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Asst. Prof. Sinem Çöleri Ergen (Advisor)

Assoc. Prof. Öznur Özkasap
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Abstract

Intra-vehicular wireless sensor networks is a promising new research area

that can provide part cost, assembly, maintenance savings and fuel efficiency

through the elimination of the wires, and enable new sensor technologies to

be integrated into vehicles, which would otherwise be impossible using wired

means, such as Intelligent Tire. The most suitable technology that can meet

high reliability, strict energy efficiency and robustness requirements of these

sensors in such harsh environment at short distance is Ultra-Wideband (UWB).

However, there are currently no detailed models describing the UWB channel

for intra-vehicular wireless sensor networks making it difficult to design a

suitable communication system. We analyze the small-scale and large-scale

statistics of the UWB channel beneath the chassis of a vehicle by collecting

data at various locations with 81 measurement points per transmitter-receiver

pair for different types of vehicles including the scenarios of turning the engine

on and movement on the road. Collecting multiple measurements allows us to

both improve the accuracy of the large-scale fading representation and model

small-scale fading characteristics. The distance dependent path loss exponent

around the tires and other locations beneath the chassis are found to be

very different requiring separate models. The power variation around the
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path loss has lognormal distribution. The clustering phenomenon observed

in the averaged power delay profile is well characterized by Saleh-Valenzuela

model. The cluster amplitude and decay rate is formulated as a function of

the cluster arrival times using dual slope linear model. Such a model has

not been developed before for in-vehicle environment. Cluster inter-arrival

times are modeled using Weibull distribution providing a better fit than

the commonly used exponential distribution in the literature mainly due

to the non-randomness of the local structure of the vehicle. The variations

of local power delay profiles around the small-scale averaged power delay

profiles in decibels at each delay bin is modeled by Gaussian distribution

with variance independent of the value of the delay and distance between

transmitter and receiver. This is the first work to model small-scale channel

characteristics within the vehicle. The analysis of the model parameters

for different vehicles and different scenarios demonstrates the robustness of

our modeling approach exhibiting small variance in channel parameters for

different vehicle types. Finally, the algorithm for generating the channel

model is given. The generated power delay profiles are in good agreement

with the experimental ones validating our model.



Özetçe

Araç içi sensör ağları sağladığı parça, montaj ve onarım maliyetlerindeki

düşüş, kabloların çıkarılması sayesinde daha iyi yakıt etkinliği ve Akıllı Lastik

gibi kablolu sensörler ile uygulanması mümkün olmayan yeni teknolojilere

imkan sağlaması ile ümit vaat eden bir araştırma alanıdır. Kablosuz iletişim

için böylesine zorlu bir ortamda, dayanıklılık, enerji etkinliği ve yüksek güve-

nilirlik gibi gereklilikleri kısa mesafeler için karşılamaya en uygun iletişim

teknolojisi ultra geniş bantlı iletişimdir. Ancak araç içi kablosuz sensör

ağları için uygun bir ultra geniş bant kanalını detaylı olarak tanımlayan

bir kanal modeli bulunmaması uygun iletişim sistemlerinin tasarlanmasını

zorlaştırmaktadır. Literatürdeki bu boşluğu doldurmak için, araç şasi altı

ultra geniş bant kanalların küçük ve büyük ölçekli istatistiklerini analiz ettik.

Analizlerimizde kullanmak üzere araç şasi altı ortamında, 18 farklı pozisyonda

81’er alıcı-verici çiftiyle ölçüm aldık. Her pozisyonda çoklu ölçüm almamız

büyük ölçekli sönümlenme modelimizin daha tutarlı olmasını sağlamasının

yanında küçük ölçekli sönümlenme niteliklerinin türetilmesine de imkan verdi.

Mesafeye bağlı yol kaybı modeli, tekerleklerin etrafında şasinin altındaki diğer

pozisyonlardan çok farklı olduğu tespit edildi. Güçlerin yol kaybı modelinin

etrafındaki sapmalarını lognormal dağılım ile modelledik . Ortalama güç
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gecikme profillerinde gözlemlenen kümelenmeleri Saleh-Valenzuela modeline

uygun olduğu belirlendi. Küme büyüklükleri ve azalma oranları kümelerin

geliş zamanına bağlı parçalı tanımlı doğrusal fonksiyonlar ile tanımlandı. İki

ardışık küme arası geçen sürenin daha önceki modellerde kullanlan üssel

dağılımın aksine, Weibull dağılım ile daha iyi bir uyum sağlamaktadır. Ye-

rel güç gecikme profillerinin küçük ölçekli ortalaması alınmış güç gecikme

profillerinin etrafındaki dağılımı, her bir gecikme aralığı için normal dağılım

ile modellendi. Bu çalışma araç içinde küçük ölçekli kanal istatistiklerini

inceleyen ilk çalışmadır. Farklı senaryolarda ve farklı araçlarla tekrarlanmış

ölçümlerde bulunan değerlerin tutarlı olması sağlıklı bir model önerdiğimizin

ispatıdır. Son olarak, kanal modelinin simülasyonlarda kullanılabilmesini

sağlamak amacıyla, kanal modelinin tekrar yaratılmasını anlatan algoritma

sunulmaktadır. Simülasyonlardaki ve deneysel ölçümlerdeki güç gecikme

profillerinin benzerliği modelimizin geçerliliğini gözler önüne sermektedir.
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Chapter 1

Introduction

1.1 Intra-Vehicular Wireless Sensor

Networks

The exponential increase in the number and sophistication of electronic

systems in vehicles as they are replacing those that are purely mechanical

or hydraulic arises the need for more sensors to monitor various quantities

inside them [1]. In the current vehicle architecture, each sensor is wired to an

electronic control unit (ECU), which samples and processes the information

from that particular sensor. The ECUs then communicate with each other

over a backbone network to share this information. Besides, the ECUs are

connected to the battery of the vehicle to supply power for both their own

operation and the operation of the sensors connected to them. A present

day wiring harness may have up to 4, 000 parts, weigh as much as 40kg and

contain up to 4km of wiring. Eliminating the wires can potentially provide
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part cost, assembly and maintenance savings while also offering fuel efficiency

and an open architecture to accommodate new sensors.

