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Abstract

Let X be a Banach space and (z,), be a bounded sequence in X. The sequence (zp)s,
is said to be weakly Cauchy if, for each f € X*, the sequence (f(zy)), converges. The

sequence (), is said to be equivalent to the unit vector basis of ¢! if there is a constant

C > 0 such that, for any constants cy,...,c, one has
n n
D el < C| D cra)).-
k=1 k=1

In 1974, Haskell P. Rosenthal [10] proved that a Banach space X does not contain an
isomorphic copy of ¢! if and only if every bounded sequence (), in X has a weakly
Cauchy subsequence. In this thesis, we give combinatorial and topological proofs of this

theorem and examine some of its equivalences. Then we present some applications of it.

Keywords: Baire-1 functions, Rosenthal’s ¢!-theorem, weakly compact operators, Lim-

ited sets, Grothendieck property.



v
OZET

X bir Banach uzay1 ve (z,,), bu uzaydan simrh bir dizi olsun. Eger her f € X* igin
(f(xn))n dizisi yakmsiyorsa (zp,), dizisine zayif Cauchy denir. Rastgele ci, ..., ¢, sabit-

leri igin
n

Z CkTk

k=1

n
D> led <
k=1

esitsizligini saglayan bir C' > 0 sabiti bulabiliyorsak (z,), dizisine ¢! uzaymm birim

taban vektorlerine denk denir.

1974 yilinda Haskell P. Rosenthal [10] bir Banach uzaymin ¢! “in es yapisal bir kopyasini
icermemesi ile o uzaydaki her sinirli dizinin zayif Cauchy bir alt dizisinin olmasinin denk
oldugunu kanitladi. Bu tezde bu teoremin kombinatoryel ve topolojik kanitlarini verecek

ve baz1 denkliklerini inceleyecegiz. Daha sonra bazi uygulamalarini yapacagiz.
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Chapter 1

BAIRE CATEGORY THEOREM

1.1 Baire Category Theorem and its various forms

In this section we present several forms of the Baire Category Theorem.

Let (X, d) be a metric space.

Definition 1.1.1. A set E C X is said to be nowhere dense if its closure E has an
empty interior. If E can be written as a countable union of nowhere dense sets, we say
that E is of the first category in X. If E is not of the first category we say that E is of

the second category in X.
Therefore a subset of X is either of the first category or of the second category.

Example 1.1.2.
1- Proper subspaces of R™ are nowhere dense.

2- Q is not nowhere dense in R.
g
3- = —Z 1 t cat .
Q U A s of first category
k=1
Lemma 1.1.3. Suppose that (X, d) is a complete metric space and (Oy,)y is a sequence

o0
of open dense subsets of X. Then m O,, is also dense.

n=1

Proof. 1t suffices to show that, for all z € X and ¢ > 0, we have

B(z,e) N ﬁ On # 0.

n=1

1
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Let x € X, ¢ > 0. Take 19 = = and g9 = §. Since O is open dense in X, F; =
B(zg,e0) NO1 # 0 is open. Let x1 € Ey be such that B'(z1,e1) C Ey where g1 € (0,¢9).
Similarly, Fy = B(x1,e1/2) N O2 # 0 is open. Let x5 € Fy be such that B'(x9,e2) C Eo
where €5 € (0,1/2).

In general, let F,, = B(xy—1,6n-1/2)N0,, # 0 and x,, € E,, be such that B'(z,,&,) C

E,, where ¢, € (0,6,-1/2). So we have a sequence (x,), with the following properties:

i) For each n € N, for all m > n, x,, € B(xy,¢e,) because

B(xg,¢0) 2 B'(x1,61) 2 B(z1,61) 2 ... 2 B'(n,6n) 2 B(xn,en) 2 ...

ii) Let m > n, then

Az, xm) < d(Tp, Tne1) + - - + d(Tm—1, Tm)

§5n+5n+l+...+5m71

<< £0

1 1 20
2n (1 +35 2 ..t 2m—n—1> S 2n—1'

Hence the sequence (), is Cauchy.
Since (X, d) is complete, there is a y € X such that Ty — y. Moreover, by i) we see

that y € B(xy,ey) for alln € N. Then y € ﬂE CﬂO Thus y € B(z,e)N mO %

n=1 n=1

0. O

Theorem 1.1. 4 Let (X,d) be a complete metric space. If (Fy,)n is a sequence of closed
sets with X = U F,, then the set U F 1s dense in X.

n=1 n=1

Proof. We consider the boundary OF, of each F,. Since it is closed and has empty

interior the complement X\OF,, is an open dense set. Therefore by Lemma 1.1.3,

ﬂ X\OF,, is dense in X. Next, we show that m (X\0F,) C U F,. Then, clearly,

n=1 n=1 n=1

U F), is dense in X. Let z € ﬂ (X\OF,) be any point. Then x ¢ 0F,, for all n € N

n=1 n=1
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and z € F,,, C F,,, for some m € N. Hence z € Fm Thus we have the desired result. [J

Theorem 1.1.5. A complete metric space (X,d) is of the second category in X.

Proof. Suppose X = U A,, where A,’s are nowhere dense in X. Then X = U A,

n=1 n=1

too. Since /Tn =(QforallneN, X = X\an = (X\A4,) for all n € N. Hence open sets

[e.e]

X\ A, are dense in X. Therefore, by Lemma 1.1.3, ﬂ (X\A,) # 0. But this gives a
n=1

contradiction as

0# (A = x\(J 4 = 0.

O]

All these results Lemma 1.1.3, Theorem 1.1.4, Theorem 1.1.5 are known as “Baire

Category Theorems” and the “category” in the name is due to Theorem 1.1.5.

Some Consequences

1)

There is no function f : R — R which is continuous only on Q.

Let C} be the set of points at which f is continuous. Then

~ 1
= CR:Ui d di —}.
Cy m U{U CR: U isopen and diamf(U) < n}

n=0

Thus the set Cf is a Gs-set. But we know that Q is not a Gs-set in R.
Therefore there is no continuous function f : R — R which is continuous

only on Q.

A Banach space X is either of finite dimension or of uncountable dimension.

Let (e,), be an algebraic basis for X. Let M, = (eg,€1,...,€e,). Then
dim M,, = n+ 1. Thus M, is closed. Since every x € X is a finite linear

combination of some e;’s, we have X = UM” Hence, by Theorem 1.1.5,
n=0

Mn # () for some n € N which is impossible as proper subspaces are nowhere

dense.
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1.2 Baire-1 functions and continuity of them

Let (X, d) be a metric space and f,, : X — R be a sequence of continuous functions
on a subset E. Suppose that (f,,), converges uniformly to a function f on E. Then,
as is well-known, f is also continuous on E. However, if (f,), converges pointwise
to f, f need not be continuous. In this section, we consider functions which are

pointwise limits of continuous functions and study continuity of them.

Definition 1.2.1. Let f : X — R be a function. We say that f is a Baire-1
function if there exists a sequence of continuous functions f, : X — R such that

fn — f pointwise on X.

Example 1.2.2. Let X =R and f : R — R be derivative of a function g : R — R.
For x € R, put f,(z) = W. Fach f, : R — R is continuous and for all
reR, f(z) = JLII;IO fn(z). So f is a Baire-1 function.

Remarks. 1) Baire-1 functions are closed under addition, multiplication,
scalar multiplication and taking quotients by nowhere vanishing denominators.
2) If g : X — R is a bounded Baire-1 function, say by K, then the sequence of

continuous functions (g,), converging pointwise to g can be chosen so that g,’s

are bounded also by K.

Theorem 1.2.3. The limit of a uniformly convergent sequence of Baire-1 functions

1s also Baire-1.

