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Abstract

This study analyzes the equilibrium of a search-and-bargaining model with het-

erogenous goods and agents. The model allows for both explicit and implicit search

costs as frictions defining the economy. We investigate the relationship between

the steady-state search equilibrium of this economy as frictions become negligible

and the (competitive) equilibrium of the frictionless counterpart of this economy.

That the search-and-bargaining equilibria converge to the competitive one is well-

established. Here, we present the converse of this analysis. We show that, under the

assumption of strict supermodularity of the surplus function, for each competitive

equilibrium, one can find a search-and-bargaining equilibrium that approximates

the competitive equilibrium when frictions are small.

Keywords: Search and Bargaining Markets, Matching Markets, Competitive Equi-

librium, Strategic Foundations.



Özet

Bu çalışmada, ayrışık mal ve ajanlarla tanımlı bir arama-ve-pazarlık piyasası mod-

elinin dengesi analiz edilmektedir. Model, piyasayı etkileyen sürtünmeler olarak hem

açık hem de örtülü maliyetlerin varlığına izin vermektedir. Çalışmada, sürtünmeler

göz ardı edilebilir duruma gelirken bu modelin kararlı hâl (arama-ve-pazarlık) den-

gesi ile modelin sürtünmesiz karşılığının (rekabetçi) dengesi arasındaki ilişki araştırılmaktadır.

Sürtünmeler kayboldukça arama-ve-pazarlık dengelerinin rekabetçi dengelere yakınsadığı

zaten bilinmektedir. Bu çalışma ise söz konusu durumun çevriğini incelemekte-

dir. Sonuçlar, kâr fonksiyonunun katı süpermodüleritesi varsayımı altında, her bir

rekabetçi denge için, sürtünmeler yok oldukça söz konusu dengeye yakınsayan bir

arama-ve-pazarlık dengesi bulunabileceğini göstermektedir.

Anahtar Sözcükler: Arama ve Pazarlık Piyasaları, Eşleşme Piyasaları, Rekabetçi

Denge, Stratejik Temeller.
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Chapter 1

Introduction

The basic assumption of “competitive equilibrium” has traditionally been consid-

ered as central to the analysis of economic interactions, since the times of Adam

Smith and León Walras. The competitive equilibrium framework is familiar, well-

established and easy to deal with; moreover, it has its own attractive normative

features. There is still one basic shortcoming of this framework, however, which

is that this particular framework requires some strong assumptions in terms of the

structure of the markets. Formally, it assumes that the markets are “efficient”, or,

to put it in a more appropriate way, “frictionless”: for the Walrasian Equilibrium

to hold, the agents must have complete information, there should be no external

costs involved, and the agents must avoid strategic behavior. Nevertheless, markets

are hardly frictionless in real life. The agents always have some asymmetric infor-

mation, there are search costs involved, and the agents inevitably take part in some

strategic behavior. It is then an interesting, and obviously necessary, question to

ask whether the frictionless markets assumption is an adequate approximation for

the real-life phenomenon that we observe every day.

To put this question in more concrete terms, consider the following example: assume

a realistic model of a market place, where everyday transactions occur between

buyers and sellers. Every day, buyers with certain valuations, as well as sellers

1



Chapter 1. Introduction 2

with reservation prices, enter the market to meet a partner on the other side of the

market and exercise a trade. The agents who meet a partner and agree upon the

terms of the trade conduct the transfer leave the marketplace immediately. The

question is: how would the equilibrium be realized in this market? Obviously,

it is quite tempting to analyze this equilibrium in a Walrasian framework. Note,

however, that the market is not necessarily frictionless. In real life, search is far

from costless: there are implicit costs associated with finding the “perfect” match,

as well as the costs arising due to the impatience of agents (i.e. the earlier an agent

exercises a particular trade, the better off she is). Once these participation costs

and impatience of agents are taken into consideration, however, the model in the

hand is no longer Walrasian. On the other hand, when we assume that the costs and

impatience are exactly zero, the behavior of the market in hand is well-known. The

interesting question, therefore, is what happens when these frictions are arbitrarily

small.

In this study, our aim is to inspect the relationship between equilibria prevailing

in the marketplace with frictions (“search equilibria” hereafter) and those prevail-

ing in frictionless environments (“competitive equilibria” hereafter).1 The ultimate

purpose of this study is two-fold: we analyze search equilibria as frictions become

arbitrarily small, that is, we explore whether they converge to some competitive

equilibria. Note that this sort of analysis has been extensively studied under sev-

eral setups beforehand, and researchers have come up with different answers under

different setups (see Literature Review). Yet the converse still remains as an open

question. Hence, in the second part of this study, we address the question of whether

one can always approximate a given competitive equilibrium with some search equi-

libria. Our answer is positive, under some restrictive assumptions: We show that,

under the assumption of strict supermodularity of the surplus function, for each

competitive equilibrium, one can find a search-and-bargaining equilibrium that ap-

proximates the competitive equilibrium when frictions are small. This, to the best

1The difference between the analysis of what happens when costs are zero, and what happens
when they are close to, but not equal to, zero, can be distinguished by appreciating the difference
between limit theorems and theorems in the limit, as in Gale (2000).
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of our knowledge, is the first study that analyzes the converse question, and provides

an essential step in the analysis of the strategic foundations of Walrasian core.

In addition to the intellectual curiosity that this particular study addresses, an addi-

tional significant explanation of why it is an interesting question can be constructed,

based on the generically weak connections between the micro-level studies, which

take strategic interactions into consideration, and the macro-level ones, which op-

erate on the aggregate level, assuming no strategic interactions. In the macro-level

models, the assumption of frictionless markets and competitive equilibrium are, in

general, taken as primitives, and the analysis is conducted based on this primitive.

It is therefore worthwhile to ask whether this basic assumption is sufficiently re-

alistic, or, in other words, whether the competitive market taken as primitive can

be approximated by a more realistic setup. We believe that this study will help

economists provide a confident answer to this question, hence contributing to the

connection between micro- and macro- level analysis.



Chapter 2

Literature Review

The rigorous analysis of the concept of the Walrasian core, in terms of its micro foun-

dations and its relation with matching markets, started with the classic study by

Shapley and Shubik (1972). In their framework, Shapley and Shubik take the point

of view of a central planner who is attempting to solve a simple linear optimization

problem in order to maximize the efficiency of matches formed in a market. Their

results indicate that the decentralized equilibrium of competitive markets can be

explained via the tools primarily generated for the study of centralized economies,

thus establishing the bridge between two, apparently distant, areas of economical

analysis. Note, however, that the introduction of decentralization into the model

generates some sort of a pairwise interaction between the agents, thus a more as-

siduous analysis of what goes in these interactions, and what their implications on

the macroeconomic variables of the economy would be, is needed. Earlier attempts

on this aspect include the work by Mortensen (1979), Diamond (1981) and Dia-

mond (1982). What these studies have in common is that their results suggest that

the outcome of a decentralized market, where agents meet at random and conduct

trade upon agreement, may fail to be Walrasian when the frictions vanish. On the

other hand, the bargaining protocol these studies assume is the Nash Bargaining

Solution, hence these earlier studies lack the strategic aspect, which is essential for

the central concepts on the notion of friction. Rubinstein and Wolinsky (1985)’s

4



Chapter 2. Literature Review 5

classic study, in which they adopted Rubinstein’s strategic bargaining solution pro-

posed in Rubinstein (1982), fills this gap in the literature while still preserving the

underlying flavor of earlier studies.

Rubinstein and Wolinsky’s model is as follows: they assume a marketplace in which

sellers of reservation price zero, and buyers of valuation one meet. Each period,

agents meet randomly and start bargaining, as they do over how to share a surplus

of size one using Rubinstein’s bargaining model. In addition to agents’ patience

levels δ < 1, one other friction which is at the core of the analysis is the exogenous

matching probability of agents. Namely, each period, a seller (buyer) faces the (in-

dependent) probability α(β) ∈ (0, 1] of being matched with another buyer (seller),

hence there is pressure on a matched buyer-seller pair in the sense that the bargain-

ing will be carried into next period only with probability (1−α)(1−β). Rubinstein

and Wolinsky establish that there is a unique, quasi-stationary, perfect equilibrium.

The equilibrium price, as the impatience of agents disappear (i.e δ → 1), converge

to a value that is a function of α and β. One could also construct an alternative,

and more intuitive, setup in which α and β are determined by the number of agents

present in the market, denoted by Nb and Ns, for buyers and sellers, respectively.

Then, Rubinstein and Wolinsky argue, the price that prevails in the market, as

δ → 1, is a function of Nb
Ns

. 1 Realize that the results, elegantly established by

Rubinstein and Wolinsky, constitute a solid critique on the competitive paradigm,

because a Walrasian framework would simply predict that if Nb > Ns, the equilib-

rium price would be 1, and if Nb < Ns it would be 0, regardless of the value of Nb
Ns

.

On the contrary, Rubinstein and Wolinsky demonstrate that the equilibrium price

in a market, determined as a result of strategic interactions between buyers and

sellers, can be non-Walrasian under an appropriate setup.

The most substantial response to Rubinstein and Wolinsky’s approach, in favor of

1In particular, it is given by Nb

Nb+Ns
.



Chapter 2. Literature Review 6

the Walrasian paradigm, is proposed by Gale (1987). In his seminal work, Gale con-

structs a setup in which heterogenous buyers and sellers enter the market each pe-

riod, and the matched buyer-seller pairs play an ultimatum bargaining game. Gale

demonstrates that, as opposed to Rubinstein and Wolinsky (1985), the equilibrium

price prevailing in the market converges to the Walrasian price as the impatience

of agents disappear. Furthermore, Gale asserts that the apparent contradiction

between his model and Rubinstein and Wolinsky (1985) is due to the notion of

equilibrium adopted. He argues that the equilibrium concept used in Rubinstein

and Wolinsky (1985) is a stock equilibrium, in which the market-clearing condition

with respect to the agents currently present in the market is considered. This equi-

librium concept, however, becomes increasingly less meaningful as the market size

tends to infinity, because the market-clearing condition with respect to an infinite

measure of agents is cumbersome and less than intuitive. Hence, Gale suggests, the

proper equilibrium concept that should be adopted is flow equilibrium, in which the

market-clearing condition with respect to the new entrants of the market is used.

Recent contributions to the literature include Mortensen and Wright (2002), which

generalizes Gale’s results for a broader set of matching technologies and bargaining

rules. Satterthwaite and Shneyerov (2007) extends the framework by incorporating

one-sided incomplete information about agents’ types. Lauermann (2013) proposes

a general characterization result for the convergence of equilibria of a dynamic

matching-and-bargaining market to the Walrasian equilibrium, in which he replaces

the Pairwise Efficiency condition of Shapley and Shubik (1972) by two conditions,

Weak Pairwise Efficiency and Weak Incentive Compatibility, which are easier to

analyze and can be used to investigate which conditions are violated in the models

that fail to yield a Walrasian equilibrium in the limit. Manea (2011) considers the

case for a generic class of matching and bargaining technologies, and shows the

existence of an equilibrium, as well characterizing some sufficient conditions for the

existence of a steady-state.

The model adopted in our study is most closely linked to Atakan (2010)’s model,
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in which the market setup does not only allow for heterogeneity of agents, but also

heterogeneity of goods, as well as incomplete information. In particular, we do also

allow for heterogeneity of goods and agents, and in addition to the explicit costs

apparent in Atakan (2010)’s model, we assume that the agents are not perfectly

patient, and hence add another dimension of friction into the model. This addi-

tional source of frictions turn out to be extremely crucial for the model, because

the relative patience parameters of agents is the primary component of the model

that explains the share of any surplus in any match, and thus any competitive equi-

librium. In particular, we show that two agents share the surplus with respect to

their relative patience parameters: in a setup where the surplus to be shared is 1,

and where the buyer and the seller discount time with the instantaneous discount

rates rb and rs, respectively, the buyer’s share converges to rs
rb+rs

as frictions become

arbitrarily small. Realize that this is very much reminiscent of the result predicted

in Rubinstein (1982), where, if a surplus of 1 to be shared, player 1 and 2’s discount

factors are δ1 and δ2, respectively, then player 1’s share in the subgame perfect

equilibrium whereas the frictions are becoming negligible emerges as:

lim
∆→0

x∗(∆) =
log δ2

log δ1 + log δ2

Therefore, another way to consider the findings of this study as an extension Rubin-

stein (1982)’s results into a search-and-bargaining model. Rubinstein (1982) demon-

strates that, when two players are to bargain over a cake of unit size, the relative

patience parameters determine the end agreement. Here, we show that this result is

enlightening in terms of analyzing the equilibrium of a search-and-bargaining econ-

omy as well. The setup we construct will have the property of attaining a unique

matching for sufficiently low frictions, that is, the trading partner of each agent

will be unique and known in advance. What is not known in advance, however,

is how the share of surplus is realized; in other words, we have a unique matching

but a range of possible values in the equilibrium. Here, we show that, analogous

to Rubinstein (1982), the choice of a particular valuation within the range can be
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achieved via the selection of relative patience parameters. In particular, we argue

that, thanks to the unique matching, the search-and-bargaining equilibrium can be

viewed as a collection of buyer and seller pairs bargaining (à la Rubinstein (1982))

over a certain surplus. As in Rubinstein (1982), the relative patiences determine

what the end agreement is, and is sufficient to cover the whole range of equilibria.

Interested readers may consult Roth and Sotomayor (1992) for a detailed review

of Shapley and Shubik (1972)’s model. Osborne and Rubinstein (1990) and Gale

(2000) are distinguished examples of two excellent surveys in the literature of match-

ing and bargaining markets.



Chapter 3

The Model

This study takes the following setup of marketplace as given: consider a well-defined

set of buyers and sellers. The time is indexed by discrete indices, and every period,

a certain measure of each type of buyers and sellers enter into the market, joining

to the agents who are already in the market. Those who have once entered into the

market start looking for a partner to exercise a trade, subject to some predefined

matching technology.1 Once a certain buyer and seller pair is formed, there is a

certain surplus to be shared, which is a function of buyer and seller types. In order to

share this available surplus, the buyer and the seller play an ultimatum bargaining

game, where nature selects the proposer randomly. Those who agree upon the

division of the surplus exercise the trade and leave the marketplace immediately,

and those who fail to reach an agreement break their matches and return to the

marketplace in order to meet new partners. There is complete information of agents,

in the sense that both agents are able to observe their partner’s types, as well as

the distribution of all agents available in the market.2

1The most salient class of matching technology, which the one adopted in this study, is random
matching, where the probability of matching a particular type of agent is proportional to the
measure of that type currently in the market

2The requirement that agents can observe each other’s histories is not necessary for our pur-
poses, and observing the evolution of market distribution is also not required, since our analysis
will mainly focus on the steady state.

9
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Whereas the ultimatum bargaining game constitutes the strategic aspect of the

model, we also need to impose some frictions as well. In particular, there are two

dimensions of frictions which prevent this setup from being Walrasian. First, the

agents need to pay some predetermined positive entry fee each period, in order to

enter the market and take part in the search activity. One can justify this concept

by imagining that this explicit costs represent either the implicit effort spent to find

a better match in the market, or some other explicit costs that need to be paid such

as transportation costs, etc. The other source of friction is the impatience of agents:

each agent i discounts the gain obtained in a particular period t through multiplying

it by a factor δti , where δi ∈ [0, 1]. Hence the parameters of frictions prevalent in

the market can be fully characterized by the ordered pair (ci, δi) ∈ R+ × [0, 1] for

each agent i.

