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ABSTRACT 

 

Protein-protein interaction networks provide a global picture of cellular function and 

biological processes. Structural prediction and modeling of protein-protein interactions at 

the network level is crucial; it helps in assigning protein function, elucidating functional 

mechanisms, and drug discovery. In the first part of this dissertation, we illustrate the 

importance of integrating protein structural information into interaction networks, 

particularly in identification of selective drug targets or drugs targeting multiple proteins. 

Next, we present a large, proteome-scale strategy that predicts protein associations based 

on interface structural motifs, to analyze human ubiquitination pathway. Substrate 

ubiquitination is mediated by the interactions between E2 enzymes and E3 ligases. 

Although these E2 and E3 proteins function in a concerted manner, the principles of 

selectivity between them are still not entirely understood. Our method allows elucidation of 

which E3s interact with which E2s and how they interact with each other. Interface 

analysis of E2-E3 complexes reveals important clues for inferring the specificity of the 

interactions. In the last part, the focus is directed towards studying circadian clock 

regulation in p53-deficient background. p53-deficient cells are prone to tumorigenesis and 

cancer. However, upon circadian clock disruption by Cry knockout, they show an 

increased sensitivity to apoptosis by genotoxic agents and hence are protected from the 

early onset of cancer. We aim to elucidate how apoptotic signals are activated in p53-null 

cells upon Cry knockout by combining experiments with a large-scale computational 

approach. In particular, we perform a large-scale integration of microarray expression 

profiles with protein-protein interaction networks. As such, we observe that the expressions 

of several apoptotic genes are increased upon Cry knockout in p53-null cells and a minor 

amount of genes would promote cell survival leading to, in overall, a shift towards cell 

apoptosis. In addition, we highlight the pathways that intersect with circadian clock and 

illustrate how these pathways response to circadian clock disruption. Our findings would 

assist in identifying targets in treatment of cancers associated with p53-deficiency. 
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ÖZET 

 

Protein-protein etkileşim ağları hücre fonksiyonunu ve biyolojik prosesleri global bir 

çerçevede sunmaktadır. Protein-protein etkileşimlerinin ağ düzeyinde yapısal tahmini ve 

modellenmesi önemlidir; protein fonksiyonu ve fonksiyonel mekanizmaları anlamaya ve 

ilaç bulguları için yardımcı olur. Bu tezin ilk bölümünde, protein yapısal bilgisinin 

etkileşim ağlarına entegre edilmesinin önemini, özellikle selektif ilaç hedeflerinin veya 

birden fazla proteini hedef alan ilaçların belirlenmesindeki önemini gösteriyoruz. Bunun 

sonrasında, insan ubikuitin biyolojik yolunu analiz etmek için, protein ilişkilerini ara yüzey 

yapısal motiflere bağlı olarak tahmin eden geniş, proteom düzeyinde bir strateji sunuyoruz. 

Substrat ubikuitin eklenmesi E2 enzimi ve E3 ligazlarinin etkileşimleri doğrultusunda 

yönetilir. E2 ve E3 proteinleri beraber uygun bir şekilde fonksiyon gösterse de, 

aralarındaki seçicilik halen tam olarak anlaşılamamıştır. Metodumuz hangi E3lerin hangi 

E2ler ile etkileşime girdiğini ve nasıl etkileştiklerini aydınlatmaya olanak sağlanmaktadır. 

E2-E3 komplekslerinin ara yüzey analizleri, bu etkileşimlerin bağlanma özgünlüğü 

hakkında önemli ipuçları ortaya çıkarmaktadır. Son bolümde, odağımızı p53 eksikliğinde 

biyolojik saat regülasyonunu çalışmaya yönlendiriyoruz. p53 geni eksik olan hücreler 

tümör ve kanser oluşumuna yatkındırlar. Bununla birlikte, bu hücreler, biyolojik saat Cry 

geninin hücreden çıkarılması ile bozulunca, genotoksik maddelerle hücre ölümüne daha 

duyarlı hale gelmekte ve böylece kanserin erken başlamasından korunmaktadırlar. 

Deneyleri büyük düzeyde hesaplamalı yöntemlerle birleştirerek, p53 ve Cry geni olmayan 

hücrelerde, hücre ölümü sinyallerinin nasıl aktive edildiğini açıklamak istiyoruz. Spesifik 

olursak, gen ekspresyon profillerini protein-protein etkileşim ağları ile birleştiriyoruz. 

Böylelikle, p53 geni barındırmayan hücrelerde Cry genini de hücreden çıkarınca apoptotik 

genlerin ekspresyonlarının arttığını, çok az sayıda genin hücre yaşamını desteklediğini, 

bütünde hücre ölümüne doğru bir yönelme gözlemliyoruz. Ek olarak, biyolojik saat ile 

kesişen biyolojik yolları vurguluyoruz ve bunların biyolojik saat bozulmasına nasıl tepki 

verdiklerini gösteriyoruz. Bulgularımız, p53-eksikliği ile bağlantılı kanser oluşumunun 

tedavisi ve hedef belirlemelerinde yardımcı olacaktır. 
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Chapter 1 

 

INTRODUCTION 

 

Protein-protein interactions have a key role in regulating several biological processes, 

cellular and signaling events. With the increase in availability of protein interaction data, 

considerable attention has been directed towards studying the networks of these 

interactions which provides a global picture of the protein function. To further understand 

the details of the interactions in the network, in particular, to address the question of “how 

do proteins interact”, the knowledge of protein three-dimensional structures is crucial. 

Although there has been an exponential increase in protein structural information, the gap 

between the number of known interactions obtained from high-throughput experiments and 

structurally known protein complexes is still large. Constructing the global structural 

network of the functional proteome, therefore, has been a challenging goal in structural 

systems biology [1]. Towards this aim, computational approaches for predicting the 

functional associations of proteins are immensely useful. Such prediction algorithms [2] 

would provide the binding details of the interactions at a network level. 

With the advance of technologies such as whole genome sequencing, highthroughput 

experiments and expression profiling, vast amounts of data, covering different aspects of 

cellular physiology, have emerged [3, 4]. One such example is transcriptomics data 

(microarray-based genome-wide expression profiles), which provides essential insights 

into the understanding of the molecular mechanisms underlying normal and dysfunctional 

biological processes. While these kinds of omics data provide unprecedented views of 

cellular components in the biological systems [4], they are frequently difficult to interpret 

due to the overwhelming dimensions of data and the noise inherent in the biological and 

experimental systems [5]. One way to overcome such problems is to combine these large 

and heterogeneous data sets. For example, analysis of gene expression data can be 

improved by its integration with protein interaction networks giving more insight into 

actual biological networks. 
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This dissertation, primarily focuses on large-scale integration of protein structural and 

gene expression profiling data into protein-protein interaction networks. Structural analysis 

of protein interactions at the molecular and the proteome levels are performed and 

modeling of protein associations towards construction of structural protein interaction 

networks at large scale are studied. Crosstalk between pathways are investigated through 

analysis of microarray gene expression profiles together with protein interaction networks. 

The presented findings, ultimately, assist in functional genomics and drug design studies. 

The outline of this dissertation is as follows: 

In Chapter 2, an extended and recent literature review focusing on the protein-protein 

interaction networks is presented. This chapter includes the corresponding works related to 

physical and chemical aspects of protein-protein interactions, construction of structural 

protein interaction networks and integration of microarray gene expression data into 

protein interaction networks. 

In Chapter 3, the importance of protein structural information in drug design and 

discovery is highlighted through presenting several examples. Here, first, structural models 

of ubiquitination pathway complexes related to disease are visualized and the importance 

of incorporating hot spot information in drug design studies is illustrated. Next, the concept 

of allostery and population shift in drug discovery is introduced and structural modeling of 

allosteric protein associations in signaling is demonstrated. 

In Chapter 4, ubiquitination, which is crucial for many cellular processes such as 

protein degradation, DNA repair, transcription regulation, and cell signaling, is studied. 

The interactions between E2 and E3 proteins in the human proteome are structurally 

modeled and thus a human E2-E3 structural protein interaction network is constructed. The 

accuracy of the predictions is 76% indicating that the predicted E2-E3 interactions are in 

agreement with validated functional E2-E3 pairs. Interface analysis of the E2-E3 

complexes illuminates the critical residues contributing to specificity in E3 binding. 

Chapter 5 is designed to introduce large-scale integration of gene expression profiles 

with protein-protein interaction networks. Here, the focus is directed towards circadian 

clock pathway and the aim is to elucidate the pathways under clock regulation. The 

outcome of an additional clock disruption on p53-deficient cells are investigated by 

analyzing pathways related to cell death and growth. The crosstalk proteins are highlighted 
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by extracting the critical paths connecting circadian clock pathway to apoptotic and anti-

apoptotic processes. 

Finally, Chapter 6 presents a discussion of the results, major conclusions and 

contributions of this dissertation. 
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Chapter 2 

 

LITERATURE REVIEW 

 

In this chapter, firstly, a comprehensive review of the studies related to physical and 

chemical aspects of protein-protein interactions is presented. Next, the most recent review 

of structural modeling of the protein interactions and constructing structural protein 

interaction networks are provided. Finally, the widespread use of microarray gene 

expression profiling data and its integration with protein interaction networks are reviewed. 

 

2.1 Physical and Chemical Aspects of Protein-Protein Interactions 

Biological reactions occur through the proteins; and the interactions among them play a 

crucial role. Protein interactions are biophysical phenomena. Although the medium is full 

of numerous molecules at different sizes, proteins to be interacted find each other and the 

interaction occurs. Proteins are interacting through their surfaces with the help of the shape 

and biochemical complementarity regarding the flexibility of the molecules and the 

environmental conditions [6-10]. Hence, protein interactions are special reactions rather 

than random processes.  

 

2.1.1 Interaction Occurs through the Interface 

The region where the two molecules are contacting is called the binding site, or 

considering both sides, the interface. Understanding the protein structures is very important 

to identify these regions. If the structures of contacting proteins are known, it is quite easy 

to determine the interface. Interfacial residues are usually found by calculation of close 

residues from two sides based on the distance in the three dimensional space [11-13] or 

with the help of accessible surface area calculations [13-15]. 

Many studies investigate properties of interactions to enlighten protein interaction 

phenomena [8, 9, 11, 14-26]. The stability of the interaction is provided with binding 

forces; hydrogen bonds, salt bridges, electrostatic interactions and hydrophobic attractions 

[21, 27]. Disulphide bonds are also but rarely seen between binding proteins. These 
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attractions determine also the specificity of the interaction [27]. For example, obligate 

complexes rely usually on hydrophobic attractions and transient complexes on hydrogen 

bonds and salt bridges [8, 14, 16, 27] although obligate interfaces are not more 

hydrophobic than transient ones [28, 29].  Understanding such details of the complexes is 

crucial in drug design; many signaling events, which are known to be disease-related, are 

regulated by transient protein-protein interactions [30, 31]. 

Considering the composition of the residues, we know that they usually differ between 

obligate and transient, or homo- and hetero-complexes [8, 14, 16, 27, 32-36]. Hydrophobic 

residues like Methionine, Phenylalanine, Proline, Alanine, Aspartic acid and Leucine (but 

not Isoleucine and Glycine) are commonly found in homodimer interfaces; whereas 

hydrophilic residues like Tryptophan, Cysteine, Histidine, Glutamine, Asparagine, 

Tyrosine and  Serine (but not Threonine) are dominant in heterodimer interfaces [16, 36].  

Interfaces are structurally similar to the cores of globular proteins [37], and many 

studies have shown that protein binding process is very similar to the protein folding [21-

23, 38]. The structural shape of interfaces is planar and well packed, but also differs with 

respect to type of the interaction [14, 39]. For example, relatively large surface areas are 

observed in homodimer complexes compared to heterodimer complexes [16, 36].  

 

2.1.2 Structural Features of Interfaces 

Proteins interact biophysically. Therefore, fundamental determinants in protein interactions 

are the shape and physicochemical complementarity [6, 8, 40, 41]. Protein surfaces are full 

of pockets, crevices and indentations [42-45]. Some pockets which usually exist before 

binding are filled with the complementary protein like the key and lock model, when they 

associate during the interaction [46]. This is also valid for protein-ligand interactions. Size 

and shape of pockets are principally considered to design molecules or peptides like drugs. 

Therefore, structural information of the protein has a great importance in drug design. The 

number of small pockets on the protein surface is not very few [11, 14, 16]; on the 

contrary, much more than expected before. Besides, a cavity that does not pre-exist can be 

formed upon interacting with a small molecule [47]. In the lack of cavities, it becomes 

more difficult to inhibit a protein-protein interaction with a small molecule due to the flat 

large surface area.  
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In addition to the shape and size of the cavity, physicochemical properties of residues as 

well as their distribution in the cavity are important for the interaction. Thus, biochemical 

or electronic complementarity should also be considered in drug design. For example, due 

to the hydrophobicity of the interface, a drug to inhibit the protein-protein interaction 

should be designed to be hydrophobic [48-52]. But this property makes the drug less 

soluble, less cell permeable and less selective for its targets [48-50]. 

Another parameter to characterize the interface is amino acid frequency [34, 53, 54]. 

The amino acid propensity of the interface is similar to interior of the protein [18, 55]. The 

interface is usually rich of aromatic and hydrophilic residues, like Cysteine, Tyrosine, 

Phenylalanine and Tryptophan [18, 56]. Positively charged Arginine and Histidine also 

prefer to be at interface compared to both surface and core [57]. Threonine, Proline, 

Lysine, Glutamic Acid and Alanine are least commonly found in the interface [58]. Ofran 

and Rost [34] have predicted the type of the interaction with 63-100% accuracy rate just by 

using amino acid composition and residue-contact preferences. In another study, frequency 

of amino acids in transient and obligate complexes is analyzed. It is found that Glycine is 

more frequently seen in transient interfaces rather than the surfaces; whereas Glycine 

frequency is the same in interface and on surface of obligate complexes [56]. In the same 

study, pairwise contact preferences of the amino acid types are also investigated. Cystine-

Cystine shows the highest preference of all possible contacts. This can be due to its ability 

to form disulfide bond. It is also found that this pair is more frequent in obligate interfaces 

than in transient interfaces. Moreover, acidic and basic amino acids are observed to be 

contacted mostly with other types of amino acids, but rarely with other amino acids with 

similar physicochemical properties. However, Histidine is found as an exception. It prefers 

to contact with itself but not with acidic amino acids.  Furthermore, nonpolar amino acids 

prefer to contact with other nonpolar amino acids. 

The other steric property of protein-protein interfaces is that they generally have an 

accessible surface area in the range of 1200-2000 Ǻ
2
 [8, 59]. This property is commonly 

used to distinguish biological interfaces from non-biological ones. Non-biological 

interfaces are formed between proteins which do not come together and contact each other 

actually in their physiological states [60]. Non-biological interactions are also called as 

crystal packing. These proteins are experimentally crystallized together; but it is mostly 

due to the enforcement by the crystallographic packing environment in the experiment. 
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Non-biological interactions mostly have smaller accessible surface areas, which are about 

400-600 Ǻ
2
 [8, 61]. However, it is not trivial to distinguish biological and non-biological 

interactions just by considering the buried surface area. There are some examples of non-

biological interactions with larger surface areas, which can be more than 2000 Ǻ
2
 [62-65], 

and some biological interactions, like protein-small molecule interactions (300-1000 Ǻ
2
), 

have smaller contact areas [66, 67]. Therefore, computational approaches to predict 

biological interactions utilize a combination of interface properties, like surface area, 

residue conservation and amino acid composition [68-72]. Although significant success has 

been obtained in identification of biological interfaces or distinguishing biological and 

non-biological interactions, distinct properties of protein interfaces have not been certainly 

identified yet [16, 47, 60].    

 

2.1.3 Interfaces are Conserved throughout the Evolution  

Interacting proteins find each other specifically and selectively in a crowded medium. 

Therefore, proteins should identify each other through complementary interaction sites. 

This requires the conservation of the same (or similar) residues in the right orientation for 

both partners of the interaction [56]. In order to preserve the interaction, residues in the 

active or binding sides of proteins resist undergoing a change through the evolution [73, 

74]. It is proved in many studies that amino acids in interfaces are more conserved than on 

rest of the protein surfaces [56, 68, 75-82]. Conservation analysis of residues can be used 

to predict protein binding sites. The analyses can be based on the sequence [83-85], or the 

structure [82, 86, 87], or both sequence and the structure [83, 88, 89]. When obligate and 

transient complexes are compared, obligate complexes are found to have more conserved 

interfaces than the transient complexes [56, 81]. This supports that proteins of obligate 

complexes co-evolve, or proteins of transient complexes have higher ability to adapt to a 

change in their partners [81]. Moreover, analyses in the contact preferences of residues 

show that, residues prefer to contact with the other residues having a similar conservation 

grade [56]. In other words; highly conserved residues prefer to contact with highly 

conserved residues, and much variable residues prefer to contact with variable residues on 

the other side. Conserved residues are not randomly distributed and thus, some residues are 

more crucial than the others for the interaction [90]. If a contacting residue pair has an 
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important role for the interaction, the residues are both conserved; if not, the residues are 

variable at the same grade [56].   

The structures of interfaces are more conserved than the global structures of the proteins 

[91-93]. Even if their global structures and functions are different, proteins can interact 

through interfaces with similar architectures [11, 94]. Structures of the interfaces have been 

clustered based on the domain or the whole structure. The Conserved Domain Database 

(CDD) provides protein domains conserved in evolution, and they are extracted via 

multiple sequence alignments [95, 96]. Schroeder and coworkers [97] have found 6,000 

distinct types of interfaces by clustering domain interfaces. Sali and his group [98] have 

shown that proteins in the same SCOP families have similar binding architecture. Aloy and 

coworkers [99] have classified domain-based interactions of known three-dimensional 

structure and developed 3did web server. PPiClust provides clusters of similar 3D interface 

patterns in protein complexes [100]. Gao and Skolnick have found that structural space of 

protein-protein interfaces is close to complete and clustered interfaces of dimers into 

roughly 1,000 distinct types [101].  

A structurally non-redundant dataset of protein-protein interfaces can be defined as 

three groups: Type I, Type II and Type III [1, 11]. Type I is the most common one. It 

includes interacting proteins with similar global structures. Type II contains proteins with 

similar interfaces but their global structures and functions are different. These structures 

are examples for the conservation of interface motifs even in the absence of global 

structural similarity [39, 102]. In Type III, only one side of the interface is similar and the 

other side is somewhat different. Hub proteins are mostly examples of this type. 

