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ABSTRACT

This study aims at explaining the Modularity Theorem which states that every ra-

tional elliptic curve arises from modular forms.

First we introduce modular forms, complex elliptic curves and modular curves, and

study these objects. More precisely, we see how modular curves parametrize the

complex elliptic curves and torsion data as solutions of a moduli problem, and there

is a correspondence between the functions on the moduli spaces satisfying certain

conditions and the modular forms.

Then we define the Hecke operators acting on the space of modular forms and using

them construct a canonical basis, consisting of newforms, of the space of cusp forms,

and give the duality between the Hecke algebra and the space of modular forms.

We, then, give the definition of the Jacobian of a modular curve and prove that

Fourier coefficients of weight 2 eigenforms of the Hecke operators are algebraic inte-

gers and conjugate of a weight 2 normalized eigenform is also a normalized eigenform.

Then we define the Abelian variety that comes from a weight 2 eigenform. After that

we study the algebraic model of modular curves and give the Eichler-Shimura rela-

tion.

Finally, we construct the Galois representations attached to an elliptic curve and a

normalized eigenform f P S2pN,χq. Then we give a very brief skecth of Wiles’s proof

of the Modularity theorem and study the relation of Modularity theorem with the

Fermat’s last theorem.
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ÖZET

Bu çalışmada, rasyonel eliptik eğrilerin modüler formlardan geldiğini söyleyen

modülerlik teoremini anlamaya calıştık.

İlk olarak modüler formlar, kompleks eliptik eğriler ve modüler eğriler arasindaki

ilişkileri inceledik ve modüler eğrilerin kompleks elliptik eğrileri nasıl parametrize

ettiğini gösterdik. Daha sonra modüler form uzayına etki eden Hecke operatörlerini

tanimladık ve cusp form uzayı için bir baz elde ettik. Ayrıca modüler eğrilerin Jako-

biyanlarını kullanarak Hecke operatörlerinin özvektörlerinin Fourier katsayılarının ce-

birsel sayılar olduğunu gösterdik. Sonrasında modüler eğrilerin rasyoneller üzerindeki

modelini ve Eichler-Shimura ilişkisini inceledik.

Son olarak eliptik eğrilere ve modüler formlara ilişkilendirilen Galois temsillerini inşa

ettik ve modülerlik teoreminin ispatında kullanılan metodun kısa bir özetini verdik.

Ayrıca modülerlik teoremi ve Fermat’ın son teoremi arasındaki ilişkiyi inceledik.
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1 Introduction

In this chapter we give definitions of modular forms, complex elliptic curves and

modular curves. Then we analyze the relations between these objects.

1.1 Definitions

We start with the definition of the modular group, the group of 2-by-2 matrices with

integer entries and determinant 1;

SL2pZq “ t
`

a b
c d

˘

: a, b, c, d P Z, ad´ bc “ 1u.

Modular group acts on the Riemann sphere pC “ CYt8u via fractional linear trans-

formations
¨

˝

a b

c d

˛

‚pτq “
aτ ` b

cτ ` d
, τ P pC.

This means that if γ “
`

a b
c d

˘

and c ‰ 0 then γp´d{cq “ 8 and γp8q “ a{c; if c “ 0

then γp8q “ 8. Note that ´γ gives the same transformation as γ. Modular group

is generated by the following elements
¨

˝

1 1

0 1

˛

‚ and

¨

˝

0 ´1

1 0

˛

‚

[?, Theorem 2.1]. Hence the transformation group on pC defined by the modular

group is generated by the transformations,

τ ÞÑ τ ` 1 and τ ÞÑ ´1{τ .

The upper half plane will be denoted by H “ tτ P C : Impτq ą 0u. It is easy to see

that

Impγpτqq “
Impτq

|cτ ` d|2
, γ “

`

a b
c d

˘

P SL2pZq.
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Hence modular group maps H to itself. It is also easy to see that pγγ1qpτq “ γpγ1pτqq

for all γ, γ1 P SL2pZq. Thus SL2pZq acts on H.

Definition 1.1.1. Let k be an integer. A meromorphic function f : HÑ C is weakly

modular of weight k if

fpγpτqq “ pcτ ` dqkfpτq

for γ “
`

a b
c d

˘

P SL2pZq and τ P H.

In the above definition γ “ ´I gives f “ p´1qkf , hence the only weakly modular

function of odd weight is zero. Also multiplying weakly modular functions of even

weights m and n gives a weakly modular function of weight m` n. Since the factor

pcτ ` dqk has neither pole nor zeros on H, fpτq and fpγpτqq has the same zeros and

poles.

Definition 1.1.2. Let k be an integer. A function f : HÑ C is a modular form of

weight k if

1. f is holomorphic on H,

2. f is weakly modular of weight k,

3. f is holomorphic at 8.

The set of modular forms of weight k is denoted by MkpSL2pZqq.

Let us explain what does it mean being holomorphic at 8. Consider the holo-

morphic map τ ÞÑ q “ e2πiτ . This map takes H to open punctured unit disk D.

Now let g : D Ñ C be the function defined by gpqq “ fplogpqq{p2πiqq. g is well

defined as being weakly modular f is Z-periodic. Since f is holomorphic on H, g

is holomorphic on D. Thus g has a Laurent series expansion gpqq “
ř

nPZ anq
n for

2



q P D. Define f to be holomorphic at 8 if g extends holomorphically to q “ 0, that

is, if f has a Fourier expansion

fpτq “
8
ÿ

n“0

anpfqq
n, q “ e2πiτ .

Since q Ñ 0 if and only if Impτq Ñ 8, in order to show that f is holomorphic at 8

it suffices to show that fpτq is bounded as Impτq Ñ 8.

It is easy to see that MkpSL2pZqq is a vector space over C. Now we give some

examples of modular forms. The trivial example is the zero function on H which is

a modular form of every weight. A nontrivial example is Eisenstein series. Let k ą 2

be an even integer and define the Eisenstein series of weight k

Gkpτq “
ÿ

pc,dq

1 1

pcτ ` dqk
, τ P H,

where primed summation sign means to sum over nonzero integer pairs pc, dq P

Z2´tp0, 0qu. The sum is absolutely convergent and converges uniformly on compact

subsets of H [?], so Gk is holomorphic on H. For any γ “
`

a b
c d

˘

P SL2pZq, it is easy

to see that Gkpγpτqq “ pcτ ` dq
kGkpτq so Gk is weakly modular of weight k. We also

need to check that Gk is holomorphic at 8. i.e. Gkpτq is bounded as Impτq Ñ 8.

As Gkpτ ` 1q “ Gkpτq it suffices to take the limit in the domain |Repτq| ď 1 and

Impτq ě 1. Since Gk is absolutely convergent rearranging gives

Gkpτq “ 2
8
ÿ

d“1

1

dk
`

ÿ

c‰0,d

pcτ ` dq´k

3



Since Gk converges uniformly taking the limit as Impτq Ñ 8 gives

lim
ImpτqÑ8

Gkpτq “ lim
ImpτqÑ8

˜

2
8
ÿ

d“1

1

dk
`

ÿ

c‰0,d

pcτ ` dq´k

¸

“ 2
8
ÿ

d“1

1

dk
`

ÿ

c‰0,d

lim
ImpτqÑ8

pcτ ` dq´k

“ 2
8
ÿ

d“1

1

dk
.

Thus Gk is a modular form of weight k. The Fourier expansion of Gk can be obtained

by using the identity

1

τ
`

8
ÿ

d“1

ˆ

1

τ ´ d
`

1

τ ` d

˙

“ π cot πτ “ πi´ 2πi
8
ÿ

m“0

qm.

Differentiating pk ´ 1q times gives

ÿ

dPZ

1

pτ ` dqk
“
p´2πiqk

pk ´ 1q!

8
ÿ

m“1

mk´1qm.

Using this formula we have

Gkpτq “ 2ζpkq ` 2
p2πiqk

pk ´ 1q!

8
ÿ

c“1

8
ÿ

m“1

mk´1qcm,

and this gives the Fourier expansion of Gk

Gkpτq “ 2ζpkq ` 2
p2πiqk

pk ´ 1q!

8
ÿ

n“1

σk´1pnqq
n,

where the coefficient σk´1pnq is the arithmetic function

σk´1pnq “
ÿ

m|n
mą0

mk´1.

Dividing by the leading coefficient gives a series with rational coefficients with a com-

mon denominator. The resulting series Gkpτq{p2ζpkqq is called normalized Eisenstein

series and denoted by Ekpτq.
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Definition 1.1.3. A cusp form of weight k is a modular form of weight k such that

the leading coefficient a0 in the Fourier expansion is zero, i.e.,

fpτq “
8
ÿ

n“1

anq
n

The set of cusp forms is denoted by SkpSL2pZqq.

Note that a modular form is a cusp form when limImpτqÑ8 fpτq “ 0. SkpSL2pZqq is

a subspace of MkpSL2pZqq. An example of a cusp form is the discriminant function,

∆ : HÑ C defined by

∆pτq “ pg2pτqq
3
´ 27pg3pτqq

2

where g2pτq “ 60G4pτq and g3pτq “ 140G6pτq. Now ∆ is weakly modular of weight

12 and holomorphic on H. We have seen above that limImpτqÑ8Gkpτq “ 2ζpkq,

hence limImpτqÑ8 ∆pτq “ p60p2ζp4qqq3 ´ 27p140p2ζp6qqq2 “ 0 since ζp4q “ π4{90 and

ζp6q “ π6{945. Thus a0 “ 0 in the Fourier expansion of ∆ and so ∆ P SkpSL2pZqq.

We will prove later that ∆ is non vanishing on H hence we can define j : HÑ C by

jpτq “ 1728
pg2pτqq

3

∆pτq
.

j is clearly holomorphic on H and as the weights of g2pτq
3 and ∆pτq are the same j

is SL2pZq invariant, jpγpτqq “ jpτq, for every γ P SL2pZq and τ P H. j is called the

modular invariant.

1.2 Congruence subgroups

In the definition of weak modularity the condition fpγpτqq “ pcτ ` dqkfpτq for

γ “
`

a b
c d

˘

P SL2pZq can be generalized by replacing SL2pZq by a subgroup Γ. In this

section we explain how to do this.
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Let N be a positive integer. The principal congruence subgroup of level N is

ΓpNq “
 `

a b
c d

˘

P SL2pZq :
`

a b
c d

˘

”
`

1 0
0 1

˘

mod N
(

.

In particular Γp1q “ SL2pZq. Note that ΓpNq is the kernel of the natural homomor-

phism SL2pZq Ñ SL2pZ{NZq and so is normal in SL2pZq. It is not hard to see that

this map is surjective. Hence we have an isomorphism SL2pZq{ΓpNq
„
ÝÑ SL2pZ{NZq.

Hence rSL2pZq : ΓpNqs is finite.

Definition 1.2.1. A subgroup Γ of SL2pZq is a congruence subgroup if ΓpNq Ă Γ

for some N P Z` and Γ is called a congruence subgroup of level N .

Note that for every congruence subgroup Γ, rSL2pZq : Γs is finite. The most impor-

tant congruence subgroups are

Γ0pNq “ t
`

a b
c d

˘

P SL2pZq :
`

a b
c d

˘

”
`

˚ ˚
0 ˚

˘

mod Nu

and

Γ1pNq “ t
`

a b
c d

˘

P SL2pZq :
`

a b
c d

˘

”
`

1 ˚
0 1

˘

mod Nu.

Note that ΓpNq Ă Γ1pNq Ă Γ0pNq Ă SL2pZq. The map Γ1pNq Ñ Z{NZ that is given

by
`

a b
c d

˘

ÞÑ b mod N is a surjection with kernel ΓpNq. Hence ΓpNq C Γ1pNq and

Γ1pNq{ΓpNq
„
ÝÑ Z{NZ. Similarly the map Γ0pNq Ñ pZ{NZq˚ defined by

`

a b
c d

˘

ÞÑ d

mod N is a surjection with kernel Γ1pNq giving Γ0pNq{Γ1pNq
„
ÝÑ pZ{NZq˚.

Now we introduce some notation. For any matrix γ “
`

a b
c d

˘

P SL2pZq we define

the factor of automorphy jpγ, τq P C by jpγ, τq “ cτ ` d and for any γ P SL2pZq the

weight-k operator rγsk on functions f : HÑ C by

pf rγskqpτq “ jpγ, τq´kfpγpτqq, τ P H.

A meromorphic function f : H Ñ C is called weakly modular of weight k with

respect to Γ if f rγsk “ f for every γ P Γ. Basic properties of factor of automorphy

and weight-k operator are given in the following lemma.
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Lemma 1.2.1. For all γ, γ1 P SL2pZq and τ P H,

1. jpγγ1, τq “ jpγ, γ1pτqqjpγ1, τq,

2. pγγ1qpτq “ γpγ1pτqq,

3. rγγ1sk “ rγsk rγ
1sk,

4. Impγpτqq “ Impτq
|jpγ,τq|2

,

5. dγpτq
dτ

“ 1
jpγ,τq2

Proof. [?, Lemma 1.2.2].

The property 3 of the above lemma implies that if a function f : HÑ C is weakly

modular of weight k with respect to a subset S of SL2pZq the f is weakly modular

of weight k with respect to the subgroup generated by S.

Now we give the definition of a modular form with respect to a congruence sub-

group Γ. Let k be an integer. A function f : H Ñ C is a modular form of weight k

with respect to Γ if it is weakly modular of weight k with respect to Γ and satisfies

certain holomorphy condition: As ΓpNq Ă Γ form some N , Γ contains a matrix of

the form
`

1 h
0 1

˘

: τ ÞÑ τ`h for some minimal h P Z`. If f : HÑ C is weakly modular

of weight k with respect to Γ, f is hZ-periodic. Similarly to the first section there is

a function g : D Ñ C such that fpτq “ gpqhq where qh “ e2πiτ{h and D is again the

punctured unit disk. As before g is holomorphic on D since f is holomorphic on H

hence g has a Laurent expansion. f is defined to be holomorphic at 8 if g extends

holomorphically to qh “ 0. If this is the case f has a Fourier expansion

fpτq “
8
ÿ

n“0

anq
n
h .

7



A Γ-equivalence class of points in Q Y t8u is called a cusp of Γ. SL2pZq has only

one cusp as all rational points are equivalent to 8. Each s P Q is of the form

s “ αp8q for some α P SL2pZq hence the number of cusps is at most the number of

cosets Γα in SL2pZq. A modular form with respect to Γ should be holomorphic at

cusps. Holomorphy at s P Q is defined in terms of holomorphy at 8: Write s P Q

as s “ αp8q. f is holomorphic at s if f rαsk is holomorphic at 8. This makes sense

since f rαsk is holomorphic on H and weakly modular with respect to α´1Γα which

is again a congruence subgroup of SL2pZq.

Definition 1.2.2. Let Γ be a congruence subgroup of SL2pZq and k be an integer. A

function f : HÑ C is a modular form of weight k with respect to Γ if

(1) f is holomorphic,

(2) f is weight-k invariant under Γ,

(3) f rαsk is holomorphic at 8 for all α P SL2pZq.

If in addition

(4) a0 “ 0 in the Fourier expansion of f rαsk for all α P SL2pZq,

then f is said to be a cusp form of weight k with respect to Γ.

The modular forms(resp. cusp forms) of weight k with respect to Γ are denoted

by MkpΓq(resp. SkpΓq). Since f rγαsk “ f rαsk for all γ P Γ, condition (3) and (4) in

the above definition need to be checked for only finitely many coset representatives

of Γ in SL2pZq.

Let χ be a Dirichlet character modulo N . The χ-eigenspace of MkpΓ1pNqq is

defined as the set

MkpN,χq “ tf PMkpΓ1pNqq : f rγsk “ χpdqf for all γ “
`

a b
c d

˘

P Γ0pNqu.

8



The vector space MkpΓ1pNqq decomposes as

MkpΓ1pNqq “
à

χ

MkpN,χq.

We will use this fact frequently.

1.3 Complex Tori

A lattice in C is a set Λ “ ω1Z ‘ ω2Z with tω1, ω2u is a basis of C over R and

ω1{ω2 P C. We have the following relation between the basis of the same lattice.

Lemma 1.3.1. Consider two lattices Λ “ ω1Z ‘ ω2Z and Λ1 “ ω11Z ` ω12Z. Then

Λ “ Λ1 if and only if
` ω11
ω12

˘

“
`

a b
c d

˘`

ω1
ω2

˘

for some
`

a b
c d

˘

P SL2pZq.

Proof. [?, Theorem 1.2]

A complex torus is a quotient of the complex plane by a lattice, C{Λ “ tz ` Λ :

z P Cu. It is a compact Riemann surface. The following proposition characterize the

holomorphic maps between complex tori.

Proposititon 1.3.1. Suppose ϕ : C{Λ Ñ C{Λ1 is a holomorphic map between com-

plex tori. Then there exist m, b P C with mΛ Ă Λ1 such that ϕpz`Λq “ mz` b`Λ1.

ϕ is invertible if and only if mΛ “ Λ1.

Proof. Since C is the universal covering space of C{Λ, ϕ lifts to a holomorphic map

ϕ̃ : CÑ C.

C
p

��

ϕ̃ // C
p1

��
C{Λ ϕ // C{Λ1

Let λ P Λ and consider the function fλpzq “ ϕ̃pz ` λq ´ ϕ̃pzq. By the commutativity

of the above diagram we have p1pϕ̃pz ` λqq “ ϕpppz ` λqq “ ϕpppzqq “ p1pϕ̃pzqq and

9



so ϕ̃pz ` λq ´ ϕ̃pzq P Λ1. Hence fλ maps C to Λ1 and since fλ is continuous, it is

constant. Therefore differentiating gives ϕ̃1pz`λq “ ϕ̃1pzq and so ϕ̃1 is a holomorphic,

Λ periodic function. This makes ϕ̃1 bounded and by Liouville’s theorem it is constant.

Hence ϕ̃pzq “ mz ` b. Since ϕ̃ lifts a map between quotients, we have mΛ Ă Λ1 and

ϕ has the form given in the proposition.

Corollary 1.3.1. Suppose ϕ : C{Λ Ñ C{Λ1 is a holomorphic map between complex

tori, ϕpz ` Λq “ mz ` b` Λ1 with mΛ Ă Λ1. Then the following are equivalent:

1. ϕ is a group homomorphism,

2. b P Λ1, so ϕpz ` Λq “ mz ` Λ1,

3. ϕp0q “ 0.

Now we give an example of an isomorphism between complex tori. Let Λ “

ω1Z ‘ ω2Z be a lattice and τ “ ω1{ω2. Let Λτ “ τZ ‘ Z. Since p1{ω2qΛ “ Λτ by

the above corollary the map ϕτ : C{Λ Ñ C{Λτ given by ϕpz ` Λq “ z{ω2 ` Λτ is

an isomorphism. Thus every complex torus is isomorphic to a complex torus whose

lattice is generated by a complex number τ and 1. τ is not unique but if τ 1 P H is

another such number i.e. Λ “ ω11Z‘ω12Z and τ “ ω11{ω
1
2 then by Lemma ?? τ 1 “ γpτq

for some γ P SL2pZq. Thus each complex torus determines a complex number τ P H

up to action of SL2pZq.

Definition 1.3.1. A nonzero holomorphic homomorphism between complex tori is

called an isogeny.

Examples

1. Every holomorphic isomorphism is an isogeny.

10



2. Multiply by integer maps: Let N be a positive integer and Λ be a lattice.

Consider the map rN s : C{Λ Ñ C{Λ given by z ` Λ ÞÑ Nz ` Λ. As NΛ Ă Λ

this is an isogeny. Its kernel is the set of N -torsion points of C{Λ isomorphic

to Z{NZˆ Z{NZ. The kernel is denoted by ErN s.

3. Cyclic quotient maps: Let N be a positive integer and C be a cyclic subgroup

of ErN s isomorphic to Z{NZ. As a set C is a superlattice of Λ. The cyclic

quotient map π : C{Λ Ñ C{C given by z`Λ ÞÑ z`C is an isogeny with kernel

C.

Every isogeny can be written in terms of the above examples. Indeed; let ϕ : C{Λ Ñ

C{Λ1, z ` Λ ÞÑ mz ` Λ1 and let K “ kerϕ. Then K “ m´1Λ1{Λ. K can also be

viewed as a superlattice K “ m´1Λ1 of Λ. Let N be the order of K, hence K Ă

ErN s – Z{NZˆ Z{NZ and so K – Z{nZˆ Z{nn1Z for some n, n1 P Z`. Then nK

is a cyclic subgroup isomorphic to Z{n1Z and the quotient isogeny π : C{Λ Ñ C{nK

has kernel nK. Now consider the map C{nK Ñ C{Λ1 given by z`nK ÞÑ pm{nqz`Λ1.

This map is an isomorphism since pm{nqnK “ mK “ Λ1. Thus we have

ϕ : C{Λ rns // C{Λ π // C{nK „
ÝÑ C{Λ1.

Let Λ be a lattice. The N -torsion subgroup of C{Λ is

ErN s “ tP P C{Λ : rN sP “ 0u “ xω1{N ` Λy ˆ xω2{N ` Λy.

Let µN denote the complex Nth roots of unity µN “ tz P C : zN “ 1u. We define the

Weil pairing eN : ErN s ˆ ErN s Ñ µN as follows: Let P and Q be points in ErN s.

If Λ “ ω1Z‘ ω2Z then
`

P
Q

˘

“ γ
` ω1{N`Λ
ω2{N`Λ

˘

for some γ PM2pZ{NZq. The Weil pairing

of P and Q is eNpP,Qq “ e2πidet γ{N .

Now we show that how complex tori can be viewed as elliptic curves. Given

a lattice Λ and let E “ C{Λ. The meromorphic functions f : C{Λ Ñ pC can be
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identified with the Λ-periodic meromorphic functions f : C Ñ pC. These Λ-periodic

functions are called elliptic functions. Let P “ tx1ω1 ` x2ω2 : x1, x2 P r0, 1su be the

parallelogram representing E and BP be the counterclockwise boundary of P . Since

f has finitely many poles and zeros, t ` BP does not contain any poles or zeros for

some t. The following lemma gives some basic properties of these functions that we

will need later.

Lemma 1.3.2. Let f : CÑ pC be an elliptic function. Then

1. 1{p2πiq
ş

t`BP
fpzqdz “ 0, hence the sum of the residues of f on E is zero,

2. 1{p2πiq
ş

t`BP
f 1pzq
fpzq

dz “ 0, hence f takes each value N times, where N is the

order of f ,

3. 1{p2πiq
ş

t`BP
z f

1pzq
fpzq

dz “ 0, hence
ř

xPE νxpfqx “ 0 in E, where νxpfq is the

order of f at x.

Proof. [?, Chapter 3].

The most important example of these functions is the Weierstrass ℘-function

℘pzq “
1

z2
`

ÿ

ωPΛ

1
ˆ

1

pz ´ ωq2
`

1

ω2

˙

, z P C, z R Λ.

The sum converges absolutely and uniformly on compact subsets of C away from Λ

[?]. The derivative

℘1pzq “ ´2
ÿ

ωPΛ

1

pz ´ ωq3

is clearly Λ-periodic. i.e. ℘1pz ` ωq “ ℘1pzq for all ω P Λ. Hence ℘pz ` ωq ´ ℘pzq

is constant. When z “ ´ω{2, ℘pω{2q ´ ℘p´ω{2q “ 0 as ℘ is an even function.

This makes ℘pz ` ωq “ ℘pzq for all ω P Λ. Thus ℘ is Λ-periodic. This example is

12



important since the field of meromorphic functions on C{Λ is Cp℘, ℘1q, the rational

expressions in these two functions.

Eisenstein series generalize to functions whose variable is a lattice, GkpΛq “
ř

ωPΛ
1 1
ω2 , k ą 2 even. Hence the function Gkpτq from before can be written as

GkpΛτ q.

Proposititon 1.3.2. Let ℘ be the Weierstrass function with respect to a lattice Λ.

Then

1. The Laurent expansion of ℘ is

℘pzq “
1

z2
`

8
ÿ

n“2
n even

pn` 1qGn`2pΛqz
n

for all z such that 0 ă |z| ă inft|ω| : ω P Λ´ t0uu.

2. The functions ℘ and ℘1 satisfy the relation

p℘1pzqq2 “ 4p℘pzqq3 ´ g2pΛq℘pzq ´ g3pΛq

where g2pΛq “ 60G4pΛq and g3pΛq “ 140G6pΛq.

3. Let Λ “ ω1Z‘ ω2Z and ω3 “ ω1 ` ω2. Then the cubic equation satisfied by ℘1

and ℘ is

y2
“ 4px´ e1qpx´ e2qpx´ e3q, ei “ ℘pωi{2q for i “ 1, 2, 3.

ei’s are distinct.

Proof. (1) Let r “ inft|ω| : ω P Λ´ t0uu. If 0 ă |z| ă r, then |z{ω| ă 1 and we have

1

pz ´ ωq2
“

1

ω2
`

1´ z
ω

˘2 “
1

ω2

˜

1`
8
ÿ

n“1

pn` 1q
´ z

ω

¯n

¸

.
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Hence we have

℘pzq “
1

z2
`

8
ÿ

n“1

pn` 1q
ÿ

ω‰0

1

ωn`2
zn “

1

z2
`

8
ÿ

n“1

pn` 1qGn`2pΛqz
n.

When n is odd Gn`2pΛq “ 0 so (1) follows.

(2) Using part (1) we have

p℘1pzqq2 “ 4{z6
´ 24G4pΛq{z

2
´ 80G6pΛq `Opz2

q

and

4p℘pzqq3 ´ g2pΛq℘pzq ´ g3pΛq “ 4{z6
´ 24G4pΛq{z

2
´ 80G6pΛq `Opz2

q

hence the difference is a holomorphic Λ-periodic function, hence bounded and there-

fore constant making it zero. This proves part (2).

(3) Since ℘1 is odd, it has zeros at the order two points of C{Λ. The order two

points are zi “ ωi{2 for i “ 1, 2, 3. Hence by part (2), ei “ ℘pωi{2q are the roots

of the cubic polynomial 4x3 ´ g2pΛqx ´ g3pΛq and this proves the factorization in

part (3). Now let fipzq “ ℘pzq ´ ei. fi is an elliptic function of order 2. Since

fipωi{2q “ f 1ipωi{2q “ 0, fi has double zeros at ωi{2 and so has no other zeros. Hence

fipωj{2q ‰ 0 for i ‰ j. This shows that ei’s are distinct.

Part (3) of the above proposition shows that the map z ÞÑ p℘pzq, ℘1pzqq takes

the nonlattice points of C to points px, yq P C2 satisfying the cubic equation y2 “

4x3´ g2pΛqx´ g3pΛq. This map is bijective. It extends to lattice points by mapping

them to a point at infinity. Thus we have shown that for every lattice the associated

Weierstrass ℘-function gives a bijection

p℘, ℘1q : complex torus Ñ elliptic curve.

14



Under this map the group law on complex torus is transferred to the elliptic curve.

Indeed, let z1 ` Λ and z2 ` Λ be nonzero points of the torus. The image points

p℘pz1q, ℘
1pz1qq and p℘pz2q, ℘

1pz2qq determine a tangent or secant line of the curve.

Let ax` by ` c “ 0 denote this line and consider the function

fpzq “ a℘pzq ` b℘1pzq ` c.

Now f is meromorphic on C{Λ. If b ‰ 0, f has a triple pole at 0 ` Λ and zeros

at z1 ` Λ and z2 ` Λ. By Lemma ?? the third zero of f is at z3 ` Λ such that

z1`z2`z3`Λ “ 0`Λ. If b “ 0, f has a double pole at 0`Λ and zeros at z1`Λ and

z2 ` Λ, and again by lemma ?? z1 ` z2 ` Λ “ 0` Λ. In this case let z3 ` Λ “ 0` Λ

and so we have z1 ` z2 ` z3 ` Λ “ 0 ` Λ. Thus the points of the elliptic curve on

the line ax ` by ` c “ 0 are the points pxi, yiq “ p℘pziq, ℘
1pziqq for i “ 1, 2, 3. Since

z1 ` z2 ` z3 ` Λ “ 0` Λ the group law on the curve is that collinear triples sum to

zero.

We have seen that a holomorphic isomorphism of complex tori is of the form

z`Λ ÞÑ mz`Λ1 for mΛ “ Λ1. Since ℘Λ1pmzq “ m´2℘Λpzq and ℘1Λ1pmzq “ m´3℘1Λpzq

the corresponding isomorphism of elliptic curves is px, yq ÞÑ pm´2x,m´3yq. This

transforms the cubic equation y2 “ 4x3 ´ g2x´ g3 into y2 “ 4x3 ´m´4g2x´m
´6g3.

The following corollary of Proposition ?? shows that the discriminant function

∆ is nonvanishing.

Corollary 1.3.2. The discriminant function ∆ is non vanishing on H.