The “search equilibria” under consideration are those which arise in the steady-state,

i.e. when the measures of agents in the market and agent strategies are independent

of time. The equilibrium concept we are adopting is stationary subgame perfect

equilibria, such that the strategy of each agent maximizes the discounted sum of

payoffs after any possible path of play. We will be comparing this equilibria, which

contains the steady-state measures and strategies of agents, to the “competitive

equilibria” that arises in the competitive counterpart of this model, where (ci, δi) =

(0, 1) for each agent i.

Now, let us move on with the formal treatment of the model.

3.1 Search-and-Bargaining Economy

3.1.1 The Search Economy

A search-and-bargaining economy (search economy hereafter) consists of:

• A set of types of buyers B;
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• A set of types of sellers S;

• A surplus function f : B × S → R+, which specifies the transferable utility

generated when a certain buyer of type b and seller of type s are matched;

• A parameter β ∈ (0, 1) that specifies the probability that the buyer is assigned

as proposer, given a match is formed (accordingly, the seller proposes with

probability (1− β) ∈ (0, 1))3;

• The time difference between two consecutive periods, denoted by ∆ ≥ 0;

• The search costs ci = ∆κi ≥ 0 for each i ∈ B ∪ S, incurred by the buyers and

sellers staying in the market each period;

• The patience parameters δi = e−ri∆ ≤ 1 for each i ∈ B ∪ S, specifying the

rate at which the buyers and sellers discount their utilities.

Given f = {fbs}(b,s)∈B×S, κ = (κi)i∈B∪S � 0 and r = (ri)i∈B∪S ≥ 0, a search econ-

omy is fully characterized by the tuple S = (B, S, f, β, κ, r,∆).

Remark 3.1. Realize that the two types of frictions in the market, the search costs

and impatience, are both functions of ∆, and that ci → 0, δi → 1 as ∆ → 0, i.e.

taking ∆ to 0 is sufficient to make these two types of frictions disappear. Hence,

from now on, the phrases “as frictions disappear” and “as δ → 0” will be used

interchangeably in this study, for these two statements are equivalent.

3.1.2 The Search Equilibrium

Population of agents and the random matching technology Each period,

a unit measure of each type is born into the market. Suppose that the market is

in steady state and let l =
(
lb1 , ..., l|B|, ls1 , ..., l|S|

)
∈ R|B|+|S|+ denote the steady state

3Alternatively, one can view β and 1− β as the bargaining powers of the buyer and the seller,
respectively.
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measure of buyers and sellers in the market. Based on this, we will now define some

critical market statistics.

Let L =
∑

b∈B lb denote the total measure of buyers, r =
∑

s∈S ls/L denote the

seller-to-buyer ratio, and n(r) = min {1, r} denote the market tightness. Also, let

pb = lb/L and ps = ls/rL denote the frequency of type b buyers and type s sellers,

respectively.

In such a market in steady state, the probability that a buyer finds a match is

n(r), and the symmetric probability for the seller is n(r)/r. The probabilities of

each buyer b and seller s to be found, on the other hand, is proportional to their

frequencies. Hence, the probability for any seller of meeting buyer b in a given period

is given by pbn(r)/r and similarly the probability of meeting seller s is psn(r). These

measures are common knowledge to all agents.

Steady-state requirements For l to be part of any equilibrium, it should satisfy

some steady-state requirements denoted below. Specifically, let mbs denote the

probability that b and s conduct the trade and leave the market, given that they

are paired in a period and b proposes. Define msb symmetrically. For the market

to remain in steady state, we need:

Lpbβ
∑

S
n(r)psmbs + Lpb(1− β)

∑
S
n(r)psmsb ≤ 1 ∀b and,

Lrpsβ
∑

B

n(r)

r
pbmbs + Lrps(1− β)

∑
B

n(r)

r
pbmsb ≤ 1 ∀s.

For the sake of simplicity, one can assume mbs = msb.
4 Then the equations become:

Lpb
∑

S
n(r)psmbs ≤ 1 ∀b and, (3.1)

Lrps
∑

B

n(r)

r
pbmbs ≤ 1 ∀s. (3.2)

4The only case in which this symmetry assumption has bite is when the agents are indifferent
between accepting each other. In this case, if mbs 6= msb, then define a symmetric equilibrium
with m̂bs = m̂sb = βmbs + (1− β)msb.



Chapter 3. The Model 13

These equations state that the number of type b buyers (or type s sellers) entering

the market each period must be sufficient to compensate for those who form a

match, trade and leave.

Agent behavior and strategies Let σ = (σi)i∈B∪S denote a strategy profile.

For any agent b ∈ B, σb specifies the following:

• In the first period, the strategy σb specifies the probability that agent b enters

the market.

• If agents b enters the market, finds a match s ∈ S, and is designated as the

proposer, σb specifies the price offer t.

• If agents b is designated as the responder, σb specifies the probability of ac-

cepting any offer t.

and similarly for any agent s ∈ S.

The per-period reward function for a buyer b paired in the current period with seller

s is:

πb (σ, s) =


−cb + fbs − tbs (σ)

−cb + fbs − tsb (σ)

−cb

proposal of b accepted,

proposal of s accepted,

proposal rejected,

where tbs (σ) denotes the price offer made by buyer b to seller s given strategy σ.

5 If an agent does not enter the market or has made a transfer with her match

in a prior period, then the agent’s payoff for the period is equal to 0. Also, if a

buyer (seller) is not paired in a period, then her payoff for the period is equal −cb
(−cs). Buyers and sellers choose a strategy to maximize the discounted sum of their

payoffs. The solution concept adopted in this study is stationary subgame perfect

equilibria, so that equilibrium strategies maximize the discounted sum of payoffs

after any possible path of play.

5Symmetrically, a seller’s payoff πs(σ, b) is equal to −cs + tbs(σ), −cs + tsb(σ), or −cS if she
accepts the proposal, if her proposal is accepted, or if the proposal is rejected, respectively.



Chapter 3. The Model 14

In a given search economy S, the subgame perfect equilibrium of this economy

(search equilibrium herafter) is fully described by the tuple E(S) = (l, σ), where

the measure l satisfies the steady state equations (3.1) and (3.2), given that agents

adopt strategy profile σ and, each σi is optimal after any subgame, given that agents

use σ and the steady state measure is l.

It would be rightful to note that dealing with strategy profile σ would be quite

burdensome. Hence, we need to adopt a different approach in characterizing the

equilibrium of this search-and-matching market.

3.1.3 Alternative characterization of the equilibrium

To develop an alternative characterization of the search-and-matching equilibrium,

we introduce the notion of values. Let v = (vi)i∈B∪S ∈ R|B|+|S| denote the expected

values from entering the market, and also option values of remaining out of the

market. In any search equilibrium, a buyer b offers seller s no more than δsvs and a

seller offers buyer b no more than fbs − δbvb. Consequently, the values must satisfy

the recursive equations:

vb = max{−cb + n(r)β
∑

s
ps(fbs − δBvb − δSvs)+ + δBvb, 0},

vs = max{−cs +
n(r)

r
(1− β)

∑
b
pb(fbs − δBvb − δSvs)+ + δSvs, 0},

where (fbs − δBvb − δSvs)+ = max {fbs − δBvb − δSvs, 0}.

Now that we have defined v, combine it with the previously defined l and m =

{mbs}b,s∈B×S to characterize the equilibrium. The following four conditions are met

by any tuple (l,m, v) in an equilibrium:

(i) Individual rationality. vi ≥ 0 for all i ∈ B ∪ S.

(ii) Efficient bargaining. If fbs − δbvb − δsvs > 0, then mbs = msb = 1 and if

fbs − δbvb − δsvs < 0, then mbs = msb = 0.
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(iii) Constant surplus. The valuations satisfy:

−cb + n(r)β
∑

S
psmbs(fbs − δbvb − δsvs) ≤ (1− δb)vb for all b

−cs +
n(r)

r
(1− β)

∑
b
pbmbs(fbs − δbvb − δsvs) ≤ (1− δS)vs for all s

where the inequality holds with equality for i with pi > 0.

(iv) Steady state. lbn(r)
∑

Smbsps ≤ 1 for all b ∈ B, ls
n(r)
r

∑
Bmbspb ≤ 1 for all

s ∈ S; and if vi > 0, then the inequality for i ∈ B ∪ S holds with equality.

Condition (1) holds because entry into the market is voluntary. Condition (2) follows

since, in a random proposer game, any meeting between b and s with positive surplus

results in a certain match. Condition (3) is a restatement of the Bellman equations

for buyer and seller values. Condition (4) follows since the market is in steady state

and all agents with strictly positive value enter the market.

The following proposition is stated in Atakan (2010) and proven for the case δi = 1

for each i ∈ B ∪ S. Our proof is almost identical, and is provided in the Appendix.

Proposition 3.2. If (l,m, v) satisfy conditions (1) through (4), then there exists a

search equilibrium (l, σ) such that m and v are the equilibrium match probabilities

and values.

The proposition asserts that one can work with (l,m, v) instead of (l, σ) while

analyzing the equilibrium of the search economy. Throughout the rest of this paper,

we will be using the tuple (l,m, v) to specify E(S), and justifiably so thanks to this

proposition.
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3.2 The Competitive Economy

3.2.1 The Market Economy

Given a search economy S = (B, S, f, β, κ, r,∆), the competitive economy (market

economy hereafter) is the frictionless counterpart of this particular search economy,

and denoted with S∗ = (B, S, f).6 As in the search-and-matching economy, the sets

of buyers and sellers are denoted by B and S, respectively. Also similarly, fbs

denotes the transferable utility created when buyer b and seller s are matched.

3.2.2 The Competitive Equilibrium

For a market economy (B, S, f), we characterize the competitive equilibrium

associated with this economy as the solution to the following assignment problem,

which is a simple linear optimization problem, based on Shapley and Shubik (1972):

max(qi,j)(i,j)∈B×S

∑
B×S

qbsfbs

subject to (q) ∈ R|B||S|+ and

∑
s∈S

qbs ≤ 1 for all b, (νb) (3.3)∑
b∈B

qbs ≤ 1 for all s, (νs) (3.4)

It is possible to interpret this problem as one of a social planner who attempts

to maximize the total value created in a market economy by manually matching

the members of the cohort who are born into the market each and every period.

Alternatively, one can also write down the dual of this problem and analyze in terms

of its dual counterpart:

6A useful method to imagine a market economy is to consider it as a search economy in the
limit, where ∆ = 0.
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minνb∈B,νs∈S
∑

B
νb +

∑
S
νs

subject to (ν) ∈ R|B|+|S|+ and

νb + νs ≥ fbs for all (b, s) ∈ B × S, (qbs) (3.5)

Let (q) = {qbs}(b,s)∈B×S denote the solution to the primal problem, and let (ν) =(
νb1 , ..., ν|B|, νs1 , ..., ν|S|

)
denote the solution to the dual. Then, given a market

economy S∗, the set of competitive equilibria associated with this economy is fully

characterized by E∗(S∗) = (q, ν).

Now, having defined the basics of the model, let us go through some simple examples

that will help us analyze the dynamics of the model.



Chapter 4

Initial Examples

In this chapter, we provide comprehensive solutions to some simple cases, just to

improve our comprehension of the model. The strategy is as follows: for each

case, we first characterize the set of competitive equilibria. We then proceed to

consider the search economy counterpart of this particular case, and characterize

the set of search equilibria that arises, especially when frictions in this setup begin

to disappear. The comparison of both equilibria will follow, albeit being self-evident

to some extent.

For the cases analyzed below, unless otherwise stated, we assume that the patience

measures are common for both players (δb = δs = δ for each (b, s) pair.)

4.1 One-by-One Case

This is the simplest case: there is only one type of buyer and one type of seller

(|B| = |S| = 1), who seek a transaction for only one type of good. For simplicity,

the seller’s reservation price is assumed to be zero and the buyer’s valuation is one

(hence the result fbs = 1), but the results are generalizable.

18
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4.1.1 Competitive Equilibrium

The competitive equilibrium of this particular case, which corresponds to the set of

assignment game solutions, (qbs; (νb, νs)), needs the satisfy the following:

qbs = 1

νb ∈ [0, 1]

νs = 1− νb

In other words, we have: E∗(S∗) = {(1; (νb, νs)) : νb ∈ [0, 1], νs = 1− νb}

4.1.2 Search Equilibrium

The set of search equilibria is characterized by the tuple ((lb, ls);mbs; (vb, vs)). Re-

member that, given this tuple, market size is given by lb, and the seller-to-buyer

ratio is:

r =
ls
L

=
ls
lb

As noted before, parameters of the market equilibrium vector ((lb, ls);mbs; (vb, vs))

must satisfy the following:

(i) Individual rationality. vb, vs ≥ 0.

(ii) Efficient bargaining. If 1 − δvb − δvs > 0, then mbs = msb = 1 and if

1− δvb − δvs < 0, then mbs = msb = 0.

(iii) Constant surplus. The valuations satisfy:

−cB + n(r)βpsmbs(1− δvb − δvs) ≤ (1− δ)vb

−cS +
n(r)

r
(1− β)pbmbs(1− δvb − δvs) ≤ (1− δ)vs

where the inequality holds with equality for i with pi > 0.
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(iv) Steady state. lbn(r)mbsps ≤ 1 , ls
n(r)
r
mbspb ≤ 1; and if vi > 0, then the

inequality for i ∈ {b, s} holds with equality.

Now, we’ll proceed to obtain the values of these equilibrium parameters when fric-

tions disappear. The first thing to realize is that there always exists some trivial

equilibrium, in which no buyers and no sellers enter the market (this applies to any

model we can construct under this setup). To get rid of this unpleasant equilib-

rium, one could simply assume that mbs > 0 and proceed with the analysis; yet,

that would essentially mean putting constraints on the endogenous variables arising

in the equilibrium. A more elegant approach would be assuming that agents are

born into the market at the first period they are introduced into the model, rather

than making the initial choice of whether to enter the market or not. This means

that each period, a unit measure of each type of agent are born into the market,

i.e. in the steady state, there is at least a unit measure of each type in the market.

Thus, we implicitly impose the following condition:

(v) No trivial equilibrium. lb, ls ≥ 1.1

The proposition establishes that this condition indeed eliminates the possibility of

a trivial equilibrium is provided and proven in the Appendix.

Now, having established that there is no trivial equilibrium in the steady-state, we

can confidently inspect the non-trivial steady-state equilibrium. First, realize that,

as an auxiliary implication of condition (v), it is certain that pb = ps = 1 (we’ll refer

to this later on).

Let us continue by stating a few lemmas.

Lemma 4.1. In the equilibrium, it is impossible that vb = vs = 0 as ∆→ 0.

Proof. Suppose, to get a contradiction, that vb = vs = 0. Then, manipulating

conditions 1 through 3, we need to have 0 = max{−cb+n(r)β} and 0 = max{−cs+

1Imposing this condition also requires replacing the last part of condition 3 with: “. . . where
the inequality holds with equality for i with li > 1.”
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n(r)
r

(1−β)}, which is translated into the conditions: cb ≥ n(r)β and cs ≥ n(r)
r

(1−β).

