inventory level such that if the current inventory

level is less than or equal to ld;b;y;�t it is optimal to reject any demand for fare class d when

amount b is requested, and y is observed with a belief vector � at period t. However, if the

inventory on hand is greater than ld;b;y;�t , then demand for fare class d is satis�ed until the

inventory level drops to ld;b;y;�t or the whole demand is satis�ed. Hence the optimal decision

at period t is

u� = min

��
x� ld;b;y;�t + 1

�+
; b

�
(5.5)

when b units of product d is demanded while the observation is y and belief vector is �.

We next investigate the structure of the marginal value function. By using the following

proposition, we will be able to conclude that the marginal value of one additional inventory

is a non-increasing function in time t:

Proposition 5.2 �vt is a decreasing function of t:

Proof. Since vt (x; y; d; b; �) is increasing in x, �vt (x; y; d; b; �) � 0. Also �vT (x; j) = 0,
which implies that �vT (x; y; d; b; �) � �vT�1 (x; y; d; b; �). Suppose �vt+2 (x; y; d; b; �) �
�vt+1 (x; y; d; b; �) for any inventory level x, observation y, product type d with an amount

b requested and belief vector �. Consider the following inequality
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max
u12U(b;x)

8<:c (y; d)u+
MX
j=1

�jHj
vt+2 (x� u; d; b; �)

9=;� max
u22U(b;x�1)

8<:c (y; d)u+
MX
j=1

�jHj
vt+2 (x� 1� u; d; b; �)

9=;
(5.6)

�

max
u32U(b;x)

8<:c (y; d)u+
MX
j=1

�jHj
vt+1 (x� u; d; b; �)

9=;� max
u42U(b;x�1)

8<:c (y; d)u+
MX
j=1

�jHj
vt+1 (x� 1� u; d; b; �)

9=;
Let u�i be the optimal value of ui in the inequality above. We should note that l

d;b;y;�
t+1 �

ld;b;y;�t for any d, b, y, �. This can be easily seen by considering the induction hypothesis

and (5.4). As a result, we have u�3 � u�1 and u�4 � u�2. Also, we know that u�1 � u�2 is either
1 or zero. Same reasoning is valid for u�3 � u�4. If they are equal, then this is possible only
either u�1 = u

�
2 = 0 or u

�
1 = u

�
2 = b. Therefore, there are six cases we need to consider for

the possible values of u�1, u
�
2, u

�
3, u

�
4.

Case (u�1; u
�
2; u

�
3; u

�
4) Inequality (5.6) simpli�es to

1 (0; 0; 0; 0)
PM
j=1 �

jHj
�vt+2

(x; d; b; �) �
PM
j=1 �

jHj
�vt+1

(x; d; b; �)

2 (y2 + 1; y2; 0; 0) c (y; d) �
PM
j=1 �

jHj
�vt+1

(x; d; b; �)

3 (b; b; 0; 0)
PM
j=1 �

jHj
�vt+2

(x� b; d; b; �) �
PM
j=1 �

jHj
�vt+1

(x; d; b; �)

4 (y2 + 1; y2; y1 + 1; y1) c (y; d) � c (y; d)
5 (b; b; y1 + 1; y1)

PM
j=1 �

jHj
�vt+2

(x� b; d; b; �) � c (y; d)
6 (b; b; b; b)

PM
j=1 �

jHj
�vt+2

(x� b; d; b; �) �
PM
j=1 �

jHj
�vt+1

(x� b; d; b; �)

Here, y1 and y2 are integers such that 0 � y1 � b� 1 and y1 � y2 � b� 1. Case 1 and 6
are true due to the induction hypothesis. Also, case 4 is obviously true. In case 2, suppose

that c (y; d) >
PM
j=1 �

jHj
�vt+1

(x; d; b; �), then we should accept at least one customer when

current inventory level is x at period t. But u�3 = 0, and inequality in case 2 is true. In case

5, suppose that
PM
j=1 �

jHj
�vt+2

(x� b; d; b; �) > c (y; d), but this contradicts with u�2 = b:

In case 3, since u�3 = 0, we have c (y; d) �
PM
j=1 �

jHj
�vt+1

(x; d; b; �). This can be shown by

using the same reasoning used in case 2. Similarly, we have
PM
j=1 �

jHj
�vt+2

(x� b; d; b; �) �
c (y; d) since u�2 = b. Hence we have the inequality of case 3. Consequently, �vt decreases

in t.
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We analyze the structure of threshold levels by using this proposition. Since the marginal

value of one additional inventory is a non-increasing function in time t, we conclude that

ld;b;y;�t+1 � ld;b;y;�t

which means that threshold level is non-increasing in time by considering (5.4).

