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ABSTRACT

Molecular communication is a novel nanoscale communication paradigm, in which infor-

mation is encoded in messenger molecules for transmission and reception. Indeed, human

body is a large-scale heterogeneous communication network of nanonetworks composed of

interacting nanomachines, i.e., cells, whose functionalities primarily depend on nanoscale

molecular communications. In this thesis, we introduce the elementary models for signif-

icant intra-body molecular communication channels, and then, discuss molecular nanonet-

works belonging to multi-terminal extensions of channel models. Our objective is to learn

from the elegant molecular communication mechanisms inside us for engineering practical

communication techniques for emerging nanonetworks. Besides, we aim to pave the way

for the advancement of revolutionary diagnosis and treatment techniques inspired from in-

formation and communication technologies, which is promising for future nanomedicine and

bio-inspired molecular communication applications. Furthermore, we model the multiple-

access synaptic communication channel, and analyze the synaptic transmission performance

by incorporating the role of presynaptic input correlation. Using this model, we concentrate

on the disorders characterized by abnormalities in the synaptic terminals and connections, and

establish relations between neural diseases and synaptic communication problems. Addition-

ally, we investigate the multiuser interference in synaptic communication channel and provide

a performance analysis for the postsynaptic rate. Moreover, we investigate the performance,

i.e., rate and delay, tradeoffs in messenger based molecular nanonetworks, and analyze a

molecular network coding scheme to investigate the communication rate improvement.
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ÖZET

Moleküler haberleşme, bilginin iletiminin ve alımının taşıyıcı moleküllerin kodlanmasıyla

gerçekleştirildiği yenilikçi bir nano-ölçekli haberleşme yöntemidir. Gerçekte, insan vücudu

da işlevselliği temel olarak nano-ölçekte moleküler haberleşmeye dayanan etkileşim halindeki

nanomakinelerin, hücrelerin, oluşturduğu nanoağları içeren çok yapımlı ve büyük ölçekte bir

haberleşme ağıdır. Bu tezde, insan vücudu içindeki önemli moleküler haberleşme kanal-

ları için temel modelleri tanıtıp, sonrasında, bu kanal modellerine dayanarak genişletilmiş

çoklu-uçlu moleküler ağları ele alıyoruz. Amacımız, vücut içindeki eksiksiz moleküler haber-

leşme mekanizmalarını öğrenerek yeni geliştirilen nanoağlar için pratik haberleşme teknikleri

geliştirmektir. Ayrıca, bilgi ve haberleşme teknolojilerinden esinlenen devrim niteliğinde tanı

ve tedavi tekniklerinin geliştirilmesinin yolunu açmaktır. Bu da gelecek-nesil nanotıp ve

biyolojik-esinli moleküler haberleşme uygulamaları için umut vericidir. Bu çalışmada ayrıca,

presinaptik girdi korelasyonunun rolü dahil edilerek çoklu-erişimli sinaptik haberleşme kanalı

modellenmekte, ve sinaptik haberleşme başarımı analiz edilmektedir. Bu model kullanılarak,

sinaptik uçlardaki ve bağlantılardaki anormalliklerle karakterize sağlık bozukluklarına ağır-

lık verilip, sinirsel hastalıklar ve sinaptik haberleşme problemleri arasındaki bağlantılar ku-

rulabilmektedir. Bunlara ek olarak, çoklu-erişimli sinaptik haberleşme kanalındaki girişimi

inceleyerek alıcı uçtaki iletim başarımı performansını analiz ediyoruz. Bunlara ilave olarak,

bu çalışma, taşıyıcı-tabanlı moleküler nanoağlarda bilgi aktarım hızı ve gecikme başarımı

ödünleşimlerinin araştırılmasını da kapsamaktadır. Haberleşme hızındaki artışı gözlemlemek

amacıyla, yeni bir moleküler ağ kodlama yöntemi geliştirilmiş ve analiz edilmiştir.
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I want to acknowledge the support of TÜBİTAK and Koç University, which made the com-

pletion of this thesis possible.

Finally, I would like to thank my parents, Mediha Malak and Ahmet Haşim Malak. My mother
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CHAPTER 1

INTRODUCTION

Molecular communication is a novel nanoscale communication paradigm, in which molecules

are used to encode, transmit and receive information. Indeed, human body is a large-scale

heterogeneous communication network of nanonetworks composed of interacting nanoma-

chines, i.e., cells, whose functionalities primarily depend on nanoscale molecular commu-

nications. We introduce the elementary models for significant intra-body molecular com-

munication channels, and then, discuss molecular nanonetworks that are the multi-terminal

extensions of these channel models. In addition, we investigate the rate-delay tradeoffs with

molecular network coding in messenger based molecular nanonetworks. We also model the

multiple-access synaptic communication channel, and analyze the synaptic communication

rate by incorporating the role of presynaptic input correlation. Moreover, we analyze the

interference in single-input and multiple-access synaptic communication channels. In this

chapter, we first introduce the fundamentals and then, present the research objectives and

solutions.

1.1 Molecular Communications

Recently, enormous improvements in the field of nanotechnology have enabled the realization

of powerful and functional man-made tiny devices inspired from the behavior of atomic and

molecular structures. Nanomachines, composed of nanoscale components, are independently

operating fullfeatured devices capable of tasks ranging from computing and data storing to

sensing and actuation. However, their scarce memory and processing capabilities point out the

need for establishment of nanonetworks, i.e., a number of nanomachines communicating to

jointly execute application-specific tasks. Several communication paradigms are considered
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for use in nanonetworks, however the most promising is molecular communication, where

molecules are used to encode, transmit and receive information [3]. One main reason is that

molecular communication of nanoscale entities is an existing natural phenomena, and offers

a field of study for developing solutions through modeling nanonetworks. Another reason is

that nanonetworks can be built upon such phenomena with appropriate tools, thus ensuring

feasible engineering solutions.