Because the choice of ∆, and consequently the choice of (cb, cs) = (∆κb,∆κs), is

arbitrary, we may then conclude that n(r)β = n(r)
r

(1− β) = 0.Given the definitions

of n(r) and n(r)
r

, this is clearly impossible, indicating the desired contradiction.

Based on this lemma, we can prove one of our critical findings about this setup:

Lemma 4.2. In the equilibrium, mbs = 1.

Proof. By the previous lemma, we know that at least one element of the (vb, vs)

pair is strictly positive. Without loss of generality, assume vb > 0. Then, by

condition 3, we obtain: (1 − δ)vb = −cb + n(r)βmax{0, (1 − δvb − δvs)}, which

yields: max{0, (1− δvb − δvs)} = cb+(1−δ)vb
n(r)β

. Clearly, the right-hand side is strictly

positive, so we obtain: max{0, (1− δvb− δvs)} > 0. This implies 1− δvb− δvs > 0,

which, by condition 2, implies the desired result: mbs = 1.

Another interesting implication of lemma 4.1 lies at the ease it provides while sim-

plifying condition 4 characterizing the equilibrium. First, realize that the two in-

equalities within the condition, namely, lbn(r)mbsps ≤ 1 and ls
n(r)
r
mbspb ≤ 1 are

equivalent to each other in a 1-to-1 setup; to see this, one only needs to take into

account that r = ls
lb

in a one buyer-one seller market. Second, as a corollary of

lemma 4.1, vi > 0 for at least one i ∈ {b, s}, therefore, the inequalities must hold

with equality. Finally, a simple case-by-case analysis yields that the equalities force

either lb or ls to be exactly equal to one. This conclusion simplifies condition 4

tremendously.

Now, combining our findings that mbs = 1 and pb = ps = 1, as well as the simplified

condition 4, we can proceed with the analysis of steady-state market equilibrium.

Substitute these findings into the set of conditions defining the equilibrium to get

the following three, revised, conditions:

(i) vb, vs ≥ 0; lb, ls ≥ 1.
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(ii) The valuations satisfy:

−cB + n(r)β(1− δvb − δvs) ≤ (1− δ)vb

−cS +
n(r)

r
(1− β)(1− δvb − δvs) ≤ (1− δ)vs

where the inequality holds with equality for i with li > 1.

(iii) lb = 1 or ls = 1.

Having defined the simplest version of conditions defining the steady-state equilib-

rium, we can now proceed with the analysis. The first task will be defining an upper

bound on the market size, or, to put it more clearly, finding the maximum rate with

which the market size can grow.

Begin by realizing that, by condition 3, one side of the market is already under

control. Therefore, what we need to ensure that the long side of the market can not

tend to infinity unboundedly, whereas the measure of the short side is kept constant

at 1. We’ll conduct a case-by-case analysis for this.

Case 1. When lb = 1.

Begin by realizing that condition 1 directly implies that ls ≥ lb = 1, thus, r = ls
lb
≥ 1,

and n(r) = 1, n(r)
r

= lb
ls

= 1
ls

.

When ls = 1, the market size is clearly under control, so this is hardly an interesting

case at all. Therefore, one can simply assume that ls > 1, which, by condition 2,

implies that the equality −cS+ 1
ls

(1−β)(1−δvb−δvs) = (1−δ)vs is always satisfied.

There exists two possibilities to consider:

When vb = 0. In this case, the equality simplifies to: −cS + 1
ls

(1 − β)(1 − δvs) =

(1− δ)vs, which, with simple algebra, yields:

vs =
−cs + 1−β

ls

1− δ + δ 1−β
ls

(4.1)
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So, how fast can ls → ∞? Clearly, there are two conditions that needs to

be satisfied. The first is condition 1, which says vs ≥ 0. The second is the

assumption we made at the beginning, i.e. vb = 0. One could let ls tend to

infinity as fast as possible, without violating these two.

Regarding the nonnegativity constraint of vs, realize that vs ≥ 0⇒ (1−δ)vs =

−cS + 1−β
ls

(1− δvs) ≥ 0⇒ (1− δvs) ≥ csls
1−β .

Regarding the constraint vb = 0, one only needs to ensure that expected payoff

for s at each period should be at most zero, i.e. −cb + β(1− δvs) ≤ 0, which

implies: (1− δvs) ≤ cb
β

.

Combining the two, we obtain the condition: cb
β
≥ (1 − δvs) ≥ csls

1−β , which

translates into: ls ≤ cb/β
cs/(1−β)

. Realize that, as ∆→ 0, this quantity converges

to κb/β
κs/(1−β)

. 2

When vb > 0. In this case, the condition (1 − δ)vb ≥ −cB + n(r)β(1 − δvb − δvs)

must also hold with equality. We have two equalities that must jointly be

satisfied:

(1− δ)vb = −cB + β(1− δvb − δvs)

(1− δ)vs = −cS +
1

ls
(1− β)(1− δvb − δvs)

Along with two nonnegativity constraints: vb ≥ 0, vs ≥ 0.

Simple algebra shows that the two nonnegativity constraints can be stated as:

δ(vb + vs) ≤ min{1− cb
β
, 1− csls

1−β}. Furthermore, using the equalities, and by

the help of some manipulation, one can show that:

δ(vb + vs) =
−cb − cs + β + 1−β

ls
1−δ
δ

+ β + 1−β
ls

2In a sense, one could argue that this market setup only makes sense when cb/β
cs/(1−β) →

κb/β
κs/(1−β) ∈ (0,∞), i.e. when the ratio of two cost measures remain comparable in the limit.

Under this assumption, the upper bound we have found for ls is indeed quite tight.
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Hence the inequality:

−cb − cs + β + 1−β
ls

1−δ
δ

+ β + 1−β
ls

≤ min{1− cb
β
, 1− csls

1− β
}

follows, which implies the inequality: 3

ls ≤
cb/β

cs/(1− β)
+

1− δ
δ

1− β
β

1

cs

where, as ∆ → 0, the right hand-side converges to: κb/β
κs/(1−β)

+ 1−β
β

r
κs

, a well-

defined upper bound.

Realize that in any case, we have accomplished to achieve an upper bound on ls.

Now, it’s time to proceed with the other case.

Case 2. When ls = 1.

The analysis of this case is entirely symmetric with the argument provided above,

hence, we omit the algebra and proceed with the results.

When vs = 0. In this case, we obtain the inequality: lb ≤ κs/(1−β)
κb/β

as ∆→ 0.

When vs > 0. In this case, we obtain the inequality:

−cb − cs + (1− β) + β
lb

1−δ
δ

+ (1− β) + β
lb

≤ min{1− cblb
β
, 1− cs

1− β
}

which implies the upper bound:

lb ≤
cs/(1− β)

cb/β
+

1− δ
δ

β

1− β
1

cb

where, as ∆→ 0, the right hand-side converges to: κs/(1−β)
κb/β

+ β
1−β

r
κb

.

3The algebra is a little lengthy, yet straightforward. Begin by observing that the right hand-
side of inequality changes depending on whether ls

cs
1−β ≥

cb
β holds or not. If cb

β ≥ ls
cs

1−β , then,

the usual bound ls ≤ cb/β
cs/(1−β) applies. If ls

cs
1−β >

cb
β , then, simple algebra yields the inequality:

ls <
δcb(1−β)+(1−δ)(1−β)

(1−δ)cs+βδcs
. The (1 − δ)cs term in the denominator is negligible, and omitting it

preserves the inequality. The results follows.
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Having established an upper bound on the size of the market, now, rest of the

analysis is relatively straightforward. For the rest of the analysis, assume that

κb
κs

= β
1−β ⇒

κb/β
κs/(1−β)

= 1, i.e. the market is constructed such that it is “fair” towards

both sides.4 Referring to the analysis above, clearly, this puts a very neat upper

bound on the market size, namely, it supports the symmetric case ls = lb = 1 in the

steady-state search equilibrium. 5 Note that this also implies: n(r) = n(r)
r

= 1.

So, we are done with the equilibrium measures. But what about the valuations

(vb, vs), especially when the frictions disappear (i.e. when ∆→ 0)? For the rest of

the analysis, assume vb 6= 0 and vs 6= 0. 6 Before we prove the actual result, we

need a preliminary lemma.

Lemma 4.3. In the equilibrium, vb + vs = 1− cb − cs.

Proof. Taking the fact that vb, vs > 0 into account, using the conditions defining

vb and vs, along with our previous findings that mbs = 1 and n(r) = n(r)
r

= 1, we

obtain:

(1− δ)vb = −cb + β(1− δvb − δvs)

(1− δ)vs = −cs + (1− β)(1− δvb − δvs)
4The results would extend to the case where the market is “unfair.” However, the condition

that κb/β
κs/(1−β) ∈ (0,∞) is still crucial, i.e. one can not allow the market to become terribly unfair:

the ratio of normalized cost measures should remain bounded away from zero and infinity. But
the setup is constructed such that κi > 0 for each i, so we can be confident that this unpleasant
case does not occur.

5There are also other equilibria with features 1 = ls < lb < 1 + r
κs

and 1 = lb < ls < 1 + r
cb

.
The case lb = ls = 1 is considered for simplicity, yet, it would not affect the results dramatically.
An analysis of the asymmetric market equilibrium is provided in the Appendix.

6The case in which one of them is zero is indeed much easier to analyze. Suppose, without loss
of generality, that vb = 0. Then, using equation defining vs, we have:

vs =
−cs + 1−β

ls

1− δ + δ 1−β
ls

which, with some manipulation, yields: vs = 1 − cs+β(1−δ)
1−δβ . Clearly, as the frictions disappear,

vs → 1.
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adding the two equations, we obtain:

(1− δ)(vb + vs) = −cb − cs + 1− δ(vb + vs)

which yields,

(vb + vs) = 1− cb − cs.

This lemma provides us with great ease in computing what happens to (vb, vs) as

c→ 0 and δ → 1. Remember that the conditions defining vb and vs were:

(1− δ)vb = −cb + β(1− δvb − δvs)

(1− δ)vs = −cs + (1− β)(1− δvb − δvs)

Rearranging, we obtain:

vb =
−cb

1− δ
+ β

1− δvb − δvs
1− δ

vs =
−cs

1− δ
+ (1− β)

1− δvb − δvs
1− δ

Where we know, by Lemma 4.3, that vb + vs = 1− cb − cs. Substitute to get:7

vb =
−cb

1− δ
+ β

1− δ + δ(cb + cs)

1− δ

vs =
−cs

1− δ
+ (1− β)

1− δ + δ(cb + cs)

1− δ

Finally, utilizing the fact that cb
cs

= β
1−β , we obtain the elegant result:

vb = β − cb

vs = (1− β)− cs
7These equalities indeed can be derived by direct solution of the two equalities. Some long

and cumbersome calculations directly yield: vb = −c+2βδc+β(1−δ)
1−δ , which is the result we derived.

However, we think that the approach adopted here is more versatile, and easily generalizable to
more complex cases.
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which implies:

lim
∆→0

vb = β

lim
∆→0

vs = 1− β

Now we are ready to state the crucial result in this setup.

Corollary 4.4. For any competitive equilibrium values of this economy, νb ∈ [0, 1], νs =

1− νb, we can find a search equilibrium values (vb, vs) that converge to this solution

as frictions disappear (i.e. as ∆→ 0).

Proof. The proof follows from the last equation derived. Set any δb = δs = δ, pick

β = νb, 1− β = νs and set κb, κs such that κb
κs

= β
1−β .

Now, let’s consider an alternative setup, in which we do not choose β, but rather

choose the respective patience parameters. Suppose the buyers and sellers have

different levels of instantaneous rate of discounting, rb ≥ 0 and rs ≥ 0. This implies

we have two levels of patience, δs = e−rs∆ and δb = e−rb∆, both converging to 1 in

the limit. Note that to protect market fairness, we need to make sure that the ratio

of cost measures, cb
cs

, is equal to β
1−β . 8 Then, equations defining vb and vs translate

into:

(1− δb)vb = −cb + β(1− δbvb − δsvs)

(1− δs)vs = −cs + (1− β)(1− δbvb − δsvs)

Remember that we have derived: 1 − cb − cs = vb + vs, and substitute to get:

1− δbvb − δsvs = 1− δbvb − δs(1− vb − cb − cs) = 1− δs(1− cb − cs) + (δs − δb)vb,

or, symmetrically: 1− δbvb − δsvs = 1− δb(1− cb − cs) + (δb − δs)vs. Now, we can

8Another alternative setup would be keeping δ’s equal and playing with cost parameters, al-
lowing the market fairness to change. That would also enable us to receive the same results.
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obtain:

vb =
−cb

1− βδs − (1− β)δb
+ β

1− δs + δs(cb + cs)

1− βδs − (1− β)δb

vs =
−c

1− βδs − (1− β)δb
+ (1− β)

1− δb + δb(cb + cs)

1− βδs − (1− β)δb

For expositional simplicity, define the weighted average of patience levels of traders

as: δavg := βδs + (1− β)δb. Realize that we have obtained:

vb =
−cb

1− δavg
+ β

1− δs + δs(cb + cs)

1− δavg

vs =
−cs

1− δavg
+ (1− β)

1− δb + δb(cb + cs)

1− δavg

Which, using the fact that cb
cs

= β
1−β , implies:

vb = (β − cb)
1− δs

1− δavg

vs = ((1− β)− cs)
1− δb

1− δavg

where, using the definitions of δb and δs and L’Hôpital’s Rule, it can be shown that,

lim
∆→0

vb = β
rs

βrs + (1− β)rb

lim
∆→0

vs = (1− β)
rb

βrs + (1− β)rb

Which gives us the desired result:

Corollary 4.5. For any competitive equilibrium values of the economy, νb ∈ [0, 1], νs =

1− νb, we can find a search equilibrium values (vb, vs) that converge to this solution

as frictions disappear (i.e. as ∆→ 0.)

Proof. The proof follows from the last equalities derived. Given a particular value

of β ∈ [0, 1], it will be sufficient to choose (δb, δs) (or, more properly, (rb, rs))

accordingly.
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Let’s review our finding by considering two concrete examples.

Example 4.1. Suppose β = 1/2, and the competitive equilibrium values is given

as: (νb, νs) = (1/8, 7/8). Then, to ensure that (vb, vs)→ (νb, νs), it will be sufficient

to choose: {(δs)n} = {1− 1
n
}, {(δb)n} = {1− 7

n
}, {(cb)n} = {(cs)n} = { 1

n
}.

Another way to state this result is that, when β = 1/2, to get the competitive

equilibrium values where {∆}n → 0, one needs to pick (rb, rs) such that rb
rs

= 7.

Example 4.2. Suppose β = 1/2, and the solution of the assignment game is given

as: (νb, νs) = (1/4, 3/4). Then, to ensure that (vb, vs)→ (νb, νs), it will be sufficient

to choose: {(δs)n} = {1− 1
n
}, {(δb)n} = {1− 3

n
}, {(cb)n} = {(cs)n} = { 1

n
}.

Another way to state this result is that, when β = 1/2, to get the competitive

equilibrium values where {∆}n → 0, one needs to pick (rb, rs) such that rb
rs

= 3.

Realize the particular difference between the two example cases. In the second case,

(δb)n is higher (or rb is lower) compared to the first case, whereas everything else

remains same. This change results in a higher limit value for vb. Therefore, the

examples successfully demonstrate the phenomenon “being relatively more patient

makes you better off”, which is intuitively appealing, and in line with Rubinstein

(1982).

