
Predicting Accessibility in Highway Networks After an

Earthquake by Path Reliability

by
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ABSTRACT

In the event of an earthquake, highway network components such as bridges and

viaducts may collapse, and the roads may be blocked by debris or landslides, impeding

critical response activities. Experts state that both the radiation of seismic waves and

the structural properties of highway components are likely to create correlated failures.

We represent a risk-prone highway network by an undirected graph whose edges are

subject to random failure/survival. With given the marginal survival probabilities,

we propose a new link failure dependency model to predict the post-earthquake status

of the network. We generate a family of joint probability distributions for the random

surviving graph by means of a control parameter with varying level of dependency.

We conduct sensitivity analysis on the parameter to understand how the likelihood of

possible outcomes changes and compare the proposed dependency model to an existing

model in the literature and the independent failure case. We also give a representation

of the dependency model using belief networks and show that the probability of any

network realization can be computed by the chain rule. Additionally, we examine the

dissimilar path generation methods for the selection of the emergency routes between

origin and destination points. Using the proposed dependency model and three path

generation methods in sampling algorithms, we investigate accessibility and service

levels of relief operations in a case study of the İstanbul highway network.
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ÖZETÇE

Deprem sonrası, köprü, viyadük gibi karayolu ağı elemanları çökebilir; enkazları

veya göçükleri yolları kapatabilir. Bu durum, acil müdahale faaliyetlerini engelleye-

bilir. Uzmanlar, sismik dalgaların yayılımının ve karayolu ağı elemanlarının yapısal

özelliklerinin ağ elemanlarının ilişkili yıkımlarına sebep olabildiklerini belirtmekte-

dirler. Bu çalışmada, deprem riski olan bir karayolu ağını, ayrıtları rassal yıkıma veya

ayakta kalmaya tabi olan yönsüz bir ağ olarak tanımladık. Karayolu ağının deprem

sonrası durumunu tahmin etmek için, ayrıtların marjinal ayakta kalma olasılıklarını

kullanarak, yeni bir bağımlı ayrıt yıkım modeli önerdik. Tanımladığımız kontrol

parametresi sayesinde, depremden sonra ayakta kalan rassal ağ için farklı bağımlılık

düzeylerinde bileşik olasılık dağılımlar familyası ürettik. Olası dağılımların nasıl

değiştiğini anlamak için, kontrol parametresi ile duyarlılık analizi yaptık. Önerdiğimiz

bağımlı ayrıt modelini, bağımsız yıkım modeli ve literatürdeki bir yıkım modeli ile

karşılaştırdık. İnanç ağlarını kullanarak önerdiğimiz bağımlılık modelinin grafiksel

gösterimini yaptık; herhangi bir ağ gerçekleşme olasılığının zincir kuralı kullanılarak

hesaplanabileceğini gösterdik. Bunlara ek olarak, ağ üzerinde belirlenmiş başlangıç

ve varış noktaları arasında acil yardım güzergahlarını belirlemek için yol yaratma

metodlarını inceledik. Önerdiğimiz bağımlı yıkım modelini ve literatürdeki üç yol

yaratma methodunu örnekleme algoritmalarında kullanarak, kurtarma operasyon-

larındaki erişilebilirlik ve servis düzeylerini İstanbul karayolu ağı için yaptığımız vaka

çalışmasında inceledik.
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putting up with his little sister’s whims with great patience.

I dedicate this thesis to my parents, Hermine Arşık and Arsin Arşık, who are the
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5.1 Highway Network of İstanbul . . . . . . . . . . . . . . . . . . . . . . 35

5.2 38 Districts of İstanbul . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Site Dependent PGA Distribution With 50% Probability of Exceedance

in 50 Years . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4 Histogram for Modified ATC 6-2 Scores . . . . . . . . . . . . . . . . . 41
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Chapter 1

INTRODUCTION

Disasters fall into two categories, natural and man-made. While man-made disas-

ters are caused by human actions, natural ones are inevitable events that result from

natural hazards. Due to the randomness in occurrence, location and impact, natural

disasters may result in great losses. Earthquakes are among the most destructive and

deadly natural disasters. In the event of an earthquake, shock waves generated by

seismic forces along the fault line cause ground shaking, surface ruptures, liquefac-

tion, landslides, mudflows and earth cracking which create further damages [1]. The

negligence of preparedness activities in pre-disaster stage and the inefficient emer-

gency response activities in post-earthquake stage boost the negative effects of these

earthquake damages.

Infrastructure systems such as public transportation, water, natural gas and elec-

tric power distribution provide critical services. In the aftermath of an earthquake,

these systems can be damaged and lose their functionality, which may cripple re-

sponse operations and paralyze daily life in the damaged areas. A vivid example for

damages on infrastructure systems is the Kobe earthquake in 1995 [6]. Water to 1

million, natural gas to 857 thousand and electricity to 916 thousand households were

cut. A total of 410 thousand subscribers could not use the telephone as a result of the

damages on the telephone network. Finally, major highways were damaged at 1257

different points.
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Highway systems constitute a significant part of the transportation systems through

which the commodities such as food, shelter and medical supplies must be transferred

from supply facilities to the affected areas as quickly as possible in order to support

the rescue and relief operations [37]. Therefore, the assessment of the earthquake

vulnerability of these systems and the selection of alternative emergency routes ac-

cording to the vulnerability assessment is essential for pre-disaster preparedness. The

information can also be used for capacity building and investment decisions for mit-

igation. For instance, highway administrators can prioritize structural strengthening

of highway components with respect to a system-wide vulnerability and accessibility

analysis. In this study, we investigate the vulnerability of a highway system in an

earthquake and how its post-earthquake condition would effect the relief operations

and casualty transportation. We represent the highway system by an undirected

graph/network whose edges/links are subject to random failure/survival. The road

segments correspond to network edges/links and the highly populated residential ar-

eas, emergency response facilities and junction points on the highway system are

represented by network nodes. In this network, we assume that the nodes are reli-

able, and the edges/links can either be operational (survive) or nonoperational (fail).

With the marginal survival probability of each link in an expected earthquake sce-

nario given, we postulate that both the radiation of seismic waves and the structural

properties of edge/link components such as bridges and viaducts create a dependency

among the link failures in the event of an earthquake. In other words, links that carry

the same seismic intensity are exposed to the similar amount of destruction and the

link components with the same structural properties are typically equally vulnerable

to the same amount of impact.

To represent this combined dependency structure, we suggest a practical approach.

To begin with, we partition the links into mutually exclusive sets according to their

seismic risk levels. Among each set, we divide links into subsets according to their
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structural properties related to earthquake vulnerability.

In a set, the level of spatial and structural dependency is controlled with a pa-

rameter. Given the marginal survival probability of each link and the value of this

parameter, we generate a joint probability distribution of the network edges/links,

which all together characterize a network realization/scenario. According to our de-

pendency model, the failure of links in the same dependency set with low marginal

survival probabilities (weak links) are affected from the failure of links with higher

marginal survival probabilities (stronger links). As a result, the likelihood/probability

of network realizations in which the failure of strong links is accompanied by the fail-

ure of weaker links increases with the value of the parameter. We investigate this

dependency model with belief networks (Bayesian networks) which is a graphical

modelling tool for specifying probability distributions and conditional dependencies

between variables [19]. We represent our dependency relationship between a link and

the links weaker and stronger than it with parent-child relationships in a Bayesian

network. We show that the probability of a network realization can be computed with

the chain rule applied in Bayesian networks. However, the calculation of the proba-

bility of each network realization requires extensive computation for large networks

since even counting the possible network realizations is #P-complete [21]. Therefore,

we rely on an external sampling algorithm to generate samples of network realizations

and estimate their probabilities from their frequency in the generated sample. This

approach enables us to estimate probabilistic measures of network performance.

The randomness in the survival/failure of network links engenders the selection

of a set of reliable and alternative emergency routes between origin and destination

(O - D) points in the pre-disaster stage. Although the selection of dissimilar paths

increases the O - D reliability, longer paths are undesirable in the post-earthquake

stage. To understand the trade off between reliability and path lengths, we implement

dissimilar path generation methods and analyze their effects on network performance



Chapter 1: Introduction

4

measures according to our proposed dependency model. We investigate three path

generation methods (k - shortest path algorithm [36], iterative penalty method [20],

p - dispersion method [4]) from literature. We also propose to generate another set

of paths by extending p-dispersion method to include the shortest paths in the path

sets.

Over the generated sample of network realization and set of dissimilar paths, we

calculate a path-based accessibility measure, various service levels and fairness among

demand points. Finally, we conduct a computational study on İstanbul highway

network. We calculate the performance measures for İstanbul highway network, which

is subject to earthquake hazard due to its vicinity to the seismically active North-

Anatolian Fault to obtain insights for mitigation and preparedness.

The remainder of this thesis is organized as follows. In Chapter 2, we review the

literature on disaster vulnerability of infrastructure networks, network reliability and

performance measures, dissimilar path generation methods, link failure dependency

and Bayesian networks in reliability assessment and in disaster vulnerability analysis.

In Chapter 3, we propose the link failure dependency model and its Bayesian network

representation. In Chapter 4, we describe the path-based performance measure with

its properties as well as demand service levels and fairness among demand points.

In Chapter 5, we present the computational study that we conducted on İstanbul

highway network. We explain the data collection and generation, path generation,

results and analysis of the results in this chapter. Finally, in Chapter 6, we provide

our concluding remarks and possible extensions of the study.
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Chapter 2

LITERATURE REVIEW

In this chapter, we present studies on disaster vulnerability of infrastructure sys-

tems, focusing on the network reliability and some of the recent measures presented

for network performance. We also review the methods for dissimilar path generation

and discuss the existing network link failure dependency models in the literature.

We explain Bayesian networks and present the studies on the application of Bayesian

networks in reliability analysis. Finally, we summarize our contributions to the liter-

ature.

2.1 Disaster Vulnerability of Infrastructure Networks

Infrastructure systems comprising transportation, water, energy and communication

systems provide commodities and services that are essential to enable and sustain so-

cietal living conditions. The physical components of these interrelated systems can be

crippled by natural or man-made disasters and thus paralyze the system functionality.

To maintain societal welfare in general and to handle emergency response activities in

post-disaster stage effectively, the vulnerability of the infrastructure systems should

be investigated. Studies on the assessment of disaster vulnerability of the infrastruc-

ture systems are prevalent in network reliability literature since these systems can be

characterized as networks.

Moghtaderi-Zadeh [27] introduces a systematic procedure for reliability upgrading

of existing lifelines for the post-earthquake serviceability. In this method, he deter-
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mines the critical network components whose strengthening improves the network

reliability at most according to specified serviceability criteria. He introduces mea-

sures that assess the effectiveness of upgrading these components. The step-by-step

upgrading procedure aims a specified target reliability level while reducing the costs

for upgrading the component and also the losses due to the failure of the lifeline.

Finally, he carries a case study on the water-distribution system in the San Francisco

Bay Area.

Sohn [33] carries an analysis to evaluate the importance of the highway network

links under flood damage. He introduces an accessibility index to embody the de-

creasing effect of distance and the volume of traffic influence on a highway network.

He identifies the critical links to prioritize retrofiting based on either the distance-only

or distance-traffic volume criteria and compares the percentage loss of accessibility

due to the degradation of a link in two cases. Finally, he calculates the accessibility

level of individual counties in Maryland and of the state as a whole before and after

the hypothetical disruption of individual links caused by a flood.

Chang and Nojima [10] suggest new system performance measures for the post-

disaster stage. They assess the network performance in terms of network coverage

and transportation accessibility. They apply these measures to the urban railway

and highway systems in Kobe, Japan that was affected by the destructive Hyogo-Ken

Nanbu earthquake in 1995.