The full adoption of a wireless sensor network within the vehicle may not

be feasible in the near future since the experience on wireless sensor networks

within the vehicle is not mature enough to provide the same performance and

reliability as the wired communication that has been tested for a long time

with vehicles on the road. Wireless sensor networks is therefore expected to

be deployed in the vehicle through either new sensor technologies that are not

currently implemented due to technical limitations such as Intelligent Tire

that provides high rate acceleration data from the wireless sensors embedded

within the tire to improve significantly active safety control systems [2] and

some sensor technologies for non-critical vehicle applications either requiring

a lot of cabling such as park sensors or not functioning well enough due to

cabling such as steering wheel angle sensors. Once the robustness of these

wireless applications are proven, within the vehicle, it will be possible to

remove the cables between the existing sensors and ECUs serving more critical

vehicle applications such as an ABS (Anti-lock Braking System) system using

wireless sensor network for the transmission of automotive speed data from

four wheel speed sensors to the ECU [3].

1.2 Ultra-Wideband

Investigation of different modulation strategies including RFID [4], narrow-

band [5, 6], spread spectrum [7, 8] and ultra-wideband (UWB) [9, 10, 11] for

Intra-Vehicular Wireless Sensor Networks (IVWSN) in the literature demons-
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trated that UWB is the most suitable technology satisfying high reliability

requirement of vehicle control systems and strict energy efficiency requirement

of the sensor nodes at short distance and low cost in such harsh environment

containing a large number of metal reflectors, extreme temperatures and a

lot of vibrations.

UWB is often defined to be a transmission from an antenna for which the

emitted signal bandwidth exceeds the lesser of 500MHz and 20% of the center

frequency. This large bandwidth provides resistance to multi-path fading,

power loss due to the lack of line-of-sight and intentional/ unintentional

interference therefore achieves robust performance at high data rate and very

low transmit power. The comparison of the power spectral density of UWB

systems and a narrowband system is shown in Fig. 1.1.

Historically UWB is the first of any kind of wireless communication

systems, with the invention of Marconi Spark Gap Emitter in 1895 [12]. The

instantaneous bandwidth of the spark gap was many times greater than the

required one for their data rate. However UWB technology of the time did not

provide any practical implementation since it was not able to meet the most

important requirements of wireless communications such as multiple users

in the same environment and methods to enable a particular user recover

corresponding data stream. As a result, UWB was not used commercially and

only considered for experimental work until the end of 1990s. In 1993 Robert

Scholtz, professor in University of Southern California, proposed a multiple

access scheme for UWB which enable UWB to support wireless networks in

addition to the radar applications and point to point communications. This

work sets off many investigations on the UWB propagations in the 1990s
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Figure 1.1: Comparison of Narrowband and Ultra-Wideband Systems
Power Spectral Density
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and 2000s, and resulted in a large number of papers about indoor/outdoor

UWB propagation, characterization of the response of materials to UWB

impulses, characterization of the antenna response and coexistence of UWB

and narrowband systems. These studies proved merits of the UWB over

narrowband system for harsh environments however they also revealed the

difference in the UWB channel characteristics for different environments.

Hence, we strongly believe that to enable the use of UWB for intra-vehicular

wireless sensor networks, first we need to characterize create an accurate

channel model.

1.3 Related Work

Before designing a UWB communication system, the appropriate channel

model has to be extracted for the in-vehicle environment. Most UWB channel

measurement campaigns have been performed in such locations as indoor

[13, 14, 15, 16, 17], outdoor [18, 19, 20, 21], around the human body [22, 23]

or industrial environments [24]. IEEE 802.15.3a and IEEE 802.15.4a channel

modeling subgroups developed UWB channel models for high-rate and low-

rate applications respectively [25, 26]. The vehicular environment however is

very different from these environments due to short distances, dense multipath

and lack of line of sight from most sensors to the corresponding ECU.

Building a detailed model for IVWSN requires both classifying the vehicle

into different parts of similar propagation characteristics and collecting mul-

tiple measurements at various locations belonging to the same class. As shown

in Fig. 1.2, the classes of similar propagation characteristics are expected
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to include passenger compartment, beneath the chassis, within the engine

compartment, side of the vehicle, which may be further divided into subclasses

based on channel measurement results. Fig. 1.1 lists the literature on UWB

channel models for different parts of the vehicle.

The channel modeling efforts in intra-vehicle environments on the other

hand either concentrate on passenger compartment [27, 28, 29, 30] or the

trunk [31], which is not the typical place where vehicle sensors are located,

or provide measurement results for a limited sensor locations beneath the

chassis or within the engine compartment [9, 10, 11], which is not enough to

provide a detailed model for intra-vehicular sensors.