5.2 Numerical Illustration

In our illustration, we assume that customer demands only one product and Bayesian up-

dating is done only according to the observation. We also assume that there are two types

of observations, two environments and two fare-classes. The cost vector, transition matrix,

and arrival probability matrix are

P =

"
0:3 0:7

0:1 0:9

#
; c =

"
0 100 400

0 200 500

#
; R =

"
0:3 0:5 0:2

0:2 0:3 0:5

#
with a planning horizon T = 8 and capacity 5. Furthermore, we take arbitrarily �0 =

[0:5 0:5] as the initial belief vector. Note that 0 in the vector c stands for the revenue of the

�ctitious event. Suppose that we observe state 2 and fare-class 2 arrives in the �rst period.

Therefore, we have a customer who is willing to pay 500 dollars in the initial stage.

For simplicity, we assume that Bayesian updating is done only according to the obser-

vation. Therefore, we have

T k�jd;b;y = P
�
Xn+1 = kj �Yn; Yn+1 = y

	

=

MP
j=1

E (k; y) pjk�
j

MP
j=1

MP
i=1

E (i; y) pji�
j

:

for this illustration. Hence the optimal decision has the form

u� = min

��
x� ld;b;y;�t + 1

�+
; b

�
:

where ld;b;y;�t is actually independent of b. Since belief vector is updated by the observations,

we have 2t�1 di¤erent belief vectors at time t due to the di¤erent sequences of observations.

In our numerical illustration, our purpose is to observe the e¤ect of the emission matrix
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Table 5.1: Optimal expected revenue with di¤erent values of emission matrix

i 0 1 2 3 4 5

Expected Revenue 1845:9 1874 1901:9 1929:3 1955:9 1981:2

Table 5.2: Optimal threshold levels for fare class 1 with di¤erent values of emission matrix

i 0 1 2 3 4 5

Threshold 4 4 4 5 5 5

on the optimal policy and optimal expected revenue. Therefore, we change the emission

matrix by taking

Ei =

"
0:5 + 0:1i 0:5� 0:1i
0:5� 0:1i 0:5 + 0:1i

#
where i = 0; 1; � � � ; 5. Note that the precision of the observation increases as i increases.
As a matter of fact, we have perfect observation on the true state of the environment when

i = 5. Optimal expected revenues for each case are in Table 1.

Suppose that we have observed (1; 2; 1) as a sequence of observations up to the third

period. Then, the threshold values for fare-class 1 at the third stage (with a price of 100 in

observation 1 and 200 in observation 2) are provided in Table 2 for di¤erent values of the

emission matrix.
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Chapter 6

CONCLUSIONS

In this thesis, we explore dynamic single resource allocation problems when demand

is randomly �uctuating. We �rst model the classical single resource allocation problem

and provide structural result for the optimal admission policy. We show that well-known

results of classical model also hold in our Markov modulated model. For example, we show

that optimal policy is threshold type and the threshold level of each product decreases

in time. The focus point of this part is the e¤ect of environment on the optimal policy.

First, we provide some intuitive assumptions in order to distinguish environments, then we

compare the expected marginal revenues in di¤erent environments. We show that threshold

level increases when we have a better environment. In this part, we provide a sensitivity

analysis, and we observe the e¤ects of each parameter on the expected revenue and expected

marginal revenue. We also consider a pricing model in which demand randomly �uctuates.

We provide some useful properties including the structure of the optimal policy.

In the second part in this thesis, we investigate a general discrete choice model of con-

sumer behavior in a randomly �uctuating demand environment. We �rst distinguish each

set by considering whether it is e¢ cient or not. The de�nition of e¢ ciency is environment

dependent. Therefore, a set may be e¢ cient in one environment although it is not e¢ -

cient in another environment. We show that ine¢ cient set in one environment cannot be

optimal in that environment. Then we show that we can order these e¢ cient sets in their

expected probability of purchase and optimal set number among this order is monotonic in

the remaining level of inventory and time.

In the third of part in this thesis, we consider a Hidden Markov version of the model

we provide in the �rst part. In this model, we investigate the case where true state of

the environment cannot be directly observed. There is a belief vector for the true state of

environment and this belief vector is updated according to the observation that is provided

through an external process. In this model, we also show that optimal policy is threshold

type and threshold level decreases in time.

In each part, we provide numerical examples to illustrate our structural results. We also
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use some techniques to show the e¢ ciency of our environment based models with respect

to the classical models. We show that our environment based models lead to a signi�cant

increase in the expected revenue. In addition, we observe an approximation method to

our environment based model by considering the limiting distribution of the environment

process.

This line of research can be extended in several directions by future studies. An inter-

esting future research can involve a model in which the �rm is risk-sensitive and demand

randomly �uctuates. Another research direction can consider a continuous demand where

this demand also �uctuates. Also our models can be investigated when the �rm can perform

hedging in �nancial markets.
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