 

2.1.4 Some Residues are Energetically more Important in the Interface: Hot Spots   

All contacting residues do not equally contribute to the binding energy. Regardless of the 

size of the binding site, only a few residues are responsible for the majority of the total 

binding energy [90, 103-105]. These residues are called “hot spots”. Hot spots can be 

identified experimentally by Alanine Scanning Mutagenesis [76, 103]. In this method, each 

residue is mutated to an Alanine; and if a significant drop is observed in the energy due to 

the mutation, the residue is assigned as a hot spot. Hot spots can have different 

physicochemical properties; for example, they can be hydrophobic or polar [20, 47, 81]. 

Arginine, Tyrosine and Tryptophan are frequently found as hot spots; whereas, Leucine, 
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Serine, Threonine, Valine [104, 106] are rarely. Methionine is rarely [104] or frequently 

[81] found as hot spot by different studies. 

Hot spots are buried and tightly packed in the three dimensional space [90]. They are 

located near the center of the interface and away from the solvent [104, 107]. However, 

they are usually found in discontinuous, discrete highly packed regions in interfaces. These 

clusters are called “hot regions” [90]. Furthermore, there is a strong correlation between 

structurally conserved residues and hot spots [81, 90, 108-110]. There are many 

computational studies based on their physical, biological and/or evolutionary features for 

the hot spot prediction. These approaches analyze combinations of hot spot features, like 

conservation, physicochemical properties, residue propensity, sequence profiles, accessible 

surface area, and contribution to binding energy [84, 88, 111-117]. Hot spots are also 

significant for drug design [118]. Since they are responsible for key contact potentials of 

the interactions, drugs are aimed to target these residues [38, 107, 119-121]. 

 

2.2 Structural Protein Interaction Networks  

The protein-protein interactions can be experimentally identified by several methods such 

as yeast two-hybrid [122], phage display [123], protein arrays [124], and affinity 

purification [125] techniques. The experimental databases catalog the data gained by these 

techniques. These databases grow rapidly as the number of interaction–detection 

experiments, genome sequencing experiments and proteins with solved structures increase. 

Among these, the Database of Interacting Proteins (DIP) [126], the Biomolecular 

Interaction Network Database (BIND) [127], the BioGRID General Repository for 

Interaction Datasets [128], IntAct [129], the Human protein reference database (HPRD) 

[130], the Munich Information Center for Protein Sequences (MIPS) [131], the Human 

Protein Interaction Database (HPID) [132], the database of Protein Structural Interactome 

map (PSIbase) [133] and the database of protein domain interactions (DOMINE) [134] list 

experimentally determined protein-protein interactions. From these, PSIbase and DOMINE 

include the binding site information, i.e. they indicate where two proteins interact and 

hence can assist in structural studies. 

The networks of protein-protein interactions can provide understanding of the global 

organization of cellular processes; however, they still lack structural and chemical 

characteristics of each interaction. At this point, knowledge of protein structural 
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information is a crucial asset. This concept is illustrated in Figure 2.1; the figure displays a 

schematic representation of a classical network and a structural interaction network. The 

protein labeled P1 has two different binding regions, B11 and B12: through the B12 

region, the protein interacts with P3; and through the B11 region it can interact with three 

partners. Thus, the interactions of P1 with P2, P4 and P6 exclude each other; that is, they 

cannot occur at the same time. On the other hand, the interaction with P3 is simultaneously 

possible. In Figure 2.1C, three possible interactions are displayed. This figure indicates 

that P1 can be used in three different complexes. This information cannot be obtained from 

the abstract network shown in Figure 2.1A. 

 

 

Figure 2.1 Structural Interaction Network Representation 
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Protein structures can be determined by X-ray crystallography, NMR spectroscopy 

[135] and cryo-electron microscopy (EM) [136] at several resolutions. X-ray 

crystallography is the most widely used technique and gives a static information about 

protein structure. NMR data is obtained in solution where many structural, thermodynamic 

and kinetic properties can be analyzed. This method is limited by the size of the protein 

complex. Due to the crystallization problems of transient complexes, they are usually 

underrepresented in PDB. Cryo-EM method is useful for visualization of the transient 

complexes although detailed positions of the subunits in a protein complex are not 

distinguishable. 

Among the structural network studies, the pioneering work of Aloy and Russell [137] 

illustrated how three dimensional protein structures can be used to infer molecular details 

of interactions in a network. In another study, Kim et al. have combined structural 

modeling with network analysis. They have mapped the interactions to known structures of 

interfaces and distinguished the interfaces of each interaction. They have classified the 

network hubs as single- or multi-interface hubs. The former was found to have at most two 

distinct binding interfaces and are enriched in signaling proteins, whereas the latter has 

more than two binding interfaces and tend to be members of large and stable complexes 

[138].  

Structured networks are also utilized to understand diseases. Dawelbait et al. [139] 

constructed a network related to pancreatic cancer by combining known interactions and 

structure-based interaction predictions. They predicted 40 novel interactions that are 

specific to pancreatic cancer. In one study, cancer-associated signaling pathways and their 

physical protein-protein interactions are analyzed with the goal of providing insights into 

three-dimensional structure-function relationship [140]. In another study, protein interface 

structures are integrated to human cancer protein interaction network and interface analysis 

revealed that cancer-related proteins have smaller, more planar, more charged and less 

hydrophobic binding sites than non-cancer proteins, which may indicate low affinity and 

high specificity of the cancer-related interactions [141]. Additionally, integrating interfaces 

into networks can provide timing of proteins’ interactions; whether they are simultaneous 

or exclusive [60, 142, 143]. 

Although currently there occurs some limitations such as incompleteness of protein 

interaction networks and structural data, with the complete knowledge of pairwise protein-
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protein interactions and the structures of protein associations, it will unquestionably be 

possible to construct high-quality structural protein interaction networks, which will lead to 

a better understanding of molecular mechanisms of living systems. 

 

2.3 Structural Modeling of Protein Associations 

Structural modeling of protein-protein interactions can be achieved via docking or 

template-based strategies. 

Docking is the procedure to find the best bound state for given 3D structures of two (or 

more) proteins. Considering that protein surfaces are flexible and there are many potential 

ways in which proteins can interact, the docking problem is difficult. There are several 

docking algorithms so far [144-149]. Such algorithms first obtain the candidate 

conformations with a fast search algorithm, and then rank these conformations by a high 

quality scoring function to find the near native model. For scoring functions, geometric and 

chemical complementarity, electrostatic, van der Waals forces or knowledge-based 

potentials are frequently assessed [150]. However, scoring functions are not fully 

optimized yet. In addition, flexibility of the proteins should be considered while searching 

for the native state of the protein complexes. Refinement algorithms are therefore 

developed to re-assess the rigid-body docking solutions and re-rank the modeled 

associations [151-153]. Although docking at large-scale is computationally very expensive, 

in the first large-scale docking effort, Aloy and his collegues have managed to model 3000 

putative protein complexes for yeast protein network [154]. 

Template-based structural modeling methods have gained more attention with the 

increase in availability of structural data. Using a known protein complex as the template, 

such approaches can utilize sequence or structural similarity to model protein-protein 

associations. There are homology-based and interface-based strategies. In one study, the 

sequence homologues of the known protein complexes are searched and predicted 

interaction between homolog proteins are scored the using empirical potentials derived 

from known protein interactions [137]. If the score of a predicted complex is high enough, 

the homologous protein pair associates in a similar way with the template complex. This 

method is used to model protein complexes in yeast interaction network and fibroblast 

growth factor/receptor system. Then, a web server, InterPreTS, is designed to predict 

protein interactions using this method for a given set of protein sequences using Blast2 
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search tool to find the homologues [155]. Another homology-based method is named as 

Multiprospector, which is based on multimeric-threading [156] and uses a template library 

consisting of protein complexes. In the first step of the algorithm, each target sequence is 

assigned to a protein structure in the template library. In the second step, multi-chain 

threading is applied and each target protein pair is assigned to a group of quaternary 

structures. The quality of the predictions is evaluated by the interfacial potentials and Z-

scores. Native interactions are discriminated from artificial ones with accuracy of 90% 

[157]. In another study, structural similarity of overall protein structures is considered and 

domain information is integrated to search putative protein complexes. According to 

matching of the domains, protein interactions are predicted and scored using statistical 

potentials that are derived from side chain-side chain contacts. The method was shown to 

distinguish the non-native contacts with an accuracy of 0.99 [158].  

In nature, the number of protein folds is limited [159]. Since folding and binding are 

similar processes, the number of distinct interface motifs is also limited in nature [160]. 

Therefore, protein pairs can interact via similar interface architectures even though their 

global folds are different [11, 94]. Based on this origin, PRISM algorithm, which is the 

first strategy to model protein associations based on interface motifs, is developed [20, 

142, 161]. The rationale is: if two complementary partners of a template interface are 

similar to the surface of two target proteins, these two proteins are principally interact with 

each other using this template architecture. This method is used to generate a structural 

interaction map of cancer proteins [141] and to show the multi-face nature of the hub 

proteins [60]. Following this idea, similar algorithms such as ISearch, which uses domain-

domain interfaces as the template, are developed [102, 162, 163]. These template-based 

methods decrease the solution space by limiting the possible orientations. Therefore, 

compared to docking strategies, such methods are computationally much faster and 

efficient especially on a large-scale. As the diversity in template sets increases, such 

methods will become more popular and useful in the future. 

 

2.4 Microarray Gene Expression Profiling Data  

Microarray experiments generate a wealth of expression data providing important insights 

into several biological processes. Using microarrays, expression patterns that differ 

between diseased and healthy samples can be identified and biomarkers can be labeled 
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[164]. However, there are some limitations: from the biological standpoint, mRNA 

expression level does not always correlate with the protein levels [165]; and from the 

technical standpoint, there would be experimental noise due to the differences in 

experimental setup [165, 166]. To overcome such problems, integration of microarray data 

with additional data sources can be very helpful. Protein-protein interaction networks 

together with microarray data were illustrated to be useful in interpreting gene expression 

data by improving sample classification [167, 168] and detection of differentially 

expressed genes [169-171]. In their pioneering study, Ideker and collegues have proposed a 

method to detect active subnetworks in a subset of the profiled samples [172]. Later on, 

this approach has been improved by several groups [173-176] and utilized to identify 

subnetworks co-expressed across all samples and to extract functionally coherent co-

expressed gene sets [5]. Main objective has been to derive biologically interesting 

subnetworks of interpretable size from large-scale protein-protein interaction data. Since 

cellular function or a phenotype is regulated by several proteins rather than being a result 

of a single gene [177], combined analysis of expression profiles and protein-protein 

interactions allows the detection of previously unknown dysregulated modules in 

interaction networks, which will be especially immensely useful in disease states to 

identify functional associations of disease-related genes. 
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Chapter 3 

 

IMPORTANCE OF PROTEIN STRUCTURAL INFORMATION IN DRUG 

DESIGN AND DISCOVERY 

 

Protein-protein interactions have a key role in regulating many biological processes, 

cellular and signaling pathways. The dysfunction of these pathways due to the alterations 

in protein-protein interactions may lead to several diseases such as cancer and neurological 

disorders. Therefore, protein-protein interactions are widely considered as drug targets in 

disease states [51, 84, 178]. In this chapter, we highlight the advantages of inclusion of 

protein structural details and illustrate how structural modeling and binding site analysis 

would assist in drug design and discovery. In the last section, we introduce the concept of 

allostery and provide structural models of allosteric signaling proteins. 

 

3.1 Including Protein Structural Information into Interaction Networks: Advantages 

in Drug Design 

Structural networks have been recently utilized to understand diseases. Dawelbait et al. 

[139] constructed a network related to pancreatic cancer by combining known interactions 

and structure-based interaction predictions. They predicted 40 novel interactions that are 

specific to pancreatic cancer. In one study, cancer-associated signaling pathways and their 

physical protein-protein interactions are analyzed with the goal of providing insights into 

three-dimensional structure-function relationship [140]. In another study, protein interface 

structures are integrated to human cancer protein interaction network and interface analysis 

revealed that cancer-related proteins have smaller, more planar, more charged and less 

hydrophobic binding sites than non-cancer proteins, which may indicate low affinity and 

high specificity of the cancer-related interactions [141]. Additionally, integrating interfaces 

into networks can provide timing of proteins’ interactions; whether they are simultaneous 

or exclusive [60, 142, 143]. 

Besides inferring the nature of disease-related interactions and their role in the network, 

comparison of protein-protein interfaces across an interactome can also assist in identifying 
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drug targets or drugs targeting multiple proteins to block parallel pathways in a network 

[179]. With structural analysis drug binding pockets can be identified and compared with 

binding pockets of other proteins in the network, which could eventually lead to 

discovering candidates for drug-targetable protein-protein interactions [180]. Since the 

number of distinct binding motifs is limited in nature [160], structurally different proteins 

can share similar interface architectures [11]. Therefore, even though two proteins are 

structurally different and belong to different pathways in the interactome, if their binding 

pockets are similar, a drug can bind to both. While this is possible, binding also depends on 

the chemical nature of the drug ligand itself [181].  

Although there occurs some limitations such as incompleteness of protein interaction 

networks and structural data, combining protein interfaces with interaction networks could 

guide identification of all target proteins that are influenced by a drug, either positively or 

negatively. Considering the position and role of these target proteins in the network could 

help to predict side-effects or to discover a treatment of a new disease. The latter is called 

drug repurposing, which means finding new uses of old drugs [182], is gradually gaining 

popularity since de novo drug design is laborious and very costly [183]. Provided that 

protein structures and binding sites are known in a disease-associated network, predicting 

druggable proteins and the resulting effects will be less demanding. Here, this concept is 

visualized in Figure 3.1 by an example; the celecoxib (Celebrex), which is a nonsteroidal 

anti-inflammatory drug that is known to bind cyclooxygenase-2. Weber et al. [184] showed 

that celecoxib also binds to a totally unrelated protein; carbonic anhydrase, which has a 

structurally similar binding site to that of cyclooxygenase-2. This finding reveals a new 

role of celecoxib in the treatment of glaucoma and possibly for cancer [184].  

 

3.2 Importance of Hotspot Residues in Drug Design and Discovery 

Drugs targeting protein-protein interactions, ultimately head protein interfaces where two 

proteins come into contact. Understanding the details and principles of protein interfaces 

is, therefore, immensely essential to develop efficient strategies in drug design. At protein 

interfaces there are some critical residues that account for the majority of the binding 

energy called hot spots [104]. A hot spot is defined as a residue that, when mutated to 

alanine, leads to a dramatic decrease in binding free energy (ΔΔGbinding > 2 kcal/mol) [76, 

104]. Since these residues are more critical than others to the stability of the complex, 
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targeting the hot spots may lead to improved inhibition of protein-protein interactions and 

to designation of novel compounds. 

 

 

 

Figure 3.1 Protein structures are integrated into disease-associated networks. Identifying protein 

interfaces and binding pockets in disease-associated structural network can assist in finding drug 

targets and role of these proteins in disease. As an example, a nonsteroidal anti-inflammatory drug, 

which is known to target multiple proteins, is visualized. It is interesting that although 

cyclooxygenase-2 (in white color, PDB code: 3l1n) and carbonic anhydrase (in gray color, PDB 

code: 1oq5) are structurally different proteins; all-alpha and all-beta structure, respectively, their 

binding sites in contact with celecoxib share structural and physico-chemical similarities [184]. 

Latterly found interaction with carbonic anhydrase reveals the new role of celecoxib in the 

treatment of glaucoma and possibly for cancer [184]. 

 

Here, in Figure 3.2, we present an example illustrating how structural modeling of E2-

E3 associations and identifying hot spot residues in human ubiquitination pathway would 

be beneficial to drug discovery. c-Cbl is an E3 ubiquitin ligase that attenuates signaling 

through poly- or monoubiquitination of several activated receptor tyrosine kinases (such as 

Flt-3, c-kit, and M-CSF) and other tyrosine kinases of the Scr family [185]. The RING 
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domain has a central role in c-Cbl function because its deletion or disruption abolishes the 

function of c-Cbl [186]. From its RING domain, c-Cbl binds to an E2 and mediates 

ubiquitin transfer from E2 to the target substrates. Structure of c-Cbl interacting with one 

of its E2 partners, UBE2L3, is deposited in Protein Data Bank (PDB) (pdb code: 1fbv) 

[187]. Two loop regions, L1 and L2 of UBE2L3 are in contact with the α-helix and zinc-

chelating loops of the RING domain. The central F63 residue in loop L1, P97 and A98 in 

loop L2 of UBE2L3 mediate its binding to c-Cbl. The c-Cbl linker region interacts with α-

helix 1 of UBE2L3 [187]. c-Cbl ligase-UBE2L3 complex showing the critical binding 

regions (α-helix 1, loop L1 and L2) of UBE2L3 is visualized in Figure 3.2A.  

c-Cbl is also reported to interact with another E2, UBE2D1, and ubiquitinate epidermal 

growth factor receptor [188], although the structure of the complex is not available as yet. 

Using Prism algorithm, we modeled c-Cbl-UBE2D1 complex based on a known interface 

of another E2-E3 complex; UBE2D2-CNOT4 (pdb code: 1ur6:AB) [189]. We observe that 

UBE2D1 (pdb code: 2c4p:A) binds to c-Cbl (pdb code: 1fbv:A) mainly through its α-helix 

1, loop L1 and L2 regions. Earlier work suggested that mutations in the c-Cbl RING 

domain are associated with acute myelogenous leukemia and myeloproliferative neoplasms 

and the impairing the degradation of tyrosine kinases is an important mechanism in cancer 

[190]. In particular, on the RING domain of c-Cbl, the substitution of cysteine or arginine 

residues at position 384 (C384Y), 404 (C404S), and 420 (R420Q) are observed in patients 

with acute myelogenous leukemia [190]. Additionally, Ile383 and Trp408 of c-Cbl were 

shown to have a critical role in E2 binding [187] and the mutation of Trp408 to alanine 

reduces c-Cbl’s affinity for the E2 and eliminates its ubiquitin-ligase activity in vitro [191]. 