Although it has been stated in the overview papers on UWB channel

measurements in [32, 33] that at least 50 measurement points per area are re-

quired to determine small-scale fading and all the UWB channel measurement

campaigns for other applications including indoor [13, 14, 15, 16, 17], outdoor

[18, 19, 20, 21], around the human body [22, 23] or industrial environments

[24] model small-scale fading, it is interesting that none of the previous UWB

channel measurements aim to model small-scale fading: Small-scale fading

is defined as the changes in power delay profile caused by small changes in

transmitter and receiver position while environment around them does not

change significantly in contrast to large-scale fading that models the changes

in received signal when the position of the transmitter or receiver varies over

a significant fraction of distance between them and/or environment around

them changes. Therefore, for a certain transmitter-receiver pair, multiple

measurements separated far enough from each other while keeping the envi-

ronment around them the same need to be collected generating independent
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Figure 1.2: Groups of locations with similar propogation characteristics
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measurements to both improve the accuracy of large scale fading representa-

tion and allow modeling small scale fading characteristics. Although [30] and

[31] claim to provide small-scale fading characteristics, they do not use the

large number of measurements to obtain a more accurate characterization of

large-scale fading and model the small-scale variations around this large-scale

representation.
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Reference Measurement
Location

Small-Scale # points for
Large-scale
Model

Scenarios

[27] passenger
compartment

No 12 stationary,
vary #
passengers

[28] passenger
compartment

No 3 stationary

[29] passenger
compartment

No 10 stationary,
moving

[30] passenger
compartment

No 24 stationary,
vary #
passengers

[31] trunk No 17× 14 stationary,
vary driver’s
presence

[9] beneath chas-
sis

No 10 stationary

[10] beneath chas-
sis

No 10 stationary,
two types of
vehicles

[11] beneath chas-
sis

No 10 stationary,
moving

[9] within engine
compartment

No 5 stationary

[10] within engine
compartment

No 9 stationary,
two types of
vehicles

Table 1.1: Summary of literature on intra-vehicle UWB channel measu-
rements
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1.4 Original Contributions

The goal of this thesis is to provide the UWB channel model for IVWSN

beneath the chassis by collecting data at 18 × 81 measurement locations

from two types of vehicles considering the scenarios of stopping vehicle with

engine-off, stopping vehicle with engine-on and moving vehicle determining

both large-scale and small-scale statistics. The original contributions of this

thesis are four:

� We develop an accurate representation of the large-scale fading charac-

teristics by averaging the power delay profile of 81 measurement points

for each transmitter-receiver pair in contrast to the previous work that

considers only 1 measurement point without removing small-scale fa-

ding effects. We derive the parameters of the path loss, power variation

around mean path loss and Saleh-Valenzuela (SV) model to generate

the general shape of the impulse response. The models used for the

accurate representation of SV parameters such as the dependence of

the cluster amplitude and cluster decay rate on the cluster arrival times

and Weibull fit for the cluster inter-arrival times are proposed for the

first time for the in-vehicle environment.

� We develop small-scale fading characteristics by finding the best fit for

the variations of 81 power delay profiles around the average power delay

profile. This is the first work to model small-scale fading characteristics

within the vehicle.

� We analyze the susceptibility of the channel model parameters to dif-
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ferent vehicle types, engine’s status and vehicle movement scenarios.

Collecting multiple measurement points per transmitter-receiver pair

provides parameter values more robust to changes in vehicle types and

conditions. Moreover, applying this model to the moving vehicle shows

whether the large-scale statistics modeled by removing small-scale fa-

ding effects reflect the average behavior of the channel over time and

how much of the time variations are the small-scale variations due to

scattered propagation paths.

� We propose the simulation model for the UWB channel beneath the

chassis based on our findings and give a comparison between the expe-

rimental data and the simulation results. The algorithm for generating

the channel model and the validation of the generated data with experi-

mental ones has not been done before for the in-vehicle environment.

1.5 Organization

The rest of the thesis is organized as follows: Chapter 2 describes the expe-

riment setup and the data processing performed to obtain large-scale and

small-scale statistics. Chapter 3 provides the large-scale and small-scale

statistics based on channel measurements respectively. In chapter 4, the sus-

ceptibility of channel model parameters to different vehicle types and different

scenarios is analyzed. Chapter 5 gives the algorithm for the generation of the

statistical channel model for IVWSN beneath the chassis and compares the

simulation results generated based on our proposed model with experimental
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data. Main results are summarized and future work is given in chapter 6.



Chapter 2

Experiment Setup and Data

Processing

2.1 Experiment Setup

The measurements are performed in frequency domain using a vector network

analyzer (Agilent VNA 8719ES). We covered a frequency range of 3.1 to

10.6GHz using 1601 points (4.7 MHz between the samples). The UWB anten-

nas used are roughly the size of a playing card and display omnidirectional

pattern. The antennas are connected to the VNA via low-loss coaxial cables.

The VNA and the cables are calibrated for each frequency band.

The vehicle used for this study is a commercial vehicle, Fiat Linea. The

measurements are performed in an empty parking lot. Figure 2.1 shows

the locations of one receiver and multiple sensor locations at which the

measurements are performed. For each transmitter and receiver pair, impulse

response measurements were made at 9 measurement locations arranged in
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Figure 2.1: The locations of one receiver and multiple transmitters
used in channel measurements
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Figure 2.2: Sensor locations arranged in 3 × 3 square grid for both
transmitter and receiver
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a fixed height 3× 3 square grid with 5cm spacing corresponding to half the

wavelength at the lowest frequency of interest (3.1GHz) for both transmitter

and receiver as shown in Figure 2.2, resulting in 81 measurement points, in

order to determine small-scale fading:

The measurement points must be spaced λl/2 or more apart, where λl is

the wavelength at the lower band-edge and equal to 10cm in our case, to allow

the measurement points to experience independent fading at all frequencies of

measurement. Most indoor measurement campaigns only change the position

of the receiver over 7 × 7 grid [22, 18, 24] however we couldn’t do that in

an area small enough that large scale parameters do not change within the

confined area of the vehicle thus chose to move both transmitter and receiver

locations as would be acceptable [32].

