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ABSTRACT

Superfluidity is one of the most remarkable phenomenon that we come across

in many distinct fields of Physics. It was first found by H. K. Onnes in 1911

when he cooled the mercury sample below 4.2 Kelvin. He found that sam-

ple conducted electricity without dissipation called superconductivity. Both

bosonic and fermionic system can exhibit superfluidity although their criti-

cal temperatures are different, and we focus on the fermionic superfluidity

in the thesis.

In the main part of my thesis, we study ground-state properties of ul-

tracold quantum Fermi gases with spin-orbit coupling. The formation of

Cooper pairs and their condensation, i.e. the BCS theory which success-

fully describes many properties of some superconductors, are analyzed first.

Then, we examine the BCS-BEC evolution, the generalization of the BCS

theory, to pass the strong interaction regime. Atomic systems have the ad-

vantage of tunable interaction strength between fermions, and this permits

the system to evolve from the BCS limit of loosely bound and largely over-

lapping Cooper pairs to the BEC limit of tightly bound bosonic molecules,

i.e. the study of BCS-BEC evolution. Without this property, it is hopeless

to reach the transition temperature of the superfluity in the experiment with

cold atoms. In the main part of the thesis work, we study the effects of spin-

orbit coupling on the BCS-BEC evolution problem, and analyze the ground

state phase diagrams, excitation spectrum, and momentum distribution. In

the last part, we also try to solve the system in an optical lattice.
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ÖZET

Süperakışkanlık Fiziğin birçok alanında karşımıza çıkan önemli bir fenomendir.

Ílk olarak H. K. Onnes tarafından 1911 yılında civa’yı 4.2 kelvinin altına

indirince bulunmuştur. Civanın elektiriği sürtünmesiz ilettiğini bulmuştur.

Fermionik ve bozonik sistemlerin ikiside bu süperakışkanlık özelliği gösterebilir

ve bu tezde fermionik süperakışkanlığa odaklandık.

Bu tezin ana kısmında spin-orbit etkileşimli Fermi gazlarının en düşük

enerji seviyesindeki özelliklerini inceledik. Ílk olarak Cooper çiftlerinin oluşumunu,

onların yoğunlaşmasını ve bazı süperiletkenlerin özelliklerini açıklayan BCS

teorisini analiz ettik. Daha sonra, güçlü etkileşim alanına geçmek için BCS

teorisinin genellemesi olan BCS-BEC geçişini çalıştık. Atomik sistemler

de fermionlar arası etkileşimi kontrol edebiliyoruz ve bu sayede BCS limit

de zayıfça bağlanmış ve birbirlerinin üzerine örtüşmüş Cooper çiftlerinden

BEC limit de sıkıca bağlı bozon moleküllerine geçebiliyoruz. Eğer atom-

lardaki bu özellik olmasaydı, ultra düşük sıcaklıktaki atomlar ile yapılan

bu deneylerde superakışkan geçiş sıcaklığına erişmek imkansız olacaktı. Bu

tezin ana bölümünde BCS-BEC geçişini spin-orbit etkileşiminide ekleyerek

çalıştık ve en düşük enerji seviyesindeki faz diagramını, enerji spetkrumunu

ve momentum dağılımını inceledik. Son bölümde, sistemi optik örgülerde

çözmeye çalıştık.
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1 Introduction

We came across much remarkable phenomena in many distinct fields of

Physics in the last century. One of the fascinating problems that people have

encountered was superfluidity which was first discovered by Heike Kamerling

Onnes in 1911 when he cooled the mercury sample below 4.2 K using liquid

helium-4 as a refrigerant. He discovered that sample conducted electricity

without dissipation which is called superconductivity. Quantum theory was

not developed until the 1920’s. Therefore, physicists could not understand

the mechanism behind superfluidity, and it took almost 50 years to find the

microscopic theory of the problem.

Both bosonic and fermionic systems can exhibit superfluidity. Fermionic

superfluidity can be found in neutron stars, nuclear matter, superconductors,

helium-3, and ultracold atoms although their superfluid transition temper-

atures are distinct. After physicists discovered the bosonic superfluidty in

laboratory in 1938 with helium-4, Fritz London suggested the connection be-

tween superfluidity and Bose-Einstein Condensation (BEC) which was first

predicted by Albert Einstein [1]. Einstein realized that at sufficiently low

temperatures, the macroscopic part of the bosons occupy the ground state

called BEC [2,3]. After bosons condense to the lowest energy state, they

can be described by one wave function. If there is no interaction between

bosons, then all the bosons in the system go to the ground state at zero

temperature. However, interactions reduce the condensation fraction even

at absolute zero such as Helium-4 having 10 percent condensation fraction

due to strong interaction between atoms. BEC occurs when the number of

accessible states equal to the number of particles which is also the condition

for quantum degenerate limit, low temperature and high density limit. Num-

ber of accessible states in volume Ω is approximately equal to Ω
λ3
T

, where λT
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Figure 1: Quantum statistics for non-interacting bosons and fermions at
zero temperature

is the thermal wavelength giving the extend of the particles wave function at

temperature T. Therefore, critical temperature for BEC can be found from

the condition Ω
λ3
T

= N which yields the Tc = 2π~2

m

(
N
Ω

)2/3
. This relation gives

the 3K for critical temperature of Helium-4 close to the actual value 2.2K.

Much microscopic understanding of bosonic superfluidty was developed by

Nikolai Bogoliubov, and he studied the weakly interacting Bose gases. He

concluded that BEC in ideal gas has a vanishing critical velocity, so it is not

a superfluid. Therefore, BEC itself does not guarantee superfluidity. There

must be interaction providing correlation which is the case in Helium-4.

After Fritz London suggested the connection between BEC and super-

fluidity, then a question came to mind. How do fermions condense to the

lowest energy state at low temperatures in fermionic systems? It was known

that the Pauli Principle blocks fermions to occupy the same quantum state.

Moreover, degeneracy temperature for fermions is on the order of EF
kB

which

is far above the observed Tc in experiment. Physicists thought the idea of

tightly bound pairs of electrons, which can act as bosons and then condense

to the ground state of the system. However, there is no known interac-

tion overcoming the Coulomb interaction between electrons. In 1950, it was
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found that there is an effective attractive interaction between electrons due

to crystal vibration which causes superconductivity [4,5]. Then, question of

fermion pairs was solved in 1956 by Leon Cooper, who showed that arbi-

trarily attractive interaction between fermions on top of the Fermi surface

can lead to the formation of a bound state [6]. Bound fermions are called

Cooper pairs. Then, this pair can undergo BEC like bosons. However, only

one Cooper pair could not explain the whole mechanism of fermionic super-

fluidity. One year later, microscopic theory of superconductivity was discov-

ered by John Bardeen, Cooper, and Robert Schrieffer. This famous theory

is called the BCS theory which proposed a many particle wave function cor-

responding to the largely overlapping fermion pairs with zero center-of-mass

momentum, zero angular momentum (s-wave), and zero total spin (singlet)

[7]. In BCS theory, Cooper pairs are allowed for fermions with energies

close to the Fermi energy. Besides BCS theory captured the critical temper-

atures of the superconductors found in laboratories before the 1980s, it also

describes the superfluid phases of fermions in nuclear matter and neutron

stars, where nuclear forces provide the glue for fermion pairs . However, an-

other interesting story started in 1986 when high-Tc superconductors which

have superfluid transition temperature above 100K were created [8]. Then,

one of the significant goals is to find a room temperature superconductor for

researchers. This high critical temperature could not be explained by BCS

theory. In BCS theory, interaction between fermions is arbitrarily weak, so

pairs are loosely bound and pairs are much larger than average separation.

However, it seems that high-Tc superconductors have small Cooper pairs.

Therefore, the BCS theory had to be generalized to pass to the strong inter-

action regime where the fermion pairs become tightly bound Bose molecules

and can undergo BEC. Then, it seems to be that BCS and BEC theories are
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the two end points of a more general theory. Anthony Leggett was the first

physicist that studied the BCS-to-BEC evolution, and he showed that when

the attraction was weak, a BCS superfluid appears, and when the attraction

was strong, a BEC superfluid appears [9]. In contrast to the BCS theory,

Cooper pairs are allowed for all fermions in the BCS-BEC evolution. We can

pass from the BCS limit of loosely bound and largely overlapping Cooper

pairs to the BEC limit of tightly bound bosonic molecules via increasing the

attractive interaction between fermions, now achievable in the cold atom

experiments.

Atomic BEC was first accomplished in the laboratory by Eric Cornell

and Carl Wieman in Colorado in 1995. They accomplished it by cool-

ing the Rb atoms to much lower temperatures than had been previously

achieved. They used laser cooling and evaporation methods to cool the

atoms to nanoKelvins. After this success, research on the ultracold atomic

gases has been rapidly increasing. It is wise idea to deal with simple system

rather than dense, strongly interacting systems like Helium-4. Ultracold

atomic gases are dilute which means we can neglect the 3-body interaction.

These ultracold systems have very low critical temperatures because they

have low densities. However, if we scale their densities to the density of

the electrons in metal, their critical temperatures are above the room tem-

perature, so we can think the superfluid properties of ultracold atoms as

high-temperature superconductors. Ultracold quantum gases are an ideal

platform to investigate the new phases of matter since they allow us to con-

trol physical quantities experimentally. Atomic systems have the advantage

of tunable interaction strength between fermions via Feshbach resonance al-

lowing an examination of the whole BCS-BEC crossover experimentally [29].

The control over the interaction may show the physics of the strongly corre-

4



lated systems in condensed matter physics where the control is nonexistent

such as neutron stars. We also control the density and temperature of these

systems. Therefore, ultracold atoms have attracted much theoretical and

experimental research for 15 years. Physicists have tried to find the exotic

phases of matter for these systems. In 2003, three groups discovered the

BEC of the tightly bound fermions, and eventually fermionic superfluidity

was first realized in the experiment through the observation of vortices in

2005 at MIT using ultracold fermionic gases [10,11].