4.1.3 Discussion

The main result obtained in the solution of this example, Corollary 4.5, shows that

the initial results are encouraging: one could possibly cover the whole range of

competitive equilibrium by setting β = 1− β = 1/2, cb = cs (i.e. κb = κs), and just

picking the relative patience parameters δb, δs (rb, rs) properly. This is the result

that we’ll be seeking the generalization of in the following chapter.
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4.2 One-by-Two Case

The strategic interactions of this case is more interesting: there is only one type of

buyer but two types of sellers (types 1 and 2),competing with each other to make

the transaction with the buyer (i.e. |B| = 1 and |S| = 2). For simplicity, we assume

that fb1 = 1 and fb2 = 0.5, but the results are again generalizable.

4.2.1 Competitive Equilibrium

The competitive equilibrium of this case, which corresponds to the set of assignment

game solutions, ((qb1, qb2); (νb, ν1, ν2)), are characterized by the following:

qb1 = 1, qb2 = 0

νb ∈ [0.5, 1]

ν1 = 1− νb

ν2 = 0

In other words, we have: E∗(S∗) = {((1, 0); (νb, ν1, 0)) : νb ∈ [0.5, 1], ν1 = 1− νb}

4.2.2 Search Equilibrium

The set of search equilibria is characterized by the tuple ((lb, l1, l2); (mb1,mb2); (vb, v1, v2)).

Again, the equilibrium vector ((lb, l1, l2); (mb1,mb2); (vb, v1, v2)) must satisfy the con-

ditions that define a search equilibrium.

As usual, we start by investigating the values of (lb, l1, l2) in the equilibrium. Keep

in mind that ultimate purpose is to show that the equilibrium converges to the as-

signment equilibrium, as frictions disappear. Since, in the assignment equilibrium,

the only trade occurs between the buyer and seller 2, this establishes a good can-

didate strategy of first proving that mb2 = 0. If one can show that mb2 = 0, rest
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of the analysis is straightforward: such a finding implies that seller 2 is effectively

kicked out of the market; then, we are faced with a case that is simply equivalent

of the one-by-one case analyzed above.

Realize that we can investigate this setup under two different cases. The first one is

the case in which mb2 < 1. This case is particularly easy to deal with, because the

assumption that mb2 < 1 implies v2 ≤ 0 (because there is no possibility of trading,

and obtaining a strictly positive gain, for seller 2). Therefore, seller 2 does not find

it profitable to remain in the market, and we have l2 = 1. Rest of the analysis is

exactly the same as the case with 1 buyer and 1 seller, which is examined above.

So, let’s consider the case in which mb2 = 1, and see whether such an equilibrium

can exist. First, we need a few useful results.

Lemma 4.6. In this particular setup, if buyer trades with seller 2 with probability

1 in the equilibrium, then she trades with seller 1 with probability one, too. (i.e.

mb2 = 1⇒ mb1 = 1).

We provide two alternative proofs.

Proof. (1) Suppose that mb2 = 1. Note that this implies 0.5 − δv2 − δvb ≥ 0, by

the efficient bargaining condition.

Note that if we can show: 1 − δv1 − δvb > 0, which implies mb1 = 1, then we are

done. Suppose, to get a contradiction, that 1− δv1− δvb ≤ 0. Substituting this into

the equation defining v1, we obtain: v1 = max{0,−cs1 + δv1}. Clearly, the unique

solution for this equality is: v1 = 0. Then, since we have 1 − δv1 − δvb ≤ 0, this

implies: δvb ≥ 1. But realize that this implies: 0.5− δv2− δvb < 0 for every v2 ≥ 0,

a contradiction.

For the second proof, we need a new definition.

Definition 4.7. A set of valuations (v1, v2) are incentive-compatible if |v1 − v2| ≤

|fb1 − fb2|.
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Now, it should be trivial to see why incentive-compatibility is a crucial concept for

us. Clearly, a set of valuations cannot constitute an equilibrium for the matching

game if they are not incentive-compatible. This is because violation of incentive-

compatibility indicates a profitable deviation for one of the parties. Consequently,

if incentive-compatibility is violated, we have one of the sellers imitating to be the

other type, which leaves us effectively with only one type of sellers, hence with

the model that we examined previously. Having defined this concept, we can now

proceed with the second proof.

Proof. (2) Suppose that mb,2 = 1⇒ 0.5− δv2− δvb ≥ 0. Furthermore, since we are

looking for valuations in the equilibrium, they must satisfy incentive-compatibility,

i.e. we have: v1 − v2 ≤ 0.5. Because δ < 1, this also implies: δ(v1 − v2) < 0.5. All

in all, we have:

δv2 + δvb ≤ 0.5

δv1 − δv2 < 0.5

Add the two inequalities to get: δv1 + δvb < 1⇒ mb1 = 1.

Having derived the relationship between mb2 and mb1, now we can proceed to obtain

some results on equilibrium measures.

Lemma 4.8. In an equilibrium, if mb2 = 1, then we have: lb ≤ l1 + l2.

Proof. Suppose not. Then, lb > l1 + l2 ⇒ r < 1. This implies n(r) = min{1, r} < 1,

and n(r)
r

= 1 (i.e. each seller in the market definitely finds a match in every period).

Now, combine this information with what we already know about the market: mb2 =

1 and, by previous Lemma, mb1 = 1. This piece of information suggests that every

seller of each type who is matched immediately trades and leaves the market.

Remember that by the structure of the setup, each period, there exists at least 1

measure of type 1 sellers and 1 measure of type 2 sellers in the market each period.
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Hence, since all sellers find a match, each period, at least 1 measure of type 1 and

1 measure of type 2 sellers trade and leave the market each period. Obviously, the

only type they can form a trading pair with is the buyer. Consequently, we obtain

that each period, a total of 2 measure of buyers leave the market. Given that the

supply of buyers entering the market each period is 1, this is clearly not sustainable.

Let’s interpret this argument in terms of our own notation, and referring to the

equations that define the search equilibrium. Recognizing that n(r) = l1+l2
lb

< 1

and n(r)
r

= 1, the steady-state requirement for seller becomes: 1 − lb l1+l2
lb

(p1mb,1 +

p2mb,2) ≥ 0. Furthermore, remember the definition of p1 and p2, along with the

finding mb1 = mb2 = 1 to substitute, and get: 1 − lb l1+l2
lb

( l1
l1+l2

+ l2
l1+l2

) ≥ 0. The

inequality therefore simplifies to:

1− (l1 + l2) ≥ 0

Considering that in any steady state l1 ≥ 1 and l2 ≥ 1, this is clearly impossible, a

contradiction.

By the help of Lemma 4.8, we begin to understand how equilibrium looks like when

mb2 = 1. We know: lb ≤ l1 + l2 in the equilibrium, which also implies: r > 1

and thus n(r) = 1, n(r)
r

= lb
l1+l2

. Furthermore, mb1 = mb2 = 1, indicating that

each buyer-seller pair who are matched immediately trade and leave the market.

Considering the fact that p1 and p2 are proportional to the respective measures

of the corresponding seller types, we can immediately conclude that l1
l2

9 0, nor

l2
l1
9 0 in any equilibrium in which mb2 = 1, if such an equilibrium exists.
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Now, given these findings, let’s write down the steady-state requirements for the

case mb2 = 1, from which the impossibility of such an equilibrium will follow.

l1
lb

l1 + l2
≤ 1 (4.2)

l2
lb

l1 + l2
≤ 1 (4.3)

lb(
l1

l1 + l2
+

l2
l1 + l2

) ≤ 1 (4.4)

Where (4.2) holds with equality if v1 > 0, and similarly for (4.3) if v2 > 0, as for

(4.4) if vb > 0. Indeed, we will show that (4.4) must hold with equality in such a

case, at least for sufficiently small frictions.

Lemma 4.9. In any equilibrium where mb2 = 1, we must have: vb > 0 as ∆→ 0.

Proof. We do already know that mb1 = mb2 = 1, and 1− δv1− δvb > 0, 0.5− δv2−

δvb ≥ 0. The expected gain from entering the market in a period for the buyer is:

−cb + l1
l1+l2

β(1− δv1− δvb) + l2
l1+l2

β(0.5− δv2− δvb). Clearly, for sufficiently low cb,

this term is strictly positive, and vb is nonzero.

Now that we have shown vb > 0 in an equilibrium where mb2 = 1, one can conclude

that (4.4) holds with equality. Our last lemma is the final step towards proving the

impossibility of such an equilibrium.

Lemma 4.10. In any equilibrium where mb2 = 1, we must have: v1 = v2 = 0.

Proof. Without loss of generality, suppose v1 > 0. Then, (4.2) must hold with

equality. Given that, by previous lemma, (4.4) also holds with strict equality, one

can subtract (4.2) from (4.4) to obtain: l2
lb

l1+l2
= 0. But remember, if (4.2) holds

with equality, then l1
lb

l1+l2
= 1. These last two equations coexist only if l2 = 09,

which is a contradiction with the fact that each period, at least one measure of each

type enters the market.

9Another possibility is that l2
l1
→ 0, but we already had the discussion that this is impossible.
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The final result that we have derived is clearly inconsistent with our previous find-

ings that 1− δv1− δvb > 0, 0.5− δv2− δvb > 0. Therefore, we have a contradiction

which indicates the impossibility of such an equilibrium.

Corollary 4.11. In the setup with one buyer and two sellers, there is no matching

equilibrium where mb2 = 1.

Now that we have eliminated all the implausible equilibria, we can say that in

any matching equilibrium of this setup, mb2 = 0. This, in turn, implies that the

following conditions are satisfied, at least as friction disappear (i.e ∆→ 0).

0.5− δvb ≤ 0⇒ δvb ≥ 0.5

1− δv1 − δvb > 0

v2 = 0

It is easy to see that the set of search equilibria, therefore, converges to the com-

petitive equilibria:

νb ∈ [0.5, 1]

ν1 = 1− νb

ν2 = 0

as the frictions disappear. One can conduct an analysis similar to the one provided

at the end of previous section to convince herself that for each competitive equi-

librium values (νb, ν1, ν2), there exists a search equilibrium values (vb, v1, v2) that

converges to (νb, ν1, ν2) as ∆→ 0.

4.2.3 Discussion

The point that needs to be emphasized on the analysis of this case is that, even if

there are different numbers of types of buyers and sellers in the market (i.e. if B
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and S have different cardinalities) one can still simplify the case into one where the

number of types are equal, using proper justifications. This implies that having the

assumption |B| = |S| is less restrictive than it seems.

4.3 Two-by-Two Case

This again is an interesting case, with its richness in strategic interactions and the

insights it contains. We will begin by a relatively simpler setting with two buyers

and two sellers: we will assume the market is separable, in the sense that there is a

unique perfect match for each type of buyer and seller, and trade with remaining

types are not desirable. Suppose there are two types of buyers and two types of

sellers (i.e. |B| = |S| = 2), where:

f11 = f22 = 1

f12 = f21 = 0

Once more, unless otherwise stated, assume that δb1 = δs1 = δb2 = δs2 = δ (i.e.

rb1 = rs1 = rb2 = rs2 = δ), cb1 = cb2 = cB (i.e. κb1 = κb2 = κB) and cs1 = cs2 = cS

(i.e. κs1 = κs2 = κS.)
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4.3.1 Competitive Equilibrium

The competitive equilibrium of this case, ((qb1,s1, qb1,s2, qb2,s1, qb2,s2); (νb1, νb2, νs1, νs2)),

are characterized by the following:

q11 = q22 = 1

q12 = q21 = 0

νb1 ∈ [0, 1]

νs1 = 1− νb1

νb2 ∈ [0, 1]

νs2 = 1− νb2

In other words, we have: E∗(S∗) = {(1, 0, 0, 1); (νb1, νb2, νs1, νs2)) : νb1 ∈ [0, 1], νs1 =

1− νb1, νb2 ∈ [0, 1], νs2 = 1− νb2}

4.3.2 Search Equilibrium

The set of search equilibria is characterized by the tuple ((lb1, lb2, ls1, ls2); (m11,m12,m21,m22);

(vb1, vb2vs1, vs2)). Parameters of the market equilibrium vector (q;m; v), as usual,

must satisfy the conditions defining a search equilibrium.

We begin calculating the values of parameters in the equilibrium vector by first

analyzing m. The first lemma states that the only trade occurs between the agents

who are the “ideal matches” of each other.

Lemma 4.12. In the equilibrium, m12 = m21 = 0 as ∆→ 0.

Proof. Suppose, to get a contradiction, that m12 6= 0 (there is no loss of generality

in this assumption). By the efficient bargaining condition, this implies that we need

to have vb1 = vs2 = 0 (otherwise the efficient bargaining condition would imply

that m12 = 0.) Realize that at least one of the remaining two types must have a
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nonzero valuation, then. (Otherwise, if each type in the market receives zero payoff,

writing constant surplus condition for all types and adding gives n(r)β ≤ cB = ∆κB

and n(r)
r

(1 − β) ≤ cS = ∆κs. Clearly, these two inequalities cannot be satisfied

simultaneously as ∆ → 0.) Without loss of generality, suppose vs1 6= 0 (which, by

individual rationality condition, implies vs1 > 0. This has two implications: first,

by efficient bargaining condition, m21 = 0. Second, by the steady-state condition

for s1 holds with equality.) The steady-state conditions for b1 and s1 are:

lb1n(r)(m11ps1 +m12(1− ps1)) ≤ 1

ls1
n(r)

r
m11pb1 = 1

Realizing that lb1n(r)m11ps1 = ls1
n(r)
r
m11pb1, one could easily deduce that, for the

first inequality to be satisfied, it must be the case that m12 = 0,10 a contradiction.

Now, having derived the result that there will be no “cross-trade,” it remains to

show that trade between ideal matches definitely occurs.

Lemma 4.13. In the equilibrium, m11 = m22 = 1 as ∆→ 0.

Proof. Suppose, to get a contradiction, that m11 < 1 (without loss of generality.) By

the efficient bargaining condition, this implies: f11− δvb1− δvs1 ≤ 0⇒ (vb1 +vs1) ≥
1
δ
. This, in turn, implies that vb1 > 0 or vs1 > 0. Either way, at least one of

the steady-state conditions associated with these types must hold with equality,

and since lb1n(r)m11ps1 = ls1
n(r)
r
m11pb1, we can be sure that both steady state

conditions hold with equality. Rearranging terms in these steady state conditions,

10Another alternative is to let ps1 = 1, or, to let ls1 tend to infinity. This is not possible, either.
To see this, attempt to write down a case where vb1 = vs2 = 0 and ls1 tends to infinity. By the

equality defining vs1, we get −cS + n(r)
r (1− β)(pb1)(1− δvs1) = (1− δ)vs1 ≥ 0 (equality because

ls1 > 1.) For the same inequality for vb1, we get: 0 = (1 − δ)vb1 ≥ −cB + n(r)βps1(1 − δvs1).