Proof. Let f be the uniform limit of the Baire-1 functions (f,,),. First, note that
by passing to a subsequence of f,,, if necessary, we may suppose that f,’s are given
so that |f,(z) — f(x)] < 27" for each z € X and n € N. Therefore, for each x € X

and n € N, we have

|fn+1(x) - fn(x)| < |fn+1(x) - f(ZL‘)| + |f(I) - fn(x)|

<9t L 9=n 9. 9-n
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o0

So, for each = € X, the sum Z | far1(x) — fu(x)| makes sense. As each f, is a
n=1

Baire-1 function, so is f,+1 — f,. Hence there is a sequence (g m)m of continuous

functions with lim ¢, (z) = for1(z) — fu(z) for all x € X. Moreover, as in
m—0o0

Remark 2, these (gnm)m’s can be chosen such that each |g,, ,,(x)| < 2-27" for all

x € X. Now, for m > 1, put ¢, := gim + ... + Gmm. Each g,, is continuous.

We show that at each € X, lim g,,(z) exists and
m—0o0

e}

7%1_{%0 gm(x) = Z(fnﬂ(ﬂf) — fu(2)).

n=1

To this end, let € > 0 be given and N € N be chosen so that 4 - 27V < <. Then,

for each x, we have

> @) = ful@)] < 5.

n=N-+1

So,

(o)

> (fari(z) = ful@))] < g

n=N+1

Hence given x € X, there is an M > N such that for all n,m > M we get

| fr1(2) = ful(2) = gnm(2)] < o

3N’
Therefore,
il(fnﬂ(m)—fn(ﬂ?))—gm(ﬂ?) - oo(fm( i}"
fj (fre i (fosslo) = fo(o)
" i}(m( )= fule) - gn,m<x>>\

+ Z ‘gnm ‘<€

n=N-+1
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o0

Hence lim g, = Z( fax1 — fn) is a Baire-1 function. So
m—0o0

n=1

f(l’) = nhj{)lo fn(m) = fl(m) + Z(fn-i—l - fn)(fb),

which is a sum of two Baire-1 functions, is also a Baire-1 function.

We now study the continuity of Baire-1 functions.

Theorem 1.2.4. Let (X, d) be a complete metric space. If f : X — R is a Baire-1
function then Cy is dense in X.

1
Proof. Let, forn € Nand k € N\ {0}, A, (k) = U{x € X | furp(x)—f(z)] < E}

peN
We first show that the points of continuity of f coincide with “the points of uniform

convergence”. i.e.
Cr =) An(k).
k=1neN

Let K = ﬂ U An(k) and zg € K be any point. We need to show that f is

k=1neN
continuous at xy. Let € > 0 be given. Then there is a £ € N such that ke > 3.

Then zy € U A, (k). Hence zg € Ay, (k) for some ng € N. Thus there is an 7, > 0
neN

such that B(zo,m) C Apy (k). So, for all & € B(xo, i), | frosp(@) — f(2)] < = for
some p € N. In particular, |fn,4+p(z0) — f(20)| < £. Now, since f,(zo) = f(z0)
there is p € N such that |f,,4p(20) — f(20)] < 5. AS fae4p 18 continuous at w,
there is a 7 < 1 such that for all 2 € B(x0,n) |fug+p(®) — fao+p(z0)| < 1. Then,

for x € B(xg,n),

[F () = (o)l < 1F(x) = Faorp(@)] + | Frotp(®) = Frotp(@0)] + [fuotp(w0) — f(0)]
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Hence, K C CY.
Conversely, let 2o € C; and let £ > 1. Since f,(zo) — f(x¢), for some n € N,

| fa(@0) = f(x0)] < 5¢. Now, the function g, = f, — f is continuous at zo and

|gn(w0)| < 55. So there is 7 > 0 such that for all © € B(zo,n), |gn(z0)| < 1.

Hence B(zo,1) C An(k). So 2 € An(k) C U A, (k). Since k is arbitrary, we have

neN

xy € ﬂ U A, (k). Therefore, K = Cy.
k=1 neN
Next, for k > 1, n € N, let

}.

| =

By (k) ={z € X :sup|fuip(z) — f(z)] <

peN

Note that B,(k) C A, (k) for all £ > 1 and n € N. Also, since f,,’s are continuous,
1
B.(k) = ﬂ{x € X |fuap(x) — f2)] < E} is closed. Moreover, since for each

peN
r € X, fu(x) converges, it is Cauchy. So x € B,(k) for some n € N. Hence

X = U B, (k). Then, by Theorem 1.1.4, U By (k) is dense in X. Also, as

neN neN
U By (k) C U A, (k), we have O = U A, (k) is open and dense in X. Therefore,
neN neN neN
the set of points of continuity C = ﬂ Oy is a dense set by Lemma 1.1.3.
keN

1.3 Baire’s Great Theorem

For a given function f : X — R, deciding whether it is Baire-1 or not may not be
easy. In this section, we try to find necessary and sufficient conditions for f to be

a Baire-1 function.

Lemma 1.3.1. For every Baire-1 function f : X — R and every open subset U

of R, the preimage f~Y(U) is an F,-set.

Proof. Let f : X — R be a Baire-1 function and f, : X — R be a sequence of

continuous functions with lim f,(z) = f(x) for all x € X. It sufficies to show
n—o0
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that, for every rational number ¢, the sets
{reX: f(x)<q} and {reX: f(z)>q}
are F,. As each f, is continuous on X and

{xGX:f(x)<q}:U U ﬂ{IGX:fn(x)Sp}
4€Qm=1n>m

and

{zex: f@)>2g=J U {reX: fulx) =p},

qeQ m=1n>m
p>q

the sets {x € X : f(z) < ¢} and {z € X : f(x) > ¢} are F,-sets.

Lemma 1.3.2. If A C X is both F, and G5 then x4 is a Baire-1 function.

Proof. Let A = U A, and X \ A = U B,, where A,,’s and B,,’s are closed and
n>1 n>1
disjoint. Moreover, we can assume that the sequences (A,), and (B,), are in-

creasing. By Urysohn’s Lemma, for each n € N, there is a continuous function
fn: X —[0,1] such that f,;, =1and f,;, =0. Then x4 = lir%fn, so that xa
is a Baire-1 function.

]

Lemma 1.3.3. If f : X — R is such that f~1(O) is an F,-set for every open set

O C R then f is a Baire-1 function.

Proof. Without loss of generality we may assume that f : X — (0,1) as R and

(0,1) are homeomorphic. We fix n > 1 and define the sets

Ayi={reX:E<f(x)} and By:={reX: f(z)<il}

for k € {0,1,...,n — 1}. Then X = A, U By for k € {0,1,...,n — 1}. All
sets A, and By are F, by assumption. So, for fixed k, there are closed sets Fj

and Fy,; such that Ay = JZ, Fi; and By = JZ, F}.;- Then g, := ZQ’IXFM is a
=1
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Baire-1 function since each xf, , is Baire-1. Similarly, g} := Z 27y Fy, is a Baire-1
=1
function. Clearly, {gx > 0} = Ay and {g;, > 0} = By. Therefore, f;, := -2 is also

7
9r+gy,

a Baire-1 function which satisfies fy, = 0 on X\ A, fr = lon X\ By and 0 < f < 1

elsewhere. Then L(fi+...+ f,) converges uniformly to f. Let 2 € X. Then there
is a ko such that £ < f(z) < %t Therefore f;(z) =1 fori € {1,...,ko— 1} and
fi(x) =0 for i € {ko,...,n}. Then ’%(fl(x) + ...+ fu(2)) — f(x)| < +. Hence f
is itself Baire-1 by Theorem 1.2.3.

[

Proposition 1.3.4. Let (X,d) be a metric space and f : X — R be such that for
each nonempty closed subset F' of X, the restriction function f,, of fis continuous

at least at one point xy € F. Then f is a Baire-1 function.
Proof. For C' C X, define

osc(f,C) = sup{d(f(x), f(y)) : x,y € C}.