Proof. Let τ P H. Consider the lattice Λτ and the resulting cubic polynomial 4x3 ´

g2pτqx´ g3pτq. By Proposition ?? this polynomial has distinct roots. Since ∆pτq is

the discriminant of this polynomial, ∆pτq ‰ 0
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Up to this point we have seen that every complex torus lead to an elliptic curve

y2
“ 4x3

´ a2x´ a3, a3
2 ´ 27a2

3 ‰ 0 (1.1)

via the Weierstrass ℘-function. The converse is also true.

Proposititon 1.3.3. For every elliptic curve (??), there exists a lattice Λ such that

a2 “ g2pΛq and a3 “ g3pΛq.

Proof. If a2 “ 0 take Λ “ Λµ3 where µ3 is the third root of unity. If a3 “ 0 take

Λ “ Λi. Now assume that a2 ‰ 0 and a3 ‰ 0. Since j : HÑ C surjects, there exists

τ P H such that jpτq “ 1728a3
2{pa

3
2 ´ 27a2

3q. Hence

g2pτq

g2pτq3 ´ 27g3pτq2
“

a3
2

a3
2 ´ 27a2

3

,

and so
a3

2

g2pτq3
“

a2
3

g3pτq2
(1.2)

Choose ω2 P C such that ω´4
2 “ a2{g2pτq and so ω´12

2 “ a3
2{g2pτq

3. By (??), ω´6
2 “

˘a3{g3pτq. Replacing ω2 by iω2 if necessary we may assume ω´6
2 “ a3{g3pτq. Let

ω1 “ τω2 and Λ “ ω1Z‘ ω2Z. Then a2 “ g2pΛq and a3 “ g3pΛq.

Thus we may identify complex tori and elliptic curves.

1.4 Modular curves and moduli spaces

In this section we explain how modular curves parametrize the complex elliptic curves

together with N -torsion data.

Let N be a positive integer. An enhanced elliptic curve for Γ0pNq is an ordered

pair pE,Cq where E is a complex elliptic curve and C is a cyclic subgroup of E

of order N . Two such pairs pE,Cq and pE 1, C 1q are equivalent if there exists an
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isomorphism E
„
ÝÑ E 1 taking C to C 1. The set of equivalence classes is denoted by

S0pNq.

An enhanced elliptic curve for Γ1pNq is a pair pE,Qq where E is a complex elliptic

curve and Q is a point of order N . Two such pairs pE,Qq and pE 1, Q1q are equivalent

if there exists an isomorphism E
„
ÝÑ E 1 taking Q to Q1. The set of equivalence classes

is denoted by S1pNq.

An enhanced elliptic curve for ΓpNq is a pair pE, pP,Qqq where E is a complex

elliptic curve and pP,Qq is a pair of points that generates ErN s with eNpP,Qq “

e2πi{N . Two such pairs pE, pP,Qqq and pE 1, pP 1, Q1qq are equivalent if there exists an

isomorphism E
„
ÝÑ E 1 taking P to P 1 and Q to Q1. The set of equivalence classes is

denoted by SpNq.

Each of S0pNq, S1pNq, and SpNq is a moduli space of isomorphism classes of

complex elliptic curves and N -torsion data. If N “ 1 then all moduli spaces above

reduce to the isomorphism classes of complex elliptic curves.

For any congruence subgroup Γ of SL2pZq acting on the upper half plane H, the

modular curve Y pΓq is defined as the quotient space of the orbits under the action

of Γ, Y pΓq “ ΓzH “ tΓτ : τ P Hu. The topology on the upper half plane H is

the subspace topology induced from R2. The quotient map π : H Ñ Y pΓq defined

by πpτq “ Γτ gives Y pΓq the quotient topology. Under this topology π is an open

mapping and Y pΓq is Hausdorff. The modular curves for Γ0pNq, Γ1pNq and ΓpNq

are denoted by Y0pNq, Y1pNq and Y pNq respectively.

Let H˚ “ H Y Q Y t8u and define XpΓq “ ΓzH˚ “ Y pΓq Y ΓzpQ Y t8uq. To

define the topology on H˚, let NM “ tτ P H : Impτq ą Mu for M ą 0. Use the sets

αpNM Y t8uq for α P SL2pZq and M ą 0 as a base of neighborhoods of the cusps

and use the usual topology for points τ P H. Hence we have a topology on H˚. Give

XpΓq the quotient topology induced by the natural map π : H˚ Ñ XpΓq. Under this
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topology XpΓq is a compact connected and Hausdorff. Moreover XpΓq is compact

Riemann surface. For details see [?, Chapter 2].

Theorem 1.4.1. Let N be a positive integer.

1. The moduli space for Γ0pNq is

S0pNq “ trEτ , x1{N ` Λτys : τ P Hu.

Two points rEτ , x1{N ` Λτys and rEτ 1 , x1{N ` Λτ 1ys are equal if and only if

Γ0pNqτ “ Γ0pNqτ
1.Thus there is a bijection ψ0 : S0pNq

„
ÝÑ Y0pNq given by,

rC{Λτ , x1{N ` Λτys ÞÑ Γ0pNqτ.

2. The moduli space for Γ1pNq is

S1pNq “ trEτ , 1{N ` Λτ s : τ P Hu.

Two points rEτ , 1{N`Λτ s and rEτ 1 , 1{N`Λτ 1s are equal if and only if Γ1pNqτ “

Γ1pNqτ
1.Thus there is a bijection ψ1 : S1pNq

„
ÝÑ Y1pNq given by,

rC{Λτ , 1{N ` Λτ s ÞÑ Γ1pNqτ.

3. The moduli space for ΓpNq is

SpNq “ trEτ , pτ{N ` Λτ , 1{N ` Λτ qs : τ P Hu.

Two points rEτ , pτ{N ` Λτ , 1{N ` Λτ qs and rEτ 1 , pτ
1{N ` Λτ 1 , 1{N ` Λτ 1qs are

equal if and only if ΓpNqτ “ ΓpNqτ 1.Thus there is a bijection ψ : SpNq
„
ÝÑ

Y pNq given by,

rC{Λτ , pτ{N ` Λτ , 1{N ` Λτ qs ÞÑ ΓpNqτ.
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Proof. We only prove part (2). Part (1) and (3) follows from similar arguments. Let

rE,Qs P S1pNq. Since E is isomorphic to C{Λτ 1 for some τ 1 P H, we may assume

E “ C{Λτ 1 . Then Q “ pcτ 1 ` dq{N ` Λτ 1 for some c, d P Z. As the order of Q

is N , gcdpc, d,Nq “ 1. i.e. ad ´ bc ´ kN “ 1 for some a, b, k P Z. Consider the

matrix γ “
`

a b
c d

˘

P M2pZq. Note that γ mod N P SL2pZ{NZq. Since changing

γ modulo N does not change Q and SL2pZq surjects to SL2pZ{NZq we may take

γ “
`

a b
c d

˘

P SL2pZq. Let τ “ γpτ 1q and m “ cτ 1 ` d. Hence mτ “ aτ 1 ` b and so

mΛτ “ mpτZ‘ Zq “ paτ 1 ` bqZ‘ pcτ 1 ` dqZ.

Since
`

a b
c d

˘

P SL2pZq by Lemma ??

paτ 1 ` bqZ‘ pcτ 1 ` dqZ “ τ 1Z‘ Z “ Λτ 1 .

We also have

m p1{N ` Λτ q “ pcτ
1
` dq{N ` Λτ 1 “ Q.

This proves that rE,Qs “ rC{Λτ , 1{N ` Λτ s.

Suppose Γ1pNqτ “ Γ1pNqτ
1 for some τ, τ 1 P H. Hence τ “ γpτ 1q for some

γ “
`

a b
c d

˘

P Γ1pNq. Thus pc, dq ” p0, 1q mod N and so mp1{N `Λτ q “ p1{N `Λτ 1q.

Thus rC{Λτ , 1{N ` Λτ s “ rC{Λτ 1 , 1{N ` Λτ 1s. Therefore ψ1 is injective.

Now suppose rC{Λτ , 1{N ` Λτ s “ rC{Λτ 1 , 1{N ` Λτ 1s with τ, τ 1 P H. Then there

exists m P C such that mΛτ “ Λτ 1 and mp1{N ` Λτ q “ 1{N ` Λτ 1 . Thus by Lemma

?? we have
`

mτ
m

˘

“ γ
`

τ 1
1

˘

for some γ “
`

a b
c d

˘

P SL2pZq, (1.3)

so m “ cτ 1 ` d. Thus from above we have

cτ 1 ` d

N
` Λτ 1 “

1

N
` Λτ 1 .

19



Therefore pc, dq ” p0, 1q mod N and γ P Γ1pNq. Since by (??) τ “ γpτ 1q, Γ1pNqτ “

Γ1pNqτ
1.

Taking N “ 1 in the above theorem shows that isomorphism classes of complex

elliptic curves are in one-to-one correspondence with SL2pZqzH. Hence we asso-

ciate an orbit SL2pZqτ to each isomorphism class. Since the modular invariant j is

SL2pZq-invariant function on H, each isomorphism class has a well-defined invariant

jpSL2pZqτq. This value is denoted by jpEq for any complex elliptic curve E in the

isomorphism class.

The bijections in Theorem ?? give more examples of modular forms as follows:

Let k be an integer and Γ “ Γ1pNq. A complex valued function F of enhanced

elliptic curves for Γ is degree-k homogeneous with respect to Γ if for every m P C˚,

F pC{mΛ,mQq “ m´kF pC{Λ, Qq. (1.4)

Given such F define f : HÑ C by

fpτq “ F pC{Λτ , 1{N ` Λτ q.

Then f is weight-k invariant with respect to Γ.

Conversely, let f be weight-k invariant with respect to Γ. Then define F on

enhanced elliptic curves by

F pC{Λτ , 1{N ` Λτ q “ fpτq.

If pC{Λτ 1 , 1{N ` Λτ 1q “ pC{mΛτ ,m{N ` Λτ q then τ “ γpτ 1q and m “ cτ 1 ` d for

some γ “
`

a b
c d

˘

P Γ. Hence F satisfies (??)

F pC{Λτ 1 , 1{N ` Λτ 1q “ fpτ 1q “ m´kfpτq “ m´kF pC{mΛτ , 1{N ` Λτ q.

Since every enhanced elliptic curve is equivalent to an enhanced elliptic curve of the

special type given above F extends to all of S1pNq.
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2 Hecke Operators

In this section we define the Hecke operators and find a canonical basis for the space

SkpΓ1pNqq.

2.1 The xdy and Tp operators

Let Γ1 and Γ2 be congruence subgroups of SL2pZq. For each α P GL`2 pQq the set

Γ1αΓ2 “ tγ1αγ2 : γ1 P Γ1, γ2 P Γ2u is said to be a double coset in GL`2 pQq. Γ1 acts

on Γ1αΓ2 by left multiplication. Hence the orbit space is

Γ1zΓ1αΓ2 “
ď

j

Γ1βj (2.1)

where βj are orbit representatives.

Lemma 2.1.1. For any congruence subgroup Γ of SL2pZq and α P GL`2 pQq, the set

α´1Γα X SL2pZq is a congruence subgroup of SL2pZq.

Proof. [?, Lemma 5.1.1]

Lemma 2.1.2. Let Γ1 and Γ2 be two congruence subgroups of SL2pZq and α P

GL`2 pQq. Let Γ3 “ α´1Γ1α X Γ2. Then the map Γ2 Ñ Γ1αΓ2 given by γ2 ÞÑ αγ2

induces a natural bijection form the coset space Γ3zΓ2 to the orbit space Γ1zΓ1αΓ2.

Proof. Consider the surjective map Γ2 Ñ Γ1zΓ1αΓ2 given by γ2 ÞÑ Γ1αγ2. Let

γ2, γ
1
2 P Γ2. Then Γ1αγ2 “ Γ1αγ

1
2 if and only if γ12γ

´1
2 P α´1Γ1αXΓ2 “ Γ3 if and only

if Γ3γ
1
2 “ Γ3γ2. Thus the above map induces a bijection Γ3zΓ2 Ñ Γ1zΓ1αΓ2.

We need one more lemma to go further

Lemma 2.1.3. Let Γ1 and Γ2 be two congruence subgroups of SL2pZq. Then rΓ1 :

Γ1 X Γ2s is finite.
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Proof. There exists N1, N2 P Z` such that ΓpN1q Ă Γ1 and ΓpN2q Ă Γ2. Let N3 “

lcmpN1, N2q. Hence ΓpN3q Ă Γ1XΓ2. Thus rΓ1 : Γ1XΓ2s ď rΓ1 : ΓpN3qs ď rSL2pZq :

ΓpN3qs ă 8.

By Lemma ??, α´1Γ1α X SL2pZq is a congruence subgroup of SL2pZq and by

Lemma ??, the index rΓ2 : Γ3s is finite, where Γ3 “ α´1Γ1α X Γ2. Hence by Lemma

??, the orbit space Γ1zΓ1αΓ2 is finite. Thus the union (??) is finite.

Now we can define the Γ1αΓ2 operator. Let Γ1 and Γ2 be congruence subgroups

of SL2pZq and α P GL`2 pQq. The weight-k Γ1αΓ2 operator on MkpΓ1q is defined by

f rΓ1αΓ2sk “
ÿ

j

f rβjsk, f PMkpΓ1q,

where tβju are orbit representatives. By the above discussion the sum is finite. The

rΓ1αΓ2sk operator is well-defined. Indeed; let β and β1 represent the same orbit, i.e.

Γ1β “ Γ1β
1. Then β1 “ γβ for some γ P Γ1. As f P MkpΓ1q, f rβ

1sk “ f rγβsk “

pf rγskqrβsk “ f rβsk.

Our claim is that f rΓ1αΓ2sk P MkpΓ2q for f P MkpΓ1q. To see this first let

γ2 P Γ2 and consider the map Γ1zΓ1αΓ2 Ñ Γ1zΓ1αΓ2 defined by Γ1β ÞÑ Γ1βγ2. This

map is well-defined and bijective. Thus if tβju is a set of orbit representatives then

tβjγ2u is also a set of orbit representatives. Hence we have

pf rΓ1αΓ2skqrγ2sk “ p
ÿ

j

f rβjskqrγ2sk “
ÿ

j

f rβjγ2sk “ f rΓ1αΓ2sk.

This proves that f rΓ1αΓ2sk is weight-k invariant under Γ2.

Now we need to show that f rΓ1αΓ2sk is holomorphic at the cusps. For any

γ P GL`2 pQq extend the definition of weight-k operator to GL`2 pQq by pf rγskqpτq “

pdet γqk´1jpγ, τq´kfpγpτqq where f : HÑ C. It is easy to see that rγγ1sk “ rγskrγ
1sk

for all γ, γ1 P GL`2 pQq.
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Lemma 2.1.4. Let γ P GL`2 pQq and Γ be a congruence subgroup of SL2pZq. Let

f PMkpΓq. Then f rγsk has a Fourier expansion.

Proof. Let γ “
`

a b
c d

˘

. Suppose c “ 0. Then γ “ r
`

a1 b1

0 d1

˘

for some r P Q` and

a1, b1, d1 P Z with gcdpa1, b1, d1q “ 1. Now suppose c ‰ 0. Let a{c “ a1{c1 with

gcdpa1, c1q “ 1. Let γ1 “
`

˚ ˚
c1 ´a1

˘

P SL2pZq. Then γ1γ “
`

˚ ˚
0 ˚

˘

P GL`2 pQq and

as above γ1γ “ r
`

a1 b1

0 d1

˘

. Thus in both cases γ can be written as γ “ αγ1 for some

α P SL2pZq and γ1 “ r
`

a1 b1

0 d1

˘

with a1, b1, d1 P Z are relatively prime. Since f PMkpΓq,

f rαsk has a Fourier expansion. Hence f rγsk “ pdet γ1qk´1prd1q´kpf rαskqp
a1τ`b1

d1
q has a

Fourier expansion. If f rαsk has period h P Z` then we have

pf rγskqpτq “ pdet γ1qk´1
prd1q´k

ÿ

ně0

ane
2πipa1τ`b1qn{d1h.

This proves that if constant term of f rαsk is zero then constant term of f rγsk is also

zero.

Now let δ P SL2pZq. We have to show that pf rΓ1αΓ2skqrδsk is holomorphic at

8. pf rΓ1αΓ2skqrδsk is a sum of the functions gj “ f rβjδsk. Since βjδ P GL
`
2 pQq, by

Lemma ??, gj is holomorphic at 8. Let hj be the period of gj and let h “ lcmphjq.

Then the sum pf rΓ1αΓ2skqrδsk has period h. Each gj has a Fourier expansion

gjpτq “
ÿ

ně0

bnpgjqq
n
h .

Thus the sum pf rΓ1αΓ2skqrδsk has a Fourier expansion. Hence we proved that

f rΓ1αΓ2sk is holomorphic at cusps and this shows that the weight-k Γ1αΓ2 oper-

ator is

rΓ1αΓ2sk : MkpΓ1q ÑMkpΓ2q.
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Moreover, if f P SkpΓ1q then by the last part of the proof of Lemma ?? and above

discussion combines to show that f rΓ1αΓ2sk P SkpΓ2q, that is,

rΓ1αΓ2sk : SkpΓ1q Ñ SkpΓ2q.

Remarks

1. Suppose Γ1 Ą Γ2 and take α “ I. Then f rΓ1αΓ2sk “ f and so the operator

rΓ1αΓ2sk is the natural inclusion of the subspace MkpΓ1q into MkpΓ2q.

2. Suppose α´1Γ1α “ Γ2. Then Γ1αΓ2 “ Γ1α and so f rΓ1αΓ2sk “ f rαsk. Let f P

MkpΓ2q and γ1 P Γ1. Then pf rα´1skqrγ1sk “ f rα´1γ1sk “ pf rα
´1γ1αskqrα

´1sk “

f rα´1sk as α´1γ1α P Γ2. The holomorphy conditions are also satisfied by

Lemma ?? and so f rα´1sk P MkpΓ1q. Hence rΓ2α
´1Γ1sk is the inverse of

rΓ1αΓ2sk and so in this case

rΓ1αΓ2sk : MkpΓ1q
„
ÝÑMkpΓ2q.

3. Suppose Γ1 Ă Γ2 and take α “ I. Let tγju be coset representatives of Γ1zΓ2 and

so f rΓ1αΓ2sk “
ř

j f rγjsk. In this case rΓ1αΓ2sk is the projection of MkpΓ1q

onto its subspace MkpΓ2q.

Let Γ1 and Γ2 be any two congruence subgroups and α P GL`2 pQq. Then the

double coset operator rΓ1αΓ2sk can be written as a composition of the above cases.

To see this, let Γ3 “ α´1Γ1α X Γ2 and Γ13 “ αΓ3α
´1 “ Γ1 X αΓ2α

´1. Then we have

Γ13 Ă Γ1, α´1Γ13α “ Γ3 and Γ3 Ă Γ2. Thus the corresponding double coset operators

gives

MkpΓ1q
� � rΓ1αΓ13sk //MkpΓ

1
3q

rΓ13αΓ3sk //MkpΓ3q
rΓ3αΓ2sk // //MkpΓ2q
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f � // f � // f rαsk
� //

ř

j f rαγjsk , where γj are coset representatives of Γ3zΓ2.

By Lemma ??, αγj are the orbit representatives of Γ1zΓ1αΓ2 and so the composition

is the double coset operator rΓ1αΓ2sk.

The double coset operator rΓ1αΓ2sk has an interpretation in terms of modular

curves and their divisor groups. First note that we have

Γ3
//

��

Γ13

��
Γ2 Γ1

where the top row is the isomorphism γ ÞÑ αγα´1 and the other maps are inclusions.

Thus in terms of modular curves we have

X3
//

π2
��

X 1
3

π1
��

X2 X1

where the top row is the isomorphism Γ3τ ÞÑ Γ13αpτq and π1 and π2 are natural

maps. Considering modular curves as compact Riemann surfaces the maps in the

above diagram are holomorphic. Let Γ3zΓ2 “
Ť

j Γ3γj and βj “ αγj for all j and so

Γ1αΓ2 “
Ť

j Γ1βj. Each point of X2 is mapped by π1 ˝ α ˝ π
´1
2 to a set of points of

X1

tΓ3γjpτqu // tΓ13βjpτqu

π1
��

Γ2τ

π´1
2

OO

tΓ1βjpτqu

In terms of divisors the composition rΓ1αΓ2sk : X2 Ñ DivpX1q is given by Γ2τ ÞÑ
ř

j Γ1βjpτq. Extend this linearly to DivpX2q to obtain a homomorphism between

divisor groups

rΓ1αΓ2sk : DivpX2q Ñ DivpX1q.
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Remarks

1. Suppose Γ2 Ă Γ1. Then corresponding group homomorphism between divisor

groups is a surjection.

2. Suppose α´1Γ1α “ Γ2. Then divisor groups of Γ1 and Γ2 are isomorphic under

rΓ1αΓ2sk.

3. Suppose Γ2 Ą Γ1. Then rΓ1αΓ2sk is an injection.

Now we are ready to define xdy and Tp operators. Recall from Section ?? that we

have an isomorphism Γ0pNq{Γ1pNq
„
ÝÑ pZ{NZq˚ defined by

`

a b
c d

˘

ÞÑ d mod N . Let

α P Γ0pNq and consider the double coset operator

rΓ1pNqαΓ1pNqsk : MkpΓ1pNqq ÑMkpΓ1pNqq

given by f rΓ1pNqαΓ1pNqsk “ f rαsk for f PMkpΓ1pNqq. Hence f rαsk PMkpΓ1pNqq

and so Γ0pNq acts on MkpΓ1pNqq. Since Γ1pNq acts trivially the quotient pZ{NZq˚

acts on MkpΓ1pNqq. Hence we have an operator

xdy : MkpΓ1pNqq ÑMkpΓ1pNqq

given by xdyf “ f rαsk for any α “
`

a b
c δ

˘

P Γ0pNq such that δ ” d mod N . This

operator is called diamond operator. Now for any Dirichlet character χ : pZ{NZq˚ Ñ

C˚ the χ-eigenspace is

MkpN,χq “ tf PMkpΓ1pNqq : xdyf “ χpdqf for all d P pZ{NZq˚u

Thus xdy acts on the eigenspace of χ by multiplication by χpdq.

To define Tp let α “
`

1 0
0 p

˘

for p prime. Then Tp is defined to be the double coset

operator rΓ1pNqαΓ1pNqsk. Thus

Tp : MkpΓ1pNqq ÑMkpΓ1pNqq

26



is defined by f ÞÑ f rΓ1pNqαΓ1pNqsk. The following proposition gives the explicit

representation of Tp.

Proposititon 2.1.1. Tp defined as above is given by

Tpf “

$

’

’

&

’

’

%

p´1
ř

j“0

f r
`

1 j
0 p

˘

sk if p|N

p´1
ř

j“0

f r
`

1 j
0 p

˘

sk ` f r
`

m n
0 p

˘`

p 0
0 1

˘

sk if p - N, where mp´ nN “ 1

Proof. Let Γ0ppq “ t
`

a b
c d

˘

P SL2pZq :
`

a b
c d

˘

”
`

˚ 0
˚ ˚

˘

pmod pqu and define Γ0
1pN, pq “

Γ1pNqXΓ0ppq. Let Γ3 “ α´1Γ1pNqαXΓ1pNq. First we show that Γ3 “ Γ0
1pN, pq. Let

γ P Γ3. Then γ P Γ1pNq and γ “ α´1γ3α for some γ3 P Γ1pNq. An easy computation

shows that α´1γ3α P Γ0ppq hence γ P Γ1pNq X Γ0ppq “ Γ0
1pN, pq. Conversely, let

γ “
`

a b
c d

˘

P Γ0
1pN, pq. Then αγα´1 “

`

a b{p
pc d

˘

P Γ1pNq and so γ P α´1Γ1pNqα.

Let γj “
`

1 j
0 1

˘

for 0 ď j ă p. Given γ P Γ1pNq, then γ P Γ3γj if γγ´1
j P Γ3 “

Γ1pNqXΓ0ppq. Clearly γγ´1
j P Γ1pNq for all j. But we also need the upper right entry

b´aj of γγ´1
j “

`

a b´aj
c d´cj

˘

to be 0 pmod pq. Suppose p - a. Then let j “ ba´1 pmod pq

and so γγ´1
j P Γ3. Now suppose p | a. Then b ´ ja ı 0 pmod pq since otherwise

p | b and p | ad ´ bc “ 1. p | a if and only if p - N . In this case let γ8 “
`

mp n
N 1

˘

where mp ´ nN “ 1. Now γγ´1
8 P Γ3. Thus γ0, ..., γp´1 are coset representatives of

Γ3zΓ1pNq when p | N and γ8 is also required when p - N . Hence the corresponding

orbit representatives of Γ1pNqzΓ1pNqαΓ1pNq are

βj “ αγj “
`

1 j
0 p

˘

for 0 ď j ă p, β8 “
`

m n
N p

˘`

p 0
0 1

˘

if p - N. (2.2)

This finishes the proof.

The next proposition describes the effect of Tp on the Fourier coefficients. Before

that we need the following lemma.
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Lemma 2.1.5. Let f P MkpΓ1pNqq. Then xdypTpfq “ Tppxdyfq. That is the two

kinds of Hecke operator commute.

Proof. Let α “
`

1 0
0 p

˘

and γ P Γ0pNq. Then a simple computation shows that

γαγ´1 ”
`

1 ˚
0 p

˘

pmod Nq. The double coset Γ1pNqαΓ1pNq is

Γ1pNqαΓ1pNq “
 

γ P M2pZq : γ ”
`

1 ˚
0 p

˘

pmod Nq, det γ “ p
(

.

For the proof of this see [?, Chapter 3]. If Γ1pNqαΓ1pNq “
Ť

j Γ1pNqβj then by the

above description of Γ1pNqαΓ1pNq we have Γ1pNqαΓ1pNq “ Γ1pNqγαγ
´1Γ1pNq “

γΓ1pNqαΓ1pNqγ
´1 “

Ť

j Γ1pNqγβjγ
´1. Thus

ď

j

Γ1pNqβjγ “
ď

j

Γ1pNqγβj.

This is true for all γ P Γ0pNq. Choose γ P Γ0pNq with lower right entry δ ”

d pmod Nq and so we have

xdyTpf “
ÿ

j

f rβjγsk “
ÿ

j

f rγβjsk “ Tpxdyf.

Proposititon 2.1.2. Let f PMkpΓ1pNqq. Since
`

1 1
0 1

˘

P Γ1pNq, f has period 1 and

hence has a Fourier expansion

fpτq “
8
ÿ

n“0

anpfqq
n, q “ e2πiτ .

Then

1. Let 1N : pZ{NZq˚ Ñ C˚ be the trivial character modulo N . Then Tpf has

Fourier expansion

pTpfqpτq “
8
ÿ

n“0

panppfq ` 1Nppqp
k´1an{ppxdyfqqq

n
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That is

anpTpfq “ anppfq ` 1Nppqp
k´1an{ppxdyfq (2.3)

for f PMkpΓ1pNqq.

2. Let χ : pZ{NZq˚ Ñ C˚ be any character. If f P MkpN,χq then Tpf P

MkpN,χq and the Fourier expansion is

pTpfqpτq “
8
ÿ

n“0

panppfq ` χppqp
k´1an{ppfqqq

n

That is

anpTpfq “ anppfq ` χppqp
k´1an{ppfq (2.4)

for f PMkpN,χq.

Proof. For part (1), let 0 ď j ă p. Then

f r
`

1 j
0 p

˘

skpτq “
1

p
f

ˆ

τ ` j

p

˙

“
1

p

8
ÿ

n“0

anpfqe
2πinpτ`jq{p

“
1

p

8
ÿ

n“0

anpfqq
n
pµ

nj
p .

Suppose p | N . Since
p´1
ř

j“0

µnjp is equal to p when p | n and 0 when p - n, summing

over j gives pTpfqpτq “
řp´1
j“0 f r

`

1 j
0 p

˘

skpτq “
ř

p|n anpfqq
n
p “

ř8

n“0 anppfqq
n. Suppose

p - N . Then we have an additional term

f r
`

m n
N p

˘`

p 0
0 1

˘

skpτq “ pxpyfqr
`

p 0
0 1

˘

skpτq “ pk´1
pxpyfqppτq “ pk´1

8
ÿ

n“0

anpxpyfqq
np.

This proves part (1) of the proposition.

For part (b) note that by Lemma ?? we have xdyTpf “ Tpxdyf “ Tpχpdqf “

χpdqTpf. Thus Tpf PMkpN,χq. Formula (??) follows from (??).