Almost all of the early works were focused on the balanced Fermi gases,

where both components have equal number and mass. There is no phase

transition going from BCS to BEC via increasing the interaction in balanced

case, so this process is called BCS-BEC crossover [9,12]. The system is

a superfluid in all crossover regime. This result was also realized in the

experiments. Then, many of the theoretical works were concentrated on the

population and mass imbalanced systems [13]. RF pulses, converting up

fermions to down and vice versa, are used to create population imbalanced

systems. It was found that BCS-BEC evolution is not a crossover, and there

are new phases of matter. These phases are normal phase, phase separation

and superfluid phases, also observed in the experiments [15,16]. There are

also other research directions in the field. Fermionic systems in the precense

of optical lattices, fermionic mixtures with three hyperfine state, and fermion

mixtures in trap are some of the most attracted areas. It was found that

new phases of matter can be seen when fermionic mixtures are put into the

trap with different frequencies for each type of fermions even for balanced

case [16]. Allowing mixtures of fermions with three different hyperfine states

opens interesting results. There can be three types of Cooper pairs which

are analogous to the case in quarks in the core of neutron stars.
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Physicists have studied complicated systems with the hope of finding

new phases of matter, and spin-orbit coupled Fermi gases is one of the

hot research areas into the field. Spin-orbit coupling (SOC) interaction

has attracted much research interest after it was achieved first with neutral

atomic BEC by coupled two atomic spin states with a pair of lasers [17,18].

Recently, SOC effect in fermionic systems can be created in the experiment

using the counterpropagating laser beams that flips the atomic spin states,

and gives momentum to the atom [30,31]. The coupling between spin of

the atoms and its center of mass motion leads to the SOC effect. Magnetic

field generated by electrons motion couples to the electrons spin through

the magnetic dipole interaction. Strength and direction of magnetic field

depends on the electrons velocity producing correlation between electrons

motion and spin states. This effect can usually be neglected for electron

velocities which are not relativistic. SOC has been many consequences in to

the variety of modern condensed matter problems. It is crucial for the spin

Hall effect and topological insulators, and it contributes to the electronic

properties of the materials. Some of the consequences of the system in

ultracold atoms are followings. SOC increases the density of the states which

favors to the Cooper pairing [19-28]. Therefore, SOC can induce the BCS-

BEC evolution even if we keep the interparticle interaction fixed. Similar

to the usual BCS-BEC crossover picture, there is no phase transition in

BCS-BEC evolution for balanced system with increasing SOC effect [19-28].

Therefore, system is gapped superfluid for balanced case with or without

SOC. For a population or mass imbalanced case, there are many exotic

phases with SOC effect. Besides, gapped superfluid, normal phase and phase

separation which are seen also without SOC, two types of gapless superfluid

phases that their excitation energies vanish at same points in momentum
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space has been found theoretically [19-28].

In this thesis, we analyze the Cooper problem first, and show the binding

energy EB < 0 of the one pair formation. Then, we introduce the second

quantization formalism which we frequently use to deal with the many-body

physics, and we find the many-body Hamiltonian in momentum space. In

the first part of chapter 4, we introduce the famous BCS theory describing

the properties of the some superconductors, and we solve the system with

using variational method, the original method which Bardeen, Cooper, and

Schrieffer were used in their original work. In the next part, we utilize

mean-field approximation to obtain the results at finite temperatures, and

we find number and gap equations describing the physical quantities of the

system. BCS-BEC evolution, generalization of the BCS problem, is also

examined. Then, we include SOC interaction to the system, and solve it

using mean-field approximation in the whole BCS-BEC crossover regime in

vacuum. Moreover, we construct the ground state phase diagrams of the

system, excitation spectrum, and momentum distribution. In the last part,

we studied the same system in an optical lattice.
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2 Superfluidity in Fermionic Gases

In this chapter, we will analyze the fermionic systems leading mechanism

behind the superfluidity. Before solving complicated systems, we start with

the basic knowledge to understand the problem clearly.

2.1 Cooper Pairing

Fermions can not occupy the same quantum state due to Pauli blocking.

After Fritz London suggested the superfluidity has a relation with BEC,

main problem is how do fermionic systems condense to the ground state to

create superfluidity. It was found by Leon Coopers that two fermions can

form a pair on top of the non-interacting Fermi surface if there is arbitrarily

attractive interaction between fermions [6]. In quantum mechanics, It is

known that two fermions can always form a bound state in one and two

dimension if there exists an attractive interaction between them. However,

there is a minimum threshold interaction in three dimension that one should

overcome to form a bound state for two fermions. Therefore, It seems that

fermion pair can not be formed in three dimension for weakly attractive

interaction. However, many-body effect comes into the problem because

fermions’ momenta are essentially confined to the narrow shell on top of

the Fermi sea, so problem is effectively 2D. Therefore, fermions can form

a bound state called Cooper pairs. Now, we show that system has a lower

energy if Cooper pair is formed. We assume that there are same number of

spin up and spin down fermions. Therefore, their Fermi energies εf =
~2k2

f

2m

are the same where kf = (6π2N
V )

1
3 . Hamiltonian of the two fermions on top

of the non-interacting Fermi sea is

Ĥ =
P̂1

2

2m
+
P̂2

2

2m
+ V (|~r1 − ~r2|) (1)
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Figure 2: Two fermions having different intrinsic property labeled as blue
and red on top of the non-interacting Fermi level.

After we use the center of mass and relative coordinates where ~R = ~r1+~r2
2

and ~r = ~r1 − ~r2, then Shrödinger equation HΨ = EΨ becomes

[
−~2

2M
52

R −
~2

2µ
52

r +V (|r|)]Ψ(R, r) = EΨ(R, r) (2)

Where µ is the relative mass which is equal to m/2, and M is the center

of mass that is equal to 2m. We now use the separation of variables, and

write the wave function as Ψ(R, r) = φ(R)ψ(r). Then, we can separate the

center of motion and the relative motion. For the center of motion part,

equation (2) becomes 52
Rφ(R) = −2MER

~2 φ(R). Then, wave function φ(R)

of the center of the motion is a plane wave which is ei
~K ~R where energy of

the center of the mass ER is ~2K2

2M . Shrödinger equation for relative motion

will be

[
−~2

2µ
52

r +V (r)]ψ(r) = Erψ(r) (3)

Where total energy E in equation (2) is equal to ER + Er. We want to

write equation (3) in momentum space, so we take the Fourier transform of

9



the wave function as ψ(r) = 1√
Ω

∑
k a(k)eik.r. Then, if we multiply both

sides of the equation (3) with e−ik
′
.r, and take the integral with respect to

r. Equation (3) becomes

a(k)[
~2k2

2µ
+ ER − E] +

∑
k

a(k)
V (k,k

′
)

Ω
= 0 (4)

Where integral
∫
ei(k−k

′
).rd3r is equal to Ωδ

k,k
′ , and V (k,k

′
) that is equal to∫

V (r)ei(k−k
′
).rd3r, the Fourier transform of V (r). We know define ~2k2

2µ +ER

as 2ε. Attractive interaction between fermions assummed to be local, so we

take the V (r) as a Dirac delta function δ3(r). Then, V (k,k
′
) is equal to

constant value V0 < 0. Therefore, equation (4) becomes

a(k)[2ε− E] +
V0

Ω

∑
k

a(k) = 0 (5)

Now, let
∑

k a(k) is equal to constant c. Then, if we sum both sides over k,

equation (5) gives

− 1

V0
=

1

Ω

∑
k

1

2ε− E
(6)

We can replace the summation
∑

k with
∫
D(ε)dε where D(ε) is the density

of states, number of states between energies ε and ε+dε. Now, equation (6)

can be written as

− 1

V0
=

1

Ω

∫
D(ε)dε

2ε− E
(7)

Energy levels below the Fermi energy EF are occupied by fermions, so they

should not be included into the integration. We should take the integration

in the interval EF < ε < EF + Ecutoff . For superconductors, the natural

cut-off is given by Debye frequency ωD, corresponding the highest frequency

at which ions can respond to an electron in crystal lattice. Since we have

10



Ecutoff = ~ωD � EF , the integration is taken very narrow shell around

the Fermi energy. Therefore, we can assume that density of states D(ε)

is equal to density of states at Fermi energy D(EF ) which is constant in

the integration. E is the energy of the two fermions, so we can write it as

2Ef +EB where EB < 0 is binding energy of two fermions. Then, equation

(7) becomes

− 1

V0
=
D(Ef )

Ω

∫
Ef<ε<Ef+~ωD

dε

2(ε− Ef )− EB
(8)

Integral can be easly evaluated if we change the integral variable as u =

2(ε− Ef )− EB. Then, the binding energy will be

EB = −2~ωDe
−2Ω

D(Ef )|V0| < 0 (9)

Result is following: binding energy depends exponentially on the interaction

and D(EF ), and there is a paired state for two weakly interacting fermions

on top of the Fermi sea. The role of the constant density of states in 2D

is here replaced by density of states at Fermi energy D(EF ) due to Paulie

blocking. Cooper pair at rest(opposite momentum with equal magnitude)

has the largest binding energy. Thus, Fermi level is now unstable towards

pairing because it decreases the total energy of the system. In this problem,

we neglect the interaction between other fermions on the Fermi level. If we

turn on all interaction, then system reorder itself into a new paired state

which is described by the BCS theory.
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2.2 Second Quantization

In quantum mechanics, wave function ψ(r) is the most important physical

quantity. |ψ(r)|2 gives the probability of the particle at position r, and

it provides information about probability amplitude of position, momen-

tum and other physical observables. If we put the wave function into the

Shrödinger equation Hψ = Eψ, then we can find the energy of the system.

Physical observables like position, momentum are operators acting to the

state vectors in vector space. For non-interacting single particle system,

Hamiltonian can be written as Ĥ = P̂ 2

2m + Vext, and wave function ψ(r) is

a function of 3 position coordinates. Shrödinger equation is not easy to

solve exactly in general. There are few numbers of systems having exact

solutions such as particle in a box, and harmonic oscillator. If we increase

the number of particles in the system, and turn on the interaction between

particles, then solving Shrödinger equation become even more difficult task.

Therefore, using first quantized quantum mechanics for macroscopic systems

having around Avogadro’s number of particles is cumbersome.

Second quantization provides the general way to deal with macroscopic

systems. Wave function ψ(r) become a field operator ψ̂(r) that can cre-

ate and annihilate the particles at position r. Field operators obeys the

fermionic and bosonic canonical commutation and anticommutation rela-

tions as

[ψ̂(r1), ψ̂†(r2)] = δ(r1 − r2) for bosons (10)

{ψ̂(r1), ψ̂†(r2)} = δ(r1 − r2) for fermions

where [A,B] = AB − BA, and {A,B} = AB + BA commutation and an-

ticommutation relations respectively. Complete many-body Hamiltonian in

12



second-quantiantized form can be written as

Ĥ =

∫
d3xψ̂†(x)[

−~2

2m
52 −U(x)]ψ̂(x)+

1

2

∫
d3x1d

3x2 : ρ̂(x1)ρ̂(x2) : V (x1 − x2)

(11)

where wavefunction ψ(x) become an operator, and kinetic potential, and

interaction terms are functions, not operators. Here, ρ̂(x) is a density oper-

ator which is equal to ψ̂†(x)ψ̂(x), and ”:.....:” denotes the normal ordering

in the interaction term which denotes that all creation operators between

the two colons must be ordered to lie to the left of all destruction operators.