Combining, we obtain the inequality: cB/β
cS/(1−β) ≥ r ps1pb1

. If pb1 is bounded away from zero, then r

must converge towards infinity, and the inequality cannot be satisfied. Otherwise, conducting the

symmetric analysis for the b2 − s2 pair yields the inequality: cB/β
cS/(1−β) ≤ r

ps2
pb2

. Since ps2 = 0, with

r and pb2 being finite numbers, this cannot hold, a contradiction.
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one obtains m11 = 1
lb1ls1
ls1+ls2

n(r)
= 1

lb1ls1
lb1+lb2

n(r)
r

< 1. Now, this inequality implies that

lb1 > 1 or ls1 > 1 (otherwise, if lb1 = ls1 = 1, plugging them into the inequality

gives ls1+ls2
n(r)

= lb1+lb2
n(r)/r

< 1. Taking into account that li ≥ 1 for each i, this is

clearly impossible.) But then, by the constant surplus condition, at least one of

the inequalities denoting expected payoffs of b1 and s1 must hold with equality.

Suppose, without loss of generality, that it is b1. Therefore, we must have:

−cB + n(r)ps1(m11(1− δvb1 − δvs1) +m12(0− δvb1 − δvs2) = (1− δ)vb1

We have already shown that m12 = 0 and 1 − δvb1 − δvs1 ≤ 0. Substituting gives:

−cB = (1− δ)vb1, which, by the individual rationality condition, indicates a contra-

diction.

Since we have identified that (m11,m12,m21,m22) = (1, 0, 0, 1) in an equilibrium,

now, we continue by deriving the equilibrium values of (lb1 , lb22, ls1 , ls2). Substituting

the values of mbs into the constant surplus and steady state conditions, we have the

following inequalities for each buyer-seller pair:

−cB + n(r)βps(1− δvb − δvs) ≤ (1− δ)vb

−cS +
n(r)

r
(1− β)pb(1− δvb − δvs) ≤ (1− δ)vs

where the inequality holds with equality for i with li > 1.

lbn(r)ps = ls
n(r)

r
pb ≤ 1

where the inequality holds with equality for i with vi > 0.

Our initial aim is to find an upper bound for lb and ls, as we did in the 1-by-1

setup. To achieve this goal, we make some simplifying assumption that we will
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relax later. For now, assume that the market equilibrium is symmetric in the sense

that lb1 = lb2 = lb and ls1 = ls2 = ls. Thanks to this assumption, we can substitute

each probability with 1/2, and furthermore, we can use the equality r = ls
lb

.

Now, can we find an upper bound on the equilibrium measures lb and ls. Firstly,

a case-by-case analysis of the steady state condition shows that there is already an

upper bound on the shorter side of the market. That is, if ls ≤ lb, we need to have

ls ≤ 2 and if lb ≤ ls, we need to have lb ≤ 2.

But what about the longer side? Suppose that we have lb ≥ ls (i.e. buyers are at

the longer side of the market) and the shorter side has already achieved its upper

bound (i.e. ls = 2.)11 Clearly, since 1 < ls ≤ lb, by the constant surplus condition,

both inequalities defining vb and vs must hold as equality. Then we must have:

(1− δ)vb = −cB +
ls
lb

β

2
(1− δvb − δvs) ≥ 0

(1− δ)vs = −cS +
1− β

2
(1− δvb − δvs) ≥ 0

Again, simple algebra shows that the two nonnegativity constraints can be stated

as: δ(vb + vs) ≤ min{1− cB lb
β
, 1− 2cS

1−β}. Furthermore, some algebraic manipulation

on the equalities show that:

δ(vb + vs) =
−cB − cS + β

lb
+ 1−β

2

1−δ
δ

+ β
lb

+ 1−β
2

Therefore, the inequality:

−cB − cS + β
lb

+ 1−β
2

1−δ
δ

+ β
lb

+ 1−β
2

≤ min{1− cBlb
β
, 1− 2cS

1− β
}

11This is not a very restrictive assumption, and is merely for computational ease. The analysis
would not really differ from the one presented here if we assumed the general case ls ∈ (1, 2]–one
just needs to replace 2 by ls in the bound above. When ls = 1, however, different forces might still
be at work, because the constant surplus condition does not necessarily hold any more. It can be

shown, however, that the standard upper bound κS/(1−β)
κB/β

is valid for lb. The proof is essentially

the same as in the one provided in 1-by-1 setup.
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follows. Using this inequality, one can obtain the upper bound on lb:
12

lb ≤ 2(
cS/1− β
cB/β

+
1− δ
δ

β

1− β
1

cB
)

where, as ∆→ 0, the right hand side converges to: 2(κS/1−β
κB/(β)

+ β
1−β

r
κB

), a well-defined

upper bound.

The analysis provided so far is useful in the sense that it gives hints favoring the idea

that the 2-by-2 setup is far from problems, too. However, in order to feel confident

on this conclusion, one needs a general treatment of the setup; for instance, we need

to drop the initial assumption of symmetry of the market. This is what we do in

the following pages.

Let’s begin with a recap of the recent findings in the setup. The derivation of

(m11,m12,m21,m22) = (1, 0, 0, 1) does not only simplify the constant surplus con-

dition tremendously: it also has a quite elegant implication on the steady-state

condition. Thanks to the finding that mij = 0 for i 6= j, we are now sure that

for agents who are perfect matches of each other, the steady-state conditions are

equivalent to each other, i.e. we can express both steady-state conditions as:

lbin(r)psi = lsi
n(r)

r
pbi ≤ 1

where the inequality holds with equality for i with vi > 0.

Therefore, the conditions defining the equilibrium can be revised as follows as each

buyer-seller pair (bi, si):

(i) vbi , vsi ≥ 0, lbi , lsi ≥ 1.

12Again, the algebra is very similar to the 1-by-1 case. The right hand-side depends on which

one of the quantities cBlb
β and 2cS

1−β is larger. If cBlb
β ≤ ls 2cS

1−β , then, the usual bound ls ≤ 2 cS/1−βcB/(β)

applies. If cBlb
β > 2cS

1−β , then, simple algebra yields the inequality: lb <
2βδcS+2β(1−δ)

2(1−δ)cB+δ(1−β)cB
. The

2(1− δ)cB term in the denominator is negligible, and omitting it preserves the inequality.



Chapter 4. Initial Examples 42

(ii)

−cB + n(r)βpsi(1− δvbi − δvsi) ≤ (1− δ)vbi

−cS +
n(r)

r
(1− β)pbi(1− δvbi − δvsi) ≤ (1− δ)vsi

where the inequality holds with equality for i with li > 1.

(iii)

lbin(r)psi = lsi
n(r)

r
pbi ≤ 1

where the inequality holds with equality if vbi > 0 or vsi > 0.

We will continue by eliminating some unpleasant possibilities. Begin by realizing

that if at least one of the valuations is nonzero, the steady state condition binds

and we can make a significant progress in terms of analyzing the market size. This

is because the steady-state condition, when binds, indeed gives lsi as a function of

pbi (and vice versa), and we would have taken one side of the market under control.

Note, however, the condition vbi > 0 or vsi > 0 must be satisfied to make this

progress. We now show that this is necessarily the case in an equilibrium.

Lemma 4.14. In the equilibrium, at least one side of each buyer-seller pair has

nonzero valuation (vbi > 0 or vsi > 0 for each i = {1, 2}.)

Proof. Suppose, to get a contradiction, that vb1 = vs1 = 0. Plugging these values

into condition (iii) above, we obtain: n(r)ps1 ≤ cB
β

and n(r)
r
pb1 ≤ cB

1−β . For simplicity,

assume that the buyers are at the longer side of the market (the analysis of the

alternative case is essentially the same as this one.) Furthermore, as we do usually,

assume that κB
β

= κS
1−β . Then these two inequalities imply that

lb1
lb1+lb2

and
ls1

lb1+lb2

are bounded above by (cB + cS).
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Assuming lb1 = ls1 = l1,13 we obtain: lb2 ≥ 1−cB−cS
cB+cS

, i.e. lb2 must grow unboundedly

in the order of 1
c

= 1
∆κ

, thus, in the order of 1
∆

. First, realize that this immediately

implies lb2 > 1, and therefore the constant surplus condition with respect to b2 must

hold with equality. For the (b2, s2) pair, we then have:

(1− δ)vb2 = −cB +
ls2

lb1 + lb2
(β)(1− δvb2 − δvs2)

(1− δ)vs2 ≥ −cS +
lb2

lb1 + lb2
(1− β)(1− δvb2 − δvs2)

These two conditions together imply:

lb2
ls2
≤ (1− δ)vs2 + cS

(1− δ)vb2 + cB

β

1− β

with equality if ls2 > 1.

Take a moment to appreciate that, as a result of this inequality, ls2 remains com-

parable to lb2 , and consequently, ls2 converges to infinity in the order of 1
∆

. Now,

we have lb2 and ls2 , both growing unboundedly. Note, however, by the steady-state

condition of (b2, s2) pair, we must have:
ls2 lb2
lb1+lb2

= 1. Taking into account that lb1/lb2

is close to zero, this is clearly a contradiction.

Given this lemma, now, we know that at least one agent in each match has strictly

positive valuation, and consequently, the steady-state condition holds with equality

for each match. Assuming (without loss of generality) that the buyers are at the

longer side of the market, this translates into: lsipbi = 1 for each i. It naturally

follows that lsi = 1
pbi

for each i, i.e. one side of the market is determined as a

function of the other, as we had conjectured.

Since pi ∈ [0, 1] for each i, 1
pi
∈ [1,∞] and thus no trivial equilibrium condition is

also automatically satisfied with this equality. Now, if we can show that pbi ∈ (0, 1),

this equality also gives us lsi > 1, which in turn implies that the condition defining

vsi holds with equality. Therefore, there is a strong motivation behind proving that

13Again, a simplifying assumption. Relaxing it would not change the results dramatically.
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pbi ∈ (0, 1), or, more intuitively, proving that lb1 and lb2 remain comparable in the

equilibrium. Next lemma shows that this is actually the case.

Lemma 4.15. In the equilibrium, 0 <
lb1
lb2
<∞.

Proof. To get a contradiction, suppose (without loss of generality) that
lb1
lb2
→ ∞,

which, in turn, implies pb1 = 1, pb2 = 0. Therefore, we need to have ls1 = 1/pb1 = 1.

On the other hand,
lb1
lb2
→ ∞, along with lb2 ≥ 1, clearly implies lb1 > 1; therefore,

the condition defining vb1 holds with equality. Following the same strategy as the

one used in the previous proof, one can show that:

lb1
ls1
≤ (1− δ)vs1 + cS

(1− δ)vb1 + cB

β

1− β

Again, this implies that ls1 is comparable to lb1 , which grows unboundedly. Yet we

had arrived at the conclusion that ls1 = 1, a contradiction.

By the help of this lemma, we can vaguely characterize how the market measures

in the equilibrium look like. We know that lb1 and lb2 remain comparable relative

to each other, i.e. pb1 , pb2 ∈ (0, 1). Furthermore, the equality lsi = 1
pbi

takes the

equilibrium measures of shorter side under control. The only concern left, therefore,

regards whether Lb grows uncontrollably relative to Ls. To evaluate this possibility,

we go back to the equations defining the valuations of agents.

Since pbi ∈ (0, 1), lsi > 1 for each i, and thus the conditions defining the valuations

of sellers hold with equality. Hence we have:

(1− δ)vbi ≥ −cB +
lsi

lb1 + lb2
(β)(1− δvbi − δvsi)

(1− δ)vsi = −cS +
lbi

lb1 + lb2
(1− β)(1− δvbi − δvsi)

where the first one holds with equality if lbi > 1.
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Let’s assume for a moment that lbi > 1, because we are trying to come up with an

upper bound on lbi . When the quantity under consideration is equal to 1, clearly,

this is not a very interesting pursuit. Then we can confidently assume that both

conditions hold with equality, which yields:

lbi
lsi

=
(1− δ)vsi + cS
(1− δ)vbi + cB

β

1− β

Using the fact that lsi = 1
pbi

=
lb1+lb2
lbi

, this translates into:
l2bi

lb1+lb2
=

(1−δ)vsi+cS
(1−δ)vbi+cB

β
1−β .

Realize that, if one assumes cB
β

= cS
1−β as usual, then the right-hand of the equality

can be simplified to:
1+ 1−δ

cS
vsi

1+ 1−δ
cB

vbi
, which, as ∆→ 0, converges to

1+ r
κS
vsi

1+ r
κB

vbi
. Clearly, this

is a quantity that heavily depends on r
κi

, which is hardly surprising.

To take the analysis one step further, define γi =
1+ r

κB
vbi

1+ r
κS
vsi

. Then the equality be-

comes:
lb1+lb2
l2bi

= γi, or, equivalently, we have the following set of equalities satisfied

as ∆→ 0:

lb1 = γ2l
2
b2
− lb2

lb2 = γ1l
2
b1
− lb1

There is a unique solution to this set of nonlinear equalities, whose solution depends

on the values of γ’s. If we assume that γ1 = γ2 = γ, then the unique solution is

at lb1 = lb2 = 2
γ
. Yet, as mentioned above, the value of γ, and thus the values of

equilibrium measures depend on the ratio between r and κ. In the two extreme

cases,

When r
κ

= 0, we have γ1 = γ2 = 1 and the equilibrium measures are forced to be

lb1 = lb2 = 2. We encounter a perfectly symmetric market with li = 2 for each

i.

When r
κ

=∞, things get more complicated. We have a case where
lb1+lb2
l2bi

=

vbi/β

vsi/1−β
. But what are the valuations? They do, in turn, depend on the equi-

librium measures, so there is some cyclicity in the argument, which makes this
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case hard to deal with. Still, there is an upper limit on the rate with which

lbi can grow. Following the analysis conducted in the symmetric case, and

assuming κB
β

= κS
1−β , it can be shown that lbi ≤ lsi(1 + β

1−β
1−δ
δ

1
cB

) . Obviously,

the term 1−δ
cB

places an upper bound on the growth rate of
lbi
lsi

. Yet, due to the

complications in the analysis of this case, it is sensible to assume that κi > 0

for each i. Thanks to this assumption, the structure of the setup now does

not allow for the case r
κ

=∞, and everything about the equilibrium measures

are well-defined.

This wraps up the discussion about equilibrium measures. The only things that

remains to be analyzed is the behavior of equilibrium valuations. The analysis

should be familiar to the reader by now, and thus we only present the results. In

one extreme case where r
κ

= 0, the equilibrium measures are already tightly set. It

can be shown that, in this case:

vbi =
β

2− δ
− 2cB

2− δ

vsi =
1− β
2− δ

− 2cS
2− δ

which clearly converge to β and (1− β), respectively, as frictions disappear. In the

other extreme, when r
κ

=∞, the choice of equilibrium measures lbi and lsi are free,

as long as they remain within the limits set by the upper bound mentioned above.

Nevertheless, one can show that, as the frictions disappear,

vbi →
β/lbi

β/lbi + (1− β)/lsi

vsi →
(1− β)/lsi

β/lbi + (1− β)/lsi

which obviously makes sense, since the surplus is shared according to the bargaining

power and the equilibrium measures (when the bargaining powers are equal, the

model again unsurprisingly collapses to that of Rubinstein and Wolinsky (1985).)
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4.3.3 Discussion

One critical point that needs to be kept in mind in the analysis of this case is that,

if the surplus function is generated in a way that would enforce a unique matching,

then the analysis of the market turns out to be less complicated than what would

be otherwise: one can begin the analysis by asserting that the unique matching

would eventually be realized (with sufficiently small frictions) and then show that

the market is essentially the same as a setup where there are a group of bargaining

pairs. This is the approach that we will generalize in the proof of the main theorem.