2.2 Data Processing

The complex transfer function H(f) obtained from the VNA is processed in

Matlab to model both small-scale and large-scale statistics. The frequency

response is first weighted by a Hamming window to reduce the sidelobes at

the cost of a decrease in measurement resolution. The complex valued impulse

response h(t) is then obtained by Inverse Fast Fourier Transform (IFFT).

For each of the 81 combinations of transmitter and receiver measurement

points, a power delay profile (PDP) is calculated as |h(t)|2, which we call local

PDP. All local PDPs are normalized with respect to a reference measurement

which is taken at the distance of 1m. The analysis of PDPs follow the same

procedure summarized in [14]:
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1. The delay axis of the measured multipath profiles for each location is

translated by its respective propagation delay. This guarantees that the

first bin corresponds to the first multipath component.

2. The delay axis is quantized into bins and the received power is inte-

grated within each bin. The width of the bins are chosen to make a

good compromise between high delay resolution and noise reduction.

The measurement resolution is approximated by the reciprocal of the

bandwidth swept, 0.13ns, multiplied by the additional window function

bandwidth. The 6-dB bandwidth of the Hamming window is 1.5 times

wider than the rectangular window. The bin width chosen is therefore

0.5ns.

These local PDPs are then averaged over the 81 locations for each trans-

mitter and receiver pair to obtain the small-scale averaged PDP (SSA-PDP).

The small-scale statistics are derived by considering the deviations of the

81 local PDPs around the corresponding SSA-PDP whereas the large scale

fading is investigated by considering the variation of SSA-PDPs in different

areas of the vehicle.



Chapter 3

Statistical Channel Modeling

3.1 Large-Scale Statistics

The large-scale channel characteristics consist of the path loss with the

distance and the general shape of impulse response. These statistics are used

in link budget calculation and proper receiver and antenna design together

with the small-scale statistics. To have a more accurate large-scale model, we

have to remove small-scale variations from our measurements by averaging

the measured 81 local PDP to calculate small-scale average PDP’s. Since

we have 18 measurement locations, we will end up total 18 points to derive

desired large-scale statistics.

3.1.1 Path Loss Model

Figure 3.1 shows the normalized received power at different frequencies.

The normalized received power denotes the magnitude square of the complex

transfer function, |H(f)|2, normalized by the total power,
∫ fu
fl
|H(f)|2df where
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fl = 3.1GHz and fu = 10.6GHz, to remove the effect of the distance. The

small variation of the normalized received power around the average justifies

the common assumption of the independence of the distance-dependence

and frequency-dependence of the path loss [15, 33] so allows their separate

modeling.

The dependence of the path loss on frequency arises primarily from the

antenna power density and gain variation with f , and additionally from

frequency-selective physical propagation phenomena such as scattering, dif-

fraction, and can be modeled as

PL[dB](f) = PL[dB](f0) + 10mlog10(
f

f0
) (3.1)

where PL[dB](f) is the path loss at frequency f in decibels, PL[dB](f0) is

the path loss at reference frequency f0 in decibels and m is the frequency

dependent path loss exponent. The cumulative density function of m for

different locations is shown in Figure 3.2.

The dependence of the path loss on distance arises primarily from the

free-space loss and vehicular environment affecting the degree of refraction,

diffraction, reflection and absorption, and can be modeled as

PL[dB](d) = PL[dB](d0) + 10nlog10(
d

d0
) + Z (3.2)

where PL[dB](d) is the path loss at distance d in decibels, PL[dB](d0) is the

path loss at reference distance d0 in decibels, n is the distance dependent path

loss exponent and Z is a zero-mean Gaussian random variable with standard
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deviation σz representing the random deviations in the model.

Figure 3.3 shows the path loss at different log10(
d
d0

) for d0 = 1m together

with the least square fit curve satisfying Equation 3.2. Since the behavior

of the path loss at the tires is very different from the remaining locations

beneath the chassis, the distance dependent path loss exponents are estimated

separately: n = 4 for the tires and n = 2.8 beneath the chassis. Compared

with free space, n = 2, the path loss exponents beneath the chassis of a

vehicle is much higher especially at the tires. This exponent is consistent with

previous in-vehicle measurements performed beneath the chassis excluding

the tire: The exponent n = 2.8 found in this paper is between the exponents

calculated for the GM Escalade and Ford Taurus being n = 1.61 and n = 4.58

respectively [10]. Furthermore, the reference path loss PL[dB](d0) is much

higher for the tire than the remaining locations beneath the chassis due to

the higher number of obstructions between the tires and receiver resulting in

higher energy absorption.

Figure 3.4 shows the experimental cumulative density function of the

power variation denoted by Z in Equation 3.2 together with the least square

fit of the cumulative density function of the Gaussian variable. The empirical

values for the power variation are calculated by subtracting the mean path

loss represented by the best fit in Figure 3.3 from the actual path loss

values. The figure demonstrates that the common Gaussian fit is also a good

model for beneath the chassis in-vehicle environment with standard deviation

σz = 3.305.
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Figure 3.4: Cumulative density function of the power variation.
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3.1.2 General Shape of Impulse Response

The SSA-PDP at different locations beneath the chassis consists of several

random clusters. Figures 3.5 and 3.6 show the example SSA-PDPs normalized

by the receive energy at reference distance d0 = 1m for the left front tire

(point A) and left rear chassis (point G) respectively.