For n € N, let C,, be the class of subsets C' with osc(f,C') < 27". First note
that if F'is a closed subset of X and ar is a point of continuity of the restriction
function f},, then for each n € N there is a neighbourhood U, ,, of ar such that
FNUpn # 0 and FNU,, ., belongs to C,.

Now, we fix an n € N and define a family of strictly decreasing closed sets of

X, for any ordinal by transfinite induction.
i. Let Z, = X.

. If o = +1and Zg # 0, put Z, = Zs \ Uazﬁm where Uazﬁm is an open
neighbourhood of the point az, of continuity of f(zﬁ with Zg N UazB,n # ()
and Zz N Uazﬁ,n belongs to C,.

ifi. If o is a limit ordinal, put Z, = (7] Zs.

B<a
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Then there is an ordinal 7,, < card(X) such that Z,, = 0 and Z, # 0 for all v < ~,,.
Hence we have found a family of closed sets (Z)acpo,r,) of X with nonempty
difference sets D, = Z, \ Za+1 belongs to C,, for each o € [0,7,).

Let x, € D, and consider g, : X — R such that for every o € [0,7,] and = € D,
gn(z) = f(x,). Then each g, is Baire-1 and f is the uniform limit of (g,,),. Hence
f is also a Baire-1 function by Theorem 1.2.3.

]

Theorem 1.3.5 (Baire’s Great Theorem). Let (X, d) be a complete metric space
and f : X — R be a given function. Then f is Baire-1 if and only if for each
nonempty closed subset F' of X, the restriction function f, of fis continuous at

least at one point xy € F.

Proof. Suppose first that for each nonempty closed subset F' of X, the restriction
function f;, of f is continuous at least at one point zy € F'. Then f is Baire-1 by
Proposition 1.3.4.

Conversely, suppose f is Baire-1 function. Let F' be a nonempty closed subset
of X. Then F itself can be seen as a complete metric space. Then f;, is still a
Baire-1 function. Hence, by Theorem 1.2.4, Cy, is dense in F. So F' contains a

point of continuity of the restriction function f;,.



Chapter 2

BASIC SEQUENCES IN BANACH SPACES

2.1 Schauder Basis

A sequence (x,),>1 in a Banach space X is called a Schauder basis (or basis) for

X if for each = € X there is a unique sequence («,,),>; of scalars such that

T = 711;120 kz:; LT
A sequence (x,),>1 which is a Schauder basis of its closed linear span is called a
basic sequence.
Let (X,]| - ||) be a Banach space with a Schauder basis (xy)g>1. As for each
x € X we have a unique sequence of scalars, the Schauder basis consists of linearly
independent vectors. Moreover, we can identify each element of X with the corre-

sponding unique sequence of scalars (ay)r>1. Indeed, let S be the set of sequences

of scalars (sg)k>1 such that lim Z spxy exists in X. Clearly, S is a vector space
- n—oo 1

with the coordinatewise addition and scalar multiplication. Let (s;)g>1 € S. Also,

n
) exists.
n>1

D sk
) is bounded. Thus we can talk about the supremum of
n>1

n
since lim Z spxy exists, the limit of the real sequence (

n—oo
=1
n
g Sk
k=1

k=1

Hence (

11
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this sequence. For (s,),>1 € S, we define

|||(Sn)n21|” = sup
n>1

n
E SkT
k=1

This definition makes S into a Banach space: Let (v,), = ((sp.)i), be a Cauchy

sequence in S. Since

Z(Sw‘ — 5¢,)T;

=1

= 2[[lyp — walll

‘ n

|$pi — Sqalllzill < 2sup
n>1

(Sp,i)p converges for each i. For i € N, let s; := lim s,;. We show that (s;); is in
p—r00

S. To this end, let ¢ > 0 be a given number. Since (y,), is Cauchy there is an

r € N such that for p > r we have

gy — welll < e

n

Z(Sp,i - Sr,i)ili'i

i=1
N; € N such that whenever m > n > N;

Therefore, p > r, < e. Also, as y, = (s,;) € 9, there is an

m

g Srilq

i=n

< E.

Hence we get, for m > n > Ny,

m

g SiZ;

=n

< 3e.

This means that ( E si:m) is Cauchy, so convergent. Hence (s;); = lim y, € S.
p—00
i=1 n
Now, S is a Banach space and

< [I1(sw)wlll

n
lim E STk
n—00
k=1
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Therefore, by Open Mapping Theorem, S and X are isomorphic via the injective

norm-decreasing map

B (S - = (X011
given by B((sg)r) = Z ST
k=1
Then each of the coefficient functionals xj : Z Ty, — (18 continuous as

n

E AnTn
n

ok [lwi]| < 2[[ B

Hence, the projections P, : X — X, defined by Pn(z a;x;) = Zaixi are
i=1 i=1

bounded linear operators and for any x € X, we have x = lim,,_.o, P,x. Thus,

sup,, || P.|| < oo by Banach-Steinhaus Theorem (the number sup,, || P,|| is called

the basis constant of (x,),).

Now, let m < n and ) .-, axz, € X. Then

(Sl

_ ' ‘ < 1Pl

< sup || ||

m
E AL
k=1

P, ( i Clkl"k:)
k=1
P, ( > akwk)
k=1
Z QAT
k=1

0o
PmPn Zakxk) H
k=1
n
Z ApTE
k=1

Conversely, suppose that we have a sequence (z,,), of nonzero vectors for which

there is a K > 0 such that whenever m < n,

<K (2.1.1)

m n
E ATy g AR
k=1 k=1

o0 m
holds. If a vector x has a representation of the form Zaka:k = lim Zakwk,

k=1 mTeen
(2.1.1) ensures that the representation is unique. For instance, let j, k > 1. Then
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we have .
Jj+k

E a;T;

=7

lajlllz;ll = llajz;]| < K

Hence if Z apTy = Z brry and j > 1 is the least index such that a; # b; we get
k=1

k=1 =
K
||aj - bj” < ||x|| Z(al - bl)xl )
T iz
which forces a; = b;. Clearly, each element in [z,] is representable in such a

form and (2.1.1) gives rise to projections from [z,] to itself that are bounded
linear operators. Then each P,, has a bounded linear extension, still called P,,,
projecting [z, : n > 1] onto [z, : 1 < n < m|. This again gives the continuity of the
coefficient functionals z} defined on span(z,) and hence by Hahn-Banach theorem
x} has unique extensions to all of [x,, : n > 1], given by x}(x)zr = Pi(z) — Pr1(x).
Let o € [z, : n > 1] and € > 0 be given. Then there is a o € [z, : 1 <n < n.| for

some n. so that ||z — || < e. Now, if n > n., then

[ = Pu(@)|| < [le = ol + llo = Pu(o)]| + [[Pa(0) = Pa(2)]]
= [l = ol +llo = ol + [[Pu(o) = Pa(2)]

<e+||Pule < (14 K)e.

n—oo

Therefore, z = lim P,(x) = nh_)rg(};xk(x)a:k

Hence we have the following theorem:

Theorem 2.1.1. Let (x,), be a sequence of nonzero vectors in the Banach space
X. Then in order that (x,), be a basic sequence it is necessary and sufficient that

there be a finite constant K > 0 so that for any choice of scalars (a,), and any
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integers m < n we have

<K

m
E QT
k=1

n
E QT
k=1

Lemma 2.1.2. Let F be a finite dimensional subspace of the infinite dimensional

Banach space X, and let € > 0. Then there is an x € X such that ||z|| = 1 and
Iyl < (1 +e)lly + Az]

for all y € F and all scalars \.

Proof. Suppose ¢ < 1. Since F is finite dimensional, Sp = {y € F : |jy|| = 1}
is compact. Hence there are yy,...,y, € F such that Sp C B(y;,e/2) U ... U
B(yk,e/2). Let y; € X* be such that y;*(y;) = 1 . Then there is an € X such
that y;*(z) = 0 for all i € {1,...,k}. Now, let y € Sp and A be any scalar.