Interface analysis of our c-Cbl-UBE2D1 model indicates that these critical residues; I383, 

C384, C404 and W408, correspond to computational hotspots predicted by Hotpoint server 

[192], implying their importance in binding and function of c-Cbl. Such structural 

modeling of E2-E3 associations could help in understanding E2-E3 selectivity and 

discovering drug candidates targeting E3s. Figure 3.2B illustrates the modeled c-Cbl-

UBE2D1 complex and the critical residues in binding.  
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Figure 3.2 Structural Modeling of c-Cbl E3 ubiquitin ligase-E2 interactions 

(A) c-Cbl interacts with UBE2L3 obtained from PDB (pdb code: 1fbv:AC). α-helix 1, loop L1 and 

loop L2 regions of UBE2L3 are displayed in yellow, green and orange color, respectively. Two 

loop regions, L1 and L2 of UBE2L3 are in contact with the α-helix and zinc-chelating loops of the 

RING domain. The central F63 residue in loop L1, P97 and A98 in loop L2 of UBE2L3 mediate its 

binding to c-Cbl. The c-Cbl linker region interacts with α-helix 1 of UBE2L3 [187]. (B) Modeled 

c-Cbl-UBE2D1 complex. Although the interaction was reported earlier [188], binding details and 

the structure of the complex was not available. c-Cbl residues labeled in red color was observed to 

be critical: C384, C404, R420 were mutated in patients with acute myelogenous leukemia [190]. 

Additionally, Ile383 and Trp408 of c-Cbl were shown to have a critical role in E2 binding [187]. 

These residues correspond to computational hotspots predicted by Hotpoint server indicating the 

usefulness of structural modeling of E2-E3 associations 

 

3.3 Allosteric Proteins in Signaling Pathways 

Allostery is a cooperative event, up- or down-regulating protein activity. From the 

functional standpoint, the key role of allosteric events is to increase binding selectivity at 

the target site [193]: binding to even slightly different allosteric effectors or at different 

allosteric sites can enhance specificity. From the pharmacological standpoint, allosteric 

effects can adversely affect protein function: disease-related mutations often lie on major 

allosteric routes [194, 195]. The efficacy of drugs that bind residues on major propagation 

pathways can be expected to be higher. Hence, identification of major pathways in the 

ensemble is an important goal.  

Signaling pathways are complex and dynamic [196], and are important for identifying 

possible therapeutic targets. Ras proteins mediate signaling pathways that control cell 

growth and differentiation. They act as molecular switch by cycling between active 
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guanosine triphosphate (GTP)-bound and inactive guanosine diphosphate (GDP)-bound 

states. They are activated by nucleotide exchange factors Son of sevenless (Sos) and Ras 

guanine nucleotide releasing factor 1 (RasGRF1) upon conversion of GDP-bound Ras to 

GTP-bound. Their large conformational changes are best described by the population shift 

model rather than induced fit [197]. In addition to the active and inactive states highly 

populated intermediates are also sampled [198]. In its active state, Ras can interact with 

effectors in signaling cascades, whereas inactive Ras cannot [199]. In the mitogen-

activated protein kinase (MAPK) signaling pathway, Ras is first activated by Sos, then it 

binds Raf protein kinases (A-Raf, B-Raf and C-Raf). Although there are binding studies on 

Ras interaction with C-Raf [200, 201], little is known on binding of B-Raf to Ras. Since B-

Raf is important in many cancer types, details of its interactions are essential for drug 

design. Here, using the active and inactive conformations, we search for possible 

interactions of Ras with B-Raf using Prism [20]. Results indicate that active Ras can 

favorably bind to B-Raf while inactive Ras cannot due to steric effects. Figure 3.3A 

illustrates the conformational change upon activation. Figure 3.3B displays the Prism-

predicted Ras - B-Raf interaction. When binding to B-Raf, Ras uses switch I (residues 30-

38) and switch II (residues 60 to 76) regions which correspond to the most significant 

conformational change. The figure indicates that without this conformational change, 

inactive Ras - B-Raf interaction is unfavorable.  
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Figure 3.3 Allosteric Ras protein in MAPK signaling pathway. (A) Visualization of the 

conformational change in Ras protein upon activation by Sos. Inactive and active allosteric Ras 

protein structures (obtained from the PDB) are shown in pink and cyan color, respectively. The 

superposition is based on matched residues with the distance between superimposed C
α 

atoms ≤ 2 

Å. The conformational changes (unmatched residues) are highlighted in red and blue, respectively, 

for inactive and active Ras. Conformational changes correspond mostly to residues from switch I 

(residues 30-38) and switch II (residues 60 to 76) Ras regions. (B) The interaction between 

activated Ras (PDB code: 1bkdR) and Ras binding domain of B-Raf (3ny5A) is predicted by Prism 

[20]. Binding site corresponds to switch I and switch II regions. B-Raf can bind to activated Ras 

favorably whereas it cannot bind to the inactive structure. 
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Chapter 4 

 

HUMAN PROTEOME-SCALE STRUCTURAL MODELING OF E2-E3 

INTERACTIONS EXPLOITING INTERFACE MOTIFS 

 

 

Ubiquitination is crucial for many cellular processes such as protein degradation, DNA 

repair, transcription regulation and cell signaling. Ubiquitin attachment takes place via a 

sequential enzymatic cascade involving ubiquitin-activation (by E1 enzymes), ubiquitin-

conjugation (by E2 enzymes), and ubiquitin substrate-tagging (by E3 enzymes). E3 ligases 

mediate ubiquitin transfer from E2s to substrates and as such confer substrate specificity. 

Although E3s can interact and function with numerous E2s, it is still unclear how they 

choose which E2 to use. Identifying all E2 partners of an E3 is essential for inferring the 

principles guiding E2 selection by an E3. Here we model the interactions of E3 and E2 

proteins in a large, proteome-scale strategy based on interface structural motifs, which 

allows elucidation of 1) which E3s interact with which E2s in the human ubiquitination 

pathway; and 2) how they interact with each other. Interface analysis of E2-E3 complexes 

reveals that loop L1 of E2s is critical for binding; the residue in the sixth position in loop 

L1 is widely utilized as an interface hot spot and appears indispensible for E2 interactions. 

Other loop L1 residues also confer specificity on the E2-E3 interactions: HECT E3s are in 

contact with the residue in the second position in loop L1 of E2s; but this is not the case for 

the RING finger type E3s. Our modeled E2-E3 complexes illuminate how slight sequence 

variations in E2 residues may contribute to specificity in E3 binding. These findings may 

be important for discovering drug candidates targeting E3s, which have been implicated in 

many diseases. 

 

4.1 Introduction 

Protein modification by ubiquitin (ubiquitination) is a key mechanism for controlling many 

cellular processes such as protein degradation, DNA repair, signal transduction, 

transcription, immunity, endocytosis and cell death. Ubiquitination is achieved by a 
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sequential enzymatic cascade of ubiquitin-activating (E1), ubiquitin-conjugating (E2), and 

ubiquitin-ligating (E3) enzymes [202]. In the human genome, there are only two known 

E1s [203], which are conserved across different species while there are multiple E2s and 

many more E3s. Ubiquitin is activated by an ATP-dependent E1 and transferred to E2. E3s 

recognize specific target substrates and catalyze the ubiquitin transfer from the E2 to the 

substrate. Ubiquitin can be conjugated to the substrate as a monomer on one 

(monoubiquitination) or more substrate lysines (multiubiquitination) or as a polymer 

(polyubiquitination) by forming ubiquitin chains [204].  There are three types of E3 ligases 

based on the protein families they belong to: Homologs of E6AP Carboxy Terminus 

(HECT), Really Interesting New Gene (RING), and the UFD2 homology (U-box) family 

proteins. HECT is a domain of ~350 amino acids. It has a bilobal structure, in which the N-

terminal lobe contains the E2-binding site, and the C-terminal lobe confers catalytic 

activity. The conserved Cys residue in the C-terminal lobe forms thioester bonds with 

ubiquitin [205]. The RING finger domain is formed by a short motif rich in histidine and 

cysteine residues that coordinate zinc atoms in a cross-brace structure, characterized by a 

central α-helix and variable-length loops separated by small beta strands [206]. The U-box 

domain constitutes a relatively small family of E3s and is similar to the structure of the 

RING domain with the exception that it lacks the conserved histidine and cysteine residues 

[207]. The ubiquitination mechanisms for these three E3 classes differ. For HECT domain 

E3s, the ubiquitin is first transferred from E2 to the active site residue of HECT E3, with 

subsequent transfer from E3 to the substrate protein. For RING and U-box type E3s, 

ubiquitin is directly transferred from E2 to the substrate without an E3 intermediate 

linkage. The E2 family is characterized by the presence of a highly conserved 150-200 

amino acid catalytic core domain, which consists of four α-helices, a short 310 helix and a 

four-stranded, antiparallel β-sheet [208, 209] (Figure 4.1A). The beta sheet forms a central 

region bordered by helices and there are two loop regions, L1 and L2 that are located C-

terminal to β-strands 1 and 3 [209-211]. These loop regions show a high level of flexibility 

and are involved in E3 selection and binding [209]. E2 families are distinguished by minor 

sequence differences in the core and amino and/or carboxyl terminal extension domains 

[204]. Based on these, they are classified into four groups. Class I E2s consist only of the 

catalytic core domain. In addition to the core domain, Class II and Class III E2s contain 
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amino terminal and carboxyl terminal extensions, respectively. Class IV E2s contain both 

amino and carboxyl terminal extensions [211]. 

Currently, there is a limited number of known E2s (~40 in human); however the number 

of known E3s is increasing rapidly (~500 or more have been proposed to exist in human) 

[212-214], which suggests that one E2 can recognize several different E3s [215]. E2 and 

E3 proteins are known to function combinatorially; however, the principles determining 

the E2-E3 selectivity are unclear and in many cases it is not known which E3s interact with 

which E2s [216]. The first structural clues of E2-E3 interaction specificity were obtained 

from the crystal structure of the E3 ligase c-Cbl RING and UBE2L3 [187] (Figure 4.1B). 

Two loop regions, L1 and L2 of UBE2L3 are in contact with the α-helix and zinc-chelating 

loops of the RING domain. The central F63 residue in loop L1, P97 and A98 in loop L2 of 

UBE2L3 mediate its binding to c-Cbl. In addition, the c-Cbl linker region interacts with α-

helix 1 of UBE2L3 [187]. In another study, CNOT4 RING finger binding to the ubiquitin-

conjugating enzyme UBE2D2 was found to be highly selective [217]. Charge-alteration of 

residues E49 of CNOT4 and K63 of UBE2D2 result in altered-specificity of a functional 

E2–E3 enzyme pair [217]. In one experimental approach, two-hybrid experiments were 

performed to identify E2 partners of Brca1 ubiquitin ligase. Brca1 was found to interact 

with multiple different E2s and to possess unique ubiquitin-transfer properties depending 

on the E2 used [218, 219]. In another study, in vivo cross-linking methods were used to 

identify HRD1 (HMG-CoA reductase degradation) ubiquitin ligase interactions [220]. Two 

large-scale studies have recently addressed this E2-E3 identification problem: Wijk et al. 

[221] performed a global yeast-two hybrid screen and uncovered over 300 high quality 

interactions; Markson et al. [222] combined yeast two-hybrid screens with homology 

modeling methods to generate a map of human E2-E3 RING interactions.  

Although these studies identified new E2-E3 pairs, the nature and structural details of 

the interactions in the ubiquitin system are lacking. Here, we aim to model the human E2-

E3 interactions on a large, proteome-scale and to obtain an insight into their interaction 

specificity. To carry out this study, we have used Prism [20, 142, 161], which employs a 

highly efficient strategy to predict protein associations based on interface structural motifs. 

The Prism rationale argues that if any two proteins contain regions on their surfaces that 

are similar to complementary partners of a known interface, in principle these two proteins 

can interact with each other through these regions. This knowledge-based strategy, which 
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utilizes structural and evolutionary similarity, is made more physical and biologically 

relevant by including flexibility and energetic assessment in the modeling. This is achieved 

by using FiberDock [153], a flexible docking refinement server. Using Prism, we have 

constructed a human structural E2-E3 network consisting of 107 predicted interactions 

among 22 E2s and 16 E3s. 36% of our predicted interactions were reported in earlier 

studies as interacting pairs; however, how they interact has been unclear. We first observed 

that E3 proteins could interact with multiple E2s and likewise E2 proteins could interact 

with multiple E3s, which is expected. However, analysis of the modeled interfaces of E2-

E3 putative complexes revealed some structurally conserved residues which are present in 

almost all interfaces and as such are likely to be indispensible for E2 binding. Comparison 

of the E2-HECT domain E3 and E2-RING domain E3 interfaces suggests that the E2 loop 

L1 residues confer specificity in binding to different E3s. The structural E2-E3 network in 

this study, together with interface analysis, provides a resource for future studies of 

ubiquitination and E2-E3 selectivity. 

 

 

Figure 4.1 Structural representation of E2 and E3 proteins.(A) A member of E2 family, UBE2D1 

(PDB code:2c4p:A) is visualized. The catalytic core domain consists of 150 residues. α-helix 1 and 

highly flexible regions; loop L1 and L2, which are involved in E3 selection and binding, are 

displayed in yellow, green and orange color, respectively. Conserved catalytic cysteine residue, to 

which ubiquitin is attached, is shown as red spheres. (B) The interaction between an E3 ligase c-

Cbl RING and UBE2L3 is shown. Loop L1 and L2 of UBE2L3 interact with α-helix and zinc-

chelating loops of the c-Cbl RING domain and α-helix 1 of UBE2L3 is in contact with c-Cbl linker 

region [187]. 
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4.2 Methodology 

4.2.1 Template And Target Dataset 

In this study, we predict and model complexes based on the known interfaces in a template 

dataset. To construct the template dataset, we extract all known E2-E3 complexes in the 

ubiquitination pathway from the PDB [223]. There are 9 available E2-E3 complex 

structures which are listed in Supplementary Material. 

The target dataset contains the E2 and E3 protein structures among which we want to 

uncover possible interactions. The list of ubiquitin ligases (E3) and ubiquitin conjugating 

enzymes (E2) related to the human ubiquitination pathway are obtained from the KEGG 

database [224] and available 3D structures are extracted from the PDB. There are 24 E2 

proteins, 20 RING finger type E3, 9 HECT type E3 and 3 U-box type E3 proteins with 

three dimensional protein structures. Among these, Prism algorithm predicts interactions 

between 22 E2 and 16 E3 proteins. 

 

4.2.2 The Prediction Algorithm 

The prediction algorithm is composed of four consecutive steps (Figure 4.2): extraction of 

the surface of target proteins, structural alignment, collision check and flexible refinement. 

In the first step, surface regions of the target proteins are extracted using Naccess [225] 

based on the relative accessible surface area of the residues. If the relative surface 

accessibility of a residue is more than 15%, then it is labeled a surface residue. In the 

second step, each interface in the template dataset is split into its chain components. Using 

the MultiProt engine [226], our algorithm searches whether the target surfaces are 

structurally similar to complementary partners of a template interface. At least 40% of the 

residues of template chains should be matched to the target surface residues to pass to the 

next step. If the template chains contain less than 50 residues, this threshold is 60%. In 

addition to the structural similarity, evolutionary similarity between the template and target 

surfaces is assessed; at least one hot spot in each template partner should match with the 

target surface. In the third step, each target protein is transformed onto the corresponding 

template interface to form the complex structure. After the transformation, the colliding 

residues are checked; if two partners have more than five spatially-colliding residues, then 

the match is eliminated. At this step, side chain collisions are not considered and left to the 

last step for a more accurate treatment. The last step is the flexible refinement (backbone 
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and side chain) of the predicted complexes using FiberDock [153] to resolve the steric 

clashes and rank the predicted complexes according to their calculated global energy. 

FiberDock uses both low and high frequency normal modes and models the backbone and 

side-chain movements according to the binding van der Waals forces between the receptor 

and ligand. We assign the larger protein chain to be the receptor and the smaller to be the 

ligand. In the side chain optimization, only clashing interface residues are considered as 

movable and 20% of clashes between the side-chain atoms are allowed. Following the 

refinement process, FiberDock calculates a global energy for each predicted complex. The 

putative complex structures with a global energy less than -10 kcal/mol are included in the 

human structural E2-E3 interaction network. 

 

4.2.3 Interface Analysis 

Interface regions of putative E2-E3 complexes are analyzed using the Hotpoint server 

[192], which uses an efficient method to determine computational hot spots based on 

conservation, solvent accessibility and statistical pairwise residue potentials of the interface 

residues. Hot spots are critical residues at the interface which account for the majority of 

the binding free energy [104]. Structure-based multiple sequence alignment of human E2s 

are obtained from Christensen et al. [219] and interface and computational hot spot 

residues are displayed. Computational mutagenesis analysis is performed using FoldX 

algorithm [227]. First, the putative complex structures are subjected to an optimization 

procedure using the repair function of FoldX. Next, quantative estimations of the binding 

affinities of the wild-type and mutants are obtained by the PositionScan function. 
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Figure 4.2 Schematical illustration of the Prism algorithm. In the first step, surface regions of 

target proteins are extracted. In the second step, each template interface is split into the 

complementary partner chains and the partners are structurally aligned with target protein surfaces 

by the MultiProt engine [226]. This concept is visualized here: Ube3a-UBE2L3 (PDB code: 

1c4z:AD) is one of the complexes in our template interface set. When target proteins are 

structurally aligned with Ube3a and UBE2L3, an E3 ligase Huwe1 (PDB code: 3g1n:A) is found to 

have a structurally similar binding region to that of Ube3a. Likewise, one of the E2 proteins; 

UBE2D1 (PDB code: 2c4p:A) has a similar binding region to that of UBE2L3. Then, in principle, 

these two proteins Huwe1 and UBE2D1 can interact with each other through these regions. 

Predicted complexes are assessed in the third step: target proteins are transformed onto the template 

interface and if the residues of the target partners collide, these pairs are eliminated. In the last step, 

to obtain biologically more relevant interactions, flexible refinement of the rigid docking solutions 

of MultiProt is performed using FiberDock [153] and the predicted complexes are ranked according 

to the calculated global energy. 
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4.3 Results 

Interactions between ubiquitin-conjugating (E2) and ubiquitin-ligating (E3) enzymes are 

essential for ubiquitination (Figure 4.3). Here we computationally model E2-E3 

interacting pairs in the human proteome on a broad scale to obtain the interaction network 

between all E2s and E3s whose structures have been determined, and in particular, to 

obtain structural insight into E2-E3 selectivity based on the large set. Modeling the 

structural network provides data not only relating to which E2s interact with which E3s; 

but also to how they interact. Analysis of these interactions may yield patterns which 

distinguish between the E2 and E3 interaction classes.  