Selçuk and Yücemen [31] work on the quantification of the reliability of lifeline

networks under a seismic hazard. They introduce a probabilistic model to evaluate

the seismic reliability of network components, whose seismic capacities are random

and spatially correlated. They implement their model to assess the seismic reliability

of a water distribution system located in Bursa, Turkey.
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2.2 Network Reliability and Performance Measures

The assessment of reliability can be seen as the complement of the assessment of vul-

nerability. Husdal [17] states that vulnerability is the non-operability of the network

under certain circumstances while he describes the reliability as the operability of the

network under varying strenuous conditions. In other words, network reliability indi-

cates the ability of a network to perform and maintain its functions properly. Thus,

the reliability analysis is engaged with the performance of a network in terms of its

ability to withstand the failures of its components [31].

In the context of a highway transportation network, the evaluation of reliability

mostly depends on the concerns of the decision maker. The decision maker can define

reliability either from the point view of the individual traveller or from the point of

view of all travellers with different reliability thresholds. Apart from these definitions,

there are performance measures based on theoretical interpretation of reliability such

as connectivity/terminal reliability, travel time reliability and capacity reliability [18].

Connectivity/terminal reliability is the probability that the nodes of a network

stay connected. Special cases of connectivity measures are two-terminal reliability,

all-terminal reliability and K-terminal reliability [21]. Two-terminal reliability refers

to the probability that two specific nodes are connected. All-terminal reliability is the

probability that every node is connected with every other node in the network. K-

terminal reliability is the probability that every node in a node subset with cardinality

K is connected with every other node in that subset. These measures are suitable for

different network systems. For instance, two-terminal reliability is a proper measure

for evaluating the connectivity of a specific O - D pair.

Travel time reliability is the probability that a trip between two specified nodes

is completed within a specified time interval [35]. The capacity reliability, on the

other hand, refers to the probability that a network serves a given level of travel
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demand successfully. Beside these reliability measures, there are various measures in

the literature that assess the performance of a network. Two recent studies with flow

networks are conducted by Nagurney and Qiang [28] and Gertsbakh and Shpungin

[15].

Nagurney and Qiang [28] define a unified network performance measure which

integrates the flow information and is applicable to different types of networks with

either fixed or elastic demands on them. For a given network topology and the equi-

librium or fixed demands for given O - D pairs, the network performance/efficiency

measure is defined as the sum of the ratios of demands to disutility functions over

all O - D pairs divided by the number of O - D pairs. With this measure, they can

evaluate network efficiency in the case of disconnected O - D pairs. Additionally, they

measure the importance of a network component by the relative drop in their pro-

posed performance measure after the component is removed from the network. Thus,

they identify the network components that are critical for the network reliability.

Gertsbakh and Shpungin [15] evaluate the network reliability in flow networks such

as communication networks, transportation and supply networks whose capacitated

edges are subject to failure. They assume that the flow network is reliable or UP if

the maximal flow from a source node to sink node is not less than a given thresh-

old. Accordingly, they estimate a topological characteristic of the network called

destruction spectrum (D-spectrum). This network topological invariant depends on

the network structure and the network DOWN state definition. They consider the

permutations of the network edges which are initially UP. In each permutation array,

starting from the beginning they change the state of the edges from UP to DOWN

one by one and check whether the network state becomes DOWN. They identify the

ordinal number of the first edge in the permutation that makes the network state

DOWN. They call these ordinal numbers the anchor of the permutation. Consider-

ing a set of all permutations, they call the discrete density function of these anchors
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the system destruction spectrum (D-Spectrum). For the case of network edges hav-

ing equal DOWN probabilities, they express the probability that the network is in

the DOWN state with the cumulative D-spectrum. Since the exact computation of

D-Spectra is #P-complete, they estimate it using an efficient Monte Carlo simulation.

2.3 Dissimilar Path Generation For Two Terminal Reliability Analysis

In the aftermath of a post-earthquake stage, the shortest path between any O - D

pair may not always be reliable. The edges/links of the shortest path may be blocked

and/or collapsed. However, another path with a slightly higher path length may

survive. Thus, it is more realistic to take a set of paths instead of only the shortest

path into consideration for two terminal reliability analysis in the post-earthquake

stage. For instance, as part of pre-earthquake preparedness activities, municipalities

identify alternative emergency routes for the selected O - D pairs.

In the literature, there are various methods to generate a set of dissimilar paths

between an O - D pair. The most-known one is k-shortest path algorithm [36], which

produces k loop-less shortest paths from one node to another node in a network.

The output is an ordered list of k alternative paths connecting an O - D pair. The

drawback of this method is that it generates similar paths with common links. If a

common link of the two generated paths fails, then both of the paths fail.

Johnson et al. [20] propose an iterative penalty method (IPM ) as an alternative

way for dissimilar path generation. In this method, Dijkstra’s algorithm is applied

between a given O - D pair iteratively. After each iteration, a penalty is applied to

all the links on the resulting shortest path, i.e., a chosen penalty magnitude is added

to the link costs and Dijkstra’s algorithm is repeated with the current link costs. The

links on the previous path with updated higher link costs become undesirable for the

paths to be generated. Hence, the dissimilarity between generated paths increases.
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Beside its simplicity, the method has some drawbacks. There are several decisions

to be made in the implementation that affect the generated paths and their costs.

The decisions are on the components to which the penalty is applied, the penalty

magnitude, the penalty structure (additive penalty or multiplicative penalty) and on

the paths to be penalized (the most recent path or all paths).

Another dissimilar path generation procedure is suggested by Akgün et al. [4] who

use the idea of the classic discrete p-dispersion problem. It is the selection of p ∈ P

points out of m ∈ M points (1 < p < m) in some space in order to maximize the

minimum distance between any two selected points. The formulation of p-dispersion

problem is given below, where wij is the dissimilarity between two points, i, j ∈ P .

max
P⊆M

[ min
i 6=j;i,j∈P

{wij}] (2.1)

In their procedure, they adopt this problem formulation to generate dissimilar

paths between a O - D pair. They select a set of p paths out of a set of m candidate

paths between O - D pair with the objective of maximizing the minimum dissimilarity

between any two selected paths. In the dissimilar path generation procedure, wij

corresponds to the dissimilarity between any two paths between O - D pair. This

dissimilarity is expressed in terms of the similarity index given below.

S(Pi, Pj) =

L(Pi∩Pj)

L(Pi)
+

L(Pi∩Pj)

L(Pj)

2
(2.2)

where L(Pi) is the length of path Pi and S(Pi, Pj) is the similarity index between

path i and path j. Then, the dissimilarity is equal to
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wij = D(Pi,Pj)=1-S(Pi,Pj) (2.3)

They adopt a two-phase heuristic as the solution approach. Their heuristic re-

quires a candidate set of paths as an input. Candidate set generation can be handled

by various methods. IPM and k-shortest path algorithm are two alternatives for the

generation of candidate sets.

2.4 Link Failure Dependency

Most studies on network reliability analysis have assumed independent link failures

and reliable nodes. However, in the event of a disaster, some network components

are exposed to the same amount of impact, which creates a dependency relationship

among component failures. This phenomenon is taken into consideration in a limited

number of studies in the literature.

Botev et al. [7] estimate the reliability of a network in terms of the probability that

a given set of network nodes is connected. They assume that the network links can be

either in operational or nonoperational states with given probabilities. They propose

a novel simulation-based method adapting the generalized splitting algorithm, which

defines a discrete-time Markov chain evolving to a state of rare event of interest. The

complementary problem, unreliability, is often a rare event and cannot be sampled

with crude Monte Carlo method. With variance reduction techniques, they change

the sampling distribution and sample the rare events. They note that unlike other

variance reduction methods their proposed method works with dependent link failure

case. However, they do not conduct any study with dependent link failures.

Selçuk and Yücemen [32] assess the seismic reliability of lifelines. They focus on

the connectivity of two specified points after a catastrophic event such as an earth-
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quake. They conduct a seismic hazard, capacity determination and network reliability

analysis to evaluate this performance measure. In their capacity determination anal-

ysis, they identify the seismic capacity (strength) of each network component. They

suggest point-site and multi-site models in which they divide the links into smaller

segments, and they determine the seismic capacity along the total length of the links.

In multi-site model, the survival of the link depends on the survival of each and ev-

ery segment on that link. They articulate that the segments of the same link are

expected to be highly correlated due to spatial proximity and shared material prop-

erties. Although they suggest a dependency among segments of a link, they assume

independent link failure in their network reliability analysis.

Sumalee and Watling [34] assume dependent link failures for transportation net-

works where only the drivers on directly degraded (damaged) link are adaptable.

They articulate that the link independence assumption is not suitable in the study

of transportation networks. They argue that the degradation of different links might

have common underlying causes such as disasters. They assert that when a network

link fails, the adjacent links or the links in the same area of that link can be de-

graded. They also suggest that the mode of the link does not have to be binary

(operational/non-operational). Thus, they assume dependent multi-mode link fail-

ures where the links can be partially operational. Based on this dependency model,

they introduce an algorithm for estimating the bounds on the probability of a path

travel time exceeding a threshold value.

Günneç and Salman [16] define dependent link failures for highway networks under

seismic hazard. Given the marginal link failure probabilities, they propose a link

failure dependency model in which they define vulnerability-based (VB) and set-based

(SB) dependencies. According to this model, the links are divided into vulnerability

sets based on deterministic peak ground acceleration (PGA) values. Links within

the sets depend on each other with VB-dependency while links in different sets fail
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independently with SB - dependency. In a vulnerability set, if a stronger (lower failure

probability) link fails due to an earthquake, they assume that the weaker (higher

failure probability) links fail with a probability equal to 1. For a network composed

of one vulnerability class with m number of links and links having 2 states (failure,

survival), VB-dependency yields m+1 surviving network realizations. This number

is equal to 2m if the links fail independently.

2.5 Bayesian Networks in Reliability and Disaster Vulnerability Assess-

ment

Over the last decade, the Bayesian Network (BN) approach which originated in the

field of artificial intelligence has attracted attention as a robust and efficient frame-

work for reasoning with uncertainty [22]. Briefly, a BN is a directed acyclic graph

(DAG) where the nodes represent random variables and the edges represent the causal

relationship and conditional dependencies between those variables. This probabilistic

graphical model is used as an inference engine for the calculation of beliefs or prob-

ability of events given the observation/evidence of other events in the same network

[25]. Its applications exist in engineering decision strategy [19], in the software-based

system assessments [11] and the risk assessment of water distribution systems [8] [9].

Recently, the use of BN to estimate and improve the reliability and safety of

systems has also increased. In contrast to existing modelling frameworks like fault

trees and reliability block diagrams, the BN framework models and analyses com-

plex systems, makes predictions, as well as diagnostics, computes exactly occurrence

probability of an event, updates the calculations according to evidence and represents

multi-mode variables [29].

Mahadevan et al. [25] suggest a BN model to assess the system reliability of

structural systems by applying their methodology to mechanical and civil systems.
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They combine the BN method with the branch-and-bound method to improve the

BN efficiency and facilitate its application to large structures. In their model, they

incorporate the correlations among component failures and the existence of multiple

failure sequences.

Langseth and Portinale [22] argue that the BN approach is suitable for reliability

applications. In their study, they explain building BNs, their causal interpretation

and their usage as inference engines. They also discuss the use of BNs for modelling

systems, which are traditionally handled with the fault-tree analysis (FTA) technique.

Finally, they give the dependability analysis on a real-life system using BNs.

The applications of BNs exist also in the disaster context. Li et al. [24] study

the assessment of catastrophic risks. They discuss using the domain knowledge and

spatial data for the construction of a BN. They integrate multiple factors associated

with catastrophic risk and the quantification of uncertainties within a probabilistic

graphical system. As a case study, they investigate the flood risk in northwest China.

They use a flood disaster data set and the related factors to construct a BN learner,

which is used to predict the flood’s loss risk.