We have seen that the two types of Hecke operator commute. It is also true that

they commute with themselves.
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Proposititon 2.1.3. Let d, e P pZ{NZq˚ and p and q be primes. Then

1. xdyxey “ xeyxdy “ xdey

2. TpTq “ TqTp

Proof. Since xdy and Tp operators preserve the decomposition MkpΓ1pNqq “
À

χ

MkpN,χq

it is enough to check the above equalities for f PMkpN,χq. Let f PMkpN,χq. Then

xdyxeyf “ xdyχpeqf “ χpdqχpeqf “ χpedqf “ xedyf . For the second equality by for-

mula (??) of Proposition ?? we have

anpTppTqfqq “ anppTqfq ` χppqp
k´1an{ppTqfq

“ anpqpfq ` χpqqq
k´1anp{qpfq ` χppqp

k´1
panq{ppfq ` χpqqq

k´1an{pqpfqq

“ anpqpfq ` χpqqq
k´1anp{qpfq ` χppqp

k´1anq{ppfq ` χppqqppqq
k´1an{pqpfqq

“ anpTqpTpfqq

The last equality follows from the symmetry between p and q.

As we have seen before the double coset operators has a modular curve interpre-

tation so does Tp

Tp : DivpX1pNqq Ñ DivpX1pNqq, Γ1pNqτ ÞÑ
ÿ

j

Γ1pNqβjpτq (2.5)

where βj are coset representatives from (??).

Tp also has an interpretation in terms of the moduli space S1pNq from Section

??. To construct this let Λτ “ τZ ‘ Z and Eτ “ C{Λτ for τ P H. For each j let

Cj “ cΛβjpτq where c P C.

Lemma 2.1.6. Using the above notation Cj “ xpτ ` jq{py ` Λτ for 0 ď j ă p and

Cj “ x1{py ` Λτ for j “ 8.
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Proof. Let 0 ď j ă p. Note that xpτ ` jq{py ` Λτ “ pτ ` jq{pZ ` τZ ‘ Z and

Λβjpτq “ pτ ` jq{pZ ‘ Z. Clearly we have Λβjpτq Ă xpτ ` jq{py ` Λτ . Conversely let

α P xpτ ` jq{py ` Λτ . Hence α “ npτ ` jq{p ` τm ` k for some n,m, k P Z. Since

τ “ ppτ ` jq{p´ j we have α “ npτ ` jq{p` pppτ ` jq{p´ jqm` k P Λβjpτq.

Now let j “ 8 and γ “
`

m n
N p

˘

. Then pNpτ ` pqΛγppτq “ Λpτ . Multiply by 1{p

and so pNτ ` 1qΛβ8pτq “ τZ‘ p1{pqZ “ x1{py ` Λτ .

By Lemma ?? we have Cj – Z{pZ as a subgroup of Eτ and Cj X px1{Ny`Λτ q “

t0u. Now the groups Cj are subgroups of Eτ rps and CiXCj “ t0u when i ‰ j. Hence
Ť

j Cj is a subset of Eτ rps with p2 elements. Thus Eτ rps “
Ť

j Cj. Any subgroup of

Eτ isomorphic to Z{pZ lie in Eτ rps and equal to one of the Cj. Now we define

Tp : DivpS1pNqq Ñ DivpS1pNqq, rE,Qs ÞÑ
ÿ

C

rE{C,Q` Cs (2.6)

where the sum is over all order p subgroups C of E such that C X xQy “ t0u. If

p | N the C8 does not appear in the above sum.

The relation between (??) and (??) is given in the following commutative dia-

gram:

DivpS1pNqq
Tp //

ψ1

��

DivpS1pNqq

ψ1

��
DivpY1pNqq

Tp // DivpY1pNqq

(2.7)

where ψ1 is the bijection between S1pNq and Y1pNq given in Section ?? and the maps

are given as

rEτ , 1{N ` Λτ s
Tp //

ψ1

��

ř

CrEτ{C, 1{N ` Cs

ψ1

��
Γ1pNqτ

Tp //
ř

j Γ1pNqβjpτq

To see that this diagram commutes it is enough to check that given τ P H, for

each j we have ψ1prEτ{Cj, 1{N ` Cjsq “ Γ1pNqβjpτq. For 0 ď j ă p by Lemma ??,
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Cj “ Λβjpτq and so rEτ{Cj, 1{N ` Cjs “ rEβjpτq, 1{N ` Λβjpτqs. In the case p - N ,

j “ 8 is also included and again by Lemma ??, C8 “ x1{py `Λτ and so as a lattice

C8 “ τZ ‘ p1{pqZ. Now considering C8 as a subgroup of Eτ , Eτ{C8 – Epτ under

multiplication by p map. Thus rEτ{C8, 1{N ` C8s “ rEpτ , p{N ` Λpτ s and so by

the proof of Theorem ?? we have rEpτ , p{N ` Λpτ s “ rEβjpτq, 1{N ` Λβjpτqs. Thus

ψ1prEτ{C8, 1{N ` C8sq “ Γ1pNqpτ “ Γ1pNqβ8pτq.

There is a similar commutative diagram for the diamond operator

S1pNq
xdy //

ψ1

��

S1pNq

ψ1

��
Y1pNq

xdy // Y1pNq

(2.8)

where the maps are given by

rEτ , 1{N ` Λτ s
xdy //

ψ1

��

rEτ , d{N ` Λτ s

ψ1

��
Γ1pNqτ

xdy // Γ1pNqαpτq

where α “
`

a b
c δ

˘

P Γ0pNq with δ ” d pmod Nq.

2.2 The xny and Tn operators

In this section we extend the definition of xdy and Tp operators to all of Z`.

For n P Z` with pn,Nq “ 1, xny is determined by npmod Nq. For pn,Nq ą 1

define xny “ 0. Then the map n ÞÑ xny is multiplicative.

Defining Tn is more complicated. First set T1 “ 1. We have already defined Tp

for primes p. For prime powers, inductively

Tpr “ TpTpr´1 ´ pk´1
xpyTpr´2 , r ě 2 (2.9)
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By Proposition ?? and induction, for distinct primes p and q we have TprTqs “ TqsTpr

and so we can extend the prime power definition (??) to Tn multiplicatively using

Tn “
ź

i

Tpei , n “
ź

i

pei .

Thus TnTm “ TmTn for all m,n P Z` by Proposition ?? and Tmn “ TmTn if pn,mq “

1.

Proposition ?? generalizes to

Proposititon 2.2.1. Let f PMkpΓ1pNqq have Fourier expansion

fpτq “
8
ÿ

m“0

ampfqq
m.

Then for all n P Z`, Tnf has the following Fourier expansion

pTnfqpτq “
8
ÿ

m“0

ampTnfqq
m

where

ampTnfq “
ÿ

d|pm,nq

dk´1amn{d2pxdyfq. (2.10)

If f PMkpN,χq then

ampTnfq “
ÿ

d|pm,nq

χpdqdk´1amn{d2pfq. (2.11)

Proof. As in the proof of Proposition ?? we may assume f P MkpN,χq and so it

suffices to check formula (??). The case n “ 1 is trivial. Now let n “ p be a prime.

Then
ÿ

d|pm,pq

χpdqdk´1amp{d2pfq “ amppfq ` χppqp
k´1am{ppfq “ ampTpfq

where the second equality follows from Proposition ??.
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Now let r ě 2 and assume (??) holds for n “ 1, p, ..., pr´1. Then

ampTprfq “ ampTppTpr´1fqq ´ pk´1ampxpyqpTpr´2fq by p??q

“ amppTpr´1fq ` χppqpk´1am{ppTpr´1fq ´ χppqpk´1ampTpr´2fq by p??q

“
ÿ

d|pmp,pr´1q

χpdqdk´1ampr{d2pfq

` χppqpk´1
ÿ

d|pm{p,pr´1q

χpdqdk´1ampr´2{d2pfq

´ χppqpk´1
ÿ

d|pm,pr´2q

χpdqdk´1ampr´2{d2pfq by induction hypothesis

The first sum above is amprpfq `
ř

d|pmp,pr´1q

dą1

χpdqdk´1ampr{d2pfq and

ÿ

d|pmp,pr´1q

dą1

χpdqdk´1ampr{d2pfq “ χppqpk´1
ÿ

d|pm,pr´2q

χpdqdk´1ampr´2{d2pfq.

Thus ampTprfq “ amprpfq`χppqp
k´1

ř

d|pm{p,pr´1q
χpdqdk´1ampr´2{d2pfq. Now it is easy

to see that the right-hand side is formula (??) with n “ pr.

Now let n1, n2 P Z` be such that pn1, n2q “ 1. Then

ampTn1pTn2fqq “
ÿ

d|pm,n1q

χpdqdk´1amn1{d2pTn2fq

“
ÿ

d|pm,n1q

χpdqdk´1
ÿ

e|pmn1{d2,n2q

χpeqek´1amn1n2{d2e2pfq

and this is formula p??q with n “ n1n2. This finishes the proof.

2.3 The Petersson inner product

In this section we define an inner product on SkpΓ1pNqq which makes it an inner

product space.

The hyperbolic measure on H is defined as

dµpτq “
dxdy

y2
, τ “ x` iy P H.
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dµ is SL2pZq-invariant. Since Q Y t8u is countable its measure is zero and so dµ is

enough to integrate on H˚. The fundamental domain of H˚ is defined as the set

D˚ “ tτ P H : Repτq ď 1{2, |τ | ě 1u Y t8u.

That is every point τ P H˚ is SL2pZq equivalent to a point in D˚.

Lemma 2.3.1. For any bounded function ϕ : H Ñ C and any α P SL2pZq, the

integral
ş

D˚ ϕpαpτqqdµpτq converges.

Proof.
ˇ

ˇ

ş

D˚ ϕpαpτqqdµpτq
ˇ

ˇ ď
ş

D˚ |ϕpαpτqq|dµpτq ďM
ş

D˚
dxdy
y2
“M

ş8

1{2
dy
y2
ă 8

Let Γ be a congruence subgroup of SL2pZq and tαju be representatives of the coset

space t˘IuΓzSL2pZq, i.e. SL2pZq “
Ť

jt˘IuΓαj. Let ϕ : H Ñ C be a Γ-invariant

function. Then
ř

j

ş

D˚ ϕpαjpτqqdµpτq is independent of the choice if representatives

αj. Since dµ is SL2pZq-invariant

ÿ

j

ż

D˚
ϕpαjpτqqdµpτq “

ż

Ť

j αjpD˚q
ϕpτqdµpτq.

Now
Ť

j αjpD˚q represents the modular curve XpΓq hence we can make the following

definition

ż

XpΓq

ϕpτqdµpτq “

ż

Ť

j αjpD˚q
ϕpτqdµpτq “

ÿ

j

ż

D˚
ϕpαjpτqqdµpτq

Now we are ready to construct the Petersson inner product. Let f, g P SkpΓq and

define ϕpτq “ fpτqgpτqpImpτqqk, for τ P H. Then ϕ is continuous and Γ-invariant.

Let us see that ϕ is bounded on H. Since ϕ is Γ-invariant it suffices to check that ϕ is

bounded on the union
Ť

j αjpDq and since the union is finite it suffices to show that

ϕ ˝ α is bounded on D for any α P SL2pZq. Since ϕ ˝ α is continuous, it is bounded
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on any compact subset of D. Note that we have the following Fourier expansions for

f and g,

pf rαskqpτq “
8
ÿ

n“1

anpf rαskqq
n
h , pgrαskqpτq “

8
ÿ

n“1

anpgrαskqq
n
h

for some h P Z`. Hence we have

ϕpαpτqq “ pf rαskqpτqpgrαskqpτqpImpτqq
k
“ Opqhq2pImpτqqk

as Impτq Ñ 0. Because of the exponential decay ϕpαpτqq Ñ 0 as Impτq Ñ 0 and so

ϕ ˝ α is bounded on D. Thus the integral in the next definition makes sense.

Definition 2.3.1. Let Γ Ă SL2pZq be a congruence subgroup. The Petersson inner

product,

x, yΓ : SkpΓq ˆ SkpΓq Ñ C

is defined by

xf, gyΓ “
1

VΓ

ż

XpΓq

fpτqgpτqpImpτqqkdµpτq

where VΓ “
ş

XpΓq
dµpτq is the volume of XpΓq.

The Petersson inner product defined as above is linear in f , conjugate linear in

g and positive definite.

Now we compute the adjoints of the Hecke operators Tn and xny. Let Γ Ă

SL2pZq be a congruence subgroup and SL2pZq “
Ť

jt˘IuΓαj. Then for α P GL`2 pQq

we have a bijection α´1ΓαzH˚ Ñ XpΓq given by α´1Γατ ÞÑ Γαpτq. Thus the

space α´1ΓαzH˚ is represented by
Ť

j α
´1αjpD˚q up to some boundary identification.

Similar to the definition of the above integral we can define for continuous, bounded,

α´1Γα-invariant functions ϕ : HÑ C
ż

α´1ΓαzH˚
ϕpτqdµpτq “

ÿ

j

ż

D˚
ϕpα´1αjpτqqdµpτq.

We need the following lemma to go further.
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Lemma 2.3.2. Let Γ Ă SL2pZq be a congruence subgroup and α P GL`2 pQq.

1. If ϕ : HÑ C is continuous, bounded, and Γ-invariant, then

ż

α´1ΓαzH˚
ϕpαpτqqdµpτq “

ż

XpΓq

ϕpτqdµpτq.

2. If α´1Γα Ă SL2pZq then Vα´1Γα “ VΓ and rSL2pZq : α´1Γαs “ rSL2pZq : Γs.

3. There exists β1, ..., βn P GL
`
2 pQq, where n “ rΓ : α´1ΓαXΓs “ rΓ : αΓα´1XΓs,

such that

ΓαΓ “
ď

j

Γβj “
ď

j

βjΓ

Proof. For part (1) note that since ϕ is Γ-invariant, pϕ˝αqpα´1γαqpτq “ ϕpγpαpτqqq “

ϕpαpτqq and so ϕ ˝ α is α´1Γα-invariant. Thus

ż

α´1ΓαzH˚
ϕpαpτqqdµpτq “

ÿ

j

ż

D˚
ϕpαjpτqqdµpτq “

ż

XpΓq

ϕpτqdµpτq.

For part (2) by the definition of the volume and part (1) we have

Vα´1Γα “

ż

α´1ΓαzH˚
dµpτq “

ż

XpΓq

dµpτq “ VΓ.

The volume and the index of Γ are related VΓ “ rSL2pZq : t˘IuΓsVSL2pZq. The second

equality in part (2) follows from this.

For part (3) apply part (2) with Γ is replaced by αΓα´1 X Γ hence we get

rSL2pZq : αΓα´1
X Γs “ rSL2pZq : α´1Γα X Γs.

Thus rΓ : αΓα´1 X Γs “ rΓ : α´1Γα X Γs. Hence there exists γ1, ..., γn, γ̃1, ..., γ̃n P Γ

such that

Γ “
ď

j

pα´1Γα X Γqγj “
ď

j

pαΓα´1
X Γqγ̃´1

j .
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Now by Lemma ?? with Γ1 “ Γ2 “ Γ we have ΓαΓ “
Ť

j Γαγj and Γα´1Γ “

Ť

j Γα´1γ̃´1
j “

Ť

j γ̃jαΓ. For each j, Γαγj X γ̃jαΓ ‰ ∅ since otherwise Γαγj Ă
Ť

i‰j γ̃jαΓ and so ΓαΓ Ă
Ť

i‰j γ̃jαΓ which is a contradiction. Hence we can choose

βj P Γαγj X γ̃jαΓ for each j. Then ΓαΓ “
Ť

j Γβj “
Ť

j βjΓ.

Now we are ready to compute the adjoints of the Hecke operators.

Proposititon 2.3.1. Let Γ Ă SL2pZq be a congruence subgroup and α P GL`2 pQq.

Set α1 “ detpαqα´1. Then

1. If α´1Γα Ă SL2pZq the for all f P SkpΓq and g P Skpα´1Γαq,

xf rαsk, gyα´1Γα “ xf, grα
1
skyΓ.

2. For all f, g P SkpΓq,

xf rΓαΓsk, gy “ xf, grΓα
1Γsky.

In particular, rΓαΓs˚k “ rΓα
1Γsk and if α´1Γα “ Γ then rαs˚k “ rα

1sk.

Proof. For part (1), using Lemma ?? and noting that α1pτq “ α´1pτq for all τ P H˚

we have

xf rαsk, gyα´1Γα “
1

Vα´1Γα

ż

α´1ΓαzH˚
pf rαskqpτqgpτqImpτq

kdµpτq

“
1

VΓ

ż

α´1ΓαzH˚
fpαpτqqjpα, τq´k detpαqk´1gpτqImpτqkdµpτq

“
1

VΓ

ż

XpΓq

fpτqjpα, α1pτqq´k detpαqk´1gpα1pτqqImpα1pτqqkdµpτq

“
1

VΓ

ż

XpΓq

fpτqpgrα1skqpτqImpτq
kdµpτq

“ xf, grα1skyΓ
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In the last equality we use the identities jpαα1, τq “ jpα, α1pτqqjpα1, τq and Impα1pτqq “

detpα1qImpτq|jpα1, τq|´2.

For part (2), by Lemma ?? ΓαΓ “
Ť

j Γβj hence f rΓαΓsk “
ř

j f rβjsk. For

each j set β1j “ det βjβ
´1
j . Then noting that detα “ det βj for each j we have

Γα1Γ “
Ť

j Γβ1j. Hence f rΓα1Γsk “
ř

j f rβ
1
jsk. Since Γ X βjΓβ

´1
j is a subgroup

of Γ we have xf, gyΓ “ xf, gyΓXβjΓβ´1
j

. Now using part (1) we get xf rΓαΓsk, gyΓ “
ř

jxf rβjsk, gyΓ “
ř

jxf rβjsk, gyΓXβjΓβ´1
j
“ xf, grβ1jskyΓXβ´1

j Γβj
“ xf, grΓα1ΓskyΓ.

Using Proposition ?? we can find the adjoints of the Hecke operators

Theorem 2.3.1. In the inner product space SkpΓ1pNqq, the Hecke operators xpy and

Tp for p - N have adjoints

xpy˚ “ xpy´1 and T ˚p “ xpy
´1Tp.

Thus the Hecke operators xny and Tn for pn,Nq “ 1 are normal.

Proof. Let f, g P SkpΓ1pNqq. Since Γ1pNqCΓ0pNq, for any α P Γ0pNq, α
´1Γ1pNqα “

Γ1pNq. Hence by part (1) of Proposition ?? we have xpy˚ “ rαs˚k “ rα´1sk “

xpy´1. For Tp by part (2) of Propposition ?? we have T ˚p “ rΓ1pNq
`

1 0
0 p

˘

Γ1pNqs
˚
k “

rΓ1pNq
`

p 0
0 1

˘

Γ1pNqsk. Since p - N there exists m,n P Z` such that mp ´ nN “

1 and
`

p 0
0 1

˘

“
`

1 n
N mp

˘´1` 1 0
0 p

˘`

p n
N m

˘

. Note that
`

1 n
N mp

˘´1
P Γ1pNq and

`

p n
N m

˘

P

Γ0pNq. Thus Γ1pNq
`

p 0
0 1

˘

Γ1pNq “ Γ1pNq
`

1 0
0 p

˘

Γ1pNq
`

p n
N m

˘

. If Γ1pNq
`

p 0
0 1

˘

Γ1pNq “
Ť

j Γ1pNqβj then Γ1pNq
`

1 0
0 p

˘

Γ1pNq “
Ť

j Γ1pNqβj
`

p n
N m

˘

gives the decomposition for

T ˚p . Thus

T ˚p f “
ÿ

j

f rβj
`

p n
N m

˘

sk “

˜

ÿ

j

f rβjsk

¸

`

p n
N m

˘

“ xpy´1Tp

as m ” p´1 pmod Nq.
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By the above result and the Spectral theorem of linear algebra for normal oper-

ators we have the following theorem

Theorem 2.3.2. The space SkpΓ1pNqq has an orthogonal basis of simultaneous

eigenforms for the Hecke operators txny, Tn : pn,Nq “ 1u.

We will need the following lemma later.

Lemma 2.3.3. For any Hecke operator T “ Tn or T “ xny, T ˚ “ wNTw
´1
N where

wN “ r
`

0 ´1
N 0

˘

sk.

Proof. Let p be a prime such that p - N and γ “
`

0 ´1
N 0

˘

. Then γ´1
`

a b
Nc d

˘

γ “
`

d ´c
´Nb a

˘

and so γ´1Γ1pNqγ “ Γ1pNq. Hence wN “ rγsk is the double coset op-

erator rΓ1pNqγΓ1pNqsk and by Proposition ??, w˚N “ rγs˚k “ rγ´1sk. Let α “
`

a b
Nc d

˘

P Γ0pNq with d ” p pmod Nq. Hence xpy “ rαsk. Now we have rγαγ´1s˚k “

rγ´1s˚krαs
˚
krγs

˚
k “ rγα´1γ´1sk. Since γα´1γ´1 “

`

a b
Nc d

˘

, rγα´1γ´1sk “ xpy and so

rγα´1γ´1sk “ rγα
´1γ´1s˚˚k “ xpy´1 by Theorem ??. This proves that wNxnywN “

xny˚ for pn,Nq “ 1. Since xny “ 0 when pn,Nq ą 1, the equality is true for all n.

For T “ Tp, let Γ1pNq
`

1 0
0 p

˘

Γ1pNq “
Ť

j Γ1pNqβj. Then Tp “
ř

jrβjsk. Note that
`

p 0
0 1

˘

“ γ´1
`

1 0
0 p

˘

γ. Hence Γ1pNq
`

p 0
0 1

˘

Γ1pNq “
Ť

j Γ1pNqγ
´1βjγ. By using these

representatives and Proposition ??,

T ˚p “ rΓ1pNq
`

1 0
0 p

˘

Γ1pNqs
˚
k “ rΓ1pNq

`

p 0
0 1

˘

Γ1pNqsk “
ÿ

j

rγ´1βjγsk “ w´1
N TpwN .

Thus T ˚n “ w´1
N TnwN .

2.4 Oldforms and Newforms

Let M | N . Then SkpΓ1pMqq embeds into SkpΓ1pNqq since Γ1pNq Ă Γ1pMq. We see

that there is another way embed SkpΓ1pMqq into SkpΓ1pNqq. Let d | pN{Mq and

define αd “
`

d 0
0 1

˘

. Hence for f : HÑ C, pf rαdskqpτq “ dk´1fpdτq.
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Lemma 2.4.1. Let Γ1 and Γ2 be two congruence subgroups of SL2pZq, γ P GL`2 pQq

and f PMkpΓ1q. Suppose that Γ1 Ą γΓ2γ
´1. Then f rγsk PMkpΓ2q.

Proof. Let β P Γ2. By hypothesis, for some α P Γ1 we have pf rγskqrβsk “ f rγβsk “

f rαγsk “ f rγsk. Thus f rγsk is weight-k invariant under Γ2. To prove holomorphy

at the cusps, let α P SL2pZq. Then by the proof of Lemma ??, γα “ α1γ1 for some

α1 P SL2pZq and γ1 P GL`2 pQq and so pf rγskqrαsk “ pf rα
1skqrγ

1sk. Since f rα1sk has

Fourier expansion, again by Lemma ??, pf rα1skqrγ
1sk “ pf rγskqrαsk has a Fourier

expansion. This proves that f rγsk PMkpΓ2q.

The above lemma is also true if we replace modular forms with cusp forms. Taking

Γ1 “ Γ1pMq, Γ2 “ Γ1pNq and γ “ αd in the above lemma gives f rαdsk P SkpΓ1pNqq

for f P SkpΓ1pMqq. Clearly the operator rαdsk is injective.

These two types of embeddings show that some of the cusp forms in SkpΓ1pNqq

comes from lower levels.

Definition 2.4.1. For each divisor d of N , let id be the map

id : pSkpΓ1pNd
´1
qqq

2
Ñ SkpΓ1pNqq

defined by pf, gq ÞÑ f ` grαdsk. The subspace of oldforms of level N is

SkpΓ1pNqq
old
“

ÿ

p|N prime

ipppSkpΓ1pNp
´1
qqq

2
q

and the subspace of newforms of level N is the orthogonal complement with respect

to the Petersson inner product

SkpΓ1pNqq
new

“ pSkpΓ1pNqq
old
q
K.

Now we prove the Hecke operators respect the decomposition of SkpΓ1pNqq into

oldforms and new forms.
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Proposititon 2.4.1. The subspaces SkpΓ1pNqq
old and SkpΓ1pNqq

new are stable under

the Hecke operators Tn and xny for all n P Z`.

Proof. Let p | N , p1 ‰ p be a prime and T “ Tp1 or T “ xdy for pd,Nq “ 1. Then we

have the following commutative diagram

pSkpΓ1pNp
´1qqq2

`T
pNp´1q 0

0 T
pNp´1q

˘

//

ip
��

pSkpΓ1pNp
´1qqq2

ip
��

SkpΓ1pNqq
TpNq // SkpΓ1pNqq

where the index of T denote the level. To prove that the diagram commutes it suffices

to check that TpNp´1qf “ TpNqf and pTpNp´1qgqrαpsk “ TpNqpgrαpskq. For T “ xdy,

TpNqf “ f rαsk for any α ”
`

˚ ˚
0 d

˘

pmod Nq .Choose such an α with bottom right

entry d. Then α also satisfies α ”
`

˚ ˚
0 d

˘

pmod Np´1q hence TpNp´1qf “ f rαsk and

so TpNp´1qf “ TpNqf . Since αpαα
´1
p P Γ0pNp

´1q has bottom right entry d and so

TpNp´1q “ rαpskTpNqrα
´1
p sk. This proves the case T “ xdy.

For T “ Tp1 , by part (1) of Proposition ??, TpNp´1q is the restriction of TpNq to

level Np´1. Let g P SkpNp´1, χq for some character χ : pZ{Np´1Zq˚ Ñ C˚. Since

Γ0pNq Ă Γ0pNp
´1q we have grαpskpτq “ pk´1gppτq P SkpN,χ1q where χ1 is a lift of χ

to pZ{NZq˚. Now by part (2) of Proposition ??,

anpTpNqpgrαpskqq “ anp1pgrαpskq ` χ
1
pp1qp1

k´1
an{p1pgrαpskq

“ pk´1anp1{ppgq ` χ
1
pp1qp1

k´1
pk´1an{p1ppgq

“ pk´1an{ppTpNp´1qgq

“ anppTpNp´1qgqrαpskq

Thus the diagram commutes.
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We also have the following commutative diagram

pSkpΓ1pNp
´1qqq2

`

Tp pk´1

´xpy 0

˘

//

ip
��

pSkpΓ1pNp
´1qqq2

ip
��

SkpΓ1pNqq
Tp // SkpΓ1pNqq

Let f, g P SkpNp´1, χq where χ is a character modulo Np´1. To prove that this

diagram commutes it is enough to check that Tpf ´ pxpyfqrαpsk “ Tpf and pk´1g “

Tppgrαpskq where the operator Tp on the left-hand side is of level Np´1. Considering

the Fourier coefficients gives anpTpf ´ pxpyfqrαpskq “ anppfq ` χppqpk´1an{ppfq ´

anppxpyfqrαpskq “ anppfq “ anpTpfq and anpTppgrαpskqq “ anppgrαpskq “ pk´1anpgq “

anpp
k´1gq.

The above two diagram shows that SkpΓ1pNqq
old is stable under all Tn and xny.

When pn,Nq “ 1 we have the adjoints T ˚n “ xny´1Tn and xny˚ “ xny´1. Hence

the above diagrams shows that SkpΓ1pNqq
old is also stable under the adjoints of the

Hecke operators in the case pn,Nq “ 1. For pn,Nq ą 1, xny˚ “ 0 hence this is also

true for all xny. For Tn, note that by Lemma ??, T ˚n “ wNTnw
´1
N . Consider the

commutative diagram

pSkpΓ1pNp
´1qqq2

` 0 pk´2wNp´1

wNp´1 0

˘

//

ip
��

pSkpΓ1pNp
´1qqq2

ip
��

SkpΓ1pNqq
wN // SkpΓ1pNqq

where wN “ rγsk and wNp´1 “ rγ1sk with γ “
`

0 1
´N 0

˘

, γ1 “
`

0 1
´Np´1 0

˘

. Let f, g P

SkpNp´1, χq.To see that this diagram commutes it is enough to check that f rγsk “

pf rγ1skqrαpsk and pgrαpskqrγsk “ pk´2grγ1sk. The first equality is clear as γ1αp “ γ.

The second can easily be seen from the identity αpγ “
`

0 p
´N 0

˘

.
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Finally let f P SkpΓ1pNqq
new. Then xf, gy “ 0 for any g P SkpΓ1pNqq

old. Let

T “ Tn or T “ xny. Then xTf, gy “ xf, T ˚gy “ 0 since SkpΓ1pNqq
old is stable

under the adjoint of T . Thus Tf P SkpΓ1pNqq
new and this finishes the proof of the

proposition.

Combining Proposition ?? with Theorem ?? we get the following corollary.

Corollary 2.4.1. The spaces SkpΓ1pNqq
old and SkpΓ1pNqq

new have orthogonal bases

of eigenforms for the Hecke operators tTn, xny : pn,Nq “ 1u

Now we give a characterization of oldforms in terms of the Fourier coefficients.

Let M | N and d | pN{Mq. Normalizing the scalar in the operator id to 1 gives

ιd “ d1´k
rαdsk : SkpΓ1pMqq Ñ SkpΓ1pNqq, pιdfqpτq “ fpdτq.

