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ABSTRACT

This study aims at explaining the Modularity Theorem which states that every ra-
tional elliptic curve arises from modular forms.

First we introduce modular forms, complex elliptic curves and modular curves, and
study these objects. More precisely, we see how modular curves parametrize the
complex elliptic curves and torsion data as solutions of a moduli problem, and there
is a correspondence between the functions on the moduli spaces satisfying certain
conditions and the modular forms.

Then we define the Hecke operators acting on the space of modular forms and using
them construct a canonical basis, consisting of newforms, of the space of cusp forms,
and give the duality between the Hecke algebra and the space of modular forms.
We, then, give the definition of the Jacobian of a modular curve and prove that
Fourier coefficients of weight 2 eigenforms of the Hecke operators are algebraic inte-
gers and conjugate of a weight 2 normalized eigenform is also a normalized eigenform.
Then we define the Abelian variety that comes from a weight 2 eigenform. After that
we study the algebraic model of modular curves and give the Eichler-Shimura rela-
tion.

Finally, we construct the Galois representations attached to an elliptic curve and a
normalized eigenform f € S3(N, x). Then we give a very brief skecth of Wiles’s proof
of the Modularity theorem and study the relation of Modularity theorem with the

Fermat’s last theorem.
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OZET

Bu galismada, rasyonel eliptik egrilerin modiiler formlardan geldigini sdyleyen
modiilerlik teoremini anlamaya caligtik.

Ik olarak modiiler formlar, kompleks eliptik egriler ve modiiler egriler arasindaki
iligkileri inceledik ve modiiler egrilerin kompleks elliptik egrileri nasil parametrize
ettigini gosterdik. Daha sonra modiiler form uzayina etki eden Hecke operatorlerini
tanimladik ve cusp form uzay1 i¢in bir baz elde ettik. Ayrica modiiler egrilerin Jako-
biyanlarimi kullanarak Hecke operatorlerinin 6zvektorlerinin Fourier katsayilarinin ce-
birsel sayilar oldugunu gosterdik. Sonrasinda modiiler egrilerin rasyoneller tizerindeki
modelini ve Eichler-Shimura iligkisini inceledik.

Son olarak eliptik egrilere ve modiiler formlara iligkilendirilen Galois temsillerini insa
ettik ve modiilerlik teoreminin ispatinda kullanilan metodun kisa bir 6zetini verdik.

Ayrica modiilerlik teoremi ve Fermat’in son teoremi arasindaki iligkiyi inceledik.
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1 Introduction

In this chapter we give definitions of modular forms, complex elliptic curves and

modular curves. Then we analyze the relations between these objects.

1.1 Definitions

We start with the definition of the modular group, the group of 2-by-2 matrices with

integer entries and determinant 1;

SLo(Z) = {(25%) : a,b,c,d € Z,ad — be = 1}.

C

Modular group acts on the Riemann sphere C=Cu {00} via fractional linear trans-

formations

a b b ~
(=250 ek
c d ct +d

This means that if v = (¢%) and ¢ # 0 then v(—d/c) = o0 and v(%0) = a/c; if ¢ =0
then ~y(o0) = oo. Note that —v gives the same transformation as v. Modular group

is generated by the following elements

11 0 —1
and

01 1 0

[?, Theorem 2.1]. Hence the transformation group on C defined by the modular

group is generated by the transformations,
T—7+1 and 7— —1/7.

The upper half plane will be denoted by H = {7 € C : Im(7) > 0}. It is easy to see

that
B Im(7)
Cer +dY

Im(7(7)) v=(%4) € SLy(2).



Hence modular group maps H to itself. It is also easy to see that (yy')(7) = v(7/(7))
for all v,~" € SLy(Z). Thus SLy(Z) acts on H.

Definition 1.1.1. Let k be an integer. A meromorphic function f : H — C is weakly
modular of weight k if

F(y(7)) = (er +d)* f(7)

fory=(2%) € SLy(Z) and T € H.

In the above definition v = —1I gives f = (—1)*f, hence the only weakly modular
function of odd weight is zero. Also multiplying weakly modular functions of even
weights m and n gives a weakly modular function of weight m + n. Since the factor
(er + d)* has neither pole nor zeros on H, f(7) and f(y(7)) has the same zeros and

poles.

Definition 1.1.2. Let k be an integer. A function f : H — C is a modular form of
weight k if

1. f is holomorphic on H,
2. f is weakly modular of weight k,
3. f is holomorphic at co.
The set of modular forms of weight k is denoted by My (SLy(Z)).

Let us explain what does it mean being holomorphic at co. Consider the holo-

2miT

morphic map 7 — ¢ = e“™". This map takes H to open punctured unit disk D.
Now let ¢ : D — C be the function defined by ¢(q) = f(log(q)/(27i)). g is well
defined as being weakly modular f is Z-periodic. Since f is holomorphic on H, g

is holomorphic on D. Thus g has a Laurent series expansion g(q) = >, _, a,q" for

nez
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q € D. Define f to be holomorphic at oo if g extends holomorphically to ¢ = 0, that

is, if f has a Fourier expansion
w .
f@) =Y an(f)g",  q=e""
n=0

Since ¢ — 0 if and only if Im(7) — o0, in order to show that f is holomorphic at o
it suffices to show that f(7) is bounded as Im(7) — 0.

It is easy to see that My (SLy(Z)) is a vector space over C. Now we give some
examples of modular forms. The trivial example is the zero function on H which is
a modular form of every weight. A nontrivial example is Eisenstein series. Let k > 2
be an even integer and define the Eisenstein series of weight k

! 1
Gilr) = N e TEH,
& (et + d)

where primed summation sign means to sum over nonzero integer pairs (c,d) €
Z? —{(0,0)}. The sum is absolutely convergent and converges uniformly on compact
subsets of # [?], so Gy, is holomorphic on H. For any v = (%) € SLy(Z), it is easy
to see that G(v(7)) = (c7 + d)*Gi(7) so G}, is weakly modular of weight k. We also
need to check that Gy is holomorphic at co. i.e. Gg(7) is bounded as Im(7) — co.
As Gi(T + 1) = Gg(7) it suffices to take the limit in the domain |Re(7)| < 1 and

Im(7) = 1. Since G}, is absolutely convergent rearranging gives

Gu(r) =2 % + Y (et +d)7"
d=1

c#0,d



Since Gy converges uniformly taking the limit as Im(7) — oo gives

o 1
lim Gg(r) = %gn (2 it Z (CT—i—d)—k)
d=1

Im(7)—00 Im(7)—00 e20.d
& 1
= 22——1— Z lim (er +d)F
k
i d or0.d Im(7)—00
0
1
-2y -
k
d=1 d

Thus Gy, is a modular form of weight k. The Fourier expansion of G, can be obtained

by using the identity

1+§OO L t — 2 'Eoo m
- = mcot T = Wi — 271 .
T = T—d T+4d 1

m=0

Differentiating (k — 1) times gives

1 <_2m)k < k—1
2 (r+df (k- 1) 2,m

deZ m=1

Using this formula we have

_1'22 k:lcm

c=1m=1

Gi(1) = 2((k)

and this gives the Fourier expansion of Gy

Gilr) = 2¢(k) 27” T 2 -

where the coefficient o4_1(n) is the arithmetic function

Ukl Zm

mln
m>0

Dividing by the leading coefficient gives a series with rational coefficients with a com-
mon denominator. The resulting series G (7)/(2((k)) is called normalized Eisenstein

series and denoted by Ej(7).



Definition 1.1.3. A cusp form of weight k is a modular form of weight k such that

the leading coefficient ag in the Fourier expansion is zero, i.e.,

0

f<7—> = Z anq"

n=1

The set of cusp forms is denoted by Sp(SLa(Z)).

Note that a modular form is a cusp form when limy (-0 f(7) = 0. Sk(SLo(Z)) is
a subspace of M,(SLy(Z)). An example of a cusp form is the discriminant function,

A : 'H — C defined by

A(7) = (92(7))” = 27(ga(7))”
where go(7) = 60G4(7) and g3(7) = 140Gs(7). Now A is weakly modular of weight
12 and holomorphic on H. We have seen above that limpy, e Gi(7) = 2¢(k),
hence limpy(r)—o A(T) = (60(2¢(4)))? — 27(140(2¢(6)))* = 0 since ((4) = 7*/90 and
((6) = 7°/945. Thus ag = 0 in the Fourier expansion of A and so A € S(SLy(Z)).
We will prove later that A is non vanishing on H hence we can define j : H — C by

(92(7))3
Ar)

j(r) = 1728

j is clearly holomorphic on H and as the weights of g»(7)% and A(7) are the same j
is SLy(Z) invariant, j(y(7)) = j(7), for every v € SLy(Z) and 7 € H. j is called the

modular invariant.

1.2 Congruence subgroups

In the definition of weak modularity the condition f(y(7)) = (er + d)*f(r) for
v = (‘; Z) € SLy(Z) can be generalized by replacing SLy(Z) by a subgroup I'. In this

section we explain how to do this.



Let N be a positive integer. The principal congruence subgroup of level N is
P(N) ={(2%) eSLa(2) = (25) = (39) mod N}.
In particular I'(1) = SLy(Z). Note that I'(NV) is the kernel of the natural homomor-
phism SLy(Z) — SLy(Z/NZ) and so is normal in SLy(Z). It is not hard to see that
this map is surjective. Hence we have an isomorphism SLy(Z)/I'(N) = SLy(Z/NZ).
Hence [SLy(Z) : T'(N)] is finite.
Definition 1.2.1. A subgroup T' of SLy(Z) is a congruence subgroup if T(N) < T’

for some N € Z" and T" is called a congruence subgroup of level N.

Note that for every congruence subgroup I', [SLy(Z) : I'] is finite. The most impor-
tant congruence subgroups are

Po(N) ={(24) €SLa(Z) : (2) = (§1) mod N}
and

Ly(N) ={(2%) €SLa(Z) : (25) = (§1) mod N}
Note that I'(N) < T'1 (V) < T'o(N) < SLy(Z). The map I'y(N) — Z/NZ that is given
by (¢%) ~ b mod N is a surjection with kernel I'(N). Hence I'(N) < T'1(N) and
I'1(N)/T(N) = Z/NZ. Similarly the map o(N) — (Z/NZ)* defined by (¢}) — d
mod N is a surjection with kernel I'y(N) giving I'q(N)/T1(N) = (Z/NZ)*.

Now we introduce some notation. For any matrix v = (24) € SLy(Z) we define

the factor of automorphy j(v,7) € C by j(v,7) = ¢ + d and for any v € SLy(Z) the
weight-k operator [v], on functions f : H — C by

(fI)E) =50 f(y(r),  TeH.

A meromorphic function f : H — C is called weakly modular of weight k& with
respect to I' if f[vy], = f for every v € I'. Basic properties of factor of automorphy

and weight-k operator are given in the following lemma.
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Lemma 1.2.1. For all 7,7 € SLy(Z) and 7 € H,
1g(yysm) =iy ()i, 7),
2. (1)(7) =1('(7)),
3 11k = e [V

4. Im(y(r)) = 2,

dy(r) _ _ 1
5' dr o j(7’7)2
Proof. [?7, Lemma 1.2.2]. O

The property 3 of the above lemma implies that if a function f : H — C is weakly
modular of weight k with respect to a subset S of SLy(Z) the f is weakly modular
of weight k with respect to the subgroup generated by S.

Now we give the definition of a modular form with respect to a congruence sub-
group I'. Let k£ be an integer. A function f :H — C is a modular form of weight k
with respect to I' if it is weakly modular of weight k with respect to I' and satisfies
certain holomorphy condition: As I'(V) < I' form some N, I' contains a matrix of
the form ((1) ’1‘) : 7 +— 7+ h for some minimal h € Z*. If f : H — C is weakly modular
of weight k£ with respect to I', f is hZ-periodic. Similarly to the first section there is

a function g : D — C such that f(7) = g(qs) where ¢, = p2mit/h

and D is again the
punctured unit disk. As before g is holomorphic on D since f is holomorphic on H
hence g has a Laurent expansion. f is defined to be holomorphic at oo if g extends

holomorphically to ¢, = 0. If this is the case f has a Fourier expansion

f(T) = Z anQZ'
n=0



A T-equivalence class of points in Q U {o0} is called a cusp of I'. SLy(Z) has only
one cusp as all rational points are equivalent to co. Each s € Q is of the form
s = a(o0) for some a € SLiy(Z) hence the number of cusps is at most the number of
cosets ['av in SLy(Z). A modular form with respect to I' should be holomorphic at
cusps. Holomorphy at s € QQ is defined in terms of holomorphy at co: Write s € Q
as s = a(0). f is holomorphic at s if f[a], is holomorphic at oo. This makes sense
since f [a], is holomorphic on H and weakly modular with respect to o 'T'a which

is again a congruence subgroup of SLy(Z).

Definition 1.2.2. Let ' be a congruence subgroup of SLa(Z) and k be an integer. A
function f:H — C is a modular form of weight k with respect to I" if

(1) f is holomorphic,

(2) [ is weight-k invariant under T,

(3) f e, is holomorphic at oo for all a € SLy(Z).

If in addition

(4) ap = 0 in the Fourier expansion of f [a], for all « € SLy(Z),

then f 1s said to be a cusp form of weight k with respect to I

The modular forms(resp. cusp forms) of weight k with respect to I' are denoted
by M (I')(resp. Sk(I')). Since f[ya]r = fla]x for all v € T, condition (3) and (4) in
the above definition need to be checked for only finitely many coset representatives
of I' in SLy(Z).

Let x be a Dirichlet character modulo N. The y-eigenspace of My (I'1(N)) is
defined as the set

M (N, X) = {f e Mu(T1(N)) : f[7]e = x(d)f for all v = (24) e Ty(N)}.



The vector space My (I'1(N)) decomposes as
M (T'1(N)) = @Mk(N, X)-
X

We will use this fact frequently.

1.3 Complex Tori

A lattice in C is a set A = wZ @ woZ with {wy,ws} is a basis of C over R and

wy /wy € C. We have the following relation between the basis of the same lattice.

Lemma 1.3.1. Consider two lattices A = w1 Z @ weZ and N' = wWZ + wyZ. Then
A =N if and only if (2) = (28)(&8) for some (Y) € SLy(Z).

Proof. [?, Theorem 1.2] O
A complex torus is a quotient of the complex plane by a lattice, C/A = {z + A :

z € C}. It is a compact Riemann surface. The following proposition characterize the

holomorphic maps between complex tori.

Proposititon 1.3.1. Suppose ¢ : C/A — C/A’ is a holomorphic map between com-
plex tori. Then there exist m,b € C with mA < A’ such that o(z +A) =mz+b+ A'.

@ is invertible if and only if mA = A’

Proof. Since C is the universal covering space of C/A, ¢ lifts to a holomorphic map

p:C—-C.

C C
Pl
C/A—2=C/N

Let A € A and consider the function f\(z) = ¢(z + A) — @(z). By the commutativity
of the above diagram we have p'(@(z + A)) = p(p(z + A)) = ¢(p(z)) = p'($(2)) and

9



so ¢(z + ) — @(z) € A'. Hence f) maps C to A’ and since f) is continuous, it is
constant. Therefore differentiating gives ¢'(z+A) = ¢/(z) and so ¢’ is a holomorphic,
A periodic function. This makes ¢’ bounded and by Liouville’s theorem it is constant.
Hence ¢(z) = mz + b. Since ¢ lifts a map between quotients, we have mA < A’ and

¢ has the form given in the proposition. O

Corollary 1.3.1. Suppose ¢ : C/A — C/A is a holomorphic map between complex

tori, p(z + A) = mz + b+ N with mA < A'. Then the following are equivalent:
1. ¢ is a group homomorphism,
2.belN, sop(z+A)=mz+ N,
3. p(0) = 0.

Now we give an example of an isomorphism between complex tori. Let A =
w1Z @ woZ be a lattice and 7 = wy/we. Let A, = 7Z @ 7Z. Since (1/wy)A = A, by
the above corollary the map ¢, : C/A — C/A; given by p(z + A) = z/wy + A, is
an isomorphism. Thus every complex torus is isomorphic to a complex torus whose
lattice is generated by a complex number 7 and 1. 7 is not unique but if 7/ € H is
another such number i.e. A = W|Z@AwLZ and 7 = w] /W) then by Lemma 7?7 7/ = ~(1)
for some v € SLy(Z). Thus each complex torus determines a complex number 7 € H

up to action of SLy(Z).

Definition 1.3.1. A nonzero holomorphic homomorphism between complex tori is

called an isogeny.
Examples

1. Every holomorphic isomorphism is an isogeny.

10



2. Multiply by integer maps: Let N be a positive integer and A be a lattice.
Consider the map [N]: C/A — C/A given by 2+ A — Nz + A. As NA c A
this is an isogeny. Its kernel is the set of N-torsion points of C/A isomorphic

to Z/NZ x Z/NZ. The kernel is denoted by E[N].

3. Cyclic quotient maps: Let N be a positive integer and C be a cyclic subgroup
of E[N] isomorphic to Z/NZ. As a set C is a superlattice of A. The cyclic
quotient map 7 : C/A — C/C given by z+ A +— z+ (' is an isogeny with kernel
C.

Every isogeny can be written in terms of the above examples. Indeed; let ¢ : C/A —
C/N, 2+ A— mz+ A and let K = kerp. Then K = m™'A’/A. K can also be
viewed as a superlattice K = m~!'A’ of A. Let N be the order of K, hence K
E[N]| = Z/NZ x Z/NZ and so K =~ Z/nZ x Z/nn'Z for some n,n’ € Z*. Then nK
is a cyclic subgroup isomorphic to Z/n'Z and the quotient isogeny 7 : C/A — C/nK
has kernel nK. Now consider the map C/nK — C/A’ given by z+nK — (m/n)z+A\'.
This map is an isomorphism since (m/n)nK = mK = A’. Thus we have

[n]

p: C/A C/A—=C/nK = C/A'.

Let A be a lattice. The N-torsion subgroup of C/A is
E[N| ={PeC/A:[N]|P =0} = {wi/N + A) x {wy/N + A).

Let pn denote the complex Nth roots of unity uy = {z € C: 2% = 1}. We define the
Weil pairing ey : E[N] x E[N] — uy as follows: Let P and @ be points in E[N].
If A = wZ®wsZ then (5)= ’y(:j%iﬁ) for some v € My(Z/NZ). The Weil pairing
of P and Q is ey (P, Q) = e?midetv/N,

Now we show that how complex tori can be viewed as elliptic curves. Given

a lattice A and let £ = C/A. The meromorphic functions f : C/A — C can be

11



identified with the A-periodic meromorphic functions f : C — C. These A-periodic
functions are called elliptic functions. Let P = {zjwy + xows : 1,25 € [0, 1]} be the
parallelogram representing £ and 0P be the counterclockwise boundary of P. Since
f has finitely many poles and zeros, t + 0P does not contain any poles or zeros for
some t. The following lemma gives some basic properties of these functions that we

will need later.
Lemma 1.3.2. Let f : C — C be an elliptic function. Then
1. 1/(2mi) §,, 5p f(2)dz = 0, hence the sum of the residues of f on E is zero,

2. 1/(2mi) SHaP f/((zz))dz = 0, hence f takes each value N times, where N 1is the
order of f,

3. 1/(2mi)§,, ap 2 fl((j))dz = 0, hence Y, pv.(f)x = 0 in E, where v,(f) is the

order of f at x.

Proof. [?, Chapter 3]. O

The most important example of these functions is the Weierstrass p-function
1 / 1 1
= — + —_—t =, eC, z¢A.
o0 -5+ Y (o). 2eC a0

The sum converges absolutely and uniformly on compact subsets of C away from A

[?]. The derivative

@2 %

weA

is clearly A-periodic. i.e. @/'(z +w) = ¢/(2) for all w € A. Hence p(z + w) — p(2)
is constant. When z = —w/2, p(w/2) — p(—w/2) = 0 as p is an even function.
This makes p(z + w) = p(z) for all w € A. Thus p is A-periodic. This example is

12



important since the field of meromorphic functions on C/A is C(p, ¢'), the rational
expressions in these two functions.
Eisenstein series generalize to functions whose variable is a lattice, Gg(A) =

>er 22, k > 2 even. Hence the function Gj(7) from before can be written as

Proposititon 1.3.2. Let o be the Weierstrass function with respect to a lattice A.
Then

1. The Laurent expansion of @ is

= i2 Z n+2 A)zn

n=2
n even

for all z such that 0 < |z| < inf{|lw| : w e A —{0}}.
2. The functions @ and @' satisfy the relation
(¢/(2))" = 4(p(2))* = g2(A)p(2) — g5 (A)
where go(A) = 60G4(A) and g3(A) = 140G¢(A).

3. Let A = i Z @ weZ and w3 = wy + wy. Then the cubic equation satisfied by ¢’
and @ 18

P oo —e)o—e)w—es), o= plw2) fori=1,2,3
e;’s are distinct.

Proof. (1) Let r = inf{|w| : we A —{0}}. If 0 < |z] <, then |z/w| < 1 and we have

(Z_lw)zzuﬂ(ll_i) (1+ 1n+1 ( >>

w n=

13



Hence we have

1 < 1 1 &
p(2) = 5+ dn+1) ), =t D0+ 1)Gria(A)2".
n=1

w#0 n=1

When n is odd G,12(A) = 0 so (1) follows.
(2) Using part (1) we have

(¢/(2))? = 4/2° — 24G4(N)/2* — 80Gs(A) + O(2%)
and
4(p(2))? = g2(M)p(2) — gs(A) = 4/2° — 24G4(A)/2* — 80Gs(A) + O(2?)

hence the difference is a holomorphic A-periodic function, hence bounded and there-
fore constant making it zero. This proves part (2).

(3) Since ¢’ is odd, it has zeros at the order two points of C/A. The order two
points are z; = w;/2 for i = 1,2,3. Hence by part (2), ¢; = p(w;/2) are the roots
of the cubic polynomial 4z — go(A)z — g3(A) and this proves the factorization in
part (3). Now let fi(z) = p(z) — e;. f; is an elliptic function of order 2. Since
filwi/2) = fl(w;/2) = 0, f; has double zeros at w;/2 and so has no other zeros. Hence
fi(w;/2) # 0 for i # j. This shows that e;’s are distinct. O

Part (3) of the above proposition shows that the map z — (p(2),¢'(2)) takes
the nonlattice points of C to points (z,y) € C? satisfying the cubic equation y? =
43 — go(A)z — g3(A). This map is bijective. It extends to lattice points by mapping
them to a point at infinity. Thus we have shown that for every lattice the associated

Weierstrass p-function gives a bijection

(p, ') : complex torus — elliptic curve.
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Under this map the group law on complex torus is transferred to the elliptic curve.
Indeed, let z; + A and 25 + A be nonzero points of the torus. The image points
(p(21), 9'(z1)) and (p(z2), p'(22)) determine a tangent or secant line of the curve.

Let ax + by + ¢ = 0 denote this line and consider the function

f(z) =ap(z) + bp'(2) + c.

Now f is meromorphic on C/A. If b # 0, f has a triple pole at 0 + A and zeros
at z1 + A and 2o + A. By Lemma ?7? the third zero of f is at z3 + A such that
21+ 20+23+ A =0+A. If b= 0, f has a double pole at 0+ A and zeros at z; + A and
z9 + A, and again by lemma 7?7 21 + 20+ A =0+ A. In this case let z3 + A =0+ A
and so we have z; + 29 + 23 + A = 0 + A. Thus the points of the elliptic curve on
the line ax + by + ¢ = 0 are the points (z;,v;) = (p(2:), ¢'(2;)) for i = 1,2,3. Since
21+ 29 + 23+ A = 0+ A the group law on the curve is that collinear triples sum to
7Z€ero.

We have seen that a holomorphic isomorphism of complex tori is of the form
z+ A — mz+ A for mA = A. Since pr(mz) = m2pp(2) and @), (mz) = m™3g) (2)
the corresponding isomorphism of elliptic curves is (x,y) — (m 2z,m3y). This
transforms the cubic equation y? = 42® — gz — g3 into y? = 42® — m~*g.x — mCgs.