2.2.1 Field Operators in Different Basis

We can write the field operators in different basis with utilizing the identity∑
n |n >< n|. For instance, fields operator in position basis is ψ̂(x) =<

x|ψ >. Then, we can write it as

ψ̂(x) =
∑
n

< x|n >< n|ψ > (12)

where < n|ψ > is the field operator in the new basis. Now, we can write

equation (11) in momentum space with using field operators in momentum

space basis with using relations below

ψ̂(x) =
1

Ω

∑
k

eik.xĈk and (13)

ψ̂†(x) =
1

Ω

∑
k

e−ik.xĈ†k

Then, kinetic energy term in equation (11) will be
∑

k,k′
~2k2

2mΩ Ĉ
†
k′
Ĉk

∫
d3xei(k−k

′).x.

The integral gives the Kronecker delta functiion δk,k′ which cancels one of

13



the summation term, and result is

Ĥkin =
∑
k

εkĈ
†
kĈk (14)

where the term εk is ~2k2

2m , and k =
√
k2
x + k2

y + k2
z . The product Ĉ†kĈk

is number operator N̂k that gives the number of particles at the state with

momentum k if it acts to the state vector |nk > as N̂k|nk >= nk|nk > where

nk is number of particles. Bosonic field operators in momentum basis act to

the state in the same way as operators in harmonic oscillator, lowering and

rising to the number of the particles in the state: Ĉk|nk >=
√
nk|nk − 1 >,

Ĉ†k|nk >=
√
nk + 1|nk + 1 >, and Ĉk|0 >= 0, where |0 > is vacuum state.

For fermions, nk is 0 or 1 due to Pauli blocking, so product Ĉ†kĈ
†
k is zero for

fermionic operators that is also consequence of the anticommutation relation

for fermionic operators {Ĉ†k, Ĉ
†
k}=0

Now, let’s write the interaction term which is

Ĥint =

∫
d3x1d

3x2ψ̂
†(x1)ψ̂†(x2)V (x1 − x2)ψ̂(x2)ψ̂(x1) (15)

Then, we write the Fourier transform of the operators in the same way

as kinetic energy term. We use center of mass and relative coordinates as

~R = ~x1+ ~x2
2 and ~r = ~x1 − ~x2. When the particle interact at positions ~x1 and

~x2, momentum is conserved. Particle 1 comes with momentum k1 and gain

momentum q from particle 2. Therefore;

particle 1 k1 → k1 + q (16)

particle 2 k2 → k2 − q
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Using the relations Ωδk1+k2,k
′
1+k′2

=
∫
d3Re(k′1+k′2−k1−k2).R and Fourier

transform of the interaction term which is V (q) =
∫
d3rV (r)e−iq.r, interac-

tion term in momentum space will be

Ĥint =
1

Ω

∑
k,k′,q

V (q)Ĉ†k+qĈ
†
k′−qĈk′Ĉk (17)

Therefore, total second-quantized many-body hamiltonian in momentum

space is given by

Ĥ =
∑
k

εkĈ
†
kĈk +

1

Ω

∑
k,k′,q

V (q)Ĉ†k+qĈ
†
k′−qĈk′Ĉk (18)

This result will be widely used throughtout the thesis.
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2.3 BCS Theory

After Leon Cooper showed that two fermions on top of the non-interacting

Fermi sea can form a bound state if there is attractive interaction between

them in 1956, one year later Bardeen, Cooper and Schrieffer found the many-

body theory of the superconductivity. They used a variational wavefunction

to explain the superconducting state of the metals at zero temperatures. Su-

perconductivity is a ground state phenomenon whereas normal conductivity

in metals occurs at excites states. Consider the following second-quantized

Hamiltonian for two-component Fermi gas.

Ĥ =
∑
k,α

(εk − µ)Ĉ†k,αĈk,α +
V0

Ω

∑
k,k′

Ĉ†
k′↑Ĉ

†
−k′↓Ĉ−k↓Ĉk↑ (19)

Where the two components are labelled by spin index α =↑↓, and V0 < 0

is attractive interaction between fermions. We determine the ground state

energy using variational wave function

|ψBCS >=
∏
k

(uk + vkĈ
†
k↑Ĉ

†
−k↓)|0 > (20)

where uk and vk are variational parameters taken to be real for simplic-

ity. This wave function describes the Bose-Einstein condensation of Cooper

pairs. The operator Ĉ†k↑Ĉ
†
−k↓ creates the Cooper pair with opposite spin

and momentum. Normalization condition < ψBCS |ψBCS >= 1 of the wave

function yields

∏
k,k′

< 0|(u′k + v′kĈ−k′↓Ĉk′↑)((uk + vkĈ
†
k↑Ĉ

†
−k↓)|0 >= 1 (21)
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Product of two creation and annihilation operators have zero expectation

values, so < Ĉ†k↑Ĉ
†
−k↓ > , and < Ĉ−k′↓Ĉk′↑ > are equal to zero. Therefore,

∏
k,k′

< 0|uku′k + vkv
′
kĈ−k′↓Ĉk′↑Ĉ

†
k↑Ĉ

†
−k↓|0 >= 1 (22)

If we use the anticommutation relation of fermionic operator {Ĉk′↑, Ĉ
†
k↑} =

δk,k′ , then normalization condition becomes

∏
k

(u2
k + v2

k) = 1 (23)

Therefore, u2
k + v2

k = 1 which quarantee the probability condition. Whereas

u2
k gives the probability of the unoccupied paired state, v2

k gives the probabil-

ity of the occupied paired state. We will find the gap equation from minimiz-

ing the ground state energy < ψBCS |Ĥ|ψBCS >. Therefore, it is beneficial

to find the expectation values of the operators < ψBCS |Ĉ†k,αĈk,α|ψBCS >

and < ψBCS |Ĉk,↓Ĉ−k,↑|ψBCS >. First expectation value can be found as

∏
k,k′,k′′

< 0|(u′k + v′kĈ−k′↓Ĉk′↑)(Ĉ
†
k,αĈk,α)((u′′k + v′′kĈ

†
k′′↑Ĉ

†
−k′′↓)|0 > (24)

Expectation values of the operator products< Ĉ†k,αĈk,α >, < Ĉ†k,αĈk,αĈ
†
k′′↑Ĉ

†
−k′′↓ >,

and < Ĉ−k′↓Ĉk′↑Ĉ
†
k,αĈk,α > gives zero. Only one term makes a contribution

which is ∏
k,k′,k′′

< 0|v′kv′′kĈ−k′↓Ĉk′↑Ĉ
†
k,αĈk,αĈ

†
k′′↑Ĉ

†
−k′′↓|0 > (25)

After we use the result in (23) and the anticommutation relation of the

operators, expactation value of the product Ĉ†k,αĈk,α will be

< ψBCS |Ĉ†k,αĈk,α|ψBCS >= v2
k (26)
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Using the same argument above, we can find the expectation value of the

operator < ψBCS |Ĉk,↓Ĉ−k,↑|ψBCS > that is

< ψBCS |Ĉk,↓Ĉ−k,↑|ψBCS >= ukvk (27)

Now, we have to find the ground state energy < ψBCS |Ĥ|ψBCS > to mini-

mize it. If we take the expectation value of the Hamiltonian, it will be

∑
k,α

(εk − µ) < Ĉ†k,αĈk,α > +
V0

Ω

∑
k,k′

< Ĉ†−k↑Ĉ
†
k↓Ĉk′↓Ĉ−k′↑ > (28)

Kinetic energy term is easy to deal with because we found the < Ĉ†k,αĈk,α >

above which is equal to v2
k. We use the Wick’s theorem to write the four

product operator in interaction part in terms of two product operators as

< Ĉ†−k↑Ĉ−k′↑Ĉ
†
k↓Ĉk′↓ >=< Ĉ†−k↑Ĉk′↓ >< Ĉ−k′↑Ĉ

†
k↓ > − < Ĉ†−k↑Ĉ

†
k↓ >< Ĉ−k′↑Ĉk′↓ >

(29)

First term is zero, so expectation of four product operators can be written

as

< Ĉ†−k↑Ĉ−k′↑Ĉ
†
k↓Ĉk′↓ >=< Ĉ†−k↑Ĉ

†
k↓ >< Ĉk′↓Ĉ−k′↑ > (30)

We found before that < Ĉk′↓Ĉ−k′↑ > is uk′vk′ , and < Ĉ†−k↑Ĉ
†
k↓ > is the

complex conjeguate of the ukvk that is also equal to itself because we take

the uk and vk real for simplicity. Therefore, ground state energy of the

system becomes

E =< Ĥ >= 2
∑
k

(εk − µ)v2
k +

V0

Ω

∑
k,k′

ukvkuk′vk′ (31)
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We may write uk = sin θk and vk = cos θk and then minimize the ground

state energy with respect to θk. With these changes, ground state energy

can be written as

E =
∑
k

(εk − µ)(1 + cos 2θk) +
V0

4Ω

∑
k,k′

sin 2θk sin 2θk′ (32)

Now, we take the variational derivative of E with respect to θk and set to

zero for minimization condition. When we take the variational derivative

with respect to θk, Kroneker delta function emerges, and cancels one of the

summation. Then, result will be

(εk − µ) sin 2θk −
V0 cos 2θk

2Ω

∑
k′

sin 2θk′ = 0 (33)

We define the gap 4 as − V0
2Ω

∑
k sin 2θk′ . 4 is interpreted as energy needed

to break up a Cooper pair, which means that it costs a certain amount

of energy to excite BCS ground state. With defining gap 4, minimizing

condition above becomes

(εk − µ) sin 2θk +4 cos 2θk = 0 (34)

If we divide both sides by cos 2θk, then result will be

tan 2θk =
−4
εk − µ

(35)

Then, sin 2θk becomes 4√
(εk−µ)2+42

, and if we put it into the gap 4, gap

equation will be

− 1

V0
=

1

Ω

∑
k

1

2
√

(εk − µ)2 +42
(36)
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Number of particles into the system can be found from the formula

N =
∑
k,α

< ψBCS |Ĉ†k,αĈk,α|ψBCS > (37)

We know that the expactation value < ψBCS |Ĉ†k,αĈk,α|ψBCS > is v2
k. There-

fore, number equation becomes

N = 2
∑
k

v2
k (38)

We know that u2
k + v2

k = 1 and, we defined the uk = sin θk and vk = cos θk,

so v2
k − u2

k = cos 2θk = −(εk−µ)√
(εk−µ)2+42

. Therefore, we can find the u2
k and v2

k

which are

v2
k =

1

2
(1− εk − µ

Ek
) (39)

u2
k =

1

2
(1 +

εk − µ
Ek

)

Where Ek =
√

(εk − µ)2 +42 is an excitation energy. Number, and gap

equations will be

Number equation N =
∑
k

(1− εk − µ
Ek

) (40)

Gap equation − 1

V0
=

1

Ω

∑
k

1

2Ek
(41)

These two equations are coupled and they can be solved self-consistently.