1.2 Biological Nanonetworks

To realize molecular nanonetworks, foundations of molecular information theory should be

established through identification of the existing molecular communication mechanisms, and

development of networking techniques for nanomachines, which demand novel engineering

efforts. Fortunately, these engineering skills and technology have been prepared within us by

the natural evolution in the last several billions of years.

Indeed, human body is a large-scale heterogeneous communication network of nanonetworks

composed of interacting nanomachines, i.e., cells, whose functionalities primarily depend on

nanoscale molecular communications. Hence, the vital conditions of the human body di-

rectly depend on the performance, reliability, and continuous functioning of intrabody molec-

ular nanonetworks. Furthermore, understanding potential disorders caused by communica-

tion failures paves the way for the development of ICT-inspired treatment techniques. In

addition, establishment of the information theoretical foundations of the existing intra-body

molecular communication mechanisms will be a significant step towards the development

of implementable architectures and communication techniques for emerging applications of

nanonetworks.

Our research starts with the pursuit of bringing groundbreaking molecular communication so-

lutions out by observing and understanding the biological processes we inherently have. Thus,

introducing the models for elementary molecular communication channels, i.e., nanoscale

neuro-spike communication channel, action potential-based cardiomyocyte molecular com-

munication channel, and hormonal molecular communication channel, and identifying few

of vital intra-body molecular nanonetworks to pave the way for the development of innova-

tive communication theoretical solutions for future medicine and bio-inspired techniques for
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realization of nanonetworks are main objectives of this thesis.

1.3 Performance Tradeoffs in Molecular Nanonetworks

Since molecular communication inherently exists in nature, it is biocompatible, biostable and

it has also the capability of operating at nanoscale. Hence, it may be applied to a wide variety

of areas such as environmental applications, which include water and air pollution control,

industrial applications, which include development of nanorobots, nano-processors and nano-

memory, and medical applications, which are drug delivery, disease treatment and health

monitoring [3].

Molecular communication differentiates from standard wireless communication applications

with its dramatically higher and varying propagation delays [121], operational uncertainties

and proneness to noise and interference. To design nanomachines that compensate these

drawbacks, the operation limits of molecular communication systems should be thoroughly

investigated.

Molecular communication is unreliable and suffering from long propagation delays, even up

to hours [54], due to diffusion of large molecules. Moreover, the nanomachine spends time

generating multiple redundant molecules for a single message to guarantee the delivery of the

message and preparing them for transmission. This unfortunately yields low rates. There-

fore, a joint rate and delay analysis for molecular communication is needed to investigate its

capabilities and shortcomings.

1.4 Research Objectives and Solutions

The objectives of our research and the solution approaches are explained in this section.

1.4.1 Molecular Communication Nanonetworks inside Human Body

To realize molecular nanonetworks, the foundations of molecular information theory should

be established through identification of the existing molecular communication mechanisms,

and architectures and networking techniques for nanomachines should be developed, which
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demand novel engineering efforts. Luckily, these engineering skills and technology have

been prepared for us by the natural evolution in the last several billions of years. Indeed, the

human body is a massive nanoscale molecular communications network as it is composed

of billions of interacting nanomachines, i.e., cells. Intra-body biological systems are closely

linked to each other and communicate primarily through molecular transactions. Thus, vital

activities inside the human body are regulated by everlasting communication performance

and operations of intra-body molecular nanonetworks. However, natural intra-body molecular

nanonetworks are yet to be explored with the elegant tools of information and communication

theories.

In this thesis, first, the elementary models for significant intra-body molecular communica-

tion channels, i.e., nanoscale neuro-spike communication channel, action potential-based car-

diomyocyte molecular communication channel, hormonal molecular communication chan-

nel, are introduced. Next, molecular nanonetworks belonging to multi-terminal extensions

of channel models, i.e., nervous, cardiovascular molecular, endocrine nanonetworks are dis-

cussed. Furthermore, heterogenous communication network of intra-body molecular nanonet-

works together with five senses, i.e., nanosensory networks, is explored from the perspectives

of communication and network theories. Moreover, open research challenges, such as exten-

sion of molecular channel models to multi-terminal cases, and developing a communication

theory perspective to understand the physiology and to capture potential communication fail-

ures of intra-body biological systems, are provided. Our objectives are to learn from the

elegant molecular communication mechanisms inside us for engineering practical communi-

cation techniques for emerging nanonetworks, as well as to pave the way for the advancement

of revolutionary diagnosis and treatment techniques inspired from information and communi-

cation technologies, which is promising for future nanomedicine and bio-inspired molecular

communication applications.

1.4.2 Synaptic Multiple-Access Channel in Hippocampal-Cortical Neurons

Communication between neurons occurs via transmission of neural spike trains through junc-

tional structures, either electrical or chemical synapses, providing connections among nerve

terminals. Since neural communication is achieved at synapses, the process of neurotrans-

mission is called synaptic communication. Learning and memory processes are based on
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the changes in strength and connectivity of neural networks which usually contain multiple

synaptic connections.

In this section, we investigate multiple-access neuro-spike communication channel, in which

the neural signal, i.e., the action potential, is transmitted through multiple synaptic paths di-

rected to a common postsynaptic neuron terminal. Synaptic transmission is initiated with

random vesicle release process from presynaptic neurons to synaptic paths. Each synaptic

channel is characterized by its impulse response and available postsynaptic receptors. Here,

we model the multiple-access synaptic communication channel, and investigate the informa-

tion rate per spike at the postsynaptic neuron, and how postsynaptic rate is enhanced compared

to single terminal synaptic communication channel. Furthermore, we analyze the synaptic

transmission performance by incorporating the role of correlation among presynaptic termi-

nals, and point out the performance improvement. Finally, we concentrate on the disorders

characterized by abnormalities in pre- and postsynaptic terminals and synaptic connections,

and establish relations between neural diseases and synaptic communication problems.

1.4.3 Adaptive Weight Update in Cortical Neurons and Estimation of Channel Weights

in Synaptic Interference Channel

Synapses can modify their strengths depending on the spike-timing characteristics. Learning

occurs via elimination of weak presynaptic inputs, which we call interference canceling.