The second critical point that one can learn from this analysis that, when ri
κi

=∞

for some i (which occurs when κi = 0) the analysis of the case turns becomes

challenging. Intuitively, this is because when κi = 0 for some i, ci = 0 and remaining

in the market is not costly for the agent, even if she is not able to find a match to

trade with. Therefore, that agent might prefer to stay in the market infinitely long

(which yields zero payoff) and we might encounter a type which dominates one side

of the market even though she doesn’t trade, thus forestalling other matches from

finding each other and trading. Having the assumption “κi > 0 for each i ∈ B ∪S”

is a simple and effective solution to this unpleasant possibility.

Now, having observed the important points behind the analysis of simple cases,

one can continue with the treatment of the general model. We first present the

assumptions that we will retain in the general setup.
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Assumptions

Below is a list of the assumptions on the generalized setup, that we retain throughout

this study.

Assumption 5.1. B and S are finite sets, and |B| = |S|.

The first part of the assumption (finiteness of types and equal cardinality of type

sets) is made for simplicity, the setup can easily be extended to a model with a

continuum of agents. The second part of the assumption (same cardinality) is also

not that restrictive; as we have already demonstrated in Section 4.2, the cases where

|B| 6= |S| can be converted into ones with |B| = |S| with proper adjustments.

Assumption 5.2. The surplus function f : B × S → R+ is strictly supermodular,

i.e. if b1 > b2 and s1 > s2, then fb1,s1 + fb2,s2 > fb1,s2 + fb2,s1 . Furthermore, for each

type bi ∈ B and si ∈ S, fii > 0.

The first part of this assumption is quite crucial for the heart of this study; even-

tually, we will use this assumption to impose a particular matching, namely perfect

assortative matching, in the search equilibrium as friction disappear. A simplified

version of the strategy of imposing a particular matching is already provided in

Section 4.3. The reasoning behind the second part is, to some extent, obvious: we
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don’t want to have any redundant types in the market, hence it is not very demand-

ing to ask that for each buyer (seller) i, there is a seller (buyer) j such that fij > 0

(fji > 0). All we do is to ask that one of these nonzero types happen to be the

corresponding type.

Assumption 5.3. li ≥ 1 for each i ∈ B ∪ S.

This is essentially an assumption about the structure of the market: we assume that

the agents are born into the market at the first period they appear. Indeed, it serves

a very practical purpose: it eliminates the possibility of a trivial search equilibrium,

where no one enters into the market and no trade occurs (such an equilibrium always

exists if we drop this Assumption.) Remember that this Assumption was also made

in Section 4.1, and, as expressed in there, the Proposition that proves that this

assumption indeed serves its purpose is provided and proven in the Appendix.

Now, having established the basic blocks of the setup, we can continue with the core

theorem of this study that investigates the relationship between search equilibria

and competitive equilibria.
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Main Theorem and Proof

The following is the central result of this study.

Theorem 6.1. Let S be a search economy and S∗ be its frictionless counterpart.

Accordingly, let E(S) be the set of search equilibria and E∗(S∗) be the set of compet-

itive equilibria. Then the following are true:

• For each e ∈ E(S), e→ e∗ for some e∗ ∈ E∗(S∗) as ∆→ 0.

• Set β = 1/2, and assume a uniform search cost for each type (κb = κs = κ.)

For each e∗ ∈ E∗(S∗), there exists a vector of relative patience parameters r̃

such that for each S = (S∗, 1/2, κ, r̃,∆) with any κ > 0, there exists some

e ∈ E(S) such that e→ e∗ as ∆→ 0.

Remark 6.2. The second part of the Theorem can be relaxed in multiple ways. Set-

ting β = 1/2 is made for convenience; one can choose any β ∈ (0, 1), and the proof

works identically with any cost vector κ with the restriction that
κbi
κsi

= β
1−β for any

i. Dropping this restriction and allowing any vector κ� 0 is also possible, but the

analysis gets more complicated. For the purposes of this study, demonstrating that

there exists some search equilibria that approximates any competitive equilibrium

is sufficient, and we prefer to stick to this version of Theorem.
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The proof of this theorem utilizes and combines several Propositions throughout

the process. The basic strategy is as follows: we first demonstrate that strict

supermodularity of surplus function imposes a perfect assortative matching in the

equilibrium, i.e. each buyer of type i trades with only seller i and vice versa.

Then, we show that, as an implication of having two types of frictions which remain

comparable to each other, the equilibrium steady-state measures of each type remain

comparable to their counterparts, i.e. lbi and lsi are comparable to each other for

each i. This fact, combined with the steady-state condition, implies that probability

of finding each type remains bounded away from zero. Consequently, the connection

between the search economy and market economy, where the latter is characterized

by Shapley and Shubik (1972) becomes apparent.

Now, let’s proceed by proving the first claim, which is established on the connection

between strictly supermodularity and perfect assortative matching.

6.1 Perfect Assortative Matching

By perfect assortative matching, we insinuate that any agent of type i trades only

with the corresponding agent of type i in the equilibrium. In our notation, this

corresponds to the observation that the trading possibility of types which do not

correspond to each other are zero. Formalization of this idea is as follows:

Definition 6.3. A search equilibrium e ∈ E(S) admits perfect assortative match-

ing if: mbi,sj = 0 for any i 6= j and mbi,si = 1 for each i.

The following Proposition, whose proof is provided in the Appendix, is pivotal to

this section of study.

Proposition 6.4. Take any search economy S, and consider the equilibrium e ∈

E(S) as ∆ → 0. There exists ∆ > 0 such that, for all ∆ < ∆, e admits perfect

assortative matching.
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Some elaborate analysis of Proposition 6.4 shows that the result it suggests is indeed

quite intuitive. We demonstrate that, when the economy under question attains suf-

ficiently low frictions, there is a unique matching it admits: in that unique matching,

the buyer of type 1 trades with only seller 1, buyer 2 only with seller 2, and similarly

for each pair up to type n. The critical point behind this result is Assumption 5.2.

Remember that strict supermodularity of surplus function has the interpretation

that high types should better be matched with high types, and low types similarly

with low ones. By imposing this condition on the surplus function, we implicitly

require that every agent should better be matched with her corresponding type, and

thus the result of perfect assortative matching follows.

It is worth noting that the relationship between a strictly supermodular surplus

function and assortative matching is discovered long before: Becker (1973) is the

first study to discover that a strictly supermodular production function enforces

assortative matching in a frictionless search market. Shimer and Smith (2000)

demonstrates that the result might might fail to extend to a model with frictions,

when the only type of frictions available is the patience of agents. Atakan (2006),

on the other hand, shows that Becker (1973)’s result continues to hold in a model

where the only type of friction is search costs, which need to be paid explicitly.

This study is, to the best of our knowledge, the first one to involve a model where

there are both implicit costs (patience) and explicit search costs. Proposition 6.4

therefore has the alternative interpretation that Becker (1973)’s result still holds in

such a model. Considering the setup, it is trivial to realize that there is always a

nonnegligible explicit component of search costs, hence it should not be surprising

to observe that Atakan (2006)’s result extends to this model. Nevertheless, it is

worthwhile to note that the previous papers in the literature involve a continuum of

agents rather than a finite set of types, hence the definition of assortative matching

and strategy of the proof differs between those papers and this study.

Now, having been done with the analysis of trading probabilities, we can move with

the analysis of steady-state measures.
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6.2 Market Size is Bounded

This section contains one of the most critical results of this study: we show that

there is a uniform upper bound on the size of the market. The following Proposition,

whose proof is in the Appendix, asserts this.

Proposition 6.5. In any search equilibrium E(S), the market size parameters (L

and Lr) remain finite as the frictions disappear.

The crucial point in understanding this Proposition and why it makes sense hinges

on recognizing that, for the market size to diverge to infinity, there must be some

types who remain in the market infinitely long. This means that some types enter

the market, and even though they are unable to find their corresponding types, they

keep on waiting each period. Note, however, the two types of frictions are operative:

the implicit cost (discounting the payoff by ri) and the explicit cost (paying the

search cost ∆κi) each period. As ∆ → 0, both frictions disappear, but if the

explicit component is always nonnegligible when compared to the implicit one, then

remaining in the market becomes not profitable, and thus not individually rational.

The model we construct satisfies this property, hence it should not be surprising to

see that the observation κi
ri
> 0 for each i lies at the heart of the proof. Thanks to

comparability of two types of frictions, no one prefers to stay in the market infinitely

long, thus the market size does not explode.

The crucial result that we will use in establishing the connection between search

equilibria and competitive equilibria follows quite easily from this Proposition.

Corollary 6.6. In any search equilibrium E(S), the probability of each type to be

found remains bounded away from zero (pi > 0 for each i.)

Proof. Realize that pbi =
lbi
L

and psi =
lsi
Lr

. By the No Trivial Equilibrium condition,

the numerators are greater than 1, and by Proposition 6.5, the denominators are

bounded.
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It needs to be emphasized that Corollary 6.6 has encouraging implications for the

analysis of search equilibrium. This is because, if any agent can be found with a

strictly positive probability, then waiting for the “ideal partner” would just require

an agent to be patient enough, which is eventually the case when ∆ → 0. This

implies that Corollary 6.6 might constitute an important step in proving that a

search equilibrium converges to a competitive one as frictions disappear. We show

that this is indeed the case in the next section.

6.3 Search Equilibria Becomes Competitive

The following result lies at the heart of this study: the connection between any

equilibrium e ∈ E(S) in a search economy and the competitive equilibrium in its

frictionless counterpart, e∗ ∈ E∗(S∗). It proves the first part of Theorem 6.1 and a

significant portion of the second part.

Consider any search-and-matching equilibrium e = (l,m, v). Define the measure of

(b, s) pairs who trade and leave the market at each period as: q̂bs = Ln(r)pbpsmbs.

The following proposition draws the parallel between two equilibria.

Proposition 6.7. For any search-and-matching equilibrium e = (l,m, v) ∈ E(S) of

an economy S = (B, S, f, β, κ, r,∆), the implied measures and values (q̂, v) consti-

tute an assignment equilibrium of S∗ = (B, S, f) as ∆→ 0.

The main idea in the proof of this Proposition, which is provided in the Appendix,

is as follows: Since Shapley and Shubik (1972) completely characterizes the equi-

librium of a frictionless economy, it is sufficient to show that (q̂, v) satisfies the

conditions specified by this characterization. Namely, we show that q̂ constitutes a

solution to the primal problem and v constitutes a solution to the dual problem. It

is worth reminding that Corollary 6.6 is crucial for the proof, as expected.

Given a frictionless economy S∗, let L(S∗) denote the set of set of all limit points of

the equilibria of the economies that extend S∗. Note that Proposition 6.7 asserts:
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L(S∗) ⊆ E∗(S∗) = E(S∗), i.e. the correspondence E(S) is upper hemi-continuous at

the limit, hence the first part of the theorem is established. One can now proceed

with the converse analysis.

6.4 Each Competitive Equilibrium is Approximated

It is worth noting that, for any competitive equilibrium e∗ = (q, ν) of a friction-

less economy, q is well-defined and the convergence q is proven by Proposition 6.4.

Therefore, the only parameter whose range needs to be covered is ν. By the discus-

sion provided in the previous section (most notably, in the proof of Lemma F.1),

we know that ν ∈ R|B|+|S| is completely characterized by:

ν ∈ R|B|+|S| such that νbi + νsj ≥ fij ∀(bi, sj) ∈ B × S

with equality if i = j.

One only needs to show that the whole range of (νbi , νsi) can be covered via proper

selection of frictions. The following Proposition asserts this, and it is even in a

stronger form than required: it demonstrates that, without the need to pick κi’s,

picking (rbi , rsi) properly for each i would suffice. Hence, for the rest of the analysis,

we assume that a single parameter κ > 0 specifies all the search costs, i.e. κi = κ

for each i ∈ B ∪ S.

Proposition 6.8. For each e∗ ∈ E∗(S∗), there exists a vector of patience parameters

(r̃) such that given S = (S∗, 1/2, κ, r̃,∆) with any κ > 0, there exists an e ∈ E(S)

such that e→ e∗ as ∆→ 0.

Proof. Take any pair (νbi , νsi) which is a part of e∗. The strategy of the proof is to

construct a search equilibrium with vbi → νbi and vsi → νsi = fii − νbi .

We will construct the simplest symmetric search equilibrium with li = n for each

i ∈ B ∪ S (which directly implies: pi = 1
n

for each i.) Realize that, thanks to this
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choice of steady-state measures, the steady-state conditions for each pair definitely

holds, hence one basically needs to consider the constant surplus conditions.

Set β = 1 − β = 1/2, realize that, by the choice of steady-state measures, r = 1.

Furthermore, since lbi = lsi = n > 1, the constant surplus conditions hold with

equality, which are:

(1− δbi)vbi = −cbi +
lsi
2L

(fii − δbivbi − δsivsi)

(1− δsi)vsi = −csi +
lbi
2L

(fii − δbivbi − δsivsi)

Direct solution of the equalities yields the following closed-form solutions:

vbi =
fii

lsi
2L
− cbi + fii

δsi
2L

1
1−δsi

(csilsi − cbilbi)

1− δbi + δbi
lsi
2L

+
1−δbi
1−δsi

δsi
lbi
2L

vsi =
fii

lbi
2L
− csi + fii

δbi
2L

1
1−δbi

(cbilbi − csilsi)

1− δsi + δsi
lbi
2L

+
1−δsi
1−δbi

δbi
lsi
2L

where, using the equalities cbi = ∆κbi , csi = ∆κsi , δbi = e−rbi∆ and δsi = e−rsi∆,

converge to the following values:

lim
∆→0

vbi = fii
lsi + 1

rsi
(κsilsi − κbilbi)

lsi +
rbi
rsi
lbi

lim
∆→0

vbi = fii
lbi + 1

rbi
(κbilbi − κsilsi)

lbi +
rsi
rbi
lsi

One can now set κbi = κsi = κ and use lbi = lsi to obtain the simplifications:

lim
∆→0

vbi = fii
rsi

rbi + rsi

lim
∆→0

vbi = fii
rbi

rbi + rsi

Realize that, not very surprisingly, these values correspond to the shares that the
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parties obtain in Rubinstein (1982).1 One now has the freedom to pick (rbi , rsi) ≥

(0, 0) to ensure that lim∆→0(vbi , vsi) = (νbi , νsi).

This Proposition, therefore, establishes the second part of Theorem and demon-

strates that E(S∗) ⊆ L(S∗). Combined with the argument in the previous section,

this means E(S∗) = L(S∗), and thus, the correspondence E(S) is both upper and

lower hemi-continuous (i.e. continuous) at the limit.

1The original work indeed uses δ’s directly and shows that v1 = 1−δ2
1−δ1δ2 . Note, however, that

taking δi = e−ri∆, one can easily see that v1 → r2
r1+r2

as ∆→ 0.
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Conclusion

This study establishes the continuity of search equilibrium correspondence under

the assumption of strictly supermodular surplus function, and, to the best of our

knowledge, the first one to come up with the converse analysis of Gale (1987). One

particular dimension which these results will be improved upon is the restrictiveness

of the strict supermodularity assumption. It does not take so long to realize that the

basic use of strict supermodularity assumption is to impose a particular and unique

matching in the equilibrium. Therefore, it seems intuitively plausible that the less

restrictive assumption of “unique matching in the limit” will also be sufficient for

our purposes. This is indeed the current line of research we are working upon. On

the other hand, when the matching in the limit fails to be unique, the extension of

the results into a more general setting does not occur so trivially. This is because,

in the current setup, the result of perfect assortative matching enables us to deduce

that the agents have no outside options rather than their corresponding partners.