In another study, Li et al. [23] use spatial analysis and BN to model vulnerability

of an individual subject to the damage arising from a catastrophic disaster and to

estimate insurance pricing accordingly. Using spatial analysis, they pre-process the

spatial attributes of geo-features to obtain the relevant indicators. Then, they in-

tegrate these indicators with other indicators such as hazard intensity, environment

and individual characteristics within a BN model. Each node of the BN represents

an indicator for vulnerability assessment and insurance pricing. They exemplify their

model with an earthquake vulnerability analysis and insurance pricing of the resi-

dency buildings in the study region of interest, which is located in an earthquake

prone province of China.
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2.6 Our Contributions

We present a new dependency model for the failure of links on a transportation net-

work. We define a control parameter α which determines the degree of dependency

between link failures. Accordingly, we generate a family of joint probability distribu-

tions for the random network subject to link failures. The proposed model is more

realistic compared to independent failure case in the sense that it incorporates the

common causes of link failures such as seismic intensity and spatial proximity in the

disaster context. Unlike the VB-dependency model [16], it also does not limit the

number of network realizations. All possible network realizations may have a positive

occurrence probability, but for many realizations this probability goes to a very small

number. Hence, we use sampling based approaches for large networks.

In the literature, the studies on Bayesian networks either assess the reliability of

a single network component or the disaster risk. Unlike these studies, we represent

the relationship between network links with BN and calculate the probability of each

realization. We believe that this is the first study that investigates BN for link failure

dependency models.

We propose an accessibility measure which is an expected value over the generated

network realizations. The measure is path-based, taking sets of paths between each

O - D pair as inputs. We compare three dissimilar path generation methods in the

literature and examine the network performance for each method.

We conduct a case study of the İstanbul highway network under a highly likely

earthquake scenario. We compare the proposed dependency model to VB-dependency

model in the literature and the independent failure case. We carry out a sensitiv-

ity analysis on the parameter α to understand how likelihood of possible outcomes

changes. Finally, we compute the proposed accessibility measure, demand service

level measures and fairness among demand points.
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Chapter 3

THE PROPOSED DEPENDENCY MODEL

In the event of an earthquake, highway roads may become nonoperational. Earth-

quakes can cause cracks and deformations on the roads obstructing the transportation.

The collapse of roadside buildings, viaducts, bridges and pedestrian overpasses on the

highway may paralyze the transportation on a particular road. However, highway

roads are not equally vulnerable to a possible earthquake. According to the prox-

imity to the earthquake epicentre, each piece of road has different regional seismic

risk. For instance, roads under the high regional seismic risk are more prone to earth-

quake related damages while roads under low regional seismic risk are more reliable.

Moreover, the structural properties of the buildings, bridges and viaducts define the

earthquake vulnerability of these structures and indirectly the earthquake vulnerabil-

ity of roads carrying these structures.

While most of the studies in network reliability assume that links fail indepen-

dently, this assumption is not valid in a disaster context. Experts state that the

roads that are in the same seismic region and carry the structures with similar earth-

quake vulnerability are expected to behave similarly in the event of an earthquake.

We introduce a practical approach that captures this dependency between the state

of the roads. To begin with, we represent the highway system by an undirected

graph/network whose edges/links are subject to random failure/survival and nodes

are reliable. In this graph, edges/links correspond to road segments. It is assumed

that the network edges/links can be either operational (survive) or nonoperational
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(fail) and their marginal survival probabilities are known. The links are divided

into mutually exclusive and spatially separated sets according to their regional seis-

mic risks. Within each set, links are divided further into structural dependency sets

according to the earthquake vulnerability of structures on the links. For the struc-

tural dependency set partitioning, the structural qualifications such as length, width,

construction year, supporting structure are relevant.

The link failure dependency model is based on the modification of link survival

probabilities. The survival probabilities are modified so that the links in the same

spatial and structural dependency sets behave similar to the failed stronger links. In

other words, failure of a stronger link makes the failure of weaker links of the same

kind more likely by decreasing the survival probabilities of weaker links by a factor

of (1-α)%. This dependency model focuses on the decrease in survival probability of

weaker links with respect to the failure of stronger links but not vice versa.

Definition 3.1. Given two links i and j in the same dependency set with survival

probabilities pi and pj, if pi 6 pj, then P(i survives | j fails)=(1-α)pi.

According to 3.1, links i and j within a dependency set do not fail independently.

To confirm this dependency, we check the covariance of links i and j.

Lemma 3.1. The covariance between states of links i and j, Cov(i, j), is greater

than or equal to 0, and is positive when 0 < pi 6 pj < 1.

Proof. The states of links i and j are represented by Bernoulli random variables and

can be either 1 or 0. Hence, four possible cases exist. (Case 1: i = 0, j = 0, Case 2:

i = 1, j = 0, Case 3: i = 0, j = 1 and Case 4: i = 1, j = 1)
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The expected values of i and j are given in 3.1 and 3.2 respectively.

E[i] =
∑
i

iP (i) = 1 ∗ P (i = 1) + 0 ∗ P (i = 0)

= P (i = 1) =
∑
j

P (I = i, J = j)

= P (i = 1, j = 0) + P (i = 1, j = 1)

= pi(1− α)(1− pj) + pipj

= pi − αpi + αpipj (3.1)

E[j] =
∑
j

jP (j) = 1 ∗ P (j = 1) + 0 ∗ P (j = 0)

= P (j = 1) =
∑
i

P (I = i, J = j)

= P (i = 1, j = 1) + P (i = 0, j = 1)

= pipj + (1− pi)pj

= pj (3.2)

Cov(i, j) = E[(i− E[i])(j − E[j])]

= (0− (pi − αpi + αpipj))(0− pj)(1− pi(1− α))(1− pj)

+ (1− (pi − αpi + αpipj))(0− pj)(pi(1− α))(1− pj)

+ (0− (pi − αpi + αpipj))(1− pj)(1− pi)pj

+ (1− (pi − αpi + αpipj))(1− pj)pipj

= αpipj(1− pj) (3.3)

For two extreme cases α = 1 and α = 0, we investigate Cov(i, j)
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Case 1 (0 < α ≤ 1): Cov(i, j) = pipj(1− pj) > 0 for 0 < pi 6 pj < 1.

Case 2 (α = 0): Cov(i, j) = 0. In this case i and j are independent.

From case 1 and case 2, it follows that Cov(i, j) ≥ 0 for 0 ≤ α ≤ 1.

In the case of the failure of n links stronger than link i in the same dependency

set, the survival probability of link i is equal to (1− α)npi.

We can argue that, as α increases, the likelihood of the failure of a link with

respect to a stronger link in the dependency set also increases. For α=0, the problem

turns into the independent link failure case. On the other hand, the case where α=1

is the totally dependent case.

3.0.1 Bayesian Network Representation

The hierarchical relationship between network links according to the proposed depen-

dency model can be represented by a Bayesian network, also called a belief network. A

Bayesian network is a graphical modelling tool for specifying probability distributions.

It is a directed acyclic graph whose nodes represent propositional variables whereas

edges are the direct causal influence among variables. For each variable, a condi-

tional probability table (CPT ) is defined which quantifies the relationship between

the variable and each of its parents [12]. With its special structure, Bayesian network

satisfies Markovian assumption, which dictates that every variable is conditionally

independent of its non-descendants given its parents.

To clarify the concepts, we illustrate the proposed dependency model on a network

with four nodes and four undirected edges. Let the four edges/links of this network

belong to the same dependency set and let e1 represent the edge/link between nodes

1 and 2, e2 between nodes 2 and 3, e3 between nodes 3 and 4, and finally e4 between

nodes 1 and 4. Let the individual survival probabilities of e1,e2,e3 and e4 be 0.85, 0.75,

0.7 and 0.55, respectively. The joint probability distribution of network realizations
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ξ=e1e2e3e4 α = 1 α = 0.75α = 0.50α = 0.25 α = 0
0 0 0 0 15% 11.55% 7.2% 3.06% 0.51%
0 0 0 1 0% 0.1% 0.53% 0.92% 0.62%
0 0 1 0 0% 0.51% 1.42% 1.78% 1.18%
0 0 1 1 0% 0.02% 0.23% 0.8% 1.44%
0 1 0 0 0% 2.24% 3.15% 2.77% 1.52%
0 1 0 1 0% 0.08% 0.5% 1.24% 1.86%
0 1 1 0 0% 0.42% 1.43% 2.6% 3.54%
0 1 1 1 0% 0.07% 0.54% 1.83% 4.33%
1 0 0 0 21.25% 16.93% 11.91% 6.97% 2.87%
1 0 0 1 0% 0.6% 1.9% 3.12% 3.51%
1 0 1 0 0% 3.21% 5.39% 6.55% 6.69%
1 0 1 1 0% 0.51% 2.05% 4.6% 8.18%
1 1 0 0 19.13% 16.5% 13.87% 11.24% 8.61%
1 1 0 1 0% 2.63% 5.26% 7.89% 10.52%
1 1 1 0 20.08% 20.08% 20.08% 20.08% 20.08%
1 1 1 1 24.54% 24.54% 24.54% 24.54% 24.54%

Table 3.1: Joint Probability Distribution For Five α Values

for different α values is given in Table 3.1.

The results in Table 3.1 show that the increase in α increases the likelihood of

certain realizations while the likelihood of other realizations either decreases or does

not change for a given network topology and marginal link survival probabilities. We

can interpret this effect of α as follows: Our dependency model favours the network

realizations in which weaker links are nonoperational if stronger links in the same

dependency set are nonoperational. The value of α corresponds to the degree of this

dependency between link failures. As α increases from 0 to 1, the probabilities of

some realizations add up to the probabilities of other realizations. In the case of α=1,

the probabilities of certain realizations become zero. For instance, the independent

failure case-probabilities of network realizations [0 1 1 1], [0 0 1 1], [0 1 0 1], [0 0 0

1], [0 1 1 0], [0 0 1 0] and [0 1 0 0] add up to the probability of [0 0 0 0] in the case

of α=1. Likewise the probabilities of network realizations [1 0 0 1] and [1 0 1 0] add

up to the probability of [1 0 0 0] and the probability of [1 1 0 1] add up to [1 1 0 0].
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The probabilities of [1 1 1 0] and [1 1 1 1] for α=1 remain almost the same as the

probabilities for α=0. The reason is that we do not manipulate the marginal survival

probability of a link as long as the stronger links survive according to the proposed

dependency model.

The Bayesian network representation of the network is given in Figure 3.1 and

the CPT tables of Bayesian nodes according to our dependency model are given in

Tables 3.2, 3.3, 3.4 and 3.5.

e4

e1

e2

e3

Figure 3.1: Bayesian Network Representation

e1 P(e1)
0 0.15
1 0.85

Table 3.2: CPT for e1

e1 e2 P(e2 | e1)
0 0 1-0.75(1-α)
0 1 0.75(1-α)
1 0 0.25
1 1 0.75

Table 3.3: CPT for e2
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e1 e2 e3 P(e3 | e1,e2)
0 0 0 1-0.7(1-α)2

0 0 1 0.7(1-α)2

0 1 0 1-0.7(1-α)
0 1 1 0.7(1-α)
1 0 0 1-0.7(1-α)
1 0 1 0.7(1-α)
1 1 1 0.7
1 1 0 0.3

Table 3.4: CPT for e3

e1 e2 e3 e4 P(e4 | e1,e2,e3)
0 0 0 0 1-0.55(1-α)3

0 0 0 1 0.55(1-α)3

0 1 0 0 1-0.55(1-α)2

0 1 0 1 0.55(1-α)2

0 1 1 0 1-0.55(1-α)
0 1 1 1 0.55(1-α)
0 0 1 0 1-0.55(1-α)2

0 0 1 1 0.55(1-α)2

1 0 0 0 1-0.55(1-α)2

1 0 0 1 0.55(1-α)2

1 1 0 0 1-0.55(1-α)
1 1 0 1 0.55(1-α)
1 0 1 0 1-0.55(1-α)
1 0 1 1 0.55(1-α)
1 1 1 0 0.45
1 1 1 1 0.55

Table 3.5: CPT for e4

Given the CPT for each Bayesian node, the probability of any network realization

can be computed as a chain rule in 3.4.

P([e1 e2 e3 e4])=P(e1) ∗ P (e2|e1) ∗ P (e3|e1, e2) ∗ P (e4|e1, e2, e3) (3.4)

For instance, the probability of network realization [1 0 0 1] with α=0.25 is given

by P([1 0 0 1])=0.85*0.25*(1-0.7(1-0.25))*0.55(1− 0.25)2=0.0312.