The following corollary of Proposition 7?7 shows that the discriminant function

A is nonvanishing.
Corollary 1.3.2. The discriminant function A is non vanishing on H.

Proof. Let 7 € H. Consider the lattice A, and the resulting cubic polynomial 42 —
92(T)x — g3(7). By Proposition ?? this polynomial has distinct roots. Since A(7) is

the discriminant of this polynomial, A(7) # 0 [
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Up to this point we have seen that every complex torus lead to an elliptic curve
y? =42 — apr — a3, ay —27a3 # 0 (1.1)
via the Weierstrass p-function. The converse is also true.

Proposititon 1.3.3. For every elliptic curve (?77), there exists a lattice A such that

ag = 92(A) and az = gz(A)-

Proof. If a; = 0 take A = A,, where p3 is the third root of unity. If a3 = 0 take
A = A;. Now assume that as # 0 and ag # 0. Since j : H — C surjects, there exists
7 € H such that j(7) = 1728a3/(a3 — 27a3). Hence
92(7) _ a;
go(T)3 — 2793(7)% a3 —27a?’

and so

3 2
B - B (1.2)
92(7)*  gs3(7)

Choose wy € C such that wy* = ay/g2(7) and so wy 2 = a3/go(7)%. By (7?), w,® =

+a3/g3(7). Replacing wy by iw, if necessary we may assume w;® = as/gs3(7). Let

wp = Twe and A = wZ @ weZ. Then ay = g2(A) and az = g3(A). O

Thus we may identify complex tori and elliptic curves.

1.4 Modular curves and moduli spaces

In this section we explain how modular curves parametrize the complex elliptic curves
together with N-torsion data.

Let N be a positive integer. An enhanced elliptic curve for I'o(/N) is an ordered
pair (FE,C) where E is a complex elliptic curve and C' is a cyclic subgroup of E

of order N. Two such pairs (F,C) and (E’,C") are equivalent if there exists an
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isomorphism E — E’ taking C' to C’. The set of equivalence classes is denoted by
So(N).

An enhanced elliptic curve for I'y (V) is a pair (E, Q) where E is a complex elliptic
curve and @ is a point of order N. Two such pairs (F, Q) and (E', Q)’) are equivalent
if there exists an isomorphism F — E’ taking Q to @)'. The set of equivalence classes
is denoted by 57 (V).

An enhanced elliptic curve for I'(N) is a pair (F,(P,Q)) where E is a complex
elliptic curve and (P, Q) is a pair of points that generates E[N] with ey(P, Q) =
/N Two such pairs (E, (P,Q)) and (E', (P’,Q')) are equivalent if there exists an
isomorphism £ — E’ taking P to P’ and Q to Q’. The set of equivalence classes is
denoted by S(N).

Each of Sy(N), S1(N), and S(N) is a moduli space of isomorphism classes of
complex elliptic curves and N-torsion data. If N = 1 then all moduli spaces above
reduce to the isomorphism classes of complex elliptic curves.

For any congruence subgroup I' of SLy(Z) acting on the upper half plane H, the
modular curve Y (I') is defined as the quotient space of the orbits under the action
of I', Y(I') = I''H = {I'r : 7 € H}. The topology on the upper half plane H is
the subspace topology induced from R?. The quotient map 7 : H — Y (I") defined
by 7(7) = 't gives Y(I') the quotient topology. Under this topology 7 is an open
mapping and Y (I') is Hausdorff. The modular curves for I'o(N), I'; (V) and I'(N)
are denoted by Yy(V), Y1(N) and Y (N) respectively.

Let H* = H u Q u {oo} and define X(I') = I'\H* = Y(I') u I"\(Q u {oo}). To
define the topology on H*, let Nyy = {r € H : Im(7) > M} for M > 0. Use the sets
a(Ny U {oo}) for o € SLy(Z) and M > 0 as a base of neighborhoods of the cusps
and use the usual topology for points 7 € H. Hence we have a topology on H*. Give

X(T") the quotient topology induced by the natural map 7 : H* — X(I'). Under this
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topology X (I') is a compact connected and Hausdorff. Moreover X (I') is compact

Riemann surface. For details see [?, Chapter 2].
Theorem 1.4.1. Let N be a positive integer.

1. The moduli space for I'o(N) is
So(N) ={[E;,{1/N + A)]: 7€ H}.

Two points [E,,{1/N + A,;)] and [E.,{1/N + A.)] are equal if and only if
Lo(N)7T =To(N)7'. Thus there is a bijection g : So(N) = Yo(N) given by,

[C/A;,{1/N + A,)] — To(N)r.

2. The moduli space for I'y(N) is
Si(N) ={[E,,1/N + A,]: 7€ H}.

Two points [E;, 1/N+A;| and [E., 1/N+A] are equal if and only if 1 (N)7 =
'y (N)7'. Thus there is a bijection ¢y : S;(N) — Y1(N) given by,

[C/A.,1/N + A.] — Dy (N)7.

3. The moduli space for T'(N) is
S(N) ={[E,, (/N + A, 1/N + A,)] : 7 € H}.

Two points [E;, (/N + A, 1/N + A,)]| and [E., (7//N + A, 1/N + A)] are
equal if and only if T(N)T = T'(N)7'.Thus there is a bijection ¢ : S(N) —
Y (N) given by,

[C/A., (r/N + A, 1/N + A)] — D(N)7.
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Proof. We only prove part (2). Part (1) and (3) follows from similar arguments. Let
[E,Q] € Si(N). Since E is isomorphic to C/A,s for some 7" € H, we may assume
E = C/Ay. Then Q = (¢’ + d)/N + A, for some ¢,d € Z. As the order of @)
is N, ged(c,d, N) = 1. i.e. ad —bc — kN = 1 for some a,b,k € Z. Consider the
matrix v = (¢Y) € My(Z). Note that v mod N € SLy(Z/NZ). Since changing
v modulo N does not change @ and SLy(Z) surjects to SLs(Z/N7Z) we may take
v =(2%) € SLy(Z). Let 7 = 4(') and m = 7’ + d. Hence m7 = a7’ + b and so

mA, =m(TZ@®Z) = (a7’ + b)Z @ (cr’' + d)Z.
Since (2%) € SLy(Z) by Lemma ??
(aT" +D)ZD (T + )2 =TZDZ = A,

We also have

m(1/N +A;) = (cr' +d)/N + Ay = Q.

This proves that [E, Q] = [C/A,,1/N + A.].

Suppose I'1(N)r = T'1(N)7’ for some 7,7 € H. Hence 7 = ~(7') for some
v=(2Y%) e(N). Thus (c,d) = (0,1) mod N and so m(1/N+A;) = (1/N+A,).
Thus [C/A;,1/N + A;] = [C/A,,1/N + A./]. Therefore ), is injective.

Now suppose [C/A;,1/N + A;] = [C/A.,1/N + A/] with 7,7 € H. Then there
exists m € C such that mA, = A and m(1/N + A;) = 1/N + A.. Thus by Lemma

7?7 we have
(TZ{) 27(71') for some vy = (‘gg) € SLy(Z), (1.3)
so m = ¢’ + d. Thus from above we have

ct’ +d 1
A= —+ A
N * N +
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Therefore (¢,d) = (0,1) mod N and € I'y(N). Since by (??) 7 = ('), T1(N)7 =
Ty (N)7. O

Taking N = 1 in the above theorem shows that isomorphism classes of complex
elliptic curves are in one-to-one correspondence with SLy(Z)\H. Hence we asso-
ciate an orbit SLy(Z)7 to each isomorphism class. Since the modular invariant j is
SLy(Z)-invariant function on H, each isomorphism class has a well-defined invariant
j(SL2(Z)7). This value is denoted by j(F) for any complex elliptic curve E in the
isomorphism class.

The bijections in Theorem ?? give more examples of modular forms as follows:
Let k£ be an integer and I' = T';(N). A complex valued function F' of enhanced

elliptic curves for I' is degree-k homogeneous with respect to I' if for every m € C*,
F(C/mA,mQ) =m *F(C/A, Q). (1.4)
Given such F' define f : H — C by
f(r) = F(C/A.,1/N + A,).

Then f is weight-k invariant with respect to I'.
Conversely, let f be weight-k invariant with respect to I'. Then define F' on

enhanced elliptic curves by
F(C/AT7 1/N + AT) = f(T)

If (C/A+,1/N + Ay) = (C/mA;,m/N + A;) then 7 = v(7') and m = ¢7’ + d for

some v = (2%) € I'. Hence F satisfies (??)
F(C/Ay,1/N +Ap) = f(7') =m ™ f(r) = m*F(C/mA,,1/N + A,).

Since every enhanced elliptic curve is equivalent to an enhanced elliptic curve of the

special type given above F' extends to all of S;(N).
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2 Hecke Operators

In this section we define the Hecke operators and find a canonical basis for the space

Si(T'1(N)).

2.1 The {(d) and T, operators

Let I'y and T’y be congruence subgroups of SLy(Z). For each o € GL3 (Q) the set
[aly = {71y : 71 € ', 72 € Ty} is said to be a double coset in GL3 (Q). T'y acts

on I'yal's by left multiplication. Hence the orbit space is
Fl\FlOéFQ = UFlﬁj (21)
J

where f3; are orbit representatives.

Lemma 2.1.1. For any congruence subgroup T of SLy(Z) and o € GL3 (Q), the set

a 'Ta N SLy(Z) is a congruence subgroup of SLa(Z).
Proof. [?, Lemma 5.1.1] O

Lemma 2.1.2. Let 'y and Ty be two congruence subgroups of SLo(Z) and o €
GL3(Q). Let T3 = a 'Tya nTy. Then the map Ty — T'ialy given by vo — avye

induces a natural bijection form the coset space I's\I'y to the orbit space T'1\I'1al's.

Proof. Consider the surjective map I's — ['/\['jal's given by 75 — [jay,. Let
Y2,75 € T'y. Then T'iays = vy if and only if ¥4, ' € a™'Tan Ty = I if and only
if I'375 = I'372. Thus the above map induces a bijection I's\I'y — I'1\['jal's. O]

We need one more lemma to go further

Lemma 2.1.3. Let I'y and T's be two congruence subgroups of SLo(Z). Then [Ty :
'y n o] is finite.
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Proof. There exists Ny, Ny € Z* such that I'(N;) < T’y and I'(Ny) < T'y. Let N3 =
lem(Ny, Ny). Hence I'(N3) < I'y n Ty, Thus [y : Ty n Dy < [Ty 0 T(N3)] < [SLe(Z) -
['(N3)] < . O

By Lemma ?7, a 'T'ya n SLy(Z) is a congruence subgroup of SLy(Z) and by
Lemma ?7, the index [Ty : T'3] is finite, where I's = o 'Tya n T'y. Hence by Lemma
77, the orbit space I';\I';al's is finite. Thus the union (?7) is finite.

Now we can define the I'yal'y operator. Let I'y and I's be congruence subgroups

of SLy(Z) and o € GL3 (Q). The weight-k I';al’y operator on My (T'y) is defined by

flTals ], = Z f[ﬁj]k, fe M),

where {;} are orbit representatives. By the above discussion the sum is finite. The
[['1al's], operator is well-defined. Indeed; let S and f’ represent the same orbit, i.e.
I8 = T8 Then § = 70 for some 7 € Ty. As f € M(Ty), f[8] = fIvBl =

(S [B]k = LBk
Our claim is that f[I'ial's]y € Mg(Ty) for f € Mg(T'1). To see this first let

Y2 € FQ and consider the map Fl\FlaFg — Fl\FlaFg defined by Flﬁ — Flﬁ’)/Q. This
map is well-defined and bijective. Thus if {f,} is a set of orbit representatives then

{B;72} is also a set of orbit representatives. Hence we have
(fTrel2]i)[als = (Z f1B51e) 2k = Zf[ﬂﬂz]k = fIT1als]y.

This proves that f[I';al's]x is weight-k invariant under I's.

Now we need to show that f[Iyal';]x is holomorphic at the cusps. For any
v € GL3 (Q) extend the definition of weight-k operator to GL; (Q) by (f[v]x)(T) =
(det v)*= L (v, 7) 7% f(7(7)) where f : H — C. It is easy to see that [yY']x = [v]e[¥']x
for all v,+" € GL3 (Q).
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Lemma 2.1.4. Let v € GL3 (Q) and T be a congruence subgroup of SLo(Z). Let
fe Mg(I'). Then f]v]r has a Fourier expansion.

a' b
0d

Proof. Let v = (gg) Suppose ¢ = 0. Then v = T(

) for some r € Q1 and
a b ,d e Z with ged(a,b',d’) = 1. Now suppose ¢ # 0. Let a/c = d/c with
ged(a/, ) = 1. Let v/ = (3 %) € SLy(Z). Then 'y = (%) € GL;(Q) and

a' b

O ) Thus in both cases v can be written as v = a7 for some

as above 7'y = 7“(
a € Sly(Z) and v = r( ‘6’ Zﬁ) with @/, 0, d’ € Z are relatively prime. Since f € M(I'),
fla]x has a Fourier expansion. Hence f[v], = (det fy’)k_l(rd/)_k(f[a]k)(%) has a
Fourier expansion. If f[«]; has period h € Z* then we have

(fl7v]e) () = (det fy’)k_l(rd’)—k Z aneQ’”(a,Ter')”/d'h.

n=0

This proves that if constant term of f[a]x is zero then constant term of f[v]y is also

Zero. ]

Now let 0 € SLy(Z). We have to show that (f[['1al'2]x)[d]x is holomorphic at
0. (f[T1aTl2]k)[0]k is a sum of the functions g; = f[B;0]k. Since 5;0 € GL3 (Q), by
Lemma ??, g; is holomorphic at 0. Let h; be the period of g; and let h = lem(h;).
Then the sum (f[I';als]x)[0]x has period h. Each g; has a Fourier expansion

9:(r) = > bulg))a;-
n>0

Thus the sum (f[[1al'e]x)[d]x has a Fourier expansion. Hence we proved that
f[T1als]k is holomorphic at cusps and this shows that the weight-k T';al's oper-

ator is

[[1als ]k : My(Ty) — Mg (Ty).
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Moreover, if f € S(I';) then by the last part of the proof of Lemma ?? and above

discussion combines to show that f[I';al's]x € Si(I'y), that is,
[FlaFg]k : Sk(Fl) - Sk(rg)

Remarks

1. Suppose I'y © I'y and take a« = I. Then f[I'1al's]x = f and so the operator
[['1al's]x is the natural inclusion of the subspace My (I'1) into My (T').

2. Suppose a Ty = ['y. Then T'jal'y = Ty and so f[T1als], = fla]x. Let f e
M (Ty) and v; € T'y. Then (fla™]e)[n]r = fla™ ' nlk = (fla” ' malw)[a™ ]y =
fla~ 'y as a™ 'y € Ty. The holomorphy conditions are also satisfied by
Lemma ?? and so fla™ ']y € My(T1). Hence [[9a™'T']; is the inverse of

[['1al's]x and so in this case

[Tials]g : My(Ty) = Mi(Ty).

3. Suppose I'y € I'; and take o« = I. Let {~;} be coset representatives of I'|\I'; and
so f[[al2], = X flv;lk- In this case [I'ial's]; is the projection of My (T')
onto its subspace My(T's).

Let 'y and T'y be any two congruence subgroups and a € GLJ (Q). Then the
double coset operator [T'1als ], can be written as a composition of the above cases.
To see this, let T's = o™ 'T'ia n Ty and Ty = al'sa™! =T} nalsa™!. Then we have
I, < Ty, a 'Tha = T'3 and T's < T'y. Thus the corresponding double coset operators
gives

[C1al

[FgOLFQ]k

M(Ty)

M;(T's)
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f—fr— fla]k |—>Zj flavy;lk , where v; are coset representatives of I's\I's.
By Lemma ?7, ay; are the orbit representatives of I'1\I';al'y and so the composition
is the double coset operator [I'1al's].

The double coset operator [['jal's], has an interpretation in terms of modular

curves and their divisor groups. First note that we have

Fg —_— Fé
I’y Iy

where the top row is the isomorphism v + aya~! and the other maps are inclusions.

Thus in terms of modular curves we have

X3 — X}
X, X

where the top row is the isomorphism I's7 — I';a(7) and m; and m are natural
maps. Considering modular curves as compact Riemann surfaces the maps in the
above diagram are holomorphic. Let I's\I'y = [ J ;I's7j and §; = ay; for all j and so
I'al's = Uj I'13;. Each point of X5 is mapped by m oo 7, ! to a set of points of
X

{wa(ﬂ} —>{F§5j(7)}
Lo {T'18;(7)}

In terms of divisors the composition [[yals], : Xo — Div(X;) is given by ['y7 —
2, T18;(7). Extend this linearly to Div(Xz) to obtain a homomorphism between
divisor groups

[Fl&rg]k . DIV(XQ) i DIV(X1>
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Remarks

1. Suppose I'y = T'y. Then corresponding group homomorphism between divisor

groups is a surjection.

2. Suppose a Iy = I'y. Then divisor groups of I'; and I'y are isomorphic under
[FIOCFQ]k.
3. Suppose I'y o T';. Then [['jal's], is an injection.

Now we are ready to define {(d) and T}, operators. Recall from Section ?? that we
have an isomorphism I'g(N)/T'1(N) = (Z/NZ)* defined by (%) — d mod N. Let
a € I'g(N) and consider the double coset operator

[T (N)al' (N)]i : Me(T1 (V) = M (1 (N))

given by S (N)aT'y(N)]s = flali for f € My(Ts(N)). Hence flali € My(Ty(N))
and so I'g(N) acts on My (I'1(N)). Since I'y(N) acts trivially the quotient (Z/NZ)*

acts on My(T'1(V)). Hence we have an operator
(d) s Mg (N)) = My(T1(N))

given by (d)f = fla]y for any a = (%) € T'o(N) such that § = d mod N. This
operator is called diamond operator. Now for any Dirichlet character x : (Z/NZ)* —
C* the y-eigenspace is

Mi(N, x) = {f € Mi(T'1(N)) : {d)f = x(d)f for all d € (Z/NZ)"}

Thus {d) acts on the eigenspace of y by multiplication by x(d).
To define T}, let o = (62) for p prime. Then T, is defined to be the double coset
operator [['y(N)al'y(N)],. Thus

Ty : Mi(I'1(N)) = My(I'1(N))
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is defined by f — f[I'1(N)al'1(N)]x. The following proposition gives the explicit

representation of 7).

Proposititon 2.1.1. T, defined as above is given by

3 A if DN
Tpf: i:? A
,:Of[(éi,)]wrf[(%”‘;‘)(g?)]k if pt N, where mp—nN =1

Proof. Let T%(p) = {(2%) € SLo(Z) : (24) = (% 9)(mod p)} and define I'Y(N, p) =
L1 (N)nT9%p). Let T's = a T (N)anT(N). First we show that I's = T9(N, p). Let
v €T3 Then v e 'y (N) and v = a'vsa for some 3 € ') (N). An easy computation
shows that a~!'ysa € T%(p) hence v € T'1(N) n T%(p) = TY(N,p). Conversely, let
v=(25) € TYN,p). Then aya™ = (. ’P) e T\(N) and so v € a~'T'}(N)av.

Let v = (37) for 0 < j < p. Given v € T'j(N), then v € I'3y; if fyfyj’l ey =
['1(N)AI(p). Clearly yy; ' € [1(N) for all j. But we also need the upper right entry
b—aj of 77;1 = (‘Z Z:‘éj) to be 0 (mod p). Suppose p{a. Then let j = ba™! (mod p)
and so fyfyj’l € I's. Now suppose p | a. Then b — ja # 0 (mod p) since otherwise
plband p|ad—bc=1. p|aifandonly if pt N. In this case let 7, = (W)
where mp — nN = 1. Now v7,;! € I's. Thus 7, ..., 7,—1 are coset representatives of

['3\['1 (V) when p | N and 7, is also required when p t N. Hence the corresponding
orbit representatives of I'y(N)\I'; (N)aI';(N) are

Bi=ay=(o3) for0<j<p, Bo=(%5)(7)ifptN. (2.2)
This finishes the proof. ]

The next proposition describes the effect of 7T}, on the Fourier coefficients. Before

that we need the following lemma.
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Lemma 2.1.5. Let f € My(I'1(N)). Then {d)(T,f) = T,({d)f). That is the two

kinds of Hecke operator commute.

Proof. Let a = (§%) and v € T'o(N). Then a simple computation shows that
yay ' = (43) (mod N). The double coset I'y (N)al'y(N) is

T (N)al' (N) = {yeMy(Z) : v = (§}) (mod N), dety = p}.

For the proof of this see [?, Chapter 3. If T';(N)« = |J; T1(IV)B; then by the
above description of T'1(N)aI'1(N) we have I‘l(N)af‘l(N) =T (N)yay™ Ty (N) =
7F1(N)OJ‘1( ) U Pl( )’Vﬁj’}/_l. Thus

U F1 BJ’V U 1—‘1 ’75]

This is true for all v € I')(N). Choose v € I'g(N) with lower right entry 6 =

d (mod N) and so we have
DTS = Y 118) = 3 FD8 1k = T,
[

Proposititon 2.1.2. Let f € My(I'1(N)). Since (§1) € T1(N), f has period 1 and

hence has a Fourier expansion

(D .
_ Z an(f)qn7 q = 627r27—.
n=0

Then

1. Let 15 : (Z/NZ)* — C* be the trivial character modulo N. Then T,f has

Fourier expansion
0
Z anp(f) + In(p)p k_lan/p(<d>f))qn
n=0
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That is
an(Tpf) = anp(f) + InP)P" " anyp ((d)f) (2.3)

for fe Mg(T1(N)).

2. Let x : (Z/NZ)* — C* be any character. If f € My(N,x) then T,f €
M (N, x) and the Fourier expansion is

00]

(T, £)(7) = > (anp(f) + x(0)P* anp(£))q"

n=0

That s
an(T,f) = anp(f) + X(0)P" ™ anyp(f) (2.4)
for f e My(N,x).

Proof. For part (1), let 0 < j < p. Then

f[((l)i;)]k(T) — lf (T +]> _ 217 Z an(f 2min(t+5)/p _ % Z QZMZ]
n=0

p p

Suppose p | N. Since Z ,u”] is equal to p when p | n and 0 when p { n, summing

over j gives (T,f)(1) = Z o FL(02)1() = X an(f)ay = Yo anp(f)a". Suppose
p1 N. Then we have an additional term

FIRS) (B = (NI D)I() = p (@) or) = 97 ) aullod e

This proves part (1) of the proposition.
For part (b) note that by Lemma ?? we have (d)T,,f = T Xd)f = Tyx(d)f =
x(d)T,f. Thus T, f € Mg(N,x). Formula (??) follows from (77?). O

We have seen that the two types of Hecke operator commute. It is also true that

they commute with themselves.
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Proposititon 2.1.3. Let d,e € (Z/NZ)* and p and q be primes. Then

1. {d)Xe) = {eXd) = {de)
2. T,T, = T,T,

Proof. Since {d) and T}, operators preserve the decomposition My (I'1(N)) = @ M (N, x)
X

it is enough to check the above equalities for f € My (N, x). Let f € My(N, x). Then
{dXe)f ={dyx(e)f = x(d)x(e)f = x(ed)f = {ed)f. For the second equality by for-
mula (??7) of Proposition 7?7 we have
an(Tp(Tyf)) = anp(Tyf) + X ()P sy (Tyf)
= aupg(f) + X(@ ™ aupyg (F) + X(P)IP* ™ (ngyn(f) + X(0)0" s ()
= anpg(f) + X(D0" g (f) + X(PIP* g (f) + X(00) (P0)" " s (1))
= an(Ty(T,f))

The last equality follows from the symmetry between p and q. O]

As we have seen before the double coset operators has a modular curve interpre-

tation so does T,

Ty : Div(X1(N)) = Div(Xy(N)),  Th(N)7 — ZD(M@(T) (2.5)

where [3; are coset representatives from (?7).
T, also has an interpretation in terms of the moduli space S;(/N) from Section
??. To construct this let A, = 7Z @ 7Z and E, = C/A, for 7 € H. For each j let

Cj = cAg;(r) where c e C.