In this section, using an optimal linear estimation method, we estimate the channel weights

for both single-input single-output (SISO) and multi-input single-output (MISO) synaptic in-

terference channels. Then, we derive an optimal learning algorithm minimizing the synaptic

channel interference. This analysis is also compared to the natural learning algorithm con-

ducted by neurons. Our results demonstrate that neurons are actually capable of interference

canceling and they can achieve rates close to the maximum channel capacity.

1.4.4 Rate-Delay Tradeoff in Molecular Nanonetworks

Molecular communication is a novel nanoscale communication paradigm, in which informa-

tion is encoded in messenger molecules for transmission and reception. However, molecular

communication is unreliable and has highly varying long propagation delays mainly due to

5



the stochastic behavior of the freely diffusing molecules. Thus, it is essential to analyze its

delay characteristics, as well as the tradeoff between the rate and delay, in order to reveal the

capabilities and limitations of molecular information transmission in nanonetworks.

In this section, first, a new messenger-based molecular communication model, which includes

a nano-transmitter sending information to a nano-receiver, is introduced. The information is

encoded on a polyethylene molecule, CH3(CHX)nCH2F , where X stands for H and F atoms

representing 0 and 1 bits, respectively. The emission of the molecules is modeled by puffing

process which is inspired by the alarm pheromone release by animals in dangerous situations.

In this work, the rate-delay characteristics of this messenger-based molecular communication

model are explored. Then, a Nano-Relay is inserted in the model, which XOR’s the incoming

messages from two different nanomachines. Performance evaluation shows that indeed, a

simple network coding mechanism significantly improves the rate given delay of the system,

and vice versa.

1.5 Thesis Outline

This thesis is organized as follows: In Chapter 2, we introduce the elementary models for sig-

nificant intra-body molecular communication channels, i.e., nanoscale neuro-spike commu-

nication channel, action potential-based cardiomyocyte molecular communication channel,

and hormonal communication channel. Next, we discuss molecular nanonetworks belong-

ing to multi-terminal extension of channel models, i.e., nervous, cardiovascular molecular,

endocrine nanonetworks. Furthermore, heterogenous communication network of intra-body

molecular nanonetworks is explored from communication and network theory perspectives,

and open research issues are highlighted. In Chapter 3, we model the multiple-access synap-

tic communication channel, and investigate the information rate per spike at the postsynaptic

neuron, and how postsynaptic rate is enhanced compared to single terminal synaptic commu-

nication channel. Furthermore, we analyze the synaptic transmission performance by incorpo-

rating the role of correlation among presynaptic terminals. Moreover, we establish relations

between neural diseases and synaptic communication problems. In Chapter 4, we estimate

the channel weights for both single-input single-output (SISO) and multi-input single-output

(MISO) synaptic interference channels. Next, we derive an optimal learning algorithm, which

minimizes the interference in the synaptic channel in the presence of multiple presynaptic neu-
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ron terminals, and analyze the mean square error performance for SISO and MISO synaptic

interference channels. Moreover, we provide the natural adaptive weight update algorithm for

neurons based on experimental findings. Then, we compare the performance of the natural

learning algorithm conducted by neurons to the optimal learning algorithm we developed.

Our results demonstrate that neurons are capable of mitigating the interference, and achieve

rates close to the capacity. In Chapter 5, we introduce a new messenger-based molecular com-

munication model, which includes a nano-transmitter sending information to a nano-receiver.

We explore the rate-delay characteristics of this messenger-based molecular communication,

and also show that a simple network coding mechanism significantly improves the commu-

nication rate. In Chapter 6, we conclude the thesis underlining the importing points together

with the discussion of future issues.
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CHAPTER 2

MOLECULAR COMMUNICATION NANONETWORKS

INSIDE HUMAN BODY

To realize molecular nanonetworks, the foundations of molecular information theory should

be established through identification of the existing molecular communication mechanisms,

and architectures and networking techniques for nanomachines should be developed, which

demand novel engineering efforts. Luckily, these engineering skills and technology have been

prepared for us by the natural evolution in the last several billions of years. Indeed, the human

body is a massive nanoscale molecular communications network as it is composed of billions

of interacting nanomachines, i.e., cells. Intra-body biological systems are closely linked to

each other and communicate primarily through molecular transactions. Thus, vital activities

inside the human body are regulated by everlasting communication performance and opera-

tions of intra-body molecular nanonetworks. However, natural intra-body molecular nanonet-

works are yet to be explored with the elegant tools of information and communication theo-

ries. In this chapter, first, the elementary models for significant intra-body molecular commu-

nication channels, i.e., nanoscale neuro-spike communication channel, action potential-based

cardiomyocyte molecular communication channel, hormonal molecular communication chan-

nel, are introduced. Next, molecular nanonetworks belonging to multi-terminal extensions

of channel models, i.e., nervous, cardiovascular molecular, endocrine nanonetworks are dis-

cussed. Furthermore, heterogenous communication network of intra-body molecular nanonet-

works together with five senses, i.e., nanosensory networks, is explored from the perspectives

of communication and network theories. Moreover, open research challenges, such as exten-

sion of molecular channel models to multi-terminal cases, and developing a communication

theory perspective to understand the physiology and to capture potential communication fail-

ures of intra-body biological systems, are provided. Our objectives are to learn from the
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elegant molecular communication mechanisms inside us for engineering practical communi-

cation techniques for emerging nanonetworks, as well as to pave the way for the advancement

of revolutionary diagnosis and treatment techniques inspired from information and communi-

cation technologies, which is promising for future nanomedicine and bio-inspired molecular

communication applications.