Two unknowns chemical potential µ and gap 4 are found numerically by

Matlab. However, we have to scale two equations to solve them numerically.

We choose the energy scale as the Fermi energy εf of N
2 fermions such that

N =
k3
fΩ

3π2 . We can change the summation
∑

k with integral as
∑

k →
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Ω
∫
d3k
2π3 . Moreover, we will replace V0 by the scattering length as using the

relation below

1

V0
=

m

4π~2as
− m

~2

∫
d3k

2π3

1

k2 (42)

which is the consequence of the scattering theory [19]. Therefore, our gap

and number equations become

Number equation N = Ω

∫
d3k

2π3

(
1− εk

Ek

)
(43)

Gap equation − m

4π~2as
=

∫
d3k

2π3

(
1

2Ek
− 1

εk

)
(44)

There is no θ and φ dependence inside the integrals, so we can write integral∫
d3k as

∫
4πk2dk. We scale the k with kf as k = k̃kf where k̃ is now

dimensionless parameter. Then, our scaled equations will be

Number equation − π

2kfas
=

∫
dk̃

 k̃2 −
√

(k̃2 − µ̃)2 + 4̃
2√

(k̃2 − µ̃)2 + 4̃
2

 (45)

Gap equation
2

3
=

∫
dk̃k̃2


√

(k̃2 − µ̃)2 + 4̃
2
− k̃2 + µ̃√

(k̃2 − µ̃)2 + 4̃
2


where µ̃ = µ

εf
, and 4̃ = 4

εf

2.3.1 BCS-BEC Crossover

BCS-BEC crossover is simple one channel model, where the scattering length

as is the parameter tuning the interaction. For arbitrarily weak interaction,

we expect the formation of Cooper pairs due to many-body effect, and they

condensate to the ground state as described by BCS theory. For strong

interaction, pairing is not a many-body effect, and it can be formed even

in vacuum. Here, we expect the condensation of the tightly bound fermion
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pairs to the ground state. Anthony Leggett realized that going from BCS

limit to the BEC limit is smooth which means there is no phase transition,

and system is gapped superfluid through the evolution regime for balanced

case [9]. We can pass from BCS limit to the BEC limit just by increasing

the interaction. Equations in the (45), we can think the 1/kfas as the

interaction. kfas → 0− is the BCS limit of weak interaction, and kfas → 0+

is the BEC limit of strong interaction. In the BCS limit, Cooper pairs are

formed and condensate at the same time. Pair distance is much larger than

the average separation of the atoms. Therefore, Cooper pairs are largely

overlapping. As we increase the 1/kfas from −∞ to the +∞, we pass

from the BCS regime to the BEC regime. In the BEC limit, Cooper pairs

become Bose molecules that condensate to the ground state, and they repulse

each others. Therefore, we call this regime as weakly interacting Bose gas,

and Gross-Pitaevskii equations describing the ground state of interacting

Bose gases can be used in the BEC regime of the evolution. In between

these two extremes, there is a regime where pair size comparable to the

interparticle spacing. We called this regime as crossover, and fermions are

strongly interacting within the crossover. The properties of the system in

this region may give insight to understand the strongly interacting fermionic

systems such as neutron stars, and high-temperature superconductors. The

resonance where 1/kfas = 0 is called unitarity where the interaction is just

enough to bind particles in free space, so bound length of the molecule is

infinite as = ∞. Crossover takes place around the unitarity. Therefore,

we change the value of the 1/kfas from -1 to +1 for examine the crossover

region. We can find the gap and chemical potential of the system in the

crossover regime with solving coupled equation (45). T̃ , and 1/kfas are the

parameters that we can control. We take T̃ = 0 to examine the ground state

22



of the system.

Figure 3: Chemical potential and gap in the BCS-BEC crossover as a func-
tion of interaction parameter 1/kfas

In BCS weak interaction limit , we have kfas → 0−. If we insert it into

the equations (45), then chemical potential and gap will be

µ ≈ Ef (46)

4 ≈ 8

e2
Efe

−π/2kf |as|

Chemical potential is energy needed to add one more particle to the system.

BCS theory implicitly assumes that there are equal number of spin up and

spin down particles into the system. Therefore, chemical potential is the

energy cost for adding a spin up atom if at the same time spin down atom

is added. First equation tells that in BCS limit, adding a spin up and spin

down particle to the system costs Fermi energy per particle. In the BCS

limit, Pauli blocking dominates over the interaction, so we can add particle

only at the Fermi level. Second equation is the superfluid gap of the BCS

theory, and we should compare it with the binding energy of the single

Cooper pairs in (9). However, we should replace the V0 by scattering length

using the relation (42). Then, binding energy of the single Cooper pair will
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be

EB ≈
8

e2
Efe

−π/kf |as| (47)

Now, if we compare the superfluid gap and binding energy, we see that

gap is exponentially larger. This difference comes from the fact that in

the BCS problem not only the fermions above the Fermi level contribute

the pairing, but also fermions below it make a contribution. Due to this

difference, particles now takes part in the pairing, but gap is exponentially

small compare to the Fermi energy, so Cooper pairs are fragile. It seems

to be very difficult to reach the superfluidity in Fermi gases. However,

Feshbach resonance allow us to tune the interaction and pass to the strong

interaction regime where 1/kf |as| < 1. In this region, Cooper pairs become

tightly bounded, so there is a good chance to achieve superfluidity. If we

try to understand the sense of the scale, Fermi energy of the dilute lithium

gas is the order of micro kelvin ∼ 10−6K, corresponding to 1/kfas = 4000,

so the superfluid gap 4 is very small, 4
kB
≈ 10−30K in the BCS limit.

Therefore, we can think that it is impossible to observe the superfluidity.

However, Feshbach resonance allows us to tune the interaction and brings

the system into the strong interaction regime. In this regime, gap is around

200 nanokelvin for kf |as| = 1, and such temperatures are now achieved in

experiments on ultracold atomic gases.

In BEC strong interaction limit , we have kfas → 0+. If we insert it into

the equations (45), then chemical potential and gap will be

µ ≈ −~
2

2ma2
s

+
π~2asn

m
(48)

4 ≈
√

16

3π

Ef√
kfas

(49)

First term is the binding energy of the tightly bound molecules, and second
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term is the repulsive interaction between molecules in the gas.
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2.4 Finite Temperatures

In order to analyze the system at finite temperature, we have to add the

fluctuations to the BCS variational ground state. This can be done by

Bogoliubov and Valatin transformation. We do not have a variational wave-

function to describe the system at finite temperature. We will utilize the

quantum statistical physics to solve the system. Our main aim is to find the

thermodynamic potential that we can find any physical quantities from it.

Bogoliubov and Valatin transformation allow us to write the Hamiltonian

of the systems in terms of non-interacting quasi-particles diagonalizing the

original many-body Hamiltonian. Our Hamiltonian is

Ĥ =
∑
k,α

(εk,α − µα)Ĉ†k,αĈk,α +
V0

Ω

∑
k,k′

Ĉ†k↑Ĉ
†
−k↓Ĉ−k′↓Ĉk′↑ (50)

which describes the Cooper pairs at rest q = 0. Now, we have to threat

the interaction part, and write the four product field operators in terms of

two product operators. This is done by mean-field approximation. We write

the operator in terms of its average and its fluctuation as â =< â > +δâ.

Therefore, the product of the two operators can be written as

âb̂ = â < b̂ > +b̂ < â > − < â >< b̂ > (51)

where we neglect the term δâδb̂ . We can see that two product operator can

be written in terms of a one operator. Now, lets define the operators B†k =

Ĉ†k↑Ĉ
†
−k↓ and Bk′ = Ĉ−k′↓Ĉk′↑. Then, interaction part of the Hamiltonian

become

Ĥint = −|V0|
Ω

∑
k,k′

[B†k < Bk′ > +Bk′ < B†k > − < Bk′ >< B†k >] (52)
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with using mean field approximation. Now, lets define the interaction stregth

g > 0 that is equal to |V0|
Ω , and define the gap as 4 = g

∑
k < Ĉk↑Ĉ−k↓ >.

Then, interaction part will be

Ĥint =
∑
k

(4Ĉ†k↑Ĉ
†
−k↓ +4∗Ĉ−k↓Ĉk↑) +4

∑
k

< Ĉ†−k↓Ĉ
†
k↑ > (53)

The summation
∑

k < Ĉ†−k↓Ĉ
†
k↑ > is equal to 4

∗

g , so Hamiltonian is

Ĥ =
∑
k,α

(εk,α − µα)Ĉ†k,αĈk,α +
∑
k

(4Ĉ†k↑Ĉ
†
−k↓ +4∗Ĉ−k↓Ĉk↑) +

|4|2

g
(54)

Now, we are ready to write the Hamiltonian in terms of the matrixes and

we can diagonalize it with using the Bogoliubov and Valatin transformation,

and find the new basis called quasi-particles. Hamiltonian can be written as

Ĥ =
∑
k

(hk + εk↓) +
|4|2

g
(55)

where hk is

hk =

(
C†k↑ C−k↓

) εk↑ 4

4∗ −εk↓


 Ck↑

C†−k↓

 (56)

and energy dispersion relation is εk↑ = εk↓ = ~2k2

2m = εk, εk↑ = εk − µ↑, and

εk↓ = εk−µ↓. To diagonalize the 2 by 2 matrix in hk, we multiply the both

sides of the matrix with A†A where the matrix A is unitary matrix which is

A =

 a b

c d

 |a|2 + |b|2 = 1 = |c|2 + |d|2 (57)
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where a,b,c,d are complex numbers in general. This transformation preserves

the eigenvalues of the original matrix, and new quasi-particle operators must

obey the same anticommutation relations of the original operators Ckα and

C†k,α. Eigenvalues of the original matrix

 εk↑ 4

4∗ −εk↓

 can be easly found

from the determinant below

det

 εk↑ − λ 4

4∗ −εk↓ − λ

 = 0 (58)

which yields the characteristic polyinomial below

λ2 − λ(εk↑ − εk↓)− εk↑εk↓ − |4|2 = 0 (59)

Eigenvalues of the matrix are the roots of the equation above which are

λ± = −h±
√
ε2
k + |4|2 (60)

where h =
µ↑−µ↓

2 for population imbalance case, and εk = εk−µ, µ =
µ↑+µ↓

2 .