In our study, the random variables associated with the state of each link after the

earthquake correspond to the Bayesian network nodes. The parents of a Bayesian

network node are the nodes representing the state of links with higher survival prob-

abilities in the same dependency set, whereas its children are the nodes representing

the state of links with lower survival probabilities in the same dependency set. Hence,

given the available data on marginal survival probabilities, using belief networks we
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can make inferences about the state of network links according to our link failure

dependency model. The chain rule allows us to calculate the probability of a possible

network instantiation/realization/scenario in our study.

To sum up, Bayesian network provides a graphical representation of the depen-

dency relationship between the highway network links and the exact calculation of

the joint probability distribution of highway network links. However, the compu-

tation increases with the number of CPT tables, in other words the number of the

highway network links. Since counting the number of reliable network realizations

is a #P-complete problem [7], the calculation of the probability of each and every

network realization is impractical. Therefore, we apply the external sampling method

for large networks to generate a sample from the population of network realizations

and estimate their probabilities.

3.0.2 External Sampling

Notation

Let s = (s1, s2, ..., sm) be a network realization vector representing the state of the

network edges/links and S be the set of all possible network realizations (outcomes)

defined by s. si = 1, if link i is operational, and si = 0, if link i is nonoperational.

The probability of network realization s ∈ S is defined as P (s). For each link i ∈ E,

its marginal survival probability pi is given. Let parameter for link i, nij = 1, if link j

is in the dependency set of link i and pj≥pi, and nij = 0, otherwise. In other words,

nij denotes whether j is a parent of i in BN or not.

Unlike the VB-dependency [16], our model does not limit the number of realiza-

tions. Thus, it becomes computationally intractable to generate the joint probability

distribution as the number of network links increases. Therefore, we propose an

external sampling algorithm to generate a sample of network realizations and then



Chapter 3: The Proposed Dependency Model

24

utilize sample average approximation to estimate any probabilistic measure. We give

the pseudo-code of the external sampling in Algorithm 3.1, where the number of

replications is specified as R.

Algorithm 3.1 External Sampling of Network Realizations

Input: α, pi and nij ∀i, j ∈ E
Step 1: Order network links such that pi ≥ pi+1.
for r = 1 to R do

for i = 1 to m do
Step 2: Generate a network realization array s with size m.
Step 3: Set si ← 0, ξi ← 1 p′α(i)← 0, ∀i = 1, ..,m.
Step 4: Update the survival probability of link i as

p′α(i) = pi(1− α)

i−1∑
j=1

ξjnij

.
Step 5: Generate a random number ϕ between 0 and 1.
if p′α(i) ≥ ϕ then

si ← 1 and ξi ← 0.
end if

end for
end for
Let S be the set of unique realizations in sampling
Calculate the occurrence frequency, p(s), ∀s ∈ S
Output: s, p(s) ∀s ∈ S

In Algorithm 3.1, we use the marginal survival probability of each edge/link i,

pi, nij for every pair of edges i and j, and the control parameter α as inputs. In

Step 1, we sort the links with respect to their marginal survival probabilities in non-

increasing order. In Step 2, in each replication, we generate an array of all zeros

with length m representing an empty network realization array. In Step 4, we update

the marginal survival probabilities of each link according to the state of the stronger

links in its dependency set. In Step 5, we update the state of each link in the network

realization. Finally, we select the unique realizations from the set of generated network

realizations with size R, and output, we obtain a set of unique network realizations

and their frequencies as the estimate for the probabilities.
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3.0.3 Average Hamming Distance

Algorithm 3.1 would yield similar number of realizations in each generated sample.

We expect that these equally crowded samples generated by Algorithm 3.1 according

to the proposed dependency model differentiate with respect to the control parameter.

We know that as α increases, the edges depend more heavily on the edges stronger

than them in their dependency set. For instance, in the extreme case, α = 1, the

generated realizations depend on the state of stronger edges in the dependency set.

On the other hand, in the case of α = 0, realizations are generated independent from

the state of stronger links.

We investigate the Hamming distance between each pair of network realizations

in a given sample in order to assess the effect of the dependency model and α on the

composition of generated samples. Briefly, the Hamming distance is the number of

positions at which the characters are different between two equal strings. In our case,

the Hamming distance corresponds to the number of edges that are in different states

between a pair of network realizations.

For each sample, we calculate the average of Hamming distances over all pairs of

unique network realizations. The average Hamming distance serves to measure the

differentiation of the samples according to the choice of the control parameter α.

As the sample size increases, calculating the average Hamming distance takes too

much time.
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Chapter 4

PERFORMANCE MEASURES

In this chapter, we present performance measures and service levels to assess

the effectiveness of relief operations on a highway network in the aftermath of an

earthquake according to the proposed dependency model.

Notation

Given an undirected graph G = (N,E), where E is the set of edges/links and N =

{N1 ∪ N2 ∪ N3} is the set of nodes consisting of three disjoint sets. N1 represents

the set of demand points, N2 the set of supply points, and N3 the set of transmission

points. Let |E|= m and |N |= n. Additionally, the casualty demand at node v ∈ N1

is denoted by wv. Πvw is the set of paths, πvwl represents lth path of Πvw and finally

cvwl is the length of the lth path between node v ∈ N1 and node w ∈ N2. Finally,

avwsl = 1, if the lth path between nodes v and w survives in network realization s and

0, otherwise.

4.1 Accessibility Measure: Expected Weighted Average Distance (EWAD)

The accessibility measure that we introduce in this section incorporates the disas-

ter risk in terms of demand figures as well as the condition of the highway network

according to the proposed dependency model. The measure evaluates the expected

weighted average distance to fulfill unit relief aid demand on a random network with

given demand (casualty locations) and uncapacitated supply points (emergency re-
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sponse facility locations) and sets of paths between them.

For each network realization s ∈ S and for each demand point v ∈ N1, the length

of the surviving shortest path from demand point v to the closest supply point w ∈ N2,

dsv, is given by:

dsv = min
w,l

(πvwl avwsl ) (4.1)

In a network realization s, when there exists no path from a demand point v ∈ N1

to any supply point w ∈ N2, dsv is set to PenaltyCost which can be interpreted as the

relative distance corresponding to an alternative and reliable mode of transportation.

The expected shortest path length to serve a demand point v ∈ N1 over all network

realizations is given by:

EWAD(v)=
∑
s∈S

P (s)dsv (4.2)

The weighted average distance (WAD) to serve one unit of demand in scenario s

is given by:

WAD(s) =

∑
v∈N1

dsvwv∑
v∈N1

wv
(4.3)

Finally, the average expected shortest path length to serve a unit demand is given

by the following equation:

EWAD =

∑
s∈S

∑
v∈N1

P (s)dsvwv∑
v∈N1

wv
(4.4)
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4.1.1 Solution Approach

Exact calculation of the accessibility measure grows as the number of network real-

izations, demand points, emergency facility locations and number of paths increase.

Even checking the operational paths in path sets between each demand and supply

point in each network realization requires extensive computation as the size of the

network and path sets grows. Since our objective is to assess the accessibility level of

the highway network in the aftermath of an earthquake, we assume that the supply

points are uncapacitated. Hence, we only consider the paths with path length under

a threshold value for each demand point without keeping track of the supply point

from which the demand point is served.

Therefore, along with the sampling method explained in Chapter 3, we suggest an

approximation of the measure with the pre-processing of paths and the introduction of

a penalty mechanism in Algorithm 4.1. We select a subset of paths for each demand

point v ∈ N1, including the paths to any supply point w ∈ N2 less than a given

threshold for path lengths, PenaltyCost. Paths having path length greater than

PenaltyCost are excluded from the calculation. PenaltyCost represents a threshold

distance for effective casualty transportation.

Algorithm 4.1 Path Reduction as Pre-Processing

Input: Πvw, PenaltyCost
List all generated shortest paths from each demand node v ∈ N1 to all supply nodes
in N2.
Let the set of shortest paths to/from each demand node be Πv

For each demand node v ∈ N1, select a subset, Πv, that includes each and every
path with path length, cvwl 6 PenaltyCost. Name the subset Π

′v

Let πva be ath shortest path and cva be the length of ath shortest path to/from demand
node v, where a=1,2,..,|Π′v|.

Using network realization samples generated by Algorithm 3.1 and the path sets

generated by Algorithm 4.1, we calculate the accessibility measure EWAD for various
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values of the control parameter and for three dissimilar path generation methods. In

Algorithm 4.2, we provide the psuedo-code of the calculation.

Algorithm 4.2 EWAD

Input: S, P (s) s ∈ S, wv, Πv, cva, v ∈ N1, PenaltyCost
Initialize dsv ← 0 and EWAD← 0
for s = 1 to S do

for v = 1 to N1 do
for a = 1 to |Π′v| do

if Any link on the shortest path πva is nonoperational in scenario s then
a = a+ 1
Check the next shortest path

end if
if All links on the shortest path πva are operational then

Select the shortest path πva as the shortest surviving path
in scenario s
dsv = cva
v = v + 1
Go to the next demand point v

end if
if No path is operational from/to demand point v in scenario s then

dsv = PenaltyCost
v = v + 1
Go to the next demand node v

end if
end for
EWAD = EWAD + (dsv ∗ wv)

end for
EWAD = EWAD ∗ P (s)

end for
EWAD = EWAD/

∑
v∈N1

wv

Output : EWAD

The accessibility measure that we propose in this chapter satisfies three properties

[13] such as scale invariance, monotonicity and membership in an interval. In Lemma

4.1, we explain these properties.

Lemma 4.1. Let G = (N,E) be a random undirected graph with link failures ac-

cording to the proposed dependency model. The following properties hold.
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(1) Scale Invariance: The measure, EWAD is invariant with respect to scale

changes in demand values, wv, at demand points.

(2) Monotonicity: Let E∗ = E ∪ {e∗}. Then, EWAD(N,E∗) ≤ EWAD(N,E).

(3) Membership in [Deterministic Upper Bound (DUB), Deterministic Lower Bound

(DLB)]: DLB ≤ EWAD(N,E) ≤ DUB.

Proof. (1) Assume that the amount of demand at node v ∈ N1 varies by a factor β,

where β ≥ 0 so that the new demand is w∗v=βwv, ∀v ∈ N1. Denote by EWAD∗, the

measure with the new demand vector w∗ is equal to EWAD∗(N,E) = βEWAD(N,E).

(2) Clearly, adding a new link to the network may decrease dsv ∀ s ∈ S and ∀ v

∈ N1, but will not increase it.

(3) In the network realization s, where all links are operational, avwsl = 1 ∀ v ∈

N1, ∀ w ∈ N2 and ∀ k ∈ Πvw. Then, dsv ∀v ∈ N1 is equal to the shortest path to

the closest emergency response facility w ∈ N2 and EWAD is equal to DLB. In the

network realization s, where all links fail, dsv ∀v ∈ N1 is equal to PenaltyCost which

is also equal to DUB. Thus, EWAD can take values between DLB and DUB.

4.1.2 Alternatives for Path-Based Approach

In this study, our objective with the path-based approach is to investigate and com-

pare the dissimilar path generation methods in the disaster context. The selection

of emergency routes is essential in pre-disaster planning activities. However, alter-

natively, this measure can also be computed by finding the shortest path from each

demand point v to each supply w and selecting the shortest one among the gener-

ated shortest paths in each network realization. This method would require to call

Dijkstra’s algorithm for each demand point v in each network realization.

The performance of the path-based approach depends on the number of paths

generated for each demand point. Since we use a penalty mechanism, we limit the
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number of paths in the path set of each demand point v. On the other hand, the

performance of the alternative approach depends on the number of nodes. As the

network size increases, the path-based approach will perform better compared to the

alternative approach.

4.2 Demand Service Level Measures

In Section 4.1, we propose a weighted measure of demand points to assess the network

performance. The measure incorporates the demand value of each demand point

and gives an expectation on the average network performance. In this section, we

investigate the reliability of each demand point v in terms of connectivity and service

level criteria as well as fairness among demand points.