Lemma 2.1.6. Using the above notation C; = {(17 + j)/p) + A, for 0 < j < p and
C; =1/py+ A, for j = .
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Proof. Let 0 < j < p. Note that (7 + j)/p) + A; = (7 + J)/pZ + TZ ® Z and
Ag(ry = (T + 7)/pZ @ Z. Clearly we have Ag ;) < (7 +j)/p) + A;. Conversely let
a e {(t+j)/p)+ A-. Hence o = n(r + j)/p + 7m + k for some n,m,k € Z. Since
7 =p(T+j)/p—j we have a = n(r + j)/p + (p(7 + j)/p — j)m + k € Ag;(r).

Now let j = o0 and v = (¥ ). Then (Np7 + p)Aypr) = Apr. Multiply by 1/p
and so (N7 + 1)Ag, (- = TZ2® (1/p)Z = {1/p) + A,. O

By Lemma ?? we have C; =~ Z/pZ as a subgroup of E. and C; n ((1/N)+ A;) =
{0}. Now the groups C; are subgroups of E,[p| and C; nC; = {0} when i # j. Hence
U, Cj is a subset of E.[p] with p? elements. Thus F,[p] = | ; Cj. Any subgroup of
E; isomorphic to Z/pZ lie in E;[p] and equal to one of the C;. Now we define

T, : Div(Sy(N)) - Div(Si(V)),  [E.Q]— SIE/C.Q+C]  (26)
C

where the sum is over all order p subgroups C' of E such that C' n (Q) = {0}. If
p | N the Cy does not appear in the above sum.
The relation between (?7) and (?7) is given in the following commutative dia-

gram:

Div(S; (N)) — Div(S; (N)) (2.7)

B B

Div(¥3(N)) "= Div(¥i(N))
where 1, is the bijection between S (NN) and Y;(N) given in Section ?? and the maps
are given as

[E;,1/N + A,] —2= S [E,/C,1/N + C]

B -
DU(N)7 ————= 3, T2 (N)5,(7)
To see that this diagram commutes it is enough to check that given 7 € H, for

each j we have ¢y ([E,/C;,1/N + C;]) = I't(N)B;(7). For 0 < j < p by Lemma ?7?,
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C; = Ag,(ry and so [E;/Cj,1/N + Cj] = [Eg,(r), 1/N + Ag,(»y]. In the case p { N,
J = o is also included and again by Lemma ??, C, = (1/p) + A, and so as a lattice
Cyw =TZ® (1/p)Z. Now considering Cy, as a subgroup of E., E,/C,, = E,; under
multiplication by p map. Thus [E,/Cy,1/N + Cy] = [Epr,p/N + A,;] and so by
the proof of Theorem ?? we have [E,.,p/N + Ap:] = [Eg, ), 1/N + Ag,r]. Thus
Ur([E2/Co N + C]) = Ty (N)pr = Ty (N) B (7).

There is a similar commutative diagram for the diamond operator

Sy(N) —2 5, (N) (2.8)

e

Yi(N) —=Y1(N)

where the maps are given by

[E,,1/N + A] Y (B, d/N + A.]

)L

I (N —2 1 (N)a(r)

where a = (%) € I'y(N) with 6 = d (mod N).

2.2 The (ny and T,, operators

In this section we extend the definition of {(d) and T}, operators to all of Z™.

For n € Z* with (n, N) = 1, (n) is determined by n(mod N). For (n,N) > 1
define (n) = 0. Then the map n — {(n) is multiplicative.

Defining 7;, is more complicated. First set 77 = 1. We have already defined 7},

for primes p. For prime powers, inductively

Ty =TTy — p" M) T2y, 722 (2.9)
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By Proposition 7?7 and induction, for distinct primes p and g we have T, Tys = TisT)yr

and so we can extend the prime power definition (??) to 7, multiplicatively using

Tn:HTpei, n:Hpei.

Thus T, T, = T,,,T,, for all m,n € Z* by Proposition ?? and T,,,, = T,,T), if (n,m) =
1.

Proposition 77 generalizes to

Proposititon 2.2.1. Let f € My (I'1(N)) have Fourier expansion

f(r) = Z am(f)q™.

m=0

Then for alln e Z*, T, f has the following Fourier expansion

(Tnf>(T) = Z am(Tnf>qm

m=0
where
am(Tof) = D, A apnsee (D)), (2.10)
d|(m,n)
If f e My(N,x) then
an(Tof) = D) XA apnya(f)- (2.11)
d|(m,n)

Proof. As in the proof of Proposition 7?7 we may assume f € My(N,x) and so it
suffices to check formula (??). The case n = 1 is trivial. Now let n = p be a prime.

Then
D1 XD gy (f) = amp() + X0)P @iy (f) = (T, f)

d|(m.p)

where the second equality follows from Proposition 77?.
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Now let r > 2 and assume (??) holds for n = 1,p,...,p"'. Then
am(Tpr f) = am(Tp(Ty—f)) — pk_lam(<p>)(TpT*2f) by (77?)
= amp(Tyr1 f) + X(P)P* s (Tyr1 f) = X(P)P* (T2 f) by (77)

= > XD e (f)

d|(mp,p1)

+ X Y (@A e (f)
dl(m/p,p"~1)

— x(p)p*t Z X(d)dk’lampr_z/dz(f) by induction hypothesis
d|(m,pr—2)

The first sum above is @y, (f) + Zd‘(%m,{_l) X(d)d* a2 (f) and
>

Z X(d)dk_lampr/d2 (f) = X(p)pk_l Z X(d)dk_lafmpT*Q/d2 (f)

d|(mp,p"1) d|(m,pr=2)
d>1

Thus am(Tprf) - ampr<f) +X(p)pk_1 Zd|(m/p,p""_1) X(d)dk_lampr—Q/dZ (f) NOW lt iS easy
to see that the right-hand side is formula (?7?) with n = p".
Now let ny,n9 € Z* be such that (ny,ns) = 1. Then

A (Tny (Tny f)) = Z X(d>dk_1amn1/d2 (T, f)
d|(m,n1)
= D x(@d Y X (O iy (f)
d|(m,n1) e|(mnq/d?n2)
and this is formula (??) with n = nyny. This finishes the proof. O

2.3 The Petersson inner product

In this section we define an inner product on Sg(I'y(/N)) which makes it an inner
product space.

The hyperbolic measure on H is defined as
dxdy
= /2

dpu(T) , T=x+iyeH.
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du is SLy(Z)-invariant. Since Q U {0} is countable its measure is zero and so du is

enough to integrate on H*. The fundamental domain of H* is defined as the set
D* = {reH :Re(r) < 1/2,|7| = 1} U {0}
That is every point 7 € H* is SLy(Z) equivalent to a point in D*.

Lemma 2.3.1. For any bounded function ¢ : H — C and any o € SLy(Z), the
integral §. p(a(7))dp(T) converges.

Proof. [§p. o(a(r))du(7)| < §pu lo(a(r))ldu(r) < M §p, 558 = M§(, 3% <0 O

Let I" be a congruence subgroup of SLy(Z) and {¢;} be representatives of the coset
space {£I}I"\SLy(Z), i.e. SLy(Z) = (J;{£I}'a;. Let ¢ : H — C be a I-invariant
function. Then 3, ., ¢(a;(7))du(r) is independent of the choice if representatives
;. Since dpu is SLy(Z)-invariant

D, etestnanr) = | et

; o (D*)

Now [ J; a;(D*) represents the modular curve X (I') hence we can make the following

definition
T)du(T) = dulr) = o (7)) du(r
[ i = [ et < X [ etesranty

Now we are ready to construct the Petersson inner product. Let f, g € Si(I") and
define ¢(1) = f(7)g(r)(Im(7))*, for 7 € H. Then ¢ is continuous and T-invariant.
Let us see that ¢ is bounded on H. Since ¢ is ['-invariant it suffices to check that ¢ is
bounded on the union | J ; @;j(D) and since the union is finite it suffices to show that

¢ o« is bounded on D for any a € SLy(Z). Since ¢ o «v is continuous, it is bounded
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on any compact subset of D. Note that we have the following Fourier expansions for

f and g,

(flale)(r) = X an(fladiar,  (gladi)(m) = 3] anlglals)d)

n=1

for some h € Z". Hence we have

p(a(r) = (flale)(7)(glae) () (Im(7))* = O(gn)*(Im(r))"

as Im(7) — 0. Because of the exponential decay ¢(a (7)) — 0 as Im(7) — 0 and so

o« is bounded on D. Thus the integral in the next definition makes sense.

Definition 2.3.1. Let I'  SLy(Z) be a congruence subgroup. The Petersson inner

product,
{or Sk x S(T') - C
15 defined by
g = | gt mr) dur)
r Jx(r)
where Vp = SX(F) du(t) is the volume of X (I').

The Petersson inner product defined as above is linear in f, conjugate linear in
g and positive definite.

Now we compute the adjoints of the Hecke operators T, and (n). Let I' c
SLa(Z) be a congruence subgroup and SLy(Z) = | J;{+1}T'a;. Then for a € GL; (Q)
we have a bijection a 'Ta\H* — X(I') given by a 'T'ar — Ta(r). Thus the
space a 'Ta\H* is represented by [ J J a~ta;(D*) up to some boundary identification.
Similar to the definition of the above integral we can define for continuous, bounded,

a Ta-invariant functions ¢ : H — C

le\H* o(7)dp(r) = ;L* o(a ay(1))du(T).

We need the following lemma to go further.
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Lemma 2.3.2. Let I’ = SLy(Z) be a congruence subgroup and o € GL3 (Q).

1. If o : H — C is continuous, bounded, and I'-invariant, then

j (o (r))dp(r) = j o (7)dp().
a~ITa\H* X(T)

2. If a™'Ta © SLy(Z) then Vy-irg = Vi and [SLa(Z) : o 'Ta] = [SLy(Z) : T.

3. There exists By, ..., Bn € GLy (Q), wheren = [ : a 'TanT] = [': ala NI,
such that

Tal’ = Umj = Uﬁjr
J J

Proof. For part (1) note that since ¢ is [-invariant, (poa)(a™tya) (1) = p(v(a(r))) =

¢(a(7)) and so p o a is a~ 'Ta-invariant. Thus

al(r))dp(T) = o;(7))dp(T) = 7)dp(T).
Josp P = S [ st = [ otriinte

For part (2) by the definition of the volume and part (1) we have

Vi = f du(r) — f du(r) = Vi
a~1Ta\H* X(T)

The volume and the index of I" are related Vp = [SLy(Z) : {+1}I'|Vsr,(z). The second
equality in part (2) follows from this.
For part (3) apply part (2) with T' is replaced by al'a™ n T hence we get

[SLy(Z) : al'a™' N T] = [SLa(Z) : o 'Ta n T,

Thus [T': al'a™! nT] = [ : a 'Ta n T']. Hence there exists V1, ..., Yn, 15 oy Yn €
such that

I'= U “TanT)y U(afofl nT)3; "
j

J
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Now by Lemma ?? with I'y = T'y = ' we have I'al' = Uj Fay; and Ta™'T =
U;Ta '3, = U, 70T For each j, Tay; n 3;0l # & since otherwise Tay; <
Uiz, ol and so T'al’ = U,
Bj € Tay; n;al for each j. Then I'al' = | J,; I'8; = |, 8;"- O

7;al” which is a contradiction. Hence we can choose

Now we are ready to compute the adjoints of the Hecke operators.

Proposititon 2.3.1. Let I' © SLy(Z) be a congruence subgroup and o € GL3 (Q).
Set o/ = det(a)a~t. Then

1. If a'Ta © SLy(Z) the for all f € Sy(T) and g € Sp(a~Ta),
{fladks 9a-1ra = (f gla’Tior:
2. For all f,g e Sp(T),
(f[Fallk, g) = {f, g[Ta'T]i).
In particular, [Tol']; = [La/T], and if o 'Tar = T then [a]} = [o]s.

Proof. For part (1), using Lemma ?? and noting that o/(1) = a~'(7) for all T € H*

we have

Slodegorra = o | (el ()

VoﬁlFoz

- Vi fla(r))j(e,7)7" det(a)kilmlm(ﬂkdu(r)
' Ja=1la\H*

= Vi F(1)j(e, (7)) det(e)* ' g(o’ (7)) Im(c (7)) dpu(7)
r Jx(r)

1

SR PRGN GLICRTE

= (fogle/lir
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In the last equality we use the identities j(aa/, 7) = j(a, /(7))j(a/,7) and Im(/ (7)) =
det(a/)Im(r)j (e, 7)7.

For part (2), by Lemma ?? 'al’ = (J;I'8; hence f[lal'ly, = X; f[B;lx. For
each j set ﬁ;- = det ﬁjﬁj_l. Then noting that deta = det 8; for each j we have
Fa'T = (J;I'8;. Hence f[la'T]y = %; f[Bj]x. Since I' n B]T‘Bj_l is a subgroup
of I' we have {f, g)r = {f, 9>rmﬁjr5].—1- Now using part (1) we get (f[l'al'lx,g)r =
2Bk 90 = 25 F 1Bk, Dragrgr = o 9lBileoragirs, = (Fr9llaTlpr. O

Using Proposition 7?7 we can find the adjoints of the Hecke operators

Theorem 2.3.1. In the inner product space Si(I'1(N)), the Hecke operators (p) and
T, for pt N have adjoints

=@ and Ty ={) T,
Thus the Hecke operators (ny and T,, for (n,N) =1 are normal.

Proof. Let f, g€ Sp(T'1(N)). Since 'y (N) 1T (N), for any a € Ty(N), a™'T1(N)a =
[y(N). Hence by part (1) of Proposition ?? we have (p)* = [a]f = [a" '] =
{p)~*. For T, by part (2) of Propposition ?? we have T* = [[1(N)(§5)1(N)]; =
[C1(N)(89)T1(N)]k. Since p { N there exists m,n € Z* such that mp — nN =

Land (29) = (&) (89) (& ™). Note that (%)~ € Iy(N) and (5") €
Lo(N). Thus Ty(N)(57)T1(N) = T1(N) (6 ) Ti(N) (X m)- ETU(N)(FT)T1(N) =
U, T'1(IV)3; then 'y (N) )(69)T1(N) = U, TV )B; (X ») gives the decomposition for
Ty. Thus

T;f:Zf[ﬂj(zZ\)/ (Zfﬁa ) ) =T,
asm=p ! (mod N). O
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By the above result and the Spectral theorem of linear algebra for normal oper-

ators we have the following theorem

Theorem 2.3.2. The space Sp(I'1(N)) has an orthogonal basis of simultaneous
eigenforms for the Hecke operators {{n),T, : (n,N) = 1}.

We will need the following lemma later.

Lemma 2.3.3. For any Hecke operator T =T, or T = {(n), T* = wyTwy' where
wy = [(x o)
Proof. Let p be a prime such that p { N and v = (% 3'). Then v 1( . 4)y =
(_% 2°) and so y'T'1(N)y = T'i(N). Hence wy = [7] is the double coset op-
erator [[';(N)yT'1(N)]x and by Proposition ??, wk = [v]i = [v ']x. Let a =
(2.%) € To(N) with d = p (mod N). Hence (p) = [a]s. Now we have [yay '} =
[ kledil g = [va ' e Since yaTly Tt = (4. 5), ra Tty e = {p) and so
[va™'y 7, = [ya™ 'y 15* = (p)~' by Theorem ??. This proves that wy(n)wy =
(ny* for (n, N) = 1. Since (n) = 0 when (n, N) > 1, the equality is true for all n.

For T = T, let T4(N) (42)T1(N) = U, T1(N)B;. Then T, = 3,[8;]. Note that
(29) = 7" (6p)y- Hence Ty(N)(59)T1(N) = U;T1(N)y 'Byy- By using these
representatives and Proposition 77,

Ty = [T(N) (5 5)T(N)E = [Da(N) (59T (N = X[y "Bk = wy' Tywn.

J

Thus T* = wy' Thwny. O

2.4 Oldforms and Newforms

Let M | N. Then S (I'1(M)) embeds into Si(I'1(V)) since I'y(N) < I'; (M). We see
that there is another way embed Si(I';(M)) into Sk(I'y(N)). Let d | (N/M) and
define ag = (¢9). Hence for f: H — C, (flaale)(T) = &1 f(dr).
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Lemma 2.4.1. Let T'y and Ty be two congruence subgroups of SLa(Z), v € GL3 (Q)
and f € My(T1). Suppose that Ty > yLoyt. Then fly]r € Mi(Ty).

Proof. Let (8 € T'y. By hypothesis, for some a € 'y we have (f[v]x)[B]x = f[78]x =
flavle = fl7]k- Thus f[y]x is weight-k invariant under I's. To prove holomorphy
at the cusps, let o € SLiy(Z). Then by the proof of Lemma ??, yao = o/+' for some
o’ € SLy(Z) and 7' € GL3 (Q) and so (f[7]x)[ale = (f[a']e)[]s- Since f[a/]i has
Fourier expansion, again by Lemma 77, (f[a/]x)[V]x = (f[7]x)[a]r has a Fourier

expansion. This proves that f[v], € Mg (I'2). O

The above lemma is also true if we replace modular forms with cusp forms. Taking
Iy =T1(M), Ty =T1(N) and v = oy in the above lemma gives f[agy]x € Sk(I'1(N))
for f € Sp(I'1(M)). Clearly the operator [ag]x is injective.

These two types of embeddings show that some of the cusp forms in S(I'1(N))

comes from lower levels.
Definition 2.4.1. For each divisor d of N, let iy be the map
i+ (Sp(TL(Nd™)))? — Sp(T1(N))
defined by (f,g) — [ + glaalk. The subspace of oldforms of level N is

ST )M = 3 i ((SuTa(Np ™))

p|N prime
and the subspace of newforms of level N is the orthogonal complement with respect

to the Petersson inner product
Sk(T1 (V)™ = (Sp(T1(N)))*.

Now we prove the Hecke operators respect the decomposition of S,(I';(N)) into

oldforms and new forms.
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Proposititon 2.4.1. The subspaces Sp(I'1(N))° and S (T'1(N))™™ are stable under
the Hecke operators T,, and {(n) for allmn e Z™.

Proof. Let p | N, p' # p be a prime and T' = T;y or T' = {d) for (d, N) = 1. Then we

have the following commutative diagram

T
( (Np—1) 071))

<sk<r1<1vp1>>>2 S <sk<r1<1vp1>>>2
Se(T1(N)) o Se(T1(N))

where the index of T' denote the level. To prove that the diagram commutes it suffices
to check that Tin,-1f = Tinyf and (Tinp-1y9)[ap]e = Tvy(glaplk). For T = (d),
Tivyf = flai for any a = (§%) (mod N) .Choose such an a with bottom right
entry d. Then « also satisfies @ = (§ %) (mod Np™') hence Tinp-1)f = fla], and
so Ting-1)f = Ty f. Since apaa,* € Io(Np~') has bottom right entry d and so
Tinp-1y = [k T(vy[e, ' ]x- This proves the case T' = (d).

For T' = Ty, by part (1) of Proposition ??, T{x,-1) is the restriction of Ty to
level Np~!. Let g € Sp(Np~1,x) for some character x : (Z/Np~'Z)* — C*. Since
[o(N) < To(Np~t) we have gla,|u(T) = p*g(pT) € Sk(N, ') where Y/ is a lift of x
to (Z/NZ)*. Now by part (2) of Proposition ?7?,

1k—1

an(T(N) (Q[O‘p]k)) = Qny (Q[O‘p]k) + X/(p/)p Qn/p! (g[ap]k)

_ k=1 f—
= pk 1anp,/p(g) —I-X’(p/)p/ Pk lan/p’p@)
= " anp(Tivp-1)9)

— an((T(prl)g) [ap]k)

Thus the diagram commutes.
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We also have the following commutative diagram

( Tp pk—l
—py 0

(Sk(T1(Np™1)))?

Sk(T'1(N))

(Sk(T1(Np™1)))?

Si(T'1(N))

Ty

Let f,g € S,(Np™!,x) where y is a character modulo Np~!. To prove that this
diagram commutes it is enough to check that T,,f — ((p)f)[apx = T, f and p*~1g =
T,(g[ap]x) where the operator T}, on the left-hand side is of level Np~!. Considering
the Fourier coefficients gives a,(T,f — () f)[aplk) = anp(f) + X(0)P* L anp(f) —
an(DDaplk) = anp(f) = an(T,f) and an(Ty(glale)) = anplglaple) = P Lanlg) =

an(p"g).

The above two diagram shows that Sy (T';(IV))°!d is stable under all T}, and (n).
When (n, N) = 1 we have the adjoints T* = (n)"'T,, and {(n)* = (n)~'. Hence
the above diagrams shows that S;(I';(NN))° is also stable under the adjoints of the
Hecke operators in the case (n, N) = 1. For (n, N) > 1, (n)* = 0 hence this is also
true for all (n). For T,, note that by Lemma ??, T = wyT,wy'. Consider the

commutative diagram

0 pk_2wNp*1 )

(Sk(Fl(Tpl)))g S (Sk(n(]l\fpl))y
Se(T'1(N)) = Se(T'1(NV))

where wy = [v]; and wy,-1 = [¥]i with v = (5 §), 7 = (7]\2)_1 o). Let fge
Sp(Np~', x).To see that this diagram commutes it is enough to check that f[v]x =

(fIV 1))k and (glepli)[V]x = P 2g[7']x. The first equality is clear as v, = 7.

The second can easily be seen from the identity o,y = (_(}V d )
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Finally let f € Sp(T1(N))™v. Then {f,g) = 0 for any g € Sp([';(N))*d. Let
T =T, or T = {n)y. Then (Tf gy = {(f,T*g) = 0 since Sy(I'1(N))°4 is stable
under the adjoint of 7. Thus T'f € Si(I'y(N))"*" and this finishes the proof of the

proposition. O]
Combining Proposition ?? with Theorem ?7 we get the following corollary.

Corollary 2.4.1. The spaces Sp(I'1(N)) and Si(T'1(N))™™ have orthogonal bases
of eigenforms for the Hecke operators {T,,{(ny: (n,N) =1}

Now we give a characterization of oldforms in terms of the Fourier coefficients.

Let M | N and d | (N/M). Normalizing the scalar in the operator i, to 1 gives
ta = d'"Hogl : S(T1(M)) = Sp(Ti(N)),  (af)(7) = f(d7).

tq acts on the Fourier expansion as (4 : Zle anq” — Zle a,q®. Suppose f €
Si(T1(N)) is of the form )y ¢, f, with f, € Sp(T'1(Np~')). Choose p | N and let

fo(T) =20 an(f,)q" be the Fourier expansion of f,. Then (¢,f,)(1) = > an(f,)q™.
If (n, N) = 1 then also (p,n) = 1 and so a,(f,) = 0. Thus a,(f) = 0 for such n. The

following Theorem proves that the converse is also true.

Theorem 2.4.1. If f € Sp(I'1(N)) has Fourier exzpansion f(T) = Y, a,(f)q" with
an(f) = 0 for (n,N) = 1, then f takes the form f = ZP‘N tpfp with each f, €
Se(T(Np™)).

See [?, Chapter 5.7] for the proof of this theorem.

2.5 Eigenforms

From Corollary ?? the spaces Sp,(I'1(N))° and S (T'1(N))™™ have orthogonal bases

of eigenforms for the Hecke operators {7},,{(n) : (n, N) = 1}. In this section we show
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that if f e S,(I'1(N))™" is such an eigenform then f is an eigenform for all 7,, and
(n). For (n, N) > 1, (n) = 0 hence f is an eigenform for all {(n). Hence we only need

to check T,.

Definition 2.5.1. A nonzero modular form f € My(I'1(N)) that is an eigenform
for the Hecke operators T,, and {(n) for all n € Z* is a Hecke eigenform (or just
eigenform). The eigenform f(7) = > a,(f)q" is normalized when a,(f) = 1. A

normalized eigenform f € Sp(I'1(IN))Y is called newform.