ιd acts on the Fourier expansion as ιd :
ř8

n“1 anq
n ÞÑ

ř8

n“1 anq
dn. Suppose f P

SkpΓ1pNqq is of the form
ř

p|N ιpfp with fp P SkpΓ1pNp
´1qq. Choose p | N and let

fppτq “
ř8

n“1 anpfpqq
n be the Fourier expansion of fp. Then pιpfpqpτq “

ř8

n“1 anpfpqq
np.

If pn,Nq “ 1 then also pp, nq “ 1 and so anpfpq “ 0. Thus anpfq “ 0 for such n. The

following Theorem proves that the converse is also true.

Theorem 2.4.1. If f P SkpΓ1pNqq has Fourier expansion fpτq “
ř

anpfqq
n with

anpfq “ 0 for pn,Nq “ 1, then f takes the form f “
ř

p|N ιpfp with each fp P

SkpΓ1pNp
´1qq.

See [?, Chapter 5.7] for the proof of this theorem.

2.5 Eigenforms

From Corollary ?? the spaces SkpΓ1pNqq
old and SkpΓ1pNqq

new have orthogonal bases

of eigenforms for the Hecke operators tTn, xny : pn,Nq “ 1u. In this section we show
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that if f P SkpΓ1pNqq
new is such an eigenform then f is an eigenform for all Tn and

xny. For pn,Nq ą 1, xny “ 0 hence f is an eigenform for all xny. Hence we only need

to check Tn.

Definition 2.5.1. A nonzero modular form f P MkpΓ1pNqq that is an eigenform

for the Hecke operators Tn and xny for all n P Z` is a Hecke eigenform (or just

eigenform). The eigenform fpτq “
ř

anpfqq
n is normalized when a1pfq “ 1. A

normalized eigenform f P SkpΓ1pNqq
new is called newform.

Now we show that SkpΓ1pNqq
new has an orthogonal basis of newforms. Let f P

SkpΓ1pNqq be an eigenform for the Hecke operators Tn and xny with pn,Nq “ 1.

Hence for all such n there exist cn, dn P C such that Tnf “ cnf and xnyf “ dnf .

By Lemma ?? the map n ÞÑ dn defines a Dirichlet character χ : pZ{NZq˚ Ñ C˚

and f P SkpN,χq. By formula (??), a1pTnfq “ anpfq for all n P Z`. Since f is an

eigenform we also have

a1pTnfq “ cna1pfq when pn,Nq “ 1.

The above two formulas together shows that

anpfq “ cna1pfq when pn,Nq “ 1.

Thus if a1pfq “ 0 then anpfq “ 0 when pn,Nq “ 1 and so by Theorem ??, f P

SkpΓ1pNqq
old.

Now suppose f P SkpΓ1pNqq
new and f ‰ 0. Then f R SkpΓ1pNqq

old and so

a1pfq ‰ 0 so we may assume f is normalized to a1pfq “ 1. For any m P Z` define

gm “ Tmf´ampfqf P SkpΓ1pNqq
new. Then gm is an eigenform for the Hecke operators

Tn and xny for pn,Nq “ 1. Indeed, for xny we have xnygm “ xnyTmf ´ xnyampfqf “

Tmxnyf´ampfqxnyf “ Tmdnf´ampfqdnf “ dnpTmf´ampfqfq “ dngm and for Tn we
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have Tngm “ TnTmf´Tnampfqf “ TmTnf´ampfqTnf “ Tmanpfqf´ampfqanpfqf “

anpfqgm. The first Fourier coefficient of gm is

a1pgmq “ a1pTmfq ´ a1pampfqfq “ ampfq ´ a1pfqampfq “ 0.

Thus gm P SkpΓ1pNqq
old by the above discussion. Hence gm P SkpΓ1pNqq

old X

SkpΓ1pNqq
new “ t0u and so Tmf “ ampfqf . Putting these together we have the

following theorem,

Theorem 2.5.1. Let f P SkpΓ1pNqq
new be a nonzero eigenform for the Hecke oper-

ators Tn and xny with pn,Nq “ 1. Then

1. f is a Hecke eigenform.

2. If f̃ satisfies the same conditions as f and has the same Tn-eigenvalues, then

f̃ “ cf for some constant c.

The set of newforms in SkpΓ1pNqq
new is an orthogonal basis of the space. Each

such newform lies in SkpN,χq for some χ and its Fourier coefficients are its Tn-

eigenvalues.

Proof. Part (1) is proved above. For part (2) let f̃ and f be as above. Then cf̃ and

df are newforms for some constants c and d. Let dn be Tn-eigenvalue of f and f̃ .

Then

anpcf̃qcf̃ “ Tnpcf̃qcf̃ “ cdnf̃ and anpdfqdf “ Tnpdfqdf “ ddnf.

Thus anpf̃q “ dn{c and anpfq “ dn{d. This proves part (2).

The following theorem gives a basis for the space SkpΓ1pNqq.
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Theorem 2.5.2. The set

BkpNq “ tfpnτq : f is a newform of level M and nM | Nu

is a basis of SkpΓ1pNqq.

Proof. Consider the decomposition

SkpΓ1pNqq “ SkpΓ1pNqq
new
‘
ÿ

p|N

ipppSkpΓ1pN{pqqq
2
q.

Now SkpΓ1pNqq
new is spanned by tfpτq : f is a newform of level Nu Ă BkpNq.

Each summand in the sum is spanned by

tfpτq, fppτq : f is a newform of level dividing N{pu.

Thus BkpNq generates SkpΓ1pNqq.

To see that BkpNq forms a basis suppose there is a nontrivial relation

ÿ

i,j

ci,jfipni,jτq “ 0 ci,j P C

where fi P SkpMi, χiq with Mi | N and ni,j | pN{Miq and χi is a Dirichlet character

modulo Mi. Assume that the relation has as few terms as possible. It has at least two

terms. Each character χi lifts to a character χ̃i modulo N and so f P SkpN, χ̃iq. In

fact χ̃i is the same character for all i. Indeed, if χ̃1pdq ‰ χ̃2pdq for some d P pZ{NZq˚

then applying xdy ´ χ̃1pdq to the relation gives

pxdy ´ χ̃1pdqq
ÿ

i,j

ci,jfipni,jτq “
ÿ

i,j

ci,jxdyfipni,jτq ´
ÿ

i,j

ci,jχ̃1pdqfipni,jτq

“
ÿ

i,j

ci,jχ̃ipdqfipni,jτq ´
ÿ

i,j

ci,jχ̃1pdqfipni,jτq

“
ÿ

i,j

ci,jpχ̃ipdq ´ χ̃1pdqqfipni,jτq
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which is a nontrivial relation with fewer terms. Similarly all fi have the same Fourier

coefficients away from N . Indeed, if appf1q ‰ appf2q for some p - N then applying

Tp ´ appf1q to the relation gives

pTp ´ appf1qq
ÿ

i,j

ci,jfipni,jτq “
ÿ

i,j

ci,jTpfipni,jτq ´
ÿ

i,j

ci,jappf1qfipni,jτq

“
ÿ

i,j

ci,jpappfiqappf1q´qfipni,jτq

which is a nontrivial relation with fewer terms. Thus all appfiq are equal for p - N

and so all fi are equal contradicts with the number of terms in the relation.

Proposititon 2.5.1. Let g P SkpΓ1pNqq be a normalized eigenform. Then there is

a newform f P SkpΓ1pMqq
new for some M | N such that appfq “ appgq for all p - N .

Proof. Suppose for each newform fi of level dividing N there exists a prime pi - N

such that apipfiq ‰ apipgq. By Theorem ??, we can write g as

g “
ÿ

i,j

ci,jfipni,jτq

Applying
ś

ipTpi´apipfiqq to this relation we get
ś

ipTpi´apipfiqq
ř

i,j ci,jfipni,jτq “ 0

but
ś

ipTpi ´ apipfiqqg ‰ 0 by assumption. This contradiction finishes the proof.
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3 Jacobians and Abelian Varieties

In this section we define the Jacobian of the modular curves and Abelian variety

comes from a weight-2 eigenform.

3.1 Preliminaries

We have noted in Section ?? that modular curves are compact Riemann surfaces.

Hence we begin with recalling some general facts about compact Riemann surfaces.

For details see [?, ?].

Let X be a compact Riemann surface of genus g. It is a sphere with g handles.

The holomorphic differntials on X will be denoted by Ω1
holpXq. It has g dimensional

vector space over C. Let A1, ..., Ag be the longitudinal loops and let B1, ..., Bg be

the latitudinal loops. The group of integer sums of integration over loops is the free

Abelian group generated by integration over the loops Ai and Bi and this group is

called the first homology group of X denoted by H1pX,Zq, that is

H1
pX,Zq “ Z

ż

A1

‘ ¨ ¨ ¨Z
ż

Ag

‘ Z
ż

B1

‘ ¨ ¨ ¨Z
ż

Bg

– Z2g.

The homology group is a subgroup of the dual space Ω1
holpXq

^ “ HomCpΩ
1
holpXq,Cq.

The dual space is

Ω1
holpXq

^
“ R

ż

A1

‘ ¨ ¨ ¨R
ż

Ag

‘ R
ż

B1

‘ ¨ ¨ ¨R
ż

Bg

hence H1pX,Zq is a lattice in Ω1
holpXq

^. The Jacobian of X is defined as

JacpXq “ Ω1
holpXq

^
{H1

pX,Zq.

Since the homology is a 2g dimensional lattice in Ω1
holpXq

^, the Jacobian is a g

dimensional complex torus Cg{Λg.
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Let CpXq denote the field of meromorphic functions on X. The degree-0 divisor

group of X is

Div0
pXq “

#

ÿ

xPX

nxx : nx P Z, nx “ 0 for almost all x,
ÿ

x

nx “ 0

+

The subgroup of principal divisors is

Div`pXq “ tδ P Div0
pXq : δ “ divpfq for some f P CpXqu

where the divisor of a meromorphic function f P CpXq is defined as divpfq “
ř

xPX νxpfqx. The degree-0 Picard group of X is

Pic0
pXq “ Div0

pXq{Div`pXq.

If X has genus g ą 0 and x0 P X then X embeds into its Picard group

X Ñ Pic0
pXq, x ÞÑ rx´ x0s. (3.1)

Indeed, suppose x, x̃ P X maps to the same equivalence class. Hence x´x̃ P Div`pXq.

That is x´ x̃ “ divpfq for some f P CpXq. Considering f as a holomorphic function

f : X Ñ pC we see that f has degree 1. Since g ą 0 by Riemann-Hurwitz formula it

is not possible. Thus the map is injective.

We also have a map from degree-0 divisors to the Jacobian

Div0
pXq Ñ JacpXq,

ÿ

x

nxx ÞÑ
ÿ

x

nx

ż x

x0

Abel’s Theorem states that this map induces an isomorphism between Picard group

and the Jacobian

Theorem 3.1.1. The above map induces an isomorphism

Pic0
pXq

„
ÝÑ JacpXq,

«

ÿ

x

nxx

ff

ÞÑ
ÿ

x

nx

ż x

x0

. (3.2)
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Abel’s Theorem says that principal divisors maps to trivial integration on Ω1
holpXq

modulo integration over loops. The maps (??) and (??) shows that X embeds into

its Jacobian via

X Ñ JacpXq, x ÞÑ

ż x

x0

.

By Abel’s Theorem we also have Ω1
holpXq

^ “

!

ř

γ nγ
ş

γ
:
ř

γ nγ “ 0
)

.

Let h : X Ñ Y be a nonconstant holomorphic map between compact Riemann

surfaces. Now we define the the corresponding maps between Jacobians and Picard

groups. The pullback map induced by h is

h˚ : CpY q Ñ CpXq, g ÞÑ g ˝ h.

h˚ is injective. For g P CpY q the orders of vanishing of h˚g is νxph
˚gq “ exνhpxqpgq,

where ex is the ramification degree of h at x. Indeed, let x P X and z be the

local coordinate centered at x and ω be the local coordinate centered at hpxq. Then

ν0pω ˝h ˝ z
´1q “ ex, ν0pg ˝ω

´1q “ νhpxqpgq and ν0pg ˝h ˝ z
´1q “ νxph

˚gq. Considering

the compsitions proves the equality.

The pullback extends to holomorphic differentials h˚ : Ω1
holpY q Ñ Ω1

holpXq. Given

λ P Ω1
holpY q. Let ϕj : Uj Ñ Vj and ϕ̃j : Ũj Ñ Ṽj be local coordinates on X and Y

such that hpUjq “ Ũj. Let hj “ ϕ̃jhϕj : Vi Ñ Ṽj. Define the pullback of λ locally as

ph˚λqj “ h˚jλj P Ω1
holpVjq, λj P Ω1

holpṼjq.

This map induces a dual map between dual spaces, denoted h˚,

h˚ : Ω1
holpXq

^
Ñ Ω1

holpY q
^, ϕ ÞÑ ϕ ˝ h˚.

Now let α be a loop in X and ϕ “
ş

α
P Ω1

holpXq
^. Then h˚ϕ “

ş

α
h˚ “

ş

hpαq
P

Ω1
holpY q

^. Since hpαq is a loop in Y , h˚ takes homology to homology and induces a

map between Jacobians.
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Definition 3.1.1. The forward map of Jacobians is the holomorphic homomorphism

hJ : JacpXq Ñ JacpY q, rϕs ÞÑ rh˚ϕs “ rϕ ˝ h
˚
s.

In terms of Theorem ?? this map is defined as

hJp
ÿ

x

nx

ż x

x0

q “
ÿ

x

nx

ż hpxq

hpx0q

There is also a forward map between Picard groups induced by h : X Ñ Y . First

define the norm map

normh : CpXq Ñ CpY q, pnormhfqpyq “
ź

xPh´1pyq

fpxqex .

The order of vanishing of norm of a function f P CpXq˚ is

νypnormhfq “
ÿ

xPh´1pyq

νxpfq

and so

divpnormhfq “
ÿ

y

¨

˝

ÿ

xPh´1pyq

νxpfq

˛

‚y “
ÿ

x

νxpfqhpxq.

Thus at the level of principal divisors the norm map is
ř

x νxpfqx ÞÑ
ř

x νxpfqhpxq

and the map between divisors that extend this is

hD : DivpXq Ñ DivpY q,
ÿ

x

nxx ÞÑ
ÿ

x

nxhpxq

which takes degree-0 divisors to degree-0 divisors.

Definition 3.1.2. The forward map of Picard groups is the homomorphism

hP : Pic0
pXq Ñ Pic0

pY q,

«

ÿ

x

nxx

ff

ÞÑ

«

ÿ

x

nxhpxq

ff
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Under the isomorphism of Theorem ?? we have a commutative diagram

Pic0
pXq

hP //

��

Pic0
pY q

��
JacpXq

hJ // JacpY q

So far we have defined forward maps. Now we define the reverse maps between

Jacobians and Picard groups. Let S “ tx P X : ex ą 1u, Y 1 “ Y ´ hpSq and

X 1 “ h´1pY 1q. If degphq “ d then the restriction of h to X 1 is a d-fold covering map.

Given a path δ in Y 1 and x P h´1pδp0qq Ă X 1 then there exists a unique lift γ of δ to

X 1 such that γp0q “ x. If δ is a path in Y and only endpoints of δ lie in hpSq then

for each x P h´1pδp0qq there exist ex lifts of γ starting at x. By perturbing paths

in Y any path integral of holomorphic differentials on Y can be taken over a path δ

such that only the endpoints of δ might lie in hpSq. Define the trace map induced

by h

trh : Ω1
holpXq Ñ Ω1

holpY q

as follows: If δ is a path in Y 1 lifting to a path in X 1 and h´1
i is a local inverse of

h about δp0q. Then h´1
i has an analytic continuation along δ. Let ω P Ω1

holpXq.

Suppose y P Y 1 such that h has local inverses h´1
i : Ũ Ñ Ui, i “ 1, ..., d. The trace is

defined on Ũ is

ptrhωq|Ũ “
d
ÿ

i“1

ph´1
i q

˚
pω|Uiq.

This extends holomorphically to Y . We have a dual map

tr^h : Ω1
holpY q

^
Ñ Ω1

holpXq
^, ψ ÞÑ ψ ˝ trh.

For paths δ in Y 1 we have
ż

δ

trhω “
ÿ

lifts γ

ż

γ

ω.
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This extends to paths in Y such that only the endpoints might lie in hpSq. Let

us see that the dual map takes homology to homology. Let β be a loop in Y 1 and

ψ “
ş

β
P Ω1

holpY q
^ then tr^hψ “

ş

β
trh “

ř

lifts γ

ş

γ
P Ω1

holpXq
^. Since β lifts to a

concatenation of loops in X tr^h takes homology to homology and induces a map

between Jacobians.

Definition 3.1.3. The reverse map of Jacobians is the holomorphic homomorphism

hJ : JacpY q Ñ JacpXq, rψs ÞÑ rψ ˝ trhs.

In terms of Theorem ??, hJ is given by

hJp
ÿ

y

ny

ż y

y0

q “
ÿ

y

ny
ÿ

xPh´1pyq

ex

ż x

x0

.

Proposititon 3.1.1. For any nonconstant holomorphic map h : X Ñ Y of compact

Riemann surfaces

ptrh ˝ h
˚
qpλq “ degphqλ, λ P Ω1

holpY q

Proof. Let Ũ be a local chart on Y such that the inverse image is a disjoint union of

local charts U1, ..., Ud and the restrictions hi : Ui Ñ Ũ are invertible. Then locally

ptrh ˝ h
˚
qpλq|Ũ “

d
ÿ

i“1

ph´1
i q

˚
ph˚λ|Uiq “

d
ÿ

i“1

ph´1
i q

˚
ph˚i pλ|Ũqq “

d
ÿ

i“1

λ|Ũ “ dλ|Ũ

where d “ degphq.

By the above Proposition the composition hJ ˝ h
J is multiplication by degphq in

JacpY q. Finally we define the reverse map between Picard groups. Recall the pull

back map h˚ : CpY q Ñ CpXq and the formula νxph
˚gq “ exνhpxqpgq for g P CpY q.

Hence we have

divph˚gq “
ÿ

x

exνhpxqpgqx “
ÿ

y

νypgq
ÿ

xPh´1pyq

exx.
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Thus the action of pullback on the principal divisors is
ř

y νypgqy ÞÑ
ř

y νypgq
ř

xPh´1pyq exx.

The map between divisor groups that extends this is

hD : DivpY q Ñ DivpXq,
ÿ

y

nyy ÞÑ
ÿ

y

ny
ÿ

xPh´1pyq

exx

which is taking degree-0 divisors to degree-0 divisors.

Definition 3.1.4. The reverse map of Picard groups is

hP : Pic0
pY q Ñ Pic0

pXq,

«

ÿ

y

nyy

ff

ÞÑ

»

–

ÿ

y

ny
ÿ

xPh´1pyq

exx

fi

fl .

As in the case of forward maps by Theorem ?? we have the following commutative

diagram

Pic0
pY q

hP //

��

Pic0
pXq

��
JacpY q hJ // JacpXq

.

3.2 Modular Jacobians

The Hecke operators give rise to holomorphic maps between modular curves which

are compact Riemann surfaces. Thus by the preceding section they lead to maps

between Jacobians of modular curves and Picard groups.

Let Γ1 and Γ2 be two congruence subgroups of SL2pZq and α P GL`2 pQq. Recal

from Section ?? that the double coset operator rΓ1αΓ2s2 induces a map between

divisor groups of modular curves

rΓ1αΓ2s2 : DivpX2q Ñ DivpX1q

which is the Z-linear extension of the map Γ2τ ÞÑ
ř

j Γ1βjpτq, where βj are orbit rep-

resentatives of Γ1αΓ2 under the action of Γ1. This map comes from the composition
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of the maps in the following diagram

X3
//

π2
��

X 1
3

π1
��

X2 X1

where the top row is the isomorphism given by Γ3τ ÞÑ Γ13αpτq. In terms of the

previous section the rΓ1αΓ2s2 “ pπ1qD ˝ αD ˝ pπ2q
D. Thus rΓ1αΓ2s2 descends to a

map of Picard groups,

rΓ1αΓ2s2 “ pπ1qP ˝ αP ˝ pπ2q
P : Pic0

pX2q Ñ Pic0
pX1q

which is given by

r
ÿ

τ

nτΓ2τ s ÞÑ r
ÿ

τ

nτ
ÿ

j

Γ1βjpτqs.

To define the action of the double coset operator on the Jacobians we need the

following result,

Proposititon 3.2.1. Let Γ be a congruence subgroup of SL2pZq. Then the holomor-

phic differentials Ω1
holpXpΓqq and the weight 2 cusp forms S2pΓq are isomorphic as

vector spaces over C,

ω : S2pΓq
„
ÝÑ Ω1

holpXpΓqq, f ÞÑ pωjqjPJ

where ωj pulls back to fpτqdτ P Ω1
holpHq

Proof. [?, Theorem 3.3.1]

By the above proposition we can identify Ω1
holpXpΓqq and S2pΓq. Thus we can

also identify the dual spaces Ω1
holpXpΓqq

^ and S2pΓq
^ and let H1pXpΓq,Zq denote

the corresponding subgroup of S2pΓq
^. Therefore we can define the Jacobian of XpΓq

in terms of the dual space of weight-2 cusp forms.
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Definition 3.2.1. Let Γ be a congruence subgroup of SL2pZq. The Jacobian of the

modular curve XpΓq is

JacpXpΓqq “ S2pΓq
^
{H1pXpΓq,Zq.

By the above definition the maps of the previous section can be written in terms

of functions. Let X and Y be modular curves whose congruence subgroups are ΓX

and ΓY . Let α P GL`2 pQq be such that αΓXα
´1 Ă ΓY and consider the corresponding

holomorphic map

h : X Ñ Y, ΓXτ ÞÑ ΓY αpτq.

Denote the isomorphism between Ω1
holpXq (reps. Ω1

holpY q) and S2pΓXq (resp. S2pΓY q)

by ωX (resp. ωY ). Then we have the following commutative diagram,

S2pΓY q

ωY
��

rαs2 // S2pΓXq

ωX
��

Ω1
holpY q

h˚ // Ω1
holpXq

(3.3)

To see this we need to check that pf rαs2qpτqdτ “ fpαpτqqdpαpτqq which clearly holds.

The induced map on the dual spaces is

h˚ : S2pΓXq
^
Ñ S2pΓY q

^, ϕ ÞÑ ϕ ˝ rαs2

Suppose αΓXα
´1zΓY “

Ť

j αΓXα
´1rγY,js2 then the following diagram commutes

S2pΓXq

ωY
��

ř

jrγY,js2// S2pΓY q

ωX
��

Ω1
holpXq

trh // Ω1
holpY q

(3.4)

Denoting the top map as trh, the induced map on dual spaces is

tr^h : S2pΓY q
^
Ñ S2pΓXq

^, ψ ÞÑ ψ ˝
ÿ

j

rγY,js2
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Now h˚ and tr^h descend to Jacobians.

Recall the double coset operator rΓ1αΓ2s2 : S2pΓ1q Ñ S2pΓ2q given by f rΓ1αΓ2s2 “

ř

j f rβjs2. Its dual map denoted as the same is

rΓ1αΓ2s2 : S2pΓ2q
^
Ñ S2pΓ1q

^, ψ ÞÑ ψ ˝ rΓ1αΓ2s2

which can be realized as pπ1q˚˝α˚˝tr^π2 . Thus the double coset operator on Jacobians

is

rΓ1αΓ2s2 “ pπ1qJ ˝ αJ ˝ π
J
2 : JacpX2q Ñ JacpX1q, rψs ÞÑ rψ ˝ rΓ1αΓ2s2s

Let J1pNq denote the Jacobian of the modular curve X1pNq. The following proposi-

tion which is a special case of the above discussion describes the action of the Hecke

operators on J1pNq.

Proposititon 3.2.2. The Hecke operators T “ Tp and T “ xdy act by composition

on the Jacobian of X1pNq,

T : J1pNq Ñ J1pNq, rϕs ÞÑ rϕ ˝ T s

for ϕ P S2pΓ1pNqq
^.

Thus the Hecke operators act as endomorphisms on the homology H1pX1pNq,Zq

which is a finitely generated Abelian group. Hence the characteristic polynomial

fpxq of Tp has integer coefficients and it is monic. Tp satisfies its characteristic

polynomial and so fpTpq “ 0 on H1pX1pNq,Zq. Since Tp is C-linear fpTpq “ 0 on

S2pΓ1pNqq
^ and so fpTpq “ 0 on S2pΓ1pNqq. Therefore the minimal polynomial of

Tp on S2pΓ1pNqq divides fpxq and the eigenvalues of Tp satisfies fpxq which makes

them algebraic integers. Hence we have proved

Theorem 3.2.1. Let f P S2pΓ1pNqq be a normalized eigenform. Then the eigenval-

ues anpfq are algebraic integers.

58



Definition 3.2.2. The Hecke algebra over Z is the algebra of endomorphisms of

S2pΓ1pNqq generated over Z by the Hecke operators,

TZ “ ZrtTn, xny : n P Z`us.

The Hecke algebra over C is defined similarly.

Being a ring of endomorphisms of finitely generated free Z-module H1pX1pNq,Zq,

TZ is finitely generated as well. Let fpτq “
ř8

n“1 anpfqq
n be a normalized eigenform

and define the homomorphism

λf : TZ Ñ C, T f “ λf pT qf.

The image of λf is finitely generated Z-module. The image of λf is Zrtanpfq : n P

Z`us. To see this, suppose f P S2pN,χq for some Dirichlet character χ and note that

for any d P pZ{NZq˚ we have λf pxdyq “ χpdq. Hence the image is Zrtanpfq, χpdqus.

Let p and p1 be two distinct primes congruent to d modulo N . Then using formula

(??) we can write χpdq in terms of appfq, ap2pfq, ap1pfq, ap12pfq. Hence adjoining χpdq

is not needed. Thus the ring generated by the eigenvalues anpfq has finite rank

as a Z-module. Let If “ kerpλf q “ tT P TZ : Tf “ 0u and so we have a ring

and Z-module isomorphism TZ{If
„
ÝÑ Zrtanpfqus. The ring Zrtanpfqus is in a finite

extension of Q and the extension degree is the rank of TZ{If .

Definition 3.2.3. Let f P S2pΓ1pNqq be a normalized eigenform, fpτq “
ř

anpfqq
n.

The field Kf “ Qptanpfquq is called the number field of f .

Any embedding σ : Kf ãÑ C conjugates f by acting on its coefficients:

fσpτq “
8
ÿ

n“1

anpfq
σqn.

It is natural to ask that whether fσ is also an eigenform or not.
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Theorem 3.2.2. Let f be a weight-2 normalized eigenform for the Hecke operators,

so that f P S2pN,χq for some N and χ. For any embedding σ : Kf ãÑ C the

conjugated fσ is also a normalized eigenform in S2pN,χ
σq. If f is a newform then

so is fσ.

For the proof of this we need the following two lemmas:

Lemma 3.2.1. Let A be a commutative ring with unity and J be an ideal of A.

Suppose that M is an A-module and a finite dimensional vector space over some field

k. Then there exists A-module isomorphisms

pM{JMq^ –M^
rJs, M^

{JM^
–M rJs^

where M[J] denotes the elements of M annihilated by J and similarly for M^rJs.

Proof. Let ϕ P pM{JMq^ then the map ϕ̃ : m ÞÑ ϕpm` JMq PM^rJs. Conversely,

let ψ P M^rJs then the map ψ̃ : m ` JM ÞÑ ψpmq P pM{JMq^. Note that ˜̃ϕ “ ϕ

and ˜̃ψ “ ψ. Thus the first isomorphism follows.

Lemma 3.2.2. Let f P SkpΓ1pNqq be an eigenform. Then f is old or new.

Proof. If a1pfq “ 0 then f “ 0 by Section ??. If a1pfq ‰ 0 we may assume a1pfq “ 1.

Hence Tnf “ anpfqf for all pn,Nq “ 1. Let f “ g ` h with g is old and h is new.

Applying Tn to f gives, anpfqf “ Tng ` Tnh. Since Tn preserves the decomposition

of SkpΓ1pNqq as a direct sum of old and new subspaces we have Tng “ anpfqg and

Tnh “ anpfqh. Similarly g and h are eigenforms for xny for all n P Z` and so g

and h are eigenforms with Tn-eigenvalues anpfq. If h “ 0, then f “ g is old. If

h ‰ 0 then a1phq ‰ 0 and Tnh “ panphq{a1phqqh and so anpfq “ anphq{a1phq and

thus f “ h{a1phq is new.
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Proof of Theorem ??. We need to show that the conjugated coefficients taσnu are

also a system of eigenvalues for Tn. We know that the Hecke algebra TZ acts on the

homology H1pX1pNq,Zq. The homology is a free Z-module of rank 2g where g is the

genus of X1pNq and the dimension of S2pΓ1pNqq. Let

H1pX1pNq,Zq “ Zϕ1 ‘ ¨ ¨ ¨ ‘ Zϕ2g.