In a network realization s, when there exists no path from any supply point w

to demand point v, then the demand point v will not receive any service in that

realization, otherwise, it is counted as served. Accordingly, we study the network

performance for each demand point v by the following three service levels.

4.2.1 Service Level I

This service level indicates the probability that demand point v is served from a

supply point within a distance threshold, γ.

Let dv be the shortest distance for demand point v to be served.

P(dv ≤ γ) ∼=
# of realizations demand point v is served within γ

# of realizations
(4.5)
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4.2.2 Service Level II

Service Level II is the probability that demand point v is serviced from its closest

facility.

P(v is served from its closest w) ∼=
# of realizations v is serviced from its closest w

# of realizations

(4.6)

It should be noted that this service level is independent of path selection. With

this service level, we investigate whether a demand point is served from its closest

supply point or not. Thus, it calculates the probability of the best case for each

demand point v according to a given α value.

4.2.3 Service Level III

The third service level is the probability that demand point v is connected to any

supply point v. In this service level, we evaluate the connectivity over a set of paths

as opposed to only the shortest path in service level II.

P(v is served) ∼= 1− # of realizations with dsv=PenaltyCost

# of realizations
(4.7)

The comparison of service levels II and III shows the effectiveness of alternative

path selection in terms of pre-disaster planning compared designating of a single path

for emergency access to each demand point.

4.2.4 Fairness

One of the objectives in humanitarian logistics is fairness. While it is of high priority to

serve a maximum level of demand in a short time, it is also important not to create big

imbalances among the service levels of demand points. To pinpoint any imbalances,
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we evaluate the variability of the service levels among the demand points. We use

Pearson Variation Index (standard deviation/mean) to measure the variability.
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Chapter 5

COMPUTATIONAL STUDY ON İSTANBUL HIGHWAY

NETWORK

The city of İstanbul with its 15 million inhabitants, spreads over two continents

which are connected with two long span suspension bridges. The city on both Eu-

ropean Side and Asian Side is located on a high seismic zone. According to stress

transfer theory, the city is faced with having a destructive earthquake in the next 30

years with 60% probability [5] [30] [26]. Experts state that, in the event of a possible

earthquake, the failure of structures on the highway may totally paralyze the whole

transportation system in the city and the earthquake related problems such as the

disruption of emergency response activities may increase due to failure of the highway

network. We conduct a computational study to assess the earthquake vulnerability

of İstanbul highway network and how it would affect emergency response operations.

We test the proposed dependency model, conduct sensitivity analysis on the control

parameter α and report the results of accessibility, service and fairness measures.

5.1 Data Generation

In this section, we explain the generation of the representative network, the selection

of casualty demand and emergency facility locations, path generation methods and

edge survival/failure probability generation.
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5.1.1 Network Generation

The İstanbul highway network is composed of mainly two motorways, O1 and O2,

which run in the east-west direction of the city. In the north-south direction, the

secondary roads that are connected to O1 and O2 motorways expand the highway

network throughout the city (see Figure 5.1). In this study, we create a simplified

graph representation of this highway network using two geographical information

systems (GIS) software programs, ArcGIS and GoogleMaps.

Figure 5.1: Highway Network of İstanbul

İstanbul consists of 38 districts excluding the islands, shown in Figure 5.2. In our

network, except for the four districts, Beykoz, Sile, Çatalca and Silivri which have

low population and low earthquake risk [3], each district is represented by a node.

We also include 26 junction points where the secondary roads meet with O1 and O2

motorways into the node set. To simplify the reference, we number the nodes from

1 to 60 (see Table A.1). We calculate the path distances between each network node

pair with GIS programs. Due to the topology of highway networks, the path length of

going from node v to node w may differ from the path length of going from node w to

node v. Therefore, we calculate and include path lengths for both directions between

node pairs. Overall, the network consists of 60 nodes and 83 undirected edges with
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asymmetric edge lengths. We assume that the nodes are reliable while the edges are

subject to failure.

Figure 5.2: 38 Districts of İstanbul

5.1.2 Casualty Demand and Emergency Facility Locations

In the event of a disaster, according to Federal Emergency Agency (FEMA), extricat-

ing people and providing access to health care facilities are the top priorities followed

by access to emergency operations infrastructures such as the emergency operations

centres and supply distribution centres [1]. Thus, we believe that it is appropriate

to select health care facilities as emergency facility locations in our study. We inves-

tigate the number of hospitals, policlinics and number of beds in each district given

in Table A.3 [3]. We select the districts Bakırköy, Üsküdar, Şişli, Fatih, Kadıköy,

Bahçelievler, Zeytinburnu and Beyoğlu in which the health care facilities are highly

populated as emergency facility locations. We assume the emergency facilities are

uncapacitated and therefore they will completely cover the casualty demand in their

districts. We identify the remaining district as casualty demand locations where the

number of health care facilities is not enough to serve the casualties in post-disaster

stage. Therefore, these casualties are transported to the pre-identified emergency
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facility locations. We calculate the number of estimated casualties in each demand

district by the casualty rates given in [3] (see Table A.2).

5.1.3 Edge Survival/Failure Probability Generation

For a vulnerability assessment of the highway network, we need to estimate the in-

dividual survival probabilities, i.e., reliability of individual edges. As explained in

Chapter 3, there are various reasons which cause edges to become nonoperational.

In this study, we take into account the seismic intensity of the earthquake and the

collapse of structures on the highway for the estimation of edge survival probabilities.

The incidents obtained from Kobe earthquake show that the probability of the total

width of the collapsed buildings being more than the total width of the road is 98.7%,

11% and 0.3% for roads with width between 2 and 6 metres, 15 meters and 16 meters

respectively [3]. Since we only consider the motorway roads and arterial roads with

the width more than 15 meters, we exclude the possibility of road blockage due to

collapse of roadside buildings.

We define the seismic intensity in terms of peak ground acceleration (PGA) level

which measures how intensive the ground shakes in a given geographic area. In the

previous studies such as JICA report [3], the earthquake risk assessment of İstanbul for

the determination of earthquake ground motion is carried according to the determin-

istic methodology based on a selected earthquake scenario. Erdik et al. [26] propose

a probabilistic methodology which is the combination of infinitely many earthquake

scenarios for the relative comparison of ground motions in different sites in İstanbul.

They choose to use a time dependent method because the earthquakes occurring

along the North Anatolian Fault show characteristic earthquake property, i.e., the

earthquakes are major and repeating earthquakes. Accordingly, they calculate site

dependent PGA distributions corresponding to different exceedance probabilities for

given time intervals. In this study, we use the one with 50% probability of exceedance
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in 50 years shown in Figure 5.3.

Figure 5.3: Site Dependent PGA Distribution With 50% Probability of Exceedance
in 50 Years

According to this model, three PGA intervals exist in İstanbul. We represent these

intervals as risk levels, where risk level 1 shows the region with high seismic risk, risk

level 2 is the region with average seismic risk and risk level 3 is the region with

low seismic risk given in Table 5.1. We identify the regions in which the nodes fall.

An edge can be located in more than a single region, and it will be nonoperational

if one of its adjacent nodes fails. Therefore, we take the seismic risk level of an

edge as the maximum seismic risk level of its adjacent nodes. Then, we estimate the

survival probability to each edge according to its risk level. We assign random survival

probabilities with uniform distribution between 95-100 %, 90-94 % and 85-89% for

risk level 1, 2 and 3, respectively. These survival probabilities represent the strength

of links against the earthquake deformations.

We further partition edges in each region according to the earthquake vulnera-

bility of structures on them. Within the boundaries of the 17th Division of Highway
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PGA (50% in 50 Years) Risk Level
0.3-0.4 g 1
0.2-0.3 g 2
0.1-0.2 g 3

Table 5.1: Risk Levels

of State Highways of Turkey, 123 bridges/viaducts exist, 45 of them being on the

Motorway O1, 51 on the Motorway O2 and 27 on the secondary roads [26]. In 2011,

the 17th Division was merged with the 1st Division of State Highways [2] which is

responsible for the roads and the bridges of the national motorways and intercity

road network in the Marmara Region. Accordingly, the number of bridges in the city

centre adds up to 165 bridges [5]. Among these bridges and viaducts, the coordinates

of 104 structures are available in [26]. With GoogleMaps and ArcGIS, we identify net-

work edges on which these structures are located. To partition these structures and

indirectly the edges into structural sets, we use the preliminary earthquake risk as-

sessment of bridges and viaducts on Motorways O1, O2 and secondary roads [14] and

[38]. This preliminary assessment was conducted with the scoring method of ATC

6-2, one of the three widely used methods for preliminary assessment and priority

listing of structures.

In this method, the vulnerability, seismicity and structure importance are equally

important factors for the preliminary assessment. Vulnerability is about the struc-

tural properties such as type of bearing, skew angle of the superstructure, minimum

support length, height of the middle bents, height of the abutments, seating at the

abutments due to landfill. Seismicity represents the earthquake intensity, geology

and geotechnical surrounding of the structure. Finally, importance of the structure

is related to the daily average traffic, the physical size of the structure, population

around the area of structure, usage, the role of the structure for transportation to

the important facilities such as hospitals and fire departments. Each one of these fac-
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tors is evaluated for each bridge/viaduct and given a score between 1 and 10. Then,

the scores multiplied by 3.33 are added up to find the total score. Accordingly, a

bridge/viaduct with a total score of 100 is the riskiest structure in an earthquake

while a bridge/viaduct with a total score of 0 is risk free.

In our study, we exclude the importance of the structure factor in the structural

property-based partitioning of bridges/viaducts since we are interested in the earth-

quake vulnerability of the structures. Hence, we modify the ATC 6-2 total scores as

in 5.1.

Total Score-(3.33*Importance of Structure)

5 ∗ 3.33
(5.1)

The factors with their scores, total scores and modified total scores for bridges

and viaducts of İstanbul evaluated with ATC 6-2 are shown in Figure A.1. Using the

histogram in Figure 5.4, we analyse the distribution of the modified total scores and

divide the structures based on their modified total scores into three sets. Between

100-70, the structures are at high risk, between 70-55 the structures are at medium

risk and below 55 they are at low risk. According to the risks levels, the survival

probabilities of edges carrying these structures are modified. For an edge having more

than one structure on it, the riskiest structure determines its earthquake vulnerability.

We decrease the survival probabilities of edges having a structure with a total score

between 100-70 by 0.3, 70-55 by 0.2 and below 55 by 0.1.

Overall, we divide edges into 9 dependency sets and estimate the reliability of

individual edges accordingly. The sets and the edges in each dependency set are

given in Table 5.2.
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Figure 5.4: Histogram for Modified ATC 6-2 Scores

Sets Edges
Set 1 81 1 6 4 19 52 22 21 13 2 23 10 11 12 50 53
Set 2 51 80 25 83 70 72 7 16 27 37 5 15 69 43 29 39 78 45 79 9 20 24 54 82 14 44 8 65
Set 3 67 66 71 68 35
Set 4 26 31 55
Set 5 49 77 48 56
Set 6 33 18 17 57 63 75 38 58 32 47 41 34 30 46 42 61
Set 7 36 40 62
Set 8 60 74 3 59
Set 9 28 64 76 73

Table 5.2: Dependency Sets

5.2 Results

We coded Algorithm 3.1 in C++ and conducted all other calculations in Matlab. We

used a computer with a Intel(R) Xeon(R) CPU E5-2643 3.30 GHz processor and 32

GB RAM.
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5.2.1 Sample Size Analysis

To decide on the replication number to be used in Algorithm 3.1, we tested different

replication numbers for α = 0.20 and calculated the accessibility measure with the

set of paths generated with k-shortest path algorithm for each replication number.

We report the number of replication (R), estimated EWAD in kilometres, the vari-

ation(VAR), Pearson Variation Index (PVI ), the lower bound (LB95%) and upper

bound (UB95%) of 95% confidence interval on EWAD given in Table 5.3.