2.1 Introduction

Enormous improvements in the field of nanotechnology have enabled the realization of power-

ful and functional man-made tiny devices inspired from the behavior of atomic and molecular

structures, recently. Nanomachines, composed of nanoscale components, are independently

operating full-featured devices capable of tasks ranging from computing and data storing to

sensing and actuation, i.e., they not only function as computers, but also establish connections

with the world to detect a physical quantity, as living organisms. In [3], the similarities be-

tween nano-machines and living cells are expressed, and the need for communication between

nano-machines is highlighted.

Some applications of nanonetworks, among others, are: a number of nanomachines commu-

nicating for effective drug delivery [165]; multiple nanosensors deployed on human body to

monitor glucose, sodium, and cholesterol [45, 95] to detect the presence of different infectious

agents [162]; a set of molecular and nanoscale computing devices, i.e., nanocomputers [150],

jointly executing an application-specific task. However, realization of these applications man-

dates addressing the unique challenges posed by the physical characteristics of nanomachines,

e.g., dimensions of nanomachines, scarce memory and processing capabilities, and their op-

erating environment on the nanoscale communications.

Several communication paradigms are considered for use in nanonetworks, but the most

promising is molecular communications, where molecules are used to encode, transmit and re-

ceive information [15]. One of the main reasons is that molecular communication of nanoscale

entities is an existing natural phenomena, and offers a field of study for developing solutions

through modeling nanonetworks. Another reason is that nanonetworks can be built upon such

naturally occurring phenomena with appropriate tools, thus ensuring feasible engineering so-

lutions.
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To realize molecular nanonetworks, the foundations of molecular information theory should

be established through identification of the existing molecular communication mechanisms,

and architectures and networking techniques for nanomachines should be developed, which

demand novel engineering efforts. Fortunately, these engineering skills and technology have

been prepared within us by the natural evolution in the last several billions of years.

Indeed, the human body is a large-scale heterogeneous communication network of nanonet-

works as it is composed of billions of interacting nanomachines, i.e., cells, whose functionali-

ties primarily depend on nanoscale molecular communications. Hence, the vital conditions of

the human body directly depend on the performance, reliability, and continuous functioning of

intra-body molecular nanonetworks. Human biological systems are connected to each other

and communicate primarily through molecular transactions. For example, nervous system is

an ultra-large scale communication network of nerve cells, i.e., neurons, which communi-

cates the external stimulus to brain and enables communication between different systems by

conveying information with molecular impulse signal known as spike. The heart is a nanonet-

work of muscle cells, i.e., cardiomyocytes, communicating via cardiac electrical impulses,

i.e., action potentials, over molecular communication channels through the gap-junctions for

continuous circulation of blood. Endocrine system, a network of glands, provides the com-

munication among cells through specific molecular information carriers, i.e., hormones, and

regulates concentrations of molecules inside the body.

Biological systems communicate to fulfill the needs of human body, to ensure its continuity

and detect the problems to meet the solution mechanisms to heal the body. The network of

intra-body molecular nanonetworks operates to preserve the equilibrium state, i.e., homeosta-

sis, inside the human body. Any communication failure and impairment that are beyond the

recovery capabilities of this network leads to diseases; e.g., impairment of communication

skill of neurons results in multiple sclerosis (MS) disease, excessive generation and trans-

mission of action potentials yields tachycardia, i.e., excessive heart rhythm, and insufficient

amount of insulin secretion and transmission, or irresponsive cells to endocrine molecular

information (insuline) leads to diabetes.

Although medicine has developed treatment strategies depending on the severity of the dis-

eases and immensely gained ground, it is not yet sufficient to discover the underlying reasons

for many crucial health problems. One of the significant directions for completely understand-
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ing the nature of the diseases and the complete picture of biological systems’ interaction, and

healing terminal illnesses is to investigate the issues dealt with medicine community with the

perspective of communication theory thoroughly supported with medical background. This

brings two major fields together to propose fast and unified solutions to diseases from both

medicine and communication theory perspectives.

Sustaining effective communication capabilities in the intra-body molecular nanonetworks is

detrimental for the functional and metabolic efficiency of human body. Furthermore, under-

standing potential disorders caused by communication failures paves the way for the possible

development of a new generation of ICT-inspired treatment techniques. In addition, identifi-

cation of the existing intra-body molecular communication mechanisms, establishment of the

information theoretical foundations of these channels, will be a significant step towards the

development of real implementable architectures and communication techniques for emerging

applications of nanonetworks. Therefore, introducing the basics of potential models for the

molecular communication channels, identifying the intra-body molecular nanonetworks, un-

derstanding its communication, network, and information theoretical capabilities and short-

comings, and ultimately contributing to the development of ICT-inspired solutions for cer-

tain diseases and bio-inspired solutions for nanonetworks are the main objectives of this

chapter.

Thus, in this chapter, we investigate the molecular information transduction gateways for:

1) nanoscale neuro-spike communication channel, 2) action potential-based cardiomyocyte

molecular communication channel, 3) hormonal molecular communication channel, which

are the main molecular communication paradigms of nervous, cardiovascular, and endocrine

nanonetworks, and capture potential communication failures in each of these nanonetworks

leading to diseases in order to pave the way for the design of ICT-inspired diagnosis and

treatment techniques. What these systems have in common is the underlying basic principle

of molecular communication. It comprises molecule or signal generation, transduction and

reception processes that are the basic constituents of a classical communication system.

From molecule transduction among the organelles of a single cell to the feedback compensa-

tion pathways or channels between biological systems, each vital activity inside the human

body involves in the course of molecular communication. In addition to the vastly explored

field of neural networks, which is an excellent artifact of communications within the hu-
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man body, some other communication processes, such as cellular signaling pathways [100],

protein interaction networks [166], gene regulatory networks [68], and DNA processing ap-

proaches [51], have been identified and studied mostly from the perspectives of medical and

computational biology. Cellular signaling concept has been studied in [8], where rate distor-

tion theory is utilized for analyzing performance-cost tradeoffs in cellular decision making.

In [100], to understand the signaling mechanism of the molecular communication medium,

an information theoretical model is proposed.