Therefore, for some i, we have

ly + Azl > [lyi + Mzl| — ly — will > |y + Az —€/2
> yi(yi+Ax) —e/2=1-¢/2
1

>

1+¢

Thus ||y|| < (1 +¢)|ly + Az|| for all X and ||y|| = 1. Hence the result follows as A
being arbitrary.
[

Corollary 2.1.3. FEvery infinite dimensional Banach space contains a basic se-

quence.

Proof. Let X be an infinite dimensional Banach space and ¢ > 0. Choose a

sequence (&,,), of positive numbers such that H(l +e,) < 14e. Now, let 27 € Sy

n=1
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and pick z9 € Sx such that

[yl < (1 +en)lly + Aza]

for all y € [x;] and scalars \. Next, choose x3 € Sx so that

[yl < (1 + e2)ly + Azs]]

for all y € [x1, x2] and scalars A\. Suppose we chose 1, ..., x,. Pick z,; so that

Iyl < (1 + en)lly + Aznpa|

for all y € [z1,...,z,] and scalars A\. Thus we have a sequence (x,), so that for

any scalars (a,), and any integers m < n we have

n

where K = H(l—l—sn) < 1+e¢. Hence, by Theorem 2.1.1, (z,), is a basic sequence.

n=1

]

Definition 2.1.4. Let (z,), be a basis for X and (y,). be a basis for Y. We say

that (z,,)n and (y,)n, are equivalent if the convergence of Zan:rn is equivalent to

n=1

that of Z pYn -
n=1

Theorem 2.1.5. The bases (z,,), and (yn)n are equivalent if and only if there is

an isomorphism between X and Y that carries each x, to y,.

Proof. Recall that renorming X by taking any z = Z SpTy, and defining

n

][] = sup
n
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m+n

E SkTy E SETk

k=1 k=1
An isomorph of X in which (), is still a ba81s but is now a monotone basis. Now,

m

X can be seen as a monotone basis, i.e. < for any m,n > 1.

look at the operator T': X — Y that takes Z ST to Z SkYk. 1 is one-to-one

k=1 k=1
and onto. T also has a closed graph. Therefore T" is an isomorphism and takes z,,

to yn.

2.2 Unconditional Basis

[e.o]

Let (z,), be a sequence of vectors in a Banach space X. A series an is said
tgo be unconditionally convergent if for every permutation o of nat{l;;l numbers
Z Tg(n) CONVETZES.

B A basis (z,,), of a Banach space )gois said to be unconditional if for every x € X,

its expansion in terms of the basis E a,x, converges unconditionally.

n=1
Proposition 2.2.1. A basic sequence (x,,), is unconditional if and only if any of

the following conditions holds.

(i) For every permutation o of the natural numbers the sequence (To(n))n 5 a

basic sequence.

(ii) For every subset M of the natural numbers the convergence ofz Gn Xy 1Mplies
n=1
the convergence of Z pTy.
neM

(11i) The convergence of Zan:pn implies the convergence of Z bnx, whenever

n=1 neM
|b,| < |an| for alln.
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2.3 Basic sequences equivalent to the unit basis of ¢

Let (z,,), be a normalized basic sequence of ¢y. Suppose there is a constant K > 0

such that
Zaixi < K sup |ai (2.3.1)
i1 1<i<n

for any n and any scalars aq, ..., a,. Then, clearly, (x,), is equivalent to the unit

vector basis of ¢g.
Conversely, if we are given a normalized basic sequence (), which is equivalent
to the unit vector basis (e,), of ¢y. Then there is an isomorphism 7" : ¢y — ¢g such

that T'(e;) = x; for all i € N. So for arbitrary n € N and scalars ay, ..., a,, we have

:HT(E;%@)HgnTH

n n

E a;x; E aiei|| = [|T|| sup |a.
, , 1<i<n
i=1 =1

Therefore a normalized basic sequence (x,), in ¢y is equivalent to the unit vector

basis of ¢, if and only if (2.3.1) holds.

We continue with a definition.

Definition 2.3.1. A series an is said to be weakly unconditionally Cauchy

n
n

(wuC) if, given any permutation o of natural numbers, the (Z xa(k)) s a weakly
k=1 n
convergent sequence. In other words, Z xn 18 wuC if and only if for each x* € X*,

Z 2" (x,)] < 0.

n

Theorem 2.3.2. The following statements regarding a formal series an n a

n
Banach space are equivalent:

1. an 18 wuC.
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2. There is a C' > 0 such that for any (t,), € (>

Z tk$k

k=1

sup < Csup ]

n

3. For any (tn)n € ¢, Ztnxn converges.

n

4. There is a C' > 0 such that for any finite subset A of N and any signs £, we

Z:I:xn < (C.

neA

Proof. Suppose 1 holds and define T': X* — ¢! by

have

Tx* =z (z,).

T is a well-defined linear map with a closed graph; therefore, T" is bounded. From

this we see that for any (¢,), € By~ and any z* € Bx-,

(Zthk)‘ = |(t1, ..., 1,,0,0,...) - (Ta*)| < ||T].

Part 2 follows from this.
If we suppose 2 holds and let (¢,), € o, then keeping m < n and letting both go
to 0o, we have

<C sup |tg] =0
m<k<n

from which 3 follows easily.

If 3 holds, then the operator T : ¢y — X defined by T' Zt x, cannot be

far behind; part 3 assures us that T is well-defined. T is plainly linear and has a
closed graph, so 7" is bounded. The values of T" on B, are bounded. In particular,

vectors of the form Z +x,,, where A ranges over the finite subsets A of N and we

neA
allow all the +’s available, are among the values of 7" on B,,, and that is statement

4.
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Finally, if 4 is in effect, then for any z* € Bx+ we have x* Z +x, = Z +x*z, <

neA neA
E +z,

neA
Z |z*z,| < oo follows directly from this and along with it we get part 1.

n

< (' for any finite subset A of N and any choice of signs . That

O

Corollary 2.3.3. A basic sequence for which inf, ||z,| > 0 and an is wuC' is

equivalent to the unit vector basis of cg.

n
Proof. If (x,), is a basic sequence and Z t,x, is convergent, then (Z thk) is
n k=1
a Cauchy sequence. Therefore, letting n tend to infinity, the sequence

[tnlllznll =

n n—1
E tpxy — E trxy,
k=1 k=1

tends to 0; from this and the restraint inf, ||z,| > 0, it follows that (¢,), € .

On the other hand, if (x,), is a basic sequence and Z x, is wuC, then Z LTy
n n

converges for each (t,), € ¢o, thanks to previous theorem part 3.

Consequently, a basic sequence (), with inf, ||z,|| > 0 and for which an is

n
wuC is equivalent to the unit vector basis of ¢j.

]

Theorem 2.3.4. A Banach space X has a subspace isomorphic to cq if and only

if there is a wuC series Z Tn tn X such that Z T, fails to converge.

Proof. The "only if” part is trivial: we simply take (z,), as a basic sequence
which is equivalent to the unit vector basis of ¢y. To prove the ”if” part let
()n be such that Z |z*(x,)| < oo for every z* € X* but ) x, diverges. It
follows from the unifori"m boundedness principle that there is a constant M so that

ol (xn)] < M||x*| for every z* € X*. Since ), diverges there is an € > 0
qdk

>

N=pk

and the integers p; < q1 < p2 < @2 < ... so that > ¢ for every k. For
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dk
k=1,2,...,puty, = Z Z,. Since Z |z*(yr)| < oo for every x* € X* it follows
n=pg k
that y, — 0 and infy, [|yx|| > 0. By passing to a subsequence of (y) if necessary

we may assume that (yx)x forms a basic sequence. Then, by Corollary 2.3.3, (yx)x

is equivalent to unit vector basis of ¢g.