In the following sections, first we explain how we constructed the human structural E2-

E3 interaction network and present its topological characteristic. Next we provide an 

analysis of E2-E3 interfaces. We then describe the patterns that we observed and 

hypothesize that they may play a role in E2-E3 specificity. 

 

 

Figure 4.3 The ubiquitination mechanism. The ubiquitination process starts with the activation of 

ubiquitin by an E1 enzyme which then transfers it to the E2 protein. E2 together with ubiquitin bind 

to E3 protein ligase which interacts with the target substrate through another region. E3 ligase 

assists in ubiquitin transfer from E2 onto the substrate. The ubiquitin transfer mechanism depends 

on the E3 type; for HECT domain E3s, ubiquitin is first transferred from E2 to the active site 

residue of HECT E3, with subsequent transfer from E3 to the substrate protein whereas for RING 

and U-box type E3s, ubiquitin is directly transferred from E2 to the substrate without an E3 

intermediate linkage. 
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4.3.1 Constructing a Human Structural E2-E3 Interaction Network 

Incorporating protein structural information into networks is crucial for understanding the 

details of the interactions. Here, using the available structural proteome, we construct a 

human structural E2-E3 interaction network. First we compile the available structures for 

E2 and E3 proteins in the human ubiquitination pathway; there are 24 E2 proteins, 20 

RING finger type E3, 9 HECT type E3 and 3 U-box type E3 proteins. To uncover possible 

interactions among these E2 and E3 proteins, we use our efficient prediction algorithm 

Prism [20, 142, 161]. Prism has proven useful in our previous studies in the construction of 

pathways [60] and characterization of interactions [30] and networks [141]. On a docking 

benchmark [228], Prism method is validated: it efficiently finds high-quality models for 87 

out of 88 benchmark complexes and their binding regions [229]. Prism exploits structural 

and evolutionary similarities, and a template interface dataset which consists of known 

protein-protein interfaces. Based on these, it predicts potential interactions between target 

proteins. In this study, the known E2-E3 interfaces from the PDB constitute the template 

interfaces. Figure 4.2 presents a schematic representation of the Prism algorithm which is 

composed of four consecutive steps. In the first step, the surface regions of the target 

proteins are extracted. In the second step, each template interface is split into the 

complementary partner chains and the partners are structurally aligned with the surfaces of 

the target proteins by the MultiProt engine [226]. 40% of the residues of template chains 

should match the target surfaces to pass to the next step. Besides the structural similarity, 

evolutionary similarity between target surface and template interface is assessed: at least 

one hot spot in each template partner should correctly match with the target surface. In the 

third step, target proteins are transformed onto the template interface and if the residues of 

the target partners collide (interpenetrate), then these pairs are eliminated. The last step is 

flexible refinement of the rigid docking solutions of MultiProt to remove steric clashes, 

refine and rank the predicted complexes according to the global energy using FiberDock 

[153]. FiberDock considers both side chain and backbone flexibility. 

The resulting network, which consists of Prism predictions, contains 107 interactions 

between 38 proteins and they are listed in Supplementary Material. There are 22 E2 

proteins, 9 RING-finger domain E3, 5 HECT-domain E3 and 2 U-box domain E3 proteins. 

Among these 22 E2s and 16 E3s, the number of all possible E2-E3 pairs is 352 (i.e. 

22x16), out of which Prism predicts 107 to be interacting and leaves the remaining 245 as 
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unfavorable E2-E3 pairs. Out of 352 possibilities, 51 pairwise E2-E3 interactions were 

already reported in earlier studies. Although information related to non-interacting E2-E3 

pairs is limited, a detailed literature survey showed that 24 E2-E3 pairs were reported to be 

negative. We recover 76% (39/51) of the known pairs through 107 predicted interactions 

verifying 36% (39/107) of the network. Of the 24 E2-E3 interactions reported as negative, 

75% (18/24) are labeled as unfavorable by Prism. On the basis of known E2-E3 interaction 

data, the accuracy of our predictions is 76% ((39+18)/(51+24)), which indicates that the 

predicted E2-E3 interactions are in agreement with validated functional E2-E3 pairs. The 

Prism method depends on the coverage of known interface architectures and at the time of 

this study, there are only 9 E2-E3 known complex structures in the PDB. Because the size 

and coverage of the PDB increases exponentially, we expect the prediction efficiency of 

Prism to increase. 

 

4.3.2 Topological Characteristic of the Structural E2-E3 Interaction Network 

In terms of network topology, since the network is structural and the structural database is 

incomplete, it is not a typical scale-free protein-protein interaction network and does not 

follow a power law distribution; however, it is a connected network with an average degree 

of 5.6. As we noted above, we observe that E3s interact with multiple E2s and likewise E2 

proteins interact with multiple E3s. Some of the E3s and E2s have many interaction 

partners raising the possibility that they are ‘adaptable’ and multi-functional. Among the 

E2s, UBE2D (UbcH5) family proteins show the highest number of interactions, consistent 

with previous findings that UbcH5 is active with most E3s [219]. These E2s are involved 

in degradation of misfolded and short-lived proteins and their orthologs Ubc4 an Ubc4 in 

Saccharomyces cerevisiae have been shown to be functionally redundant [230]. Such 

redundancy among UBE2D E2s would be a physiological advantage because it protects the 

ubiquitination networks from genetic perturbation [222]. Another highly interacting E2 in 

our network is UBE2N, which is involved in Lys63 ubiquitin chain assembly [231]. In 

contrast, E2s such as UBE2F, UBE2S, UBE2G1 and UBE2Q1/2 are involved in very few 

interactions. In comparison to previous E2-E3 RING interaction networks constructed by 

yeast two-hybrid screens [221, 222], we encounter similar topological trends: E2s showing 

a high number of E3 interactions are reported to be UBE2N, UBE2D and UBE2E families 

[221, 222], while UBE2F, UBE2S and UBE2G1 have only a few interactions [222]. Thus, 
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it appears that while some E2s such as the UBE2D family may function in the majority of 

the ubiquitination events in human cells [222], others such as UBE2F, which is known to 

conjugate ubiquitin-like protein NEDD8, are less important in maintaining the integrity of 

the ubiquitination network [221]. 

Different patterns of substrate ubiquitination lead to different substrate fates. 

Monoubiquitination can regulate DNA repair, endocytosis and gene expression, whereas 

polyubiqutination through Lys48 ubiquitin chains generally results in proteasomal 

degradation, and Lys63-linked ubiquitin chains can function in endocytosis and signaling 

[232]. Although mechanisms that control lysine selection in substrates are not clearly 

identified, structural aspects of E2-E3 pairs and their binding to the substrate appear to be 

important [233]. A RING E3 can utilize different E2s that have different linkage 

specificities [234], and its activity is more likely to depend on the nature of the E2s which 

are present [219]. However, for HECT E3s, the chain linkages of the substrate are usually 

determined by the E3 itself [235]. In our network, we observe that highly interacting RING 

and HECT E3s would mediate mono- and poly-ubiquitination, indicating that they play 

roles in a broad range of cellular processes. Chain linkage properties of E2s and E3s (if 

available) are listed in Supplementary Material. We find that Ube3a, a HECT protein 

ligase, for which several substrates are identified including p53, Mcm7 and cell cycle 

regulator Cdkn1b, has 17 E2 partners. Ube3a specifically favors Lys48-linked 

polyubiquitination [235] and thus mediates degradation of cytoplasmic misfolded proteins 

[236]. As a multi-functional protein ligase, it is conceivable that Ube3a can interact with 

several ubiquitin-conjugating E2s, which are all able to catalyze Lys48-linked chains. We 

also predict Ube3a to be interacting with Sumo-conjugating enzyme UBE2I, which was 

reported earlier [237], although the sumoylation function of Ube3a was not clearly 

identified. Ube3a mediates the ubiquitination of Pml (promyelocytic leukemia protein) 

tumor suppressor [238], which is also known to undergo sumoylation required for nuclear 

body formation [239]. Thus, in addition to ubiquitination of Pml, Ube3a may function as 

an E3 mediating the sumoylation of Pml. Another highly interacting HECT E3 is Smurf2, 

which can induce degradation of receptor-regulated R-Smads and R-Smad bound partners 

[240], mediating TGFβ signaling via ubiquitination of the receptors or inhibitory Smad7 

adaptor [241]. Smurf2 is widely expressed in tissues. In addition to its ubiquitin-

conjugating function, we predict that it interacts with Sumo- and Nedd8-conjugating E2s, 
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UBE2I and UBE2M, respectively. In the TGFβ signaling pathway, Smad4 is known to be 

sumoylated in the presence of UBE2I, which results in the redistribution of Smad4 to 

subnuclear speckles [242]. Thus, Smurf2 may also interact with UBE2I in this pathway. 

For Huwe1, a recently identified HECT E3 implicated in the regulation of cell 

proliferation, apoptosis and DNA damage response [243-245], most of the E2 partners are 

not yet identified. We predict that UBE2C, -D1, -D2, -D3, J2 and -L6 could be possible E2 

partners. HECT E3s usually prefer to interact with E2s containing a phenylalanine at 

position 62 (by UBE2D1 numbering). We observe that all predicted E2 partners of Huwe1 

contain a phenylalanine at this position except UBE2C, which has a tyrosine residue. Since 

both phenylalanine and tyrosine are hydrophobic residues [108], and since UBE2C is 

similar to UBE2D1 in forming multiple different ubiquitin linkages [246], we hypothesize 

that UBE2C would be a possible partner of HECT E3s. Considering the RING E3s, c-Cbl 

is a highly interacting ligase with 12 E2 partners in our network. c-Cbl, which targets 

numerous substrates, has both monoubiquitination (facilitating endocytosis [247], 

lysosomal degradation [248]) and polyubiquitination activities. In our network, in addition 

to UBE2D and UBE2L family interactions as described in the literature, and other 

polyubiquitin catalyzing E2s, c-Cbl is also found to interact with UBE2B, which may 

catalyze mono-ubiquitination of substrates targeted by c-Cbl. For another RING E3, Brca1 

(Breast cancer type 1 susceptibility protein), although multiple different E2 partners, 

possessing unique ubiquitination activities, were identified in a yeast two-hybrid study by 

Christensen et al. [219], Prism predicts only three interactions (with UBE2B, -I and –N) 

and the latter two were reported before. Brca1 represents a special group of E3 enzymes 

which function as a heterodimeric complex with Bard1 [218]. Brca1 binds E2s and is an 

active E3 ligase only in association with Bard1. Christensen et al. [219] tested the Brca1-

Bard1 RING domains for E2 interactions and several E2 partners: UBE2D1, -D2, -D3, -E1, 

-E2, -I, -K, -L3 and –N were detected. However, yeast two-hybrid screening with isolated 

Brca1 was shown to yield different E2 interactions from screening with fused Brca1-Bard1 

dimers [221]. The reason we observe a limited set of E2s and many E2s as unfavorable for 

Brca1 is that we only considered a single Brca1 domain. A detailed analysis of the E2-E3 

interactions is given in the next section. 
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4.3.3 Analysis of the E2-E3 Interaction Interfaces 

The principles of selectivity between E2 and E3 proteins are still largely unclear. The 

factors that play a role in determing which E2 would bind E3 include (i) the substrate 

physiological/chemical state; that is, whether  its concentration is too high, or it is 

damaged, etc; (ii) the local concentration of the E2, which is affected by for example, its 

subcellular localization or distribution in tissues; and (iii) the E2 conformational state, 

which is determined by for example its post-translational modifications [249, 250]. All 

factors change dynamically with the fluctuating cellular conditions. Here we focus on 

preferred interactions from the structural standpoint. Below, we present an analysis of the 

interfaces of the E2-E3 complexes. 

 

4.3.3.1 General Trends in E2-E3 Binding 

Analysis of the interfaces of E2-E3 pairs is expected to reveal which residues are 

conserved among E2s interacting with a common E3 and which residues differ. Such 

analysis may provide clues to specificity. For each E2-E3 pair in our network, we analyzed 

the interacting interfaces and predicted hotspot residues at the interfaces using the Hotpoint 

server [192]. The critical residues at the interface account for the majority of the binding 

energy are called hot spots [104]. The Hotpoint server determines computational hot spot 

residues based on conservation, solvent accessibility and statistical pairwise residue 

potentials of the interface residues. The predicted hot spots are observed to match with the 

experimental hot spots with an accuracy of 70% [192, 251]. 

The E2 proteins which have been characterized so far are known to recognize E3s 

through the L1 and L2 loops and the N-terminal α-helix 1 on the E2 surface [252]. In 

particular, loop L1 has been shown to be critical in E3 binding. Loop L1 residues 

phenylalanine at position 62 and lysine at position 63 of UBE2D2 have been observed to 

bind to RING E3s c-Cbl [187] and CNOT4 [215]. In our network, E2 interface residues 

also mostly correspond to the α-helix 1, loop L1 and L2 regions. Considering all of the E2 

interfaces, there seem to be some structurally conserved residues in E3 binding. We 

observe that the sixth residue of loop L1 (phenylalanine 62 by UBE2D2 numbering) is a 

critical residue in E3 binding which frequently acts as a hotspot. In addition, the fifth 

residue in α-helix 1 (arginine 5 by UBE2D2 numbering) and the Ser-Pro-Ala motif in loop 

L2 (UBE2D2 labeling) mostly participate in the E3 binding. Earlier work has also shown 
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the importance of the Ser-Pro-Ala motif in E2s binding to U-box E3 CHIP [253] and RING 

E3 Brca1 [219]. These residues are found in almost all E2 interfaces in our network, which 

suggests that they could be indispensible for E2 binding to an E3. To investigate whether 

these residues are structurally conserved among the E2 family, we used the ProBIS 

algorithm [254], which detects structurally conserved regions of a protein by local 

structural alignments through ~23000 non-redundant PDB structures based on geometry 

and physicochemical properties. UBE2D1 (PDB code:2c4p) is the query protein. 57 similar 

structures are found. The α-helix 1 residues Arg5 and Glu9, loop L1 residues Tyr60, Pro61, 

Pro64 and Pro65, loop L2 residues Trp 93 and Ser94 are observed to show high structural 

conservation. The Phe62 residue in loop L1, which we frequently observe in the E2-E3 

interface in our netwok, is found to be moderately conserved. Thus, E2 family proteins can 

employ these conserved residues to interact with different E3s. Interface and computational 

hotspot residues on α-helix 1, loop L1 and L2 regions of E2s are provided for all E2-E3 

interactions in the Supplementary Material. 

For HECT E3s, which are composed of two subdomains connected by a flexible peptide 

linker, the C-terminal lobe contains the catalytic cysteine and the N-terminal lobe contains 

the E2 binding region [205]. For Huwe1, in the E2 binding region (residues 4150-4200), 

ten important residues for E2 binding were identified: F4153, G4156, L4157, Y4159, 

L4160, Y4170, L4172, V4178, Y4206 and C4211 [243]. Our Huwe1-E2 models indicates 

that Huwe1 utilizes most of these residues when interacting with its E2 partners. In 

particular, 6 of these residues (F4153, L4157, L4160, Y4170, L4172 and Y4206) are 

identified as hotspot by Hotpoint server. Similarly, for other HECT E3s - Nedd4l, Smurf2, 

Ube3a and Wwp1 - our interface modeling and computational hotspots are in good 

agreement with experimental data obtained in previous works [243, 255, 256]. From the 

RING E3 perspective, for c-Cbl, Trp408 and Ile383 residues were shown to have a critical 

role in E2 binding [187]. The side chain of Trp408 is exposed to the solvent in the E2 

binding cleft and hyrophobic residues are often found in an equivalent  position in other 

RING E3s [234]. In each of our c-Cbl-E2 models, both Trp408 and Ile383 are labeled as 

hotspots by the Hotpoint server, indicating their importance in binding. Another study 

showed that mutation of Trp408 to alanine reduces c-Cbl’s affinity for the E2 and 

eliminates its ubiquitin-ligase activity in vitro [191]. For the Traf6-UBE2N complex 

structure, seven residues within the RING domain of Traf6, Glu69, Pro71, Ile72, Leu74, 
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Met75, Ala101 and Pro106, were found to contribute significantly to E2 binding. [257] 

Among these, Ile72 and Leu74 were completely buried at the interface and contribute the 

most surface areas [257]. In our Traf6-E2 models, these residues reside at the interface 

although their contribution to binding differs, probably depending on the E2 partner 

present. Most of these residues are labeled as hotspots (especially Ile72 and Leu74). A 

comparison of HECT and RING E3s interacting with E2s is given in the next section. 

 

4.3.3.2 HECT E3s Utilize Loop L1 of E2s Distinctively From the RING Finger Type 

E3s 

As we noted above, ubiquitin transfer mechanisms differ among the E3 families. Here, we 

investigate whether this distinctive mechanistic feature, i.e. of ubiquitin forming an 

intermediate with the HECT domain before being transferred to the substrate, is also 

observed in HECT E3-E2 interaction interfaces. The 16 E3s in the putative E2-E3 

complexes that were predicted by Prism belong to different families: Rbx1, Rbx2, Mdm2, 

Xiap, Trim37, c-Cbl, Brca1, Traf6 and Birc3 are RING finger type; Huwe1, Nedd4l, 

Wwp1, Smurf2 and Ube3a are HECT type; and Ube4a and Ube4b are of the U-box type. 

These E3s appear to share the same E2s; however, different from the RING finger and U-

box type E3s, HECT-type E3s utilize the second position residue in loop L1 of E2s. The 

identity of this residue in loop L1 is not conserved among E2s, but its contacts with HECT 

E3s seem to be conserved structurally and chemically. One example shown in Figure 4.4 

is UBE2L3, an E2 which is involved in degradation of many proteins. We find that HECT 

E3s Nedd4l, Smurf2, Ube3a and RING finger E3s Traf6, c-Cbl and Rbx2 interact with the 

same E2, UBE2L3, using a shared E2 binding site. For Ube3a and c-Cbl, the complex 

structures with UBE2L3 are already available in the PDB, whereas for Nedd4l, Smurf2 and 

Traf6 the structural complexes are not known, although these interactions were reported in 

earlier works [258-260]. We modeled UBE2L3 interactions with Nedd4l and Smurf2 based 

on a known E2-E3 interface between UBE2D2 and Nedd4l (pdb code: 3jw0:AC) and the 

interaction with Traf6 is based on a known interface between the UBE2D1 and CHIP 

proteins (pdb code: 2oxq:AC). The interaction with Rbx2 is predicted by Prism. Figure 4.5 

lists the interface and hotspot residues of UBE2L3.  
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Figure 4.4 Interactions of UBE2L3 with HECT E3s and RING-finger E3s are visualized. UBE2L3, 

HECT E3s and RING E3s are displayed in gray, pink and blue color, respectively. UBE2L3’s 

binding regions are α-helix 1 (in yellow), loop L1 (in green) and loop L2 (in orange). On these 

regions, there are seven structurally conserved chemical contacts, which  are identified using 

MAPPIS. [261] Among these, loop L1 residues Pro62 and Phe63 and loop L2 residue Pro97 appear 

to be conserved through all interactions of UBE2L3, whereas loop L1 second position residue 

Ala59 (in red color) is observed only in HECT E3-UBE2L3 interfaces. Hydrophobic aliphatic 

residue contacts of Ala59 are visualized in the zoomed representation in the left panel. MAPPIS 

abbreviations of physico-chemical properties of residue contacts are: Ali: aliphatic hydrophobic 

property, Pii: aromatic property, Dac: hydrogen bond donor and acceptor, and Acc: hydrogen bond 

acceptor.  