With respect to this basis
ř

njϕj is represented by the row vector v “ rnjs P Z2g

each element T P TZ is represented by a 2g-by-2g matrix rT s P M2gpZq and the action

of T is T : v ÞÑ vrT s. This action extends linearly to the complex vector space

V “ Cϕ1 ‘ ¨ ¨ ¨ ‘ Cϕ2g.

Suppose tλpT q : T P TZu is a system of eigenvalues of TZ on V . Let σ : C Ñ C be

any automorphism extending the given embedding σ : Kf ãÑ C. Then

vσrT s “ pvrT sqσ “ pλpT qvqσ “ λpT qσvσ, T P TZ.

Thus tλpT qσ : T P TZu is also a system of eigenvalues on V .

Denote S2pΓ1pNqq by S2. S2 is isomorphic to its dual space

S^2 “ Cϕ1 ` ¨ ¨ ¨ ` Cϕ2g.

Since the dimension of S2 is g the map V Ñ S^2 given by pz1ϕ1, . . . , z2gϕ2gq ÞÑ
ř

zjϕj

has g dimensional kernel. Let wN “ r
`

0 1
´N 0

˘

s2. Then by Section ??, wNT “ T ˚wN

for all T P TZ. For any g P S2 define

ψg : S2 Ñ C, h ÞÑ xwNg, hy.

Then ψgph` h̃q “ ψgphq`ψgph̃q and ψgpzhq “ zψgphq. Thus ψg is a conjugate linear

function on S2. Denote the set of conjugate linear functions by S^2 . Then S^2 is the

61



conjugate of the dual space S^2 and it is a complex vector space. Since ψg`g̃ “ ψg`ψg̃

and ψzg “ zψg for all g, g̃ P S2 and z P C, the map

Ψ : S2 Ñ S^2 , g ÞÑ ψg

is C-linear. The kernel of Ψ is trivial hence considering the dimensions Ψ is an

isomorphism. TZ acts on S^2 by right composition and so S^2 is a TZ-module. Since

ψTg “ xwNTg, hy “ xT
˚wNg, hy “ xwNg, Thy “ pψg ˝ T qphq

Ψ is TZ-linear. Thus S2 and S^2 are also isomorphic as TZ-modules. Thus tλpT q :

T P TZu is a system of eigenvalues on S2 if and only if it is a system of eigenvalues

on S^2 .

Now let us see that tλpT q : T P TZu is a system of eigenvalues on S2 if and only

if it is a system of eigenvalues on S^2 . Let f P S2 and consider the map

λf : TC Ñ C, T f “ λf pT qf.

Let Jf “ kerpλf q “ tT P TC : Tf “ 0u. Then Jf is a prime ideal of TC. Let

A be the localization of TC at the prime ideal Jf . Then the ideal J “ JfA is the

unique maximal ideal in A. Also let M be the localization of S2 at Jf . Then M is

an A-module and M ‰ 0 as f{U ‰ 0 for any U P TC ´ Jf . Hence by Nakayama’s

Lemma JM ‰ M and so JfS2 ‰ S2. Thus the quotient S2{JfS2 is nontrivial. By

Lemma ?? we have

S^2 rJf s “ tϕ P S^2 : ϕ ˝ T “ 0 for all T P Jfu ‰ 0.

Since T1 is the identity operator, T ´ λf pT qT1 P Jf for all T P TC and so for any

nonzero ϕ P S^2 rJf s we have

ϕ ˝ T “ ϕ ˝ pT ´ λf pT qT1q ` λf pT qϕ “ λf pT qϕ, T P TC.
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Restricting to TZ, tλf pT q : T P TZu is a system of eigenvalues on S^2 . The converse

follows from the fact that double dual of finite dimensional vector spaces isomorphic

to itself as a TZ-module. Thus the cusp forms S2 and the sum S^2 ‘ S^2 have the

same systems of eigenvalues.

Now consider the C-linear map

V Ñ S^2 ‘ S^2 , pz1ϕ1, . . . , z2gϕ2gq ÞÑ p
ÿ

zjϕj,
ÿ

zjϕjq.

This map is also a TZ-module homomorphism as ϕj ˝ T “ ϕj˝T . Suppose
ř

zjϕj “ 0

in S^2 and
ř

zjϕj “ 0 in S^2 . Then
ř

zjϕj “ 0 in S^2 . Thus
ř

Repzjqϕj “ 0 and
ř

Impzjqϕj “ 0 in S^2 . Since tϕju are linearly independent over R, zj “ 0 for all j.

Thus the kernel of the above map is trivial and considering the dimensions of the

domain and codomain it is an isomorphism of TZ-modules.

Now we have seen that if tλpT q : T P TZu is a system of eigenvalues on V then

tλpT qσ : T P TZu is also a system of eigenvalues on V . By the above isomorphism

this is also true for the sum S^2 ‘ S^2 . But we have also seen that S^2 ‘ S^2 and

S2 have the same systems of eigenvalues and so the result is also true for S2. This

proves that fσpτq “
ř

aσnq
n is a normalized eigenform in S2pN,χ

σq.

For the last part of the theorem, suppose that f is a newform. Then by Theorem

??, fσpτq “
ř

i aifipniτq where each fi is a newform of level Mi such that niMi | N .

Let γ “ σ´1 : C Ñ C. Then γ|Kf is another embedding of Kf into C. Then

f “ pfσqγ “
ř

i a
γ
i f

γ
i pniτq. Assume that fσ is not a newform. Then by Lemma ?? it

has to be an oldform which makes all Mi strictly less than N . Since each fγi is also

a modular form of level Mi this shows that f is an old form, contradiction. Thus fσ

is a newform.

Corollary 3.2.1. The space S2pΓ1pNqq has a basis of forms with rational integer

coefficients.
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Proof. Let f be a newform of level M with M | N . Let K “ Kf and tα1, . . . , αdu

be a basis of OK as a Z-module. Let tσ1, . . . , σdu be the embeddings of K into C.

Consider the matrix

A “

¨

˚

˚

˚

˝

ασ11 ¨ ¨ ¨ ασd1

...
. . .

...

ασ1d ¨ ¨ ¨ ασdd

˛

‹

‹

‹

‚

and let

~f “

¨

˚

˚

˚

˝

fσ1

...

fσd

˛

‹

‹

‹

‚

.

Let ~g “ A~f . That is

gi “
d
ÿ

j“1

α
σj
i f

σj .

SinceA is invertible, spanptg1, . . . , gduq “ spanptfσ1 , . . . , fσduq. Let gipτq “
ř

anpgiqq
n

with all anpgiq P Z. For any automorphism σ : CÑ C we have

gσi “
d
ÿ

j“1

α
σjσ
i fσjσ “ gi.

Thus each anpgiq is fixed by all automorphisms of C which proves that anpgiq P

ZXQ “ Z.

3.3 Abelian variety associated to a newform

In this section we define the Abelian variety associated to a newform and decompose

the Jacobian J1pNq into a direct sum of complex tori.

Let f P S2pΓ1pMf qq be a newform at some level Mf . Recall the map

λf : TZ Ñ C, T f “ λf pT qf.
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This induces a TZ-module isomorphism TZ{If – Zrtanpfqus and Zrtanpfqus has rank

rKf : Qs. Also we have seen that TZ acts on J1pMf q.

Definition 3.3.1. The Abelian variety associated to f is defined as the quotient

Af “ J1pMf q{IfJ1pMf q.

By definition TZ acts on Af and so Zrtanpfqus acts on Af as well. We have the

following commutative diagram:

J1pMf q
Tp //

��

J1pMf q

��
Af

appfq // Af

where appfq acts on Af as Tp. Let ϕ P Af and σ : Kf Ñ C be an embedding.

Then by Theorem ??, pappfqϕqpf
σq “ pϕ ˝ Tpqpf

σq “ ϕpappf
σqfσq “ appfq

σϕpfσq. If

appfq P Z then it acts on Af as multiplication.

Define the following equivalence relation on newforms:

f̃ „ f ô f̃ “ fσ for some automorphism σ : CÑ C.

Let rf s denote the equivalence class of f . By Theorem ?? each fσ P rf s is a newform

at level Mf and so by Theorem ?? the subspace

Vf “ spanprf sq Ă S2pΓ1pMf qq

has dimension rKf : Qs. Restricting the elements of H1pX1pMf q,Zq to functions on

Vf gives a subgroup of the dual space V ^f ,

Λf “ H1pX1pMf q,Zq|Vf

and so we have a well defined homomorphism

J1pMf q Ñ V ^f {Λf , rϕs ÞÑ ϕ|Vf ` Λf for ϕ P S2pΓ1pMf qq
^.
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Proposititon 3.3.1. Let f P S2pΓ1pMf qq be a newform with number field Kf . Then

restricting to Vf induces an isomorphism

Af
„
ÝÑ V ^f {Λf , rϕs ` IfJ1pMf q ÞÑ ϕ|Vf ` Λf for ϕ P S2pΓ1pMf qq

^,

and the right side is a complex torus of dimension rKf : Qs.

Proof. Let S2 “ S2pΓ1pMf qq and H1 “ H1pX1pMf q,Zq. Then

Af “ J1pMf q{IfJ1pMf q “ pS^2 {H1q{If pS^2 {H1q

“ S^2 {pIfS^2 `H1q – pS^2 {IfS^2 q{pimage of H1 in S^2 {IfS^2 q.

By Lemma ?? we have S^2 {IfS^2 – S2rIf s
^ where the isomorphism is given by

ϕ` IfS2 ÞÑ ϕ|S2rIf s for ϕ P S^2 . Hence

Af
„
ÝÑ S2rIf s

^
{H1|S2rIf s, rϕs ` IfJ1pMf q ÞÑ ϕ|S2rIf s `H1|S2rIf s.

Let us see that Vf “ S2rIf s. Clearly Vf Ă S2rIf s. For the reverse inclusion consider

the pairing

TC ˆ S2 Ñ C, pT, gq ÞÑ a1pTgq.

This is a perfect pairing. It is clearly linear. For the nondegeneracy suppose T P TC

and a1pTgq “ 0 for all g P S2. Then for all n P Z` we have anpTgq “ a1pTnTgq “

a1pTTngq “ 0. Hence Tg “ 0 for all g P S2 which implies T “ 0. Similarly suppose

gS2 and a1pTgq “ 0 for all T P TC. Then 0 “ a1pTngq “ anpgq and so g “ 0. Thus

the pairing is perfect. Therefore we have a vector space and TZ-module isomorphism

S2 – TC given by g ÞÑ pT ÞÑ a1pTgqq. By using the above pairing and Lemma ?? we

get

dimpS2rIf sq “ dimpS2rIf s
^
q “ dimpS^2 {IfS^2 q “ dimpTC{IfTCq.
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Note that we have a surjection TZ b CÑ TC that is given by
ř

i Ui b zi ÞÑ
ř

i ziUi.

Viewing zi “ ziT1 P TC we see that the image of If b C lies in IfTC hence we have

a surjection pTZ b Cq{pIf b Cq Ñ TC{IfTC and this gives

dimpS2rIf sq ď dimppTZ b Cq{pIf b Cqq “ dimpTZ{If b Cq

“ rankpTZ{If q “ rKf : Qs “ dimpVf q.

This proves that Vf “ S2rIf s. Now we need to show that Λf is a lattice in V ^f . It

suffices to prove that R-span of Λf is V ^f and rankpΛf q ď dimRpV
^
f q. Since Vj Ă S2

we have a surjection π : S^2 Ñ V ^f that is given by ϕ ÞÑ ϕ|Vf . Since the R-span

of H1 is S^2 , the R-span of Λf “ πpH1q is πpS^2 q “ V ^f . Moreover considering the

dimensions over R we have

dimpV ^f q “ dimpS2rIf s
^
q “ dimpS^2 {IfS^2 q

“ dimppH1 b Rq{If pH1 b Rqq

“ dimppH1 b Rq{pIfH1 b Rqq

“ dimpH1{IfH1 b Rq

“ rankpH1{IfH1q.

Note that Λf “ πpH1q – H1{pH1Xkerpπqq and IfH1 Ă pH1Xkerpπqq. Hence we have

a surjection H1{IfH1 Ñ Λf and so rankpΛf q ď rankpH1{IfH1q “ dimRpV
^
f q.

Definition 3.3.2. An isogeny is a holomorphic homomorphism between complex tori

that subjects and has finite kernel.

The next theorem gives the decomposition of J1pNq that we have mentioned

above.

67



Theorem 3.3.1. J1pNq is isogeneous to a direct sum of Abelian varieties associated

to equivalence classes of newforms,

J1pNq Ñ
à

f

A
mf
f

where the sum is taken over a set of representatives f P S2pΓ1pNqq at levels Mf | N

and each mf is the number of divisors of N{Mf .

Proof. Denote S2pΓ1pNqq by S2 and H1pX1pNq,Zq by H1. By Theorem ?? and ??,

B2pNq “
ď

f

ď

n

ď

σ

fσpnτq

is a basis of S2 where the first union is over equivalence class representatives, the

second is over divisors of N{Mf and the last one is over embeddings σ : Kf Ñ C.

For each pair pf, nq let d “ rKf : Qs and σ1, . . . , σd be embeddings of Kf into C and

consider

Ψf,n : S^2 Ñ V ^f , ϕ ÞÑ pψ :
d
ÿ

j“1

zjf
σjpτq ÞÑ

d
ÿ

j“1

zjnϕpf
σjpnτqqq.

Let ϕ “
ş

α
for some loop α in X1pNq. Identifying the holomorphic differential

ωpfσpnτqq with its pullback to H and α with some lift to H we get

Ψf,npϕqpf
σ
pτqq “ ψpfσpτqq “ n

ż

α

fσpnτqdτ “

ż

α̃

fσpτqdτ

where α̃ptq “ nαptq. Thus ψ “
ş

α̃
and so Ψf,n takes H1 to Λf .

Taking the product map gives

Ψ “
ź

f,n

Ψf,n : S^2 Ñ
à

f,n

V ^f “
à

f

pVf q
mf .

Ψ is surjective. To see this let ϕ P S^2 be such that ϕpfσpnτqq “ 1 and it is zero at

the other basis elements of S^2 . Then the map Ψf,npϕq “ ψ takes fσpτq to n and
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other basis elements of Vf to 0. Thus as σ changes the corresponding ψ generate

V ^f which proves that Ψ is surjective. Considering the basis of the each component

of the direct sum we see that both sides have the same dimension and so Ψ is an

isomorphism. Hence we have the following isomorphism of quotients

Ψ : J1pNq
„
ÝÑ

à

f

pV ^f q
mf {ΨpH1q.

Since ΨpH1q Ă
À

f pΛf q
mf and they are Abelian groups of the same rank the surjec-

tion

π :
à

f

pVf q
mf {ΨpH1q Ñ

à

f

pVf{Λf q
mf

has finite kernel. By Proposition ?? we have the following isomorphism

i :
à

f

pVf{Λf q
mf „
ÝÑ

à

f

pAf q
mf .

Putting these together i ˝ π ˝Ψ : J1pNq Ñ
À

f pAf q
mf is an isogeny.

Using the isogeny of Theorem ?? we can construct the following commutative

diagram:

J1pNq
Tp //

��

J1pNq

��
À

f,nAf

ś

f,n appfq //
À

f,nAf

where p is a prime not dividing N and the vertical maps are the isogenies of Theorem

??. To see that this diagram commutes let ϕ P J1pNq. Then

pappfq ˝Ψf,nqpϕqpf
σ
pτqq “ appfqpnϕpf

σ
pnτqqq “ nϕpTppf

σ
pnτqqq

and

pΨf,n ˝ Tpqpϕqpf
σ
pτqq “ Ψf,npϕpTpf

σ
pτqqq “ nϕppTpf

σ
qpnτqq.

Computing the Fourier coefficients we see that these two are the same. Thus the

diagram commutes.
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4 Modular curves as algebraic curves and Eichler-

Shimura relation

In this chapter we show that the modular curves X1pNq and X0pNq are algebraic

curves over Q.

4.1 Weil pairing

We start with recalling some facts about elliptic curves. For more details see [?]. Let

k be a field of characteristic 0 and E be an elliptic curve over k. The set of N -torsion

points of E is a subgroup, ErN s, of E isomorphic to pZ{NZq2. The map

DivpEq Ñ E,
ÿ

nP pP q ÞÑ
ÿ

rnP sP

induces an isomorphism Pic0
pEq

„
ÝÑ E. Hence principal divisors on E are character-

ized by
ÿ

nP pP q P Div`pEq ô
ÿ

nP “ 0 and
ÿ

rnP sP “ 0E.

Let µN denote the group of Nth roots of unity in k̄, µN “ tx P k̄ : xN “ 1u. The

Weil pairing

eN : ErN s ˆ ErN s Ñ µN

is defined as follows: Let P,Q P ErN s. Then by the above characterization of

principal divisors, there exists a function f “ fQ P k̄pEq such that divpfq “ NpQq ´

Np0Eq. Since the map rN s : E Ñ E is unramified and νP pf ˝rN sq “ eP prN sqνrNsP pfq

we have

divpf ˝ rN sq “
ÿ

rNsR“Q

NpRq ´
ÿ

rNsS“0E

NpSq.
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Let Q1 P ErN2s be any point such that rN sQ1 “ Q. Then

divpf ˝ rN sq “ N
ÿ

SPErNs

tpQ1 ` Sq ´ pSqu.

By the above characterization of principal divisors again the above sum is again a

principal divisor for some g “ gQ P k̄pEq and so

divpf ˝ rN sq “ Ndivpgq.

This shows that f ˝ rN s and gN has the same divisors and so divpf ˝ rN s ´ gNq “ 0

which makes cf ˝ rN s “ gN for some constant c P k̄˚. For any point X P E we have

gpX ` P qN “ cfprN sX ` rN sP q “ cfprN sXq “ gpXqN .

Thus the Nth power of the rational function gpX ` P q{gpXq P k̄pEq the image of

this function is a subset of µN . Since the map is not surjective from E Ñ P1pk̄q it is

constant. The image point is the Weil pairing of P and Q,

eNpP,Qq “
gpX ` P q

gpXq
P µN .

Next proposition proves the basic properties of the Weil pairing.

Proposititon 4.1.1. 1. The Weil pairing is bilinear,

eNpaP ` bP
1, cQ` dQ1q “ eNpP,Qq

aceNpP,Q
1
q
adeNpP

1, QqbceNpP
1, Q1qbd.

2. The Weil pairing is alternating

eNpQ,Qq “ 1, eNpQ,P q “ eNpP,Qq
´1.

3. The Weil pairing is nondegenerate

if eNpP,Qq “ 1 for all P P ErN s then Q “ 0E.

Hence eN is surjective.
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4. The Weil pairing is Galois invariant

eNpP,Qq
σ
“ eNpP

σ, Qσ
q for all σ P Galpk̄{kq.

Proof. 1. Let g “ gQ. Then

eNpP1 ` P2, Qq “
gpX ` P1 ` P2q

gpXq
“
gpX ` P1 ` P2q

gpX ` P2q

gpX ` P2q

gpXq

“ eNpP1, QqeNpP2, Qq.

Hence eN is linear in the first argument. For linearity in the second argument

let f1, f2, f3 and g1, g2, g3 be the functions associated to Q1, Q2 and Q1 ` Q2.

There exists a function h P k̄pEq such that

divphq “ pQ1 `Q2q ´ pQ1q ´ pQ2q ` p0Eq.

Then divpf3{f1f2q “ Ndivphq and so f3 “ cf1f2h
N for some c P k̄˚. Thus

gN3 “ cpg1g2ph ˝ rN sqq
N . Therefore we have

eNpP,Q1 `Q2q “
g3pX ` P q

gpXq

“
g1pX ` P qg2pX ` P qhprN sX ` rN sP q

g1pXqg2pXqhprN sXq

“ eNpP,Q1qeNpP,Q2q.

2. Let f “ fQ and g “ gQ. Then

divp
N´1
ź

n“0

fpX ` rnsQqq “
N´1
ÿ

n“0

Npr1´ nsQq ´Npr´nsQq “ 0.

Hence
śN´1

n“0 fpX ` rnsQq is constant and so if Q “ rN sQ1 then
śN´1

n“0 gpX `

rnsQ1q is constant. Thus

N´1
ź

n“0

gpX ` rnsQ1q “
N´1
ź

n“0

gpX `Q1 ` rnsQ1q

which implies that gpXq “ gpX ` rN sQ1q “ gpX `Qq and so eNpQ,Qq “ 1.
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3. Suppose eNpP,Qq “ 1 for all P P ErN s and let g “ gQ. Hence gpX`P q “ gpXq

for all P P ErN s. Consider the map τ˚ : ErN s Ñ Autpk̄pEqq, defined by

P ÞÑ pτ˚P : fpXq ÞÑ fpX ` P qq. Then τ˚ is a homomorphism. Let P P kerpτ˚q.

Then τ˚P pfq “ f for all f P k̄pEq and so fp0Eq “ τ˚P pfp0Eqq “ fpP q for all

f P k̄pEq. Thus P “ 0E and τ˚ is injective. Now k̄pEq is a Galois extension of

its subfield fixed by τ˚pErN sq with Galois group isomorphic to ErN s. The fixed

field contains rN s˚pk̄pEqq and the degree of rN s is N2 “ rk̄pEq : rN s˚pk̄pEqqs.

Since |ErN s| “ N2 the fixed field is exactly rN s˚pk̄pEqq. This shows that

g “ h ˝ rN s for some h P k̄pEq. Hence

divph ˝ rN sq “ divpgq “
ÿ

SPErNs

tpQ1 ` Sq ´ pSqu

where rN sQ1 “ Q. Thus divphq “ Q´ 0E and so Q “ 0E.

4. Let σ P Galpk̄{kq. Then fQσ “ fσQ and gQσ “ gσQ. Hence

eNpP
σ, Qσ

q “
gσpXσ ` P σq

gpXσq
“

ˆ

gpX ` P q

gpXq

˙σ

“ eNpP,Qq
σ.

Corollary 4.1.1. Let P,Q, P 1, Q1 P ErN s and
`

P
Q

˘

“ γ
`

P 1

Q1

˘

for some γ PM2pZ{NZq.

Then eNpP
1, Q1q “ eNpP,Qq

det γ. Therefore if pP,Qq is an ordered basis then eNpP,Qq

is a primitive N th root of unity.

Proof. This follows from the properties (1) and (2) of the Proposition ??.

4.2 Modular curves and function fields over C

The field of meromorphic functions on SL2pZqzH˚ “ Xp1q over C is generated by

the modular invariant j from Section ??, CpXp1qq “ Cpjq. In this section we describe
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the function fields of the curves XpNq, X1pNq and X0pNq. For each element v “

pcv, dvq P Z2 such that v̄ ‰ 0 where v̄ ” vpmod Nq. Let

f v̄0 pτq “
g2pτq

g3pτq
℘τ

ˆ

cvτ ` dv
N

˙

.

Then f v̄0 is weight-0 invariant under ΓpNq and f v̄0 P CpXpNqq. Let d ı 0pmod Nq

and define

f d̄0 pτq “ f
p0,dq
0 pτq, f0pτq “

N´1
ÿ

d“1

f d̄0 pτq.

These functions are weight-0 invariant under Γ1pNq and Γ0pNq, respectively and so

f d̄0 pτq P CpX1pNqq and f0pτq P CpX0pNqq. Denote f
˘p1,0q
0 by f1,0 and f

˘p0,1q
0 by f0,1.

Let jNpτq “ jpNτq. Then jN P CpX0pNqq.

Proposititon 4.2.1. The fields of meromorphic functions on XpNq, X1pNq and

X0pNq are

CpXpNqq “ Cpj, f1,0, f0,1q, CpX1pNqq “ Cpj, f0,1q, CpX0pNqq “ Cpj, f0q “ Cpj, jNq.

Proof. Since ℘τ pzq “ ℘τ pz
1q if and only if z ” ˘z1pmod Nq, f v̄0 “ f´v̄0 and all f v̄0

are distinct otherwise. We have the containments CpXp1qq “ Cpjq Ă Cpj, tf˘v̄0 uq Ă

CpXpNqq. Now consider the homomorphism

θ : SL2pZq Ñ AutpCpXpNqqq, f θpγq “ f ˝ γ.

f ˝ γ P CpXpNqq since ΓpNq C SL2pZq. Clearly we have t˘IuΓpNq Ă kerpθq.

Let γ P kerpθq. Then γ fixes the subfield Cpj, tf˘v̄0 uq. Since f v̄0 ˝ γ “ f vγ0 and

f˘v̄0 are distinct, γ P t˘IuΓpNq. Thus t˘IuΓpNq “ kerpθq and so θpSL2pZqq –

SL2pZq{t˘IuΓpNq. The subfield of CpXpNqq that is fixed by θpSL2pZqq is CpXp1qq

hence CpXpNqq{CpXp1qq is Galois with Galois group θpSL2pZqq. The subfields

Cpj, tf˘v̄0 uq and Cpj, f1,0, f0,1q both have trivial fixing subgroup and thus they are

equal to CpXpNqq.
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For the second equality consider the set tf d̄0 : d̄ P pZ{NZ ´ 0q{˘u and the

containments CpXp1qq Ă Cpj, tf d̄0 uq Ă CpX1pNqq Ă CpXpNqq. Since f d̄0 ˝ γ “

f p0,dqγ for γ P SL2pZq, the subfields Cpj, tf d̄0 uq and Cpj, f0,1q have fixing subgroup

t˘IuΓ1pNq{t˘IuΓpNq which is the fixing subgroup of CpX1pNqq. This proves that

CpX1pNqq “ Cpj, tf d̄0 uq “ Cpj, f0,1q. This also shows that

θ´1
pGalpCpXpNqq{CpX1pNqqqq “

 

˘
`

1 b
0 1

˘

P SL2pZ{NZq{t˘Iu
(

.

The last equality is similar.

By the above proposition and the correspondence between algebraic curves and

function fields, X1pNq is birationally equivalent to the plane curve defined by the

complex polynomial ϕ P Crx, ys such that ϕpj, f0,1q “ 0.

The map θ in the proof of Proposition ?? gives the isomorphism

θ´1 : GalpCpXpNqq{CpXp1qqq „ÝÑ SL2pZ{NZq{t˘Iu, fσ “ f ˝ θ´1
pσq

where f P CpXpNqq and σ P GalpCpXpNqq{CpXp1qqq.

Recall from Section ?? that p℘τ , ℘
1
τ q : C{Λτ Ñ Eτ where Eτ : y2 “ 4x3´g2pτqx´

g3pτq. Fix τ P H such that jpτq R t0, 1728u. Hence g2pτq and g3pτq are nonzero. Let

u “ pg3pτq{g2pτqq
1{2 be one of the complex root and consider the map

`

u2℘τ , u
3℘1τ

˘

: C{Λτ Ñ C2
Y t8u.

This differs from p℘τ , ℘
1
τ q by an admissible change of variable. The corresponding

cubic equation is

Ejpτq : y2
“ 4x3

´
g2pτq

3

g3pτq2
x´

g2pτq
3

g3pτq2
.

Since g3
2{g

2
3 “ 27j{pj ´ 1728q we have

Ejpτq : y2
“ 4x3

´
27jpτq

jpτq ´ 1728
x´

27jpτq

jpτq ´ 1728
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The map C{Λτ
„
ÝÑ Ejpτq gives an isomorphism of N -torsion subgroups. Under this

isomorphism the canonical generators τ{N ` Λτ and 1{N ` Λτ of pC{Λτ qrN s maps

to

Pτ “

˜

g2pτq

g3pτq
℘τ pτ{Nq,

g2pτq

g3pτq

3{2

℘1τ pτ{Nq

¸

,

Qτ “

˜

g2pτq

g3pτq
℘τ p1{Nq,

g2pτq

g3pτq

3{2

℘1τ p1{Nq

¸

.

Hence pPτ , Qτ q is a canonical ordered basis of EjpτqrN s over Z{NZ. Observe that the

x-coordinates of Pτ and Qτ are f1,0pτq and f0,1pτq respectively and the nonzero points

of EjpτqrN s have x-coordinates tf˘v̄0 pτqu. Thus knowing jpτq, f1,0pτq and f0,1pτq

describes an enhanced elliptic curve for ΓpNq, pEjpτq, pPτ , Qτ qq which represents a

point rC{Λτ , pτ{N ` Λτ , 1{N ` Λτ qs of the moduli space SpNq. Similarly knowing

jpτq and f0,1 describe pEjpτq, Qτ q representing a point of S1pNq.

Now change τ to a variable. Hence we get a family of elliptic curves Ejpτq and

putting this family together we get a universal elliptic curve

Ej : y2
“ 4x3

´
27j

j ´ 1728
x´

27j

j ´ 1728

with j-invariant equal to variable j. The universal N -torsion x-coordinates are tf˘v̄0 u.