2.4 Basic sequences equivalent to the unit basis of ¢!

Let (z,,), be a normalized basic sequence of ¢*. Suppose there is a constant K > 0

such that
i=1 i=1
for any n and any scalars ay, ..., a,. Then, clearly, (x,), is equivalent to the unit

vector basis of /1,
Conversely, if we are given a normalized basic sequence (z,,),, which is equivalent
to the unit vector basis (e,), of £!. Then there is an isomorphism T : ¢! — ¢! such

that T'(z;) = e; for all i« € N. So for arbitrary n € N and scalars ay, ..., a,, we have

St (Sw)

i=1

n

E a;€;

=1

n

E Q;;

i=1

= |17’

] < |7

Thus a normalized basic sequence (), in ¢! is equivalent to the unit vector basis

of /! if and only if (2.4.1) holds.

Definition 2.4.1. We say that a sequence (A,, By)nen of sets is independent if
for every pair of disjoint finite nonempty subsets B,G of N,

(4N () Ba #0.

neB neG

A (finite or infinite) sequence of real-valued functions (f), on a set Q is called
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independent on a set A C Q) if there exist numbers o < B such that the sequence of
pairs ({fn < a} N A {f, > B} N A), is independent. If we want to specify o and
B we say that (fn)n s (o, B)-independent on A.

Proposition 2.4.2. If (f,), is a (uniformly) bounded independent sequence of

functions on a set Q, then (f,)n is a sequence equivalent to the unit basis of (*.

Proof. Let a < (8 be such that (f,), is («, §)-independent. Since the sequence
(fn)n is bounded, it will be equivalent to the unit basis of ¢! if we can show that

for every finite sequence aq, ..., a; we have

~(B—a) Z Jovi]. (2.4.2)

k
Zaifi
i=1

We distinguish two cases:

CASE 1. (a+ B) Zai > 0.
i<k
Putting P := {i < k:a; > 0} and Q := {i < k: a; < 0} we then have by the
(o, B)-independence of (f,), that
({fi <a}n(V{fi> B} #0.
i€Q ieP
For any ¢ in this intersection,

k
ZOész(t) Z BZO[Z +OZZOZZ‘
i=1

ieP 1€Q

k k
=1 a5 e
1=1 =1
1
5 -« Z|0¢Z

CASE 2. (a+f)) a; <0.

i<k
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If we replace the a; by —a; we are in the case 1 and it follows for some s € T,

(8= Jail.

N | —

k
— Z a; fi(s) >

So in either case we have (2.4.2). Hence (f,), is equivalent to the unit basis of ¢*.

]



Chapter 3

ROSENTHAL’S /(\-THEOREM

In this section we present two proofs of Rosenthal’s £!-Theorem. The first proof is

combinatorial and the second is topological.

3.1 Combinatorial Proof

Definition 3.1.1. Let S be a set, (Ay, Bp)nen @ sequence of pairs of subsets of S
with A, N B, = 0 for alln € N and X a subset of S. We say that (A, Bp)nen
converges on X if for every point x € X we have either lim, ,., x4, (x) = 0 or

lim,, o xB, () =0.

Of course, every such sequence (A, B,)nen converges on the empty set and if
(A, Bp)nen converges on X then every subsequence of (A, By)nen is also con-

vergent on X. Moreover, if (A, B, )nen converges on subsets Xi, ..., X; of S then
!

(Ay, Bp)nen converges on UXi'
i=0
Lemma 3.1.2. Let | > 1, (A, Bn)nen a sequence of pairs of subsets of a set S

with A, N B, = 0 for alln € N, X4, ..., X; disjoint subsets of S. Suppose that for
each 1 <1i <1, (An, Bp)nen has no subsequence convergent on X;. Then there exist
a j and an infinite subset M of N so that for each i, 1 <i <1, (An, Bp)nem still

has no subsequence convergent on X; N A; and also on X; N B;.

Proof. The proof will be proceed by induction on [. For the case [ = 1, we develop

an algorithm to produce the desired j and M; and then we will make use of this

24
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algorithm in the inductive step.

Suppose (A, B,)nen are as in the lemma. i.e. the sequence (A,, B,)nen has
no subsequence convergent on X. Clearly, without loss of generalization we can
assume that S = X.

To continue we need a definition.

Definition 3.1.3. We say that j and M work for X if (A, Bn)nen has no sub-
sequence convergent on X N A; or on X N Bj. More generally, we say that j and

M r-work if for every 1 < i < r, (A, Bp)nen has no subsequence convergent on

X, NA; or on X; N B;.

The Basic Algorithm. Let n; € N be any. If n; and Ny := N do not work,
let N7 be arbitrary subset of Ny such that (A, By,)nen, converges on A,, or B,,.
Suppose k > 1 and Ny_; C€ N and ni_; € N are defined. Let n, € Ny_; with
ng > ng_1. 1If ny and Ni_; do not work, let Ni be arbitrary subset of N, _; such
that (A, B,)nen, converges on A, or B,,.

This process can only be continued only finitely many times. That is, as long as
the n;’s and N;’s are chosen as above, there must exists a k& > 1 such that n;, works
for N_4.
Suppose the process continued infinitely many times. Then we have an increasing
sequence of natural numbers (ny)reny and decreasing sequence of subsets of natural
numbers Ny, with ng € Ni_1. Also, (A, By)nen, converges on &,, A, where ¢, =
+1 defined for all £ € N and
A, Ay, if ey, =1,

B, ife, = -1
Now, put M = {ny,ns,...}. Therefore, for every k, (A,, By)nen is a subsequence

of (A, By)nen,. Hence (A, By)nen converges on U €n,Ap,. By passing to an
k>1
infinite subset of M if necessary, we may suppose that (A, B, )nen converges on
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either on U A, or on U B, . Without loss of generality, suppose we are in the
k>1 k>1
former case. Since (A, By)nem does not converge on X there is an x € X so that

both {n € M :2 € A,} and {n € M : z € B,} are infinite. But then z € U A,

k>1

and hence (A,,, B, )nem cannot converge on U €npAn,, a contradiction.
k>1
Thus, the process in the basic algorithm is finite. Therefore, for the case [ = 1 of

the lemma, we have a j and an infinite subset M of N so that (A,,, B,,)nen has no
subsequence convergent on X N A; and on X N B;.

Next, for the induction hypothesis we assume that Lemma 3.1.2 is proved for the
case | = r. Let X;’s and (A, B,)nen be given as in the assumptions for the case
[ = r+1. Again, we shall say that j and M r — work if for every 1 < ¢ < 7,
(An, B,), has no subsequence convergent on X; N A; or on X; N B;. By the
induction hypothesis, there are ny € N and N; C N r — work. If ny and N| do
not work for X,,1, choose a subset N; of N] so that (A,, B,)nen, converges on
Ap, N X1 oron By, N X,41. Suppose for k£ > 1 we have defined N;_; C N and
ni—1 € N. Since (A4, By)nen,_, is a subsequence of (A,, By, )nen, Wwe may apply the
induction hypothesis to choose an nj, € Nj_; with ng > ng_1 and N;, C of Ny,
so that ny and Nj, r — work. Again, if n, and N;_; do not work for X, choose
Ni, C Nj, so that (A,, By)nen, converges on A,, N X,y or on B, N X,;;. Now,
this process cannot be continued indefinitely, since n;’s and Nj’s are constructed
to satisfy the criteria of the Basic Algorithm and (A, B,)nen has no subsequence
convergent on X, ;. Thus, there must exists a k > 1 so that n; and N work.
By construction, ny and N, r — work, hence by definition, n; and N}, satisfy the
conclusion of Lemma 3.1.2.

]

Theorem 3.1.4. Let (A, B,)nen be a sequence of pairs of subsets of a set S with
A,NB, =10 for alln, and suppose that (A,, B,)nen has no convergent subsequence.