 

 

When we compare the chemical contacts of these interactions using MAPPIS [261], we 

observe seven structurally conserved contacts for HECT E3s among five UBE2L3 

residues: Arg6, Ala59, Pro62, Phe63 and Pro97; and seven structurally conserved contacts 

for RING E3s among five UBE2L3 residues: Pro62, Phe63, Lys96, Pro97 and Ala98. 

Among these, loop L1 residues Pro62 and Phe63 and loop L2 residue Pro97 appear to be 

conserved through all interactions of UBE2L3. These residues mostly make hydrophobic 

aliphatic and aromatic (π) contacts with E3 residues according to the MAPPIS [261] 

classification (see Figure 4.4) and thus they seem to be important in binding. Earlier work 

has supported this observation; Phe63 of UBE2L3 was shown to be recognized by both 
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HECT and RING E3 ligases; c-Cbl and Ube3a [187]. Comparison of the chemical contacts 

of HECT and RING E3s (left and right panel of Figure 4.4, respectively) reveals that the 

second position residue Ala59 in loop L1 of UBE2L3 appears to be utilized solely when 

interacting with HECT E3s. A previous study on E2 binding of Ube3a also reported this 

second position loop L1 residue as being important in HECT E3-E2 binding [262]. We 

observe that this alanine residue makes hydrophobic aliphatic contacts with Thr765 of 

Nedd4l and Ile559 of Smurf2 and Pro668 of Ube3a. When MAPPIS [261] is applied to 

known E2-HECT E3 (UBE2D2-Nedd4l, UBE2L3-Ube3a), E2-RING E3 (UBE2D2-

Not4hp, UBE2L3-c-Cbl, and UBE2N-Traf6) and E2-U-box E3 (UBE2D3-Ube4b, 

UBE2D1-STIP1) complexes in the PDB, similar trends are observed: loop L1 second 

position residue contacts are only employed when interacting with HECT E3s. Although 

the residue type is not conserved among other E2s, for example, UBE2D2 utilizes 

threonine and UBE2N uses glutamic acid at the second position in loop L1, the contacts of 

these residues through HECT E3s are structurally conserved. Interestingly, this observation 

holds among almost all E2-HECT E3 interactions which might be associated with the 

distinctive ubiquitin transfer mechanism of HECT E3s. This unique residue contact might 

play a role in mediating the allosteric communication between E3 binding site and E3 

active site, and thus make the ubiquitin transfer from E2 to HECT E3 possible. 

 

 

Figure 4.5 Interface and computational hotspot residues of UBE2L3 interacting with E3s. Interface 

residues and hotspot residues of UBE2L3 are shown in cyan and red color, respectively. 

Comparison of HECT type E3s (Nedd4l, Smurf2 and Ube3a) and RING finger type E3s (Traf6, 

Rbx2 and c-Cbl) reveals that loop L1 of UBE2L3 is utilized differently. UBE2L3 uses the second 

position residue in loop L1 frequently as hotspot while interacting with HECT E3s. 
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4.3.3.3 Sequence Variations in E2 Residues May Contribute Specificity to E3 Binding: 

The UBE2E Example 

The UBE2E family E2 proteins UBE2E1 and UBE2E2 are highly similar both in sequence 

and structure (97% sequence similarity and rmsd: 0.54 Å). The Prism results indicate that 

UBE2E1 and UBE2E2 share two E3 partners, Xiap and C-Cbl. Their remaining E3 

partners are different: UBE2E1 specifically interacts with Mdm2 and Birc3 whereas 

UBE2E2 prefers to interact with Wwp1, Rbx2 and Ube3a. Earlier, van Wijk et al. [221] 

reported that UBE2E2 has shown an E3 interaction pattern distinct from the profile of 

UBE2E1. Since UBE2E1 and UBE2E2 are quite similar, we investigate which residues 

would be responsible for this interaction specificity. Figure 4.6A displays the interface and 

computational hotspot residues on UBE2E1 and UBE2E2 which bind to different E3s. The 

residues in the binding regions of UBE2E1 and UBE2E2 are identical except for three: the 

residue in the 12
th

 position in the α-helix 1 (Asp58 in UBE2E1 corresponding to Glu12 in 

UBE2E2), the residue in the first position in loop L1 (Thr103 in UBE2E1 corresponding to 

Ser57 in UBE2E2) and the residue in the third position in loop L1 (Glu105 in UBE2E1 

corresponding to Asp59 in UBE2E2). Interestingly, these residues are not utilized at the 

common interface of E3 partners Xiap and C-Cbl. In this way, these E3s are likely to 

interact with both UBE2E1 and UBE2E2. In contrast, the residue at the third position in 

loop L1 seems to be crucial in ensuring the interaction specificity of the UBE2E family. 

For UBE2E2, this Asp59 favors specific binding to Wwp1, Rbx2 and Ube3a whereas for 

UBE2E1, the same position residue Glu105 plays a role in Mdm2 binding. Another 

specific binding of UBE2E1 is with Birc3. For this interaction, UBE2E1 utilizes an α-helix 

1 residue, Leu44, which does not occur in the UBE2E2 sequence. A previous study [221] 

reported the alteration of E3-interaction specificity of E2 UBE2N due to the mutation of its 

two helix 1 residues. This UBE2N mutant failed to interact with more than half of its E3 

partners and gained some new interactions instead [221]. Similarly, for the UBE2E family, 

the mutation of loop L1 residues Glu105 and Asp59 for UBE2E1 and UBE2E2, 

respectively, would probably alter the E3-interaction specificity. To investigate the 

importance of the contribution of these residues to the binding energy of the complexes, we 

performed a computational mutagenesis analysis using FoldX algorithm [227], whose 

force-field is based on emprical energy terms correlated with experimental ∆∆G 

measurements [263]. Using FoldX, loop L1 residues Glu105 (UBE2E1) and Asp59 
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(UBE2E2) are mutated to alanine and quantative estimations of the binding affinities of the 

wild-type and mutants are obtained. We observe that mutations of these residues in 

UBE2E1 and UBE2E2 that interact with the same E3s (Xiap and C-Cbl) do not affect the 

binding affinities significantly (∆∆G=0.3 kcal/mol on average). In contrast, for the specific 

E3 interactions of UBE2E1 and UBE2E2 (with Mdm2, Birc3, Rbx2, Ube3a and Wwp1), 

mutations have a destabilizing effect (∆∆G=1.2 kcal/mol on average). The most 

destabilizing is the mutation of loop L1 sixth position residue phenylalanine, which is 

identified as a computational hotspot by the Hotpoint server (∆∆G=1.9 kcal/mol on 

average). In Figure 4.6B left panel, the interactions of UBE2E1 and UBE2E2 with their 

common partner Xiap are illustrated. Xiap, which mediates the degradation of many 

proteins such as Caspase-3 and Smac, has been recently reported to interact with both 

UBE2E1 [264] and UBE2E2 [222]. A specific interaction of UBE2E2 with Ube3a is 

displayed on the right panel of Figure 4.6B. We observe that Asp59 (shown in cyan color) 

is utilized as an interface residue and its mutation is significantly destabilizing (∆∆G=2.6 

kcal/mol). Consequently, while with mutation of this residue UBE2E1 and UBE2E2 may 

still interact with Xiap and C-Cbl, they will most probably fail to interact with other E3s. 

These findings illustrate how slight sequence variations in E2 residues may contribute to 

the specificity of E3 binding. 

 

 

Figure 4.6 Interface and computational hot spot residues of UBE2E family. (A) For the common 

interaction partners, Xiap and c-Cbl, interface residues on UBE2E1 and UBE2E2 are similar (first 

two rows). The major contribution to specificity might be inferred via the third position loop L1 

residue of UBE2E1 and UBE2E2 (Glu105 and Asp59, respectively). (B) On the left panel, Xiap 

interactions with UBE2E1 and UBE2E2 are displayed (superimposed onto each other). 

Computational mutagenesis analysis indicate that mutation of Glu105 (blue color) and Asp59 (cyan 

color) of UBE2E1 and UBE2E2, respectively, does not affect binding affinities when interacting 

with Xiap (∆∆G=0.1 kcal/mol). On the right panel, UBE2E2 specifically interacts with Ube3a 

utilizing loop L1 Asp59 residue as an interface residue and its mutation is significantly 

destabilizing (∆∆G=2.6 kcal/mol). For all interactions of UBE2E family, phenylalanine (red color) 

at sixth position in loop L1 appears to contribute significantly to binding. 
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4.3.3.4 E2 Selection Based on Substrate and Subcellular Localization  

E2 selection by an E3 may be affected or determined by the substrate that will be degraded 

since the substrate should be in close proximity to the E2 during the ubiquitin transfer. 

Subcellular localization of E2 and E3 enzymes may also affect the interaction preferences. 

To identify which E2-E3 interactions are more likely to occur in our network, we classified 

the E2 and E3 genes in our network according to their subcellular localization as defined 

by Gene Ontology [265] cellular component terms. We observe that many E2 and E3 

enzymes are found both in the nucleus and in the cytoplasm and some are also found at the 

plasma membrane. The classification of E2-E3 interactions according to the cellular 

components, i.e. the interactions in the cytoplasm, nucleus and plasma membrane, is 

illustrated in Figure 4.7. The interactions appear to be localization-specific; for example, 

although Mdm2 ligase is ubiquitous (existing everywhere in the cell), its interactions are 

dependent on the localization of the E2. One substrate of Mdm2 is p53 tumor suppressor 

protein, which localize to either the nucleus or cytoplasm and can be ubiquitinated and 

degraded by Mdm2 [266]. In our network, to ubiquitinate p53, Mdm2 can select UBE2E1 

or UBE2D1 in the nucleus, while in the cytoplasm it can additionally prefer UBE2D3, 

UBE2G2 and UBE2L6. Interactions with the UBE2D family and UBE2G2 were reported 

earlier [221]. Mdm2 can also be found at the plasma membrane, where it was shown to 

bind to Beta-arrestin 2 (βarr2), which is a regulatory protein playing a central role in the 

endocytosis of most G-protein-coupled receptors [267], to drive its ubiquitylation [268]. 

According to our network, at the plasma membrane, Mdm2 can only interact with 

UBE2D3 to ubiquitinate βarr2.  

Other than Mdm2, Huwe1 and Ube3a (also called E6-AP) are known to ubiquitinate 

p53, targeting it for degradation as well [243, 269]. To perform this specific function, 

Mdm2, Huwe1 and Ube3a most likely select similar E2s. Consequently, common E2 

partners for these E3s would reveal which E2s would be selected in a substrate-specific 

manner. In our network, common E2 partners for Mdm2, Huwe1 and Ube3a are UBE2D 

family E2s (UBE2D1, UBE2D2, UBE2D3) and UBE2L6. Interactions between Ube3a and 

these E2s are experimentally known [258, 262, 270, 271] without E2-E3 complex 

structures. Since Huwe1 is a recently identified E3 ligase, many of its interaction partners 

are not known. We observe that most of the interface residues on E2s are shared indicating 

that these E2s can interact with only one E3 at a time. When we compare the global 
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energies of the putative E2-E3 complexes computed by FiberDock, we see that Mdm2 

binds most favorably to UBE2D1 (global energy: -26.14 kcal/mol) in the cytoplasm and 

the nucleus whereas Ube3a prefers UBE2L6 (global energy: -45.32 kcal/mol) in the 

cytoplasm and UBE2D1 (global energy: -24.9 kcal/mol) in the nucleus. The most favorable 

E2 partner for Huwe1 is UBE2D2 (global energy: -23.38 kcal/mol), for which cellular 

component information is not available. The calculated Fiberdock energies for these E2-E3 

complexes are listed in Table 4.1. For each E3 interacting with E2s, the binding energies 

seem to be close to each other, which is consistent with earlier studies that reported similar 

binding affinities for a common E3 interacting with multiple E2s [219, 237, 272]. 

Depending on which substrate is ubiquitinated and where it is ubiquitinated in the cell, E2 

selection of E3s may vary. Our E2-E3 models provide a source for future investigation of 

selectivity.  

 

Figure 4.7 Classification of the human structural E2-E3 interaction network according to the GO 

[265] cellular component terms. There are 72, 41 and 8 E2-E3 interactions in cytoplasm, nucleus 

and plasma membrane classification, respectively. Some interactions are likely to occur 

ubiquitously whereas others appear to be localization-specific. E2 proteins are displayed in yellow 

color and E3 proteins are in gray. E3s are visualized according to the domain types; RING-finger 

domain, HECT-domain and U-box domain E3s are in rectangular, diamond and triangular shape, 

respectively. Red color edges are the E2-E3 interactions for which the complex structures are 

available in the PDB. 
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Table 4.1 Interactions and binding energies of E2-E3 complexes mediating degradation of the 

same substrate, p53 protein. 

E3 proteins Mdm2, Huwe1 and Ube3a interact with E2 proteins UBE2D1, UBE2D2, UBE2D3 and 

UBE2L6 with different binding energies (kcal/mol) computed by Fiberdock. The most favorable 

partners for Mdm2, Huwe1 and Ube3a are UBE2D1, UBE2D2 and UBE2L6, respectively, for 

which the binding energies are underlined below. 

 

E3 proteins 

E2 proteins 

UBE2D1 UBE2D2 UBE2D3 UBE2L6 

MDM2 -26.1 -21.9 -15.7 -10.4 

HUWE1 -10.6 -23.4 -11.5 -14.9 

UBE3A -24.9 -29.3 -32.3 -45.3 

 

 

4.4 Concluding Remarks 

Substrate ubiquitination is mediated by the interactions between E2 enzymes and E3 

ligases. Although these E2 and E3 proteins function in a concerted manner, the principles 

of selectivity between them are still not entirely understood. Here we address E2-E3 

interactions in the human proteome by taking a structural approach, and computationally 

model E2-E3 complexes based on interface structural motifs. By exploiting the available 

structural proteome and the powerful Prism algorithm [20, 142, 161], we construct a 

human structural E2-E3 interaction network. The results indicate which E2s are likely to 

interact with which E3s and how they could interact. Analysis of the modeled interfaces of 

E2-E3 pairs elucidates binding patterns: some residues are structurally conserved among 

E2 proteins and appear to be essential for all E2-E3 interactions, whereas others, 

particularly in loop L1, appear to play important roles in E3 selectivity. Further, 

classification of E2 and E3 enzymes according to their subcellular localization would 

reveal which E2-E3 pairs are more likely to occur in each cellular component and how the 

E2 preference may vary depending on the substrate. 

Several E3s have been implicated in disease, including cancer and neurodegenerative 

diseases [273]. Recently various HECT-E3s have emerged as important regulators of 

cancer development [274]. RING-finger E3s are classified as either tumor suppressors or 

oncoproteins and are often overexpressed in cancer [273]. Therefore, in disease processes, 

to block the activity of E3s, inhibitory molecules can be developed which target E3-E2 

interface or E3-ubiquitylation substrate interface. In this study, we focused on predicting 
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and analyzing E2-E3 pairs in the human ubiquitination pathway. We believe that the 

structural E2-E3 network and the E2-E3 interface data in this study provide a resource for 

future studies of ubiquitination and E2-E3 selectivity, especially in discovering drug 

candidates targeting E3s. 
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Chapter 5 

 

ACTIVATION OF APOPTOTIC SIGNALS THROUGH CIRCADIAN CLOCK 

DISRUPTION 

 

Circadian clock regulates many biochemical pathways at the cellular level by generating 

~24-hour oscillations in the physiology and behavior of the organism known as circadian 

rhythms. A recent study indicated that disruption of circadian clock with Cryptochrome 

(Cry) knockout in mouse with p53-null background decrease cancer incidence and increase 

life span due to increased sensitivity of cells to apoptosis by genotoxic agents and hence 

protects p53-null mice from the early onset of cancer. Here, we combine gene expression 

analysis with protein-protein interaction data to investigate the altered pathways due to Cry 

knockout in p53-null background. We focus on pathways related to cellular growth and 

death and provide a comparison of p53
-/-

 and p53
-/-

Cry1
-/-

Cry2
-/-

 mice fibroblast cells at the 

gene expression level. The results reveal that Cry knockout in a p53-null cells leads to 

upregulation of several pro-apoptotic genes and downregulation of those related to cell 

survival. In particular, we observe that circadian clock pathway would intersect with 

several pathways including apoptosis, Wnt, Notch, p53 and insulin signaling. The 

connection between circadian clock disruption and apoptotic events appears to be regulated 

by GSK3β, which is a key component of several signaling pathways. NF-κB activators 

such as TLR2, NOTCH1 and TNFSF12, regulated by GSK3β, are downregulated which 

would fail to activate NF-κB making p53-null cells more sensitive to apoptosis in Cry-null 

background. GSK3β would also mediate the alterations in Wnt, insulin and MAPK 

signaling leading to the suppression of cell survival. These findings are important for 

understanding the pathways/processes that would be affected upon Cry knockout as well as 

for identifying targets in treatment of cancers associated with p53-deficiency. 