The calcium signaling concept and the design of a molecular communication system based

on intercellular calcium signaling networks are described in [3] and [119], respectively. The

work in [119] also describes possible functionalities, e.g., signal switching and aggregation,

that may be achieved in such networks. There is also some current work focusing on commu-

nication with biological molecular motors [3, 112], intra-cellular aqueous nanobubbles [114],

and artificial cells [148]. Several kind of protein interfaces are listed according to their func-

tionalities, receptor-ligand interactions, e.g., activation or blocking due to therapeutic drugs,

and methods for detecting protein interactions are suggested in [24]. In [71], several novel

nonviral delivery systems for gene therapy application are reviewed. In [172], an artificial

cell-to-cell communication system for mammalian cells using nitric oxide signaling is devel-

oped as a building block for complex artificial gene regulatory networks.

Although there is a limited amount of work on nanoscale and molecular communications, the

intra-body molecular nanonetworks have not been investigated from the information and com-

munication theoretical point of view. The current literature mostly contains very preliminary

results on modeling and analysis of general molecular communication channels based on a

set of simplifying assumptions [3]. In [128], a physical channel for molecular communication

is modeled by an LTI system, and the channel transfer function is derived. Clearly, molecular

mobility and diffusion dynamics are not linear, and may well exhibit time-varying charac-

teristics. The noise in molecular communication channel is modeled in [113]. A molecular

communication channel as a binary symmetric channel is modeled and its mutual information

and capacity is analyzed in [11, 12]. Similarly, the single, multiple access, broadcast, and

relay channel capacities are investigated in [13, 14]. The common fundamental drawback in

these studies is that they simply present idealized results based on simplifying models, e.g.,

LTI channel model in [128], Gaussian channel noise in [13, 14]. The actual information the-

oretical analysis of molecular nanonetworks of biological nanomachines is still an unknown.
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Our research starts with the fundamental pursuit of bringing groundbreaking molecular com-

munication solutions out by observing and understanding the intra-body biological processes

we inherently have. One principle objective of this chapter is to point out the essentials in

developing solution strategies for intra-body failures and potential problems. The other goal

is to pave the way for the development of ICT-inspired revolutionary diagnosis and treatment

techniques. These objectives can be realized through identification of elementary models

for molecular communication mechanisms inside the human body. With this motivation, we

identify the blocks for molecular communication channels, reveal the pathways for specify-

ing and analyzing the molecular nanonetworks, and discuss the possible outcomes of analyses

for intra-body molecular networks. Furthermore, we investigate the fundamental relations be-

tween health problems and various communication channel failures and networking problems,

and illustrate the underlying link, message delivery problems or deficiencies due to ineffi-

cient communication mechanisms within and among nervous, cardiovascular and endocrine

nanonetworks resulted from the breakdowns in physiological operations or malfunctioning of

tissues.

The remainder of this chapter is organized as follows. First, in Section 2.2, a general frame-

work for intra-body molecular communication channels are introduced, and nanoscale neuro-

spike communication channel, action potential-based cardiomyocyte molecular communica-

tion channel and hormonal molecular communication channel are investigated. Next, in Sec-

tion 2.3, molecular nanonetworks for nervous, cardiovascular and endocrine systems inside

the human body are introduced. Furthermore, in Section 2.4, communication pathways among

the tremendous network of these nanonetworks are given. Moreover, in Section 2.5, future

research issues and communication theoretic challenges are outlined together with the un-

derstanding of underlying pathology of intra-body systems from communication theory per-

spective to leverage the contribution of medicine and pave the way for future nanomedicine

applications.

2.2 Intra-body Molecular Communication Channels

Intra-body biological systems operate in conjunction with each other to realize complex vital

activities. Apart from the coexistence of these systems, basically each is composed of a

communicating mass of molecular cellular structures to aggregate for implementing certain
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biological tasks. What they have in common is the principle communication mechanism for

implementing certain tasks, which might be through molecular information transfer by way

of molecular ion channels, or simply action potential transduction to signal the target cells.

Although the stimulation mechanisms behind the communication might differ even in distinct

substructures, the building principles of molecular communication for biological systems can

be realized within a general framework of intra-body molecular communication channels.

2.2.1 A General Framework for Molecular Communication Channels
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Figure 2.1: General molecular communication system with two nodes.

In general, a molecular nanonetwork is simply composed of nanomachines or nanonodes.

A general molecular nanonetwork with two nanomachines or nanonodes is composed of

three main functional blocks comprising the molecular communication system, namely, (i)

the transmitter, (ii) the channel, and (iii) the receiver, accounting for the emission, propaga-

tion and reception processes, respectively, as illustrated in Fig. 2.1.

The transmitter generates a signal, i.e., transmitted signal, which encodes the information

message to be exchanged. The molecule emission process provides an output signal by the

emission of molecules in the space according to a given input and used molecular information

encoding mechanism, e.g., molecular concentration and molecule type in action potential-

based molecular communication channel, amplitude and rate of electro-chemical impulses

(spikes) in neuro-spike communication channel. The propagation process provides the trans-

14



port of the modulated signal by means of a molecule diffusion process, which is defined as

the movement of molecules in a fluid from an area of higher concentration to an area of

lower concentration. In some cases, e.g., hormonal molecular communication in endocrine

nanonetworks, the propagation process is governed by both diffusion and drift due to external

active mobility, e.g., bloodstream carrying hormone molecules. The receiver collects the in-

coming information from the received signal and recovers the transmitted message. A typical

reception mechanism observed among living cells is based on ligand-receptor binding pro-

cess [16], in which, arriving molecules at the receiver nanomachine collide and bind to the

unbound receptor of the receiver.

In fact, molecular nanonetworks are directly inspired by communication networks among

living entities already present in nature. We will first explore the basic foundations for molec-

ular information gateways of single-input single-output molecular nanoscale communication

channels, i.e., (a) nanoscale neuro-spike communication channel, (b) action potential-based

cardiomyocyte molecular communication channel, and (c) hormonal molecular communica-

tion channel. All these three specific molecular communication channels are captured by the

model in Fig. 2.1, whose functional blocks vary and will be specialized in the following

subsections.