Then there is an infinite subset M C N so that (A, Bp)nen is independent.
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Proof. We apply Lemma 3.1.2 for the case [ = 1. Then there are n; € N and
M; C N so that (A,, By)nen, has no convergent subsequence on either A, or

B,,. Suppose we have further chosen n; < ... < n; and M} so that on each of
k

the disjoint 2* sets ﬂ €jAn,, (An, Bn)nen, has no convergent subsequence, where
j=1
e = (e1,...,&x) ranges over all 2% choices of signs €; = +1 all j. Now, applying

Lemma 3.1.2 for the case | = 2%, choose ny.1 € My, npy1 > ng, and My, a

subset of M, so that for each € = (e1,...,¢€x), (An, Bn)nem,,, has no convergent
k k
subsequence on ﬂ €jAn, N Ay, and on ﬂ gjA,, N B

j=1 j=1

have (n;); and (M;);. Then M = {ny,ny,...} is the desired subset.

st~ S0 by induction we

]

Proposition 3.1.5. Let (f,)nen be a sequence of uniformly bounded real-valued
functions defined on a set S and d and r be real numbers with 6 > 0. Assume,
putting A, ={x € S: fu(x) >d+7r} and B, ={x € S : fu.(x) <r} for alln € N,
that (An, Bp)nen is independent. Then (fyn)nen 1S equivalent in the sup-norm to

the usual ¢*-basis.

Proof. By multiplying f,,’s by an appropriate constant if necessary, we may assume
that § +7r > 0. Let (¢;);en be a sequence of scalars with only finitely many of ¢;’s

non-zero with Z |c;| = 1. We will show that there is an s € S with

0
> —. A
> ¢ (31.1)

Sl

)
Hence 25. Let G={ieN:¢ >0} and B={i € N:¢ <0}. Then

Zcz’fi

both G and B are finite and hence ﬂ A, N ﬂ B, # () and ﬂ A, N ﬂ B, #0

neB neG neG neB
as (A, Bp)nen is independent. Let x € m A, N ﬂ B, and y € ﬂ A, N ﬂ B,,.

neB neG neG neB
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If we suppose first that r > 0 and B’ = {i € B : f;(x) > 0}, then
Soafilx) 2 Y afi@) > —r Y el = fal(—r). (3.1.2)
i€B i€B’ ieB’ i€B
Similarly,
> cfiy) =Y lail(-r). (3.1.3)
i€G i€G
By (3.1.2) and (3.1.3), we have
S afi@) =D el +r)+ > lel(-r) (3.1.4)
ieG i€B
and
i) =) lel@+r)+ D fal(—r). (3.1.5)

i€l i€G

Similarly, (3.1.4) and (3.1.5) hold if » < 0. Now, the sum of right-hands of equations

(3.1.4) and (3.1.5) is equal to §. Hence maximum of the left-hand sides is at least

g. Therefore = or y is the element s satisfying (3.1.1). Hence (f,), is equivalent,

in the sup-norm to the usual ¢!-basis.

]

Lemma 3.1.6. Let (f,)nen be a sequence of uniformly bounded real-valued func-

tions defined on a set S with no pointwise convergent subsequence on S. For each

subset M of N, let

(M) = sup(limsup f,,(z) — lim]v[inf fm(2)).

€S M

Then there ezists a subset Q of N so that for all subsets L of Q, §(L) = §(Q).

Proof. Since (f,,), has no pointwise convergent subsequence, we note that §(M) >

0 for all subsets M of N. Also, for any subsets L and M of N with L almost

contained in M, we have that 6(L) < §(M). Suppose the conclusion is false. Then
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there is a transfinite family {N, : @ < w;} of subsets of N, indexed by the set of
ordinals « less than the first uncountable ordinal wy, with the property that for
all @ < B < wy, Np is almost contained in N, and §(Ng) < §(N,). But this is
impossible because there is no transfinite strictly decreasing sequence of positive
real numbers. Hence we have a subset () of N such that for all subsets L of @,
5(L) = 5(Q).

O

Lemma 3.1.7. Let (f,)nen be a sequence of uniformly bounded real-valued func-
tions defined on a set S with no pointwise convergent subsequence on S. Let () be
a subset of N satisfying the conclusion of Lemma 3.1.6 and put 6 = §(Q)/2. There
exist a subset M’ of QQ and a rational number r so that for every subset L of M’,

there is an x € S satisfying
limsup fi(z) >0 +r and limLinf filz) <.
L

Proof. Suppose for a contradiction that the conclusion of the lemma does not hold.
Let rq,79,... be an enumeration of the rational numbers. Choose L; C () such

that for all z € S,
limsup fi(z) <d+r or limLinf filx) >r. (3.1.6)
L

for L = Ly and r = r; Suppose for k& > 1we have chosen the subset L, of Q.
Choose Lyy1 C Ly so that (3.1.6) holds for L = Ly,; and r = r4,1. Hence we
have Ly D Ly D L3 D ... D Ly D ... by induction. Now by the standard diagonal
procedure, choose an infinite set L with L almost contained in L; for all £ € N.
Then (3.1.6) holds for all rational numbers r. Since L is almost contained in @

and @ satisfies the conclusion of Lemma 3.1.6, (L) = 0(Q) = 2J. Let ¢ = §/2.
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By the very definition of §(L), there is an x € S so that
limsup f;(x) — limLinf filz) > (L) —e.
L

Let a = limsup f;(z) and b = limLinf fi(z). Then, let r be a rational number such
L

that b+ 0/2 > r > b. Thus
b<r<r4+d6d=r—-b+0+b<20—c+b<a.

Hence a > § +r and b < r, contradicting (3.1.6).
U

Theorem 3.1.8. Let S be a set and (f,), a uniformly bounded sequence of real
valued functions defined on S. Then (f,)n has a subsequence (f,, )i satisfying one

of the following alternatives:
(1) (fu,)r converges pointwise on S.
(ii) (fu, )k s equivalent to the usual (*-basis.

Proof. Suppose (f,)» has no pointwise convergent subsequence. Let M’ ¢ and r
be chosen as in Lemma 3.1.7, and for each n € M’, let A, = {z : fo(x) > 0+ r}
and B, = {z : f,(z) <r}. Then taking L = M’, we have that (A, B, )nen does
not have any convergent subsequence on S. Hence, by Theorem 3.1.4, there is an
infinite subset M C M’ with (A, B,)nen is independent. Therefore, (f,), is a
sequence satisfying assumptions of Proposition 3.1.5, thus (f,,), is equivalent to

the usual basis of ¢!.

]

If (b,), is a bounded sequence in a Banach space B, we let S denote the closed
unit ball of B* and then define f,(s) = s(b,) for all s € S and n. Therefore we

have the following theorem :



CHAPTER 3. ROSENTHAL’S (*-THEOREM 31

Theorem 3.1.9 (Rosenthal’s ¢'-Theorem). Let (f,), be a bounded sequence in a
real Banach space B. Then (f,), has a subsequence (f,, )i satisfying one of the

following two mutually exclusive alternatives:
(1) (fu,)r is a weak Cauchy subsequence.
(ii) (fn, )k s equivalent to the usual (*-basis.

Corollary 3.1.10. Let B be a (real or complezx) Banach space. Then B does not
contain an isomorphic copy of £* if and only if every bounded sequence (), in B

has a weakly Cauchy subsequence.

3.2 Baire Category Proof

Let T' be a compact space and Z C C(T') bounded set of continuous functions.

Definition 3.2.1. A nonempty closed set L C T is called topologically critical
(t-critical) for Z if there exist numbers o < [ such that for all k,l € N, the

intersection

( U{F<at x{f> BF) N LE (3.2.1)

fez

is dense in LF1L.

Z is called topologically stable (t-stable) if no t-critical sets exist.
Proposition 3.2.2. If Z is not t-stable, then Z contains an independent sequence.