R 250,000 500,000 750,000 1,000,000
EWAD 35.04 35.03 35.05 35.03
VAR 60.53 60.61 60.45 60.31
PVI 0.22 0.22 0.22 0.22
LB95% 35.01 35.01 35.03 35.02
UB95% 35.07 35.06 35.07 35.05

Table 5.3: Sample Size Analysis

In Table 5.3, EWAD changes slightly as the replication number increases and the

PVI remains almost unchanged. Hence, we choose R to be 1,000,000. However, the

replication number is not equal to the number of unique realizations in the sample.

In Table 5.4, we report the number of distinct realizations with different values of α

for R = 1, 000, 000.

For α = 0, the number of unique realizations is almost the same as the replication

number whereas the number of unique realizations is lower for α = 1. Between two

extreme cases α = 0 and α = 1, the number of unique realizations oscillate. To track

the differentiation with respect to the control parameter α, we investigated the average

Hamming distance explained in Section 3.0.3. However, it takes too much time with

a sample of 1,000,000 realizations. Thus, we generated samples with R = 10, 000 and

calculate the average Hamming distances for each control parameter values. In Table

5.5, we report the number of unique realizations and the average Hamming distance
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α # of Unique Realizations
0 998,056
0.02 998,426
0.05 998,663
0.1 998,922
0.15 999,103
0.2 999,086
0.25 999,023
0.5 995,829
0.75 966,034
1 829,829

Table 5.4: Size of Distinct Realizations Set with R=1,00,000

for each control parameter α. The results show that the average Hamming distance

increases as the control parameter increases from 0 to 1. For α = 0.5 and higher, the

average Hamming distance changes slightly. This means that the generated samples

for α = 0.5 and higher have very similar composition of unique network realizations.

Therefore, we investigate α values for α = 0.2 and less and VB-dependency case

(α = 1).

In this study, a network realization represents the binary states of 83 edges. There-

fore, the average Hamming distance can also be interpreted as the average number

of edges that are different between network realizations in a given sample of unique

realizations. For instance on the average, each network realization differentiates from

the rest of the network realizations with 16 edges in a sample of 10,000 unique real-

izations for α = 0. On the other hand, the number of edges that cause differentiation

is 27 in a sample of 10,000 unique realizations for α = 0.2. It is 29 edges for α = 1

and 9957 unique realizations. This indicates that, as edges more strongly depend on

each other, the realizations in the sample differentiate.
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α Number of Unique Realizations Average Hamming Distance
0 10,000 16.12
0.02 10,000 17.52
0.05 10,000 19.69
0.1 9,999 23.48
0.15 10,000 25.74
0.2 10,000 27.12
0.25 10,000 27.69
0.5 9,999 28.61
0.75 9,993 28.63
1 9,957 28.85

Table 5.5: Average Hamming Distance with R=10,000

5.2.2 Path Generation

In this section, we explain the generation of alternative emergency path sets between

each demand and each emergency facility location point by three methods explained

in Chapter 2. With the pre-processing explained in Section 4.1.1, we select a subset

of these paths for each demand point among the generated paths. For each demand

point, we select all generated paths with path length less than the PenaltyCost of 60

km.

Firstly, we generated dissimilar paths with k-shortest path algorithm between each

demand point and each emergency facility location. We generated 80 paths for each

O - D pair (k = 80). For each demand point, we selected all paths with path length

less than 60 km.

Secondly, we coded IPM [20] and generated dissimilar paths accordingly. We used

additive penalty structure penalizing the links on the most recent path. We tried out

the several penalty amounts proportional to the edge lengths. We applied the same

pre-processing procedure that we use in k-shortest path algorithm in this method.

We observed that the number of paths and the composition of path sets are similar

for different penalty amounts due to the pre-processing procedure. Thus, we only
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report the results of path set with penalty of 40 km as a representative path set.

Thirdly, we coded the method based on p-dispersion problem by Akgün et al. [4] in

Matlab. For the candidate path set generation, we used the k-shortest path algorithm.

We took k = 10 and k = 30. In the method, we set p = 3. Since, p-dispersion method

selects the most dissimilar p paths among a candidate set, the final set of paths may

not contain the shortest path. However, excluding the shortest path in emergency

response planning is not realistic. Therefore, we suggest to generate a set of paths by

merging the set of paths generated by p-dispersion method and set of shortest paths

from a demand point to each supply point. We generate and report the results of

paths for the candidate sets with k = 10 and k = 30.

Although IPM generates better candidate paths set in terms of dissimilarity com-

pared to the one generated by k-shortest path algorithm, the average path length in

the candidate set generated by IPM is higher than the average path length in the set

generated by the k-shortest path algorithm. Since the average path length is one of

the key measures in emergency response activities, IPM is disadvantageous compared

to k-shortest path algorithm. Thus, we chose to apply k-shortest path algorithm to

obtain a candidate set.

The number of paths (#), the minimum (Min) and maximum (Max) path lengths

for each demand point in each method is given in Table 5.6 and Table 5.7. The last

rows of the tables give the averages of these quantities.

• A stands for k-shortest path algorithm

• B for IPM with penalty of 40

• C for p-dispersion method with p = 3,k = 10

• D for p-dispersion method with p = 3, k = 30
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• E for the modified p-dispersion method with p = 3, k = 10

• F for modified p-dispersion method with p = 3, k = 30.

In terms of the average number of paths with less length than PenaltyCost the

methods generate, p-dispersion method yields less number of paths and higher Min

and Max values compared to other methods. The modified p-dispersion method for

both k = 10 and k = 30 yields more number of paths and lower Min and Max values

compared to p-dispersion method. The properties of paths generated by k-shortest

path algorithm and IPM are almost the same in both methods for each demand point.

5.2.3 EWAD

Initially, we determine the range of possible values that the performance measure can

take. We calculate EWAD for the case in which all edges survive. This case represents

the pre-disaster condition of the highway network and gives the deterministic lower

bound on EWAD that is equal to 20.47 km. Similarly, the case when all edges fail

gives the deterministic upper bound that is equal to PenaltyCost, 60 km.

For each dissimilar path generation method with its parameters in Section 5.2.2, we

estimate EWAD for chosen α values (0.02, 0.05, 0.10, 0.15, 0.20), the independent link

failure case (Indep.) and the VB-dependency (VB). We report the elapsed time (ET )

in seconds, estimated EWAD in kilometres, the variation(VAR), Pearson Variation

Index (PVI ), the lower bound (LB95%) and upper bound (UB95%) of 95% confidence

interval on EWAD. The results are given in Tables 5.8, 5.9, 5.10, 5.11, 5.12, and 5.13.

The execution time of calculation for each control parameter and set of paths

is below an hour. For each dissimilar paths set, the calculation of EWAD in VB-

dependency case takes the longest execution time for Algorithm 4.2 compared with

other α values because Algorithm 4.2 checks the paths in the path set in non-increasing
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A B C

Demand No # Min Max # Min Max # Min Max

1 64 14.04 59.89 51 14.04 59.75 17 28.35 59.62
2 55 8.60 59.99 40 8.60 59.42 10 45.96 59.10
3 38 22.40 59.64 34 22.40 59.87 14 22.40 59.64
4 70 8.77 56.91 51 8.77 60.00 19 8.77 59.58
7 63 21.16 59.86 48 21.16 58.84 15 46.76 59.86
8 70 7.18 45.42 84 7.18 59.35 24 11.79 46.75
9 70 12.12 59.76 52 12.12 59.77 20 17.66 59.77
10 37 31.66 59.25 29 31.66 58.66 14 31.66 57.56
12 29 41.62 59.88 27 41.62 59.88 11 41.62 59.88
13 37 18.53 59.85 32 18.53 59.85 10 24.57 58.33
14 70 26.98 52.05 60 26.98 59.97 23 29.07 59.97
15 47 30.01 59.46 41 30.01 59.46 14 30.01 59.46
16 70 22.30 55.00 70 22.30 59.56 22 22.30 59.49
18 70 12.93 46.33 84 12.93 59.91 24 17.54 49.97
19 70 4.76 59.23 51 4.76 59.27 17 4.76 59.27
21 70 11.15 49.97 73 11.15 59.04 24 11.15 52.04
22 23 25.73 59.95 17 25.73 59.95 7 32.34 59.84
23 70 8.79 59.69 51 8.79 59.51 21 8.79 59.91
24 37 12.67 59.99 27 12.67 59.99 12 12.67 59.99
25 13 39.43 59.58 12 39.43 59.58 5 45.46 56.11
26 16 30.50 59.58 15 30.50 59.58 2 36.54 42.04
27 70 15.98 59.78 49 15.98 59.39 15 15.98 56.50
29 28 20.60 59.95 18 20.60 58.99 6 26.64 59.95
30 70 19.78 51.08 80 19.78 59.64 24 30.64 55.35
31 11 41.40 59.97 11 41.40 59.97 2 47.44 52.94
32 70 5.57 58.42 52 5.57 60.00 13 5.57 58.42

Average 51.46 19.79 57.33 44.58 19.79 59.58 14.81 25.25 56.97

Table 5.6: Properties of Path Sets

order with respect to path length until it finds an operational path. In VB-dependency

case, more paths are checked compared to other α values.

As expected, the increase in α increases EWAD for all three path-generation

methods. As α increases, the failure of edges becomes more dependent to the failure

of stronger edges in the same dependency set.

The variation (VAR) is the highest for VB-dependency case which can be justified

with the average Hamming distance. We observe the maximum average Hamming
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D E F

Demand No # Min Max # Min Max # Min Max

1 0 0.00 0.00 25 14.04 59.62 8 14.04 45.4
2 0 0.00 0.00 18 8.6 59.42 8 8.6 59.42
3 13 22.40 59.64 14 22.4 59.64 13 22.4 59.64
4 15 8.77 58.36 23 8.77 59.58 18 8.77 58.36
7 2 57.98 58.84 23 21.16 59.86 10 21.16 58.84
8 22 7.18 55.89 28 7.18 46.75 24 7.18 55.89
9 1 58.53 58.53 27 12.12 59.77 9 12.12 58.53
10 12 31.66 57.56 15 31.66 57.56 12 31.66 57.56
12 10 41.62 59.88 13 41.62 59.88 11 41.62 59.88
13 1 19.30 19.30 16 18.53 58.33 6 18.53 56.23
14 5 48.73 59.41 31 26.98 59.97 13 26.98 59.41
15 13 30.01 59.46 17 30.01 59.46 14 30.01 59.46
16 17 22.30 58.49 27 22.3 59.49 20 22.3 58.49
18 22 12.93 58.10 31 12.93 49.97 27 12.93 58.1
19 9 4.76 58.36 22 4.76 59.27 13 4.76 58.36
21 19 11.15 58.09 29 11.15 52.04 21 11.15 58.09
22 5 32.34 58.09 11 25.73 59.84 8 25.73 58.09
23 15 8.79 43.96 24 8.79 59.91 18 8.79 57.38
24 6 12.67 59.99 16 12.67 59.99 9 12.67 59.99
25 4 45.46 59.58 8 39.43 59.58 6 39.43 59.58
26 2 31.27 50.65 7 30.5 58.54 5 30.5 58.54
27 11 15.98 54.78 19 15.98 56.5 13 15.98 54.78
29 4 26.64 58.98 10 20.6 59.95 9 20.6 60.42
30 4 52.51 59.97 32 19.78 55.35 12 19.78 59.97
31 2 47.44 52.94 3 41.4 52.94 3 41.4 52.94
32 9 5.57 59.50 20 5.57 58.42 13 5.57 59.5

Average 8.58 25.23 51.48 19.58 19.79 57.76 12.42 19.79 57.80

Table 5.7: Properties of Path Sets

Indep. α = 0.02 α = 0.05 α = 0.10 α = 0.15 α = 0.20 VB
ET 562 605 677 885 1094 1189 1706
EWAD 24.81 25.41 26.63 29.39 32.43 35.03 45.11
VAR 7.24 9.45 15.06 31.03 48.22 60.31 74.75
PVI 0.11 0.12 0.15 0.19 0.21 0.22 0.19
LB95% 24.81 25.41 26.62 29.38 32.42 35.02 45.09
UB95% 24.82 25.42 26.63 29.40 32.44 35.05 45.13