We study the constituents for three specific intra-body molecular channels in terms of their

respective functionalities in molecular communication. Therefore, we combine the princi-

ples of human physiology and physical laws governing the molecular and signal transduction

pathways and mechanisms with the perspectives of communication and network theories.

Considering the complete set of the physiological processes inside the human body, from

the tiniest functioning molecular unit to largest scale systems cooperating for sustainment

of homeostasis, it is unfeasible to study whole communication processes within cellular, or-

ganic, systemic structures inside the human body, to which the efforts in medical science have

been devoted for centuries. Hence, we mainly concentrate on the fundamental communica-

tion principles of three main intra-body molecular nanoscale communication channels, i.e.,

(a) nanoscale neuro-spike communication channel, (b) action potential-based cardiomyocyte

molecular communication channel, and (c) hormonal molecular communication channel.
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2.2.2 Nanoscale Neuro-spike Communication Channel

Nervous nanonetwork, composed of ganglions, i.e., mass of nerve cell bodies as the network

nodes, is responsible for gathering information from different parts of the body, and process-

ing it and generating the required response for the body. It is a distributed network overall the

body and it extends up to extremities [124].

Neurons, electrically excitable nerve cells capable of storing, processing and transmitting

information through chemical and electrical signaling mechanisms, are considered as nan-

otransceivers of the nervous nanonetwork. They receive signals from other neurons or sen-

sory cells, which changes the membrane electrical polarization. Electrical potential is spread

along the cell body and combined at the base of axon, causing the generation of action poten-

tials, which are then transmitted through the axon and arrive to its branches, where the neuron

makes an interface with other neurons through synapses, i.e., the conductive links between

postsynaptic and presynaptic cells [124], where cell-to-cell signals are produced [67]. Action

potentials, i.e., spikes or impulses, are used to carry information from one neuron to the other.

Hence, we call the communication among neurons as neuro-spike communication [19].

In the literature, there are some studies concentrating on neuro-spike communication. In

[65], molecular neuro-spike communication is introduced. Then, its channel capacity and

error probability are analytically investigated. In [21], nanoscale neuro-spike communication

characteristics through developing a realistic physical channel model between two terminals is

investigated. The neuro-spike communication channel is analyzed based on the probability of

error in spike detection at the output, and the channel delay is characterized. In [20], synaptic

gaussian interference channel is investigated. Furthermore, the achievable rate region for the

channel is characterized in terms of power or firing rate.

Performance of neuro-spike communication depends on the physical features of neurons,

which affect the action potential transmission characteristics through neurons. Although ar-

eas of the axon covered with a myelin sheath cannot regenerate action potentials, they can

rapidly conduct an electrical field to the next node of Ranvier, where the action potential is

regenerated and transmitted further along the axon [124]. Another way to increase conduction

velocity is to increase the diameter of an axon, through which axons with myelin sheaths can

transmit action potentials extremely fast [124].
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There are mainly two different types of synapses, electrical and chemical synapses [136].

Electrical synapse is a mechanical and electrically conductive link that is formed in a narrow

gap between two neurons, i.e., the presynaptic and postsynaptic neurons. Despite causing

amplitude loss in signal transmitted, it conducts nerve impulses faster compared to chemical

synapse. Mostly, the electrical impulses can be transmitted in either direction [136].

Different from electrical synapses, chemical synapses are specialized links through which sig-

nals are transmitted from neurons to other neurons and non-neuronal cells. Chemical synapses

allow neurons to form communication paths within the CNN, enable the nervous nanonetwork

to communicate with and control other networks within the body, and they are crucial to the

biological computations that underlie perception and thought.

The essential components of neural signaling include presynaptic terminal, action potential

generation, neural firing, vesicle release processes and the postsynaptic terminal and the post-

synaptic potential.

Presynaptic terminal is an area within the axon of the presynaptic cell that contains neu-

rotransmitters enclosed in small spheres called synaptic vesicles bounded to the membrane.

Action potential is a short-lasting event in which the electrical membrane potential of a cell

rapidly rises and falls, following a consistent trajectory [21]. During the action potential, part

of the neural membrane opens to allow positively charged ions inside the cell and negatively

charged ions out. This process causes a rapid increase in the positive charge of the nerve fiber.

When the charge reaches +40mV, the impulse is propagated down the nerve fiber. This elec-

trical impulse is carried down the nerve through a series of action potentials. Neural firing is

the response of a neuron when it is stimulated. A neuron that emits an action potential is often

said to fire. Synaptic vesicles store neurotransmitters to be released at synapses and constantly

reproduced by the cells. These vesicles are essential for conduction of nerve impulses among

neurons. Action potentials trigger the complete fusion of the synaptic vesicle with the cellular

membrane, and then, the excretion from the cell through exocytosis, which is called vesicle

release [110]. Postsynaptic terminal is the receiving part of the synapse between two neu-

rons, and the postsynaptic potential is the membrane potential at the postsynaptic terminal of

a chemical synapse. In neuroscience, an EPSP is the temporary increase in the postsynaptic

membrane potential caused by the flow of positively charged ions into the postsynaptic cell

due to the vesicle release [22]. An Inhibitory PostSynaptic Potential (IPSP), which is the op-
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posite of an EPSP, is a kind of synaptic potential that makes a postsynaptic neuron less likely

to generate an action potential.

An arriving spike yields an influx of calcium ions through voltage-dependent calcium ion

channels. Calcium ions then bind to the proteins found within the membranes of the synap-

tic vesicles. The vesicles then release their contents, neurotransmitters, i.e., information

molecules, to the synaptic cleft [103]. The release of a neurotransmitter is triggered by the ar-

rival of a nerve impulse, i.e., action potential, and occurs through an unusually rapid process

of cellular secretion. Therefore, we consider neuro-spike communication channel as series of

electrical and molecular channels and model it accordingly.