The random clusters are modeled using the commonly used UWB channel

model called Saleh-Valenzuela (SV) model [13]. SV model describes the

impulse response as

h(t) =
L∑
l=0

K∑
k=0

al,ke
jθl,kσ(t− Tl − τl,k) (3.3)

where al,k and θl,k are the gain and phase of the k-th component in the

l-th cluster respectively, Tl is the delay of the lth cluster, τl,k is the delay of

the k-th multipath component relative to the l-th cluster arrival time Tl, K

is the number of the multipath components within a cluster and L is the

number of clusters. The phases θl,k are uniformly distributed in the range

[0, 2π].

We now analyze the statistics of the decay rate of the cluster amplitudes,

the decay rate of the ray amplitudes within each cluster and interarrival times

of clusters. Since it was not possible to resolve the inter-path arrival times

within each cluster by inverse Fourier transform of the measured data,we do

not analyze the ray arrival rates within each cluster. The arrival time and

magnitude of individual clusters in each SSA-PDP is calculated by using the

automatic clustering algorithm described in [34] and validating the correctness

of the algorithm by visual inspection. The automatic clustering algorithm is
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Figure 3.5: SSA-PDP for the left front tire (point A).
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based on identifying the changes in the slope of the impulse response based

on the assumption that all changes in slope correspond to the start of a new

cluster as illustrated in Figures 3.5 and 3.6.

Figure 3.7 shows the decay rate of the cluster amplitude as a function of

the cluster arrival time. The horizontal and vertical axes represent the time of

arrival of each cluster and the power of the first bin of each cluster relative to

the total energy respectively. We observe that the cluster amplitude decreases

at a slower rate after 27ns delay resulting in the following dual slope linear

model:

f(Tl) =


p11 · Tl + p10, Tl ≤ b1

p21 · Tl + p20, Tl > b1

(3.4)

where f(Tl) represents the power of the first bin of the cluster arriving at

delay Tl relative to the total energy expressed in decibels, b1 is the delay index

for the breakpoint between the two lines, p11 and p21 are the slopes of the

least square fit line before and after the breakpoint respectively, p10 and p20

are the intercept of the least square fit line before and after the breakpoint

respectively.

As illustrated in Figures 3.5 and 3.6, the k-th bin of each cluster l has an

additional linear decay with respect to the first component of that cluster in

decibels formulated as follows:

g(Tl + τl,k) = f(Tl)− γ(Tl)τl,k (3.5)

where g(Tl + τl,k) is the power of the k-th component of the cluster arriving at

delay Tl relative to the total energy expressed in decibels and γ(Tl) is the decay
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rate as a function of the cluster arrival time Tl. Figure 3.8 shows the decay

rate γ as a function of the cluster arrival time Tl based on the measurements

beneath the chassis. We observe that decay rate can be modeled using the

following dual slope linear model:

γ(Tl) =


q11 · Tl + q10, Tl ≤ b2

q21 · Tl + q20, Tl > b2

(3.6)

where b2 is the delay index for the breakpoint between the two lines, which is

equal to b1 = 27ns in this case, q11 and q21 are the slopes of the least square fit

line before and after the breakpoint respectively, q10 and q20 are the intercept

of the least square fit line before and after the breakpoint respectively. The

dependence of the cluster amplitudes and ray decay rate on the cluster arrival

time has not been analyzed before in the literature on beneath the chassis

channel models [9, 10, 11].

Figure 3.9 shows the cumulative density function for inter-arrival times

of the clusters. The arrival time of the first cluster is the propagation delay,

which is a function of the distance between transmitter and receiver, and

speed of light. We investigated the interarrival times for the second and

third clusters, denoted by l = 2, 3, and the remaining clusters, denoted by

l > 3, separately since they exhibit very different behavior as illustrated

in the Figure. The exponential distribution is associated with inter-cluster

arrival times in previous beneath the chassis measurements [10, 11]. However,

we observe that Weibull distribution provides a better fit to our data. The

main reason is expected to be the nonrandomness of the local structure of the
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in-vehicle environment [23]. This result is also validated by using Kolmogorov-

Smirnov test which is a nonparametric test for the equality of continuous,

one-dimensional probability distributions comparing a sample with a reference

probability distribution. Kolmogorov-Smirnov statistics for exponential and

Weibull distributions are 0.3124 and 0.1575 respectively. The two parameters

of Weibull distribution, i.e. shape parameter and scale parameter, are found

to be λ1 = 10.3ns and k1 = 1.93 respectively for l = 2, 3, and λ2 = 17.2ns

and k2 = 3.26 respectively for the remaining clusters.

3.2 Small-Scale Statistics

In the previous chapter we provided the large-scale characteristics of the

received signal. To improve our model we should also include small-scale

statistics which have always been overlooked in the literature. Small-scale

fading is defined as the changes in power delay profile caused by small changes

in transmitter and receiver position while environment around them does

not change significantly in contrast to large-scale fading that models the

changes in received signal when the position of the transmitter or receiver

varies over a significant fraction of distance between them and/or environment

around them changes. The small-scale statistics with the large-scale statistics

are used in proper receiver and antenna design. Especially by utilizing the

information about small-scale fading and signal correlations over a small area,

we can evaluate the receiver designs, diversity mechanism and the multiple

antenna applications more accurately.