New quasi-particle operators are

γk↑ = aCk↑ + bC†−k↓ (61)

γ†−k↓ = cCk↑ + dC†−k↓

New operators γk↑, γ
†
−k↓ obey the anti-commutation relation {γkα, γ†k′α′} =

δk,k′δαα′ . The relation {γk↑, γ−k↓} = 0 yields the restriction on complex

numbers a, b, c, d.

ac∗ + bd∗ = 0 (62)
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The condition {γ†k↑, γ
†
−k↓} = 0 also gives the a∗c+b∗d = 0. In addition to the

these conditions, {γk↑, γ†k↑} = 1 and {γ−k↓, γ†−k↓} = 1 gives the condition

|a|2 + |b|2 = 1 = |c|2 + |d|2 (63)

This is also the condition for unitary matrix. Therefore, we choose the

transformation matrix A as

A =

 uk −vk

v∗k u∗k

 (64)

So, our new operators that diagonalize the matrix in original Hamiltonian

are

γk↑ = ukCk↑ − vkC†−k↓ (65)

γ†−k↓ = v∗kCk↑ + u∗kC
†
−k↓

Now, we can write the Hhamiltonian in diagonal form as

Ĥ =
∑
k

( γ†k↑ γ−k↓

) Ek↑ 0

0 −Ek↓


 γk↑

γ†−k↓

+ εk↓

+
|4|2

g
(66)

Then, if we write the Hamiltonian in the original form same as in equation

(50), it will be in the form of non-interacting quasi-particles as

Ĥ =
∑
k,α

Ek,αγ
†
k,αγk,α +

∑
k

(εk↓ − Ek,↓) +
|4|2

g
(67)
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Where Ek,↑ and Ek↓ are the eigenvalues of the Hamiltonian. Unitary trans-

formation preserves the eigenvalues. Therefore, Ek,↑ and Ek↓ will be

Ek↑ = −h+
√
ε2
k +42 (68)

Ek↓ = h+
√
ε2
k +42

For BCS theory µ↑ = µ↓ (population balanced), so h = 0. Then, excitation

energy will be

Ek↑ = Ek↓ =
√
ε2
k +42 = Ek (69)

Now, we can find the grand canonical partition function of the system Q

which is equal to Tr
(
e−βĤ

)
. We use grand canonical ensemble because

number of the particles in the system is not fixed, and it is an intrinsic

property. Trace is independent of the basis. Therefore, we can write the Q

in energy basis as

Q = Tr
(
e−βĤ

)
=
∑
k,α

< k, α|e−βĤ |k, α > (70)

Where β = 1
kBT

and Ĥ|k, α >=
∑

k,αEk,αnk,α|k, α > is an eigenvalue

equation of the Hamiltonian
∑

k,αEk,αγ
†
k,αγk,α in equation (67) . Other

parts in Hamiltonian are constants. Therefore,

Q =
∑
{nk}

e
−β

∑
kα Ek,αnk,α−β

∑
k(εk↓−Ek,↓)−β |4|

2

g (71)

Where {nk} denotes all possible microstates, and nk denotes the occupation

number of states which is 0 or 1 for fermions. Then,

Q = e
−β

∑
k(εk↓−Ek,↓)−β |4|

2

g

∏
k,α

(∑
nk

e−βEk,αnk

)
(72)
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We put the 0 and 1 for occupation number nk, and eventually grand canon-

ical partition function of the system becomes

Q = e
−β

∑
k(εk↓−Ek,↓)−β |4|

2

g

∏
k,α

(
1 + e−βEk,α

)
(73)

Now, we are ready to find the thermodynamic potential Ω which is equal

to −kBT lnQ. Using the property ln (ab) = ln a + ln b, and writing the

exponential term in terms of tanh function as e−
Ek,α
T =

1−tanh
Ek,α
2T

1+tanh
Ek,α
2T

, potential

will be

Ω =
∑
k

(εk↓ − Ek,↓) +
|4|2

g
+ T

∑
k,α

ln(
1 + tanh (

Ek,α

2T )

2
) (74)

We can get any physical quantities from potential Ω which is also equal to

E−TS−µN where S is entropy of the system. Differantial of the potential

is

dΩ = −SdT − PdV −Ndµ (75)

where dE = TdS + µdN −PdV . Then, physical quantities S, P and N can

be found from the relations below

N = −∂Ω

∂µ
|T,V S = −∂Ω

∂T
|µ,V P = −∂Ω

∂V
|T,µ (76)

For population balanced case, εk↓ = εk = (εk − µ), and Ek,↓ = Ek =√
ε2
k +42. Therefore, thermodynamic potential for population balanced

case will be

Ω =
∑
k

(εk − Ek) +
|4|2

g
+ 2T

∑
k

ln(
1 + tanh (Ek

2T )

2
) (77)
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We can obtain the gap equation from the condition ∂Ω
∂4 = 0 which yields

2 |4|
g
−
∑
k

∂Ek

∂ |4|
+
∑
k

∂Ek

∂ |4|
2

e
Ek
T + 1

= 0 (78)

We want to write 2

e
Ek
T +1

in terms of tanh function as 1 − tanh Ek
2T , and

∂Ek
∂|4| = |4|

Ek
. Therefore, gap equation will be

1

g
=
∑
k

tanh (Ek
2T )

2Ek
(79)

We change the interaction term V0 with scattering length as with using

relation in (42) as usual. Eventually, gap equation becomes

−m
4π~2as

=

∫
d3k

2π3

1

2Ek

[
tanh (βEk/2)− 1

2εk

]
(80)

at finite temperatures.

2.4.1 Critical Temperatures

Now, we want to find the temperature T ∗ when pair formation stars, In

the BCS limit, pairs are formed and condensate at the same temperature,

so T ∗ = TC . However, it is not true for strong interaction regime. In the

BEC side, TC < T ∗, so pairs are first formed, then condensate to the ground

state. Temperatures between these two values T ∗, TC , there are pairs not

condensate to the ground state. In order to find T ∗, we want to solve the

two coupled equations which are number and gap equations with setting

4 = 0. Above the temperature T ∗, we have a normal Fermi gas, so number
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of the particles in the system is given by Fermi-Dirac distribution.

n = 2

∫
d3k

2π3

1

1 + eβξk
(81)

This has to be solved simultaneously with gap equation. We set 4 = 0, and

in the BCS limit we insert µ = EF , and kfas = 0− in the gap equation.

Then, critical temperature for superfluidity in the BCS limit is

T ∗BCS =
eγ

π
40 (82)

where eγ=1.78, and 40 is the superfluid gap at zero temperatures in the

BCS limit given in (46). In the BEC limit where kfas = 0+, and chemical

potential µ = −~2

2ma2
s

= −Eb
2 where Eb is binding energy, temperature T ∗ will

be

T ∗BEC =
|Eb|

2
(

ln |Eb|Ef

)3/2
(83)

As we said before this is not the critical temperatures for superfluid transi-

tion, but it is a temperature when pairs start to form. We can find the critical

temperature TC from the BEC transition temperature of non-interacting gas

of density n/2, and mass 2m that is

TC =
π~2

m

(
n

2ζ
(

3
2

))2/3

≈ 0.2Ef (84)

This approximation holds for weakly interacting Bose gases with a small

error.
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2.5 Polarized Fermi Gases with Spin-Orbit Coupling Inter-

action

After spin-orbit coupling(SOC) has been realized recently in Bose gases

by using the varying laser fields, effects of the SOC have been studied for

two-component Fermi gases [17,18]. Utilizing the technique of Feshbach

resonance , the spin-orbit coupled ultracold atoms provide a clean environ-

ment to investigate the new phases of the condensed matter systems. In

the presence of the SOC, Fermi surface is changed, and many interesting

phases become possible. SOC enriches the ground state phases of the two-

component Fermi gas. In the absence of the SOC, mean-field approximation

is adequate to describe the correct physics of the whole BCS-BEC evolution

regime, and now we assume that it is also sufficient in the presence of the

SOC. We consider the uniform polarized two-component Fermi gas with

SOC, which is described by the Hamiltonian:

Ĥ = Ĥ0 + ĤSO + Ĥint (85)

where Ĥ0 is kinetic energy term, ĤSO is the spin-orbit interaction, and Ĥint

is the s-wave interaction between two fermionic species. They are

Ĥ0 =
∑
k,σ

ξk,σĈ
†
k,σĈk,σ

ĤSO = α
∑
k

k
(
eiθkĈ†k,↑Ĉk,↓ + h.c

)
Ĥint = −g

∑
k,k′

Ĉ†k↑Ĉ
†
−k↓Ĉ−k′↓Ĉk′↑

where ξk,σ = ~2k2

2m −µσ, Ĉ†k,σ

(
Ĉk,σ

)
denotes the creation(annihilation) oper-

ators for a fermion with momentum k = (kx, ky, kz) and spin σ = {↑, ↓}, α ≥
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0 is the strength of the Rashba type spin-orbit coupling, θk = arg(kx+ iky),

and g ≥ 0 is the strength of the s-wave interaction which is |V0|
Ω . Our main

aim is to find the thermodynamic potential of the system. Then, we can get

any physical quantities from it. In order to find potential, we have to write

the Hamiltonian in terms of the non-interacting quasi-particles, diagonaliz-

ing the Hamiltonian. We threat the interaction term Ĥint using mean-field

approximation through the same way that we did in section 4.2. We write

the field operators in terms of its average and fluctuation. Then, interaction

part will be

Ĥint = −
∑
k

(
4Ĉ†−k,↓Ĉ

†
k,↑ +4∗Ĉk,↑Ĉ−k,↓

)
+
|4|2

g
(86)

where 4 is the pairing energy that is equal to g
∑

k < Ĉk,↑Ĉ−k,↓ >. Mo-

mentum summation in Hamiltonian compass both negative and positive k

values. Therefore, we can add opposite sign of the k terms into the Hamilto-

nian and divide it by 2 . This process does not change anything, but allows

us to write the Hamiltonian in matrix form. Then, our Hamiltonian will be

Ĥ0 =
1

2

∑
k

(
ξk,↑Ĉ

†
k,↑Ĉk,↑ + ξk,↑Ĉ

†
−k,↑Ĉ−k,↑ + ξk,↓Ĉ

†
−k,↓Ĉ−k,↓ + ξk,↓Ĉ

†
k,↓Ĉk,↓

)
ĤSO =

1

2

∑
k

(
SkĈ

†
k,↑Ĉk,↓ − SkĈ†−k,↑Ĉ−k,↓ + h.c

)
Ĥint = −1

2

∑
k

(
4Ĉ†−k,↓Ĉ

†
k,↑ +4∗Ĉk,↑Ĉ−k,↓ +4Ĉ†k,↓Ĉ

†
−k,↑ +4∗Ĉ−k,↑Ĉk,↓

)
+
|4|2

g

where Sk = α (kx + iky) is the Rashba type spin-orbit fields. Now, we can

write Hamiltonian Ĥ in the matrix form in the basis Ψ†k =
(
Ĉ†k,↑Ĉ

†
k,↓Ĉ−k,↑Ĉ−k,↓

)
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as

Ĥ =
1

2

∑
k

Ψ†k



ξk,↑ Sk 0 4

S∗k ξk,↓ −4 0

0 −4∗ −ξk,↑ S∗k

4∗ 0 Sk −ξk,↓


Ψk +

1

2

∑
k,σ

ξk,σ +
|4|2

g
(87)

Now, we have to diagonalize the Hamiltonian, and write it in terms of non-

interacting quasi-particles. After applying the Bogoliubav and Valatin trans-

formation in the same way that we did in section 4.2, Hamiltonian of the

system will be

Ĥ =
1

2

∑
k,λ

Ek,λγ
†
k,λγk,λ +

∑
k

ξk,+ +
|4|2

g
(88)

where γ†k,λ = (γ†k,↑, γ
†
k,↓, γ−k,↑, γ−k,↓), λ = (1, 2, 3, 4) labels the quasiparti-

cle/quasihole excitation energies Ekλ, and ξk,s = εk,s−µs where µs =
µ↑+sµ↓

2 ,

and s denotes ±. Excitation energies of the quasiparticles/quasiholes are

eigenvalues of the Hamiltonian matrix above. We can obtain the partition

function of the system using formula Tr
(
e−βĤ

)
. Trace is basis invariant,

so we use the energy basis. Then

Q =
∑
{nk}

e
−β

2

∑
kλ Ek,λnk,λ−β

∑
k ξk,+−β

|4|2
g (89)

which is similar to the case in section 4.2 . Using the same argument that

we did before, partition function of the system will be

Q = e
−β

∑
k ξk,+−β

|4|2
g

∏
k,λ

(
1 + e−βEk,λ/2

)
(90)
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Thermodynamic potential of the system is given by the relation Ω = −T ln (Q).

Using the property that ln (ab) = ln a + ln b, and e−
Ek,λ
T =

1−tanh
Ek,λ
2T

1+tanh
Ek,λ
2T

po-

tential will be

Ω =
|4|2

g
+
∑
k

ξk,+ +
T

2

∑
k,λ

ln

(
1 + tanh (

Ek,λ

2T )

2

)
(91)

where we take kB = 1. Following from the usual precedure, we obtain the

gap equation from the condition ∂Ω
∂4 = 0 that is

2 |4|
g

=
1

4

∑
k,λ

∂Ek,λ

∂ |4|
(tanh (Ek,λ/2T )− 1) (92)

Number equations are found from the relation N↑ + sN↓ = ∂Ω
∂µs

, so they are

N↑ ±N↓ =
∑
k

(1± 1)

2
+

1

4

∑
k,λ

∂Ek,λ

∂µ±
(tanh (Ek,λ/2T )− 1) (93)

We can write the summation
∑

k = 1
4

∑
k,λ. Then, number equations will

be

N↑ ±N↓ =
1

4

∑
k,λ

[
(1± 1)

2
+
∂Ek,λ

∂µ±
(tanh (Ek,λ/2T )− 1)

]
(94)

These equations are self-consistency equations of the system, and there are 3

equations and 3 unknowns which are4, µ↑, µ↓. These coupled equations can

be solved numerically. We check the stability of the mean-field solution using

the curvature criterion [19], which says that ∂2Ω
∂|4|2 have to be positive. When

the curvature ∂2Ω
∂|4|2 is negative, mean-field solution does not correspond the

minimum of the Ω, and phase separation state is favored. However, solution

having positive curvature may corresponds the metastable state. This causes

minor quantitative errors in the phase diagram in 3 dimension. Curvature
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criterion is

∂2Ω

∂ |4|2
=

1

4

∑
k,λ

[(
1

|4|
∂Ek,λ

∂ |4|
−
∂E2

k,λ

∂ |4|2

)
(Xk,λ − 1)− 1

2

∂E2
k,λ

∂ |4|2
Yk,λ

]
(95)

where Xk,λ = tanh (Ek,λ/2T ), and Yk,λ = sech2(Ek,λ/2T ). We need to

find the excitation energies of the system Ek.λ which are eigenvalues of

the Hamiltonian matrix. It is almost impossible to find the eigenvalues of

the Hamiltonian matrix analytically. Therefore, we use computer program

Matematica to find Ek.λ that is

Ek,λ = sλ

√
ξ2
k,+ + ξ2

k,− + |4|2 + |Sk|2 + 2pλAk (96)

whereAk =

√
ξ2
k,−

(
ξ2
k,+ + |4|2

)
+ |Sk|2 ξ2

k,+, |Sk|2 = α2
(
k2
x + k2

y

)
= α2k2

⊥,

s1 = s2 = +, and s3 = s4 = −. Therefore, Ek,3 = −Ek,1, and Ek,4 = −Ek,2.

If we put this results into the gap and number equations, and use the prop-

erty that tanh (−x) = − tanh(x), gap and number equations reduce to

2
|4|
g

=
1

2

∑
k,s

∂Ek,s

∂ |4|
tanh

(
Ek,s

2T

)
(97)

N↑ ±N↓ =
1

2

∑
k,s

[
(1± 1)

2
+
∂Ek,s

∂µ±
tanh

(
Ek,s

2T

)]

where Ek,+ = Ek,1, and Ek,− = Ek,2. Now, we have to find the partial

derivatives in equations above.
∂Ek,s

∂|4| = |4|
Ek,s

(
1 + s

ξ2
k,−
Ak

)
, so gap equation

will be

1

g
=

1

4

∑
k


(

1 + ξ2
k,−/Ak

)
Ek,1

tanh

(
Ek,1

2T

)
+

(
1− ξ2

k,−/Ak

)
Ek,2

tanh

(
Ek,2

2T

)
(98)
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Partial derivative
∂Ek,s

∂µ−
= − ξk,−

Ek,s

(
1 + s

(ξ2
k,++|4|2)
Ak

)
, so one of the number

equations become

N↑ −N↓ =
1

2

∑
k

−ξk,−
Ek,1

1 +

(
ξ2
k,+ + |4|2

)
Ak

 tanh

(
Ek,1

2T

)
(99)

+
1

2

∑
k

−ξk,−
Ek,2

1−

(
ξ2
k,+ + |4|2

)
Ak

 tanh

(
Ek,2

2T

)

Partial dervative
∂Ek,s

∂µ+
= − ξk,+

Ek,s

(
1 + s

(ξ2
k,−+|Sk|2)

Ak

)
, so other number equa-

tion will be

N↑ +N↓ =
1

2

∑
k

2−
ξk,+
Ek,1

1 +

(
ξ2
k,− + |Sk|2

)
Ak

 tanh

(
Ek,1

2T

) (100)

− 1

2

∑
k

 ξk,+
Ek,2

1−

(
ξ2
k,− + |Sk|2

)
Ak

 tanh

(
Ek,2

2T

)
In order to solve the 3 coupled equations numerically, we have to scale them.

We choose the energy scale as the Fermi energy εf of N
2 fermions such that

N =
k3
fΩ

3π2 the same as before. We scale the k⊥, and kz with kf as k⊥ = k̃⊥kf ,

and kz = k̃zkf where k̃⊥, k̃z are now unitless. Scaled excitation energies will

be Ek,s = εf Ẽk,s, and Ak = ε2f Ãk where

Ẽk,s =

√√√√r̃2 +

(
µ̃↓ − µ̃↑

2

)2

+
∣∣∣4̃∣∣∣2 +

(
αk̃⊥2m

kf

)2

+ s2Ãk

Ãk =

√√√√( µ̃↓ − µ̃↑
2

)2 (
r̃2 + |4|2

)
+

(
αk̃⊥2m

kf

)2

r̃2

and r̃ =

((
k̃⊥

2
+ k̃z

2
)
− (µ̃↑+µ̃↓)

2

)
. When we write the summation

∑
k in

terms of integral, we have to be careful now. The terms in the integral
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depends on the k⊥ and and kz where k2 = k2
⊥+ k2

z , so we will use the cylin-

drical coordinates to evaluate integrals as
∑

k = Ω
∫ ∫

2πdk⊥dkz
2π3 . Therefore,

our scaled equations will be

−2π

kfas
=

∫ ∞
0

∫ ∞
−∞

k̃⊥dk̃⊥dk̃zf1(k̃⊥, k̃z, µ̃↑, µ̃↓, 4̃) (101)

8 (N↑ −N↓)
3N

=

∫ ∞
0

∫ ∞
−∞

k̃⊥dk̃⊥dk̃zf2(k̃⊥, k̃z, µ̃↑, µ̃↓, 4̃)

8

3
=

∫ ∞
0

∫ ∞
−∞

k̃⊥dk̃⊥dk̃zf3(k̃⊥, k̃z, µ̃↑, µ̃↓, 4̃)

where f1, f2, and f3 are functions of 5 variables. Moreover, we replaced

the interaction term V0 for gap equation by the scattering length as using

the relation in (42). The functions inside the integrals above are the scaled

functions from the number and gap equations where T̃ = T
εf
, µ̃↑,↓ =

µ↑,↓
εf

, and

4̃ = 4
εf

. These 3 coupled equations can be solved numerically using Matlab

fsolve function, and we can get unknowns µ̃↑, µ̃↓, and 4̃ for each solution.