Now we show that Si(I';(N))"*" has an orthogonal basis of newforms. Let f €
Se(I'1(N)) be an eigenform for the Hecke operators T,, and (n) with (n, N) = 1.
Hence for all such n there exist ¢,,d, € C such that T,,f = ¢,f and (n)f = d,.f.
By Lemma ?? the map n — d, defines a Dirichlet character y : (Z/NZ)* — C*
and f € Sg(N,x). By formula (??), ai1(T,,f) = a,(f) for all n € Z*. Since f is an

eigenform we also have
a1 (T, f) = chai(f)  when (n, N) = 1.
The above two formulas together shows that
an(f) = cpai1(f)  when (n, N) = 1.

Thus if a;(f) = 0 then a,(f) = 0 when (n, N) = 1 and so by Theorem ??, f €
Si(T1(N))eHd,

Now suppose f € Sp([1(N))"V and f # 0. Then f ¢ Si(I'1(N))°? and so
ai(f) # 0 so we may assume f is normalized to a;(f) = 1. For any m € Z* define
9m =T f—an(f)f € Sk(T'1(N))**¥. Then g,, is an eigenform for the Hecke operators
T, and {(n) for (n, N) = 1. Indeed, for (n) we have (n)g,, = (n)Tp,f — {nya,(f)f =
Tnln)f = am(f)) f = Tondn f —am (f)dnf = dn(Ton f—am(f)f) = dngm and for T;, we
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have Tngm = TnTmf_Tnam(f)f = Tanf_am(f)Tnf = Tman(f)f_am(f)an(f)f =
an(f)gm- The first Fourier coefficient of g, is

ar(gm) = ar(Tinf) — ar(am(f)f) = am(f) = ar(f)am(f) = 0.

Thus ¢, € Sip(I'1(N))° by the above discussion. Hence g, € Sp(I'1(N))°d n
Se(T1 (V)" = {0} and so T,,,f = a,(f)f. Putting these together we have the

following theorem,

Theorem 2.5.1. Let f € Si(I';(N))"*" be a nonzero eigenform for the Hecke oper-
ators T,, and {(n)y with (n,N) = 1. Then

1. f is a Hecke eigenform.

2. Iff satisfies the same conditions as f and has the same T, -eigenvalues, then

f = cf for some constant c.

The set of newforms in Si(I'1(N))™Y is an orthogonal basis of the space. Each
such newform lies in Sk(N,x) for some x and its Fourier coefficients are its T, -

ergenvalues.

Proof. Part (1) is proved above. For part (2) let f and f be as above. Then ¢f and
df are newforms for some constants ¢ and d. Let d, be Tj-eigenvalue of f and f.

Then

an(cf)ef = To(ef)ef = cdof and  a,(df)df = T, (df)df = dd,f.

Thus a,(f) = d,/c and a,(f) = d,/d. This proves part (2). O

The following theorem gives a basis for the space Si(I'1 (V).
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Theorem 2.5.2. The set
Bi(N) ={f(nt): f is a newform of level M and nM | N}
is a basis of Sp(I'1(N)).

Proof. Consider the decomposition
S(T1(N)) = Se(TL(N))™™ @ Y ip((Se(T1(N/p)))?).
pIN

Now Si(I'1(N))*" is spanned by {f(7) : f is a newform of level N} < Bi(N).

Each summand in the sum is spanned by
{f(1), f(pT) : f is a newform of level dividing N /p}.

Thus By(N) generates Si(I'1(N)).

To see that By(N) forms a basis suppose there is a nontrivial relation

Zcz-,jfi(niﬁﬂ) =0 ¢;eC

irj
where f; € Sp(M;, x;) with M; | N and n;; | (N/M;) and x; is a Dirichlet character
modulo M;. Assume that the relation has as few terms as possible. It has at least two
terms. Each character x; lifts to a character x; modulo N and so f € Sg(V, x;). In
fact y; is the same character for all . Indeed, if x1(d) # X2(d) for some d € (Z/NZ)*

then applying {(d) — x1(d) to the relation gives
() = %a(d)) ) eisfilmigr) = ch<d>fz i 7) Zczm )filnis)
ij
= Z:cwxZ ) fi(ni;7) ZCZle ) fi(ni;7)
= Zcm‘ Xi(d) = xa(d ))fi(”i,ﬂ)
i.j
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which is a nontrivial relation with fewer terms. Similarly all f; have the same Fourier
coeficients away from N. Indeed, if a,(f1) # a,(f2) for some p f N then applying
T, — a,(f1) to the relation gives

(Tp = ap(f1)) Z cijfi(nig7) = Y Tpfi(ni7) — 2 Cijap(f1) fi(ni;7)

1]
= D culap(fap(f1) =) filniym)
1]
which is a nontrivial relation with fewer terms. Thus all a,(f;) are equal for p t N

and so all f; are equal contradicts with the number of terms in the relation. ]

Proposititon 2.5.1. Let g € S(I'1(N)) be a normalized eigenform. Then there is
a newform f € Sp(I'1(M))"" for some M | N such that a,(f) = a,(g) for allp{ N.

Proof. Suppose for each newform f; of level dividing N there exists a prime p; { N

such that a,, (fi) # ap,(g). By Theorem 77, we can write g as
9=, ci;if:(ni;7)
1,]

Applying [ [;(Tp, —ay,(fi)) to this relation we get [ [;(T,, —ay, (fi)) 2 ; ¢ij fi(ni ) =0
but [ [,(Tp, — ap,(fi))g # 0 by assumption. This contradiction finishes the proof. [
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3 Jacobians and Abelian Varieties

In this section we define the Jacobian of the modular curves and Abelian variety

comes from a weight-2 eigenform.

3.1 Preliminaries

We have noted in Section 77 that modular curves are compact Riemann surfaces.
Hence we begin with recalling some general facts about compact Riemann surfaces.
For details see [?, ?].

Let X be a compact Riemann surface of genus ¢. It is a sphere with ¢ handles.
The holomorphic differntials on X will be denoted by Q ;(X). It has g dimensional
vector space over C. Let Ay,..., A, be the longitudinal loops and let By, ..., B, be
the latitudinal loops. The group of integer sums of integration over loops is the free
Abelian group generated by integration over the loops A; and B; and this group is
called the first homology group of X denoted by H'(X,Z), that is

HYX,Z) =7 @---ZJ oY/ @---ZJ ~ 7%,
A1 A B1 B

g9 g9
The homology group is a subgroup of the dual space Q} ;(X)* = Home(Q4,(X),C).
The dual space is

Qim(X)A:R @...RJ DR @...RJ
Ay Ay B B

hence H'(X,Z) is a lattice in ] ;(X)". The Jacobian of X is defined as

Jac(X) = O (X)) /HY (X, 7).

Since the homology is a 2g dimensional lattice in Qi ;(X)", the Jacobian is a g

dimensional complex torus C9/A,.
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Let C(X) denote the field of meromorphic functions on X. The degree-0 divisor

group of X is

Div'(X) = {Z NLT : Ny € Z,n, = 0 for almost all m,an = 0}

reX T

The subgroup of principal divisors is
Div'(X) = {6 € Div®(X) : 6 = div(f) for some f e C(X)}

where the divisor of a meromorphic function f € C(X) is defined as div(f) =

D ey Va(f)z. The degree-0 Picard group of X is
Pic’(X) = Div?(X)/Div¥(X).
If X has genus g > 0 and ¢ € X then X embeds into its Picard group
X - Pic’(X), x> [z — 0] (3.1)

Indeed, suppose z, x € X maps to the same equivalence class. Hence x— € Din(X ).
That is © — & = div(f) for some f € C(X). Considering f as a holomorphic function
f:X— C we see that f has degree 1. Since g > 0 by Riemann-Hurwitz formula it
is not possible. Thus the map is injective.
We also have a map from degree-0 divisors to the Jacobian
Div?(X) — Jac(X), Zn$$»—>2nxf
T T o
Abel’s Theorem states that this map induces an isomorphism between Picard group

and the Jacobian

Theorem 3.1.1. The above map induces an isomorphism
Pic’(X) = Jac(X), [Z nwx] — anf : (3.2)
x T o
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Abel’s Theorem says that principal divisors maps to trivial integration on 2} (X))
modulo integration over loops. The maps (??) and (?7?) shows that X embeds into
its Jacobian via

X — Jac(X), IHJ :
zo

By Abel’s Theorem we also have Q) (X)* = {27 Ny Sw DD Ty = O}.
Let h : X — Y be a nonconstant holomorphic map between compact Riemann
surfaces. Now we define the the corresponding maps between Jacobians and Picard

groups. The pullback map induced by A is
h*:C(Y)—>C(X), g~ goh.

h* is injective. For g € C(Y) the orders of vanishing of h*g is v,(h*g) = esVn(z)(9),
where e, is the ramification degree of h at x. Indeed, let x € X and z be the
local coordinate centered at x and w be the local coordinate centered at h(x). Then
vo(wohoz1) = e, vo(gow™) = v (9) and vy(gohoz7t) = vy (h*g). Considering
the compsitions proves the equality.

The pullback extends to holomorphic differentials h* : Q} (V) — Q}(X). Given
e QL (Y). Let ¢; : U; — Vj and @, : U; — V; be local coordinates on X and Y
such that h(U;) = U;. Let hj = ¢;hep; : Vi — V;. Define the pullback of A locally as

(W*X); = hAj € Qa(Vy), Xy € Qg (V).
This map induces a dual map between dual spaces, denoted h.,
h* :Qlliol(X)/\ _)Qlllol<y)/\7 QO'_)QOOh*

Now let @ be a loop in X and ¢ = § € Quy(X)". Then hyp = § 1* =, €
QL (Y)~. Since h(«) is a loop in Y, h, takes homology to homology and induces a

map between Jacobians.
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Definition 3.1.1. The forward map of Jacobians is the holomorphic homomorphism
hy: Jac(X) — Jac(Y), [¢] — [hatp] = [ o h*].

In terms of Theorem ?? this map is defined as
x h(z)
h](anJ ) = anf
T o T h(zo)
There is also a forward map between Picard groups induced by h: X — Y. First

define the norm map

normy, : C(X) - C(Y),  (normyf)(y) = n flx)e.

reh=1(y)

The order of vanishing of norm of a function f € C(X)* is

Vvy(normy, f) = 2 Ve (f)

zeh~1(y)

and so

div(normy, f) = Z Z ve(f) |y = ZVx(f)h(x)

Yy \zeh~1(y) z
Thus at the level of principal divisors the norm map is >, v, (f)z — >, v.(f)h(z)

and the map between divisors that extend this is
hp : Div(X) — Div(Y), Z N — Z nzh(x)
which takes degree-0 divisors to degree-0 divisors.

Definition 3.1.2. The forward map of Picard groups is the homomorphism
hp : Pic®(X) — Pic’(Y), [Z nxx] — [Z nmh(x)]
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Under the isomorphism of Theorem ??7 we have a commutative diagram

Pic?(X) £~ Pic(Y)

N

Jac(X) A Jac(Y)

So far we have defined forward maps. Now we define the reverse maps between
Jacobians and Picard groups. Let S = {xr € X : e, > 1}, Y/ =Y — h(S) and
X" = h7Y(Y"). If deg(h) = d then the restriction of h to X’ is a d-fold covering map.
Given a path 6 in Y’ and = € h1(§(0)) € X’ then there exists a unique lift v of § to
X' such that 4(0) = x. If § is a path in Y and only endpoints of § lie in A(S) then
for each z € h™1(5(0)) there exist e, lifts of v starting at z. By perturbing paths
in Y any path integral of holomorphic differentials on Y can be taken over a path ¢
such that only the endpoints of § might lie in h(S). Define the trace map induced
by h

tr : Lot (X) = Qo (Y)

as follows: If § is a path in Y” lifting to a path in X’ and h;' is a local inverse of
h about §(0). Then h;' has an analytic continuation along 0. Let w € Qf (X).
Suppose y € Y/ such that h has local inverses h;l .U > U, i =1,...,d. The trace is

defined on U is .

(trnw)|g = D (h)*(w

i=1

Ui)‘

This extends holomorphically to Y. We have a dual map

tr;b\ : Qlliol(Y)A - Qlllol(X)A’ ¢ — 77/} o trh~

Ltrhw— Z Lw.

lifts

For paths ¢ in Y’ we have
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This extends to paths in Y such that only the endpoints might lie in h(S). Let
us see that the dual map takes homology to homology. Let 3 be a loop in Y’ and
=, € Qu(Y)" then trpyp = §,tr = Yo 5, € Qo (X)7. Since 3 lifts to a
concatenation of loops in X tr; takes homology to homology and induces a map

between Jacobians.
Definition 3.1.3. The reverse map of Jacobians is the holomorphic homomorphism
h’ 2 Jac(Y) — Jac(X), (V] — [¢ o try].

In terms of Theorem ??, h”’ is given by

Z”yj Z”y Z J

xeh™
Proposititon 3.1.1. For any nonconstant holomorphic map h: X — Y of compact

Riemann surfaces
(try o h*)(A) = deg(h)A, A€ Quq(Y)

Proof. Let U be a local chart on Y such that the inverse image is a disjoint union of

local charts Uy, ..., U; and the restrictions h; : U; — U are invertible. Then locally

(trn 0 R*) (M) = Z(hil)*(h*

v) = D (h (R (Ng))

where d = deg(h). O

HM&

By the above Proposition the composition hy o h' is multiplication by deg(h) in
Jac(Y). Finally we define the reverse map between Picard groups. Recall the pull
back map h* : C(Y) — C(X) and the formula v,(h*g) = e Vh)(g) for g € C(Y).
Hence we have

div(h*g) = 2 CaVh(z)(g Z vy(g Z €.
y

T zeh~1(y)
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Thus the action of pullback on the principal divisors is 3. v, (9)y — 2, V() 2open-1(y) €2

The map between divisor groups that extends this is
hP : Div(Y) — Div(X), Z nyy — Zny Z ez T
Y Yy zehl(y)

which is taking degree-0 divisors to degree-0 divisors.

Definition 3.1.4. The reverse map of Picard groups is

R" : Pic®(Y) — Pic’(X), [Znyy] — Zny Z exx

zeh—1(y)
As in the case of forward maps by Theorem 7?7 we have the following commutative
diagram
Pic’(YV) 2~ Pic?(X) .

N

Jac(Y) LJ>Jac(X)

3.2 Modular Jacobians

The Hecke operators give rise to holomorphic maps between modular curves which
are compact Riemann surfaces. Thus by the preceding section they lead to maps
between Jacobians of modular curves and Picard groups.

Let I'; and T’y be two congruence subgroups of SLy(Z) and o € GL; (Q). Recal
from Section ?? that the double coset operator [['jal's]s induces a map between

divisor groups of modular curves
[FlQFQ]Q . DlV(X2> — DlV(Xl)

which is the Z-linear extension of the map a7 +— >’ iL15; (7), where (; are orbit rep-

resentatives of I'yal's under the action of I'y. This map comes from the composition
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of the maps in the following diagram

X3 E—— Xé
-]
X X1

where the top row is the isomorphism given by I's7 — I'ja(7). In terms of the
previous section the [['jals]y = (m)p o ap o (m2)P. Thus [I'al's], descends to a

map of Picard groups,
[[1al]s = (m1)p o ap o (m)" : Pic’(X;) — Pic’ (X))
which is given by

> n.Lor] = D, 2 T6;(7)].

To define the action of the double coset operator on the Jacobians we need the

following result,

Proposititon 3.2.1. Let I' be a congruence subgroup of SLa(Z). Then the holomor-
phic differentials Q} (X (T')) and the weight 2 cusp forms Sy(T') are isomorphic as

vector spaces over C,
w: S(I) = Y (X(T)),  f— (W))jes
where w; pulls back to f(T)dr € Q. (H)
Proof. [?, Theorem 3.3.1] O

By the above proposition we can identify Qf ;(X(T')) and Sy(T"). Thus we can
also identify the dual spaces Q} (X (T))" and Sy(T')" and let H'(X(T'),Z) denote
the corresponding subgroup of Sy(I')*. Therefore we can define the Jacobian of X (I")

in terms of the dual space of weight-2 cusp forms.
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Definition 3.2.1. Let I" be a congruence subgroup of SLy(Z). The Jacobian of the

modular curve X (') is
Jac(X(T)) = S(I')" /H1(X(T'), Z).

By the above definition the maps of the previous section can be written in terms
of functions. Let X and Y be modular curves whose congruence subgroups are I'x
and I'y. Let o € GL (Q) be such that al'ya™! = I'y and consider the corresponding
holomorphic map
h:X —-Y, TIxt—Tya(r).
Denote the isomorphism between Q] (X)) (reps. QL ;(Y)) and S3(T'x) (resp. Sa(T'y))
by wx (resp. wy). Then we have the following commutative diagram,

Sy(Ty) 222 S,(Ty) (3.3)

e
Qlllol<Y) L) Qlllol<X)
To see this we need to check that (f[a]s)(7)dT = f(a(7))d(c(7)) which clearly holds.

The induced map on the dual spaces is
hy : So('x)" — Sao(Ty)", @ polal

Suppose al'ya "\I'y = Uj al'xa [y, ] then the following diagram commutes

> [vyl2
So(Tx) 28, (Ty) (3.4)

Jo Jox

trp

Q%ml(X) - Qlllol(y)

Denoting the top map as try, the induced map on dual spaces is

try : STy)" = S(Tx)", ¢ 1o [yl

J
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Now h, and tr; descend to Jacobians.
Recall the double coset operator [['jal's]s @ So(I'1) — So(I'2) given by f[[als]s =
2. f1Bjl2- Its dual map denoted as the same is

[[1aTs]s : So(2)" — Sa(I) "7, Y —1po[lals)s
which can be realized as (7). 0ayotr}, . Thus the double coset operator on Jacobians
1s
[T1als]s = (m1)s0ayomy : Jac(Xa) — Jac(Xy),  [¢] — [¢ o [T1als]s]
Let J;(NN) denote the Jacobian of the modular curve X;(N). The following proposi-

tion which is a special case of the above discussion describes the action of the Hecke

operators on Ji(N).

Proposititon 3.2.2. The Hecke operators T = T, and T = {(d) act by composition
on the Jacobian of X1(N),

T:J(N)— Ji(N), [p]—[poT]

for ¢ € So(I'1(N))".

Thus the Hecke operators act as endomorphisms on the homology H;(X;(N),Z)
which is a finitely generated Abelian group. Hence the characteristic polynomial
f(x) of T, has integer coefficients and it is monic. 7, satisfies its characteristic
polynomial and so f(7,) = 0 on Hy(X1(N),Z). Since T, is C-linear f(7,) = 0 on
S2(I'1(N))” and so f(T,) = 0 on Sa(I'1(N)). Therefore the minimal polynomial of
T, on S»(I'1(N)) divides f(z) and the eigenvalues of 7}, satisfies f(z) which makes

them algebraic integers. Hence we have proved

Theorem 3.2.1. Let f € So(I'y(N)) be a normalized eigenform. Then the eigenval-

ues a,(f) are algebraic integers.
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Definition 3.2.2. The Hecke algebra over Z is the algebra of endomorphisms of
So(T'1(N)) generated over Z by the Hecke operators,

Tz = Z[{T,,{n):neZ"}].
The Hecke algebra over C is defined similarly.

Being a ring of endomorphisms of finitely generated free Z-module H;(X;(N),Z),
Ty is finitely generated as well. Let f(7) = D", a,(f)q" be a normalized eigenform

n=1

and define the homomorphism
)\f 2Tz—>c, sz)\f(T)f

The image of Af is finitely generated Z-module. The image of s is Z[{a,(f) : n €
Z*}]. To see this, suppose f € Sy(N, x) for some Dirichlet character x and note that
for any d € (Z/NZ)* we have \;((d)) = x(d). Hence the image is Z[{a,(f), x(d)}].
Let p and p’ be two distinct primes congruent to d modulo N. Then using formula
(?7?) we can write x(d) in terms of a,(f), a2(f), ay(f), ay2(f). Hence adjoining x(d)
is not needed. Thus the ring generated by the eigenvalues a,(f) has finite rank
as a Z-module. Let I; = ker(A\s) = {T' € Ty : Tf = 0} and so we have a ring
and Z-module isomorphism Tz/I; — Z[{a,(f)}]. The ring Z[{a,(f)}] is in a finite

extension of Q and the extension degree is the rank of Ty/I.

Definition 3.2.3. Let f € So(I'1(N)) be a normalized eigenform, f(1) = >, an(f)q".
The field Ky = Q({a,(f)}) is called the number field of f.

Any embedding ¢ : Ky < C conjugates f by acting on its coefficients:
o0
o) =Y anlf)d"
n=1
It is natural to ask that whether f7 is also an eigenform or not.
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Theorem 3.2.2. Let [ be a weight-2 normalized eigenform for the Hecke operators,
so that f € So(N,x) for some N and x. For any embedding o : Ky — C the
conjugated f° is also a normalized eigenform in So(N,x%). If fis a newform then

so is fe.
For the proof of this we need the following two lemmas:

Lemma 3.2.1. Let A be a commutative ring with unity and J be an ideal of A.
Suppose that M is an A-module and a finite dimensional vector space over some field

k. Then there exists A-module isomorphisms
(M/JM)" =~ M [J],  M"/JM" = M[J]"
where M[J] denotes the elements of M annihilated by J and similarly for M"™[J].

Proof. Let o € (M/JM)" then the map ¢ : m — p(m+ JM) e M"[J]. Conversely,
let ) € M"[J] then the map ¢ : m + JM — 1)(m) € (M/JM)". Note that ¢ = ¢
and ¢ = 1. Thus the first isomorphism follows. O

Lemma 3.2.2. Let f € S(I'1(N)) be an eigenform. Then f is old or new.

Proof. If a1(f) = 0 then f = 0 by Section ??. If a;(f) # 0 we may assume a;(f) = 1.
Hence T,,f = a,(f)f for all (n, N) = 1. Let f = g + h with ¢ is old and h is new.
Applying T,, to f gives, a,(f)f = Tng + T,,h. Since T,, preserves the decomposition
of Sp(I'1(V)) as a direct sum of old and new subspaces we have T,,g = a,(f)g and
T.h = an(f)h. Similarly g and h are eigenforms for {(n) for all n € Z* and so g
and h are eigenforms with T),-eigenvalues a,(f). If h = 0, then f = ¢ is old. If
h # 0 then ay(h) # 0 and T,h = (an(h)/a1(h))h and so a,(f) = a,(h)/a1(h) and
thus f = h/ay(h) is new. O
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Proof of Theorem ?7. We need to show that the conjugated coefficients {a%} are
also a system of eigenvalues for T;,. We know that the Hecke algebra Tz acts on the
homology Hy(X1(NV),Z). The homology is a free Z-module of rank 2¢g where g is the
genus of X;(N) and the dimension of Sy(I'1(V)). Let

H{(X1(N),Z) = Zipr @ - - - @ ZLipag.

With respect to this basis Y, n,p; is represented by the row vector v = [n;] € Z*
each element T" € T is represented by a 2¢g-by-2¢ matrix [T'] € My,(Z) and the action

of Tis T : v — v[T]. This action extends linearly to the complex vector space
V=Cp @ - @ Copy,.

Suppose {A(T) : T € Ty} is a system of eigenvalues of Tz on V. Let 0 : C — C be

any automorphism extending the given embedding o : Ky < C. Then
VT = (v[T])7 = (MT)v)? = MN(T)70°, T eTy.

Thus {\(T)? : T € Tz} is also a system of eigenvalues on V.
Denote Sa(I'1(N)) by Sa. S» is isomorphic to its dual space

Sy = Cyp1 + -+ + Coyy.

Since the dimension of Sy is g the map V' — S5 given by (2191, . . ., 225024) — D, 295
has ¢ dimensional kernel. Let wy = [( % (1))]2. Then by Section 7?7, wyT = T*wy

for all T'e Tz. For any g € Sy define
Yy Sy — C, h +— {wng, h).