Table 5.8: EWAD with k-shortest Path Algorithm
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Indep. α = 0.02 α = 0.05 α = 0.10 α = 0.15 α = 0.20 VB
ET 533 537 626 793 998 1132 1456
EWAD 24.83 25.43 26.65 29.43 32.48 35.08 45.13
VAR 7.33 9.57 15.25 31.38 48.60 60.65 74.78
PVI 0.11 0.12 0.15 0.19 0.21 0.22 0.19
LB95% 24.82 25.42 26.65 29.41 32.46 35.07 45.11
UB95% 24.83 25.44 26.66 29.44 32.49 35.10 45.15

Table 5.9: EWAD with IPM (Penalty = 40)

Indep. α = 0.02 α = 0.05 α = 0.10 α = 0.15 α = 0.20 VB
ET 380 393 432 500 572 638 740
EWAD 29.77 30.39 31.58 34.19 36.93 39.24 47.82
VAR 8.47 10.60 15.62 28.55 41.44 50.01 58.34
PVI 0.10 0.11 0.13 0.16 0.17 0.18 0.16
LB95% 29.77 30.38 31.58 34.18 36.92 39.23 47.80
UB95% 29.78 30.39 31.59 34.20 36.94 39.25 47.84

Table 5.10: EWAD with p-dispersion Method (p = 3, k = 10)

Indep. α = 0.02 α = 0.05 α = 0.10 α = 0.15 α = 0.20 VB
ET 629 842 843 841 965 1047 1179
EWAD 32.25 32.81 33.91 36.22 38.64 40.70 48.48
VAR 6.53 8.48 12.92 23.69 34.33 41.77 52.92
PVI 0.08 0.09 0.11 0.13 0.15 0.16 0.15
LB95% 32.24 32.81 33.90 36.21 38.63 40.68 48.47
UB95% 32.25 32.82 33.91 36.23 38.65 40.71 48.50

Table 5.11: EWAD with p-dispersion Method (p = 3, k = 30)

Indep. α = 0.02 α = 0.05 α = 0.10 α = 0.15 α = 0.20 VB
ET 382 403 441 527 624 706 854
EWAD 25.58 26.25 27.59 30.55 33.72 36.38 46.38
VAR 8.93 11.53 17.87 34.99 52.30 63.68 72.35
PVI 0.12 0.13 0.15 0.19 0.21 0.22 0.18
LB95% 25.57 26.25 27.58 30.54 33.71 36.37 46.36
UB95% 25.59 26.26 27.60 30.56 33.73 36.40 46.39

Table 5.12: EWAD with p-dispersion Method Modified (p = 3, k = 10)
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Indep. α = 0.02 α = 0.05 α = 0.10 α = 0.15 α = 0.20 VB
ET 305 325 351 408 467 536 602
EWAD 25.87 26.59 28.01 31.10 34.34 37.01 46.81
VAR 9.75 12.56 19.38 37.22 54.31 64.92 70.77
PVI 0.12 0.13 0.16 0.20 0.21 0.22 0.18
LB95% 25.87 26.58 28.00 31.09 34.33 37.00 46.79
UB95% 25.88 26.60 28.01 31.11 34.36 37.03 46.83

Table 5.13: EWAD with p-dispersion Method Modified (p = 3, k = 30)

distance in VB-dependency case. As the number of edges that are different in each

realization increases, the variation among the generated paths increases. Hence, the

accessibility measure can take dissimilar values between the deterministic lower and

upper bounds in each realization.

Although the variance increases drastically, PVI, the ratio of standard deviation

to the mean, remains lower than 0.25 in all cases. Additionally, the length of 95%

confidence interval confirms that we are able to accurately estimate EWAD for the

sample of realizations for each α in all methods.

Among all three path generation methods, p-dispersion method yields the largest

EWAD for each α value. The first reason is that the set of paths generated by p-

dispersion method do not necessarily contain the shortest path from demand point to

the closest emergency facility location. Secondly, the number of paths generated by

p-dispersion method which are less than PenaltyCost is also smaller than the number

of paths generated by other methods. Thus, this method does not suggest as many

alternative paths as the other two methods do.

The size of the candidate set affects the accessibility measure in p-dispersion

method. The paths generated by p-dispersion method vary in length. Selecting a

subset from a larger candidate set may result in paths with larger path lengths com-

pared to selecting from a smaller candidate set. Since the candidate sets are generated

by k-shortest path algorithm, the larger set includes all paths in the smaller set. Thus,
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a candidate set with 30 paths yields larger EWAD compared to a candidate set with

10 paths. Relatively, the difference between k = 10 and k=30 is larger for α values

less than 0.25.

The result for k-shortest path algorithm and IPM are almost equal for each α

value. As a result of pre-processing, the set of paths generated by each method

are quite similar since generated paths for each demand point to every emergency

facility are sorted and the paths with lengths less than PenaltyCost are taken into

consideration. However, as we increase the penalty amount, IPM yields slightly better

EWAD for each α compared to k-shortest path algorithm. As penalty increases,

generated paths become more dissimilar and thus they may remain operational in

given scenarios.

The suggested modified p-dispersion method yields better results in terms of ac-

cessibility than the results with p-dispersion method, however still worse than the

ones with k-shortest path algorithm and IPM. For small values of the control param-

eter, EWAD with path sets of modified p-dispersion method is 5-6 km less than the

results with the path sets of original p-dispersion method. In VB-dependency case,

the both methods produce accessibility measures close to each other. The reason is

that the shortest paths do not survive in VB-dependency case and the modification

of p-dispersion method becomes irrelevant.

5.2.4 Demand Service Levels

We calculated each type of service level for each demand point with each path gen-

eration method. To exemplify this analysis, we present the results for Beylikdüzü

district. Service Level I with γ = 25, Service Level I with γ = 50, Service Level II

and Service Level III of Beylikdüzü for different α values are given in Figure 5.6,

Figure 5.5, Table 5.14, and Figure 5.7, respectively. In the figures, A represents the

results for k-shortest path algorithm, B for IPM with penalty of 40, C for p-dispersion
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method with p = 3, k = 10, D for p-dispersion method with p = 3, k = 30, E for

the modified p-dispersion method with p = 3, k = 10 and F for modified p-dispersion

method with p = 3, k = 30.

Among α values, each service level performs at its best with α = 0 for each

path generation method. As the results for EWAD have shown, p-dispersion method

produces low service levels. However, the path set with modified p-dispersion method

increases the demand service levels in both candidate sets.

Figure 5.5: Beylikdüzü - Service Level I (γ = 25)

We calculate Service Level I of Beylikdüzü with two distance threshold values.

For γ = 25, Service Level I converges to 0.2 as α increases from 0 to 1 for each

path generation method except for p-dispersion method with p = 3, k = 10 which

performs worse than any other methods. Although p-dispersion method with p = 3,

k = 10 outperforms p-dispersion method with p = 3, k = 30 in accessibility measure,

investigating a single district shows that selecting more dissimilar paths from a larger

candidate set can improve the probability of coverage.
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Figure 5.6: Beylikdüzü - Service Level I (γ = 50)

The service levels with k-shortest path algorithm and IPM do not suggest any dif-

ferentiation for γ = 25. With the threshold increase from 25 to 50, IPM outperforms

k-shortest path algorithm. Additionally, for γ = 50, the service level for p-dispersion

methods increase compared to the service levels for γ = 25, since longer paths become

acceptable with larger threshold value.

We observe that Service Level II values of Beylikdüzü are below 50% for each α

value. This means that Beylikdüzü has low probability of getting service from its

closest facility. Although the probability of best-case service level is low, Beylikdüzü

has high connectivity level (Service Level III ) for small values of α shown in Figure

5.7. The connectivity is above 50% for each path generation method.

α 0 0.02 0.05 0.1 0.15 0.2 0.25 0.5 0.75 1

Service Level II 0.45 0.42 0.36 0.27 0.18 0.13 0.09 0.03 0.02 0.010

Table 5.14: Beylikdüzü - Service Level II
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Figure 5.7: Beylikdüzü - Service Level III

5.2.5 Fairness

Figure 5.8: Variability Among Demand Points For Service Level I (γ = 50)
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Figure 5.8 shows the variability of Service Level I with γ=50 among 26 demand

points with path set generated by k-shortest path algorithm. This service level takes

diverse values for different demand points. In order to quantify this variability, we

calculate PV I as explained in Section 4.2 for each service level given in Tables 5.15,

5.16, 5.17, and 5.18.

α 0 0.02 0.05 0.1 0.15 0.2 1

A 84.22% 84.71% 85.59% 87.54% 90.38% 93.80% 118.30%
B 84.22% 84.71% 85.59% 87.54% 90.38% 93.80% 118.30%
C 105.01% 105.37% 106.21% 108.84% 113.20% 118.41% 146.94%
D 111.29% 111.44% 111.83% 113.16% 115.71% 118.99% 140.48%
E 84.21% 84.71% 85.62% 87.62% 90.48% 93.94% 122.78%
F 84.23% 84.75% 85.68% 87.73% 90.66% 94.16% 122.97%

Table 5.15: PV I (Service Level I (γ=25))

α 0 0.02 0.05 0.1 0.15 0.2 1

A 12.07% 12.78% 14.46% 19.20% 25.25% 30.78% 61.18%
B 12.21% 12.94% 14.64% 19.35% 25.31% 30.75% 60.70%
C 30.21% 32.19% 35.68% 35.68% 49.31% 55.22% 89.31%
D 58.51% 58.51% 62.25% 67.06% 71.97% 76.76% 106.00%
E 84.21% 84.71% 85.62% 87.62% 90.48% 93.94% 122.78%
F 84.23% 84.75% 85.68% 87.73% 90.66% 94.16% 122.97%

Table 5.16: PV I (Service Level I (γ=50))

α 0 0.02 0.05 0.1 0.15 0.2 1

PV I 45.83% 47.18% 49.65% 55.35% 62.69% 70.09% 115.63%

Table 5.17: PV I(Service Level II )

PV I for Service Level III is low for small values of α which indicates that the

level of connectivity is similar among demand points. PV I for Service Level I, the

supplementary indicator of connectivity, points out that the distances to be covered

are diverse among demand points.
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α 0 0.02 0.05 0.1 0.15 0.2 1

A 11.60% 12.09% 13.29% 17.11% 22.44% 27.47% 56.45%
B 11.56% 12.04% 13.17% 16.92% 22.32% 27.46% 56.89%
C 22.72% 24.55% 27.80% 27.80% 41.02% 47.08% 82.68%
D 43.17% 43.17% 46.50% 50.59% 55.10% 59.75% 92.85%
E 14.22% 15.29% 17.22% 21.40% 26.67% 32.06% 67.98%
F 14.93% 16.13% 18.30% 22.92% 28.60% 34.26% 71.58%

Table 5.18: PV I (Service Level III )

PV I for Service Level I depends heavily on the threshold value γ. The increase

in γ from 25 to 50 decreases the variability of the service level among demand points,

hence it increases the fairness significantly. A vivid example is the change in service

level with k-shortest path algorithm (A) for γ = 25 and γ = 50. With γ = 50, the

variability among demand points is around 20% for α = 0.1 while it is around 90%

with γ = 25. This means that, most of the demand points cannot be served within

short distances.

Finally, the PV I for Service Level II indicates that there is high variability be-

tween demand points in terms of getting service from their closest facilities. While

some demand points can get service from their closest facility, others are directed to

farther emergency facilities.
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Chapter 6

CONCLUSION

Predicting the post-earthquake status of highway networks is important for the

decision-making process in the planning stage. In this study, we concentrated on mod-

elling the post-earthquake status of highway networks subject to an earthquake risk

realistically. We assumed that the radiation of seismic waves and structural properties

of network components on the network links create dependent link failures. Thus, we

proposed a practical dependency model in which we defined a control parameter that

represents spatial and structural dependency between link failures in mutually exclu-

sive dependency sets. While the independent link failure model suggests an optimistic

view of the surviving network and the VB-dependency model gives more probability

to the worst-case scenarios, the control parameter allows us to investigate more re-

alistic dependency levels for link failures. Although, different control parameters in

different dependency sets can be used, we chose to use the same control parameter in

each dependency set to simplify the computation.