Experience shows that at least 50 measurement points per area are required
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Figure 3.10: Kolmogorov Smirnov Test results for the left front tire
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to determine small-scale fading [32]. Since we are not able to place more

than 50 points which are separated by λ/2 neither at the receiver nor the

transmitter. Instead, we placed 9 points to each transmitter locations and

9 points to receiver location, namely we measured 81 impulse responses for

every transmitter-receiver pair. The small-scale statistics are characterized

by fitting 81 amplitude values |h(t)| obtained for each delay bin to many

alternative distributions listed in [32], i.e. lognormal, Nakagami, normal,

Rayleigh, Rician and Weibull distributions. We compared the fits by using

Kolmogorov-Smirnov test. Lognormal distribution is the best model in almost

every bin at different sensor locations. Figure 3.10 shows the Kolmogorov-

Smirnov test results for the left front tire as an example.

Since the best fit for the variations of |h(t)| at 81 locations is lognormal

distribution, the local PDP, i.e. 20log(|h(t)|), at each delay bin has a normal

distribution with µ parameter as the value of the SSA-PDP in the corres-

ponding bin and σ parameter specifying the variations around the SSA-PDP

in decibels. Figure 3.11 shows the values of the σ parameter of lognormal

distributions for each bin. The σ values are mostly concentrated between 3

and 4.2 without any trend of decrease or increase with the increasing delay.

We also investigated the dependency of the mean value of the σ parameter

over all delay bins on the distance. As shown in Figure 3.12, σ values do not

follow any pattern with respect to distance, so we take σ as the average of all

points, which is 3.88.

The average correlation coefficient of the small-scale fading between bins at

different lags is also calculated. As illustrated in Figure 3.13, the correlation

is around 0.2 between adjacent bins and below 0.1 for nonadjacent bins. We
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can therefore simplify the model by assuming each bin fades independently.

The small-scale statistics has not been modeled before in the literature on

beneath the chassis channel models [9, 10, 11].



Chapter 4

Susceptibility of Parameters to

Different Scenarios

To validate our findings, we investigated the channel characteristics for dif-

ferent scenarios. First, we analyzed the changes in the channel characteristics

when the engine is turned on compared to the engine off scenario. Then we

repeated the experiments on a vehicle very different from Fiat Linea, Peugeot

Bipper that is a minivan with shorter length, higher chassis and ceiling, to

determine the susceptibility of channel parameters to different vehicle types.

Finally, we collected the data for the moving vehicle and applied the model

to analyze whether the large-scale statistics modeled by removing small-scale

fading effects reflect the average behavior of the channel over time and how

much of the time variations are the small-scale variations due to scattered

propagation paths.

The large-scale and small-scale models derived in Sections 3.1 and 3.2

respectively are summarized in Table 4.1. All the parameters in this table have



41

been defined before except different distance dependent path loss exponents

for chassis and tire, i.e. nc and nt respectively, and different path losses

at reference distance d0 in decibels, i.e. PLc(d0) and PLt(d0) respectively.

Tables 4.2, 4.3, 4.4, 4.5 and 4.6 summarize the parameters of cluster arrivals,

cluster power decay, ray decay rate, path loss and power variation, and small-

scale fading respectively for four scenarios: “engine off” is for Fiat Linea

engine turned off, “engine on” is for Fiat Linea engine turned on, “Bipper” is

for Peugeot Bipper engine turned off, “Moving” is for Fiat Linea driven on

the road.
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Large Scale Model

Cluster
Arrival

Tl − Tl−1 ∼

{
W (λ1, k1), l = 2, 3

W (λ2, k2), l > 3

Cluster
Decay

f(Tl) =

{
p11 · Tl + p10, Tl ≤ b1

p21 · Tl + p20, Tl > b1

Ray De-
cay

g(Tl + τl,k) = f(Tl)− γ(Tl)τl,k

γ(Tl) =

{
q11 · Tl + q10, Tl ≤ b2

q21 · Tl + q20, Tl > b2

Path
Loss

PL(d) =

{
PLc(d0) + 10nclog10(

d
d0

), chassis

PLt(d0) + 10ntlog10(
d
d0

), tires

Power
Varia-
tion

Z ∼ N(0, σ2
z)

Small Scale Model

Variation
(dB)

Sn ∼ N(0, σ2)

Table 4.1: Statistical large-scale and small-scale models
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Scenario λ1 k1 λ2 k2
Engine off 10.3 1.93 17.2 3.26
Engine on 15.1 2.77 20.5 2.24
Moving 18.1 3.06 21.7 2.60
Bipper 12.6 2.24 19.9 2.08

Table 4.2: Parameters of cluster arrivals. The unit of λ1 and λ2 is ns.

Scenario p11 p10 p21 p20 b1
Engine off −1.24 · 109 −0.07 −3.09 · 108 −26.25 2.7 · 10−8

Engine on −1.31 · 109 −0.27 −3.03 · 108 −28.39 2.8 · 10−8

Moving −1.34 · 109 −0.31 −2.84 · 108 −29 2.6 · 10−8

Bipper −0.88 · 109 −7.54 −2.51 · 108 −26.4 2.9 · 10−8

Table 4.3: Parameters of cluster power decay. The unit of p11 and p21
is dB/s. The unit of p10 and p20 is dB. The unit of b1 is s.

Scenario q11 q10 q21 q20 b2
Engine off −2.841 · 107 9.518 −9.624 · 106 8.872 2.7 · 10−8

Engine on −2.28 · 107 9.359 −8.684 · 106 8.827 2.8 · 10−8

Moving −2.616 · 107 9.412 −10.21 · 106 9.269 2.6 · 10−8

Bipper −1.657 · 107 9.357 −7.93 · 106 8.906 2.8 · 10−8

Table 4.4: Parameters of ray decay rate. The unit of q11 and q21 is
dB/s2. The unit of q10 and q20 is dB/s. The unit of b2 is s.