Let xpEjrN sq denote the set of x-coordinates of the nonzero points of EjrN s. Viewing

Ej as an elliptic curve over Cpjq, we have xpEjrN sq Ă Cpjq. With this terminology

Proposition ?? says that CpXpNqq “ Cpj, xpEjrN sqq and

GalpCpj, xpEjrN sqq{Cpjqq – SL2pZ{NZq{t˘Iu.

Let ypEjrN sq denote the set of y-coordinates of nonzero N -torsion points of Ej.

These are the functions

gv̄0pτq “
g2pτq

g3pτq

3{2

℘1τ

ˆ

cvτ ` dv
N

˙

, v “ pcv, dvq.
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Let EjrN s “ xpEjrN sq Y ypEjrN sq and consider the field containments

Cpjq Ă Cpj, xpEjrN sqq Ă Cpj, EjrN sq Ă Cpjq

Proposititon 4.2.2. The field extension Cpj, EjrN sq{Cpjq is Galois with Galois

group GalpCpj, EjrN sq{Cpjqq – SL2pZ{NZq.

Proof. Let σ : Cpj, EjrN sq Ñ Cpjq be an embedding which fixes Cpjq point wise.

Since the extension Cpj, xpEjrN sqq{Cpjq is Galois by Proposition ??, σ restricts to

an element of GalpCpj, xpEjrN sqq{Cpjqq. Elements of the set ypEjrN sq consists of

square roots of elements of Cpj, xpEjrN sqq which are permuted by σ and so σ also

permutes the elements of ypEjrN sq. Hence σ is an automorphism of Cpj, EjrN sq.

Thus the extension Cpj, EjrN sq{Cpjq is Galois.

Let H “ GalpCpj, EjrN sq{Cpjqq. The ordered basis pPτ , Qτ q of EjrN s over Z{NZ

gives an injective representation

ρ : H Ñ GL2pZ{NZq,
`

Pστ
Qστ

˘

“ ρpσq
`

Pτ
Qτ

˘

.

Hence H – ρpHq. Let σ P H. By Proposition ?? and Corollary ?? we have

eNpPτ , Qτ q
σ “ eNpP

σ
τ , Q

σ
τ q “ eNpPτ , Qτ q

det ρpσq. Since eNpPτ , Qτ q P µN it is fixed

by σ and so eNpPτ , Qτ q “ eNpPτ , Qτ q
det ρpσq. Since eNpPτ , Qτ q is a primitive Nth

root of unity, det ρpσq “ 1 inr pZ{NZq˚. Thus ρpHq Ă SL2pZ{NZq.

Let K “ GalpCpj, EjrN sq{Cpj, xpEjrN sqqq be the subgroup of H fixing the x-

coordinates of the elements of EjrN s. Hence if σ P K then P σ
τ “ ˘Pτ and Qσ

τ “ ˘Qτ .

Since ρpσq P SL2pZ{NZq, ρpσq P t˘Iu. Now suppose σ P H and ρpσq P t˘Iu.

Then P σ “ ˘P for all P P EjrN s and so σ P K. Thus K “ ρ´1pt˘Iuq. This

shows that |K| ď 2. Since GalpCpj, xpEjrN sqq{Cpjqq – SL2pZ{NZq{t˘Iu we have

|H| “ |SL2pZ{NZq{t˘Iu||K| and so rSL2pZ{NZq : ρpHqs ď 2. rSL2pZ{NZq :
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ρpHqs “ 2 if and only if |K| “ 1 which means ´I R ρpHq. If this is the case then

t˘IuρpHq “ SL2pZ{NZq and so either
`

0 1
´1 0

˘

or ´
`

0 1
´1 0

˘

is in ρpHq. This implies

that
`

˘
`

0 1
´1 0

˘˘2
“ ´I P ρpHq, contradiction. Thus ρpHq “ SL2pZ{NZq.

4.3 Modular curves and function fields over Q

In this section we examine the function fields of the previous section where the

underlying field is changed to be Q.

Recall the universal elliptic curve Ej from the previous section. Ej can be viewed

as a curve over Qpjq. The nonzero points of EjrN s over C lie in Qpjq
2

and so we have

the containments Qpjq Ă Qpj, EjrN sq Ă Qpjq. Now the extension Qpj, EjrN sq{Qpjq

is Galois. Consider the Galois group HQ “ GalpQpj, µN , EjrN sq{Qpjqq and the

corresponding representation

ρ : HQ Ñ GL2pZ{NZq
`

Pστ
Qστ

˘

“ ρpσq
`

Pτ
Qτ

˘

where pPτ , Qτ q is an ordered basis of EjrN s.

Lemma 4.3.1. For any µ P µN , σ P HQ we have µσ “ µdet ρpσq.

Proof. Since pPτ , Qτ q is an ordered basis eNpPτ , Qτ q is a primitive Nth root of unity

and so given µ P µN and σ P HQ we have

µσ “ ppeNpPτ , Qτ qq
a
q
σ
“ ppeNpPτ , Qτ qq

σ
q
a
“ peNpP

σ
τ , Q

σ
τ qq

a

“ eNpPτ , Qτ q
a det ρpσq

“ µdet ρpσq.

Suppose σ P HQ fixes EjrN s that is σ P ker ρ. Hence σ P kerpdet ρq. By Lemma

??, σ acts on µN as identity. Thus µN Ă Qpj, EjrN sq and so HQ is the Galois
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group of the extension Qpj, EjrN sq{Qpjq. Hence we have the following tower of field

extensions and Galois groups

Qpj, EjrN sq
HQpµN q

Qpj, µNq
pZ{NZq˚

Qpjq

As before ρ is injective and by Lemma ?? it restricts to

ρ : HQpµN q Ñ SL2pZ{NZq.

Since GalpCpj, EjrN sq{Cpjqq “ SL2pZ{NZq, by Galois theory SL2pZ{NZq injects

into HQpµN q under the restriction map. This shows that the map ρ is an isomorphism

ρ : HQpµN q
„
ÝÑ SL2pZ{NZq.

Therefore |HQ| “ |SL2pZ{NZq||pZ{NZq˚| “ |GL2pZ{NZq| which proves that

ρ : HQ
„
ÝÑ GL2pZ{NZq.

Now let K be an intermediate field of the extension Qpj, EjrN sq{Qpjq and K “

GalpQpj, EjrN sq{Kq.

Lemma 4.3.2. Let K be as above. Then

KXQ “ Qô KXQpµNq “ Qô det ρ : K Ñ pZ{NZq˚ surjects

Proof. The first implication is clear. For the second implication suppose KXQpµNq “

Q. Let a P pZ{NZq˚ and µ P µN be a primitive root of unity. Then µ R K and so

there exists σ P K such that σ : µ ÞÑ µa. By Lemma ??, det ρpσq “ a. Coversely,
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assume that K X QpµNq ‰ Q. Then there exists an Nth root of unity µ P K ´ Q.

Since det ρ subjects there exists σ P K such that det ρ ‰ 1. Since ρ is injective

µσ ‰ µ and so µ R K, contradiction.

Since any such intermediate field K is a finite extension of Qpjq, we have a

criterion for which intermediate fields K are function fields of an algebraic curve

over Q.

Theorem 4.3.1. Let K be an intermediate field as above with the corresponding

Galois group K. Then K is a function field of an algebraic curve over Q if and only

if det ρ is surjective.

Consider the following intermediate fields of the extension Qpj, EjrN sq{Qpjq

K0 “ Qpj, f0q, K1
0 “ Qpj, jNq, K1 “ Qpj, f1q

and let K0, K
1
0 and K1 be the corresponding subgroups of HQ. Then

ρpK0q “ ρpK 1
0q “

 `

a b
0 d

˘

P GL2pZ{NZq
(

and

ρpK1q “
 

˘
`

a b
0 1

˘

P GL2pZ{NZq
(

.

This implies that K0 “ K1
0 and det ρ : Kj Ñ pZ{NZq˚ is surjective for j “ 0, 1. Thus

by Theorem ??, K0 and K1 are function fields of nonsingular projective algebraic

curves over Q. Denote these curves X0pNqalg and X1pNqalg. We need the following

theorem from algebraic geometry to relate the algebraic curves over C and over Q

Theorem 4.3.2. Let C be a nonsingular projective algebraic curve over a field k

defined by the polynomials ϕ1, . . . , ϕm P krx1, . . . , xns, and let the function field of

C be kpCq “ kptqrus{pppuqq. Let K be a field containing k. Then the polynomials
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ϕi P Krx1, . . . , xns define a nonsingular algebraic curve C 1 over K and its function

field is KpC 1q “ Kptqrus{pppuqq.

Now let k “ Q and C “ X1pNqalg, and p1 P Qpjqrxs be the minimal polynomial

of f0,1 over Qpjq. Thus QpCq “ Qpj, f0,1q “ Qpjqrxs{pp1pxqq. Let K “ C. Then

Theorem ?? says that there exists a curve C 1 “ X1pNqalg,C over C with function field

CpC 1q “ Cpjqrxs{pp1pxqq and the minimal polynomials of f0,1 over Cpjq and over

Qpjq are the same. Therefore the function field Cpj, f0,1q of the Riemann surface

X1pNq is

CpX1pNqq “ Cpj, f0,1q “ Cpjqrxs{pp1q.

Since the two function fields are the same X1pNq “ X1pNqalg up to isomorphism

over C. For X0pNq the argument is similar with f0,1 is replaced by f0.

4.4 Hecke operators algebraically

In Section ?? we have seen the action on Tp on the complex analytic moduli space

S1pNq

TprE,Qs “
ÿ

C

rE{C,Q` Cs,

where the sum is over all order p subgroups C of E with CXxQy “ t0u. The complex

elliptic curve E in the definition of S1pNq was a complex torus. In this section we

describe the action of Tp when E is an algebraic elliptic curve over Q.

An enhanced complex algebraic elliptic curve for Γ1pNq is an ordered pair pE,Qq

where E is an algebraic elliptic curve over C and Q P E is a point of order N . Two

such pairs pE,Qq and pE 1, Q1q are equivalent if some isomorphism E
„
ÝÑ E 1 over C

takes Q to Q1. The complex algebraic moduli space for Γ1pNq is

S1pNqalg,C “ tenhanced complex algebraic elliptic curves for Γ1pNqu{ „ .
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The complex analytic moduli space S1pNq defined in Section ?? and S1pNqalg,C are

in bijective correspondence where the correspondence is given by

rC{Λτ , 1{N ` Λτ s ÞÑ rEτ , p℘τ p1{Nq, ℘
1
τ p1{Nqqs.

Thus Tp can be defined on S1pNqalg,C by

TprE,Qs “
ÿ

C

rE{C,Q` Cs.

where now E{C is viewed as an algebraic object namely the image of the quotient

isogeny.

An enhanced algebraic elliptic curve for Γ1pNq is an ordered pair pE,Qq where

E is an algebraic elliptic curve over Q and Q P E is a point of order N . Two such

pairs pE,Qq and pE 1, Q1q are equivalent if some isomorphism E
„
ÝÑ E 1 over Q takes

Q to Q1. The algebraic moduli space for Γ1pNq is

S1pNqalg “ tenhanced algebraic elliptic curves for Γ1pNqu{ „ .

The intersection of an equivalence class in S1pNqalg,C with S1pNqalg is an equiv-

alence class in S1pNqalg. Thus S1pNqalg can be viewed as a subset of S1pNqalg,C. If

E is an elliptic curve over Q then its order p subgroups C Ă E are the same as such

subgroups of the complex curve EC. Hence the definition of Tp on DivpS1pNqalg,Cq

restricts to DivpS1pNqalgq. This is the desired version of Tp over Q.

In Section ?? we have seen the action of Tp on DivpX1pNqq. Now we give an alge-

braic description of this action. For this purpose, identify X1pNq with the complex

points of X1pNqalg, X1pNqalg,C. Now we can view the action of Tp on X1pNqalg,C,

Tp : DivpX1pNqalg,Cq Ñ DivpX1pNqalg,Cq

Let us see that this action is defined over Q. First consider the diamond operator xdy.

To see that xdy is defined over Q we need to check that xdy˚ takes QpX1pNqalgq to

82



QpX1pNqalgq. QpX1pNqalgq “ Qpj, f0,1q. Since xdypΓ1pNqτq “ Γ1pNqγpτq where γ “
`

a b
c d

˘

P Γ0pNq, it suffices to check that jpγpτqq, f0,1pγpτqq P QpX1pNqalgq. jpγpτqq “

jpτq P QpX1pNqalgq. For f0,1pγpτqq compute that

f0,1pγpτqq “ f
˘p0,1q
0 pγpτqq “ f

˘p0,1qγ
0 pτq “ f

˘p0,dq
0 pτq.

Thus f0,1pγpτqq is the x-coordinate of˘rdsQτ P Ejpτq. Hence f0,1pγpτqq P Qpjpτq, EjpτqrN sq.

Now QpX1pNqalgq is the fixed field of the Galois group K1 and

ρpK1q “
 

˘
`

a b
0 1

˘

P GL2pZ{NZq
(

.

This group fixes ˘rdsQτ and so it also fixes f0,1pγpτqq which implies that f0,1pγpτqq P

QpX1pNqalgq. Thus xdy is defined over Q and therefore xdy restricts to

xdy : DivpX1pNqalgq Ñ DivpX1pNqalgq.

Now consider the description of Tp on the modular curve X1pNq as a double

coset operator: Let α “
`

1 0
0 p

˘

, and Γ3 “ Γ0
1pN, pq “ Γ1pNq X Γ0ppq, and X0

1 pN, pq “

XpΓ0
1pN, pqq. Define Γ1,0pN, pq “ Γ1pNq X Γ0pNpq and X1,0pN, pq “ XpΓ1,0pN, pqq.

Then Γ1,0pN, pq “ αΓ0
1pN, pqα

´1. Thus Tp is described as the pullback of the map

X1,0pN, pq Ñ X1pNq, Γ1,0pN, pqτ ÞÑ Γ1pNqpτ (4.1)

followed by the pushforward of the map

X1,0pN, pq Ñ X1pNq, Γ1,0pN, pqτ ÞÑ Γ1pNqτ. (4.2)

Let us see that these maps are defined over Q. Note that Γ1pNpq Ă Γ1,0pN, pq Ă
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Γ0pNpq. Thus we have the following tower of field extensions

CpX1pNpqq

CpX1,0pN, pqq

CpX0pNpqq

QpX1pNpqq

K

QpX0pNpqq

where K corresponds to the field CpX1,0pN, pqq and it is function field of a curve

over Q. Denote this curve by X1,0pN, pqalg so that QpX1,0pN, pqalgq “ K. The Galois

groups on the tower are

GalpCpX1pNpqq{CpX0pNpqqq “ GalpQpX1pNpqq{QpX0pNpqqq – pZ{NpZq˚{t˘1u

Since X1pNpqlag,C is isomorphic over C to X1pNpq and similarly for X0pNpq we have

the following diagram

CpX1pNpqq

CpX1,0pN, pqalg,Cq

CpX0pNpqq

QpX1pNpqq

QpX1,0pN, pqalgq

QpX0pNpqq

Thus we have the following injections

GalpCpX1pNpqq{CpX1,0pN, pqalg,Cqq ãÑ GalpQpX1pNpqq{QpX1,0pN, pqalgqq

and

GalpCpX1,0pN, pqalg,Cq{CpX0pNpqqq ãÑ GalpQpX1,0pN, pqalgq{QpX0pNpqqq

This shows that the order of GalpCpX1pNpqq{CpX1,0pN, pqqq is the same as the order

of GalpCpX1pNpqq{CpX1,0pN, pqalg,Cqq. Since these are subgroups of the cyclic group

84



they must be the same and so CpX1,0pN, pqalg,Cq “ CpX1,0pN, pqq which implies that

X1,0pN, pqalg,C “ X1,0pN, pq up to isomorphism over C. Thus X1,0pN, pq is defined

over Q.

The maps (??) and (??) correspond to the following function field injections

CpX1pNqq Ñ CpX1,0pN, pqq, fpτq ÞÑ fppτq

and

CpX1pNqq Ñ CpX1,0pN, pqq, fpτq ÞÑ fpτq.

Since CpX1pNqq “ Cpj, f0,1q the image of the nontrivial map is Cpjppτq, f0,1ppτqq.

Since jppτq, f0,1ppτq P QpX1,0pN, pqalgq, these injections restrict to function fields over

Q. Thus Tp is defined over Q and so Tp restricts to

Tp : DivpX1pNqalgq Ñ DivpX1pNqalgq.

From Section ?? we have the following map

ψ1 : S1pNq Ñ X1pNq, rC{Λτ , 1{N ` Λτ s ÞÑ Γ1pNqτ

and this map extends to divisor groups. We need to make ψ1 algebraic. For this

purpose consider the following commutative diagram,

S1pNq //

ψ1

��

S1p1q

��
X1pNq // X1p1q

rC{Λτ , 1{N ` Λτ s
� //

_

��

rC{Λτ s_

��
Γ1pNqτ

� // SL2pZqτ

Note that we have identified the complex analytic moduli space S1pNq with the

complex algebraic moduli space S1pNqalg,C and the Riemann surface X1pNq with

the complex points X1pNqalg,C of the algebraic modular curve. For N “ 1, the

complex algebraic moduli space is the set of equivalence classes of complex algebraic
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elliptic curves and the complex points of the algebraic modular curve are the complex

projective line P1pCq. Therefore the above diagram becomes

S1pNqalg,C //

ψ1,alg

��

S1p1qalg,C

��
X1pNqalg,C // X1p1qalg,C

rE,Qs � //
_

��

rEs
_

��
P � // jpτq

Now an element rE,Qs of S1pNqalg,C describes an element of the algebraic moduli

space S1pNqalg if and only if jpEq P Q. Thus mapping down and then across takes

S1pNqalg to P1pQq. This shows that P P X1pNqalg. Therefore the left side of the

diagram restricts to

ψ1,alg : S1pNqalg Ñ X1pNqalg.

Putting all the things together so far we get the following commutative diagram

which is the algebraic version of the diagram given in (??),

DivpS1pNqalgq
Tp //

ψ1,alg

��

DivpS1pNqalgq

ψ1,alg

��
DivpX1pNqalgq

Tp // DivpX1pNqalgq

and so we have the following commutative diagram

Div0
pS1pNqalgq

Tp //

ψ1,alg

��

Div0
pS1pNqalgq

ψ1,alg

��
Pic0

pX1pNqalgq
Tp // Pic0

pX1pNqalgq

(4.3)

For the Hecke operator xdy we have the following similar diagram,

Div0
pS1pNqalgq

xdy //

ψ1,alg

��

Div0
pS1pNqalgq

ψ1,alg

��
Pic0

pX1pNqalgq
xdy˚ // Pic0

pX1pNqalgq

(4.4)
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4.5 Eichler-Shimura Relation

Let X1pNq denotes the nonsingular algebraic curve over Q with the function field

QpX1pNqq “ Qpj, f0,1q and S1pNq denotes the algebraic moduli space for Γ1pNq. We

also identify the Jacobians and Picard groups of a compact Riemann surface X and

denote both of them by Pic0
pXq.

Let p be a prime not dividing N . Let p be a maximal ideal of Q lying over p.

Let Zppq denote the localization of Z at p. Since Z{p „
ÝÑ Zppq{pZppq and Z{p is an

algebraic closure of Fp, we have a reduction map˜: Zppq Ñ Fp.

An elliptic curve E over Q has good reduction at p if and only if jpEq P Zppq and

so jpEq reduces to ĆjpEq P Fp. Restrict the moduli space S1pNq over Q to

S1pNq
1
gd “ trE,Qs P S1pNq : E has good reduction at p, ĆjpEq R t0, 1728uu.

Let S̃1pNq denote the moduli space over Fp and restrict it to

S̃1pNq
1
“ trE,Qs P S̃1pNq : jpEq R t0, 1728uu.

Now we have the following reduction map

S1pNq
1
gd Ñ S̃1pNq

1, rEj, Qs ÞÑ rẼj, Q̃s

and it is surjective. Indeed, any elliptic curve over Fp lifts to an elliptic curve over

Z. Since reduction map gives an isomorphism between N -torsion subgroups of an

elliptic curve with good reduction at p and its reduction, N -torsion point has a lift.

Thus the above map is surjective.

Now we define the reduction X̃1pNq of X1pNq at p. Remember the universal

elliptic curve from Section ??. Viewing this as an elliptic curve over Fppjq and using

an admissible change of variable we get

Ẽj : y2
` xy “ x3

´

ˆ

36

j ´ 1728

˙

x´

ˆ

1

j ´ 1728

˙

.
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Let Q be a point of Ẽj of order N and ϕ1 P Fppjqrxs be the minimal polynomial

of its x-coordinate xpQq. Let K1pNq “ Fppjqrxs{pϕ1pxqq. Then K1pNq X Fp “ Fp
and so K1pNq is a function field over Fp. The following theorem of Igusa says that

reducing the moduli space is compatible with reducing the modular curve.

Theorem 4.5.1. The modular curve X1pNq has good reduction at p and there is

an isomorphism of function fields FppX̃1pNqq
„
ÝÑ K1pNq. Also the following diagram

commutes,

S1pNq
1
gd

ψ1 //

��

X1pNq

��

S̃1pNq
1 ψ̃1 // X̃1pNq

By the above diagram we have

Div0
pS1pNq

1
gdq

//

��

Pic0
pX1pNqq

��

Div0
pS̃1pNq

1q // Pic0
pX̃1pNqq

Now we give the description of the Hecke operator Tp on the Picard groups of the

reduced modular curves,

T̃p : Pic0
pX̃1pNqq Ñ Pic0

pX̃1pNqq.

For the Hecke operator xdy it is easy since the pushforward of a morphism and

pushforward of its reduction are compatible. Thus we have the following commuta-

tive diagram,

Pic0
pX1pNqq

xdy˚ //

��

Pic0
pX1pNqq

��

Pic0
pX̃1pNqq

Ăxdy˚ // Pic0
pX̃1pNqq
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We assert without proof that such a commutative diagram exists for Tp,

Pic0
pX1pNqq

Tp //

��

Pic0
pX1pNqq

��

Pic0
pX̃1pNqq

T̃p // Pic0
pX̃1pNqq

The action of Tp on the moduli space S1pNq was given by

TprE,Qs “
ÿ

C

rE{C,Q` Cs.

Let p be a maximal ideal of Z lying over p. If the curve E has ordinary reduction

at p, then all the curves E{C on the right side also have ordinary reduction at p.

Let E be an elliptic curve over Q with ordinary reduction at p and Q P E be a

point of order N . Let C0 be the kernel of the reduction map Erps Ñ Ẽrps. Then C0

is an order p subgroup of E since the reduction map subjects and E has ordinary

reduction.

Lemma 4.5.1. For any order p subgroup C of E,

rĆE{C, ČQ` Cs “

$

’

&

’

%

rẼσp , Q̃σps, if C “ C0,

rẼσ´1
p , rpsQ̃σ´1

p s, if C ‰ C0.

Proof. Suppose C “ C0. Let E 1 “ E{C and Q1 “ Q` C “ ϕpQq where ϕ : E Ñ E 1

is the quotient isogeny. Let ψ : E 1 Ñ E be the dual isogeny of ϕ. We have a

commutative diagram

E 1rps
ψ //

��

Erps

��
ĂE 1rps

ψ̃ // rErps

Since E has ordinary reduction at p, it is isogenous image E 1 also has ordinary

reduction at p and so |ĂE 1rps| “ p. The image ψpE 1rpsq has order p since | kerpψq| “
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degpψq “ p and it is a subgroup of C since ϕpψpE 1rpsqq “ rpsE 1rps “ t0u. Thus C0 “

C “ ψpE 1rpsq. Since the map E 1rps Ñ ĂE 1rps surjects the map at the bottom is the

zero map, i.e. ĂE 1rps Ă ker ψ̃. Conversely, since ϕ̃ ˝ ψ̃ “ rps, we have kerpψ̃q Ă ĂE 1rps.

Thus kerpψ̃q “ĂE 1rps.

Since reduction at p preserves the degrees, by the relation rps “ ψ ˝ϕ, degprpsq “

p2, degpϕ̃q “ p and degpψ̃q “ p. Since kerprpsq “ĂE 1rps “ kerpψ̃q we have

degsepprpsq “ p, deginsprpsq “ p

and

degseppψ̃q “ p, deginspψ̃q “ 1.

Thus

degseppϕ̃q “ 1, deginspϕ̃q “ p.

This shows that ϕ̃ is of the form ϕ̃ “ i ˝ σp where i : Ẽσp Ñ ĂE 1 is an isomorphism

taking Q̃σp to ĂQ1. Thus

rĂE 1,ĂQ1s “ rẼσp , Q̃σps.

Now suppose C ‰ C0. Let C 1 “ kerpψq and C 10 be the kernel of the reduction

map E 1rps ÑĂE 1rps and so C 10 is an order p subgroup of E 1rps. Consider the following

commutative diagram,

Erps
ϕ //

��

E 1rps

��
rErps

ϕ̃ //ĂE 1rps

The subgroup ϕpC0q of E 1rps is an order p subgroup since C0 ‰ C “ kerpϕq. and

ϕpC0q is a subgroup of C 1 “ kerpψq. Since both have order p, they must be equal.

Also ϕpC0q is a subgroup of C 10 and so ϕpC0q “ C 10. Thus C 1 “ c10 and by the first

part of this proof we have ψ̃ “ i ˝ σp where i : ĂE 1
σp
Ñ Ẽ is an isomorphism taking
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ĂQ1
σp

to rpsQ̃. Apply σ´1
p to i gives an isomorphism iσ

´1
p : ĂE 1 Ñ Ẽσ´1

p taking ĂQ1 to

rpsQ̃σ´1
p . Thus

rĂE 1,ĂQ1s “ rẼσ´1
p , rpsQ̃σ´1

p s.

Similarly, if E is an elliptic curve over Q with supersingular reduction at p and

Q is an element of order N , then for any order p subgroup of E,

rĆE{C, ČQ` Cs “ rẼσp , Q̃σps “ rẼσ´1
p , rpsQ̃σ´1

p s.

Let d be an integer prime to N and define the moduli space diamond operator in

characteristic p,

Ăxdy : S̃1pNq Ñ S̃1pNq, rE,Qs ÞÑ rE, rdsQs.

Since there are p ` 1 order p subgroups of E one of which is C0, by Lemma ?? we

have
ÿ

C

rĆE{C, ČQ` Cs “ pσp ` pĂxpyσ
´1
p qrẼ, Q̃s.

This also holds for curves with supersingular reduction at p and therefore it holds

for all curves with good reduction at p. If an elliptic curve Ẽ over Fp has invariant

j R t0, 1728u then it also holds for Ẽσp and Ẽσ´1
p . Thus by the description above we

have the following commutative diagram

S1pNq
1
gd

Tp //

��

DivpS1pNq
1
gdq

��

S̃1pNq
1

σp`pĂxpyσ
´1
p // DivpS̃1pNq

1q

and this gives

Div0
pS1pNq

1
gdq

Tp //

��

Div0
pS1pNq

1
gdq

��

Div0
pS̃1pNq

1q
σp`pĂxpyσ

´1
p // Div0

pS̃1pNq
1q

(4.5)
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Lemma 4.5.2. The following diagram commutes

Div0
pS̃1pNq

1q
σp`pĂxpyσ

´1
p //

��

Div0
pS̃1pNq

1q

��

Pic0
pX̃1pNqq

σp,˚`Ăxpy˚σ
˚
p // Pic0

pX̃1pNqq

Proof. Note that we have the following commutative diagrams

Div0
pS̃1pNq

1q
σp //

��

Div0
pS̃1pNq

1q

��

Div0
pX̃1pNq

planarq
σp,˚ // Div0

pX̃1pNq
planarq

(4.6)

and

Div0
pS̃1pNq

1q
pσ´1
p //

��

Div0
pS̃1pNq

1q

��

Div0
pX̃1pNq

planarq
σ˚p // Div0

pX̃1pNq
planarq

(4.7)

where the maps on the left and right are given by rEj, Qs ÞÑ rj, xpQqs. There is

a birational equivalence h from X̃1pNq
planar to X̃1pNq hence we have the following

diagram

Div0
pX̃1pNq

planarq
σp,˚ //

h˚
��

Div0
pX̃1pNq

planarq

h˚
��

Div0
pX̃1pNqq σp,˚

// Div0
pX̃1pNqq

and similarly

Div0
pX̃1pNq

planarq
σ˚p //

h˚
��

Div0
pX̃1pNq

planarq

h˚
��

Div0
pX̃1pNqq

σ˚p

// Div0
pX̃1pNqq

Now the bottom rows of these two diagrams descend to Picard groups. Combining

92



these two diagrams with the diagrams (??) and (??) we get the following diagrams

Div0
pS̃1pNq

1q
σp //

��

Div0
pS̃1pNq

1q

��

Pic0
pX̃1pNqq

σp,˚ // Pic0
pX̃1pNqq

(4.8)

and

Div0
pS̃1pNq

1q
pσ´1
p //

��

Div0
pS̃1pNq

1q

��

Pic0
pX̃1pNqq

σ˚p // Pic0
pX̃1pNqq

(4.9)

Consider the cube-shaped diagram,

Pic0
pX1pNqq

xdy˚ // Pic0
pX1pNqq

��

Div0
pS1pNq

1
gdq

//

66

��

��

xdy // Div0
pS1pNq

1
gdq

66

��

Pic0
pX̃1pNqq

Ăxdy˚ // Pic0
pX̃1pNqq

Div0
pS̃1pNq

1q

66

Ăxdy // Div0
pS̃1pNq

1q

66

Note that the bottom row is the diagram

Div0
pS̃1pNq

1q //

��

Div0
pS̃1pNq

1q

��

Pic0
pX̃1pNqq // Pic0

pX̃1pNqq

and all other diagrams commute and left front vertical map is surjective and so the

bottom diagram also commutes. Hence by the diagram (??) we get the following
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commutative diagram

Div0
pS̃1pNq

1q

��

pσ´1
p // Div0

pS̃1pNq
1q

��

Ăxdy // Div0
pS̃1pNq

1q

��

Pic0
pX̃1pNqq

σ˚p // Pic0
pX̃1pNqq

Ăxdy˚ // Pic0
pX̃1pNqq

Now by the diagram (??) we get the commutetive diagram in the lemma.