According to this model, it is possible to generate a family of joint probability

distributions for the survival of network edges/the network realizations with varying

levels of dependency. We gave the representation of the dependency model using belief

networks and showed that the probability of any network realization can be computed

by the chain rule. However, as the network size gets larger, the computational time

makes this method intractable. For large networks, network realizations from the

generated distribution according to the chosen dependency level can be sampled using

an external sampling algorithm.
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The transportation of casualties to health care facilities and the distribution of

relief aid supplies are two essential response activities in the aftermath of an earth-

quake. These activities are carried out between various origin and destination (O -

D) points that are identified in the pre-disaster planning stage. It is advantageous

to identify a number of alternative paths between these O - D pairs by which the

post-earthquake network performance and reliability can be predicted. In the event

of a disaster, response activities can be initiated according to the condition of these

alternative paths. Moreover, in the case of disconnectivity between an O - D pair, the

retrofitting the connectivity can start with these paths. For these reasons, we studied

path generation methods in the literature and generated set of dissimilar paths be-

tween O - D pairs. Using a pre-processing approach we identified a set of alternative

paths for each demand point.

We proposed a path-based accessibility measure and tested the network perfor-

mance of İstanbul highway network according to the sampled network realizations

and generated set of alternative paths between O - D pairs. We investigated the

dissimilarity of the selected paths and its effects on the accessibility. In addition to

that, we assessed three demand service levels and fairness among demand points with

respect to these service levels.

We used the length of paths instead of travel times since it is hard to predict

travel times in the disaster context. Additionally, we used uncapacitated supply

points since the capacities change after a disaster with the incoming relief items

and establishment of temporary facilities. However, a study with current facility

capacities can be conducted to determine the congestion points and solve facility

locations problems for the additional temporary facility locations to be built in the

aftermath of an earthquake. Finally, the failure of supply points and junction points

can be taken into consideration to study the node failures.
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trees and bayesian networks using Form/Sorm method. Reliability Engineering

and System Safety, 65:29 – 40, 1999.

[10] S. E. Chang and N. Nojima. Measuring post-disaster transportation system per-

formance: the 1995 Kobe earthquake in comparative perspective. Transportation

Research Part A: Policy and Practice, 35:475 – 494, 2001.

[11] G. Dahll. Combining disparate sources of information in the safety assessment of

software-based systems. Nuclear Engineering and Design, 195:307 – 319, 2000.

[12] A. Darwiche. Modeling and Reasoning with Bayesian Networks. Cambridge

University Press, 2009.

[13] A. De-Los-Santos, G. Laporte, J. A. Mesa, and F. Perea. Evaluating passenger

robustness in a rail transit network. Transportation Research Part C: Emerging

Technologies, 20:34 – 46, 2000.

[14] G. Duman. Seismic vulnerability of highway bridges in İstanbul. Master’s thesis,
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Appendix A

District Name Node No District Name Node No

Arnavutköy 1 Tuzla 31

Ataşehir 2 Ümraniye 32

Avcılar 3 Üsküdar 33
Bağcılar 4 Zeytinburnu 34
Bahçelievler 5 J1 35
Bakırköy 6 J2 36
Başakşehir 7 J3 37
Bayrampaşa 8 J4 38
Beşiktaş 9 J5 39
Beylikdüzü 10 J6 40
Beyoğlu 11 J7 41
Büyükçekmece 12 J8 42
Çekmeköy 13 J9 43
Esenler 14 J10 44
Esenyurt 15 J11 45
Eyüp 16 J12 46
Fatih 17 J13 47
Gaziosmanpaşa 18 J14 48
Güngören 19 J15 49
Kadıköy 20 J16 50
Kağıthane 21 J17 51
Kartal 22 J18 52
Küçükçekmece 23 J19 53
Maltepe 24 J20 54
Pendik 25 J21 55
Sancaktepe 26 J22 56
Sarıyer 27 J23 57
Şişli 28 J24 58
Sultanbeyli 29 J25 59
Sultangazi 30 J26 60

Table A.1: Node Numbers
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District No District Population Casualty Rate (%) wi
1 Arnavutköy 197,271 1.30 2565
2 Ataşehir 290,818 1.10 3199
3 Avcılar 490,630 2.70 13247
4 Bağcılar 741,909 1.10 8161
7 Başakşehir 206,846 1.30 2689
8 Bayrampaşa 294,292 2.40 7063
9 Beşiktaş 365,083 1.20 4381
10 Beylikdüzü 222,357 2.80 6226
12 Büyükçekmece 183,208 4.80 8794
13 Çekmeköy 141,400 0.50 707
14 Esenler 541,250 1.20 6495
15 Esenyurt 102,692 1.30 1335
16 Eyüp 302,214 1.40 4231
18 Gaziosmanpaşa 434,167 0.60 2605
19 Güngören 212,016 1.80 3816
21 Kağıthane 395,000 0.80 3160
22 Kartal 429,615 1.30 5585
23 Küçükçekmece 647,077 1.30 8412
24 Maltepe 438,727 1.10 4826
25 Pendik 516,667 1.20 6200
26 Sancaktepe 148,200 0.50 741
27 Sarıyer 222,333 0.30 667
29 Sultanbeyli 256,545 1.10 2822
30 Sultangazi 434,500 0.60 2607
31 Tuzla 143,185 2.70 3866

32 Ümraniye 664,800 0.50 3324

Table A.2: Number of Casualties in Demand Nodes
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District Name Number of Hospitals Number of Policlinics Number of Beds

Şişli 21 0 1,597
Kadıkoy 20 42 1,127

Üsküdar 17 16 2,036
Fatih 16 16 1,081
Bahçelievler 12 0 1,126
Gaziosmanpaşa 11 0 491
Bakırkoy 10 10 4,229
Beyoğlu 8 15 861
Güngören 6 1 207
Bayrampaşa 6 12 259
Kartal 6 9 918
Zeytinburnu 6 10 1,325
Maltepe 5 2 85
Pendik 5 11 244
Avcılar 5 6 323
Eyüp 4 10 75

Ümraniye 4 24 87
Buyukçekmece 4 0 134
Beşiktaş 4 0 173
Bagcılar 4 23 177
Kucukçekmece 4 23 177
Esenler 3 11 147
Silivri 3 0 147
Kagıthane 3 0 285
Beykoz 3 6 300
Sarıyer 3 15 510
Çatalca 1 0 50
Tuzla 0 0 0

Table A.3: Number of Medical Facilities by District
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Node 1 Node 2 Edge No

Bağcılar Bahçelievler 1
Bahçelievler Bakırköy 2
Arnavutköy Beşiktaş 3
Avcılar Beylikdüzü 4
Beylikdüzü Büyükçekmece 5
Avcılar Esenyurt 6
Beylikdüzü Esenyurt 7
Beyoğlu Fatih 8
Bayrampaşa Gaziosmanpaşa 9
Bahelievler Güngören 10
Avcılar Küçükçekmece 11
Bahçelievler Küçükçekmece 12
Bakırköy Küçükçekmece 13
Kartal Maltepe 14
Çekmeköy Sancaktepe 15
Pendik Sancaktepe 16
Eyüp Saryer 17
Sarıyer Şişli 18
Kartal Tuzla 19

Ümraniye Üsküdar 20
Bakırköy Zeytinburnu 21
Fatih Zeytinburnu 22
Güngören Zeytinburnu 23
Esenyurt J1 24
Bağcılar J2 25
Başakşehir J2 26
J1 J2 27
Esenler J3 28
Beyoğlu J4 29
Beşiktaş J5 30
J4 J6 31
Eyüp J7 32
Eyüp J8 33
Kağıthane J8 34
J4 J8 35
J7 J8 36
Beyoğlu J9 37
Kağıthane J9 38
J4 J9 39
J5 J9 40
Sarıyer J10 41
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Node 1 Node 2 Edge No

Şişli J10 42
Bayrampaşa J11 43
Fatih J11 44
J6 J11 45
Gaziosmanpaşa J12 46
J3 J12 47

Ümraniye J13 48
Ataşehir J14 49
Sultanbeyli J15 50
Sultanbeyli J16 51
Tuzla J17 52
J15 J17 53
Bayrampaşa J18 54
J2 J18 55
J3 J18 56
Kağıthane J19 57
Şişli J19 58
J8 J19 59
J10 J19 60
Gaziosmanpaşa J20 61
Sultangazi J20 62
J7 J20 63
J12 J20 64

Üsküdar J22 65
J5 J22 66
J14 J22 67
J21 J22 68
Kadıköy J23 69
Maltepe J23 70
J14 J23 71
J21 J23 72
J10 J24 73
J13 J24 74
Çekmeköy J25 75
J13 J25 76
J14 J25 77
Kartal J26 78
J14 J26 79
J16 J26 80
J15 Pendik 81
J2 Küçükçekmece 82
J1 Büyükçekmece 83

Table A.4: Edge Numbers
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Figure A.1: ATC 6-2 Scores
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Edge No Edge Risks Max ATC Score Probabilities Modified Probabilities

1 1 0 0.89 0.89
2 1 0 0.85 0.85
3 3 65.5 0.99 0.79
4 1 0 0.90 0.90
5 2 0 0.94 0.94
6 1 0 0.86 0.86
7 2 0 0.94 0.94
8 2 0 0.94 0.94
9 2 0 0.92 0.92
10 1 0 0.85 0.85
11 1 0 0.85 0.85
12 1 0 0.88 0.88
13 1 0 0.89 0.89
14 2 0 0.92 0.92
15 2 0 0.93 0.93
16 2 0 0.94 0.94
17 3 0 0.96 0.96
18 3 0 0.98 0.98
19 3 0 0.85 0.85
20 2 0 0.93 0.93
21 1 0 0.90 0.90
22 1 0 0.89 0.89
23 1 0 0.86 0.86
24 2 0 0.92 0.92
25 2 0 0.93 0.93
26 2 64.5 0.93 0.73
27 2 0 0.95 0.95
28 3 55 0.98 0.88
29 2 0 0.94 0.94
30 3 0 0.99 0.99
31 2 60.35 0.93 0.73
32 3 0 0.97 0.97
33 3 0 0.98 0.98
34 3 0 0.96 0.96
35 2 90.5 0.93 0.63
36 3 80.5 0.9955 0.69
37 2 0 0.91 0.91
38 3 0 0.99 0.99
39 2 0 0.90 0.90
40 3 80.5 0.98 0.68
41 3 0 0.95 0.95
42 3 0 0.96 0.96
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Edge No Edge Risks Max ATC Score Probabilities Modified Probabilities
43 2 0 0.94 0.94
44 2 0 0.92 0.92
45 2 0 0.95 0.95
46 3 0 0.99 0.99
47 3 0 0.95 0.95
48 2 50.5 0.92 0.82
49 2 55.5 0.93 0.73
50 1 0 0.89 0.89
51 2 0 0.94 0.94
52 1 0 0.89 0.89
53 1 0 0.86 0.86
54 2 0 0.92 0.92
55 2 68 0.94 0.74
56 2 44.5 0.93 0.83
57 3 0 0.97 0.97
58 3 0 0.99 0.99
59 3 69.35 0.99 0.79
60 3 65.1 0.98 0.78
61 3 0 0.98 0.98
62 3 75.15 0.97 0.67
63 3 0 0.98 0.98
64 3 55 0.95 0.85
65 2 0 0.90 0.90
66 2 75.5 0.93 0.63
67 2 74 0.95 0.65
68 2 75.15 0.93 0.63
69 2 0 0.91 0.91
70 2 0 0.95 0.95
71 2 89.5 0.90 0.60
72 2 0 0.90 0.90
73 3 55 0.96 0.86
74 3 62 0.98 0.78
75 3 0 0.99 0.99
76 3 54.5 0.98 0.88
77 2 54.5 0.92 0.82
78 2 0 0.93 0.93
79 2 0 0.93 0.93
80 2 0 0.94 0.94
81 1 0 0.87 0.87
82 2 0 0.93 0.93
83 2 0 0.94 0.94

Table A.5: Survival Probabilities of Edges
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