Proof. Let L C T be a t-critical set for Z and let @ < 8 be such that (3.2.1) is
satisfied. The key to the inductive proof below is the following reformulation of
(3.2.1):

For every n € N and for every n-tuple Uy, Us, . .., U, of nonempty open subsets
of L there exists an f € Z that on each U; (i = 1,...,n) attains values < a and

values > 5.
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Suppose we are given n € N and Uy, Us, ..., U, we clearly have

Ul><...><Un><U1x...xUnﬂ<U{f<a}"><{f>5}")7&@

fez

The construction of the independent sequence is now easy. For n = 1, take U; = L.
Then by there is an f; € Z such that Uy N {f1 < a} # 0 and Uy N {f; > B} # 0.
Suppose fi, ..., f, have been selected so that (f;)I, is (a, f)-independent on L
(Remember that a (finite or infinite) sequence of functions (f,,), on a set 2 is called
(a, B)-independent on a set A C ) if the sequence of pairs ({f, < a} N A, {f, >
B} N A), is independent). To choose f,+1 we apply above reformulation to the

2"-tuple of nonempty open subsets Up N L, where

vri= (V<)) ( 15> 5)

keP kgP

for every nonempty P C {1,...n}. Observe that Up N L # () by the induction
hypothesis. Let f,11 € Z be as in the reformulation of (3.2.1) for these Up N L.
Then both {f,.1 < a} and {f,;1 > B} meet each Up N L, ie. (f))I ! is (a, B)-
independent on L. This completes the induction and the proof.

]

Proposition 3.2.3. If T is compact and Z C C(T) is not t-stable, then there
exists a Radon measure p on T such that L'(u)is isometric to L' := L'[0,1] and

so that Z is not totally bounded in L'(11).

Proof. By Proposition 3.2.2, Z contains a sequence ( f,,), which is («, 5)-independent
for some av < 3. Observe that the sets {f, < a} U{fn> B} (n=1,2,...) satisfy
the finite intersection property. Hence K : ﬂ{fn < a}U{f, > B} # 0 and

compact. We now define a map h : K — {0, 1}N Wlth components h,, by
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0 if fult) <,
L if fu(t) > 5.

hn(t) ==

Since h,, is continuous and (by the independence of (f,),) h(K) is dense in {0, 1}V,
h is a surjection. Letting v be the product measure (360+261)" on {0, 1} we know
from Prop B.1 in [5] that there is a Radon probability p on K such that hy = v
and with the additional property that L'(u) = L'(v) = L'. Since for m # n

Kn{f.<a}n{fn>8t=h{(er)e €{0,1}: ¢, =0and ¢, = 1},

we have p({f, < a}N{fn > B}) = 1. It immediately follows that || fm — fo|| >

1(8 — ), so that (f,), is not totally bounded in L*(y). Neither in Z.

We now give a characterization of Baire-1 functions in terms of stability.
Lemma 3.2.4. The following are equivalent for a function f on T':
(i) f € Bi(X).

(i1) For every nonempty closed subset L of T' and for all numbers aw < 3 the sets
Ln{h <a} and LN {h > B} are not both dense in L.

Proof. (i) = (ii): If there is a closed subset L C T and numbers o < (3 such

that LN {h < a}=LN{h >} =L then f;p has no point of continuity. Thus f
cannot be in By(T") by Theorem 1.3.5.
(ii) = (i): Let L C T and let ((a, B8,)) be an enumeration of all rational numbers

(a, B) with a < . For each n € N, put
A, =LNf<a, and B, =LnNf>p,.

Consider the sets L, := A, N B,. Each L,, is nowhere dense in L. Therefore,
by Baire Category Theorem, F' := ﬂ(L \ L,) is dense in L. Moreover, fp is

neN
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continuous at every point in ﬂ (L\ L,). Hence f € By(X).
neN

Lemma 3.2.5. If Z is t-stable, then Z is relatively 7,-compact in By(T).

Proof. Suppose for a contradiction that h is in the 7,-closure of Z, but h & B (T).

Then,by Lemma 3.2.4, there are a closed subset L C T and numbers o < 3 such

that LN{h < a} = LN{h > p} = L. But this implies that for all k,l € N,

UAr <ett x{f>8)nLH,

fez

is dense in LF*!, contradicting the stability of Z.

]

Proposition 3.2.6. Let T' be compact and let Z C C(T) be t-stable. Then every

sequence (fn)n in Z has a pointwise convergent subsequence.

Proof. Let (f,)n be a sequence in Z. Consider the map F : T — RY defined by
F(t) := (fu(t)), for t € T and put S := F(T). Then S is compact. It suffices to
show that every 7,-cluster point of sequence (e,), of coordinate functions on S is
the 7,-limit of a subsequence of (f,),, since f, = e, o F. So all we have to do is
show that (e,), is t-stable. For a contradiction suppose that L C S is t-critical
(hence compact) for (e,), and let & < 8 be as in (3.2.1). By an application of
Zorn’s Lemma there is a minimal compact M C T with F(M) = L, i.e. such
that M" € M, compact F(M') C L. We claim that M is t-critical for (f,)n,
contradicting the fact that (f,,), is t-stable. Indeed, for any k-tuple of nonempty
open sets Uy,...Ur € M we have by minimality of M that each F(U;) contains
a nonempty open subset V; C L (i = 1,...k). Since we are assuming that L
is t-critical for (e,),, some (e,), takes values < « and > f on each V;. This

implies that the corresponding f,, = e, o F' takes values < o and > 3 on each Uj,.
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Because Uy, . .. U, were arbitrary we have now proved that M is t-critical for (f,,)n,
a contradiction.

]

Let X be a Banach space and T be the closed unit ball of X*, equipped with
its weak® topology. Then T is compact by Alaoglu’s theorem. We identify X**
with a subspace of RT. Notice that under this identification the weak* topology of
X** corresponds to the topology of pointwise convergence on 7. Next, we see the
elements of X as continuous functions on X*. Then by restricting the functions
on X we get Z := Bx C C(T).

Suppose first that every sequence in Z has a pointwise convergent subsequence.
Note that by Riesz Representation Theorem, bounded sequences in C'(T) are 7,-
Cauchy if and only if they are weakly Cauchy. Then since the unit vectors in ¢!
have no weakly Cauchy subsequence, Z cannot contain a sequence equivalent to
ot

Conversely, suppose that Z has a subsequence with no pointwise convergent sub-
sequence. Therefore Z cannot be t-stable by Proposition 3.2.6. Hence Z contains
an independent sequence by Proposition 3.2.2. Then Z has a sequence equivalent
to the unit basis of £* by Proposition 2.4.2.

Thus we have again reached the following conclusion:

Theorem 3.2.7. Let X be a Banach space. Then X does not contain an iso-
morphic copy of £* if and only if every bounded sequence (x,), in X has a weakly

Cauchy subsequence.

3.3 Some equivalences

Theorem 3.3.1. Let B be a separable Banach space. The following are equivalent:

(1) B contains no subspace isomorphic to (*.
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(2) Every bounded sequence in B has a weak Cauchy subsequence.

(3) B* is weak* sequentially dense in B**.

(4) The cardinality of B** equals the cardinality of B.

(5) Every bounded sequence in B** has a weak* convergent subsequence.

(6) Every bounded subset of B is weakly sequentially dense in its weak closure.
(7) Every bounded subset of B*™ is weak® sequentially dense in its weak* closure.

(8) Every bounded weak* closed convex subset of B* is the norm closed convex

hull of the set of its extreme points.
Theorem 3.3.2. Let X be a Banach space. Then the following are equivalent:
(1) X contains no subspace isomorphic to (*.
(2) Every bounded sequence in X has a weak Cauchy subsequence.
(3) X* contains no subspace isomorphic to L' := L'[0,1].

(4) X* contains no subspace isomorphic to C0, 1]*.



Chapter 4

SOME APPLICATIONS OF
ROSENTHAL’S (\-THEOREM

In this section we give some applications of Rosenthal’s ¢!-theorem.

4.1 Weakly compact operators

Let X and Y be two Banach spaces on R.