Now we are ready to give the Eichler-Shimura relation,

Theorem 4.5.2. Let p - N . Then the following diagram commutes:

Pic0
pX1pNqq

��

Tp // Pic0
pX1pNqq

��

Pic0
pX̃1pNqq

σp,˚`Ăxpy˚σ
˚
p // Pic0

pX̃1pNqq

Proof. Consider the following cube-shaped diagram,

Pic0
pX1pNqq

Tp // Pic0
pX1pNqq

��

Div0
pS1pNq

1
gdq

//

66

��

��

Tp // Div0
pS1pNq

1
gdq

66

��

Pic0
pX̃1pNqq

σp,˚`Ăxpy˚σ
˚
p // Pic0

pX̃1pNqq

Div0
pS̃1pNq

1q

66

σp`pĂxpyσ
´1
p // Div0

pS̃1pNq
1q

66

Note that the left and right sides of the cube are commutative diagrams from The-

orem ??. The top square is the commutative diagram (??). The front square is the

commutative diagram (??) and the bottom square is the commutative diagram from

Lemma ??. Let σ denote the map σp,˚ ` Ăxpy
˚
σ˚p . Consider the following chain of

maps

Div0
pS1pNq

1
gdq

// Div0
pS̃1pNq

1q // Pic0
pX̃1pNqq

σ // Pic0
pX̃1pNqq (4.10)
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where the first two maps are surjective. By commutativity of the left side (??) is

Div0
pS1pNq

1
gdq

// Pic0
pX1pNqq // Pic0

pX̃1pNqq
σ // Pic0

pX̃1pNqq (4.11)

where the composition of the first two maps is surjective. Since the bottom, front

and top squares are commutative (??) becomes

Div0
pS1pNq

1
gdq

// Pic0
pX1pNqq

Tp // Pic0
pX1pNqq // Pic0

pX̃1pNqq (4.12)

We know that there exists a map T̃p : Pic0
pX̃1pNqq Ñ Pic0

pX̃1pNqq such that the

back square of the cube commutes and so we have

Div0
pS1pNq

1
gdq

// Pic0
pX1pNqq // Pic0

pX1pNqq
T̃p // Pic0

pX̃1pNqq (4.13)

Now this is the same chain with (??) and since the composite of the first two maps

is surjective, T̃p “ σ.

Thus the Hecke operator Tp is now described in characteristic p in terms of the

Frobenius map σp.
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5 Galois Representations

In this section we construct Galois representations attached to Elliptic curves and

modular forms. Then give a brief overview of the method of Wiles’s proof of modu-

larity theorem.

5.1 Galois number fields

Let F be a Galois number field, i.e. a finite Galois extension of Q. Let p be a rational

prime. Then we have a factorization pOF “ pp1...pgq
e, where e is the ramification

degree of p, g is the decomposition index. Let f be the residue degree, i.e. the

dimension of OF {p over Fp “ Z{pZ. Then we have |GalpF {Qq| “ efg.

The decomposition group of a maximal ideal p of OF lying over p is the set

Dp “ tσ P GalpF {Qq : pσ “ pu.

Since GalpF {Qq acts transitively on the set of maximal ideals in the factorization of

pOF , the order of Dp is ef . Note that Dp acts on the residue field fp “ OF {p – Fpf ,

px` pqσ “ xσ ` p, x P OF , σ P Dp.

The kernel of this action is called the inertia group of p,

Ip “ tσ P Dp : xσ ” x mod p for all x P OF u.

The order of Ip is e. Consider Fp as a subfield of fp. Hence we have an injection

Dp{Ip Ñ Galpfp{Fpq “ xσpy, where σp is the Frobenius automorphism in characteristic

p. Since both sides has order f the injection is actually an isomorphism. Therefore

Dp{Ip has an element that maps to σp. Any representative of this element in Dp is

called a Frobenius element of GalpF {Qq denoted by Frobp. Hence Frobp is defined up
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to inertia and so when p is unramified Frobp is unique. The action of Frobp descends

to the residue field as

xFrobp ” xp mod p for all x P OF .

Let p1 and p be two maximal ideals lying over p. Since GalpF {Qq acts transitively

on the maximal ideals lying above p, there exists an automorphism σ P GalpF {Qq

such that pσ “ p1. It is easy to see that the decomposition group associated to p1 is

Dp1 “ Dpσ “ σ´1Dpσ, and the inertia group of p1 is Ip1 “ Ipσ “ σ´1Ipσ. The relation

between the corresponding Frobenius elements is Frobp1 “ Frobpσ “ σ´1Frobpσ.

Therefore if the Galois group is abelian the Frobp depends only on the underlying

prime and so can be denoted by Frobp.

We state the following theorem without proof which we use later.

Theorem 5.1.1. Let F be a Galois number field. Then every element of GalpF {Qq

takes the form Frobp for infinitely many maximal ideals p of OF .

Let ` be a prime number. Consider the affine algebraic curve over Q, C : xy “ 1.

Under the map px, yq ÞÑ x, the points of C are identified with the Abelian group Q˚.

This induces an Abelian group structure on points of C where the group operation is

point wise multiplication. Let n P Z`. The points of C of order `n form a subgroup

Cr`ns which is identified with the `nth roots of unity by the above identification.

Thus we have an isomorphism Cr`ns
„
ÝÑ Z{`nZ given by µa`n ÞÑ a. Therefore we also

have

AutpCr`nsq
„
ÝÑ pZ{`nZq˚

given by pµ`n ÞÑ µm`nq ÞÑ m. This extends to the following isomorphism

GalpQpµ`nq{Qq
„
ÝÑ pZ{`nZq˚, pσ : µ`n ÞÑ µm`nq ÞÑ m.
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Put the number fields Qpµ`nq together for all n and define Qpµ`8q “
Ť8

n“1 Qpµ`nq.

This is a subfield of Q and has infinite degree over Q. Let GQ,` “ AutpQpµ`8qq.

Every element σ P GQ,` restricts to σn P GalpQpµ`nq{Qq for each n. The restrictions

form a sequence pσ1, σ2, ...q such that σn`1|Qpµ`n q “ σn for all n. Conversely, let

pσ1, σ2, ...q be a compatible sequence as described above. Define σ P AutpQpµ`8qq by

σpxq “ σnpxq if x P Qpµ`nq. The compatibility guarantee that σ is well-defined.

Thus GQ,` is the group of compatible sequences where the group operation is

componentwise composition. Thus GQ,` “ lim
ÐÝn

GalpQpµ`nq{Qq. Hence GQ,` – Z˚` .

The `-adic Tate module of C is

Ta`pCq “ tpµ
a1
` , µ

a2
2 , ...q : µ

an`1

`n “ µan`n for all nu – Z`.

GQ,` acts on Ta`pCq componentwise.

5.2 Galois representations

The absolute Galois group of Q will be denoted by GQ “ AutpQq where Q denote the

algebraic closure of Q. Q is the union of all Galois number fields. Let σ P GQ be an

automorphism of Q. For any Galois number field F , σ restricts to σ|F P GalpF {Qq.

If F and F 1 are two Galois number fields such that F Ă F 1 then we have σF “ σF 1 |F .

Conversely, every system of automorphisms tσF u satisfying the above compatibility

criterion defines an automorphism σ of Q as follows: Let x P Q. Then x P F for some

Galois number field F . Define σpxq “ σF pxq. σ is well-defined as tσF u is compatible.

This shows that

GQ “ lim
ÐÝ
F

GalpF {Qq.

Being the inverse limit of finite groups, GQ is profinite.
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For each σ P GQ and each Galois number field F let UσpF q “ σ ¨ kerpGQ Ñ

GalpF {Qqq. The topology on GQ which has the basis

tUσpF q : σ P GQ, F is a Galois number fieldu

is called the Krull topology. As GQ is profinite, it is compact. For σ “ 1, denote

UσpF q by UpF q. Note that UpF q is an open normal subgroup for every Galois number

field F . Conversely, every open normal subgroup of GQ is of the form UpF q for some

F . Indeed; let U be an open normal subgroup of GQ. Since 1 P U , UpF q Ă U for

some F . Hence

GalpF {Qq – GQ{UpF q� GQ{U.

Thus GQ{U is isomorphic to a quotient of GalpF {Qq and so GQ{U “ GalpF 1{Qq for

some F 1 Ă F . This shows that U “ kerpGQ � GalpF 1{Qqq “ UpF 1q.

Let p P Z be a prime and p Ă Z be a maximal ideal over p, where Z denotes the

integral closure of Z in Q. The decomposition group of p is

Dp “ tσ P GQ : pσ “ pu.

Hence Dp acts on Z{p as px ` pqσ “ xσ ` p. Since Z{p – Fp, this action can be

viewed as an action on Fp. Hence we have a map Dp Ñ GFp , where GFp denotes the

absolute Galois group of Fp. This map is surjective since it is surjective at each finite

level. An absolute Frobenius element over p is an element Frobp P Dp that maps to

the Frobenius automorphism σp P GFp . Note that Frobp is defined up to the kernel

of the action, the inertia group

Ip “ tσ P Dp : xσ ” x mod p for all x P Zu.

The restriction mapGQ Ñ GalpF {Qq takes Frobp to a Frobenius element in GalpF {Qq,

i.e. Frobp|F “ FrobpF where pF “ pX F .

The following theorem illustrate why we are interested in Frobenius elements.
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Theorem 5.2.1. The set

tFrobp : p Ă Z is maximal ideal lying over any but finite set of primes pu

is dense in GQ

Proof. Let U “ UσpF q be any basis element of the Krull topology on GQ. It suffices

to show that there exists Frobp P U . By Theorem ??, σ|F P GalpF {Qq takes the

form FrobpF for some maximal ideal pF P OF . Lift pF to a maximal ideal p of Z, i.e.

pXF “ pF . Thus Frobp|F “ FrobpF “ σ|F . Hence Frobp ¨σ
´1 P kerpGQ Ñ GalpF {Qqq

which implies Frobp P UσpF q.

Let χ : pZ{NZq˚ Ñ C˚ be a primitive Dirichlet character. Then we have

GQ
πN // GalpQpµNq{Qq

ϕ // pZ{NZq˚ χ // C˚

where πN is just the restriction map and ϕ is the isomorphism which is defined by

pµN ÞÑ µaNq ÞÑ a. This shows that χ determine a homomorphism

ρχ “ χ ˝ ϕ ˝ πN : GQ Ñ C˚.

It is easy to see that ρχpconjq “ ´1 and ρχpFrobpq “ χppq, where conj denotes

the complex conjugation. Let us see that ρχ is continuous. To see this we use the

following standard result

Lemma 5.2.1. Let ρ : G Ñ H be a homomorphism of topological groups. ρ is

continuous if and only if ρ´1pV q is open for each V in a basis of neighborhoods of

identity 1H .

Suppose ρ´1
χ p1q is open in GQ. Let V be an element of basis of neighborhoods

of 1 and let g P ρ´1
χ pV q Ě ρ´1

χ p1q. Thus ρχpg ¨ ρ
´1
χ p1qq Ă V . Since ρ´1

χ p1q is open,
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g ¨ ρ´1
χ p1q is open and g P g ¨ ρ´1

χ p1q Ă ρ´1
χ pV q. Therefore ρ´1

χ pV q is open and by the

above lemma ρχ is continuous. Therefore we only need to check that ρ´1
χ p1q is open.

To see this note that πNpρ
´1
χ p1qqCGalpQpµNq{Qq. This is because πN is surjective.

Thus Galois theory implies that there exists a subextension F Ă QpµNq such that

GalpQpµNq{F q “ πNpρ
´1
χ p1qq. Our claim is that ρ´1

χ p1q “ UpF q. To see this let

σ P UpF q. Hence σ|QpµN q P GalpQpµNq{F q and so πNpσq P πNpρ
´1
χ p1qq Ă kerpχ ˝ ϕq.

Thus χ ˝ ϕ ˝ πNpσq “ 1 which proves σ P ρ´1
χ p1q. Coversely, let σ P ρ´1

χ p1q. Then

πNpσq P GalpQpµNq{F q and so σ|F “ idF , i.e. σ P UpF q. Therefore ρ´1
χ p1q “ UpF q

which is open. Thus ρ´1
χ p1q is open. This finishes the proof of ρχ is continuous.

Conversely, every continuous homomorphism ρ : GQ Ñ C˚ arise from a Dirichlet

character. First let us see that any such homomorphism has finite image. The

following lemma proves more.

Lemma 5.2.2. Any continuous homomorphism ρ : GQ Ñ GLdpCq factors through

GalpF {Qq Ñ GLdpCq for some Galois number field F . Thus the image of ρ is finite.

Proof. Take a neighborhood V of I P GLdpCq containing no nontrivial subgroup. Let

U “ ρ´1pV q. Since U is a neighborhood of 1 P GQ, UpF q Ă U for some Galois number

field F . We have ker ρ Ă U and if there exists σ P UpF qz ker ρ, then ρpUpF qq gives

a nontrivial subgroup of V which contradicts the choice of V . Thus UpF q Ă ker ρ.

Hence we have a surjective map

GalpF {Qq – GQ{UpF q� GQ{ ker ρ.

This proves the lemma.

Now since ker ρ is a closed normal subgroup of GQ, it corresponds to a Galois

extension L{Q with GalpL{Qq – Imρ. Thus ρ factors through some Abelian Galois
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extension F {Q and by Kronecker-Weber Theorem, we may take F “ QpµNq for some

N . Thus we have

GQ
πN // GalpQpµNq{Qq

ϕ

��

// C˚

pZ{NZq˚
χ

88

This shows that ρ “ ρχ and so we have seen that there is a correspondence between

continuous homomorphisms ρ : GQ Ñ C˚ and Dirichlet characters.

Definition 5.2.1. Let d be a positive integer. A d-dimensional `-adic Galois repre-

sentation is a continuous homomorphism

ρ : GQ Ñ GLdpLq

where L is a finite extension of Q`. If ρ1 : GQ Ñ GLdpLq is another such represen-

tation and there exists m P GLdpLq such that ρ1pσq “ m´1ρpσqm for all σ P GQ then

ρ and ρ1 are equivalent, denoted as ρ „ ρ1.

An example of a one dimensional `-adic Galois representation is the `-adic cy-

clotomic character: We have seen that GalpQpµ`8q{Qq – Z˚` . The containment

Qpµ`8q Ă Q gives a surjection GQ � GQ,`. Combining this map with the isomor-

phism above we get

χ` : GQ Ñ Z˚`

given by σ ÞÑ pm1,m2, ...q such that µσ`n “ µmn`n for all n. Thus χ` arises from the

GQ-module structure of the Tate module of C given before. We need to check that

χ` is continuous. By Lemma ?? it suffices to check that χ´1
` pUpnqq is open for all

n. Here Upnq “ kerpZ˚` Ñ pZ{`nZq˚q. We have χ`pσq P Upnq ô µσ`n “ µ`n ô

σ|Qpµ`n q “ id ô σ P kerpGQ Ñ GalpQpµ`nq{Qqq ô σ P UpQpµ`nqq. This shows that

χ´1
` pUpnqq “ UpQpµ`nqq and so it is open which proves χ` is continuous.
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Given a Galois representation ρ we want to know the values ρpσq for σ P GQ.

Especially at absolute Frobenius elements, Frobp. Frobp is defined up to inertia group

Ip and so ρpFrobpq is well-defined if and only if Ip Ă ker ρ. Let p and p1 be two maximal

ideals lying over the same prime p. Then we have seen that Ip1 “ τ´1Ipτ for some

τ P GQ. Since ker ρ C GQ, the condition Ip Ă ker ρ depends only on the underlying

prime p. Let ρ and ρ1 be two representations such that ρ „ ρ1. ker ρ “ ker ρ1 hence

the condition Ip Ă ker ρ makes sense for an equivalence class of representations. Now

ρpFrobpq depends on the choice of p. Since every conjugate of ρpFrobpq has the same

characteristic polynomial as ρpFrobpq and Frobpσ “ σ´1Frobpσ, the characteristic

polynomial depends only on p.

Definition 5.2.2. Let ρ be a Galois representation and p be a prime. Then ρ is

unramified at p if Ip Ă ker ρ for any maximal ideal p Ă Z lying above p.

If the Galois representation ρ is unramified at all but finitely many primes p, then

the values ρpFrobpq for p lying over unramified primes p determine ρ everywhere by

continuity of ρ and Theorem ??.

We have seen that χ` arises from the GQ-module structure of Ta`pCq. Let

V`pCq “ Ta`pCq b Q. This is a one dimensional vector space over Q`. Consider

the commutative diagram

V`pCq ˆGQ //

χ`

��

V`pCq

��
Q` ˆQ˚` // Q`

The action of GQ on V`pCq is continuous since the other maps in the diagram are

continuous.
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Definition 5.2.3. Let d be a positive integer. A d-dimensional `-adic Galois repre-

sentation is a d-dimensional vector space V over L where L is a finite extension of

Q`, that is also a GQ-module such that the action

V ˆGQ Ñ V pv, σq ÞÑ vσ

is continuous. If V 1 is another such representation and there is a continuous GQ-

module isomorphism V
„
ÝÑ V 1 then V and V 1 are equivalent.

This definition is compatible with the Definition ?? given earlier. To see this let

ρ : GQ Ñ GLdpLq be a Galois representation as in Definition ??. Now Ld is a d

dimensional vector space over L. Consider the map

Ld
ˆGQ Ñ Ld

pv, σq ÞÑ vρpσq.

This map is continuous since ρ is continuous and so Ld is a d-dimensional Galois

representation as in the Definition ??.

Conversely, let V be a d-dimensional Galois representation as in Definition ??.

By fixing a basis of V we can identify AutpV q with GLdpLq. Then the map

GQ Ñ AutpV q σ ÞÑ pv ÞÑ vσq

induces a map

ρ : GQ Ñ GLdpLq.

and ρ is continuous.

In the above examples of Galois representations we have seen that the image of

the representation lies in GLdpOLq. The following proposition shows that this is true

in general.

Proposititon 5.2.1. Let ρ : GQ Ñ GLdpLq be a Galois representation. Then ρ is

similar to a Galois representation ρ1 : GQ Ñ GLdpOLq.
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Proof. See [?, Proposition 9.3.5].

5.3 Galois representations and elliptic curves

Our aim in this section is to construct two dimensional Galois representations at-

tached to elliptic curves. Let E be an elliptic curve over Q and ` be a prime.

Multiplication by ` between `-power torsion subgroups of E gives maps

Er`s ÐÝ Er`2
s ÐÝ Er`3

s ÐÝ ...

The `-adic Tate module of E is

Ta`pEq “ lim
ÐÝ
n

Er`ns.

Choose a basis pPn, Qnq of Er`ns for each n P Z` such that r`sPn`1 “ Pn and

r`sQn`1 “ Qn. Each basis gives an isomorphism Er`ns
„
ÝÑ pZ{`nZq2 and since the

bases are compatible with the transition maps we can pass to the limit which gives

Ta`pEq – Z2
` . Note that for each n, QpEr`nsq is a Galois number field. Hence we

have a restriction map

GQ Ñ GalpQpEr`nsq{Qq

and we also have an injection

GalpQpEr`nsq{Qq Ñ AutpEr`nsq.

Composing these maps gives

GQ Ñ AutpEr`nsq for each n.

For each n consider the following commutative diagram

GQ

yy &&
AutpEr`nsq AutpEr`n`1sqoo

.
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This shows that GQ acts on the Tate module of E and so Ta`pEq is a GQ-module.

Each basis pPn, Qnq determine an isomorphism AutpEr`nsq
„
ÝÑ GL2pZ{`nZq and by

the choice of the basis the following diagram commutes for all n

AutpEr`nsq //

��

GL2pZ{`nZq

��
AutpEr`n`1sq // GL2pZ{`n`1Zq

.

Thus we have AutpTa`pEqq
„
ÝÑ GL2pZ`q. Combining this isomorphism with the action

of GQ on Ta`pEq we get a homomorphism

ρE,` : GQ Ñ GL2pZ`q Ă GL2pQ`q.

Let us see that this is a continuous homomorphism. It suffices to check that ρ´1
E,`pUpnqq

is open for each n where Upnq “ kerpGL2pZ`q Ñ GL2pZ{`nZqq. Now we have

σ P ρ´1
E,`pUpnqq ô ρE,`pσq P Upnq

ô pP σ
n , Q

σ
nq “ pPn, Qnq

ô σ|QpEr`nsq “ id

ô σ P kerpGQ Ñ GalpQpEr`nsq{Qqq

ô σ P UpQpEr`nsqq.

Hence ρ´1
E,`pUpnqq “ UpQpEr`nsqq and so it is open for all n. ρE,` is the 2-dimensional

Galois representation attached to E.

Theorem 5.3.1. Let ` be a prime and E be an elliptic curve over Q with conductor

N. The Galois representation ρE,` is unramified at every prime p - `N . For any

such p let p Ă Z be any maximal ideal over p. Then the characteristic equation of

ρE,`pFrobpq is

x2
´ appEqx` p “ 0,
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where appEq “ p` 1´ |ẼpFpq|.

Proof. Let p - `N and p lies over p. Let GFp be the absolute Galois group of Fp. We

have a commutative diagram for all n,

Dp
//

��

AutpEr`nsq

��

GFp
// AutpẼr`nsq

where the map Dp Ñ GFp is induced by the action of Dp on Fp, the map Dp Ñ

AutpEr`nsq is just the restriction of the action of GQ and the map GFp Ñ AutpẼr`nsq

is given by the action of GFp on Ẽ. Now Ip Ă kerpDp Ñ GFp Ñ AutpẼr`nsqq.

Note that p - `N implies that E has good reduction at p making AutpEr`nsq
„
ÝÑ

AutpẼr`nsq. Therefore Ip Ă kerpDp Ñ AutpEr`nsqq for all n. Thus Ip Ă kerpGQ Ñ

AutpEr`nsqq. Since this is true for all n by definition of ρE,`, Ip Ă ker ρE,` and so ρE,`

is unramified at p.

For the characteristic equation of ρE,`pFrobpq we need to compute det ρE,`pFrobpq

and trρE,`pFrobpq. Let ρn : GQ Ñ AutpEr`nsq
„
ÝÑ GL2pZ{`nZq be the nth entry of

ρE,`. Considering the Weil pairing of the basis pPn, Qnq gives

e`npPn, Qnq
σ
“ e`npP

σ
n , Q

σ
nq “ e`npPn, Qnq

det ρnpσq.

The second equality comes from the fact that
`

Pσn
Qσn

˘

“ ρnpσq
`

Pn
Qn

˘

. Since e`npPn, Qnq “

µ`n , σ acts on µ`n by µσ`n “ µ
det ρnpσq
`n . We also have µσ`n “ µ

χ`,npσq

`n where χ`,npσq

denotes the nth component of χ`pσq. Thus we have det ρnpσq “ χ`,npσq in pZ{`nZq˚.

Since this is true for all n, det ρE,`pσq “ χ`pσq in Z˚` , and so det ρE,`pFrobpq “

χ`pFrobpq “ p. For the trace let A “ ρE,`pFrobpq. Since A satisfies its characteristic

polynomial we have trpAq “ A ` pA´1. As endomorphisms of Pic0
pẼq, σp,˚ ` σ˚p “

appEq, where σp,˚ and σ˚p forward and reverse maps of Pic0
pẼq induced by σp. σp,˚
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acts on Pic0
pẼq as σp and σ˚p acts as pσ´1

p . By the above diagram σp acts on Ẽr`ns as

Frobpn acts on Er`ns where Frobpn is the nth component of Frobp. Thus A` pA´1 ”

appEq mod `n for all n. Therefore

trρE,`pFrobpq “ appEq.

It is also true that ρE,` is an irreducible representation but we will not give a

proof of this. Galois representations attached to isogenous elliptic curves E and E 1

are equivalent. To see this, ϕ : E Ñ E 1 be an isogeny. Then ϕ induces a map

between Tate modules and so we have a map V`pEq Ñ V`pE
1q. Similarly, the dual

isogeny also gives a map V`pE
1q Ñ V`pEq and the composition is multiplication by

degpϕq which is an automorphism as V`pEq and V`pE
1q are vector spaces over Q` and

Q` has characteristic zero.

5.4 Galois representations and modular forms

The aim of this section is associating Galois representations to modular curves and

decompose them into representations attached to modular forms.

Let N be a positive integer and ` be a prime. We have seen that X1pNq is a

projective nonsingular algebraic curve over Q. Let g be the genus of X1pNq. The

Jacobian of the complex curve X1pNqC is

J1pNq “ JacpX1pNqCq “ SkpΓ1pNqq
^
{H1pX1pNqC,Zq – Cg

{Λg.

Pic0
pX1pNqq can be identified with a subgroup of the complex Picard group Pic0

pX1pNqCq

which is isomorphic to the Jacobian by Theorem ??. Thus we have an inclusion of

`n torsion

in : Pic0
pX1pNqqr`

n
s Ñ Pic0

pX1pNqCqr`
n
s – pZ{`nZq2g.
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By Theorem ??, X1pNq has good reduction at p and we have a surjective reduction

map Pic0
pX1pNqq Ñ Pic0

pX̃1pNqq restricting to `n torsion

πn : Pic0
pX1pNqqr`

n
s Ñ Pic0

pX̃1pNqqr`
n
s

We state without proof that if a curve C over a field k has genus g and N is coprime to

charpkq then Pic0
pCqrN s – pZ{NZq2g and if C is a curve over Q has good reduction

at a prime p - N then the reduction map is injective on Pic0
pCqrN s. Thus in and πn

are actually isomorphisms for p - `N .

The `-adic Tate module of X1pNq is

Ta`pPic0
pX1pNqqq “ lim

ÐÝ
n

Pic0
pX1pNqqr`

n
s.

Choosing a compatible family of bases of Pic0
pX1pNqqr`

ns for all n we have

Ta`pPic0
pX1pNqqq – Z2g

` .

GQ acts on Div0
pX1pNqq as

´

ÿ

nppP q
¯σ

“
ÿ

nppP
σ
q, σ P GQ

and this action descends to Pic0
pX1pNqq,

Pic0
pX1pNqq ˆGQ Ñ Pic0

pX1pNqq.

Since QpPic0
pX1pNqqr`

nsq{Q is a Galois extension the action of GQ restricts to

Pic0
pX1pNqqr`

ns and we have the following commutative diagram

GQ

vv ((
AutpPic0

pX1pNqqr`
nsq AutpPic0

pX1pNqqr`
n`1sqoo
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for all n. Thus GQ acts on Ta`pPic0
pX1pNqqq and this gives a representation

ρX1pNq,` : GQ Ñ AutpTa`pPic0
pX1pNqqqq – GL2gpZ`q Ă GL2gpQ`q

One can show similarly to the Galois representation attached to an elliptic curve,

ρX1pNq,` is continuous. It is the 2g-dimensional Galois representation associated to

X1pNq. By the diagrams (??) and (??), the Hecke algebra TZ acts on Pic0
pX1pNqq,

TZ ˆ Pic0
pX1pNqq Ñ Pic0

pX1pNqq.

This action restricts to `-power torsion and then extends to Ta`pPic0
pX1pNqqq. Since

the Hecke action on Pic0
pX1pNqq is defined over Q, it commutes with the action of

GQ. Thus the actions on Ta`pPic0
pX1pNqqq also commute.

Theorem 5.4.1. Let ` be a prime and N be a positive integer. The Galois repre-

sentation ρX1pNq,` is unramified at every prime p - `N . For any such p let p Ă Z be

any maximal ideal over p. Then ρX1pNq,`pFrobpq satisfies the polynomial equation

x2
´ Tpx` xpyp “ 0.