Then 1y (h + h) = 1y(h) + by (h) and 1by(zh) = Zt,(h). Thus 9, is a conjugate lincar

function on S,. Denote the set of conjugate linear functions by Sy. Then Sj is the

61



conjugate of the dual space &' and it is a complex vector space. Since 1445 = Vg +1;

and 1¢,, = 21, for all g,g € S; and z € C, the map
R

is C-linear. The kernel of W is trivial hence considering the dimensions ¥ is an

isomorphism. Ty acts on S5 by right composition and so S is a Tz-module. Since

Urg = (wnTg,h) = (T wng, h) = (wng, Th) = (Vg0 T)(h)

U is Tz-linear. Thus S, and S;' are also isomorphic as Tz-modules. Thus {\(T) :
T € Tz} is a system of eigenvalues on S, if and only if it is a system of eigenvalues
on S3.

Now let us see that {\(T") : T € Tz} is a system of eigenvalues on S if and only

if it is a system of eigenvalues on S'. Let f € &; and consider the map
)\f 2Tc—>(c, TfZ)\f(T)f

Let J; = ker(A\f) = {T' € T¢ : Tf = 0}. Then J; is a prime ideal of T¢. Let
A be the localization of T¢ at the prime ideal J¢. Then the ideal J = J;A is the
unique maximal ideal in A. Also let M be the localization of Sy at Jy. Then M is
an A-module and M # 0 as f/U # 0 for any U € T¢ — J;. Hence by Nakayama’s
Lemma JM # M and so J;Sy # Sy. Thus the quotient Sy/J;Ss is nontrivial. By

Lemma 7?7 we have
S)Jf] ={pe8Sy :poT =0forall T e Js} #0.

Since Tj is the identity operator, T — \¢(T)17 € J; for all T' € T¢ and so for any

nonzero ¢ € S3'[Jy] we have
pol =¢o(T=A(T)T) + As(T)p = As(T)g,  T'eTe.
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Restricting to Tz, {A\¢(T) : T € Tz} is a system of eigenvalues on S5'. The converse
follows from the fact that double dual of finite dimensional vector spaces isomorphic
to itself as a Tz-module. Thus the cusp forms S, and the sum S; ® S5 have the
same systems of eigenvalues.

Now consider the C-linear map

Vo8 @S5, (2101, ., 22g¢p2g) — (Z Zj%‘aZ 2iP;)-

This map is also a Tz-module homomorphism as gpj—oT = ;0T Suppose Y, z;p; =0
in Sy and Y. z;7; = 0in S;. Then Y. Zjp; = 0 in S;'. Thus Y Re(z;)¢; = 0 and
> Im(z;)ep; = 0in 8. Since {g;} are linearly independent over R, z; = 0 for all j.
Thus the kernel of the above map is trivial and considering the dimensions of the
domain and codomain it is an isomorphism of Tz-modules.

Now we have seen that if {\(T) : T' € Tz} is a system of eigenvalues on V' then
{MT)? : T € Tz} is also a system of eigenvalues on V. By the above isomorphism
this is also true for the sum Sy ® Sy. But we have also seen that S;' @ S, and
Sy have the same systems of eigenvalues and so the result is also true for S,. This
proves that f7(7) = > a%¢™ is a normalized eigenform in Sy(N, x7).

For the last part of the theorem, suppose that f is a newform. Then by Theorem
??, f7(r) = >, aifi(n;7) where each f; is a newform of level M; such that n;M; | N.
Let v = 07! : C — C. Then 9|k, is another embedding of Ky into C. Then
f=(f7)" =3 a] f](n;7). Assume that f is not a newform. Then by Lemma ?7 it
has to be an oldform which makes all M; strictly less than N. Since each f; is also
a modular form of level M; this shows that f is an old form, contradiction. Thus f?

is a newform. W

Corollary 3.2.1. The space S3(I'1(N)) has a basis of forms with rational integer

coefficients.

63



Proof. Let f be a newform of level M with M | N. Let K = Ky and {a,...,aq}
be a basis of Ok as a Z-module. Let {0y, ...,04} be the embeddings of K into C.
Consider the matrix

AL

A=

Qg A
and let
fon
il -

fo

Let g = Af. That is

d

O ros

gi = Zai]f 7.
j=1

Since A is invertible, span({g1, . .., ga}) = span({f°, ..., f7}). Let g;(7) = > an(9:)q"
with all a,(g;) € Z. For any automorphism o : C — C we have

d
o __ 00 ro;0 __
g; *Zai J77 = g;.
j=1

Thus each a,(g;) is fixed by all automorphisms of C which proves that a,(g;) €
7ZnQ="7. O

3.3 Abelian variety associated to a newform

In this section we define the Abelian variety associated to a newform and decompose
the Jacobian J; (V) into a direct sum of complex tori.

Let f e Sy(I'1(My)) be a newform at some level My. Recall the map
ATy —C,  Tf = \(D)f.
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This induces a Tz-module isomorphism Tz /I = Z[{a,(f)}] and Z[{a,(f)}] has rank
[Kf:Q]. Also we have seen that Tz acts on J;(Mj).

Definition 3.3.1. The Abelian variety associated to f is defined as the quotient
Ay = J(My) /Iy J1(My).

By definition Tz acts on Ay and so Z[{a,(f)}] acts on A; as well. We have the

following commutative diagram:

Tp
Ji(My) —— J1(My)
Af ap(f) Af

where a,(f) acts on Ay as T,. Let ¢ € Ay and 0 : Ky — C be an embedding.
Then by Theorem ?7, (ay(f)@)(f7) = (o Tp)(f7) = (ap(f7)[7) = ap(f)7e(f7). IE

a,(f) € Z then it acts on Ay as multiplication.

Define the following equivalence relation on newforms:
f ~ fe f = f? for some automorphism o : C — C.

Let [f] denote the equivalence class of f. By Theorem ?7? each f7 € [f] is a newform

at level My and so by Theorem ?? the subspace

Vi = span([f]) < Sy(T'1(My))

has dimension [K; : Q]. Restricting the elements of H;(X;(My),Z) to functions on

V gives a subgroup of the dual space V",
Ay = Hi(X1(My), Z)|v,
and so we have a well defined homomorphism

Ji(My) = V8 /Ay, o] = olv, + Ay for e So(T1(My))".
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Proposititon 3.3.1. Let f € S3(I'1(My)) be a newform with number field K¢. Then

restricting to Vy induces an tsomorphism

Ay = VP Ap Lol + I i (My) = gly, + Ay for g € Sy(Ti(My))",
and the right side is a complex torus of dimension [K; : Q.
Proof. Let S = So(I'1(My)) and Hy = Hy(X1(My),Z). Then

Ap = S(My) /Iy J((My) = (S5 /Hy)/15(S5 /Hy)
= 83 /([fSy + Hy) = (87 /1;S5)/(image of Hy in S5 /1;S5).

By Lemma ?7 we have &7 /1;S5 = Sy[lf]" where the isomorphism is given by

© + 118y — ¢ls,1,) for p € S5, Hence
Ay = SolIy]" /Hilsyr1,, o) + IpJi(My) = 0ls,11,1 + Hilsofrp-

Let us see that Vy = Sy[If]. Clearly Vy < Sy[If]. For the reverse inclusion consider
the pairing
Te xS —C,  (T,g)— a(Tg).

This is a perfect pairing. It is clearly linear. For the nondegeneracy suppose 7' € T¢
and a1(Tg) = 0 for all g € Sy. Then for all n € Z* we have a,(Tg) = a1(T,,Tg) =
a1(TT,g) = 0. Hence T'g = 0 for all g € Sy which implies T' = 0. Similarly suppose
9Ss and a1 (T'g) = 0 for all T' € Te. Then 0 = a4(7,9) = an(g) and so g = 0. Thus
the pairing is perfect. Therefore we have a vector space and Tz-module isomorphism
Sy = T¢ given by g — (T — a1(Tg)). By using the above pairing and Lemma ?? we
get
dim(Ss[1f]) = dim(Sa[1f]") = dim(Sy'/1;Sy) = dim(T¢/I;Tc).
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Note that we have a surjection Tz ® C — T¢ that is given by >, U; ® z; — >, z,U;
Viewing z; = 21} € T¢ we see that the image of Iy ® C lies in /;T¢ hence we have

a surjection (Tz ® C)/(I; ® C) — T¢/I;T¢ and this gives

dim(S,[If]) < dim((Tz® C)/(I; ® C)) = dim(Tz/I; ® C)
= rank(Tz/Iy) = [Kf: Q] = dim(V}).

This proves that Vy = Sp[I]. Now we need to show that Ay is a lattice in V. Tt
suffices to prove that R-span of Ay is V* and rank(Ay) < dimg(V}"). Since V; < S,
we have a surjection 7 : & — V* that is given by ¢ — ¢lv,. Since the R-span
of Hy is &3, the R-span of Ay = w(H,) is 7(S5) = V{*. Moreover considering the

dimensions over R we have

dim(Vy) = dim(S:[I;]") = dim(Sy /1S5)

(s

— dim((H, @ R)/I;(H, ®R))

— dim((H; @ R)/(I;Hy @ R))
(

= dim Hl/]fH1®R)
= I'aIlk(Hl/Ile).

Note that Ay = w(Hy) = Hy/(Hynker(n)) and I;H; < (H; nker(m)). Hence we have
a surjection Hy/IyHy — Ay and so rank(Ay) < rank(H,/I;H;) = dimg(V}"). O

Definition 3.3.2. An isogeny is a holomorphic homomorphism between complex tori

that subjects and has finite kernel.

The next theorem gives the decomposition of J;(/N) that we have mentioned

above.
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Theorem 3.3.1. J1(N) is isogeneous to a direct sum of Abelian varieties associated

to equivalence classes of newforms,

where the sum is taken over a set of representatives f € So(I'1(N)) at levels My | N
and each my is the number of divisors of N/M;.

Proof. Denote Sa(I'1(N)) by S and H;(X1(N),Z) by Hy. By Theorem ?7 and ?7?,
Ny =JUU s wn)
f n o

is a basis of Sy where the first union is over equivalence class representatives, the
second is over divisors of N/My and the last one is over embeddings o : Ky — C.
For each pair (f,n) let d = [K; : Q] and 07, .., 04 be embeddings of K into C and

consider

d

Up i Sp = V9, e (Y 2 f7(7)

Jj=1

(7 (n7))).

HM&

Let ¢ = {_ for some loop a in X;(N). Identifying the holomorphic differential
w(f?(n7)) with its pullback to ‘H and a with some lift to H we get

Vi) = 07 () = n | foar)ar = [ gotryar

where &(t) = na(t). Thus ¢ = . and so ¥y, takes Hy to Ay.
Taking the product map gives

fn i

f

U is surjective. To see this let ¢ € 8 be such that ¢(f?(n7)) = 1 and it is zero at
the other basis elements of S5. Then the map Wy, (p) = 1 takes f7(7) to n and
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other basis elements of Vy to 0. Thus as o changes the corresponding v generate
V" which proves that U is surjective. Considering the basis of the each component
of the direct sum we see that both sides have the same dimension and so ¥ is an
isomorphism. Hence we have the following isomorphism of quotients

T2 Ji(N) S @VH)™ [U(H,),
!

Since W(H1) = @;(As)™ and they are Abelian groups of the same rank the surjec-
tion

T W)™ U(H) — D(Vi/Ap)™
f f
has finite kernel. By Proposition 7?7 we have the following isomorphism

i @DVi/A)™ = DA™

f !
Putting these together i oo W : Ji(N) — @ ,(A;)™ is an isogeny. O

Using the isogeny of Theorem ?? we can construct the following commutative

diagram:
TP
Ji(N) J1(N)
l I1 n ap(f) l
@fvn Af - C_Bf,n Af

where p is a prime not dividing N and the vertical maps are the isogenies of Theorem

??. To see that this diagram commutes let ¢ € J1(N). Then

(ap(f) o W) (@) (f7(T)) = ap(f)(np(f7(nT))) = np(T,(f° (nT)))
and
(gm0 Tp)(0)(f7(7) = Wpn(p(Tpf7 (7)) = no((1,f7) (nT)).
Computing the Fourier coefficients we see that these two are the same. Thus the

diagram commutes.
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4 Modular curves as algebraic curves and Eichler-
Shimura relation

In this chapter we show that the modular curves X;(NN) and X,(/N) are algebraic

curves over Q.

4.1 Weil pairing

We start with recalling some facts about elliptic curves. For more details see [?]. Let
k be a field of characteristic 0 and E be an elliptic curve over k. The set of N-torsion

points of E is a subgroup, E[N], of E isomorphic to (Z/NZ)?. The map

Div(E) > E, Y np(P)— > [np]P

induces an isomorphism Pic’(E) = E. Hence principal divisors on E are character-
ized by
an(P) e Div'(E) = an =0 and Z[np]P = 0p.

Let py denote the group of Nth roots of unity in k, uy = {x € k : ¥ = 1}. The
Weil pairing

en : E[N] x E[N] — un
is defined as follows: Let P,QQ € E[N]. Then by the above characterization of
principal divisors, there exists a function f = fg € k(E) such that div(f) = N(Q) —
N(0g). Since the map [N] : £ — E is unramified and vp(fo[N]) = ep([N])vnip(f)

we have

div(fo[N))= > N(R)— > N(S).
[NR=Q [

N]S=0g
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Let Q" € E[N?] be any point such that [N]Q" = Q. Then
div(fo[N]) =N > {(@ +5)—(S)}
SeE[N]
By the above characterization of principal divisors again the above sum is again a

principal divisor for some g = g € k(E) and so
div(f o [N]) = Ndiv(g).

This shows that f o [N] and ¢g" has the same divisors and so div(f o [N]—g¢") =0

which makes cf o [N] = gV for some constant ¢ € k*. For any point X € E we have
9(X + P)" = cf([N]X +[N]P) = cf(IN]X) = g(X)".

Thus the Nth power of the rational function g(X + P)/g(X) € k(E) the image of

this function is a subset of yy. Since the map is not surjective from E — PL(k) it is
constant. The image point is the Weil pairing of P and @),

g(X + P)
9(X)

Next proposition proves the basic properties of the Weil pairing.

eN(PaQ) =

€ UN-

Proposititon 4.1.1. 1. The Weil pairing is bilinear,
en(aP + 0P, cQ +dQ') = en(P,Q)“en(P, Q) en(P', Q) en(P', Q)"
2. The Weil pairing s alternating
en(@Q,Q) =1,  en(Q,P)=en(P,Q)".
3. The Weil pairing is nondegenerate
if ex(P,Q) =1 for all P € E[N] then Q = 0.
Hence ey 1s surjective.
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4. The Weil pairing is Galois invariant
en(P, Q)" = en(P?,Q°%) for all o € Gal(k/k).

Proof. 1. Let g = gg. Then

g X+ P+ R) g X+ P+ PR)g X+ R)
R N SRS

en(Pr,Q)en (P2, Q).

Hence ey is linear in the first argument. For linearity in the second argument
let f1, fa2, f3 and g1, g2, g3 be the functions associated to @1, Q2 and Q1 + Q-.
There exists a function h € k(E) such that

div(h) = (Q1 + Q2) — (Q1) — (Q2) + (0g).

Then div(fs/f1f) = Ndiv(h) and so f3 = cfifohY for some ¢ € k*. Thus
g = c(g1g2(h o [N]))V. Therefore we have

93(X + P)
9(X)
91(X + P)g2(X + P)R([N]X + [N]P)
91(X) g2(X)h([N]X)
= eN(Pa Ql)eN(Pa QQ)-

en(P,Q1+Q2) =

2. Let f = fg and g = gg. Then
aiv([T X +[11Q) = 3 N([1 = n]Q) — N([=n]Q) = 0.

Hence [V, f(X + [n]Q) is constant and so if Q = [N]Q’ then [ g(X
[n]@’) is constant. Thus

ﬁg ()Q) = [ 90X + @ + (1)

which implies that g(X) = g(X + [N]Q’) = g(X + @) and so ex(Q, Q) = 1.

72



3. Suppose ey (P, Q) = 1forall P e E[N] and let g = gg. Hence g(X+P) = g(X)
for all P € E[N]. Consider the map 7% : E[N] — Aut(k(E)), defined by
P — (135 : f(X)— f(X + P)). Then 7* is a homomorphism. Let P € ker(7*).
Then 75(f) = f for all f € k(E) and so f(0g) = 75(f(0g)) = f(P) for all
fek(E). Thus P = 0p and 7* is injective. Now k(E) is a Galois extension of
its subfield fixed by 7*(E[N]) with Galois group isomorphic to £[N]. The fixed
field contains [N]*(k(E)) and the degree of [N] is N? = [k(E) : [N]*(k(E))].
Since |E[N]| = N? the fixed field is exactly [N]*(k(E)). This shows that
g = ho[N] for some h € k(E). Hence

div(ho [N]) =div(g) = > {(Q +5)~ ()}

SeE[N]

where [N]Q' = Q. Thus div(h) = @ — 0g and so @ = 0.
4. Let o € Gal(k/k). Then fo» = f& and gg- = g¢. Hence

en(P7.07) = 9’ (X7+P7) (g(X—i—P)

9(%7) 900 ) = en(PQ)”

O

Corollary 4.1.1. Let P,Q, P',Q' € E[N] and (§) = 7(5:) for some~ € My(Z/NZ).
Thenen(P', Q") = ex(P, Q). Therefore if (P, Q) is an ordered basis then ex (P, Q)

is a primitive Nth root of unity.

Proof. This follows from the properties (1) and (2) of the Proposition ?7. O

4.2 Modular curves and function fields over C

The field of meromorphic functions on SLy(Z)\H* = X(1) over C is generated by

the modular invariant j from Section 7?7, C(X (1)) = C(j). In this section we describe
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the function fields of the curves X (N), X;(N) and Xo(N). For each element v =
(cy,d,) € Z* such that ¥ # 0 where ¥ = v(mod N). Let
. g2(7) <cv7' + dv)
T) = . :
fO ( ) g3<7_> Y N
Then f¥ is weight-0 invariant under T'(V) and f§ € C(X(N)). Let d # 0(mod N)
and define

i) = 1500, fon) = S fi).

These functions are weight-0 invariant under I'y (V) and T'g(N), respectively and so
f§(7) € CRG(N)) and fo(r) € C(Xo(N). Denote fi-"* by fio and f7"" by fo,.
Let jn(7) = j(NT). Then jy € C(Xo(N)).

Proposititon 4.2.1. The fields of meromorphic functions on X(N), X1(N) and
Xo(N) are

C(X(N)) =C(j, fr0, for), C(X1(N)) =C(4, foa), C(Xo(N)) = C(j, fo) = C(j,1n)

Proof. Since p.(2) = p,(2') if and only if z = +2/(mod N), f& = f;° and all f¥
are distinct otherwise. We have the containments C(X (1)) = C(j) = C(j, {f;"})
C(X(N)). Now consider the homomorphism

0 :SLy(Z) — Aut(C(X(N))),  f/0 = for.

fory e C(X(N)) since T'(N) < SLy(Z). Clearly we have {+I}I'(N) < ker(f).
Let v € ker(f). Then v fixes the subfield C(j, {f;"}). Since fJ o~y = f;7 and
57 are distinct, v € {+I}I'(N). Thus {£I}T(N) = ker(f) and so §(SLy(Z)) =
SLo(Z)/{+1}'(N). The subfield of C(X(V)) that is fixed by 0(SLy(Z)) is C(X (1))
hence C(X(N))/C(X (1)) is Galois with Galois group (SL2(Z)). The subfields
C(4,{fF"}) and C(j, fi.0, fo.1) both have trivial fixing subgroup and thus they are
equal to C(X (IV)).
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For the second equality consider the set {f¢ : d € (Z/NZ — 0)/+} and the
containments C(X (1)) < C(4,{f%}) c C(Xy(N)) ¢ C(X(N)). Since flo~ =
FODY for v € SLy(Z), the subfields C(j, {f¢}) and C(j, fo.1) have fixing subgroup
{£I}I'1(N)/{£I}I'(N) which is the fixing subgroup of C(X;(N)). This proves that
C(X1(N)) = C(j. {f&) = C(j, fo1). This also shows that

6~ (Gal(C(X (N))/C(X1(N))) = {(3}) € SLo(Z/ND)/{+1}} .
The last equality is similar. [

By the above proposition and the correspondence between algebraic curves and
function fields, X;(/N) is birationally equivalent to the plane curve defined by the
complex polynomial ¢ € C[xz,y] such that ¢(j, fo1) = 0.

The map # in the proof of Proposition 77 gives the isomorphism
07" : Gal(C(X(N))/C(X(1))) = SLy(Z/NZ)/{£I},  [7=fob6 (o)

where f e C(X(N)) and 0 € Gal(C(X(N))/C(X(1))).
Recall from Section ?? that (p,,¢.) : C/A, — E, where E, : y* = 423 — go(7)x —
93(7). Fix 7 € H such that j(7) ¢ {0,1728}. Hence go(7) and g3(7) are nonzero. Let

u = (g3(7)/g2(7))"? be one of the complex root and consider the map
(Wpr, u?p)) : C/A; — C* U {o0}.

This differs from (p,, . ) by an admissible change of variable. The corresponding

cubic equation is

Since g3 /g2 = 277/(j — 1728) we have

Mitr) 21j(e)
Jj(r)—1728 j(r)— 1728
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The map C/A; — Ej(;) gives an isomorphism of N-torsion subgroups. Under this
isomorphism the canonical generators 7/N + A, and 1/N + A, of (C/A;)[N] maps

to -
)

_ () oy 92T
o <gg<r>m M) ool

pQ(T/N)> :

- o (T 3/2
Q- = <92< >pf(1/N),M @’T(l/N)) :

95(7) 95(7)

Hence (P;, Q) is a canonical ordered basis of ;[ IN] over Z/NZ. Observe that the
z-coordinates of P, and @, are f1o(7) and fo1(7) respectively and the nonzero points
of Ej;[N] have z-coordinates {fi*(7)}. Thus knowing j(7), fio(7) and fo(7)
describes an enhanced elliptic curve for I'(N), (Ej(;), (Pr, @-)) which represents a
point [C/A., (7/N + A;,1/N + A.)] of the moduli space S(N). Similarly knowing
J(7) and fo1 describe (Ej(-y, Q;) representing a point of Sy (N).

Now change 7 to a variable. Hence we get a family of elliptic curves Ej;) and
putting this family together we get a universal elliptic curve

27 275

E _ _
1728 T 1728

jiy2=4l’3

with j-invariant equal to variable j. The universal N-torsion 2-coordinates are { fi™"}.
Let z(E;[N]) denote the set of z-coordinates of the nonzero points of E;[N]. Viewing

E; as an elliptic curve over C(j), we have z(E;[N]) < C(j). With this terminology
Proposition ?? says that C(X(N)) = C(j,z(E;[N])) and

Gal(C(j, 2(E;[N))/C()) = SLo(Z/NZ)/{£1}.

Let y(E;[N]) denote the set of y-coordinates of nonzero N-torsion points of E;.

These are the functions

. 3/2 d
() = 20 (ST )
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Let Ej[N] = z(E;[N]) v y(E;[N]) and consider the field containments

C(j) = C(j,2(E;[N])) = C(j, E;[N]) = C(j)

Proposititon 4.2.2. The field extension C(j, E;[N])/C(j) is Galois with Galois
group Gal(C(j, E;[N])/C(j)) = SL2(Z/NZ).

Proof. Let o : C(j, E;[N]) — C(j) be an embedding which fixes C(j) point wise.
Since the extension C(j, z(E;[N]))/C(j) is Galois by Proposition ??, o restricts to
an element of Gal(C(j, z(E;[N]))/C(j)). Elements of the set y(E;[N]) consists of
E

;[N])) which are permuted by ¢ and so o also

square roots of elements of C(j, z(
permutes the elements of y(£;[N]). Hence o is an automorphism of C(j, E;[N]).
Thus the extension C(j, E;[N])/C

Let H = Gal(C(j, E;[N])/C(j)

(7) is Galois.
). The ordered basis (P, Q) of E;[N] over Z/NZ
gives an injective representation

p:H - GLy(Z/NZ), (L) = plo)(5).