Definition 4.1.1. A subset A in X s called conditionally weakly compact, if every
sequence in A admits a weak Cauchy subsequence.

A linear map T : X — Y from the Banach space X into Y 1is called weakly
compact/Rosenthal, if it maps the closed unit ball of X onto a relatively weakly

compact/a conditionally weakly compact set in'Y .

Clearly every weakly compact operator is Rosenthal and Rosenthal’s £*-theorem
implies that T : X — Y is Rosenthal if and only if 7" is not an isomorphism on
any copy of /' in X.

By Eberlien-Smulian Theorem, T : X — Y is weakly compact if and only if for
every bounded sequence (z,,), of X the sequence (T'(z,)), has a weakly convergent
subsequence in Y.

Linear combinations of weakly compact operators are weakly compact. The

composition of a weakly compact operator and a bounded linear operator when

37
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possible is weakly compact. Moreover, the limit in the operator norm of a sequence

of weakly compact linear operators is a weakly compact linear operator if it exists.

4.2 Schur property

Definition 4.2.1. We say that a Banach space X has the Schur property if weakly

convergent sequences in X are norm convergent.
Theorem 4.2.2 (Schur’s lemma). ¢ has Schur property.

Proposition 4.2.3. A Banach space X with the Schur property is weakly sequen-
tially complete.

Proof. Let X be a Banach space with Schur property. Suppose (z,), is weakly
Cauchy sequence in X. Take two increasing sequence (ny); and (myg), of natural
numbers. Then (z,, —x,, )k is weakly null. Since X has Schur property (z,,, —Zm, )k
is norm null. Thus (x,), is norm Cauchy. Then it is norm convergent and hence

weakly convergent. Hence X is weakly sequentially complete.

O

Proposition 4.2.4. Let X be a weakly sequentially complete Banach space. Then

either X is reflevive or X contains a subspace isomorphic to (.

Proof. Suppose X is not reflexive. Then X contains a bounded sequence (z,,),
that has no weakly convergent subsequence. Hence, by Theorem 3.1.9, (z,,), has
either a weakly Cauchy subsequence or a subsequence equivalent to the usual basis
of £!. But if the first case is true, say (z,, ) is such a subsequence, we would have
found a weakly convergent subsequence of (x,, ) since X is weakly sequentially
complete, contradicting our assumption. Hence the latter case is true. ie. X

contains a subspace isomorphic to £!.
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Definition 4.2.5. A Banach space X 1is said to have the Dunford-Pettis property
if every weakly compact operator into a Banach space Y transforms weakly compact

sets in X into norm compact sets in 'Y .

Proposition 4.2.6. The dual X* of a Banach space X has the Schur property if

and only if X has the Dunford-Pettis property and does not contain (.

Corollary 4.2.7. If both X and X* have the Schur property then X is finite

dimensional.

Theorem 4.2.8. Let X be a Banach space not containing ¢*. Then every bounded
linear operator into a Banach space Y which carries weak Cauchy sequences to

norm Cauchy sequences is compact.

Proof. Let T : X — Y be such an operator and (z,), be a bounded sequence in
X. Since X does not contain ¢!, by Rosenthal’s ¢!-Theorem, (x,), has a weakly
Cauchy (hence convergent) subsequence (z,, );. Then (T'(z,,))s is norm conver-
gent. Therefore for every bounded sequence (z,,), in X the sequence (T'(z,)), has

a norm convergent subsequence. Hence T' is compact.

4.3 Limited sets

Let X be a Banach space.

Definition 4.3.1. A subset B of X s said to be limited if every weak™ null se-

quence (7)), in X* converges uniformly on B, that is

limsup z; (x) = 0.
" zeB

For example, every relatively compact subset of X is limited by uniform bound-

edness principle. Also, limited sets are bounded.
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Theorem 4.3.2. Let X be a Banach space not containing (*. Then every limited

subset of X* is relatively compact.

Proof. Let K be a limited subset of X*. We define an operator 7' : X — B(K)
by putting T'(x)(z*) := z*(z). T is a bounded linear operator that sends weak
Cauchy sequences to norm Cauchy sequences. Hence, by Theorem 4.2.8, T is
compact. Also, the adjoint operator T of T  is compact. Now, let z* € K. We
define F« : B(K)* — R by F,(f) = f(z*) for any f € B(K). This implies
that T*(F,)(z*) = z*(z) and hence T*(F,+) = z* for any z* € K. Since K =
{T*(Fp) : a* € K} C T*(Bp(k)-) we have that K is relatively compact.

4.4 Grothendieck property

Definition 4.4.1. A Banach space X is called a Grothendieck space whenever
weak™ convergence and weak convergence of sequences coincide in the dual space
X*. A Banach space is said to be a Grothendieck space if it has the Grothendieck

property.
For example, reflexive spaces have Grothendieck property. So does £°°.

Proposition 4.4.2. Let X be a Banach space. Then X contains a quotient iso-
morphic to cq if and only if X* contains a weak™ null sequence equivalent to the

unit basis of £*.

Proof. Note that there is a bijection between linear continuous maps 7' : X — ¢

and weak® null sequences (z7),. We have T'(z) = (z}(z)), for all z € X and

T*(a) =Y, ayzl for all @ = (o), € C*.

(=): Assume that T : X — ¢ is a quotient map. Then T* is an isomorphism into

*

*) is equivalent to the unit basis of ¢1.

and hence (x

(<): Take T(x) = (z}(x)),. Since (z7) is equivalent to the unit basis of ¢!

n
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there is a constant K > 0 such that Z loy] < K for any n and any
i=1

3o
i=1
scalars aq,...,a,. Thus we have that Z ;| < K = ||T"(«)|| for all

[e.e]
E ;X
i—1 i=1

a = (ay), € ¢ which implies T* is an isomorphism into. Therefore, the range of

T is dense and closed and we deduce that T is onto.

]

We now give a characterization for Banach spaces having Grothendieck prop-

erty. To this end we need:

Claim 4.4.3. Let X be a Banach space with Grothendieck property and Y be a
separable Banach space then every bounded linear operator T : X — Y is weakly

compact.

Proof. Let T : X — Y be a bounded linear operator. We show that the adjoint
operator 1% : Y* — X* is weakly compact. First note that By, is weak* compact
by Alaoglu’s Theorem and as Y is separable By« is also weak® metrizable. Now,
let (y*), be a sequence in By:. Then we can find a weak*, hence weak, convergent
subsequence (y;; )n of (y;:),. Moreover, T* is weakly continuous since 7" is bounded
linear. Thus (7*(y;, ))n converges weakly. Therefore 7™ is weakly compact. Hence

T itself is weakly compact.

Now, we see that a separable quotient of a Grothendieck space is reflexive.

Let X/M be a separable quotient of a Grothendieck space X. Consider the
quotient map 7 : X — X/M. It is bounded and linear. Therefore it is weakly
compact by above claim. Hence 7(X) = X/M is closed, which means X/M is

reflexive.
Theorem 4.4.4. For any Banach space X the following are equivalent:

(1) X has the Grothendieck property.
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(2) X* is weakly sequentially complete and no quotient of X is isomorphic to c.

Proof. (1) = (2) : Let X be a Grothendieck space and (z}), a weakly Cauchy
sequence in X*. Then it is weak® convergent. Since X is a Grothendieck space,
(x), converges weakly. Hence X* is weakly sequentially complete. Clearly, no

quotient of X is isomorphic to ¢g by above remark.

(2) = (1) : Suppose for a contradiction that X does not have the Grothendieck

*
n

property. So there is a weak* null sequence (z}), in X* which is not weakly
null. Then as X* is weakly sequentially complete (z?), has no weakly Cauchy
subsequence. Then X* contains a sequence equivalent to the unit vector basis of
¢! and we can find a subsequence (22 )n Which is equivalent to the unit basis of 0t

But this is not possible by Proposition 4.4.2. Hence X is a Grothendieck space.
O
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