Proof. We have the following commutative diagram

Dp
//

��

AutpPic0
pX1pNqqr`

nsq

��

GFp
// AutpPic0

pX̃1pNqqr`
nsq

The map on the right side is the isomorphism induced by πn from the beginning of

this section. Similarly to the proof of Theorem ??, Ip Ă ker ρX1pNq,` and so ρX1pNq,`

is unramified at p. The Eichler-Shimura relation given in Theorem ?? restricts to
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`-torsion and we have the following commutative diagram,

Pic0
pX1pNqqr`

ns

��

Tp // Pic0
pX1pNqqr`

ns

��

Pic0
pX̃1pNqqr`

ns
σp,˚`Ăxpy˚σ

˚
p // Pic0

pX̃1pNqqr`
ns

We also have the following commutative diagram

Pic0
pX1pNqqr`

ns

��

Frobp`xpypFrob´1
p // Pic0

pX1pNqqr`
ns

��

Pic0
pX̃1pNqqr`

ns
σp,˚`Ăxpy˚σ

˚
p // Pic0

pX̃1pNqqr`
ns

Since the vertical maps are isomorphisms Tp “ Frobp`xpypFrob´1
p on Pic0

pX1pNqqr`
ns

for all n. Thus they are equal on Ta`pPic0
pX1pNqqq. This proves the second part of

the theorem.

Let f P S2pN,χq. We have defined Of “ Zrtanpfq : n P Z`us. We have the

following isomorphism from Section ??, TZ{If
„
ÝÑ Of . Under this isomorphism appfq

acts on Af as Tp and χppq acts on Af as xpy. The dimension of Af as a complex

torus is the degree d “ rKf : Qs. The Tate module of the Abelian variety is

Ta`pAf q “ lim
ÐÝ
n

Af r`
n
s – Z2d

` .

The action of Of descends to the `-power torsion and then extends to Ta`pAf q.

Lemma 5.4.1. The map Pic0
pX1pNqqr`

ns Ñ Af r`
ns is a surjection. Its kernel is

stable under GQ.

Proof. Multiplication by `n is surjective on J1pNq. Let y P IfJ1pNq. Then y “
ř

i Tiyi, Ti P If and yi P J1pNq “ `nJ1pNq. Thus yi “ `nxi for some xi P J1pNq for
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each i. Then y “
ř

i Tip`
nxiq “ `n

ř

i Tixi P `
nIfJ1pNq. Thus multiplication by `n is

surjective on IfJ1pNq.

Let y P Af r`
ns. Then y “ x ` IfJ1pNq for some x P J1pNq such that `nx P

IfJ1pNq. Thus `nx “ `nx1 for some x1 P IfJ1pNq. Then x ´ x1 P J1pNqr`
ns “

Pic0
pX1pNqqr`

ns and x´ x1 ÞÑ y.

The kernel of the map is Pic0
pX1pNqqr`

ns X IfJ1pNq “ pIfJ1pNqqr`
ns. Clearly

we have pIfPic0
pX1pNqqqr`

ns Ă pIfJ1pNqqr`
ns. The reverse inclusion is also true.

Indeed, let S2 “ S2pΓ1pNqq and H1 “ H1pX1pNqC,Zq Ă S^2 . Thus J1pNq “ S^2 {H1

and we have

IfJ1pNq “ pIfS^2 `H1q{H1 – IfS2{pH1 X IfS^2 q.

IfH1 is a subgroup of H1 X IfS^2 with some finite index M . Thus MpH1 X IfS^2 q Ă

IfH1. Let y P pIfJ1pNqqr`
ns. Then y “ x ` H1 X IfS^2 for some x P IfS2. Since

`ny “ 0, `nx P H1 X IfS^2 . Then M`nx P IfH1 and so x P If pM
´1`´nH1q. Thus y P

If pJ1pNqrM`nsq Ă IfPic0
pX1pNqq. Since `ny “ 0, y P pIfPic0

pX1pNqqqr`
ns. Since

the Hecke action and Galois actions commute, the kernel is stable under GQ.

By the above lemma, GQ acts on Af r`
ns and therefore acts on Ta`pAf q. This

action commutes with the action of Of since the Hecke action and Galois actions on

Ta`pPic0
pX1pNqqq commute. Choosing a compatible family of basis we have a Galois

representation

ρAf ,` : GQ Ñ GL2dpQ`q

This is continuous. To see this let Upn, gq “ kerpGL2gpZ`q Ñ GL2gpZ{`nZqq. By

definition of the Galois action on Af r`
ns we have

ρ´1
X1pNq,`

pUpn, gqq Ă ρ´1
Af ,`
pUpn, dqq.

Since ρX1pNq,` is continuous, ρAf ,` is also continuous.

112



Since kerpρX1pNq,`q Ă kerpρAf ,`q, ρAf ,` is unramified at all primes p - `N . Let

p Ă Z be a maximal ideal lying over such p. Since Tp and xpy act on Af as appfq and

χppq, respectively, ρAf ,`pFrobpq satisfies

x2
´ appfqx` χppqp “ 0.

Before going further we give some definitions. Let K be a number field and OK

be its ring of integers. For a prime ` we have the following factorization of `OK into

maximal ideals λ of OK lying over `

`OK “
ź

λ|`

λeλ .

For each λ define the ring of λ-adic integers as

OK,λ “ lim
ÐÝ
n

OK{λ
n

and the field of λ-adic numbers is the quotient field Kλ of OK,λ. Z` may be viewed

as a subring of OK,λ. To see this, first observe that λneλ XZ “ `n
1Z for some n1 ď n.

Since

`m P λneλ ô
ź

λ|`

λmeλ Ă λneλ ô m ě n,

n1 ě n. Thus n “ n1, i.e. λneλXZ “ `nZ. This shows that the map ZÑ OK{λ
neλ has

kernel `nZ. Thus Z{`nZÑ OK{λ
neλ is an injection for all n and this gives an injection

Z` Ñ OK,λ for all λ. Thus Q` may be viewed as a subfield of Kλ. The containments

Z` Ă OK,λ and Q` Ă Kλ are equalities when eλfλ “ 1 and rKλ : Q`s “ eλfλ. We

have the following ring isomorphism

K bQ Q` “
ź

λ|`

Kλ. (5.1)
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To see this first note that

OK b Z` – lim
ÐÝ
n

pOK b Z{`nZq – lim
ÐÝ
n

OK{`
nOK .

By Chinese Remainder Theorem, OK{`
nOK “ OK{

ś

λ λ
neλ –

ś

λOK{λ
neλ . Thus

OK b Z` – lim
ÐÝ
n

p
ź

λ

OK{λ
neλq –

ź

λ

lim
ÐÝ
n

OK{λ
neλ –

ź

λ

OK,λ.

Using this we get

K bQ Q` – OK bQ` – OK b Z` bZ` Q` –
ź

λ

pOK,λ bZ` Q`q –
ź

λ

Kλ.

The Tate module of Af , Ta`pAf q has rank 2d over Z`. Since it is also a Of -module,

V`pAf q “ Ta`pAf q bQ is an Of bQ` “ Kf bQ Q`-module.

Lemma 5.4.2. V`pAf q is a free module of rank 2 over Kf bQ Q`.

See [?] for the proof of this lemma. GQ acts on V`pAf q and this action is KfbQQ`-

linear. By the above lemma V`pAf q “ pKf bQ Q`q
2. Choosing a basis of V`pAf q we

get a homomorphism GQ Ñ GL2pKf bQ Q`q. By equation (??) we have Kf bQ Q` “

ś

λ|`Kf,λ. Thus composing the above homomorphism with the projection maps we

get a homomorphism

ρf,λ : GQ Ñ GL2pKf,λq

for each λ.

Theorem 5.4.2. Let f P S2pf, χq be a normalized eigenform with number field

Kf . Let ` be a prime. For each maximal ideal λ Ă OKf lying over ` there is a

2-dimensional Galois representation

ρf,λ : GQ Ñ GL2pKf,λq
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This representation is unramified at every prime p - `N . For any such p let p Ă Z

be any maximal ideal lying over p. Then ρf,λpFrobpq satisfies

x2
´ appfqx` χppqp “ 0.

Proof. We have already construct the representation ρf,λ above. We need to check

that it is continuous. Let i : KfbQQ` Ñ
ś

λ|`Kf,λ be the isomorphism of (??). Let eλ

be the element ofKfbQQ` that maps to p0, . . . , 0, 1Kf,λ , 0, . . . , 0q and Vf,λ “ eλV`pAf q.

Kf,λ acts on Vf,λ via i´1 and Vf,λ “ eλV`pAf q – eλpKf bQ Q`q
2 – K2

f,λ. Thus Vf,λ

is a 2-dimensional vector space over Kf,λ. Let us see that V`pAf q “
À

λ Vf,λ. Any

v P V`pAf q can be written as v “
ř

λ eλv, so the the sum spans V`pAf q. Suppose
ř

λ eλvλ “ 0. Applying eλ for each λ gives vλ “ 0 for all λ. Thus the sum is direct.

Since the GQ action on V`pAf q commutes with eλ, Vf,λ is invariant under the GQ

action. Let B be the basis that we chose to define ρf,λ. Then eλB is a basis of Vf,λ

over Kf,λ and ρf,λ is defined by the action of GQ on Vf,λ. Thus to show that ρf,λ is

continuous it suffices to check that the action

Vf,λ ˆGQ Ñ Vf,λ

is continuous. Viewing Vf,λ as a vector space over Kf,λ or over Q` gives the same

topology on Vf,λ. Since ρAf ,` is continuous,

V`pAf q ˆGQ Ñ V`pAf q

is continuous and Vf,λ is a Q`-subspace of V`pAf q. Thus viewing Vf,λ as a Q`-space,

ρf,λ is continuous.

Since the action ofGQ on Vf,λ is defined by the action ofGQ on V`pAf q, kerpρAf ,`q Ă

kerpρf,λq. This shows that ρf,λ is unramified for all primes p - `N .
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The following theorem is a generalization of the above theorem to weights other

than 2.

Theorem 5.4.3. Let f P Skpf, χq be a normalized eigenform with number field Kf .

Let ` be a prime. For each maximal ideal λ Ă OKf lying over ` there is an irreducible

2-dimensional Galois representation

ρf,λ : GQ Ñ GL2pKf,λq

This representation is unramified at every prime p - `N . For any such p let p Ă Z

be any maximal ideal lying over p. Then ρf,λpFrobpq satisfies

x2
´ appfqx` χppqp

k´1
“ 0.

This theorem is due to Deligne [?] for k ą 2 and due to Deligne and Serre [?] for

k “ 1. The characteristic equation shows that det ρf,λpFrobpq “ χppqpk´1. Since det

is continuous and tFrobpu is dense in GQ, det ρf,λ “ χχk´1
` where χ is identified with

the Galois representation ρχ.

5.5 Galois representations and Modularity

In this section we state the Modularity Theorem in the language of Galois represen-

tations.

Definition 5.5.1. An irreducible Galois representation

ρ : GQ Ñ GL2pQ`q

such that det ρ “ χ` is modular if there exists a newform f P S2pΓ0pMf qq such that

Kf,λ “ Q` for some maximal ideal λ Ă OKf lying over ` and ρf,λ „ ρ.
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An example of an irreducible Galois representation with det ρ “ χ` is the repre-

sentation ρE,` for an elliptic curve E over Q. Modularity theorem states that it is in

fact modular.

Theorem 5.5.1. Let E be an elliptic curve over Q. Then ρE,` is modular for some

`.

This is proved for semistable curves in [?, ?] and then for all curves in [?]. The

next proposition shows that a stronger version of the Modularity theorem is also

true.

Proposititon 5.5.1. Let E be an elliptic curve over Q. Then if ρE,` is modular for

some `, then ρE,` is modular for all `.

Proof. Since ρE,` is modular, there exists a newform f P S2pΓ0pMf qq such that

Kf,λ “ Q` for some maximal ideal λ lying over ` and ρf,λ „ ρE,`. By the characteristic

polynomials of ρf,λpFrobpq and ρE,`pFrobpq, appfq “ appEq for almost all p. Now by

Strong Multiplicity One Kf “ Q and so the Galois representation associated to f

takes the form ρf,` : GQ Ñ GL2pQ`q for all `. Thus ρE,` „ ρf,` for all ` and so ρE,` is

modular for all `.

To each Galois representation ρ : GQ Ñ GLnpCq we associate an L-function

Lpρ, sq “
ź

p unramified

detpI ´ ρpFrobpqp
´s
q
´1

This is called Artin L-function. Entirity of this L-function is the conjecture of Artin.

Conjecture 5.5.1. The L-function of any continuous representation

ρ : GQ Ñ GLnpCq

is an entire function on all C, except possibly at 1.
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This conjecture plays an important role in the proof of the Modularity theorem.

The simple pole at s “ 1 correspond to the trivial representation. In fact the L-

function is the Riemann Zeta function in this case. Assume that ρ is odd. If n “ 1,

then any such representation comes from a Dirichlet character χ as we have seen

before. Hence the conjecture is known in this case.

If n “ 2 the image of ρ followed by the projection GL2pCq Ñ PGL2pCq in

PGL2pCq is isomorphic to one of the followings: a cyclic group, a dihedral group,

A4, S4 and A5. The representation ρ is called cyclic, dihedral, tetrahedral, octahe-

dral or icosahedral according to this image. The proof of the cyclic and dihedral

cases can be found in [?]. The tetrahedral case is proven by Langlands [?] and the

octahedral case is proven by Tunnell [?]. Finally the case of the unsolvable image A5

is proved by Taylor and others in [?, ?, ?] under some hypotheses. The case n “ 2

is completely solved by Khare and Wintenberger in [?] where they proved Serre’s

modularity conjecture.

Let f P S1pN,χq be a normalized newform. Then due to Deligne and Serre

[?] we have a Galois representation ρf : GQ Ñ GL2pCq. If f “
ř8

n“1 anq
n, then

Lpρf , sq “
ř8

n“1 ann
´s and ρ is irreducible, odd and Lpρf b χ, sq has an analytic

continuation to all of C for all continuous characters χ : GQ Ñ C˚. The following

theorem states that the converse is also true. See [?].

Theorem 5.5.2. Let ρ : GQ Ñ GL2pCq be an irreducible, odd Galois representation

with Artin L-function Lpρ, sq “
ř8

n“1 ann
´s such that Lpρbχ, sq “

ř8

n“1 χpnqann
´s

has an alanytic continuation to all of C for all continuous characters χ : GQ Ñ C˚,

then f “
ř8

n“1 anq
n is a normalized newform in S1pN,χq where χ “ det ρ.

By the above theorem the statement that any irreducible, odd, 2-dimensional

Galois representation with finite image is modular is a version of Artin’s conjecture.
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Theorem ?? and the paragraph preceding it shows that there is a bijection between

the set of normalized newforms f P S1pN,χq and the isomorphism classes of 2-

dimensional representations satisfying the hypotheses of the theorem.

Mod ` representations are essential for the proof of the Modularity Theorem. Let

f P S2pΓ1pMf qq be a newform and λ Ă OKf be a maximal ideal lying over `. By

Proposition ?? we may assume that ρf,λ : GQ Ñ GL2pOKf ,λq. Then ρf,λ has a mod

` reduction

ρf,λ : GQ Ñ GL2pOKf ,λ{λOKf ,λq.

Consider the representations ρ : GQ Ñ GL2pF`q where F` has discrete topology.

Definition 5.5.2. An irreducible representation ρ : GQ Ñ GL2pF`q is modular of

level M if there exists a newform f P S2pΓ1pMqq and a maximal ideal λ Ă OKf lying

over ` such that ρ „ ρf,λ.

A modularity conjecture for mod ` representations due to Serre which is proved

by Khare and Wintenberger [?] is the following:

Theorem 5.5.3. Let ρ : GQ Ñ GL2pF`q be irreducible and odd. Then ρ is modular

of level Mpρq.

Mpρq is a minimal level depending on ρ.

Mpρq “
ź

p‰`

pnppq

where nppq depends on the ramification of ρ. In particular, nppq “ 0 if and only if ρ

is unramified at p. It is known due to Ribet [?] that if ρ is modular then ρ is modular

of level Mpρq. For more details about Serre’s conjecture see [?].

Now given a nontrivial solution of the Fermat equation

a` ` b` ` c` “ 0
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Then it gives the following Frey curve

EF : y2
“ xpx´ a`qpx` b`q.

Then it turns out that MpρEF ,`q “ 2. However S2pΓ1p2qq “ t0u since the corre-

sponding modular curve has genus 0, see [?]. This shows that ρEF ,` is not modular

of level MpρEF ,`q and so it is not modular. Thus ρEF ,` is not modular, contradicting

the Modularity Theorem. This proves Fermat’s Last Theorem.

The proof of the Modularity Theorem due to Wiles starts with any elliptic curve

E over Q and considers the mod 3 representation

ρE,3 : GQ Ñ GL2pF3q.

Suppose that ρE,3 is irreducible. The following proposition shows that ρE,3 is mod-

ular.

Proposititon 5.5.2. ρE,3 is modular in the sense of Definition ??.

Proof. Let K “ Qp
?
´2q. Then OK “ Zr

?
´2s. Consider the embedding

i : GL2pF3q Ñ GL2pZr
?
´2sq

given by
`

´1 1
´1 0

˘

ÞÑ
`

´1 1
´1 0

˘

,
`

1 ´1
1 1

˘

ÞÑ
`

1 ´1
´
?
´2 ´1`

?
´2

˘

The orders of the elements are 3 and 8 respectively hence they generate a subgroup

H of GL2pF3q whose order is divisible by 24. Since PGL2pF3q is isomorphic to S4

and the only order 12 subgroup of S4 is A4, SL2pF3q is the only order 24 subgroup

of GL2pF3q. Since
`

1 ´1
1 1

˘

R SL2pF3q, H “ GL2pF3q. The ideal λ “ x1 `
?
´2y is a

maximal ideal of OK lying over 3. Consider the composition i ˝ ρE,3. Since GL2pF3q

is solvable by Langland’s and Tunnell’s result, i ˝ ρE,3 is modular, i.e. there exists a
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newform f P S1pMf , ψq such that ρf,λ „ i ˝ ρE,3. As before we may assume that the

image of ρf,λ lies in GL2pOKq. Since i followed by reduction modulo λ is identity, the

reduction of ρf,λ modulo λ, ρf,λ is ρE,3. Since ψ “ det ρf,λ is a lift of det ρE,3 “ χ3

mod 3 and this is surjective, ψ is a quadratic character and has conductor 3. Thus

ψppq ” p mod λ for all p. Now for p - 3MfNE we have modulo λ

appfq ” trρf,λpFrobpq “ trρE,3pFrobpq ” appEq.

Consider the weight 1 Eisenstein series Eψ,1
1 PM1p3, ψq. Then

3Eψ,1
1 “ 1`

8
ÿ

n“1

anq
n

where an P 3Z. Let g “ 3Eψ,1
1 f . Then g P S2pΓ0p3Mf qq and f ” g mod λ. Observe

that the action of Tp on S1pMf , ψq and S2pΓ0pMf qq are congruent modulo λ. This is

because ψppq ” p mod λ. Thus Tpg ” Tpf “ appfqf mod λ. The right side is equal

to appEqg modulo λ for all but finitely many p and so Tpg ” appEqg mod λ. The

right side is also equal to appgqg “ a1pTpgqg modulo λ for all p and so Tg ” a1pTgqg

mod λ for all T P TZ. Now define the homomorphism

φ : TZ Ñ F3, T ÞÑ a1pTgq mod λ

By the above observations φpTpq “ appEq mod 3 and φpxpyq “ 1 for all but finitely

many p.

Let m “ kerφ and P be a minimal prime ideal contained in m. Since TZ is a

finitely generated Z-module, TZ{P is an integral domain which is finitely generated

Z-module. Since TZ is a free module over Z no rational prime p is a zero divisor

in TZ and so no rational prime is contained in P as P is a subset of the set of zero

divisors. Therefore Z is contained in TZ{P and so TZ{P has characteristic zero. Its

121



field of quotients is a number field K 1 and TZ{P is contained in the ring of integers

OK1 . Hence there is a homomorphism

φ1 : TZ Ñ OK1 .

Let λ1 be a maximal ideal of OK1 containing φ1pmq. We have seen that for all but

finitely many primes p, φpTpq ” appEq mod λ. Hence Tp´appEq P kerφ “ m and so

φ1pTpq ´ appEq P φ
1pmq Ă λ1. Thus φ1pTpq ” appEq mod λ1 for all but finitely many

primes p. Similarly φ1pxpyq ” 1 mod λ1.

Note that we have an isomorphism

π : TZ b C „
ÝÑ TC,

ÿ

i

Ti b zi ÞÑ
ÿ

i

ziTi.

Using this identification we may extend φ1 to a homomorphism φ1 : TC Ñ C given

by φ1p
ř

i Ti b ziq “
ř

i ziφ
1pTiq. By the pairing from Section ??, there exists an

eigenform g1 P S2pΓ0p3Mf qq with coefficients in OK1 such that

φ1pT q “ a1pTg
1
q, T P TZ.

Compute that appg
1q “ a1pTpg

1q “ φ1pTpq ” appEq mod λ1 and χg1ppq ” 1 mod λ1

for all but finitely many p.

By Proposition ?? there exists a newform g2 of level dividing 3Mf associated to

g1 such that appg
2q “ appg

1q for all p - 3Mf . Let L be a finite Galois extension of

Q such that Kg1 and Kg2 are contained in L. Let σ P GalpL{Qq. Then pg2qσ is the

newform associated to pg1qσ. Hence if σ fixes Kg1 then it fixes Kg2 . Thus Kg2 Ă Kg1 .

Let λ2 “ Kg2 X λ1. Then appg
2q ” appEq mod λ2 for all but finitely many p. This

shows that characteristic polynomials of ρg2,λ2 and ρE,3 are the same making them

equivalent. Thus ρE,3 is modular.
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Note that the modularity of ρE,3 also follows from Theorem ??. After that the

proof shows the following modularity lifting result: under some hypotheses, for any

representation ρ : GQ Ñ GL2pZ`q with mod ` reduction ρ, if ρ is modular, then ρ

is modular. We will explain the method of the proof of this later. The hypotheses

apply when E s semistable and ρ “ ρE,3. Thus ρE,3 is modular.

Note that we have assumed that ρE,3 is irreducible. If it is not irreducible, the

proof use ρE,5 and show that for any semistable elliptic curve E one of ρE,3 or ρE,5

is modular.

Now we will briefly explain the method of proving the modularity lifting theorem.

In order to prove the modularity lifting result Wiles used the deformation theory of

Galois representations which is introduced by Mazur in [?]. We first give some

background of the subject.

A complete noetherian local ring with finite residue field of characteristic p is

called a coefficient ring. Let A be a coefficient ring with maximal ideal mA and

kA “ A{mA. Let ρ : GQ Ñ GL2pAq be a Galois representation. The residual

representation of ρ is the representation ρ : GQ Ñ GL2pkAq obtained by composing

ρ with GL2pAq Ñ GL2pkAq.

Given a Galois representation ρ0 : GQ Ñ GL2pkq. A Galois representation ρ :

GQ Ñ GL2pAq is said to be a lift of ρ0 if k “ kA and ρ “ ρ0. Two lifts ρ, ρ1 of ρ0

are said to be equivalent if ρ “ Mρ1M´1 for some M P kerpGL2pAq Ñ GL2pkqq. A

deformation of ρ0 to A is an equivalence class of liftings of ρ0 to A.

Let C be the category of coefficient rings where the morphisms are local homo-

morphisms inducing identity on k. Consider the deformation functor D from C to

the category of sets,

D : C Ñ SETS, R ÞÑ tdeformations of ρ0 to Ru
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This functor is representable. i.e. there exists a coefficient ring R “ Rpρ0q such

that DpRq “ HomCpR, Rq for any R P ObjpCq. R is called the universal deformation

ring of ρ0. The deformation ρuniv : GQ Ñ GL2pRq that corresponds to the identity

homomorphism idR P HompR,Rq is called the universal deformation of ρ0. R to-

gether with ρuniv satisfy the following universal property: Given a deformation ρ of

ρ0 to R. Then there exists a morphism ϕ : R Ñ R such that the following diagram

commutes,

GQ
ρ //

ρuniv $$

GL2pRq

GL2pRq
ϕ

99

One might want to consider the deformations that satisfy certain property. This can

be done by imposing deformation conditions to the deformation functor. By this

way one gets another functor. Given a condition P . Then we can define

DP : C Ñ SETS, R ÞÑ tdeformations of ρ0 to R satisfying our condition Pu

We want that this functor will be a subfunctor of D and representable whenever D is.

The conditions that satisfy these are called deformation conditions. For the definition

and details see [?]. An example of such a condition is to consider the deformations

that have a fixed determinant. The Galois representations that are coming from

Elliptic curves has determinant equal to the cyclotomic character. Hence to show that

an elliptic curve is modular it suffices to consider the deformations with determinant

equal to cyclotomic character.

Another example of such a condition is to consider deformations that are ordinary

at p.

Definition 5.5.3. Let R P ObjpCq, G be a profinite group and I Ă G be a closed

subgroup. Let ρ : G Ñ GL2pRq be a representation and M “ R ˆ R. We say that
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ρ is I-ordinary if the R-submodule M I Ă M is free of rank 1 over R and a direct

summand of M . ρ is said to be ordinary at p if I “ Ip.

The functor D0pRq “ tdeformations to R which are ordinary at pu is representable

and the representing object is called the universal ordinary deformation ring.

Note that Serre’s conjecture implies that any irreducible odd 2-dimensional rep-

resentation ρ : GQ Ñ GL2pkq is attached to a modular form. Hence one can ask

whether the deformations are modular too. It turns out that if one does not impose

deformation conditions or extend the meaning of being modular this is not true.

Let ρ : GQ Ñ GL2pkq be a residual representation. Assume that ρ satisfies the

following hypotheses:

1. ρ has determinant equal to χp.

2. ρ is absolutely irreducible.

3. ρ is semistable at every prime `: for ` “ p, ρ is either flat at p or ordinary at

p and for ` ‰ p, ρ|I` “
`

1 ˚
0 1

˘

.

4. ρ is modular.

Let S “ t` ‰ p : ρ is ramified at `u. Let Σ be a set of primes distinct from S.

We say that a deformation ρ of ρ is of type P if it satisfies the following conditions:

1. ρ has determinant χp.

2. ρ is unramified outside S Y tpu Y Σ.

3. ρ is semistable outside Σ.

4. If p R Σ and ρ is flat at p then ρ is flat at p.
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As we have explained above P gives a universal deformation ring RP and a

universal deformation

ρP : GQ Ñ GL2pRPq

such that ρP satisfies the following universal property: For every deformation ρ :

GQ Ñ GL2pRq of ρ to R of type P there exists a unique homomorphism RP Ñ R

such that the following diagram commutes,

GQ
ρ //

ρP $$

GL2pRq

GL2pRPq

88

The aim is to control the deformations which are modular hence we need to find

a way of parametrizing the modular deformations. At this point Wiles defines a

coefficient ring TP , the universal modular deformation ring and a universal modular

deformation

ρP,mod : GQ Ñ GL2pTPq

of ρ. ρP,mod satisfies a similar universal property as above: For every modular defor-

mation ρ : GQ Ñ GL2pRq, there exists a unique homomorphism TP Ñ R such that

the following diagram commutes,

GQ
ρ //

ρP,mod $$

GL2pRq

GL2pTPq

88

TP is the completed Hecke algebra. Now by the universal property of RP there

exists a unique homomorphism ϕ : RP Ñ TP such that ϕP ˝ ρP “ ρP,mod. Wiles’s

main theorem states that ϕ is an isomorphism. This proves that any deformation of

type P is modular.

126



References

[1] Tom M. Apostol, Modular Functions and Dirichlet Series in Number Theory,

Springer, 1990.

[2] Neal I. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer,

1993.

[3] F. Diamond, J. Shurman A First Course in Modular Forms Springer, 2005.

[4] Gareth A. Jones, D. Singerman Complex Functions: An Algebraic and Geomet-

ric Viewpoint Cambridge University Press, 1987.

[5] R. Miranda, Algebraic Curves and Riemann Surfaces Americam Mathematical

Soc., 1995.

[6] Hershek M. Farkas, I. Kra, Riemann Surfaces Springer, 1992.

[7] Joseph H. Silverman, Arithmetic of Elliptic Curves Springer, 2009.

[8] A. Wiles. Modular elliptic curves and Fermat’s last theorem. Ann. of Math.,

141(3):443-551, 1995.

[9] R. Taylor, A. Wiles. Ring theoretic properties of certain Hecke algebras. Ann. of

Math., 141(3):553-572, 1995.

[10] C. Beruil, B. Conrad, F. Diamond, R. Taylor. On the modularity of elliptic

curves over Q: wild 3-adic exercises. J. Amer. Math. Soc., 14(4):843-939, 2001.

[11] P. Deligne. Forms modulaires et representations `-adiques. Lecture Notes in

Math., volume 179, pages 139-172. Springer-Verlag, 1971.

127



[12] P. Deligne, J.-P. Serre. Formes modulaires de poids 1. Ann. Sci. Ecole Norm.

Sup., 7:507Ğ530, 1975.
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