Hence H =~ p(H). Let 0 € H. By Proposition ?? and Corollary ?? we have
en(Pr, Q)" = en(P?,Q%) = en(P;, Q)% Since ex(P,,Q,) € py it is fixed
by ¢ and so ex(Pr, Q;) = en(Py,Q,)%*@) . Since eyx(P;,Q,) is a primitive Nth
root of unity, det p(o) = 1 inr (Z/NZ)*. Thus p(H) < SLy(Z/NZ).

Let K = Gal(C(j, E;[N])/C(j, z(E;[N]))) be the subgroup of H fixing the -
coordinates of the elements of E;[N]. Hence if 0 € K then P? = + P, and Q7 = +Q,.
Since p(o) € SLy(Z/NZ), p(o) € {xI}. Now suppose o € H and p(o) € {£I}.
Then P° = +P for all P € E;[N] and so 0 € K. Thus K = p '({£I}). This
shows that |K| < 2. Since Gal(C(j, z(E;[N]))/C(j)) = SLo(Z/NZ)/{£I} we have
|H| = |SLy(Z/NZ)/{+1}||K| and so [SLy(Z/NZ) : p(H)] < 2. [SLy(Z/NZ) :
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p(H)] = 2 if and only if |K| = 1 which means —I ¢ p(H). If this is the case then
{+I}p(H) = SLy(Z/NZ) and so either ( ° §) or —( % §) is in p(H). This implies
that (+( % 8))* = —I € p(H), contradiction. Thus p(H) = SLy(Z/NZ). O

4.3 Modular curves and function fields over QQ

In this section we examine the function fields of the previous section where the
underlying field is changed to be Q.

Recall the universal elliptic curve £ from the previous section. E; can be viewed
as a curve over Q(j). The nonzero points of E;[N] over C lie in W2 and so we have
the containments Q(5) < Q(j, E;[N]) < Q(j). Now the extension Q(j, F;[N])/Q(j)
is Galois. Consider the Galois group Hg = Gal(Q(j, un, £;[N])/Q(j)) and the

corresponding representation

piHo = GLy(Z/NZ)  (g;) = pl0) (&)
where (P, Q,) is an ordered basis of E;[N].
Lemma 4.3.1. For any € uy, o € Hy we have pi° = pdetr(@)

Proof. Since (Py, Q,) is an ordered basis ey (Pr, Q,) is a primitive Nth root of unity

and so given ;1 € uy and o € Hg we have

:U’U ((GN(P"M QT))CL)O = ((eN(P'm QT))U)G = (eN(P;_T, Q?_))a
= en(Pr,Q,)2detrlo) — ydetplo),

]

Suppose ¢ € Hg fixes E;[N] that is o € ker p. Hence o € ker(det p). By Lemma
??, 0 acts on puy as identity. Thus puny < Q(4, £;[N]) and so Hg is the Galois
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group of the extension Q(j, E;[N])/Q(j). Hence we have the following tower of field
extensions and Galois groups

Q(, E5[N1)
Hogupy)

Q(]? uN)

(Z/NZ)*
Q)

As before p is injective and by Lemma 77 it restricts to

p: Hou) = SLa(Z/NT).

Since Gal(C(y, E;[N])/C(j)) = SL2(Z/NZ), by Galois theory SLy(Z/NZ) injects

into Hg(,,) under the restriction map. This shows that the map p is an isomorphism
p: Houy) — SL2(Z/NZ).
Therefore |Hg| = |SL2(Z/NZ)||(Z/NZ)*| = |GLy(Z/NZ)| which proves that
p: Hy = GLy(Z/NZ).

Now let K be an intermediate field of the extension Q(j, £;[N])/Q(j) and K =
Gal(QU, E5[N])/K).

Lemma 4.3.2. Let K be as above. Then
KnQ=Q<e=KnQuy)=Q<=detp: K — (Z/NZ)* surjects

Proof. The first implication is clear. For the second implication suppose KnQ(uy) =
Q. Let a € (Z/NZ)* and u € py be a primitive root of unity. Then p ¢ K and so

there exists o € K such that o : gy — pu® By Lemma ??, det p(0) = a. Coversely,
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assume that K n Q(uy) # Q. Then there exists an Nth root of unity p € K — Q.
Since det p subjects there exists ¢ € K such that detp # 1. Since p is injective
1’ # p and so p ¢ K, contradiction. ]

Since any such intermediate field K is a finite extension of Q(j), we have a
criterion for which intermediate fields K are function fields of an algebraic curve

over Q.

Theorem 4.3.1. Let K be an intermediate field as above with the corresponding
Galois group K. Then K s a function field of an algebraic curve over Q if and only

if det p is surjective.

Consider the following intermediate fields of the extension Q(j, E;[N])/Q(j)

KOZQ(jafO)a Ki):(@(jvj]\f% Klz@(]>f1)

and let Ky, K, and K; be the corresponding subgroups of Hg. Then

p(Ko) = p(Ky) = {(3Y) € GLa(Z/NZ)}

and

p(K1) = {£(a}) e GLy(Z/NZ)} .
This implies that Ko = K{, and det p : K; — (Z/NZ)* is surjective for j = 0, 1. Thus
by Theorem 7?7, Ky and K; are function fields of nonsingular projective algebraic

curves over Q. Denote these curves Xo(NV)ae and Xi(N)a.. We need the following

theorem from algebraic geometry to relate the algebraic curves over C and over Q

Theorem 4.3.2. Let C' be a nonsingular projective algebraic curve over a field k
defined by the polynomials 1, ..., pm € k[z1,...,2,], and let the function field of
C be k(C) = k(t)[u]/(p(u)). Let K be a field containing k. Then the polynomials
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i € K|x1,...,z,] define a nonsingular algebraic curve C' over K and its function

field is K(C") = K(t)[u]/(p(u)).

Now let £ = Q and C' = X1(N )., and p; € Q(j)[x] be the minimal polynomial
of fou over Q(j). Thus Q(C) = QU fou) = Q()[z]/(pr(x)). Let K = C. Then
Theorem ?7? says that there exists a curve C" = X (INV)ag,c over C with function field
C(C") = C(j)[x]/(p1(x)) and the minimal polynomials of f;; over C(j) and over
Q(j) are the same. Therefore the function field C(j, fo1) of the Riemann surface
Xi(N) is

C(X1(N)) = C(j; for) = C()[x]/(pr).

Since the two function fields are the same X;(N) = X;(NN)ag up to isomorphism
over C. For X(NV) the argument is similar with fy is replaced by fj.

4.4 Hecke operators algebraically

In Section 7?7 we have seen the action on 7}, on the complex analytic moduli space
S1(N)
LIE. Q) = Y [E/C.Q+C],

C
where the sum is over all order p subgroups C' of E with C'n{(Q@) = {0}. The complex

elliptic curve E in the definition of S;(N) was a complex torus. In this section we
describe the action of 7}, when E' is an algebraic elliptic curve over Q.

An enhanced complex algebraic elliptic curve for I'; (N) is an ordered pair (F, Q)
where E is an algebraic elliptic curve over C and @) € E' is a point of order N. Two
such pairs (F,Q) and (E', Q') are equivalent if some isomorphism F — E’ over C

takes @ to @'. The complex algebraic moduli space for I'; (N) is

S1(N)agc = {enhanced complex algebraic elliptic curves for I'1(N)}/ ~ .
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The complex analytic moduli space S;(/V) defined in Section ?? and S;(N)agc are

in bijective correspondence where the correspondence is given by
[C/A- 1/N + A= [Er, (p-(1/N), 0, (1/N))].
Thus T}, can be defined on S;(N)agzc by

TP[E>Q] = Z[E/O7Q + C]

()

where now E/C' is viewed as an algebraic object namely the image of the quotient
isogeny.

An enhanced algebraic elliptic curve for T';(N) is an ordered pair (E, Q) where
E is an algebraic elliptic curve over Q and Q € E is a point of order N. Two such
pairs (E,Q) and (E’,Q’) are equivalent if some isomorphism E > E’ over Q takes

Q to Q. The algebraic moduli space for I'1(N) is
S1(N)alg = {enhanced algebraic elliptic curves for I'y(N)}/ ~ .

The intersection of an equivalence class in S1(N)agc With S1(N)ay is an equiv-
alence class in S1(N)ag. Thus S;(IV)a, can be viewed as a subset of Sy (N )agc. If
F is an elliptic curve over Q then its order p subgroups C'  E are the same as such
subgroups of the complex curve E¢c. Hence the definition of 7, on Div(S1(N)aec)
restricts to Div(S1(N)ay). This is the desired version of T, over Q.

In Section 77 we have seen the action of T}, on Div(X;(N)). Now we give an alge-
braic description of this action. For this purpose, identify X;(N) with the complex
points of X1(N)alg, X1(N)agc. Now we can view the action of T}, on X1 (N)ag,c,

T}, : Div(X1(N)ag,c) — Div(X1(NV)ag,c)

Let us see that this action is defined over Q. First consider the diamond operator {d).

To see that (d) is defined over Q we need to check that (d)* takes Q(X;(N)ag) to

82



QX (V)utg): QUXa(N)utg) = QU for). Since (d(T2(N)7) = Ty(N)(r) where =
(2%) € To(IN), it suffices to check that j(y(7)), fo1(7(7)) € Q(X1(N)ay). j(v(7)) =
J(1) € Q(X1(N)ayg). For fo1(v(7)) compute that

foa(v(1) = f OV () = £ () = 17OV,

Thus fo,1(7(7)) is the z-coordinate of +[d]|Q, € Ej¢-y. Hence fo1(7(7)) € Q(j(7), Ej(r)[N]).
Now Q(X1(V)ay) is the fixed field of the Galois group K; and

p(K1) = {+(8%) e GLL(Z/NZ)} .

This group fixes +[d]Q, and so it also fixes fy1(7(7)) which implies that fo1(v(7)) €
Q(X1(N)alg). Thus (d) is defined over Q and therefore {(d) restricts to

{d) : Div(X1(N)alg) — Div(X;(NV)aig)-

Now consider the description of 7}, on the modular curve X;(N) as a double
coset operator: Let o = (), and I's = [Y(N,p) = T'1(N) nT%p), and X{(N,p) =
X(TY(N,p)). Define I'1 o(N,p) = T'1(N) n To(Np) and X;0(N,p) = X(T10(N,p)).
Then Ty (N, p) = al'%(N, p)a~t. Thus T, is described as the pullback of the map

X10(N,p) = X1(N),  T1o(N,p)7 = Ti(N)pr (4.1)
followed by the pushforward of the map
X10(N,p) — X1(N),  Tio(N,p)7 — T'1(N)T. (4.2)

Let us see that these maps are defined over Q. Note that I'y(Np) < I'1o(N,p) <
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To(Np). Thus we have the following tower of field extensions

C(X1‘(Np)) @<X1‘(Np))
C(X10(N,p)) T
C(XO‘(Np)) Q(Xo(Np))

where K corresponds to the field C(X;o(N,p)) and it is function field of a curve
over Q. Denote this curve by Xj o(V, p)aig so that Q(X1,0(N, p)ag) = K. The Galois

groups on the tower are

Gal(C(X:1(Np))/C(Xo(Np))) = Gal(Q(X1(Np))/Q(Xo(Np))) = (Z/NpZ)*/{+1}

Since X (Np)iag,c is isomorphic over C to X;(Np) and similarly for Xo(Np) we have

the following diagram

(C(X1‘(Np)) @(Xl‘(Np))
C(X1,0(N, p)ag,c) Q(X1,0(N,p)atg)
C<X0(Np)) @(XO(NP))

Thus we have the following injections

Gal(C(X1(Np))/C(X10(N, platg.c)) — Gal(Q(X1(Np))/Q(X1,0(N, p)asg))
and

Gal(C(X1,0(N, p)atg,c)/C(Xo(Np))) = Gal(Q(X1,0(N, p)aig)/Q(Xo(Np)))

This shows that the order of Gal(C(X;(Np))/C(X10(N,p))) is the same as the order
of Gal(C(X1(Np))/C(X1,0(N,p)ag,c))- Since these are subgroups of the cyclic group
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they must be the same and so C(X; o(N, p)agc) = C(X1,0(N,p)) which implies that
X10(V,plagc = Xi1,0(N,p) up to isomorphism over C. Thus X o(V,p) is defined
over Q.

The maps (??) and (?77?) correspond to the following function field injections

C(X1(N)) = C(X1,0(N,p),  f(r) = f(p7)
and
C(Xy(N)) — C(X10(N,p)), f(r) = f(7).

Since C(X1(N)) = C(J, fo1) the image of the nontrivial map is C(j(p7), fo1(p7)).
Since j(p1), foi(pT) € Q(X1,0(V, p)aig), these injections restrict to function fields over
Q. Thus T}, is defined over Q and so T, restricts to

Ty : Div(X1(N)ag) = Div(X1(N)alg)-
From Section 77 we have the following map
wl Sl(N>—>X1(N>, [C/AT,l/N+AT]’—)F1(N)T

and this map extends to divisor groups. We need to make 1); algebraic. For this

purpose consider the following commutative diagram,

Si(N)—=Si(1)  [C/A;, 1/N + A ]—— [C/A,]

o | |

Xl(N)ﬁXl(l) Fl(N>TIﬁSL2(Z)T

Note that we have identified the complex analytic moduli space S1(N) with the
complex algebraic moduli space Si(NN)agc and the Riemann surface X;(N) with
the complex points X;(N)agc of the algebraic modular curve. For N = 1, the

complex algebraic moduli space is the set of equivalence classes of complex algebraic
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elliptic curves and the complex points of the algebraic modular curve are the complex

projective line P'(C). Therefore the above diagram becomes

- ]

SI<N)alg,Cﬁ'Sl(]-)alg,(C [E7 Q] 'ﬁ[E]
XI(N)alg,(C - X1(1>alg,(c P '—>]<T)

Now an element [E, Q] of S1(N)agc describes an element of the algebraic moduli
space S(NV ).y if and only if j(E) € Q. Thus mapping down and then across takes
S1(N)ayg to PH(Q). This shows that P € X;(N),,. Therefore the left side of the

diagram restricts to
wl,alg : SI(N)alg - XI(N)alg-
Putting all the things together so far we get the following commutative diagram

which is the algebraic version of the diagram given in (?7),

Div(S1 (N )atg) —2= Div(S: (N )ag)

l"pl,alg L'wl,alg

Div (X1 (N)atg) —2 Div(X; (V) )

and so we have the following commutative diagram

Div® (S (V) atg) — 2= Div® (S (V) asg) (4.3)

Lwl,alg lwl,alg

. Tp .
Pic’ (X1 (N)alg) —= Pic’ (X1 (N)ayg)
For the Hecke operator {(d) we have the following similar diagram,

Div®(S1 (N ag) —Z Div®(Sy (V) (4.4)

lwl,alg lwl,alg

. Ay .
PicY (X (N )atg) 25 Pic® (X1 (N )arg)
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4.5 Eichler-Shimura Relation

Let X;(N) denotes the nonsingular algebraic curve over Q with the function field
Q(X1(N)) = Q(J, foa) and S1(N) denotes the algebraic moduli space for I'y(N). We
also identify the Jacobians and Picard groups of a compact Riemann surface X and
denote both of them by Pic’(X).

Let p be a prime not dividing N. Let p be a maximal ideal of Q lying over p.
Let Zg) denote the localization of Z at p. Since Z/p = Zy/pZy) and Z/p is an
algebraic closure of IF,,, we have a reduction map ™: Z(p) — T,

An elliptic curve £ over Q has good reduction at p if and only if j(E) e Z(p) and
so j(E) reduces to m € F,. Restrict the moduli space S;(N) over Q to

—~—

S1(N)y = {[E,Q] € Si(N) : E has good reduction at p, j(E) ¢ {0, 1728}}.
Let S)(N) denote the moduli space over F, and restrict it to
SUN) = {[E,Q] € Si(N) : j(E) ¢ {0,1728}}.
Now we have the following reduction map
Si(N)ga = S1NY, B, Q] =~ [E5,Q)

and it is surjective. Indeed, any elliptic curve over Fp lifts to an elliptic curve over
7. Since reduction map gives an isomorphism between N-torsion subgroups of an
elliptic curve with good reduction at p and its reduction, N-torsion point has a lift.
Thus the above map is surjective.

Now we define the reduction X;(N) of X;(N) at p. Remember the universal
elliptic curve from Section ?7. Viewing this as an elliptic curve over F,(j) and using

an admissible change of variable we get

_ 36 1
pry = (j—1728)x <j—1728)
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Let @ be a point of Ej of order N and ¢; € F,(j)[x] be the minimal polynomial
of its z-coordinate z(Q). Let K,(N) = F,(j)[x]/(¢1(z)). Then K,(N)nF, = F,
and so K;(N) is a function field over F,. The following theorem of Igusa says that

reducing the moduli space is compatible with reducing the modular curve.

Theorem 4.5.1. The modular curve X1(N) has good reduction at p and there is
an isomorphism of function fields F,(X,(N)) = K,(N). Also the following diagram

commudtes,

By the above diagram we have

Div(S1(N)pq) —= PiCO(TW )
Div?(S;(N)) — Pic(X;(N))

Now we give the description of the Hecke operator 7}, on the Picard groups of the

reduced modular curves,

T, : Pic’(X(N)) — Pic®(X;(N)).
For the Hecke operator {(d) it is easy since the pushforward of a morphism and

pushforward of its reduction are compatible. Thus we have the following commuta-
tive diagram,

Pic® (X1 (V) “2% Picd (X, (N))

Lo

Pic’(X;(N)) —2 Pic® (X (N))
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We assert without proof that such a commutative diagram exists for 7,

Pic(X1(N)) —2~ Pic® (X, (N))
Pic?(X;(N)) —2= Pic® (X (N))
The action of T}, on the moduli space S;(N) was given by
TP[E>Q] = Z[E/C7Q + C]
c

Let p be a maximal ideal of Z lying over p. If the curve E has ordinary reduction
at p, then all the curves E/C on the right side also have ordinary reduction at p.
Let E be an elliptic curve over Q with ordinary reduction at p and Q € E be a
point of order N. Let Cy be the kernel of the reduction map E[p] — E[p]. Then C;
is an order p subgroup of E since the reduction map subjects and E has ordinary

reduction.

Lemma 4.5.1. For any order p subgroup C of E,

. Eov, (o), O = C,,
Ee.gre - {7 re=G

(B, [plQ7"], if C # Co.
Proof. Suppose C' = Cy. Let ' = E/C and Q' = Q + C = ¢(Q) where ¢ : E — E'
is the quotient isogeny. Let ¢ : E' — E be the dual isogeny of ¢. We have a
commutative diagram

E'[p] = E[p]

|

~— w ~
E'[p] — E[p]
Since E has ordinary reduction at p, it is isogenous image E’ also has ordinary

reduction at p and so |E7[p]| = p. The image ¥(E'[p]) has order p since | ker(¢))| =
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deg(v)) = p and it is a subgroup of C' since p(Y(E'[p])) = [p]E'[p] = {0}. Thus Cy =
C = (E'[p]). Since the map E'[p] — E'[p] surjects the map at the bottom is the
zero map, i.e. @[p] < kertp. Conversely, since @ o1 = [p], we have ker(1)) ¢ va’[p]
Thus ker(¢) = E'[p].

Since reduction at p preserves the degrees, by the relation [p] = ¢ o, deg([p]) =
p?, deg(@) = p and deg()) = p. Since ker([p]) = E’[p] = ker(¢)) we have

deg.,([p]) =p,  degy([p]) =p

and

degeep(V) =p,  degi(¥) = 1.
Thus

deg.p(P) =1, deg (@) = p.
This shows that ¢ is of the form ¢ = ¢ o 0, where 7 : Eo — F' is an isomorphism
taking Q" to @ Thus

[E', Q'] = [E™, Q7).
Now suppose C' # Cy. Let C" = ker(¢)) and C{ be the kernel of the reduction

map E’'[p] — ﬁ[p] and so C{ is an order p subgroup of E’[p]. Consider the following

commutative diagram,

E[p] — E'[p]

|

E[p] =~ E'[p]
The subgroup ¢(Cy) of E’[p] is an order p subgroup since Cy # C = ker(p). and
©(Cp) is a subgroup of C” = ker(¢)). Since both have order p, they must be equal.
Also ¢(Cy) is a subgroup of C{, and so ¢(Cy) = C{. Thus C" = ¢, and by the first

part of this proof we have ¢ = i o o, where 7 : 7 - Eis an isomorphism taking
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0" to [p]Q. Apply o, ! to i gives an isomorphism 7 "B — Eo taking @ to
[p]Q°"". Thus
(7, Q] = [E7 . [plQ7"].
O]

Similarly, if E is an elliptic curve over Q with supersingular reduction at p and

@ is an element of order N, then for any order p subgroup of F,
—_— ~ ~ ~ 1 ~ -1
[E/C,Q +C=[E?, Q7] =[E™ ,[p]Q™ ]

Let d be an integer prime to N and define the moduli space diamond operator in

characteristic p,

Since there are p + 1 order p subgroups of E one of which is Cy, by Lemma 77?7 we

have

YIE/C,Q+C1 = (0, + pp)o, )E, QL.
c
This also holds for curves with supersingular reduction at p and therefore it holds

for all curves with good reduction at p. If an elliptic curve E over F, has invariant

j ¢ {0,1728} then it also holds for E° and E° . Thus by the description above we

have the following commutative diagram

Tp

Sl(N):g,d DiV(Sl(N);gd)
G l ’ Up‘*‘PG’B“zyl . Nl ’
S1(N) Div(S;(N))
and this gives
Div® (S (V)L ) ———— Div’(S1 (N),) (4.5)
Div?(S;(N)) 7o @0y Div(Sy(N)')
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Lemma 4.5.2. The following diagram commutes
Div?(S1(N))

Op,* +<p>*cr;:
_—

Pic’(X;(N)) Pic(X;(N))

Proof. Note that we have the following commutative diagrams

Ip

Div®(S;(N)) Div’(S;(N)")

.

DiVO(Xl N)planar) Op,%* DiVO(Xl N)planar)

and
Div%ja(m')LU ﬁl( )
DiVO(Xl(N)planar) _*> Div° ( I(N)planar)

where the maps on the left and right are given by [E;, Q] —

[j,2(Q)]. There is

a birational equivalence h from X;(N)P#%* to X, (N) hence we have the following

diagram
Divo(f(l (N)planar) _IpE Divo(f(l (N)planar)
I I
Div®(X;(N)) Div®(X,(N))
and similarly
DiVO(Xl

N)planar) Ip Divo()z'l(N)planar)
I

B

Div’(X;(N))

|

Div?(X;(N))

Now the bottom rows of these two diagrams descend to Picard groups. Combining
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these two diagrams with the diagrams (?7?) and (??) we get the following diagrams

Div?(S(N)) —= Div?(S, (N)) (4.8)

|

Pic® (X1 (N)) 25 Pic® (X1 (N))

-

and

Div? (S, (NY) 27 DivO (3, (N)') (4.9)

Consider the cube-shaped diagram,

(d)*

Pic’(X1(N)) Pic’(X1(N))
DivO(Sl(N)'gd)/7 ‘ D DivO(Sl(N)’gd)/7

Pico()lfl(]\f)) (D Pic(X, (V)
Div0(§1<N)/ O Div”(ﬁl(N>/

Note that the bottom row is the diagram

Pic®(X;(N)) — Pic’ (X1 (N))

and all other diagrams commute and left front vertical map is surjective and so the

bottom diagram also commutes. Hence by the diagram (??7) we get the following

93



commutative diagram

DivY (81 (NY) 22 Div® (8 (N)) = Div®(Sy (NY)

L x L (dyy j

Pic’(X1(N)) —2= Pic(X;(N)) — Pic’ (X (N))
Now by the diagram (??) we get the commutetive diagram in the lemma. ]
Now we are ready to give the Eichler-Shimura relation,

Theorem 4.5.2. Let p{ N. Then the following diagram commutes:

Pic°<)Il<N>> o Pic°<)I1<N>>
PicO( X, (V) 2% i 0, ()

Proof. Consider the following cube-shaped diagram,

Pic’(X,(N)) T Pic’(X,(N))
DiVO(sl(N)/gd)/7 ‘ = DivO(Sl(N)fgd)/j

PiCO()l(l(N» o157 Pic®(X;(N))
DivO(S*I(N)’)/:’J*”@”” : DivO(Sl(N)/

Note that the left and right sides of the cube are commutative diagrams from The-
orem ??. The top square is the commutative diagram (??). The front square is the
commutative diagram (??) and the bottom square is the commutative diagram from
Lemma ??. Let o denote the map o, . + @ +0,- Consider the following chain of

maps
Div?(S1(N)q) —= Div?(S1(N)') —= Pic®(X1(N)) === Pic’(X1(N))  (4.10)
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where the first two maps are surjective. By commutativity of the left side (?7?) is

Div?(S1(N)q) —= Pic’(X1(N)) —= Pic’ (X1 (N)) === Pic’(X1(N))  (4.11)

where the composition of the first two maps is surjective. Since the bottom, front

and top squares are commutative (??) becomes
Div’(S1(N)Lq) — Pic’(X1(N)) P PId(X(N)) — Pic®(X,(N)) (4.12)

We know that there exists a map T, : Pic’(X;(N)) — Pic?(X;(N)) such that the

back square of the cube commutes and so we have

Div’(S1(N)Lq) — Pic’(X1(N)) — Pic” (X, (N)) T, Pic®(X{(N))  (4.13)

Now this is the same chain with (??) and since the composite of the first two maps

is surjective, T, = o. O

Thus the Hecke operator T, is now described in characteristic p in terms of the

Frobenius map o,.
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5 Galois Representations

In this section we construct Galois representations attached to Elliptic curves and
modular forms. Then give a brief overview of the method of Wiles’s proof of modu-

larity theorem.