When we write the numeric program, polarization
(N↑−N↓)

N , interaction 1
kfas

,

SOC term αm
kf

, and temperature T̃ are the parameters that we can control

them, and we are able to construct the phase diagrams of the systems. We

want to find the ground state phase diagrams of the system, so we will take

the T̃=0 in the numeric code. If we set the polarization, and SOC term to

the zero, we reproduce the same results in Figure 3.
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2.5.1 Conditions For Gapless Superfluid

We know that superfluid phase of the system is gapped without SOC ef-

fect. This means that excitation energy of the system does not equal to zero

in any case. In chapter 4, we calculated Ek equal to
√
ξ2
k +42 for pop-

ulation balanced case. Therefore, system is gapped superfluid through the

BCS-BEC evolution. However, picture is different when we add the SOC in-

teraction to the system. Excitation energies of the system are zero in certain

conditions, and we will find these conditions. We found excitation energy

using computer program Matematica, and we know that Ek,3 = −Ek,1, and

Ek,4 = −Ek,2. Therefore, it is enough for us to look at just 2 excitation

energies for gapless condition. They are

Ek,s =
√
ξ2
k,+ + ξ2

k,− + |4|2 + |Sk|2 + 2sAk (102)

where Ek,+ = Ek,1, and Ek,− = Ek,2. We can easly see that Ek,1 > 0, so it

is gapped. However, Ek,2 can be zero under certain conditions. Condition

for gapless Ek,2 is:

ξ2
k,+ + ξ2

k,− + |4|2 + |Sk|2 = 2Ak (103)

This yields 2 conditions which are

|Sk| = 0 and ξk,↑ξ−k,↓ + |4|2 = 0 (104)

|Sk| = α
√
k2
x + k2

y = 0, so kx = ky = 0. This means that gapless Ek,2 occurs

at real kz values in momentum space. Second condition gives the restriction
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on kz values which is

k2
z,s = 2mµ+ + 2ms

√
µ2
− − |4|

2 (105)

There are 2 possibilities. kz might have 2 solutions, and 4 solutions in k-

space. These 2 distinct conditions correspond to the different phases. We

define these phases as GSF(I) and GSF(II). Excitation energy Ek,2 equal

to zero at 2 kz points for GSF(I), and at 4 kz points for GSF(II). These

conditions are

|µ−| > |4| , µ+ ≥ 0 and µ↑µ↓ ≥ − |4|2 for GSF(II)

|µ−| > |4| and µ↑µ↓ ≤ − |4|2 for GSF(I)

We will use these conditions to separate the different phases of the system

when we construct the phase diagrams.

2.5.2 Ground State Phase Diagrams

Without SOC α → 0, number, and gap equations in (101) are sufficient to

describe the BCS-BEC crossover, and we assume that mean-field formalism

is also applicable to the system with SOC interaction. Then, we analyze

the ground state phase diagram of population-imbalanced as a function of

SOC parameter. There are 3 phases in the ground state which are nor-

mal state(N), uniform superfluid, and non-uniform superfluid(Phase Seper-

ation). Normal phase is charecterized by 4 = 0. Uniform, and non-uniform

superfluid phases are described by ∂2Ω
∂|4|2 > 0, and ∂2Ω

∂|4|2 < 0 respectively

with 4 6= 0. Futhermore, Besides the gapped superfluid(SF), there are

two different regions in the uniform superfluid phase which are GSF(I) and

GSF(II). These two distinct regions correspond to the gapless superfluid
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with different momentum space topology of quasiparticle excitation energy

spectrum. Depending of the number of zeros of Ek,2, we distinguish the 2

Figure 4: Ground state phase diagrams of the system as a function of P =
N↑−N↓
N and α, where 1/kfas set to the 0, 0.5, 1 and 1.5 respectively

distinct GSF phases: GSF(I) where Ek,2 has 2 zeros, and GSF(II) where

Ek,2 has 4 zeros in the momentum space spectrum shown in Figure 3. Triv-

ial superfluid phase(SF) corresponds to the phase where both Ek,1 and Ek,2

are gapped. In the phase diagram, we see that SOC stabilizes the GSF

phase against normal phase N at low population-imbalanced P , and desta-

bilizes the GSF against normal phase N at high P . Competition between

population-imbalanced and SOC stabilize the GSF and SF against phase

separation(PS). Therefore, at any P, system will be reach GSF or SF phase

if we increase the SOC parameter α. Furthermore, SOC stabilizes the GSF

phase around unitarity although system is unstable against phase separation
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without SOC effect α→ 0. Therefore, GSF phase is stable for large parame-

ter region, and this may allows us to realize the GSF phase with coldatoms in

the experiments. There is a phase transition going from GSF(I) to GSF(II).

Figure 5: Quasi-particle excitation spectrum of Rashba type SOC for
GSF(I), GSF(II), and SF phase.

We can see the signature of the transition from the sharp difference of the

momentum distributions which is shown in the figure 4.

N↑ =
∑
k

nk,↑ and N↓ =
∑
k

nk,↓ (106)

We see that major chages occur for nk,↓ at the GSF(I) and GSF(II) transition

boundary, where the sharp peak disappear suddenly when the transition

happens.
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Figure 6: Momentum Distribution of the system for GSF(I), and GSF(II).
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2.6 System in Optical Lattice

Ultracold gases in an optical lattice have attracted much research inter-

est recently. Physicists believe that ultracold fermionic gases confined into

the optical lattice with population imbalance and tunable interaction might

provide a significant model to understand more about the High-Tc super-

conductivity. Therefore, besides solving system in vacuum that we did it in

section 4.3, we also want to solve the system in optical lattice. In the BCS

limit, lattice and continuum model describe the same physics since size of

Cooper pairs is much larger than the lattice spacing. As we increase the

interaction, and pair size becomes comparable to the lattice spacing, then

difference starts between these two models. In the BEC limit, there can only

be single Bose molecule on any lattice site with high binding energy. They

become heavier with increasing the interaction, and critical temperature for

BEC drops to the zero whereas critical temperature for BEC is finite in con-

tinuum case. We consider a polarized Fermi gases with SOC interaction in

2D square lattice. Hopping contribution of the Hamiltonian may be written

as

ĤKIN+SO = −t
∑
i

(
C†i+x̂↑ C†i+x̂↓

) cosα sinα

−sinα cosα


 Ci↑

Ci↓


− t
∑
i

(
C†i+ŷ↑ C†i+ŷ↓

) cosβ isinβ

isinβ cosβ


 Ci↑

Ci↓

+ h.c

where summation i counts the all lattice sites, and C†i↑,Ci↑ creates and anni-

hilates the fermions on lattice site i respectively [20]. Complete Hamiltonian

can be obtain with including the interaction term. After we treat the inter-

action term using mean-field approximation same as in section 4.2, complete
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Hamiltonian will be

Ĥ = ĤKIN+SO+
∑
i

4
[
C†i↑C

†
i↓ + Ci↓Ci↑

]
−
∑
i

[
(µ+ h)C†i↑Ci↑ + (µ− h)C†i↓Ci↓

]
(107)

where 4 = g < Ci↓Ci↑ > is the BSC pairing energy which we take it real

for simplicity, and g > 0 is the attractive interaction between fermions and

constant term in Hamiltonian is neglected. Pairing energy 4 is not an

external parameter, we have to find it self-consistently same as before. h is

the population imbalance term, (µ↑ − µ↓) /2. Hamiltonian above is written

in the real space. Now, we want to write the Hamiltonian in momentum

space. In order to do that, we need to write creation, and annihilation

operators in terms of their Fourier transforms as

C†i↑ =
1√
Ω

∑
k

e−ik.iC†k↑ and C†i↓ =
1√
Ω

∑
k′

eik.
′iC†k↓

We put these transformations into the Hamiltonian above, and use the re-

lation
∑

i e
−i(k−k′).i = Nsδk,k′ , where Ns is the total number of sites in 2D

lattice. Then, we can write the Hamiltonian in momentum space, and it can

also be written in the matrix form in the basis Ψ†k =
(
Ĉ†k,↑Ĉ

†
k,↓Ĉ−k,↑Ĉ−k,↓

)
same as before. Hamiltonian will be

Ĥ =
1

2

∑
k

Ψ†kHkΨk +
∑
k

εk +N
|4|2

g
(108)
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where Hk 4 by 4 matrix that is

Hk =



εk − h S∗k 0 4

Sk εk + h −4 0

0 −4 − (εk − h) Sk

4 0 S∗k − (εk + h)


The dispersion relation and SOC term read

εk = −2t (cosα cos kx + cosβ cos ky)− µ

Sk = 2t (sinβ sin ky + i sinα sin kx)

Now, we need to diagonalize the Hamiltonian , and write it in terms of new

quasi-particle/quasi-hole creation and annihilation operators (γ†k,↑, γ
†
k,↓, γ−k,↑, γ−k,↓)

using the Bogoliubav and Valatin transformation which allows us to diago-

nalize the matrix Hk with preseving the eigenvalues same as before. Hamil-

tonian of the system will be

Ĥ =
1

2

∑
k,λ

Ek,λγ
†
k,λγk,λ +

∑
k

εk +N
|4|2

g
(109)

where Ek,λ are the eigenvalues of Hamiltonian matrix Hk. Then, we can

obtain the partition function of the system with using the relation Q =

Tr
(
e−βĤ

)
that is

Q = e
−β

∑
k εk−βN

|4|2
g

∏
k,λ

(
1 + e−βEk,λ/2

)
(110)
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Thermodynamic potential of the system can be found from the Q via the

relation Ω = −T ln (Q) which is

Ω = N
|4|2

g
+
∑
k

εk +
T

2

∑
k,λ

ln

(
1 + tanh (

Ek,λ

2T )

2

)
(111)

Eigenvalues of the Hamiltonian matrix Hk can be found from computer

program Matematica.

Ek,λ = sλ

√
ε2k + h2 + |4|2 + |Sk|2 + 2pλAk (112)

where Ak =

√
h2
(
ε2k + |4|2

)
+ |Sk|2 ε2k, s1 = s2 = +, and s3 = s4 = −.