 

5.1 Introduction 

The circadian clock generates cyclical changes in the physiology and behavior of 

organisms with a periodicity of ~24 hours, known as circadian rhythms [275]. The central 
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commanding center of circadian rhythms is located in the suprachiasmatic nuclei (SCN) in 

the hypothalamus. The SCN coordinates the activity of peripheral clocks, which operate in 

all cells in human and mice. The mammalian circadian oscillatory mechanism is achieved 

through transcription-translation feedback loops through the clock elements such as E-box, 

D-box, and ROR/REV-ERB binding elements (RORE). Among these regulatory 

sequences, the E-box is known to be the most important in the molecular oscillatory 

system. The transcriptional activators CLOCK and BMAL1 proteins heterodimerize in the 

cytoplasm and translocate to the nucleus where they bind to E box elements located in the 

protomer region of various genes and induce the transcription of circadian clock genes up 

to 10% of the genome including  three periods (Per1, Per2 and Per3) and two 

cryptochromes (Cry1 and Cry2) [276]. PERs and CRYs bind to each other and upon 

dimerization along with casein kinase Iε, they inhibit the CLOCK-BMAL1 complex and 

hence their own transcription [277-279]. The time delay between transcription of PERs and 

CRYs and their action as repressors is a key factor in generating circadian rhythms and 

circadian phenotype [279]. Circadian clock pathway is visualized in Figure 5.1 

schematically. 

 

Figure 5.1 A simple visualization of circadian clock pathway. The transcriptional activators 

CLOCK and BMAL1 proteins bind to each other and translocate to the nucleus where they bind to 

E-box elements located in the protomer region of genes. They induce transcription of several genes 

including Per, Cry, RORα and REV-ERBα. PER and CRY proteins bind to each other in the 

cytoplasm and translocate to the nucleus to inhibit the CLOCK-BMAL1 complex and hence their 

own transcription [276-279]. 
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Circadian clock disruption by environmental and genetic factors results in a number of 

pathological conditions [280-282] and predisposes humans and mice to cancer [280, 282]. 

However, the evidence regarding the occurrence of cancer due to clock disruption is 

somewhat conflicting; although disruption of the clock by Per2 mutation is observed to 

predispose mice to cancers [283], disruption by Cry knockout [284] or Clock mutation 

[285] does not. Therefore, rather than the disruption of circadian clock itself, the 

mechanism by which the clock is disrupted seems to be more important. Recent studies 

indicate that clock is in communication with different signal transduction mechanisms 

specifically regulating the metabolism of organisms. To elucidate the mechanisms behind 

clock disruption and to understand the functions of clock genes, it is crucial to identify the 

pathways by which circadian clock genes communicate. Previously it was shown that 

circadian clock and cell cycle pathways interface at a number of critical points. For 

example, BMAL1-CLOCK complex positively regulates WEE1 antimitotic kinase which 

regulates G2/M transition and is responsible for circadian variation in liver regeneration 

[286]. In addition, BMAL1-CLOCK complex represses transcription of c-Myc gene, which 

is a critical regulator of cell cycle progression [287]. Mechanisms of circadian control for 

other cell cycle-related genes such as cyclins and cyclin-dependent kinases (Cdk2, Cdc2) 

are currently unknown. Likewise, the expressions of several apoptosis-related genes, such 

as p53, Mdm2, Apaf1, Dapk1, p63 and Bcl2, are changed in circadian mutants [288], 

however, mechanism of circadian regulation is unknown. Recently, Ozturk et al. [289] 

investigated the effect of the Cry knockout on carcinogenesis in a mouse strain prone to 

cancer because of a p53 mutation. Contrary to the expectation that clock disruption by Cry 

knockout would further increase cancer risk, they found that Cry knockout protects p53 

mutant mice from the early onset of cancer and extends their median lifespan about ~50%, 

in part by sensitizing p53 mutant cells to apoptosis in response to genotoxic stress [289]. 

More recently, it was observed that increased sensitivity to apoptosis after UV irradiation 

would be due to the high levels of p73, a functional homolog of p53, in p53
KO

 Cry
DKO

cells 

[290]. In addition, Cry knockout is shown to enhance tumor necrosis factor α (TNFα)-

initiated apoptosis by interfering with NF-κB signaling pathway through the GSK3β kinase 

[291]. 

In this study, we performed a large-scale integration of microarray expression profiles 

with protein-protein interaction networks to investigate how cellular processes are affected 
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in p53-null mice cells upon Cry knockout. We mainly focus on the processes related to cell 

growth and death and obtain associated pathways; cell cycle, apoptosis and p53 signaling 

from KEGG pathway database [224]. We construct the so-called “crosstalk networks” of 

circadian clock and cell growth and death pathways, enriching these by physical and 

functional interactions using STRING search tool [292]. Combining gene expression 

profiles (fold changes p53
-/- 

Cry1
-/-

Cry2
-/-

 / p53
-/-

) with protein-protein interaction crosstalk 

network data reveals differentially regulated genes and pathways and how apoptotic signals 

would be activated in p53-null cells upon Cry knockout. We observe that expressions of 

several apoptotic genes are increased upon Cry knockout in p53
-/- 

cells and a minor amount 

of genes would promote cell survival leading to, in overall, a shift towards cell apoptosis.  

 

5.2 Methodology 

5.2.1 Cell Culture Maintenance and Total RNA Preparation 

We used mouse skin fibroblasts from 2 age matched p53
−/−

 and triple knockout C57BL/6 

mouse [289] for our microarray analyses. Culture medium was removed from 

exponentially growing cells, set aside, and then cells were washed once with warm PBS 

before placement under a GE germicidal lamp emitting primarily 254 nm UV light (UV-C) 

connected with a digital timer [293]. After receiving the 10 J/m
2
of UV radiation, culture 

medium was added back to the cells, which were subsequently placed back into the cell 

culture incubator for the indicated length of time. A UV-C sensor (UV Products, San 

Gabriel, CA) was used to calibrate the fluence rate of the incident light. Mouse skin 

fibroblasts were rinsed twice with PBS, trypsinized, suspended in medium, and collected 

by centrifugation. Cell pellets were washed twice with cold PBS and resuspended in RLT 

lysis buffer (QIAGEN, Valencia, CA). Total RNA was prepared with RNeasy mini kit 

(QIAGEN) as suggested by the manufacturer. DNA contamination was avoided by treating 

all the samples with Qiagen on-column DNase digestion. The quality and quantity of the 

total RNA sample were determined using an Agilent Bioanalyzer (Bioanalyzer 2100, 

Agilent Technologies) and NanoDrop
®

 ND-1000 Spectrophotometer (NanoDrop 

Technologies), respectively. 

5.2.2 Whole Mouse Genome Oligo Microarray Hybridization and Data Analysis 

We used whole mouse genome oligo microarrays (Agilent Technologies) for gene 

expression analysis. Both the cDNA labeling and microarray hybridization were followed 
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as recommended by the manufacturer (Agilent two-color microarray-based gene 

expression analysis). After hybridization, microarray slides were scanned using the Agilent 

Scanner (Model B) located in the University of North Carolina Genomics Core Facility. 

We used GeneSpring version GX 7.3.1 software (Agilent Technologies, Inc) for data 

analysis. The results represent an average of two biological replicates for each of the 

experiments. 

 

5.2.3 Identification of Differentially Expressed Genes 

Fold changes (the ratio of gene expression p53-Cry1-Cry2 knockout to p53 knockout mice 

cells after 4-hours of UV-induction) follow a symmetric distribution when converted to 

log2 values. The genes with expressions greater than μ+2σ (mean plus two times standard 

deviation) are assigned as “up-regulated” and similarly, the genes with expressions lower 

than μ-2σ (mean minus two times standard deviation) are assigned as “down-regulated”. 

There are 1059 differentially expressed genes at the 95% confidence level (α=0.05) out of 

which 447 genes are up-regulated and 612 genes are down-regulated. 

 

5.2.4 Construction of Crosstalk Network of Circadian Clock and Cell Growth & 

Death Pathways 

The genes related to cell growth and death processes (apoptosis, p53 signaling and cell 

cycle pathways) and circadian clock pathway genes are obtained from KEGG database 

[224]. Since cell cycle pathway interacts closely with MAPK signaling, Wnt signaling and 

TGFβ signaling pathways according to KEGG annotations, the genes in these pathways are 

also considered. Thus, six crosstalk networks (circadian-apoptosis, circadian-p53, 

circadian-cell cycle, circadian-MAPK, circadian-Wnt, circadian-TGFβ) are constructed 

using STRING search tool [294], which provides physical and functional protein-protein 

associations derived from experiments, databases, genomic context and co-expression 

studies. While constructing the crosstalk networks, only highest-confidence interactions 

(STRING score>0.9) are considered and only first partners of seed gene list are included; 

i.e. network depth is 1. 

5.2.5 Extraction of Subnetworks 

Since we analyze the gene expression change upon Cry1-Cry2 mutation in p53-knockout 

mice cells, first, we removed p53, Cry1 and Cry2 and their corresponding protein-protein 
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interactions from each crosstalk network. Then, circadian pathway genes, differentially 

expressed genes and Caspase 3 gene, which plays a central role in the execution-phase of 

cell apoptosis, are selected and subnetworks, which show the interactions among these 

genes, are extracted from each crosstalk network by using BiNoM Cytoscape plugin [295]. 

Given the selected genes, BiNoM connects them by shortest paths and extract a 

subnetwork, which provides a practical way to analyze changes in gene expressions at a 

network-level. BiNoM applies a agglomerative hierarchical clustering algorithm to build 

subnetworks; the distance between the selected nodes is the minimal linkage applied to the 

base distance to satisfy the triangular inequality and the maximal length of the shortest 

paths are assigned to obtain non-intersecting subnetworks. 

 

5.3 Results 

Studies have showed that circadian clock regulates many pathways in particular metabolic 

processes, however, the exact mechanisms are unclear [296, 297]. Therefore, considering 

the alterations of gene expressions within the scope of their interactions in cellular 

processes is an asset in understanding the details of regulation mechanisms. Ozturk et al. 

indicated that there is a relationship between the apoptosis and circadian clock, particularly 

between p53 and circadian clock. They have shown that the Cry mutation protects p53 

mutant mice from the early onset of cancer and extends their median lifespan 

approximately 50% [289]. In this study, we want to define pathways and mechanisms for 

understanding how the absence of the Cry genes delays the onset of the cancer and its 

relation to p53-mediated pathways using both computational and experimental approaches. 

Therefore, we conducted a microarray experiment using fibroblast cell lines of the p53
-/-

 

and p53
-/-

Cry1
-/-

Cry2
-/-

. In particular, we compared the gene expression profiles of two 

conditions: p53
-/-

 and p53
-/-

Cry1
-/-

Cry2
-/-

 primary mouse skin fibroblasts.  

We integrate microarray gene expression profiles with protein-protein interaction 

networks. We observed that Cry knockout would closely affect cellular processes related to 

cell growth and death; cellular growth factors are suppressed while genes related to cell 

death are activated. In the following sections, we first present an analysis of differentially 

expressed genes. Then, we take a detailed look into the interactions of these genes in a 

network concept: we map them onto crosstalk networks, which include interactions 
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between circadian pathway and pathways related to cellular growth and death, and thus 

being enriched representations of these pathways. 

5.3.1 Differentially Expressed Genes 

The genes with a significant change in expression upon Cry knockout (fold ratio p53
-/-

Cry1
-/-

Cry2
-/-

/ p53
-/-

) after 4-hours of UV-induction are labeled as differentially expressed. 

Of 1059 differentially expressed genes, 447 are upregulated and 612 are downregulated 

given as Supplementary Material. From these, ~30% of them have pathway information 

according to KEGG pathway database. To identify the biological processes they take place 

in and to observe their distribution in apoptotic processes, we extract their gene ontology 

(GO) annotations [298]. We see that 298 out of 447 upregulated genes and 391 out of 612 

downregulated genes have GO biological process annotations. Among 689 annotated 

genes, 10% (70 out of 689) are related to “cell death” processes. A detailed investigation of 

these genes showed that 29 of them are apoptotic (positively regulating cell death), 33 are 

anti-apoptotic (negatively regulating cell death) and 8 are either apoptotic or anti-apoptotic 

depending on the cellular condition. Our analysis indicated that apoptotic genes are mostly 

upregulated (20 out of 29), whereas, anti-apoptotic genes are downregulated (26 out of 33). 

In Table 5.1, up- and down-regulated genes annotated in cell death are listed together with 

their functions in this biological process. 

5.3.2 Mapping Differentially Expressed Genes onto Crosstalk Networks 

Apoptosis and p53 signaling pathways are related to cell death [224]. Pathway related to 

cell growth is cell cycle pathway which interacts closely with MAPK signaling, Wnt 

signaling, and TGFβ signaling pathways [224]. To see the interactions between these 

pathways and the circadian clock pathway, “crosstalk networks” are constructed by 

assembling the protein-protein interactions of these pathway genes using STRING search 

tool. Such analysis yielded six crosstalk networks: circadian-apoptosis, circadian-p53 

signaling, circadian-cell cycle, circadian-MAPK signaling, circadian-Wnt signaling and 

circadian-TGFβ signaling networks. Then, we map differentially expressed genes onto 

these crosstalk networks to detect alterations upon Cry knockout. Among them, circadian 

crosstalk networks with apoptosis, p53 signaling and Wnt signaling are observed to be 

affected at most; hence we focus on these three crosstalk networks and below present our 

findings. 
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Table 5.1 Up- and down-regulated genes annotated in cell death by Gene Ontology  

Of 1059 differentially expressed genes, 689 genes are annotated by Gene Ontology biological 

process terms. Among 689 annotated genes, 10% (70 out of 689) are related to “cell death” process. 

29 of these positively regulate cell death (apoptotic) and 33 of them induces a negative regulation 

on cell death (anti-apoptotic), while eight of these genes can be either apoptotic or anti-apoptotic. 

We observe that apoptotic genes are mostly upregulated (20 out of 29), whereas, anti-apoptotic 

genes are downregulated (26 out of 33). 

 

 Up-regulated genes Down-regulated genes 

Apoptotic (29 genes) Adipoq, Aldh1a2, Cd28, Col4a3, 

Ctsc, Fgl2, Gas1, Gzmc, Gzme, 

Mmp9, Pglyrp1, Ptprj, Rarb, Scin, 

Serpina3g, Serpinb9, Sfrp1, Sfrp2, 

Sfrp4, Wt1 

Aatk, Dab2ip, Dbc1, Dmrt2, 

Igf2r,ORF9, 

Sox7,Unc5a,Unc5b 

Anti-apoptotic (33 genes) Adamts20, Angpt4, Cxcr7, Il1rn, 

Krt18, Mdk, Nefl 

Adm, Alb1, Aqp1, Axin2, 

Cd59b, Comp, Cxcr4, Dhrs2, 

Dnajc10, E2f2, Fkhl18, 

Foxc1, Foxc2, Foxo1, Furin, 

Hc, Krt20, Lrp5, Naip2, 

Nod1, Notch1, Rel, Tgfb2, 

Tnfsf12, Ung, Wfs1 

Either apoptotic or anti-

apoptotic (8 genes) 

Ccl2, Cdh13, Clu Cck, Lyz, Lyzs, Map3k1, 

S100b 

 

5.3.2.1 Inactivation of Wnt Signaling upon Cry Knockout 

One of the pathways that clock communicate is Wnt signaling pathway which regulates 

cell cycle plays an important role in cell growth, development, cell proliferation and 

oncogenesis [299-301]. Aberrant activation of Wnt pathway and nuclear accumulation of 

β-catenin result in tumor progression [302]. Association between Wnt signaling pathway 

and apoptosis has been established as well: Wnt signaling pathway regulates apoptosis 

through a variety of mechanisms [303]; through β-catenin, GSK3β-NF-κB, c-JUN N-

terminal kinase signaling [304, 305]. Thus, to gain an insight of how Cry knockout in p53-

knockout cells would affect Wnt signaling pathway and to see whether a crosstalk occurs 

between Wnt signaling and enhanced apoptosis upon Crys knockout, first, we constructed 

a cross-talk network consisting of interactions among Wnt signaling pathway and circadian 

clock pathway genes (see Methods for details). Then, to observe the changes in gene 
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expression upon Cry knockout at a network level in detail, a sub-network is extracted from 

the cross-talk network (Figure 5.2A). 

 

Figure 5.2 Wnt-Circadian subnetwork. (A) Circadian clock pathway genes are shown in pink 

color. Up-regulated and down-regulated genes upon Cry knockout after 4-hours of UV-irradiation 

are shown in red and blue color, respectively. Gray colored genes are non-differentially expressed 

genes either belonging to Wnt pathway or acting as linkers connecting circadian pathway genes to 

Wnt pathway genes. (B) The interactions between Wnt signaling genes are detailed according to 

KEGG pathway annotations. When Cry is knockout in p53
-/- 

cells, the expression levels of the Wnt 

ligand; WNT10A and the Wnt receptor; LRP5 decreased more than to half and the Wnt 

antagonists; SFRP1, SFRP2 and SFRP4, which bind to Wnt proteins to prevent signal activation, 

show approximately two-fold increase in expression. No significant expression change in the 

scaffold complex is observed, although Axin1 levels increased to 1.4-fold. Axin2, which provides a 

negative feedback loop to Wnt signaling, is downregulated. Upon transduction of a Wnt signal, first 

transcription of Axin2 gene is induced via the β-catenin/TCF/LEF pathway, then it can function in 

the destruction complex to inhibit β-catenin expression [294]. Thus, with the decrease in Wnt 

signaling, Axin2 level decreases.  
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This Wnt-circadian subnetwork (Figure 5.2A) consists of the interactions among the 

genes that show differential expression upon Cry knockout, circadian clock pathway genes 

and Caspase 3 gene. There are 124 genes and 568 interactions with an average degree of 

9.1. We observe that expression levels of Wnt ligands and antagonists change significantly 

with the Cry knockout leading to inactivation of Wnt signaling (Figure 5.2B showing a 

directed network representation of Wnt signaling as a simplified version of KEGG 

pathway database [224]). In particular, expression levels of Wnt ligands are decreased by 

half. The expression levels of the Wnt receptor; LRP5 is also decreased significantly and 

the Wnt antagonists; SFRP1, SFRP2 and SFRP4, which bind to Wnt proteins to prevent 

signal activation, show approximately two-fold increase in expression. Upregulation and 

overexpression of SFRP proteins have been associated with increased apoptosis before 

[306, 307]. Additionally, blockade of Wnt signaling was shown to induce apoptosis in 

human colorectal cancer cells and as such may have a therapeutic role in the treatment of 

this disease [308].  