Therefore, one can simply proceed as if all the bargaining process between bi and

si occurs on the question of how the sharing of fii will be realized between the two

agents, totally isolated from the results of other bargainings in the market. This,

unfortunately, is no longer the case when the market in hand does not have a unique

matching: the agents possibly have outside options that are nonzero, hence a more
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assiduous analysis of what goes on in the other matchings becomes relevant. 1 The

arguments presented here might need a substantial revision, if one needs to develop

an ultimate theory on the strategic foundations of general equilibrium.

Another direction in which this study can be improved upon might be adding an-

other type of friction, namely, the friction of incomplete information into the model

and observe how the findings are affected. This, obviously, constitutes a potential

improvement in terms of attaining a more realistic market model to serve as the

foundation for the frictionless market. This is another area worth exploring, and is

another line of research we are working upon.

1It is also worth noting that, whereas the assumption of unique matching can be considered
realistic in some markets, it might not be so in the others. For instance, a market with a ho-
mogenous good, where the sellers are characterized by their reservation prices, buyers by their
valuations, and the surplus generated is considered as the difference between these two values,
fails to have a unique matching.
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Proof of Proposition 3.2

Proof. Given (l,m, v), for each i ∈ B ∪ S, define the strategy σi such that the

proposer makes an offer such that she leaves δjvj to the responder, if fij−δivi−δjvj ≥

0, and leaves fij − δivi if fij − δivi − δjvj < 0. Given this profile, the responder

accepts the offer with probability mij.

With this strategy profile, all agents of type b (who have not traded yet) remain in

the market if vb > 0. Otherwise, among the unit measure of type b agents who are

born into the market, lbn(r)
∑

S ps(βmbs + (1 − β)msb) conduct a trade and leave,

and the rest leaves without any trade.

It is trivial to check that the strategies are sub-game perfect, solves the maximization

problem for each agent, the market remains in steady-state and v specifies the value

for each type under σ and l.
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Analysis of the Asymmetric

1-by-1 Market Equilibrium

Remember that we are after the analysis of a search equilibrium that is asymmetric

(i.e. lb 6= ls in the steady-state.) As in the text, assume vb > 0 and vs > 0.

Furthermore, for simplicity, assume that β = 1 − β = 1/2 and cB = cS = c

(i.e. κB = κS = κ.) Finally, since the know that condition (iii) of 1-by-1 market

equilibrium, stating “lb = 1 or ls = 1” must hold, assume, without loss of generality,

that lb = 1 and l := ls > 1. Then, the following equalities defining the equilibrium

valuations must hold:

(1− δ)vb = −c+
1

2
(1− δvb − δvs) (B.1)

(1− δ)vs = −c+
1

2l
(1− δvb − δvs) (B.2)

Adding the two equations and some algebra yields:

vb + vs =
−2c+ l+1

2l

1− δ + δ l+1
2l

→ 1

61



Appendix B. Analysis of the Asymmetric 1-by-1 Market Equilibrium 62

which, after some more algebra, also yields:

1− δvb − δvs =
1− δ + 2δc

1− δ + δ l+1
2l

Plugging this back into equation B.1, we obtain:

vb = − c

1− δ
+

1

2

1 + 2δc
1−δ

1− δ + δ l+1
2l

= − c

1− δ
+

1
2

+ δc
1−δ

1 + δ
1−δ

l+1
2l

1

1− δ

=
1

1− δ

1
2
− c+ l−1

2l
δc

1−δ

1 + δ
1−δ

l+1
2l

=
l + cδ(l − 1)− 2lc

(1− δ)2l + δ(l + 1)

which, clearly converges to l
l+1

as ∆→ 0.1 Conducting the symmetric calculations,

it can be shown that

vs =
1− cδ(l − 1)− 2lc

(1− δ)2l + δ(l + 1)

which converges to 1
l+1

(smaller than the limit value of vb, when one takes into

account that l > 1.) The findings also make sense: they suggest that the long

side of the market receives a smaller surplus in the limit. When everything else

is symmetric (as in this example), the ratio of these valuations is only a function

of how asymmetric a market is. Note that, not surprisingly, the results we found

are the same as in Rubinstein and Wolinsky (1985), because the model collapses to

that of Rubinstein and Wolinsky (1985) when, say, c = 0 (or more generally, when

c
1−δ → 0.)

1The argument indeed requires a little bit more construction. The best option seems to be a
case-by-case analysis. When c

1−δ →
κ
r = ∞, the limit we constructed on l, 1 + r

κ , forces l to be

arbitrarily close to one. When c
1−δ →

κ
r = 0, l might tend towards infinity, but the l−1

2l
δc

1−δ term
in the numerator can be shown to be converging towards a finite number (zero, if l becomes too
big.) In any case, this complicated case is already omitted thanks to the assumption that κ > 0.
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The case is essentially very similar, albeit a little bit more complicated, when the

model is constructed less symmetrically (i.e. when β 6= 1/2.) The conjecture is as

follows: one could still show that vb + vs → 1 in such a case. Furthermore, some

careful inspection of the set of equations defining vb and vs should show that the

ratio of these two values, vb
vs

, converges to β
(1−β)/ls

. 2 These two facts altogether

imply that vb → βls
βls+1−β and vs → 1−β

βls+1−β . Thus, the ratio of two valuations is

again a function of two sources of asymmetry in the market: (i) the asymmetry

originating from the structure of the market (β 6= 1 − β) and (ii) the asymmetry

originating from the measures of agents present in the market (lb 6= ls.)

2When ci
1−δ →

κi

r = 0, one can see this immediately. Otherwise, requires some more algebra.



Appendix C

No Trivial Equilibrium

Assumption

The following proposition suggests that the No Trivial Equilibrium condition indeed

eliminates the possibility of a trivial equilibrium. It is provided for the case |B| =

|S| = 1, yet it is easily generalizable.

Proposition C.1. If Assumption 5.3 holds, then, in the steady-state, the market

can not have any trivial equilibrium.

Proof. Suppose, to get a contradiction, that the market has a trivial no-trade equi-

librium. Clearly, executing a trade is the only way in which an agent can receive

a positive surplus, therefore, the concept of a no-trade equilibrium by itself implies

vb = vs = 0. Obviously, since there is no positive gain in staying in the market, yet

there exists a sure negative cost, no one finds it profitable to stay in the market after

their first period. This leaves us with a markets that contains only the “new-borns”

each period, i.e. lb = ls = 1 in the equilibrium. Now, each buyer (seller) is born

into the market, and since r = 1, finds a partner as soon as she is born. With

probability β (1− β), she is designated as the proposer.
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Clearly, the fact vb = vs = 0 implies that any price offer above that yields a nonzero

share to the partner would be accepted. Therefore, the current equilibrium strategy

σb for any buyer in the market is as follows:

• In the first period, the agent will inevitably enter the market. For the remain-

ing periods, do not enter the market.

• In any period, if the agent enters the market, finds a match and is designated

as the proposer, offers 0 as the price.

• The agent accepts any price offer in [0, 1), and rejects offer 1.

One could also derive the strategy profile σs for any seller in the market; it will be

defined similarly.

Here is an alternative strategy profile σ′b that yields a strictly higher payoff for the

seller:

• Enter the market in the first period. For the remaining periods, do not enter

the market.

• In any period, if a match is found and the seller is designated as the proposer,

offer ε > 0 as the price.

• The agent accepts any price offer in [0, 1), and rejects offer 1.

It is easy to check that, given σs, this strategy yields an expected payoff of βε > 0

each period, hence it is a profitable deviation, contradicting the choice of σb as the

optimal strategy profile.
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Proof of Proposition 6.4

The proof of this proposition is composed of several steps. We begin by showing

that the limit point of this equilibrium, e∗, admits perfect assortative matching.

Because e = (l,m, v) → e∗ = (l∗,m∗, v∗), we can then deduce that m satisfies

the desired properties in the limit. The final thing to be demonstrated is that the

convergence of m to m∗ does not occur asymptotically, but rather it is completed

before ∆ reaches to 0. This is a relatively easier argument that basically follows

from finiteness of types, and we’ll provide it after the limit analysis. The limit

analysis can, on the other hand, be considered as a restatement of Becker (1973)

for a setup with finite types.

Lemma D.1. Take any search economy S, consider its frictionless counterpart S∗

(which occurs in the limit when ∆ = 0). The equilibrium e∗ ∈ E∗(S∗) has the feature

that mij > 0 if and only if i = j.

Proof. For the economy in the limit, the three critical conditions, which are effi-

cient bargaining, constant surplus and steady-state conditions, can be expressed as

follows:

• If vb + vs < fbs, then mbs = msb = 1 and if vb + vs > fbs, then mbs = msb = 0.
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• The valuations satisfy:

n(r)β
∑

S
psmbs(fbs − vb − vs) = 0 for all b ∈ B,

n(r)

r
(1− β)

∑
B
pbmsb(fbs − vb − vs) = 0 for all s ∈ S,

• The measures satisfy:

lbn(r)
∑
S

psmbs ≤ 1 for all b ∈ B,

ls
n(r)

r

∑
B

pbmbs ≤ 1 for all s ∈ S,

where the inequality holds with equality for i with vi > 0.

A careful inspection of efficient bargaining and constant surplus conditions show

that the inequality vb + vs ≥ fbs must hold for each b, s pair. 1 Furthermore, again

by the constant surplus condition, we have the following property: if mbs > 0, then

vb + vs = fbs for any b, s pair.

We will construct an inductive argument to show that mij = 0 for each i 6= j. We

begin with the highest type, which is type n, where n = |B| = |S|. Our aim is

to show that mni = 0 for each i < n. Suppose, to get a contradiction, that this

is not the case, i.e. mni > 0 for some i. By the observation made in the previous

paragraph, this means: vbn + vsi = fni.

Now, we will use the steady state conditions of agents to find a similar equality for

bn. For the moment, assume that the steady state conditions of bn and sn hold with

1This heavily depends on the assumption that both pb and ps are bounded away from zero.
Note, however, the equilibrium we will construct in the end will have this property, thus the
analysis indeed doesn’t have any flows.
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equality (we provide a proof of this assumption later on.) Then, we must have,

lbnn(r)(ps1mn1 + . . .+ psimni + . . .+ psnmnn) = 1

lsn
n(r)

r
(pb1m1n + . . .+ psnmnn) = 1

Realize that since mni > 0 and since all probabilities are bounded away from zero,

lbnn(r)psimni > 0 and thus lbnn(r)psnmnn = lsn
n(r)
r
pbnmnn < 1. Therefore, for the

second equality to hold, we must have sn trading with some agent other than bn,

i.e. there exists some j s.t. mjn > 0. Therefore, we must have vbj + vsn = fjn.

Since the inequality vb + vs ≥ fbs must hold for each pair, it needs to hold for pairs

(bn, sn) and (bj, si) in particular. Combining, we must have,

fnn + fji ≤ (vbn + vsn) + ((vbj + vsi)) (D.1)

= (vbn + vsi) + ((vbj + vsn)) (D.2)

= (fni) + (fjn) (D.3)

< fnn + fji (D.4)

where D.3 follows when we substitute the equalities derived above, and D.4 follows

from strict supermodularity of the surplus function. We obtain fnn+fji < fnn+fji,

a clear contradiction.

Conducting the symmetric analysis for the seller, it can be shown that mni = min =

0 for each i 6= n. One can then continue to apply the conductive argument for the

lower types (beginning by type n − 1), and reach the conclusion that mij = 0 for

each i 6= j.

One thing that remains for this argument to be completed is to provide a discussion

about the about an assumption that we made in the process, namely, the assumption

of steady-state conditions holding with equality for bn and sn. First, realize that the

assumption of bn’s condition binding does not serve any purpose for the sake of the

analysis, and can be relaxed (nevertheless, the assumption is still necessary for the
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symmetric analysis, and needs to be defended in a way that is substantially the same

as we do for the assumption of sn’s condition binding.) Here, we provide a proof

of the observation that sn’s steady state condition holds with equality. Suppose,

to get a contradiction, that it does not bind, which in turn implies that vsn = 0.

Since the inequality vbi + vsn ≥ fin for each bi, we conclude that vbi ≥ fin for each

i. There exists two possibilities:

1. If fin > 0 for each i 6= n, the analysis is simple. We obtain vbi > 0 for each i;

therefore, the steady-state condition binds for each type of buyer. This means

that each period, at total of n = |B|measure of buyers enter to the market and

prefer to stay until they conduct some trade. Consequently, for the market to

remain in the steady state, a necessary condition is that a total of n buyers

should conduct trade and leave each period. Accordingly, we must have a

total measure n of sellers conducting the trade and leave each period. This

enforces the steady state condition for each seller to bind, and the condition

for sn to bind in particular.

2. Alternatively, if fjn = 0 for some particular j, things get a little complicated,

yet still manageable. Following the logic provided in the previous paragraph,

now, suppose bj’s steady state condition does not bind, and thus vbj = 0. Now,

consider the agent si (the particular type who is assumed to be trading with

bn, such that mni > 0 and vbn + vsi = fni.) Since we must have vbj + vsi ≥ fji,

and since vbj = 0, we have vsi ≥ fji. Furthermore, since we must have

vbn + vsn ≥ fnn, and since vsn = 0, we have vbn ≥ fnn. Combining, we obtain:

vbn + vsi ≥ fnn + fji (D.5)

> fni + fjn (D.6)

= (vbn + vsi) + 0 (D.7)
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where D.6 follows from strict supermodularity, and D.7 follows from the equal-

ities derived just above. We obtain vbn + vsi > vbn + vsi , a contradiction.

Therefore, we must have vsn ’s steady state condition to bind in any case.

This wraps up the discussion that there is no cross-trade in the equilibrium. To

show that the limit economy admits perfect assortative matching, one final thing

that remains to be shown is that mii > 0 for each i in any e∗ ∈ E∗(S∗). This is

rather easy to see, since assuming the contrary (mii = 0 for some i) would mean

that bi and si does not conduct any trade with any types in the market, and leave

the market with zero surplus. One can always develop an alternative strategy (as

done in the proof of Proposition C.1) to show that this strategy is not optimal. An

easier way to see this would be to realize that zero surplus for both types would

mean vbi = vsi = 0, which would contradict the inequality vbi + vsi ≥ fii > 0. We

conclude that mij > 0 if and only if i = j in the economy at the limit.

Now, having shown that the economy in the limit admits this critical feature, it

remains to show that this is as well the case for a search economy with sufficiently

low frictions.The following Lemma will be useful in demonstrating this:

Lemma D.2. Take any search economy S . In the equilibrium e ∈ E(S), for i 6= j,

we have mij = 0 for sufficiently low frictions.

Proof. Take any pair bi and sj such that i 6= j. By the previous lemma, we know

that mij = 0 in the limit. There are two possible cases. If vbi +vsj > fij in the limit,

the argument is much easier. This is because fij−δbivbi−δsjvsj → fij−vbi−vsj < 0

as ∆ → 0. Obviously, since every function we work on is continuous, there exists

an ε > 0 such that fij − e−rbi∆vbi − e
−rsj∆vsj < 0 for ∆ < ε.

If, on the other hand, vbi +vsj = fij in the limit, the analysis gets more complicated.