Therefore, Ek,3 = −Ek,1, and Ek,4 = −Ek,2. Condition for zeros of Ek,2 is

given by

ε2k + h2 + |4|2 + |Sk|2 = 2Ak (113)

This yields 2 conditions which are

|Sk| = 0 and ε2k − h2 + |4|2 = 0 (114)

For α = β = π/4, |Sk| = 2t
√

sin2 kx + sin2 ky = 0, so kx = ky = nπ, and

−
√

2t = µ+ ±
√
µ2
− − | 4 |2 are the condition for zeros of Ek,3. We obtain

the number and gap equations using the relations N↑ + sN↓ = ∂Ω
∂µs

, and
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∂Ω
∂4 = 0 which yields following results.

N

g
=

1

4

∑
k

[(
1 + h2/Ak

)
Ek,1

tanh

(
Ek,1

2T

)
+

(
1− h2/Ak

)
Ek,2

tanh

(
Ek,2

2T

)]

(115)

N↑ −N↓ =
1

2

∑
k

h

Ek,1

1 +

(
ε2k + |4|2

)
Ak

 tanh

(
Ek,1

2T

)
(116)

+
1

2

∑
k

h

Ek,2

1−

(
ε2k + |4|2

)
Ak

 tanh

(
Ek,2

2T

)

N↑ +N↓ =
1

2

∑
k

2− εk
Ek,1

1 +

(
h2 + |Sk|2

)
Ak

 tanh

(
Ek,1

2T

) (117)

− 1

2

∑
k

 εk
Ek,2

1−

(
h2 + |Sk|2

)
Ak

 tanh

(
Ek,2

2T

)
In order to solve the 3 coupled equations numerically, we have to scale

them. We choose the energy scale as the hopping energy t. Scaled excitation

energies will be Ek,s = tẼk,s, and Ak = t2Ãk where

Ẽk,s =

√
ε̃k

2 +

(
µ̃↓ − µ̃↑

2

)2

+
∣∣∣4̃∣∣∣2 + |̃Sk|

2
+ s2Ãk

Ãk =

√(
µ̃↓ − µ̃↑

2

)2 (
ε̃k

2 + |4|2
)

+ ε̃k
2 |̃Sk|

2

where the term ε̃k = −
(

2 cosα cos kx + 2 cosβ cos ky +
(µ̃↑+µ̃↓)

2

)
, S̃k =

2 (sinβ sin ky + i sinα sin kx), and Ek,+(−) = Ek,1(2). When we write the

summation
∑

k in terms of integral, we have to be careful now. There is no

cylindrical symmetry in the problem, so we need to use cartesian coordinates

different from the case in section 4.3,
∑

k = N
∫ ∫ dkxdky

(2π)2 . We should take
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Figure 7: Superfluid gap and chemical potential for balanced case in an 2D
optical lattice.

the integral in the first Brilliouin zone, a uniquely defined primitive cell in

the momentum space. Therefore, our scaled equations will be

16π2

g̃
=

∫ π

−π

∫ π

−π
dkxdkyf1(kx, ky, µ̃↑, µ̃↓, 4̃) (118)

8π2 (N↑ −N↓)
N

=

∫ π

−π

∫ π

−π
dkxdkyf2(kx, ky, µ̃↑, µ̃↓, 4̃)

8π2N+

N
=

∫ π

−π

∫ π

−π
dkxdkyf3(kx, ky, µ̃↑, µ̃↓, 4̃)

where f1, f2, and f3 are functions of 5 variables, and N+ = N↑ +N↓. These

functions are scaled functions from the number and gap equations where

T̃ = T
t , µ̃↑,↓ =

µ↑,↓
t , and 4̃ = 4

t . We can obtain any physical quantities

from solving these 3 coupled equations self-consistently. We will find the

superfluid gap 4, and chemical potential µ for balanced case(µ↑ = µ↓) in

the ground state T = 0 shown in the figure 7. Now, we construct the ground

state phase diagrams of the system. Firstly, we look at the phase diagrams

of population imbalance P versus interaction g at T = 0, F =
N↑+N↓
N = 1,

and α = β = π/4, π/6.

In these phase diagrams, there are 3 phases which are normal phase is
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Figure 8: Ground state phase diagrams of the system as a function of P and
g in 2D optical lattice, where α = β set to the π/4 and π/6 respectively.

charecterized by 4 = 0, uniform and non-uniform superfluid(Phase Separa-

tion) as before. Uniform, and non-uniform superfluid phases are described

by ∂2Ω
∂|4|2 > 0, and ∂2Ω

∂|4|2 < 0 respectively with 4 6= 0. There are 2 regions

in uniform superfluid phase that are gapped and gapless superfluid phases.

In the gapless superfluid region, excitation energy of the system vanishes

at the some points in momentum space shown in the figure 10. In 2 di-

mension, gapless superfluid phase does not occupy the region, and it occurs

just on the line shown in the figure above. We see that if we increase the

SOC interaction, system become superfluid at the larger parameter region,

and SOC also stabilizes the superluid phase allowing the realization of these

phases in the experiments in the future. Secondly, we look at the phase

diagrams of population imbalance P versus SOC interaction α, β at T = 0,

F =
N↑+N↓
N = 1, and g = 6, 12t.

As we increase the interaction g, we see from the phase diagram above that

Cooper pairing starts to form for large parameter region and creates su-

perfluid phase, and increasing interaction also stabilizes the both gapped

and gapless superfluid phase. However, we know that stability condition

correctly discards the unstable solutions, but metastable solutions may still
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Figure 9: Ground state phase diagrams of the system as a function of P and
α, β in 2D optical lattice, where g set to the 6t and 12t respectively.

survive in the phase diagrams, phase diagrams have minor quantitative er-

rors in the phase diagrams boundaries especially in 2 dimension.

Figure 10: Excitation spectrum of the system in gapless and gapped super-
fluid phases in 2D optical lattice respectively.
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3 Conclusion and Outlook

3.1 Conclusion

In this thesis, we focused on the fermionic superfluidity that can be seen in

superconductors, neutron stars, nuclear matter, and ultracold atoms vs. We

first studied that fermions with opposite spins and momenta on top of the

non-interacting Fermi level can form a bound state if there is an arbitrarily

attractive interaction between them [6]. Bound fermions are called Cooper

pairs that can condense to the ground state like bosons. In superconduc-

tors, crystal vibration (phonon) causes the induced attractive interaction

between electrons [5]. Then, we studied the BCS theory that proposes vari-

ational wavefunction describing the Cooper pairs, loosely bound and largely

overlapping, at ground state, and this theory is successful to explain criti-

cal temperatures of the some superconductors. However, it fails to explain

the high-Tc superconductors, and ultracold fermionic systems having small

Cooper pairs. Therefore, we generalized BCS theory to analyze the strong

interaction regime. If we increase the interaction between fermions, we can

smoothly pass from BCS limit of loosely bound and largely overlapping

Cooper pairs to the BEC limit of tightly bound Bose molecules. There is

no phase transition in this process, so it is called BCS-BEC crossover for

balanced case, where both components have equal number and mass. How-

ever, for imbalanced case, Fermi levels of the fermionic species are distinct,

and we need stronger interaction to bound fermions. Therefore, system is

normal Fermi gas in the BCS limit. As the attractive interaction increases,

distinct fermion species gain enough energy to pair with each other but re-

pel the excess atoms leading the phase separation between superfluid paired

fermions and unpaired, excess fermions. As interaction is increased further,
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the pairs become tightly bound and repel excess fermions less, so system is

mixed with superfluid and excess fermions. Therefore, there are 3 phases for

imbalanced case which are normal phase, phase separation and superfluid

phase.

Physicists study more complicated systems to find new phases of matter,

and spin-orbit coupled (SOC) atomic Fermi gas is one of the most attracted

system after it was recently achieved first with bosonic than fermionic sys-

tems [17, 18]. We constructed phase diagrams of the system with SOC,

and we found that SOC enriches the ground state phases. Besides normal

phase (N), phase separation (PS), and superfluid phase (SF), there are two

new gapless superfluid phase, GSF(I) and GSF(II). Moreover, SOC stabi-

lizes the GSF phase against normal phase N at low population-imbalanced

P, and destabilizes the GSF against normal phase N at high P. Competition

between population-imbalanced and SOC stabilize the GSF and SF against

phase separation (PS). Therefore, at any P, system will reach GSF or SF

phase if we increase the SOC parameter α. SOC stabilizes the GSF phase

around unitarity although system is unstable against phase separation with-

out SOC effect α → 0. Therefore, GSF phase is stable for large parameter

region, and this may allows us to realize the GSF phase with coldatoms in

the experiments. These new phases might be seen also in the laboratory in

the future.

In the last part, we solve the system in 2D optical lattice, and construct

the ground state phase diagrams. We also found stable new phase in the

ground state with SOC effect. However, this phase can be seen on the line in

2 dimension whereas it occupy the region in 3 dimension in the ground state

phase diagrams. Increasing SOC effect stabilizes the phases, so it allows to

the realization of these phases in the experiments.
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3.2 Outlook

It is significant to extend the analysis given in the thesis. First, we need

to solve the system in 3D optical lattice and construct the phase diagrams

of the systems which are more reliable. We can also solve the system for

finite momentum pairs that we check the stability of the phases at finite mo-

mentum pairing rather than Cooper pairs at rest. Furthermore, rather than

solving uniform system, we can also add a harmonic trap, and investigate

the effect of the trap on the system.
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[24] E. Doko, A. L. Subaşı, and M. Iskin , Phys. Rev. A 85, 053634 (2012)

[25] J. P. Vyasanakere, S. Zhang, and V. B. Shenoy , Phys. Rev. B 84,

014512 (2011)

[26] M. Gong, S. Tewari, and C. Zang , Phys. Rev. Lett 107, 195303 (2011)

[27] L. He and X. G. Huang, Phys. Rev. Lett 108, 145302 (2012)

[28] X. Yang and S. Wan, Phys. Rev. A 85, 023633 (2012)

[29] E. Tiesinga, I. J. Verhaar, and H. T. C. Stoof , Phys. Rev. A 47, 4114

(1993)

[30] P. Wang, Z. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai and J.

Zhang , Phys. Rev. Lett 109, 095301 (2012)

[31] L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah, W. S. Bakr and

M. Zwierlein, Phys. Rev. Lett 109, 095302 (2012)

58