The resulting downregulation of Wnt signaling upon Cry knockout is more likely to 

indicate that circadian clock and Wnt signaling pathways should intersect at critical points, 

which would consequently induce increased sensitivity of p53
-/-

Cry1
-/-

Cry2
-/- 

cells to 

apoptosis.  In fact, very recently, it was shown that Cry knockout in p53
-/- 

cells leads to 

hyperphosphorylation of GSK3β and inactivation of GSK3β, which fails to activate the 

antiapoptotic effect of NF-κB, making cells more sensitive to TNFα-induced apoptosis 

[291] (The concept is visualized in Figure 5.3A). Our network-based analysis reveals that 

two NF-κB activators; NOTCH1 and TLR2, which are known to be regulated by GSK3β 

[309, 310], are down-regulated. TLR2 (toll-like receptor 2) was reported to activate NF-κB 

and impart an anti-apoptotic effect in stressed cardiac myocytes [311]. NOTCH1 being a 

NF-κB regulator [312], functions in Notch signaling pathway involved in cell proliferation 

and apoptosis [313]. Downregulation of NOTCH1 was reported to reduce NF-κB activity 

and thus inhibit cell growth and induce apoptosis in pancreatic cancer cells [312].  

Looking at the downstream of NF-κB, in our Wnt-circadian subnetwork, we see that 

one of the downregulated Wnt ligands; WNT10A is a NF-κB target and its expression is 

induced by TNFα [314, 315]. Considering these all and expanding the finding presented 

recently [291], it is conceivable that GSK3β plays a central regulatory role and with Cry 

knockout it is inactivated leading to downregulation of NF-κB activators, which in turn 
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fails to activate NF-κB making cells more sensitive to TNFα-induced apoptosis. Then, with 

the decrease of NF-κB activity, Wnt signaling could become inactivated as well 

suppressing the cell growth and proliferation and enhancing apoptotic tendency. This 

observation is visualized in Figure 5.3B. Ample evidence shows the multifaceted nature 

and key roles of GSK3β in mediating signals among circadian clock and metabolic 

processes (visualized in Figure 5.3B). In the absence of Wnt signal, GSK3β acts with 

AXIN and APC proteins and mediates phosphorylation of β-catenin targeting it for 

degradation by proteosome, thus preventing anti-apoptotic function of β-catenin. It can also 

inhibit another survival-promoting transcription factor; HSF1 (heat shock factor 1), 

reducing its expression that can facilitate apoptosis [316]. GSK3β could also be the key 

protein connecting circadian signals to insulin signaling: it was observed to phosphorylate 

IRS1, thus impairing insulin action [317]. IRS proteins stimulate the activity of MAPK 

families such as MAPK13 (p38), that are involved in cell survival, differentiation and 

proliferation [318]. We observe that both IRS1 and MAPK13 levels are downregulated in 

Cry knockout animals. IRS proteins are known to bind the p110 catalytic subunit of the 

phosphatidylinositol 3-kinase (PI3K), which activates the kinase PDK1. PDK1 

phosphorylate AKT resulting in its activation and AKT can phosphorylate GSK3β 

inhibiting its activity. Earlier work by Wu et al. underlines the multifunctional behavior of 

GSK3β and suggests that there exist three pools of GSK3β in cells: one pool is associated 

with AXIN regulated by Wnt, another pool is regulated by PI3K-AKT pathway and an 

additional AXIN-independent pool that is also regulated by Wnt [319]. In this study, we do 

not observe changes in PI3K-AKT pathway however our results imply that circadian clock 

disruption due to Cry knockout could affect Wnt signaling, insulin signaling, and MAPK13 

signaling pathways and GSK3β appears to be the central regulatory protein in these 

processes.  
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Figure 5.3 Representation of the relationship between circadian clock and apoptotic pathways. (A) 

A very recent study of Lee et al. [291] showed that Cry knockout in p53 knockout cells resulted in 

hyperphosphorylation of GSK3β. Becoming inactive, GSK3β would fail to activate NF-κB, which 

makes cells more sensitive to apoptosis [291]. (B) Our network-based analysis combined with gene 

expression profiles reveals several genes which appear to play crucial roles in apoptosis. Following 

the finding of Lee et al. [291], we observe that NF-κB activators; TLR2, NOTCH1 and TNFSF12, 

which are known to be regulated by GSK3β, are downregulated (shown in blue color), hence would 

fail to activate NF-κB and enhance cell apoptosis. In addition, downstream target of NF-κB; 

WNT10A is downregulated, which could lead to a decrease in cell growth and proliferation. With 

the downregulation of WNT10A and LRP5, GSK3β could mediate the phosphorylation of β-

catenin targeting it for degradation by proteosome, thus inhibiting the anti-apoptotic function of β-

catenin. It can also inhibit another survival-promoting transcription factor; HSF1 (heat shock factor 

1), reducing its expression that can facilitate apoptosis. GSK3β could also be the key protein 

connecting circadian signals to insulin signaling: it can phosphorylate IRS1, thus impairing insulin 

action. IRS proteins can stimulate the activity of MAPK13 (p38). Downregulation of both IRS1 

and MAPK13 upon Cry knockout imply that GSK3β could play a key role through circadian clock 

to insulin and MAPK signaling and consequently suppressing cell growth. 

 

Besides circadian and Wnt signaling genes, the subnetwork contains genes playing roles 

in cell development, proliferation and differentiation processes. For example, FOS (or C-

FOS) gene being a proto-oncogene, which is up-regulated with Cry knockout according to 

our data, is known to play a critical role in proliferation, tumorigenesis, tumor invasion, 

and metastasis [320]. Continuous expression of FOS was demonstrated to precede 

apoptosis [321] and activation or overexpression of FOS is related to induction of 

apoptosis [322-325]. Another up-regulated gene is matrix metallopeptidase 9 (MMP9); a 

protease that can degrade or proteolytically modify the extracellular matrix components, 
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including collagens, laminin, and proteoglycans. Through proteolysis of these molecules, 

MMP proteins can up- or down-regulate apoptosis depending on the relative 

concentrations, tissue specificity and balance between MMP proteins and tissue inhibitors 

of metalloproteinases (TIMP) [326, 327]. Pro-apoptotic functions of MMP9 are observed 

before: it may trigger neuronal cell death [328] and its activation can induce apoptosis in 

human monocytic cells via extracellular release of TNFα and a soluble Fas ligand [329]. In 

our subnetwork, MMP9 is displayed to be in contact with its inhibitor; TIMP1, which 

shows no change in expression upon Cry knockout. Thus, elevated levels of MMP9 

expression is more likely to be related with an increase in its pro-apoptotic activity, which 

triggers cell apoptosis. Other downregulated genes such as PLXNA, PAX5, GBX2 and 

RGNEF are related with cell growth and differentiation: PLXNA2 plays role in axon 

guidance and invasive growth; PAX5 functions in B-cell differentiation and neural 

development; GBX2 acts as a transcription factor for cell pluriptency and differentiation; 

and RGNEF is a Rho-guanine nucleotide exchange factor regulating signaling pathways 

downstream of integrins and growth factor receptors. Downregulation of these genes 

would suppress cell growth and differentiation processes as well. 

 

5.3.2.2 Alterations in Apoptosis and p53 Signaling Pathways upon Cry Knockout 

There are two major pathways of apoptosis: the extrinsic (death receptor pathway; FAS 

and other TNFR superfamily members and ligands) and the intrinsic (mitochondria-

associated) pathways, which are linked and molecules in one pathway can influence the 

other [330]. To reveal how apoptotic pathway proteins and their interactions would be 

affected by the circadian clock disruption, circadian-apoptosis crosstalk network is 

constructed and combined with gene expression profiles. Analysis of differentially 

expressed genes and their protein-protein interactions indicate the importance of those in 

apoptosis pathway. We observe that apoptosis pathway interacts with many other 

pathways, alterations in which would consequently trigger or inhibit apoptosis.  

In the apoptosis-circadian subnetwork, we show that there exist a number of critical 

paths combining CLOCK-BMAL1 complex with other cellular processes such as NF-κB 

signaling, MAPK signaling and TNFα-mediated signals (Figure 5.4). To label the so-

called “critical paths”, we start from CLOCK-BMAL1 complex and label the interactions 

until reaching the proteins of differentially expressed genes in the subnetwork, giving 
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priority to regulatory interactions (such as activation, inhibition, phosphorylation events) if 

available and to highly interacting proteins.  

 

 

Figure 5.4 Critical paths in apoptosis-circadian subnetwork. From CLOCK-BMAL1 complex to 

proteins of differentially expressed genes, the key proteins connecting these are displayed and the 

interactions are annotated whenever possible; i.e. as activation or inhibition. Protein products of 

upregulated and downregulated genes are colored in red and blue, respectively. Highly interacting 

proteins are TNF and NFKB1 (NF-κB).  

 

Proteins shown in Figure 5.4 constitute the key proteins in apoptosis-circadian 

subnetwork and they frequently act in multiple cellular pathways. One of these is E1A 

binding protein P300; EP300 that associates with CLOCK to regulate positively clock gene 

expression [331]. EP300 is also a cofactor for JUN protein [332], which plays a key role in 

the induction of apoptosis [333]. JUN and JUN-regulated genes are known to be activated 

by FOS [334], which is found to be upregulated in our study (as discussed in the previous 

section). A very central protein in this subnetwork is TNF (TNFα), which mediates a 

variety of biological activities including cell proliferation and apoptosis. The specific 

response to TNF depends on cell type [335] and TNF signal transduction is mediated by 

TRAF2, which activates NF-κB. Traf-interacting protein; TANK forms a complex with 
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TRAF2 [336]. We observe that TANK is upregulated upon Cry knockout. Indeed, 

overexpression of TANK is known to inhibit TRAF2-mediated NF-κB activation [337], 

which would consequently enhance apoptosis. A member of the tumor necrosis factor 

(TNF) superfamily of cytokines; TNFSF12, which mediates NF-κB activation in several 

different cell types [338-342] is observed to be downregulated. TNFSF12 protein is also 

known to bind GSK3β, which is a key mediator of NF-κB pathway [343]. TNF binds to 

MMP13; matrix metalloprotease 13, which is a regulator of cell survival and 

downregulated upon Cry knockout. Downregulation of MMP13 is shown to reduce tumor 

growth in mouse osteosarcoma; the primary malignant cancer of bone [344]. In addition, 

MMP13 inhibition resulted in reduced cell growth in melanoma cells [345]. TNF and NF-

κB signals also intersect with insulin signaling (see Figure 5.4). IRS1 (insulin receptor 

substrate 1), which is a cytoplasmic adaptor protein mediating insulin dependent 

mitogenesis and regulating glucose metabolism, is frequently associated with tumor growth 

and proliferation [346]. IRS1 is downregulated upon Cry knockout and consistent with this 

finding, earlier works indicate that suppression of IRS1 expression promotes apoptosis in 

breast carcinoma cells [347], whereas the overexpression of IRS1 confers resistance to 

TGF-β-induced cell death in hepatocellular carcinoma cells [348]. In Figure 5.4, we see 

that Nuclear receptor subfamily 1 group D member 2 Gene; NR1D2, which is known to be 

activated by BMAL1 (ARNTL), is upregulated. With the Cry knockout, BMAL1 

expression increases which, in turn, would lead to an increase in NR1D2 levels. NR1D2 

can form a complex with NR3C1 (nuclear receptor subfamily 3, group C, member 1 Gene), 

which is a receptor for glucocorticoids. NR3C1 can affect inflammatory responses and 

cellular proliferation and is a potent inhibitor of JUN activity [349]. Another protein 

binding to CLOCK-BMAL1 complex is SIRT1; a protein deacetylase that is required for 

high-magnitude circadian transcription of several core clock genes such as Bmal1, Per2 

and Cry1 [350]. SIRT1 binds to CLOCK-BMAL1 complex and promotes the deacetylation 

and degradation of PER2 [350]. In Figure 5.4, SIRT1 is shown to activate FOXO1 and 

Adiponectin (ADIPOQ) proteins, which are downregulated and upregulated, respectively. 

Although the functional consequences of the interactions between FOXO1 and SIRT1 is 

not clearly understood [351], SIRT1 was found to deacetylate FOXO1 and enable 

activation of FOXO1 transcription and conversely, FOXO1 is a positive transcriptional 

regulator of SIRT1 [351]. Sirt1 also increases adiponectin transcription in adipocytes 
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[352]. Adiponectin, which is upregulated upon Cry knockout, is a cytokine that is 

expressed  abundantly in adipose tissue [353-355] and has been shown to inhibit cell 

proliferation and induce apoptosis in leukemia cells [356] and to suppress tumor growth in 

mice [357]. It is also identified as a novel growth inhibitor in prostate cancer cells [358]. 

SIRT1 was found to be an effective inhibitor of NF-κB signaling as well [359], which 

makes it a central protein that could play crucial roles in relating circadian clock to other 

cellular processes. Apoptosis-circadian subnetwork is given in Supplementary Material. 

We should note that the roles of some genes in cancer progression and metastasis are 

controversial: for example, for CCL2, an inflammatory chemokine, its levels correlate with 

tumor progression in human breast cancer [360, 361], whereas in pancreatic cancer, high 

levels of CCL2 invoke tumor destruction [362]. Then, the specific roles of such genes may 

be different depending on the cellular context and the tumor type. With the Cry knockout, 

we observe that the expression level of CCL2 is upregulated. The list of all differentially 

expressed genes upon Cry knockout in apoptosis-circadian crosstalk network is provided in 

Table 5.2.  

If these genes serve such crucial functions to increase apoptosis in tumor cells through 

circadian rhythm, one would expect that they are either modulating clock or their 

expression levels are under the clock control. To check whether changes in those genes 

would affect circadian rhythms, we referred to the study of Zhang et al. [363], in which 

they conducted a genome-wide RNAi screen to identify clock genes and their modifiers 

through Biogps (http://biogps.org/). They found nearly 1000 genes whose knockdown 

resulted in reduced circadian rhythm amplitude and hundreds of genes whose knockdown 

led to long or short period length of oscillation or increased amplitude [363]. According to 

their findings, we observe that many of the differentially expressed genes in apoptosis-

circadian crosstalk network (Table 5.2) could affect circadian rhythms upon their knockout 

and they are labeled in Table 5.2. Hence, these genes could have regulatory effects on 

circadian pathway and could be important in regulation of physiology and behavior in the 

whole organism. For example, NR1D2 is upregulated upon Cry knockout. Considering the 

results of Zhang et al. [363], knockout of NR1D2 would result in both period and 

amplitude change in circadian rhythms. Additionally, upon Clock mutation, its expression 

is observed to change significantly. NR1D2 is already known to regulate Bmal1 expression 

[364] and its expression levels are under the clock control [363]. Similarly, a member of 
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the tumor necrosis factor (TNF) superfamily of cytokines; TNFSF12, which is observed to 

be downregulated upon Cry knockout in this study, appears to affect circadian oscillations 

when knockout [363] and its expression changes significantly with Clock mutation as well 

[363]. 

 

Table 5.2 List of differentially expressed genes in apoptosis-circadian crosstalk network. Up- and 

down-regulated genes upon Cry knockout in p53-deficient cells are listed. Third column shows the 

fold change ratio of gene expressions when Cry is mutated (expression ratio of p53
-/-

Cry1
-/-

Cry2
-/- 

cells / p53
-/-

 cells).  In the fourth column, the corresponding effects of expression change on 

apoptosis (either enhance or inhibit apoptosis) are provided. In the last column, the genes whose 

knockdown could affect circadian oscillations (in terms of a change in amplitude and/or a change in 

period length) are labelled according to the observations of Zhang et al. [363]. 

 

  

Gene 

symbol 

 

Gene name 

Fold-

change 

ratio 

 

Enhance (+) 

or inhibit (-) 

apoptosis & 

Ref. 

Affect 

circadian 

rhythms (+) 

or not(-) as 

observed by 

Zhang et al. 

[363] 

 Up-regulated genes  

 Adipoq  Adiponectin, C1Q and collagen 

domain containing 

1.9 + [356] - 

 Arntl2 Aryl hydrocarbon receptor 

nuclear translocator-like 2 

2.2  + 

 Ccl2 Chemokine (C-C motif) ligand 2 2.4 + [362] &  - 

[360, 361] 

+ 

 Cd14 Cd14 antigen 1.9  + 

 Cd28 Cd28 antigen 1.8   

 Fos FBJ osteosarcoma oncogene 1.9 + [321-325] - 

 Icam1 Intercellular adhesion molecule 1 2.4  + 

 Il1rn Interleukin 1 receptor antagonist 2.9 - [365]  

 Mmp9 Matrix metallopeptidase 9 3.2 + [328] + 

 Nr1d2 Nuclear receptor subfamily 1, 

group D, member 2 

2.4  + 

 Nr5a2 Nuclear receptor subfamily 5, 

group A, member 2 

1.9  + 

 Per2 Period homolog 2 3.4 + [366] + 

 Tank TRAF family member-associated 

NF-κB activator 

1.9 + [337] + 

 Down-regulated genes  

 Adcy8 Adenylate cyclase 8 0.3  + 

 Axin2 Axis inhibition protein 2 0.4 + [294]  

 Irs1 Insulin receptor substrate 1 0.4 + [347] + 

 Foxo1 Forkhead box O1 0.5 + [367] + 

 Furin Furin (paired basic amino acid 

cleaving enzyme) 

0.5 + [367] + 
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 Lpl Lipoprotein lipase 0.4  + 

 Map3k1 Mitogen-activated protein kinase 

1 

0.5 + [368] & - 

[369] 

+ 

 Mmp13 Matrix metallopeptidase 13 0.3 + [344] - 

 Prkar2b Protein kinase, cAMP dependent 

regulatory, type II beta 

0.5   

 Rel Reticuloendotheliosis oncogene 0.5  + 

 Rorb RAR-related orphan receptor beta 0.4  + 

 Rorc RAR-related orphan receptor 

gamma 

0.3  + 

 Tlr2 Toll-like receptor 2 0.5 + [309] - 

 Tnfsf12 Tumor necrosis factor ligand 

superfamily, member 12 

0.4 + [338-342] + 

 

 

We also investigate the effects of circadian disruption on p53 signaling. p53 activation 

is induced by several stress signals, including DNA damage, oxidative stress and activated 

oncogenes and results in transcription of p53-regulated genes and three major outputs; cell 

cycle arrest, cellular senescence or apoptosis. The critical paths in p53-circadian 

subnetwork (shown in Figure 5.5) include TGFβ, Akt and Notch signaling. One of the key 

genes in Figure 5.5 is EP300, (as mentioned above) acting as a connector gene interacting 

with both CLOCK and other crucial regulators such as NOTCH1, TCF3 and VEGFA. 