Scenario nc nt PLc(d0) PLt(d0) σz
Engine off 2.77 4.00 9.72 20.34 3.30
Engine on 2.33 3.59 12.87 25.23 5.11
Moving 2.58 - 11.09 - 5.05
Bipper 2.88 4.21 14.37 26.83 2.27

Table 4.5: Parameters of path loss and power variation. The unit of
PLc(d0), PLt(d0) and σz is dB.
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Case mean(σ) min(σ) max(σ)
Engine off 3.8843 3.3589 5.045
Engine on 3.8662 2.972 6.8157
Moving 3.1977 2.4742 3.6896
Bipper 3.8300 3.1654 4.8713

Table 4.6: Parameters of small scale fading. The unit of σ is dB.

4.1 Effect of Turning Engine On

We repeated 18× 81 measurements by turning the engine of Fiat Linea on

to observe the effect of running engine on the channel parameters. The best

fit for the inter-arrival times of the clusters is again Weibull distribution

with similar shape and scale parameters as illustrated in Table 4.2. Cluster

amplitude and ray decay rates as a function of cluster arrival times are again

fitted to the dual slope linear model with break points, slope and intercept

values very close to the engine off case as illustrated in Tables 4.3 and 4.4

respectively.

Table 4.5 shows that the path loss exponents for the engine on case is

smaller than those for the engine off case. This is mainly due to the decrease

in the received power at the locations very close to the engine when the engine

is turned on. Since the receiver is closer to the front of the vehicle so the

engine, higher path loss at closer locations decreases the slope of the path

loss line so the path loss exponent. Besides, the standard deviation of the

path loss around the mean value increases from 3.3 to 5.11.

The small-scale characteristics are not significantly affected by the running

engine. In both engine on and off cases, lognormal fading is observed. Even

though there is a difference in the range of the small-scale variance of bin
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powers at different locations, the mean variances are very close being 3.88

and 3.87 for engine off and engine on cases respectively as shown in Table 4.6

.

4.2 Effect of Vehicle Type

We collected 18× 81 measurements beneath the chassis of Peugeot Bipper to

analyze the effect of vehicle type on the channel parameters. The shape and

scale parameters of the best Weibull fit, the breakpoints, slope and intercept

values of the dual slope linear models for the cluster amplitude and ray decay

rates as a function of cluster arrival times are very similar to those of Fiat

Linea as illustrated in Tables 4.2, 4.3 and 4.4.

The path loss exponents for the tire and beneath the chassis in Peugeot

Bipper is very close to those for Fiat Linea as illustrated in Table 4.5. The

previous in-vehicle measurements reported in [10] showed large variation in

path loss exponent from n = 1.61 in GM Escalade to n = 4.58 in Ford Taurus.

The small variation in the path loss exponent from nc = 2.77 in Fiat Linea

to nc = 2.88 in Peugeot Bipper in our case demonstrates the robustness of

our modeling mainly due to collecting multiple measurements separated far

enough from each other while keeping the environment around them the same

allowing to remove small-scale fading for a better representation of large-scale

characteristics. In addition, the standard deviation of the path loss around

the mean value is slightly smaller for Peugeot Bipper mainly because of having

less scatterers around the receiver location.

The small-scale fading characteristics is also very similar in Fiat Linea
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and Peugeot Bipper: Both the range and mean of the variance are very close

as shown in Table 4.6.

4.3 Effect of Vehicle Movement

We collected measurements at 14 locations beneath the chassis while we drove

the vehicle in the campus at about 30km per hour. We did not collect data

from the 4 tire locations since the tire movement was breaking the antenna.

When we compare the values of the large-scale parameters listed in Tables

4.2, 4.3, 4.4 and 4.5 for the two scenarios of the Fiat Linea with engine on

and Fiat Linea driven on the road, we observe that they are very close to

each other proving that the large-scale statistics modeled by averaging out

small-scale fading reflect the average behavior of the channel over time. The

comparison of the small-scale parameters listed in Table 4.6 on the other

hand shows only slightly smaller variance for Fiat Linea driven on the road

compared to the Fiat Linea engine on case demonstrating that much of the

time variations are the small-scale variations due to scattered propagation

paths.

Such a detailed comparison of the small-scale averaged large scale cha-

racteristics of the stationary case to the average time domain behavior and

small-scale variations to the time variations has not been done before. The

analysis of the dependence of the vehicle movement on the beneath the

chassis channel parameters in [11] has been primarily performed to compare

the channel parameters for 10 transmitter-receiver pairs without averaging

and modeling small-scale variations in the stationary and moving scenarios
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concluding that the movement of the vehicle leads to only slight changes in

the channel models without modeling the amount and pattern of changes

quantitatively.



Chapter 5

Channel Model Implementation

5.1 Generation of Statistical Channel Model

We now describe the algorithm for generating the statistical channel model

using the large-scale and small-scale models summarized in Table 4.1 and

the values of the parameters listed in Tables 4.2, 4.3, 4.4, 4.5 and 4.6. The

inputs to the algorithm are the distance between the transmitter and receiver,

denoted by d, and whether the transmitter is in the tire area or any of the

remaining locations beneath the chassis, denoted by o.

Figure 5.1 gives the basic steps in implementing the channel model:

� The algorithm starts by calculating the cluster arrival times. The first

cluster arrives at the propagation delay T1 = d/c. The arrival of the

following two clusters is calculated by adding inter-cluster arrival times

of distribution Weibull(λ1, k1) to the previous arrival times. The arrival

of the following clusters are then computed by adding the inter-arrival

times of Weibull(λ2, k2) distribution to the previous arrival time. The
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Figure 5.1: Flowchart for generating statistical channel model.
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cluster arrival times are recorded until the maximum delay spread

resulting in the cluster arrival time vector [T1, ..., TM ].