Figure 2.2: Realistic channel model for nanoscale neuro-spike communication.

The neuro-spike communication between single presynaptic neuron and single postsynaptic

neuron includes the axonal, synaptic and spike generation phases [19]. Synaptic transmis-

sion is composed of vesicle release, diffusion, and generation and trial-to-trial variability of

excitatory postsynaptic potential (EPSP), i.e., the excitation due to the vesicle release. There

are two major sources of noise in neuro-spike communication, axonal and synaptic noises.

Hence, the overall model of single-input single-output neuro-spike communication channel

for action potential generation and propagation phases between two neurons is illustrated in

Fig. 2.2.

18



2.2.3 Action Potential-based Cardiomyocyte Molecular Communication Channel

The heart, as both serving as the source, i.e., transmitter, and the destination, i.e., receiver, for

the cardiovascular network, can be modeled as a transceiver of the communication system of

the overall body. It has an inherent signal generating and transmission mechanism, which is

of great importance, and needs to be given a special attention to understand the characteristics

of transmission of blood to every single cell, i.e., destination inside human body.

Various mathematical and circuit models for cardiac action potentials and ion channels are

developed in the literature. The Hodgkin-Huxley model is a electrical circuit model of car-

diomyocyte surface membrane describing how action potentials in neurons are initiated and

propagated [70]. In [154], a safety factor for conduction was formulated and computed for

reduced membrane excitability and reduced gap junction coupling conditions. A multicellular

ventricular fiber model is used to determine mechanisms of conduction failure during acute

ischemia in [155]. In [143], it is shown that fibroblasts establish successful conduction be-

tween sheets of cardiomyocytes over long distances, explaining electrical synchronization of

heart transplants. Furthermore, computer simulations show the feasibility of conduction in the

absence of gap junctional coupling in [143]. Despite the current effort is on the physiological

operational principles and physical channel models, to the best of our knowledge, there is no

work focusing on the information theoretical foundations and principles of communication

between cardiomyocytes and within the overall cardiovascular system.

The gap junction coupling is important for the organization of the heart tissue as a mass

of electrically connected communicating cells through specialized membrane proteins. A

generic model for molecular communication through gap junction channels is implemented

in [120]. Furthermore, there exists some preliminary research on molecular channel of heart

muscle cells, i.e., cardiomyocytes. The role of gap junctions in the cardiac electrical impulse,

i.e., cardiac action potential, propagation is investigated in [143]. Changes in gap junction

channels for various cardiovascular diseases are investigated in [76]. A review of the features

of cardiac electrical function and discussion of underlying ionic bases are provided in [152]. A

model for the electrical activity of the heart is presented and a solution approach for electrical

potential distribution based on the bidomain model is suggested [99]. In [77], authors conduct

numerical simulations of electrically coupled cells to understand how an action potential is

initiated in the atrial cells. Although electrical activity and ionic properties of heart are studied
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in different works, none of them concentrates on the mechanism of cardiomyocytes from

molecular communication perspective.

We consider and model heart as a molecular nanonetwork of cardiomyocytes. Cardiomy-

ocytes communicate through the transmission of the cardiac action potential, which we con-

sider as the main information carrier. Cardiac cells, different from the muscle cells, are very

convenient for the transmission of the cardiac action potential, which is crucial for the elec-

trical conduction system of the heart [85]. Cardiac muscle cells have a contraction rate de-

termined by the sinoatrial (SA) node known as pacemaker. SA node generates electrical im-

pulses, i.e., action potentials, similar to neuro-spikes produced by nerve cells, i.e., neurons.

Hence, we model the SA node as the primary transmitter in this molecular communication.

Since the cardiac muscle cells are electrically coupled, impulses from SA node spread rapidly

through the walls of the atria, causing both atria to contract together.

There is another specialized cardiac muscle tissue, atrioventricular (AV) node, located in

the wall between the right atrium and the right ventricle. AV node causes a delay before

the electrical impulses are broadcast to the walls of the ventricle, ensuring that atria empty

completely before ventricles contract.

At the same time, specialized muscle fibers called purkinje fibers conduct the electrical sig-

nals, i.e., the action potential signals throughout the ventricular walls. This entire cycle, a

single heartbeat, is a result of successful molecular communication of action potential over

the nanonetwork of cardiomyocytes and lasts about 0.8 seconds [64, 27].

The channel we outlined in Fig. 2.3 is, in fact, molecular ion channel. In the conduction

system of heart, molecular ion channels play a crucial role. They create the pathways from

extracellular medium to intracellular medium, or vice versa, for certain ions, and contribute

the contraction process of the cardiac muscle cells according to the concentration levels of

potassium (K+), sodium (Na+), calcium (Ca++) ions, which determine the existence and

direction of ion flows generating action potential signals. Hence, ion channels enable the

creation and propagation of action potentials [85]. As a result of action potential generation,

i.e., inflow of Ca++ ions to cardiac muscle cells, the intracellular concentration of calcium

increases, and calcium ions bind to the protein troponin, a protein that is found on the actin

filament, causing the cardiomyocytes to start to contract [49].
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Heart can be described by a circuit model, similar to Hodgkin-Huxley model [70], in which

K+, Na+ and Ca+ channels are considered as molecular current sources. In our circuit model

for a single cardiomyocyte, there is a parallel capacitance (Ci) to the voltage-dependent cur-

rent source due to charge difference of intra and extra media, as the voltage difference de-

termines whether the specific ion channels will be open or closed, i.e., whether or not there

is current inflowing. The current is the sum of bidirectional K+, Na+ and Ca+ ion currents,

Ii = IK + INa + ICa. The circuit model is incorporated into the cardiomyocyte molecular com-

munication channel model of the heart in Fig. 2.3.

There is a potential difference between the intracellular and extracellular media of cardiac

muscle cells (Vi). Due to the potential difference, K+, Na+ and Ca+ molecules are diffused

through these channels in the opposite direction of voltage gradient. Therefore, the voltage

gradient is the determining factor for the molecule currents.