EP300 functions as a transcriptional coactivator for NOTCH1 [370], whose 

downregulation was shown to inhibit cell growth and induce apoptosis [312]. EP300 also 

associates with the transcription factor TCF3 and enhances TCF3-mediated transcription 

activity [371]. TCF3 is downregulated upon Cry knockout and earlier work indicated that 

reduction and inactivation of TCF3 was associated with apoptosis [372, 373]. In Figure 

5.5, we see that growth factor signals are downregulated. One important regulator of cell 

growth is TGFB2 (transforming growth factor beta 2). Inhibition of the TGFB2 expression 

was reported to be an effective approach for malignant tumor therapy [374]. Following 

TGFB2 path, TNFSF11 (tumor necrosis factor ligand superfamily member 11), which is a 

receptor activator of NF-κB ligand, is upregulated with the Cry knockout. TNFSF11 

appear to have both apoptotic and anti-apoptotic effects, probably dependent on the cell 

type [375]. Overexpression of TNFSF11 has been associated with excessive bone 

resorption in multiple myeloma [376] and it regulates osteoclast differentiation and 

provides a pro-survival signal [377-379]. On the contrary, TNFSF11 can suppress cell 

proliferation and induce apoptosis through TRAF6-dependent mechanism [375].  
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Figure 5.5 Critical paths in p53-circadian subnetwork. From CLOCK-BMAL1 complex to proteins 

of differentially expressed genes, the key proteins connecting these are displayed and the 

interactions are annotated whenever possible; i.e. as activation or inhibition. Protein products of 

upregulated and downregulated genes are colored in red and blue, respectively. 

 

 

Other genes acting in cell proliferation; E2F2 (E2F transcription factor 2) and THBS4 

(thrombospondin 4) are downregulated. Downregulation of E2F2 could lead to apoptosis 

since its normal expression levels can promote cell survival by reduction of the expression 

of the pro-apoptotic genes Caspase-6 and Apaf-1 [380]. CDT1 (chromatin licensing and 

DNA replication factor 1) was observed to be overexpressed and cause tumor formation in 

the absence of p53 in mice cells [381]. With Cry knockout in p53
-/- 

cells, CDT1 is 

downregulated, which can contribute to enhanced apoptosis. We observe that insulin 

signaling is also affected (shown in Figure 5.5): insulin-like growth factor 2; IGF2 is 

downregulated. Reducing the expression of IGF2 was shown to suppress the protection 

against apoptosis in pancreatic islet β-cells [382]. The expression of insulin-like growth 

factor binding protein 4; IGFBP4 is increased. Overexpression of IGFBP4 was found to 
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delay the growth of malignant prostate epithelial cells and enhance the sensitivity of these 

cells to apoptosis [383]. A similar effect was detected in colorectal cancer cells as well; 

IGFBP4 induction resulted in increased apoptosis and decreased proliferation of these cells 

[384]. In Figure 5.5, CSNK1E (casein kinase 1 epsilon gene) and CSNK1D (casein kinase 

1 delta gene) are shown as clock connectors. These kinases are both central components of 

the circadian clock acting as a negative regulator of circadian rhythmicity by 

phosphorylating PER1 and PER2. They can also phosphorylate a large number of proteins. 

They can bind to several kinases such as PLK4 and CDK1 and would regulate many 

cellular processes. 

Although aforementioned genes have pro-apoptotic effects, changes in p53-circadian 

crosstalk network also indicate the existence of pro-growth (and survival) signals. For 

example, PAX1 (paired box gene 1), which is a transcription factor, is upregulated with 

Cry knockout. However, upregulation of PAX1 appears to be related with cell survival 

since it is frequently expressed in tumor cell lines including breast, ovarian, lung and colon 

cancer and often required for cancer cell survival [385]. It is conceivable that some genes 

would promote survival upon Cry knockout in p53
-/- 

cells as well, however, in overall; the 

balance tends to shift toward cell apoptosis. p53 signaling-circadian subnetwork is given in 

Supplementary Material. The list of all differentially expressed genes upon Cry knockout 

in p53-circadian crosstalk network is provided in Table 5.3. We should note that according 

to the study of Zhang et al. [363], most of the differentially expressed genes in p53-

circadian crosstalk network (Table 5.3) could affect the circadian rhythms when they are 

knockout. The possible effect would be a change in amplitude or length of the period. 

These genes are labeled in Table 5.3. 
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Table 5.3 List of differentially expressed genes in p53-circadian crosstalk network. Up- and down-

regulated genes upon Cry knockout in p53-deficient cells are listed. Third column shows the fold 

change ratio of gene expressions when Cry is mutated (expression ratio of p53
-/-

Cry1
-/-

Cry2
-/- 

cells / 

p53
-/-

 cells).  In the last column, the corresponding effects of expression change on apoptosis (either 

enhance or inhibit apoptosis) are provided. In the last column, the genes whose knockdown could 

affect circadian oscillations (in terms of a change in amplitude and/or a change in period length) are 

labelled according to the observations of Zhang et al. [363]. 

 

  

Gene 

symbol 

 

Gene name 

Fold-

change 

ratio 

 

Enhance (+) 

or inhibit (-) 

apoptosis & 

Ref. 

Affect 

circadian 

rhythms (+) 

or not(-) as 

observed by 

Zhang et al. 

[363] 

 Up-regulated genes  

 Arntl2 Aryl hydrocarbon receptor nuclear 

translocator-like 2 

2.2  + 

 Ccnb1 Cyclin B1 2.0  + 

 Fos FBJ osteosarcoma oncogene 1.9 + [321-325]  

- 

 Igfbp4 Insulin-like growth factor binding 

protein 4 

1.8 + [383, 384] + 

 Nek2 Serine/threonine-protein kinase Nek2 1.8   

 Nr1d2 Nuclear receptor subfamily 1, group 

D, member 2 

2.4  + 

 Nr5a2 Nuclear receptor subfamily 5, group 

A, member 2 

1.9  + 

 Pax1 Paired box gene 1 2.7  - [385] + 

 Per2 Period homolog 2 3.4 + [366] + 

 Plk4 Serine/threonine-protein kinase 

PLK4 

1.8  + 

 Pnoc Prepronociceptin 1.8   

 Serping1 Serine peptidase inhibitor, clade G, 

member 1 

2.1   

 Tnfsf11 Tumor necrosis factor ligand 

superfamily, member 11 

2.3 + [375] & - 

[377-379] 

 

 Down-regulated genes  

 Axin2 Axis inhibition protein 2 0.4 + [294]  

 Cdkn1c Cyclin-dependent kinase inhibitor 1C 0.3   

 Cdt1 Chromatin licensing and DNA 

replication factor 1 

0.5 + [381]  

 E2f2 E2F transcription factor 2 0.5 + [380] + 

 Igf2 Insulin-like growth factor 2 0.5 + [382]  

 Irs1 Insulin receptor substrate 1 0.4 + [347] + 

 Foxo1 Forkhead box O1 0.5 + [367] + 

 Mcm6 DNA replication licensing factor 

MCM6 

0.4  + 

 Notch1 Notch gene homolog 1 0.5 + [312]  

 Ppbp Pro-platelet basic protein 0.5   
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 Rorb RAR-related orphan receptor beta 0.4  + 

 Rorc RAR-related orphan receptor gamma 0.3  + 

 Tcf3 Transcription factor 3 0.5 + [372, 373] + 

 Tgfb2 Transforming growth factor, beta 2 0.5 + [374]  

 Thbs4 Thrombospondin 4 0.3  - 

 

 

5.3.3 Potential Effects of Cry Knockout in Wild-Type p53 Cells 

In this study, we analyze potential effects of Cry knockout in p53-deficient primary mouse 

skin fibroblasts. Disruption of Cry function was suggested to improve the efficacy of 

chemotherapy for tumors with p53 mutation by enhancing cell apoptosis [290]. However, 

in wild-type p53 cells, Cry knockout may not produce similar effects. Very recently, 

Destici et al. [386] investigated the DNA damage sensitivity of Cry1
-/-

|Cry2
-/-

 primary 

mouse skin fibroblasts and interestingly they observed that the absence of Cry genes does 

not affect the cell-autonomous DNA damage response upon exposure of primary cells to 

genotoxic agents. We looked over their gene expression data (Wild-type vs. Cry1
-/-

|Cry2
-/-

 

primary mouse skin fibroblasts) to examine whether similar changes in gene expression are 

observed for these cells as well. Only a few differentially expressed genes in our list match 

with theirs that are labeled as differentially expressed and up/down-regulation behavior 

appears to be similar. Only one of these is related to apoptotic process: EIF5A2, which is 

an mRNA-binding protein involved in translation elongation and has pro-apoptotic effects, 

is identified as up-regulated in both cases. For our differentially expressed genes critical in 

activating cell apoptosis in p53-deficient cells, we find no significant change in expression 

of them in the data of Destici et al. [386]. Per2 gene is found to be up-regulated for both of 

the cases, which is an expected outcome of Cry knockout. Overexpression of Per2 gene 

was found to induce cancer cell apoptosis before [366]. However, the same study 

emphasized that in non-tumorigenic cells, Per2 overexpression neither inhibits cell growth 

nor induces apoptosis [366]. Consequently, Cry knockout in non-tumorigenic cells would 

possibly result in disruption of circadian rhythms but may not enhance cell apoptosis. 

Consistent with the study of Destici et al. [386] mentioned above, absence of Cry genes 

seems to affect apoptotic processes only in the context of an additional p53 deficiency. 

This observation indicates the importance of targeting Cry gene in therapeutic strategies 

for treating p53-deficient tumors. 
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5.4 Concluding Remarks 

Circadian clock is in communication with different signal transduction mechanisms that 

regulate the metabolism of organisms. Hence, a disruption in clock would lead to several 

alterations in cellular mechanisms. In this study, we perform a large-scale analysis to 

understand how a circadian clock disruption by Cry knockout would affect cellular 

pathways in p53-deficient mouse cell lines. We integrate gene expression profiles (as 

comparison of two conditions: p53
-/-

 and p53
-/-

Cry1
-/-

Cry2
-/-

 primary mouse skin 

fibroblasts) with protein-protein interaction networks. Analyzing the differentially 

expressed genes within the framework of their protein-protein interactions in the networks 

assists in identifying critical genes and pathways that are likely to be under circadian clock 

regulation. Very recently, GSK3β was observed to be a key regulatory protein connecting 

circadian clock to NF-κB pathway and with Cry knockout GSK3β would become inactive 

and fail to activate NF-κB, which makes p53-deficient cells more sensitive to apoptosis 

[291]. Our large-scale pathway based approach reveals other NF-κB activators, which are 

known to be regulated by GSK3β, and which could play crucial roles in promoting 

apoptosis upon Cry knockout. In addition, we observe that the expression of several 

apoptotic and anti-apoptotic genes change upon Cry knockout in p53 knockout cells: 

apoptotic genes are found to be mostly up-regulated whereas anti-apoptotic genes are 

down-regulated. In overall; the balance tends to shift toward cell apoptosis. 

In comparison with the gene expression profiles of a recent experiment of Cry knockout 

in wild-type p53 cells [386], we see that there occur no significant change in the expression 

of these apoptotic and anti-apoptotic genes listed in this study. This finding is consistent 

with their argument that the absence of Cry genes does not affect DNA damage response 

upon exposure of primary cells to genotoxic agents in wild-type p53 cells. Therefore, such 

alterations in apoptotic and survival pathways upon Cry knockout would emerge only in 

the context of an additional p53 deficiency. Since most of the tumors contain a mutation in 

p53 gene, circadian clock disruption through Cry knockout would improve the efficacy of 

treatments of cancers associated with p53 deficiency.  
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Chapter 6 

 

CONCLUSION 

 

The main focus of this dissertation has been the analysis of protein-protein interactions and 

their pathways in the guidance of additional “omics” data. Ubiquitination pathway and 

circadian clock pathway are studied integrating protein structural data and microarray gene 

expression data at a large-scale, respectively. 

At proteome-level, we apply a combinatorial docking approach to predict functional 

association of proteins in human ubiquitination pathway. This approach (implemented as 

Prism algorithm) is based on the origin that the number of protein-protein interface motifs 

is limited in nature, therefore, same interface motifs can be used by interacting pairs 

repeatedly even though proteins have structurally different global folds. Thus, known 

interface architectures can be used to model the complexes between two target proteins, 

independent of their global structures. By exploiting the available structural proteome and 

Prism algorithm, we construct a structural E2-E3 interaction network with a prediction 

accuracy of 76%, indicating the predictions are in good agreement with functional E2-E3 

pairs. We also perform an analysis at a molecular-level, in particular, elucidate binding 

patterns: some residues are structurally conserved among E2 proteins and appear to be 

essential for all E2−E3 interactions, whereas others, particularly in loop L1, appear to play 

important roles in E3 selectivity. We believe that the structural E2-E3 network and the E2-

E3 interface data in this study provide a resource for future studies of ubiquitination and 

E2-E3 selectivity, especially in discovering drug candidates targeting E3s. 

In the future, in addition to our E2-E3 modeling, the interactions of E3s with substrates 

can be examined and modeled to obtain a more complete picture of the ubiquitination 

pathway. Obtaining the three-dimensional model of the E2-E3-substrate complexes can 

provide crucial information about the ubiquitin system and could give an opportunity for 

understanding diseases associated with the mutations/alterations in E3 ligases. 
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Integration of protein structural information at a large-scale can also contribute 

significantly to drug design studies. Analysis of protein interfaces would provide insight 

into interaction behavior and specificity. Hot spots are particularly the targets of 

pharmaceutical agents and crucial for interaction specificity. We illustrate the 

correspondence of computational hot spot residues to experimental critical residues in 

binding related to disease providing several examples. 

Combining microarray gene expression profiling data with protein-protein interaction 

networks would reveal important aspects of protein function and regulation. We provide 

large-scale integration of microarray data with circadian clock pathway and pathways 

related to cell growth and apoptosis. We focus on p53-deficient background and investigate 

how an additional circadian clock disruption would affect the apoptotic pathways. Our 

findings reveal the critical genes that are more likely to function as crosstalk genes 

regulating the information flow between circadian clock and apoptotic pathways. This 

study would ultimately assist in identifying targets in treatment of cancers associated with 

p53-deficiency. 

As a future work, the results from our network-based microarray data analysis can be 

further assessed by experiments. For a set of critical genes that appear to regulate apoptotic 

processes upon circadian clock disruption, real-time polymerase chain reaction (qPCR) 

experiments can be performed to obtain more accurate measurements of their transcription. 

Since the mRNA and protein levels in the cell are often not correlated, applying the 

western blot technique can provide an efficient means for detecting the levels of specific 

proteins in the absence of p53 and Cry genes. 

In overall, considerable information is gained towards protein recognition and function 

and we believe that this work will contribute to further studies of functional genomics and 

drug design. 
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APPENDIX 

 

A.1. Webservers, Softwares, Tools, Databases 

 

A.1.1. HOTPOINT 

Hotpoint predicts hot spots in protein interfaces using an empirical model. The 

empirical model incorporates a few simple rules consisting of occlusion from solvent and 

total knowledge-based pair potentials of residues. The prediction model is computationally 

efficient and achieves high accuracy of 70%. The input to the HotPoint server is a protein 

complex and two chain identifiers that form an interface. The server provides the hot spot 

prediction results, a table of residue properties and an interactive 3D visualization of the 

complex with hot spots highlighted. This web server can be used for analysis of any 

protein-protein interface which can be utilized by researchers working on binding sites 

characterization and rational design of small molecules for protein interactions. HotPoint is 

accessible at http://prism.ccbb.ku.edu.tr/hotpoint [192]. 

 

A.1.2. NACCESS 

Naccess calculates the accessible surface areas of the molecules rolling a solvent probe 

on the desired molecule. The default value for the radius of the solvent is 1.4 Å. The path 

gained by the center of the probe gives the accessible surface area. In addition to the 

accessible surface area, the output file of the Naccess gives also relative accessible area for 

each individual residue. Relative accessibility can be described as the percent accessibility 

of a residue relative to the accessibility of it in the extended conformation. If relative 

accessibility is larger than 5% then, this residue is identified as surface residue.  

 

 A.1.3. MULTIPROT 

Multiprot is fully automated software which identifies multiple structural alignments of 

a given set of protein structures. Structural alignment method is based on the Geometric 

http://prism.ccbb.ku.edu.tr/hotpoint
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Hashing Algorithm which detects common parts of the given structures in all possible 

ways. This is a sequence-order and directionality independent algorithm. Multiprot 

considers only C
α
 atoms and in the output file, the matched residue pairs, number of them 

and the RMSD value between these residues are provided. The algorithm does not force all 

residues to participate in the alignment; in contrast, it searches the best scored partial 

alignment for the given structures. It has a sequence order independent feature that makes 

Multiprot appropriate for protein interfaces analysis. Multiprot is used both in clustering 

part and in cluster type separation part [226]. 

 

A.1.4. CytoScape 

Cytoscape is molecular interaction network visualization software which also 

intergrates biological information such as gene expression profiles, GO annotations etc. 

Additional features like network analyzer, functional enrichment generator, and additional 

file format support can be installed as plugins. Cytoscape user can visualize the protein – 

protein interaction network or other networks by loading .sif file which contains pairwise 

interaction information. Network visualization properties such as node shape, color, edge 

shape, color etc. can be defined by the user. It has also various filtering and selection tools. 

The more, the resulting graph can be organized several layouts such as hierarchical layout, 

spring embedded layout, circular layout etc. Here, we used Cytoscape for visualization of 

functional interaction network of PDB. Cytoscape is downloadable through the web page 

http://www.cytoscape.org/. 

 

A.1.5. VMD 

VMD is a molecule visualization and analysis tool. Biological systems such as 

proteins, nucleic acids, lipid bilayer assemblies, etc. can be visualized by the help of VMD. 

VMD can read standard Protein Data Bank (PDB) files and display the contained structure. 

It can be used also to animate and analyze the trajectory of molecular dynamics (MD) 

simulations, and can interactively manipulate molecules being simulated on remote 

computers (Interactive MD) [387]. 
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A.1.6. FiberDock 

FiberDock is a flexible refinement program for docking [153]. It models both side-chain 

and backbone flexibility and performs rigid body optimization on the ligand orientation. 

The movements of the backbone and side-chain are modeled according to the binding van 

der Waals forces between the receptor and ligand. The method uses both low and high 

frequency normal modes and therefore it can model both global and local conformational 

changes. After refining all the docking solution candidates, the refined models are re-

ranked according to an energy function. FiberDock is available at 

http://bioinfo3d.cs.tau.ac.il/FiberDock/. 

http://bioinfo3d.cs.tau.ac.il/FiberDock/
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