We do know that mij = 0 in the limit, yet we also need to show that this is the case

for the search economy with sufficiently low frictions as well. Suppose the contrary,
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i.e. assume that lim∆→0mij = 0 but mij > 0 for each ∆ > 0. We will obtain a

contradiction with this case.

Suppose, as in the proof of previous Lemma, that vbj > 0 and vsi > 0 in the limit

(we’ll handle the alternative cases later on.) Then, for sufficiently low frictions, we

must have the steady-state conditions of these two types to be holding with equality.

This, on the other hand, implies that both bj and si must be trading with some

other agents at any nonnegative ∆ (because lbjn(r)psjmjj = lsj
n(r)
r
pbjmjj < 1, and

similarly for si.) Say, these agents are sk and bm respectively, i.e. we must have

mjk > 0 and mmi > 0. But then, following the same reasoning, bk and sm must be

trading with some other as well, and the process continues until we have a cycle.

Eventually, we must end up with an ordered cyclic set of indices (i, j, k, . . . ,m, i)

such that mij > 0,mjk > 0, . . . ,mmi > 0.

It is indeed quite straightforward to obtain a contradiction once one has such a

cycle. For simplicity, we’ll present the case with only three indices, but the general

argument is similar. Suppose the cycle is of the form (i, j, k, i), i.e. suppose we have

mij > 0,mjk > 0,mki > 0 for each ∆ > 0. It is easy to observe that this implies:

vbi + vsj = fij

vbj + vsk = fjk

vbk + vsi = fki

in the limit (because otherwise, if any of these inequalities is strict, we would need

to have mbs = 0 for these particular types for sufficiently small frictions.) Adding

the three equalities, we obtain:

(vbi + vsj) + (vbj + vsk) + (vbk + vsi) = fij + fjk + fki (D.8)

(vbi + vsi) + (vbj + vsj) + (vbk + vsk) = fij + fjk + fki (D.9)

fii + fjj + fkk = fij + fjk + fki (D.10)
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where D.10 follows from the fact that mii > 0,mjj > 0,mkk > 0 in the limit

(by Lemma D.1.) Now, without loss of generality, assume that min{i, j, k} = k.

Strict supermodularity of surplus function then implies: fji + fkk > fjk + fki.

Adding fij to both sides, we obtain: fij + fji + fkk > fij + fjk + fki. By strict

supermodularity, we also have fii + fjj > fij + fji, and adding fkk to both sides, we

obtain: fii + fjj + fkk > fij + fji + fkk. Combining both inequalities, we obtain:

fii + fjj + fkk > fij + fjk + fki, a contradiction to D.10.

The only thing that remains, therefore, is handling the alternative cases to the case

assumed above (i.e. vbj > 0 and vsi > 0.) First, assume that vbj = vsi = 0 in

the limit. This has two implications: first, we need to have vbi = fii and vsj = fjj

in the limit. Second, since the inequality vbj + vsi ≥ fji must hold in the limit,

we must have fji = 0. By the first implication, vbi + vsj = fii + fjj and by strict

supermodularity, fii + fjj > fij + fji, thus vbi + vsj > fij + fji. Using the second

implication, this gives: vbi + vsj > fij. But, by the efficient bargaining condition,

this implies that mij = 0 in the limit, a contradiction to our base assumption.

As the final alternative case, assume, without loss of generality, that vsi = 0 but

vbj > 0. But then, for her steady-state condition bj must be trading with someone

else other than sj. Say this agent is sk, i.e. mjk > 0. Again, this has to continue

until either (i) we obtain a cycle, in which case one can obtain a contradiction similar

to the one above, or (ii) we encounter some buyer with zero valuation. Suppose case

(ii) occurs, and again for simplicity, assume that vbk = 0. Now we have:

mij > 0⇒ vbi + vsj = fij,

mjk > 0⇒ vbj + vsk = fjk,

vbi + vsi = fii, vbj + vsj = fjj, vbk + vsk = fkk,

vsi = vbk = 0

in the limit. Combining all these equalities, one can easily get: fii + fjj + fkk =

fij + fjk. Note, however, as discussed above, strict supermodularity of the surplus
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function yields fii + fjj + fkk > fij + fjk + fki, a contradiction.

By the help of Lemma D.2, it is now straightforward to show that any search

economy with sufficiently low frictions has the property that mij = 0 for any i 6= j

with sufficiently low frictions. In particular, by Lemma D.2, it follows that for each

(bi, sj) pair with i 6= j, one can find a ∆ij > 0 such that mij = 0 when ∆ < ∆ij.

Picking ∆ = min{(∆ij)(bi,sj)∈B×S} > 0, we have the property in Lemma D.1 carried

into a search economy with low frictions.

The only thing that remains to complete the proof of Proposition 6.4 is, therefore,

the demonstration that mii = 1 for each i. The following Lemma shows this.

Lemma D.3. In the search equilibrium e ∈ E(S), mii = 1 for each i when ∆ < ∆.

Proof. Realize that Lemma D.2 implies that the steady state condition of each agent

simplifies to: lbin(r)psi ≤ 1 for each bi ∈ B, and similarly for each si ∈ S. We’ll use

this simplified version for the rest of analysis.

Suppose, to get a contradiction, that mii < 1 for some particular i. By the efficient

bargaining condition, this implies: fii − δvbi − δvsi ≤ 0 ⇒ (vbi + vsi) ≥
fii
δ
> 0.2

This, in turn, implies that vbi > 0 or vsi > 0. Either way, at least one of the

steady-state conditions associated with these types must hold with equality, and

since lbin(r)miipsi = lsi
n(r)
r
miipbi , we can be sure that both steady state conditions

hold with equality. Rearranging terms in these steady state conditions, one obtains

mii = 1
lbi
lsi
L

n(r)
r

< 1. Now, this inequality implies that lbi > 1 or lsi > 1 (otherwise,

if lbi = lsi = 1, plugging them into the inequality gives L
n(r)/r

< 1. Realize that

the left-hand side of the inequality corresponds to the total size of the longer side

of the market. Taking into account that li ≥ 1 for each i, any side of the market

must ne at least of size n, so this is clearly impossible.) But then, by the constant

surplus condition, at least one of the inequalities denoting expected payoffs of bi

2For the sake of simplicity, we assume here that δbi = δsi = δ. The proof also works with
different patience levels.



Appendix D. Proof of Proposition 6.4 74

and si must hold with equality. Suppose, without loss of generality, that it is bi.

Therefore, we must have:

−cbi + n(r)
∑

S
psmis(fis − δvbi − δvs)) = (1− δ)vbi

We have already shown that mij = 0 for each i 6= j, and 1 − δvbi − δvsi ≤ 0.

Substituting gives: −cbi = (1− δ)vbi , which, by the individual rationality condition,

indicates a contradiction.

Lemmas D.2 and D.3 do simultaneously imply that, if ∆ < ∆, the economy admits

perfect assortative matching, thus the proof of Proposition 6.4 follows.
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Proof of Proposition 6.5

The argument will follow from the observation that steady-state measures of each

corresponding type (lbi and lsi for each i) must remain comparable to each other.

The following Lemma is therefore crucial.

Lemma E.1. In any search equilibrium E(S), the steady-state measures or corre-

sponding types remain comparable to each other, i.e. the ratio
lbi
lsi

is bounded from

above (away from infinity) and from below (away from zero).

Proof. Assume, without loss of generality, that lbi ≥ lsi for a particular i. We will

derive an upper bound for
lbi
lsi

. If lbi = 1, then everything is already under control.

Therefore, we can assume that lbi > 1. The constant surplus condition, then, yields

two equations:

−cbi + n(r)βpsi(fii − δbivbi − δsivsi) = (1− δbi)vbi

−csi +
n(r)

r
(1− β)pbi(fii − δbivbi − δsivsi) ≤ (1− δsi)vsi

Rearrangement of two equations and utilization of the facts pbi =
lbi
L

, psi =
lsi
Lr

gives

the upper bound:

lbi
lsi
≤

vsi
1−β +

csi/(1−β)

1−δsi
vbi
β

+
cbi/β

1−δbi

1− δsi
1− δbi

75
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It is trivial to see that this upper bound is finite. It depends on the values of vbi and

vsi , but can not converge towards infinity even in the worst case. This is because,

as frictions disappear, we have:

lim
∆→0

ci
1− δi

= lim
∆→0

∆κi
1− e−ri∆

= lim
∆→0

κi
ri

=
κi
ri
> 0

where the second equality follows from L’Hôpital’s Rule. This observation shows

that the denominator never vanishes, hence
lbi
lsi

remains finite.

If we employ some stronger assumptions, such as a perfectly symmetric market

structure (
cbi
csi

= β
1−β and δbi = δsi = δi for each i), value of the upper bound

converges to
vsi
1−β+θ
vbi
β

+θ
, which is bounded above by

fii
1−β+θ

θ
(where θ = lim∆→0

cbi/β

1−δi =

csi/(1−β)

1−δi ).

Let α be the upper bound defined above. If α ≥ 1, then this effectively works as an

upper bound on
lbi
lsi

. If 0 < α < 1, then, we must have a case where lbi < lsi . It can

also be shown that
lsi
lbi

is bounded above by 1
α

in this case.

One final remark is that, if we have a case where lbi > 1, lsi > 1, then the upper

bound binds, in the sense that we must have
lbi
lsi

= α. In this case, we have a

well-defined ratio of steady-state measures.

Another thing that will be helpful in the analysis is to realize that the steady state

conditions of corresponding types can be simplified further, and can even be unified.

Begin by observing that lbin(r)psi = lsi
n(r)
r
pbi for any i; furthermore, plugging in

the values of pbi and psi , one can conclude that the steady state conditions indeed

correspond to:
lbilsi
Ll
≤ 1

(where Ll denotes the total measure of the longer side of the market) and the in-

equality holds with equality for i if vbi > 0 or vsi > 0. Based on the revised version

of this steady state condition, and based on the comparability result obtained in
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Lemma E.1, we now argue that the market size cannot grow unboundedly. The

proof of Proposition 6.5, which depends heavily on Lemma E.1, is as follows:

Proof. (of Proposition 6.5) Suppose, to get a contradiction, that L grows in-

finitely, and let λ → ∞ denote the order of convergence in which this part grows

(i.e. L
λ

remains finite and nonzero.) Since the set of available types is finite, there

must be at least one type whose steady state measure grows in the order of λ, i.e.

there exists an i such that lbi → ∞ grows with λ. By Lemma E.1, then, lsi must

also grow unboundedly in the order of λ. Note, however, that by the steady state

condition for i, we must have
lbi lsi
Ll
≤ 1, so Ll must be growing in the order of λ2.

Obviously, L grows in the order of λ, so we conclude that the sellers are at the

longer side of the market, i.e. Ll = Lr. But then, by the same argument, there

must be some j such that lsj →∞ in the order of λ2, and, by Lemma E.1 again, lsj

must be growing in the order of λ2. This implies that L grows at least in the order

of λ2, a contradiction.
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Proof of Proposition 6.7

The eminent method to prove this Proposition is to show that q̂ satisfies the con-

straints of the primal problem and v satisfies the constraints of the dual, and finally

to show that the values of the primal and dual objective functions are equal, i.e.∑
s vs +

∑
b vb =

∑
B×S q̂bsfbs.

The first thing to notice is that the parameters which are likely to change as ∆→ 0,

i.e. the tuple (pb, ps, q̂bs, vb, vs)∀(b, s) ∈ B × S, indeed reside in a compact set. This

is because for each b, s, (pb, ps, q̂bs) ∈ [0, 1]3 and (vb, vs) ∈ [0, fbs]
2. Furthermore,

realize that none of the conditions that define (l,m, v) include any discontinuity at

all. Therefore, we can work with the values in the limit, and confidently assume

that the conditions of search equilibrium are also satisfied for ∆ = 0.

The fact that (q̂) ∈ R|B||S|+ and (v) ∈ R|B|+|S|+ are obvious, by construction.To show

that (3.3) holds for q̂b, use the steady-state condition, which says: Lpb
∑

S n(r)psmbs ≤

1∀b, which, by definition of q̂bs, translates into:
∑

s∈S q̂bs ≤ 1∀b. Similarly, (3.4) can

be obtained via the symmetric steady-state condition.

To show that inequality (3.5) is satisfied by elements of v: Take any two types

(b, s) ∈ B×S, and suppose, to get a contradiction, that fbs−vb−vs > 0. Note that

by the efficient bargaining condition, this implies: mbs = 1. Now, use the constant

78
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surplus condition for one member of the pair (say, for the b). We have:

n(r)βps(fbs − vb − vs) ≤ 0

Where, by Proposition 6.6, we know that ps > 0, and thus the left hand-side is

strictly positive, a contradiction.

The final thing that remains to be shown, therefore, is that the primal and dual

values are equal. To show this, we need the help of following Lemma (whose proof

is provided in the Appendix.)

Lemma F.1. In any competitive equilibrium e∗ = (q, v),
∑

s vs+
∑

b vb =
∑

B×S qbsfbs

if and only if vbi + vsi = fii for each i.

Proof. We first show that q maintains a specific form in any competitive equilibrium.

Our claim is that qij takes the form of the Kronecker’s delta function, i.e.

qij = δij =

 0, if i 6= j;

1, if i = j.

We receive support from several sources in proving this claim. The observation that

qbs takes integer values hinges on the fact that the assignment problem of Shapley

and Shubik (1972) is a special case of a linear program: an integer program. An

earlier treatment of this observation (which Shapley and Shubik (1972) uses as well)

is available in Dantzig (1963). A more recent treatment involves showing that such

an assignment problem’s constraint matrix is totally unimodular (TUM), and the

example of such an approach can be found in Vohra (2005).

Given qbs ∈ {0, 1} for each (b, s), to show that it is equal to Kronecker’s delta

function, one can refer to the proof in Becker (1973). The following originally

belongs to Becker (1973), and is adapted into our model.
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We need to show that the maximizing sum occurs when the corresponding types

are matched with each other, i.e.

n∑
j=1

fj,ij <

n∑
i=1

fi,i

for all permutations (i1, i2, . . . , in) 6= (1, 2, . . . , n).

Suppose, to get a contradiction, that the maximizing sum occurs for a permutation

(i1, i2, . . . , in) that violates the rule i1 < i2 < . . . < in. Then there is a particular

j with the property ij > ij+1. But then, by the strict supermodularity of surplus

function, we have:

fj,ij + fj+1,ij+1
< fj,ij+1

+ fj+1,ij

which contradicts the optimality of (i1, i2, . . . , in).

Now, based on this argument, we can revise the statement in Lemma F.1 as:

“
∑n

i=1 vsi +
∑n

i=1 vbi =
∑n

i=1 fii if and only if vbi + vsi = fii for each i.” The if

part of the statement is obvious, and follows directly. For the only if part, suppose

vbi + vsi > fii for some particular i. Then, for the equality to hold, it must be the

case that vbj +vsj < fjj for some j, which contradicts that e∗ satisfies the constraint

in the dual problem.

Lemma F.1 simplifies the effort required tremendously, since it’s almost self-evident

that the condition vbi+vsi = fii is satisfied in the limit. This is because vbi+vsi < fii

would contradict to the constant surplus condition, and if vbi+vsi > fii, there would

be no trading opportunities for types i, which leave them with vbi = vsi = 0, another

contradiction. This completes the proof of Proposition 6.7.
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