5.1 Galois number fields

Let F' be a Galois number field, i.e. a finite Galois extension of Q. Let p be a rational
prime. Then we have a factorization pOp = (p;y...p,)¢, where e is the ramification
degree of p, g is the decomposition index. Let f be the residue degree, i.e. the
dimension of Op/p over F, = Z/pZ. Then we have |Gal(F/Q)| = efyg.

The decomposition group of a maximal ideal p of O lying over p is the set
D, = {0 € Gal(F/Q) : p° = p}.

Since Gal(F/Q) acts transitively on the set of maximal ideals in the factorization of

pOp, the order of D, is ef. Note that D, acts on the residue field f, = Op/p = F,
(x+p)7 =27 +p, z € Op, o€ D,.
The kernel of this action is called the inertia group of p,
I, ={ceD,:2° =2 modp for all z e Op}.

The order of I, is e. Consider F,, as a subfield of f,. Hence we have an injection
D,/I, — Gal(f,/F,) = {0,), where ), is the Frobenius automorphism in characteristic
p. Since both sides has order f the injection is actually an isomorphism. Therefore
D,/I, has an element that maps to o,. Any representative of this element in D, is

called a Frobenius element of Gal(#/Q) denoted by Frob,. Hence Frob, is defined up
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to inertia and so when p is unramified Frob, is unique. The action of Frob, descends

to the residue field as
2% = 2P modp  for all z € Op.

Let p” and p be two maximal ideals lying over p. Since Gal(F'/Q) acts transitively
on the maximal ideals lying above p, there exists an automorphism o € Gal(F'/Q)
such that p? = p’. It is easy to see that the decomposition group associated to p’ is
Dy = Dyo = 0~ *Dyo, and the inertia group of p’ is Iy = I,e = o~ 'I,0. The relation
between the corresponding Frobenius elements is Froby = Frobye = o 'Frob,o.
Therefore if the Galois group is abelian the Frob, depends only on the underlying
prime and so can be denoted by Frob,.

We state the following theorem without proof which we use later.

Theorem 5.1.1. Let F' be a Galois number field. Then every element of Gal(F/Q)

takes the form Frob, for infinitely many maximal ideals p of Op.

Let ¢ be a prime number. Consider the affine algebraic curve over Q, C' : zy = 1.
Under the map (z,y) — x, the points of C' are identified with the Abelian group Q"
This induces an Abelian group structure on points of C' where the group operation is
point wise multiplication. Let n € Z*. The points of C' of order ¢* form a subgroup
C[¢"] which is identified with the ¢"th roots of unity by the above identification.
Thus we have an isomorphism C[¢"] = Z/{"Z given by puf, — a. Therefore we also

have

Aut(C["]) = (Z/0"7)*
given by (pn — ppn) — m. This extends to the following isomorphism
Gal(Q(pen)/Q) = (Z/CZ)*, (0= pn = pign) — .
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Put the number fields Q(yu¢=) together for all n and define Q) = |, Q(pem).
This is a subfield of @ and has infinite degree over Q. Let Gg, = Aut(Q(pu)).
Every element 0 € Gg restricts to o, € Gal(Q(uem)/Q) for each n. The restrictions
form a sequence (07,05, ...) such that oy,41|gum) = on for all n. Conversely, let
(01,09, ...) be a compatible sequence as described above. Define o € Aut(Q(u<)) by
o(x) = o,(z) if x € Q). The compatibility guarantee that o is well-defined.
Thus Gg, is the group of compatible sequences where the group operation is
componentwise composition. Thus Gg, = lim Gal(Q(u)/Q). Hence G, = Zj.
The (-adic Tate module of C'is

Ta,(C) = {(ug', us?, ...) : pgn™' = pgn for all n} = Z,.

G, acts on Tay(C') componentwise.

5.2 Galois representations

The absolute Galois group of Q will be denoted by Gg = Aut(Q) where Q denote the
algebraic closure of Q. Q is the union of all Galois number fields. Let o € G be an
automorphism of Q. For any Galois number field F, o restricts to o|r € Gal(F/Q).
If F and F” are two Galois number fields such that F' < F”’ then we have op = op |F.
Conversely, every system of automorphisms {or} satisfying the above compatibility
criterion defines an automorphism o of Q as follows: Let 2 € Q. Then x € F for some
Galois number field F'. Define o(z) = op(z). o is well-defined as {op} is compatible.
This shows that
Go = lim Gal(F/Q).
F

Being the inverse limit of finite groups, Gg is profinite.
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For each 0 € Gg and each Galois number field F' let U,(F) = o - ker(Gg —
Gal(F'/Q)). The topology on Gg which has the basis

{U,(F) : 0 € Gy, F is a Galois number field}

is called the Krull topology. As G is profinite, it is compact. For o = 1, denote
U,(F) by U(F). Note that U(F) is an open normal subgroup for every Galois number
field F'. Conversely, every open normal subgroup of Gy is of the form U(F') for some
F. Indeed; let U be an open normal subgroup of Gg. Since 1 € U, U(F) < U for
some F'. Hence
Gal(F/Q) = Go/U(F) — Gg/U.

Thus Gg/U is isomorphic to a quotient of Gal(#'/Q) and so Go/U = Gal(F'/Q) for
some F' < F. This shows that U = ker(Gg — Gal(F'/Q)) = U(F").

Let p € Z be a prime and p  Z be a maximal ideal over p, where Z denotes the

integral closure of Z in Q. The decomposition group of p is

D, ={0eGg:p° =p}.
Hence D, acts on Z/p as (v + p)° = 2% + p. Since Z/p = F,, this action can be
viewed as an action on Fp. Hence we have a map D, — Gp,, where G, denotes the
absolute Galois group of IF,. This map is surjective since it is surjective at each finite
level. An absolute Frobenius element over p is an element Frob, € D, that maps to

the Frobenius automorphism o, € Gp,. Note that Frob, is defined up to the kernel

of the action, the inertia group
I, ={ceD,:2 =2 mod p for all x € Z}.

The restriction map Gg — Gal(F'/Q) takes Frob, to a Frobenius element in Gal(F/Q),
i.e. Froby|p = Froby, where pp =p n F.

The following theorem illustrate why we are interested in Frobenius elements.
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Theorem 5.2.1. The set
{Frob, : p < 7 is maximal ideal lying over any but finite set of primes p}

is dense in Gg

Proof. Let U = U,(F') be any basis element of the Krull topology on Gg. It suffices
to show that there exists Frob, € U. By Theorem ??, o|p € Gal(F/Q) takes the
form Frob,, for some maximal ideal pr € Op. Lift pr to a maximal ideal p of Z, i.e.
pNE = pp. Thus Froby|p = Frob,, = o|p. Hence Frob,-o~! € ker(Gg — Gal(F/Q))
which implies Frob, € U, (F). O

Let x : (Z/NZ)* — C* be a primitive Dirichlet character. Then we have
Go = Gal(Q(un)/Q) = (Z/NZ)* —C*

where 7y is just the restriction map and ¢ is the isomorphism which is defined by

(un — p%) — a. This shows that y determine a homomorphism
py = xXowpomy : Gg — C*.

It is easy to see that p,(conj) = —1 and p,(Frob,) = x(p), where conj denotes
the complex conjugation. Let us see that p, is continuous. To see this we use the

following standard result

Lemma 5.2.1. Let p : G — H be a homomorphism of topological groups. p is
continuous if and only if p=*(V') is open for each V in a basis of neighborhoods of

wdentity 1g.

Suppose p, (1) is open in Gg. Let V be an element of basis of neighborhoods
of 1 and let g € p (V) 2 p;*(1). Thus py(g-py'(1)) = V. Since p'(1) is open,
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g-py (1) is open and g € g - pi (1) < pi* (V). Therefore p. (V) is open and by the
above lemma p, is continuous. Therefore we only need to check that pj (1) is open.
To see this note that my(p; ' (1)) < Gal(Q(uy)/Q). This is because my is surjective.
Thus Galois theory implies that there exists a subextension F' < Q(uy) such that
Gal(Q(un)/F) = mn(py'(1)). Our claim is that p '(1) = U(F). To see this let
o € U(F). Hence 0lg(.y) € Gal(Q(py)/F) and so 7y (o) € mn(py (1)) < ker(x o ).
Thus x o ¢ o my(0) = 1 which proves o € p_'(1). Coversely, let o € pi*(1). Then
mn(0) € Gal(Q(un)/F) and so o|p = idp, i.e. o € U(F). Therefore p (1) = U(F)
which is open. Thus p’ (1) is open. This finishes the proof of p, is continuous.
Conversely, every continuous homomorphism p : Gg — C* arise from a Dirichlet
character. First let us see that any such homomorphism has finite image. The

following lemma proves more.

Lemma 5.2.2. Any continuous homomorphism p : Gg — GL4(C) factors through
Gal(F/Q) — GL4(C) for some Galois number field F'. Thus the image of p is finite.

Proof. Take a neighborhood V of I € GL4(C) containing no nontrivial subgroup. Let
U = p~ (V). Since U is a neighborhood of 1 € Gg, U(F) < U for some Galois number
field F'. We have ker p < U and if there exists o € U(F)\ ker p, then p(U(F)) gives
a nontrivial subgroup of V' which contradicts the choice of V. Thus U(F) < ker p.

Hence we have a surjective map
Gal(F/Q) = Go/U(F) — Gg/ ker p.
This proves the lemma. ]

Now since ker p is a closed normal subgroup of Gg, it corresponds to a Galois

extension L/Q with Gal(L/Q) = Imp. Thus p factors through some Abelian Galois
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extension F'/Q and by Kronecker-Weber Theorem, we may take F' = Q(uy) for some
N. Thus we have

G —"> Gal(Q(un)/Q) —= C*
jw -7 .
P - X
(Z/NZ)*
This shows that p = p, and so we have seen that there is a correspondence between

continuous homomorphisms p : Gg — C* and Dirichlet characters.

Definition 5.2.1. Let d be a positive integer. A d-dimensional ¢-adic Galois repre-

sentation 1s a continuous homomorphism
p: GQ - GLd(L)

where L is a finite extension of Q. If p' : Gog — GL4(L) is another such represen-
tation and there exists m € GL4(L) such that p'(c) = m™p(a)m for all o € Gg then

p and p' are equivalent, denoted as p ~ p'.

An example of a one dimensional /-adic Galois representation is the f-adic cy-
clotomic character: We have seen that Gal(Q(um)/Q) = Zj;. The containment
Q(pe=) = Q gives a surjection Gg —» Ggy. Combining this map with the isomor-
phism above we get

Xg:GQHZEf

given by o — (mq,ma,...) such that uf, = py" for all n. Thus x, arises from the
Gg-module structure of the Tate module of C given before. We need to check that
X¢ is continuous. By Lemma ?? it suffices to check that x,'(U(n)) is open for all
n. Here U(n) = ker(Z; — (Z/"Z)*). We have x,(c) € U(n) < pf. = pun <
Olo(um) = 1d & 0 € ker(Gg — Gal(Q(pe)/Q)) < 0 € U(Q(pten)). This shows that
Xz (U(n)) = U(Q(uem)) and so it is open which proves y; is continuous.
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Given a Galois representation p we want to know the values p(o) for o € Gg.
Especially at absolute Frobenius elements, Frob,. Frob, is defined up to inertia group
I, and so p(Frob,) is well-defined if and only if I, < ker p. Let p and p’ be two maximal
ideals lying over the same prime p. Then we have seen that I, = 77 1,7 for some
7 € Gg. Since ker p <1 G, the condition I, < ker p depends only on the underlying
prime p. Let p and p’ be two representations such that p ~ p’. ker p = ker p’ hence
the condition I, < ker p makes sense for an equivalence class of representations. Now
p(Frob,) depends on the choice of p. Since every conjugate of p(Frob,) has the same
characteristic polynomial as p(Frob,) and Froby,s = o~ 'Frob,c, the characteristic

polynomial depends only on p.

Definition 5.2.2. Let p be a Galois representation and p be a prime. Then p is

unramified at p if I, < ker p for any mazimal ideal p = Z lying above p.

If the Galois representation p is unramified at all but finitely many primes p, then
the values p(Froby) for p lying over unramified primes p determine p everywhere by
continuity of p and Theorem ?77.

We have seen that y, arises from the Gg-module structure of Ta,(C'). Let
Vi(C) = Ta,(C) ® Q. This is a one dimensional vector space over Q,. Consider

the commutative diagram

Vi(C) x Go—=Vi(C)

o

Qe x Qf ———=Q

The action of Gg on V;(C) is continuous since the other maps in the diagram are

continuous.
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Definition 5.2.3. Let d be a positive integer. A d-dimensional ¢-adic Galois repre-
sentation is a d-dimensional vector space V over L where L is a finite extension of

Qp, that is also a Gg-module such that the action
VxGog—-V (v,0)—07

is continuous. If V' is another such representation and there is a continuous Gg-

module isomorphism V. = V' then V and V' are equivalent.

This definition is compatible with the Definition ?? given earlier. To see this let
p: Gg — GL4(L) be a Galois representation as in Definition ??. Now L? is a d

dimensional vector space over L. Consider the map
LYx Gg — LY (v,0) — vp(o).

This map is continuous since p is continuous and so L? is a d-dimensional Galois
representation as in the Definition 77.
Conversely, let V' be a d-dimensional Galois representation as in Definition ?77.

By fixing a basis of V' we can identify Aut(V') with GL4(L). Then the map
Go = Aut(V) o (v—17)
induces a map
p: GQ — GLd(L)

and p is continuous.
In the above examples of Galois representations we have seen that the image of
the representation lies in GL4(QOp). The following proposition shows that this is true

in general.

Proposititon 5.2.1. Let p : Gg — GL4(L) be a Galois representation. Then p is

similar to a Galois representation p' : Gog — GL4(Oy).
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Proof. See [?, Proposition 9.3.5]. O

5.3 Galois representations and elliptic curves

Our aim in this section is to construct two dimensional Galois representations at-
tached to elliptic curves. Let E be an elliptic curve over Q and ¢ be a prime.
Multiplication by ¢ between ¢-power torsion subgroups of E gives maps

E[{] «— E[{*] «— E[{*] «— ...
The ¢-adic Tate module of FE is

Tay(E) = lim E[("].

n

Choose a basis (P,,Q,) of E[¢"] for each n € Z* such that [{]P,,; = P, and

~

[(]Qn+1 = Qn. Each basis gives an isomorphism E[("] = (Z/("Z)? and since the
bases are compatible with the transition maps we can pass to the limit which gives
Ta,(E) =~ Z2. Note that for each n, Q(E[¢"]) is a Galois number field. Hence we

have a restriction map
Go — Gal(Q(E[("])/Q)
and we also have an injection
Gal(Q(E[€"])/Q) — Aut(E["]).
Composing these maps gives
Gg — Aut(E[("]) for each n.

For each n consider the following commutative diagram

Go

N

Aut(E[0"]) Aut(E[£*1])
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This shows that Gg acts on the Tate module of E and so Ta,(E) is a Gg-module.
Each basis (P,, @,) determine an isomorphism Aut(E[("]) = GLo(Z/¢"Z) and by

the choice of the basis the following diagram commutes for all n

Aut(E["]) GLo(Z)0Z) .

| |

Aut(E[("1]) —— GLo(Z/0"12)

Thus we have Aut(Ta,(E)) = GLy(Z,). Combining this isomorphism with the action

of Gg on Tay(E) we get a homomorphism
PE - GQ — GLQ(ZE) c GLQ(@()

Let us see that this is a continuous homomorphism. It suffices to check that p',(U(n))

is open for each n where U(n) = ker(GLy(Zy) — GLo(Z/¢"Z)). Now we have

oepphUn) < ppio)eU(n)
< (P7,Q7) = (Pu, Qn)
< olgmee) =id
= o€ ker(Gy — Gal(Q(E[("])/Q))
< oeUQ(E["])).

Hence pE}K(U(n)) = U(Q(E[¢"])) and so it is open for all n. pg . is the 2-dimensional

Galois representation attached to E.

Theorem 5.3.1. Let ¢ be a prime and E be an elliptic curve over Q with conductor
N. The Galois representation pgy is unramified at every prime p { {N. For any
such p let p < Z be any maximal ideal over p. Then the characteristic equation of
p.o(Froby) is

2® — a,(E)x +p =0,
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where a,(E) = p+ 1 — |E(F,)|.

Proof. Let p{ N and p lies over p. Let G, be the absolute Galois group of F,. We

have a commutative diagram for all n,

D, —— Aut(E[¢"])

]

Gy, — Aut(E[¢"])

where the map D, — Gy, is induced by the action of D, on Fp, the map D, —
Aut(E[¢"]) is just the restriction of the action of Gg and the map Gy, — Aut(E[("])
is given by the action of Gp, on E. Now I, < ker(D, — Gg, — Aut(E[("])).
Note that p t N implies that E has good reduction at p making Aut(E[("]) —
Aut(E[¢"]). Therefore I, < ker(D, — Aut(E[¢"])) for all n. Thus I, < ker(Gg —
Aut(E[¢"])). Since this is true for all n by definition of pg e, I, < ker pg, and so pg
is unramified at p.

For the characteristic equation of pg ¢(Frob,) we need to compute det pg ¢(Frob,)
and trpg¢(Frob,). Let p, : Gg — Aut(E[("]) = GLy(Z/"Z) be the nth entry of
pee. Considering the Weil pairing of the basis (P, @) gives

eer(Pa, Qn)” = €0 (PL, Q%) = e (P, Q)2 7).

The second equality comes from the fact that (g'% ) = pn(0) ( 5’; ) Since epm (P, Qn) =
fn, 0 acts on g by pg, = u?ftp”(a). We also have puf, = ,u?,f’"(a) where /., (0)

denotes the nth component of x,(c). Thus we have det p,,(0) = xrn(0) in (Z/("Z)*.
Since this is true for all n, detpgy(c) = xe(o) in Zj, and so det pg(Frob,) =
xe(Froby) = p. For the trace let A = pg (Froby). Since A satisfies its characteristic
polynomial we have tr(A) = A + pA~'. As endomorphisms of Pic’(E), 0, + oy =

ap(E), where 0, , and o5 forward and reverse maps of Pic’(E) induced by 0,. 0.
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acts on Pic’(E) as o, and o acts as po, '. By the above diagram o, acts on E[("] as
Frob,, acts on E[¢"] where Frob,, is the nth component of Frob,. Thus A+ pA~! =
a,(E) mod ¢" for all n. Therefore

trpg.o(Froby) = a,(E).
[

It is also true that pg, is an irreducible representation but we will not give a
proof of this. Galois representations attached to isogenous elliptic curves £ and E’
are equivalent. To see this, ¢ : E — FE’ be an isogeny. Then ¢ induces a map
between Tate modules and so we have a map V;(E) — V;(E’). Similarly, the dual
isogeny also gives a map V;(E’') — V;(E) and the composition is multiplication by
deg(y) which is an automorphism as V;(E) and V(E") are vector spaces over Q, and

Q¢ has characteristic zero.

5.4 Galois representations and modular forms

The aim of this section is associating Galois representations to modular curves and
decompose them into representations attached to modular forms.

Let N be a positive integer and ¢ be a prime. We have seen that X;(NV) is a
projective nonsingular algebraic curve over Q. Let g be the genus of X;(N). The

Jacobian of the complex curve X;(N)c is
Ji(N) = Jac(X1(N)c) = Sp(T'y(N)"/H (X1 (N)c, Z) = CI/A9.

Pic’(X1(N)) can be identified with a subgroup of the complex Picard group Pic’(X;(N)c)
which is isomorphic to the Jacobian by Theorem ??. Thus we have an inclusion of

/™ torsion

in : Pic?(X1(N))["] — Pic®(X1(N)c)[("] = (Z/0"7)%.

108



By Theorem 7?7, X;(N) has good reduction at p and we have a surjective reduction

map Pic’(X;(N)) — Pic®(X;(N)) restricting to ¢ torsion
T+ Pic% (X1 (N))[€"] — Pic® (X, (N))[¢"]

We state without proof that if a curve C' over a field k has genus g and N is coprime to
char(k) then Pic’(C)[N] = (Z/NZ)? and if C is a curve over Q has good reduction
at a prime p{ N then the reduction map is injective on Pic’(C)[N]. Thus 4, and T,
are actually isomorphisms for p 1 ¢/N.

The ¢-adic Tate module of X;(N) is
Tay(Pic’(X1(N))) = lim Pic® (X1 (N))[¢"].
Choosing a compatible family of bases of Pic’(X;(N))[¢"] for all n we have
Ta,(Pic’ (X, (N))) = Z7.
Gg acts on Div'(X(N)) as
(Xm(P))” =Y mp(P), e Gy
and this action descends to Pic’(X(N)),
Pic’(X;(N)) x Gg — Pic’(X(N)).

Since Q(Pic’(X1(N))[¢"])/Q is a Galois extension the action of Gg restricts to

Pic’(X;(N))[¢"] and we have the following commutative diagram

Go

T

Aut(Pic®( X, (N))["]) Aut(Pic” (X (N))[e™1])
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for all n. Thus Gg acts on Ta,(Pic’(X;(N))) and this gives a representation
px, (v, : G — Aut(Tag(Pic®(X1(N)))) = GLag(Zg) © GLay(Qy)

One can show similarly to the Galois representation attached to an elliptic curve,
px,(N)¢ is continuous. It is the 2g-dimensional Galois representation associated to

X1(N). By the diagrams (??) and (??), the Hecke algebra Tz acts on Pic(X(N)),
Tz x Pic’(X1(N)) — Pic’(X1(N)).

This action restricts to f-power torsion and then extends to Ta,(Pic”(X;(N))). Since
the Hecke action on Pic’(X;(N)) is defined over Q, it commutes with the action of

Gg. Thus the actions on Tay(Pic’(X;(N))) also commute.