� The normalized power of the first bin of each cluster l for l ∈ [1,M ] is

calculated by using the dual slope linear model f(Tl).

� The normalized power of the k-th bin of each cluster l is calculated by

using g(Tl + τl,k) = f(Tl)− γ(Tl)τl,k where γ(Tl) is computed by using

the dual slope linear model.

� The receive power is calculated by inserting the distance parameter d

into the corresponding path loss equation depending on whether the

location option o is tire or chassis and then adding the Gaussian random

variable of mean 0 and variance σ2
z for power variation in decibels. The

PDP obtained in the previous step is then normalized by its total power

and scaled by the receive power.

� The local PDP is obtained by adding an independent Gaussian random

variable of mean 0 and variance σ2 to each bin of the SSA-PDP in

decibels.
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Figure 5.2: Experimental local PDPs at the right front chassis (point
D).
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Figure 5.3: Simulated local PDPs at the right front chassis (point D).
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5.2 Simulation Results

We implement the channel model as described in Section 5.1 with the para-

meters of Fiat Linea engine turned off case listed in Tables 4.2, 4.3, 4.4, 4.5

and 4.6 in MATLAB and compared the results to the experimental data.

Figs. 5.2 and 5.3 show an examplary set of experimental and simulated

local PDPs for the right front chassis (point D). Since the comparison is done

between statistical realizations, the comparison can be done only qualitatively.

It is clear that the measured and simulated local PDPs agree in that sense.

Fig. 5.4 shows the cumulative density function (cdf) of the receive energy

for both experimental and simulated 81 local PDPs for the right front chassis

(point D). The simulated cdf is slightly narrower than the experimental cdf.

The main reason for this behavior is expected to be the slight variation of

large-scale statistics such as distance and illumination conditions over the 81

locations in the experimental data.

Fig. 5.5 shows the cdf of the root mean square (rms) delay spread for

measured and simulated PDPs over 18× 81 measurement points. The rms

delay spread for measured and simulated data are again in close aggrement

with means 17.73ns and 17.82ns respectively.
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Figure 5.4: Cumulative density function of the receive energy of the
experimental and simulated 81 local PDPs for the right front chassis

(point D).
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Chapter 6

Conclusion

We analyze the small-scale and large-scale statistics of the UWB channel

beneath the chassis of the vehicle by collecting data at various sensor loca-

tions each of which consists of 81 measurement points corresponding to the

transmitters and receivers located on a fixed height 3×3 square grid with 5cm

spacing. Collecting multiple measurements for each transmitter-receiver pair

allows us to both improve the accuracy of the large-scale fading representation

and model small-scale fading characteristics. The parameters are derived for

path loss, power variation around path loss, Saleh-Valenzuela (SV) model

and small-scale fading for four different scenarios: Fiat Linea engine off, Fiat

Linea engine on, Peugeot Bipper engine off and Fiat Linea driven on the road.

Main results of the paper are as follows:

� The distance dependent path loss exponent around the tires and remai-

ning locations beneath the chassis are very different requiring separate

models. The power variation around path loss has lognormal distribution

justifying the common shadow fading model.
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� The clustering phenomenon observed in the power delay profile of all

the links is well characterized by SV model. The cluster amplitude and

cluster decay rate is formulated as a function of the cluster arrival times

using dual slope linear model. Such a model has not been developed

before for in-vehicle environment. Moreover, cluster inter-arrival times

are modeled using Weibull distribution providing a better fit than the

commonly used exponential distribution in the literature due to the

non-randomness of the local structure of the in-vehicle environment.

Furthermore, a separate Weibull fit is used for the first 3 and the

following clusters due to the consistently smaller inter-arrival times

obtained for the first 3 clusters.

� The variations of the local power delay profiles around the small-scale

averaged power delay profiles in decibels at each delay bin is well

modeled by Gaussian distribution with variance independent of the

value of the delay and distance between transmitter and receiver. Such

an analysis of small-scale fading characteristics has not been done before

for the in-vehicle environment.

� Effect of turning the engine on for the same vehicle is investigated for

the first time in the literature. Running engine only slightly affected

the values of SV and small-scale fading parameters while decreasing the

path loss exponents due to the decrease in the received power at the

locations very close to the engine.

� Effect of vehicle type on the large-scale and small-scale parameters is

found to be very small compared to previous beneath the chassis models
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demonstrating the robustness of our modeling approach mainly due

to collecting multiple measurements separated far enough from each

other while keeping the environment around them the same allowing

to remove small-scale fading for a better representation of large-scale

characteristics. The path loss exponent only changed from nc = 2.77

in Fiat Linea to nc = 2.88 in Peugeot Bipper in our case whereas the

previous in-vehicle measurements reported in [10] showed large variation

in path loss exponent from n = 1.61 in GM Escalade to n = 4.58 in

Ford Taurus.

� Effect of moving vehicle on the large-scale and small-scale parameters is

found to be very similar to those of the same vehicle with engine turned

on demonstrating that the large-scale statistics modeled by averaging

out small-scale fading reflect the average behavior of the channel over

time and much of the time variations are the small-scale variations due

to scattered propagation paths.

� The algorithm for generating the channel model is given. The compari-

son of the generated power delay profiles with the experimental ones

show good agreement validating our model.

In the future, we aim to build models for other parts of the vehicle

including engine compartment, passenger compartment, and a more detailed

model for the time variations of the power delay profiles.
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