Theorem 5.4.1. Let ¢ be a prime and N be a positive integer. The Galois repre-
sentation px,(nye is unramified at every prime p{ {N. For any such p let p < 7 be

any mazimal ideal over p. Then px,(nye(Froby) satisfies the polynomial equation
2? — T,z + {p)p = 0.
Proof. We have the following commutative diagram

Dy — Aut(Pic” (X1 (N))[¢"])

| |

G, — Aut(Pic® (X, (N))[¢"])

The map on the right side is the isomorphism induced by m, from the beginning of
this section. Similarly to the proof of Theorem 77?7, I, < ker px,(n),¢ and so px,(n)¢

is unramified at p. The Eichler-Shimura relation given in Theorem 7?7 restricts to
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(-torsion and we have the following commutative diagram,

Ty

Pic’(X1(N))[¢"] Pic’(X1(N))[¢"]

J |

PIc (X (M) 4 Pic (K (V) [
We also have the following commutative diagram

rob roby !
et PP picd (o, (N))[67]

|

Pic”(Xy1(N))[¢"]

Pic’(X1(N))[¢"

|

Pic”(Xy1(N))[¢"]

Op,* +<p>*0';f

Since the vertical maps are isomorphisms T, = Frob,+(p)pFrob, Yon Pic?(X,(N))[¢"]
for all n. Thus they are equal on Ta,(Pic’(X;(N))). This proves the second part of
the theorem. O

Let f € So(N,x). We have defined O = Z[{a,(f) : n € Z*}]. We have the
following isomorphism from Section ??, T7/I; — Oy. Under this isomorphism a,(f)
acts on Ay as T, and x(p) acts on Ay as (p). The dimension of Ay as a complex
torus is the degree d = [K : Q]. The Tate module of the Abelian variety is

TEM(AJC) = linAf[ﬁn] = Z?d

n

The action of Oy descends to the ¢-power torsion and then extends to Ta,(Ay).

Lemma 5.4.1. The map Pic’(X,(N))[("] — A;["] is a surjection. Its kernel is

stable under Gyg.

Proof. Multiplication by ¢" is surjective on J;(NN). Let y € I;Ji(N). Then y =
YTy, T, € Iy and y; € J1(N) = " Jy(N). Thus y; = £"x; for some x; € J;(N) for
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each i. Then y = > T;(0"x;) = " Y, Tx; € ("1 J1(N). Thus multiplication by (" is
surjective on I;.Jy (V).

Let y € Af[¢"]. Then y = z + I;J;(N) for some z € J;(N) such that "z €
It Ji(N). Thus "z = ("2’ for some 2’ € I;J;(N). Then z — a2’ € Ji(N)[("] =
Pic’ (X (N))[¢"] and x — 2’ +> y.

The kernel of the map is Pic’(X1(N))[€"] n I;Jy(N) = (I;J1(N))[¢"]. Clearly
we have (I;Pic’(X1(N)))[¢"] = (I;Ji(N))[£"]. The reverse inclusion is also true.
Indeed, let So = So(I'1(N)) and Hy = H1(X1(N)c,Z) < S;. Thus Ji(N) = S5 /H,
and we have

It Ji(N) = (IsS5 + Hi)/Hy = 1;So/(Hy n I;S3)).
I¢H, is a subgroup of H; n I;S5 with some finite index M. Thus M (H, n 1;55) <
ItHy. Let y € (I JJy(N))[¢"]. Then y = o + Hy n 1;S4 for some x € [;S,. Since
"y =0, "z e H nI;Sy. Then M{"x € I;Hy and so x € I;(M~"""H;). Thus y €
I;(Ji(N)[M™]) < I;Pic® (X1 (N)). Since "y = 0, y € (I;Pic’(X1(N)))[¢"]. Since

the Hecke action and Galois actions commute, the kernel is stable under Gg. O

By the above lemma, G acts on A¢[¢"] and therefore acts on Ta,(Af). This
action commutes with the action of Oy since the Hecke action and Galois actions on
Tay(Pic’(X;(N))) commute. Choosing a compatible family of basis we have a Galois

representation

pase: Go — GLg(Qy)

This is continuous. To see this let U(n,g) = ker(GLay(Zy) — GLoy(Z/("Z)). By

definition of the Galois action on A[¢"] we have

P (U, 9)) < pa (U(n,d)).
Since px, (v, is continuous, p4, ¢ is also continuous.
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Since ker(px,(vy,e) © ker(pa, ), pa;, is unramified at all primes p { /N. Let
p © Z be a maximal ideal lying over such p. Since T}, and {(p) act on A as a,(f) and

X(p), respectively, p4, ((Frob,) satisfies

22— a,(f)e + x(p)p = 0.

Before going further we give some definitions. Let K be a number field and O
be its ring of integers. For a prime ¢ we have the following factorization of /O into
maximal ideals A of Ok lying over /¢

(0 =[x
At

For each A define the ring of A-adic integers as
@ KX = LEI @ K / A"

and the field of A-adic numbers is the quotient field K of Ok . Z; may be viewed
as a subring of Ok . To see this, first observe that A\"* N Z = ¢"'Z for some n’ < n.
Since

/M e N\ H}\m@\ C A" em > n,
Al

n’ = n. Thusn = n', i.e. \"*NZ = ("Z. This shows that the map Z — Og /A" has
kernel £"Z. Thus Z/("Z — Ok /A" is an injection for all n and this gives an injection
Zy — Ok for all . Thus Q; may be viewed as a subfield of K. The containments
Zy < Ok and Qp < K are equalities when ey fy = 1 and [K) : Q] = exfr. We

have the following ring isomorphism

K®yQ =]]K\. (5.1)

Al
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To see this first note that

OK ®Zg = lil’l(@[( @Z/f”Z) = @OK/anK

n

By Chinese Remainder Theorem, O /{"Ok = Ok /[, A" = [ [, Ox/A"*. Thus
OK ®Z£ = @(H OK/)\neA) = HLiI_HOK/)\neA = HOK’A‘
n A Aon A
Using this we get

K ®q Q= Ox ®Qr = Ok @ Z¢ ®z, Qr = H(OK,A ®z, Qe) = HK,\-
A A

The Tate module of Ay, Ta,(Af) has rank 2d over Z,. Since it is also a O-module,
Vi(Ay) = Tay(A;) ®Q is an Oy ® Q) = K ®g Q-module.

Lemma 5.4.2. Vy(Ay) is a free module of rank 2 over K ®q Q.

See [?] for the proof of this lemma. Gg acts on V;(Ay) and this action is K®qg Q-
linear. By the above lemma Vy(A;) = (K; ®g Q). Choosing a basis of V,(Ay) we
get a homomorphism Gg — GLa(Kf®g Qr). By equation (??) we have K ®q Q, =
H/\IZ Ky . Thus composing the above homomorphism with the projection maps we
get a homomorphism

pf’)\ : G@ i GLQ(Kf’)\)

for each \.

Theorem 5.4.2. Let f € Sy(f,x) be a normalized eigenform with number field
Ky. Let £ be a prime. For each mazimal ideal N < O, lying over { there is a

2-dimensional Galois representation
PfX - GQ — GLQ(KJ",)\)
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This representation is unramified at every prime p { (N. For any such p let p < Z

be any mazimal ideal lying over p. Then ps x(Froby) satisfies

2?2 —ap(f)z + x(p)p = 0.

Proof. We have already construct the representation ps ) above. We need to check
that it is continuous. Let i : Ky®qQ¢ — [, Ky be the isomorphism of (?7). Let e,
be the element of K;®qQy that mapsto (0,...,0,1k;,,,0,...,0) and V;x = e Vi(Ay).
Ky acts on Vyy via =" and Viy = exVi(Af) = ex(K; ®g Q) = K7,. Thus Vi
is a 2-dimensional vector space over Ky . Let us see that Vy(Af) = @, V1. Any
v e Vy(Ay) can be written as v = )., e\v, so the the sum spans Vy(Ay). Suppose
D exvy = 0. Applying ey for each A gives vy = 0 for all A. Thus the sum is direct.
Since the G action on Vj;(Ay) commutes with ey, V;, is invariant under the Gg
action. Let B be the basis that we chose to define ps . Then ey B is a basis of V)
over Ky, and pyy is defined by the action of Gg on Vy,. Thus to show that py is

continuous it suffices to check that the action
Via x Gg = Vi

is continuous. Viewing V}\ as a vector space over Ky, or over (Q; gives the same

topology on V. Since py, ¢ is continuous,
Vi(Ay) x Gg — Vi(Ay)

is continuous and V7, is a Qg-subspace of V;(Ay). Thus viewing V; , as a Q-space,
pr.a Is continuous.

Since the action of Gig on V7 is defined by the action of Gig on Vy(Ay), ker(pa, ¢) =
ker(ps,x). This shows that py, is unramified for all primes p t {N. O
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The following theorem is a generalization of the above theorem to weights other

than 2.

Theorem 5.4.3. Let f € Sp(f,x) be a normalized eigenform with number field K.
Let € be a prime. For each mazimal ideal A = Ok, lying over € there is an irreducible

2-dimensional Galois representation
PfX - G@ - GLQ(Kf’)\)

This representation is unramified at every prime p { (N. For any such p let p < Z

be any mazimal ideal lying over p. Then pgx(Froby) satisfies

2 — ap(f)z + x(p)p* " = 0.

This theorem is due to Deligne [?] for £ > 2 and due to Deligne and Serre [?] for
k = 1. The characteristic equation shows that det p;(Frob,) = x(p)p"~!. Since det
is continuous and {Frob,} is dense in Gg, det p;x = xx}~* where y is identified with

the Galois representation p,.

5.5 Galois representations and Modularity

In this section we state the Modularity Theorem in the language of Galois represen-

tations.

Definition 5.5.1. An irreducible Galois representation

P GQ - GL2(Q[)

such that det p = xy is modular if there exists a newform f € So(I'o(My)) such that

Ky = Qq for some mazimal ideal A = Ok, lying over £ and py\ ~ p.
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An example of an irreducible Galois representation with det p = x, is the repre-
sentation pg, for an elliptic curve £ over Q. Modularity theorem states that it is in

fact modular.

Theorem 5.5.1. Let E be an elliptic curve over Q. Then pg, is modular for some

l.

This is proved for semistable curves in [?, ?] and then for all curves in [?]. The
next proposition shows that a stronger version of the Modularity theorem is also

true.

Proposititon 5.5.1. Let E be an elliptic curve over Q. Then if pg ¢ ts modular for

some £, then pg e is modular for all €.

Proof. Since pg, is modular, there exists a newform f e Sy(I'o(My)) such that
K\ = Qq for some maximal ideal A lying over £ and py ~ pg,. By the characteristic
polynomials of py(Froby,) and pg¢(Froby), a,(f) = a,(E) for almost all p. Now by
Strong Multiplicity One K; = Q and so the Galois representation associated to f
takes the form psp : Gg — GLo(Qy) for all £. Thus pg,s ~ py, for all £ and so pg e is
modular for all /. [

To each Galois representation p : Gg — GL,(C) we associate an L-function

Lip.s) =[] det(l — p(Frob,)p) "

p unramified

This is called Artin L-function. Entirity of this L-function is the conjecture of Artin.
Conjecture 5.5.1. The L-function of any continuous representation

p:Gg— GL,(C)
s an entire function on all C, except possibly at 1.
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This conjecture plays an important role in the proof of the Modularity theorem.
The simple pole at s = 1 correspond to the trivial representation. In fact the L-
function is the Riemann Zeta function in this case. Assume that p is odd. If n =1,
then any such representation comes from a Dirichlet character x as we have seen
before. Hence the conjecture is known in this case.

If n = 2 the image of p followed by the projection GLy(C) — PGLy(C) in
PG Ly(C) is isomorphic to one of the followings: a cyclic group, a dihedral group,
Ay, Sy and As. The representation p is called cyclic, dihedral, tetrahedral, octahe-
dral or icosahedral according to this image. The proof of the cyclic and dihedral
cases can be found in [?]. The tetrahedral case is proven by Langlands [?] and the
octahedral case is proven by Tunnell [?]. Finally the case of the unsolvable image As
is proved by Taylor and others in [?, 7, ?] under some hypotheses. The case n = 2
is completely solved by Khare and Wintenberger in [?] where they proved Serre’s
modularity conjecture.

Let f € S1(V,x) be a normalized newform. Then due to Deligne and Serre
[?] we have a Galois representation p; : Go — GLo(C). If f = 3°  a,q", then
L(pg,s) = X7 a,n~ and p is irreducible, odd and L(p; ® X, s) has an analytic
continuation to all of C for all continuous characters x : Gg — C*. The following

theorem states that the converse is also true. See [?].

Theorem 5.5.2. Let p: Gg — GLo(C) be an irreducible, odd Galois representation
with Artin L-function L(p,s) = Y, ayn™* such that L(p®x, s) = Y, x(n)a,n™*

has an alanytic continuation to all of C for all continuous characters x : Gg — C¥,

then f =" a,q™ is a normalized newform in S1(N,x) where x = det p.

By the above theorem the statement that any irreducible, odd, 2-dimensional

Galois representation with finite image is modular is a version of Artin’s conjecture.
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Theorem ?? and the paragraph preceding it shows that there is a bijection between
the set of normalized newforms f € S;(N,y) and the isomorphism classes of 2-
dimensional representations satisfying the hypotheses of the theorem.

Mod ¢ representations are essential for the proof of the Modularity Theorem. Let
f € S (I'(My)) be a newform and A = O, be a maximal ideal lying over £. By
Proposition 7?7 we may assume that pf : Gg — GLa2(Of;x). Then pyy has a mod
¢ reduction

ﬁf,)\ . GQ — GLQ(OKJ“)\/)\OK%)\).
Consider the representations p : Gg — GLo(F,) where F, has discrete topology.

Definition 5.5.2. An irreducible representation p : Go — GLy(Fy) is modular of
level M if there exists a newform f € Sy(I't(M)) and a mazimal ideal X = Ok, lying
over £ such that p ~ py ,.

A modularity conjecture for mod ¢ representations due to Serre which is proved

by Khare and Wintenberger [?] is the following:

Theorem 5.5.3. Let p: Go — GLy(Fy) be irreducible and odd. Then p is modular
of level M(p).

M (p) is a minimal level depending on p.
M(p) =] [»""
p#L
where n(p) depends on the ramification of 5. In particular, n(p) = 0 if and only if p
is unramified at p. It is known due to Ribet [?] that if p is modular then p is modular
of level M (p). For more details about Serre’s conjecture see [?].

Now given a nontrivial solution of the Fermat equation
at+b+cf =0
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Then it gives the following Frey curve
Ep:y? = x(x —a")(x + b°).

Then it turns out that M(pg,,) = 2. However Sy(I'1(2)) = {0} since the corre-
sponding modular curve has genus 0, see [?]. This shows that py,_, is not modular
of level M(pg, ,) and so it is not modular. Thus pg, , is not modular, contradicting
the Modularity Theorem. This proves Fermat’s Last Theorem.

The proof of the Modularity Theorem due to Wiles starts with any elliptic curve

E over Q and considers the mod 3 representation
Prs: Go = GLy(Fs).

Suppose that pg 5 is irreducible. The following proposition shows that pg 5 is mod-

ular.

Proposititon 5.5.2. py 5 is modular in the sense of Definition 77.

Proof. Let K = Q(v/—2). Then Ok = Z[+/—2]. Consider the embedding
1 GLQ(Fg) - GLQ(Z[’\/ —2])

given by

(G0) = (18), (1) = (LU avs)
The orders of the elements are 3 and 8 respectively hence they generate a subgroup
H of GLy(F3) whose order is divisible by 24. Since PG Ly (F3) is isomorphic to S,
and the only order 12 subgroup of Sy is Ay, SLs(F3) is the only order 24 subgroup
of GLy(Fs). Since (] 7') ¢ SLa(F3), H = GLy(F5). The ideal A = {1+ 1/=2) is a
maximal ideal of Ok lying over 3. Consider the composition i o pp 3. Since G Ly(F3)

is solvable by Langland’s and Tunnell’s result, i o pp 3 is modular, i.e. there exists a
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newform f € S§;(My, ) such that ps\ ~iopp. As before we may assume that the
image of py  lies in GLy(Of). Since i followed by reduction modulo A is identity, the
reduction of pyx modulo A, p;, is pp 3. Since ¢ = det pyy is a lift of detpp 3 = x3
mod 3 and this is surjective, 1 is a quadratic character and has conductor 3. Thus

Y(p) =p mod A for all p. Now for p { 3M;Ng we have modulo A

ap(f) = trpy\(Froby) = trpp 3(Froby) = a,(E).

Consider the weight 1 Eisenstein series E{"" € M;(3,1). Then

0
?)E}b’1 =1+ Z anq"

n=1

where a, € 3Z. Let g = 3E{"" f. Then g € S»(I'x(3M;)) and f =g mod . Observe
that the action of T, on &;(My,v) and Sa(I'g(My)) are congruent modulo A. This is
because ¥ (p) = p mod A\. Thus T,g = T, f = a,(f)f mod A. The right side is equal
to ap(E)g modulo A for all but finitely many p and so 7,9 = a,(E)g mod A. The
right side is also equal to a,(g)g = a1(7},9)g modulo A for all p and so T'g = a1(Tg)g
mod A for all T' e Tz. Now define the homomorphism

¢:Ty —>TF3, T a(Tg) mod A

By the above observations ¢(7},) = a,(F) mod 3 and ¢({p)y) = 1 for all but finitely
many p.

Let m = ker¢ and P be a minimal prime ideal contained in m. Since Tz is a
finitely generated Z-module, T7/P is an integral domain which is finitely generated
Z-module. Since Tz is a free module over Z no rational prime p is a zero divisor
in Tz and so no rational prime is contained in P as P is a subset of the set of zero

divisors. Therefore Z is contained in Tz/P and so Tz/P has characteristic zero. Its
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field of quotients is a number field K" and Tz/P is contained in the ring of integers

Ok . Hence there is a homomorphism
¢/ : TZ - OK/.

Let X be a maximal ideal of Ok containing ¢'(m). We have seen that for all but
finitely many primes p, ¢(7},) = a,(E) mod A. Hence T}, —a,(E) € ker ¢ = m and so
¢ (T,) —ap(E) € ¢'(m) < N. Thus ¢/(T},) = a,(E) mod X for all but finitely many
primes p. Similarly ¢'((p)) =1 mod X.

Note that we have an isomorphism
m:T,®C = Tg, ZTi@Zi HZZzTZ

Using this identification we may extend ¢’ to a homomorphism ¢’ : T¢ — C given
by ¢' (3,1 ® zi) = >, %¢'(1;). By the pairing from Section ??, there exists an
eigenform ¢’ € So(I'g(3M)) with coefficients in Ok such that

¢/(T) = a1 (Tg'), T eTy.

Compute that a,(¢') = a1(T,9') = ¢'(1,) = a,(E) mod X and yx,(p) =1 mod X
for all but finitely many p.

By Proposition ??7 there exists a newform ¢” of level dividing 30 associated to
¢' such that a,(¢") = a,(g’) for all p t 3M;. Let L be a finite Galois extension of
Q such that Ky and Ky are contained in L. Let o € Gal(L/Q). Then (¢”)? is the
newform associated to (¢')?. Hence if o fixes K then it fixes K . Thus Ky < K.
Let " = Ky» n' X', Then a,(g9”) = a,(E) mod \” for all but finitely many p. This
shows that characteristic polynomials of p . \» and pp 5 are the same making them

equivalent. Thus pg 3 is modular. O
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Note that the modularity of pg 5 also follows from Theorem ?7. After that the
proof shows the following modularity lifting result: under some hypotheses, for any
representation p : Gg — GLy(Z,) with mod ¢ reduction p, if p is modular, then p
is modular. We will explain the method of the proof of this later. The hypotheses
apply when E s semistable and p = pg 3. Thus pg 3 is modular.

Note that we have assumed that pp 5 is irreducible. If it is not irreducible, the
proof use pg 5 and show that for any semistable elliptic curve E one of pp 3 or pp 5
is modular.

Now we will briefly explain the method of proving the modularity lifting theorem.
In order to prove the modularity lifting result Wiles used the deformation theory of
Galois representations which is introduced by Mazur in [?]. We first give some
background of the subject.

A complete noetherian local ring with finite residue field of characteristic p is
called a coefficient ring. Let A be a coefficient ring with maximal ideal m, and
ks = A/mga. Let p : Gg — GL2(A) be a Galois representation. The residual
representation of p is the representation p : Gg — G'La(k4) obtained by composing
p with GLy(A) — GLy(ka).

Given a Galois representation py : Gg — GLa(k). A Galois representation p :
Gg — GLs(A) is said to be a lift of py if £ = k4 and p = po. Two lifts p, p’ of pg
are said to be equivalent if p = Mp'M ™! for some M € ker(GLy(A) — GLy(k)). A
deformation of py to A is an equivalence class of liftings of pg to A.

Let C be the category of coefficient rings where the morphisms are local homo-
morphisms inducing identity on k. Consider the deformation functor D from C to

the category of sets,

D:C— SETS, R~ {deformations of py to R}
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This functor is representable. i.e. there exists a coefficient ring R = R(pg) such
that D(R) = Hom¢(R, R) for any R € Obj(C). R is called the universal deformation
ring of py. The deformation puniy : Gg — GLa(R) that corresponds to the identity
homomorphism idg € Hom(R,R) is called the universal deformation of py. R to-
gether with pu,;, satisfy the following universal property: Given a deformation p of
po to R. Then there exists a morphism ¢ : R — R such that the following diagram
commutes,

Go 4 GLy(R)

GLy(R)

One might want to consider the deformations that satisfy certain property. This can

be done by imposing deformation conditions to the deformation functor. By this

way one gets another functor. Given a condition P. Then we can define
Dp:C— SETS, R — {deformations of py to R satisfying our condition P}

We want that this functor will be a subfunctor of D and representable whenever D is.
The conditions that satisfy these are called deformation conditions. For the definition
and details see [?]. An example of such a condition is to consider the deformations
that have a fixed determinant. The Galois representations that are coming from
Elliptic curves has determinant equal to the cyclotomic character. Hence to show that
an elliptic curve is modular it suffices to consider the deformations with determinant
equal to cyclotomic character.

Another example of such a condition is to consider deformations that are ordinary

at p.

Definition 5.5.3. Let R € Obj(C), G be a profinite group and I < G be a closed
subgroup. Let p : G — GLo(R) be a representation and M = R x R. We say that
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p is I-ordinary if the R-submodule M' < M is free of rank 1 over R and a direct
summand of M. p is said to be ordinary at p if I = I,,.

The functor D°(R) = {deformations to R which are ordinary at p} is representable
and the representing object is called the universal ordinary deformation ring.

Note that Serre’s conjecture implies that any irreducible odd 2-dimensional rep-
resentation p : Gg — GLo(k) is attached to a modular form. Hence one can ask
whether the deformations are modular too. It turns out that if one does not impose
deformation conditions or extend the meaning of being modular this is not true.

Let p : Gg — GLao(k) be a residual representation. Assume that 7 satisfies the
following hypotheses:

1. p has determinant equal to x,.
2. p is absolutely irreducible.

3. p is semistable at every prime ¢: for ¢ = p, p is either flat at p or ordinary at

pand for £ # p, pl, = (§%).
4. p is modular.

Let S = {¢ # p : pis ramified at ¢}. Let X be a set of primes distinct from S.

We say that a deformation p of p is of type P if it satisfies the following conditions:
1. p has determinant x,.
2. p is unramified outside S U {p} U X.
3. p is semistable outside X.

4. If p¢ ¥ and p is flat at p then p is flat at p.
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As we have explained above P gives a universal deformation ring Rp and a

universal deformation

pPp GQ - GLQ(R’P)

such that pp satisfies the following universal property: For every deformation p :
Gg — GLy(R) of p to R of type P there exists a unique homomorphism Rp — R

such that the following diagram commutes,

Go 4 GLy(R)

>N

GLy(Rp)

The aim is to control the deformations which are modular hence we need to find
a way of parametrizing the modular deformations. At this point Wiles defines a
coefficient ring Tp, the universal modular deformation ring and a universal modular

deformation

PP,mod - GQ - GL2(T'P)

of P. pp moa satisfies a similar universal property as above: For every modular defor-
mation p : Gg — GLy(R), there exists a unique homomorphism 7p — R such that

the following diagram commutes,

Go s GLy(R)

PA /

G Ls(Tp)

Tp is the completed Hecke algebra. Now by the universal property of Rp there
exists a unique homomorphism ¢ : Rp — T’p such that ¢p o pp = ppmoa. Wiles’s
main theorem states that ¢ is an isomorphism. This proves that any deformation of

type P is modular.
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