To construct the overall communication model of heart, the ion channels, their diffusion pro-

cess through the cardiac muscle cells, action potential generation and transmission through

the cardiac cells and the autonomic structure of cardiac muscle cells should be combined

carefully. Although in [77], the propagation of action potentials is modeled using circular

symmetry approximation, it is so hard to construct the overall communication models for

human heart and cardiovascular system. The pacemaking cells in SA node is controlled by

autonomic nervous system. Therefore, when stimulated by sympathetic and parasympathetic

nervous systems, the action potentials are enhanced and degraded, respectively. The capacity

of blood flow through coroners also controls the ion diffusion into/off the cardiac cells, which

reshapes the action potential and its duration, hence the pumping rate of ventricles. In addi-

tion to the contribution of ion channels to action potential generation, other factors, such as

O2 molecule and nutrients, also affect the action potential generation process, as energy, i.e.,

ATP, should be provided for muscular contraction.

The action potential generated by the SA node passes down the cardiac conduction system,

and arrives before the other cells have had a chance to generate their own spontaneous action

potential. This is the electrical conduction system of the heart (normal conduction of electrical

activity within the heart). If the SA node does not function, a group of cells further down the

heart will become the heart’s pacemaker, which is known as an ectopic pacemaker. These

cells form the atrioventricular (AV) node, which is an area between the left atria and the right
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ventricles, within the atrial septum.

While constructing the overall information theoretical and communication model for heart, we

consider the effects of noise on SA (N1) and AV nodes (N2), and external disturbance factors

on SA (D1) and AV nodes (D2). Opening and closing of ion channels, atrial fibrillation, which

is some sort of heart rhythm disorder caused by the inability of ventricles to pump efficiently

when the action potential cannot be transmitted from atria to ventricles due to irregular and

rapid rhythm of the heart’s atrial chambers, and the cardiac output itself are the main sources

for noise generation in heart. Furthermore, some drugs, CO2 and CO are the main disturbance

factors for the heart. Intrinsic noise and disturbance filters used by SA and AV nodes, i.e., n1(t)

and h1(t), and h2(t), respectively, are incorporated into the communication model for heart.

Overall communication model for heart is illustrated in Fig. 2.3 with the fundamental blocks

of the molecular communication system.
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Figure 2.3: Cardiomyocyte molecular communication channel.

2.2.4 Hormonal Molecular Communication Channel

Endocrine system, which is a nanonetwork of glands, provides communication among cells,

senses the molecule concentration changes in tissues and secretes hormones for the regulation

of body. It has a crucial role in homeostasis, i.e., regulation of internal environment and

maintaining a stable, constant condition. Hence, it acts like a molecular sensor and actor

network, to maintain the homeostasis. In our model, we consider hormones as modulated

molecular endocrine network information carriers.
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Endocrine glands are controlled by the nervous nanonetwork. When the cell receptors are

signaled, glands secrete certain hormones, i.e., chemical messengers, directly to blood ves-

sels since endocrine glands are ductless. The secreted hormone targets a specific tissue and

instructs the tissue to produce a particular substance [79].

Hormones have different biochemistries. They can be divided into two groups according

to the ability to diffuse through the cell membrane of the receiver, i.e., target cell. Lipid-

soluble hormones, e.g., steroids, are carried by the cardiovascular nanonetwork as in Fig.

2.4 and can diffuse through the membrane and directly deliver the message, i.e., stimulate or

inhibit certain regions of DNA. On the other hand, lipid-insoluble hormones cannot penetrate

through the cell membrane by themselves and need extra messengers to translate the message

to the cytoplasm of the target cell. Due to its outweighing number [126], we consider lipid-

soluble hormones in our channel model. Lipid-soluble hormones can diffuse through the cell

membrane and target the receptors in the cytoplasm. The cytoplasmic receptors diffuse into

the nucleus to act on DNA by stimulating certain regions. Therefore, lipid-soluble hormone

activity is long durational. Steroids and thyroid hormones are main lipid-soluble hormones

having direct effect on DNA [126].
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Figure 2.4: Hormonal molecular communication channel.

Successful delivery rate of hormones within the human body network directly depends on
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at what concentration they are transmitted (secreted) to the blood (affected by the nervous

nanonetwork), at what concentration they are being circulated within the blood stream (con-

trolled by cardiovascular nanonetwork), and the rate of removal of the hormone from the

blood plasma, i.e., metabolic clearance rate [67].

The propagation of the hormones is due to the combination of the blood circulation rate that

stimulates a net hormone movement on top of their free diffusion, i.e., diffusion with drift.

Molecules diffuse with drift when the Brownian motion is coupled with a drifting contribution

to the molecule velocity. At the same time, the clearance rate depends the concentration of

hormone in the plasma, and its rate of disappearance from the plasma per unit time.

Reception process of the channel is selective due to the incompatible chemical structure of

hormones to any other receptor type except for the target cells’ receptors. In fact, once these

molecular information carriers (hormones) are broadcast (secreted) into the communication

medium (blood), only one type of nanoreceiver, i.e., cells of the target receiver tissue, re-

sponds. Furthermore, endocrine nanonetwork have different response times to the stimuli,

and concentration of the molecular hormone substances is incredibly small. Moreover, target

cells may be promoted or inhibited depending on the stimulation type. Hence, the reception

process should be modeled considering its highly time-sensitive and input-dependent nature.

Diffusion in cytoplasm is the fourth step for the successful diffusion of the molecular en-

docrine information towards the ultimate nanoreceivers, i.e., receptors inside the cell, e.g.,

DNA, and binding to it. The capacity of diffusion-based molecular communication chan-

nels with ligand-receptor binding have been information theoretically modeled and analyzed

[11, 12, 13, 14].

The endocrine cell responds to changes in the concentration of a substance in the extracellular

fluid, and provides homeostatic regulation of concentration of substances inside it through

negative feedback mechanism. After a hormone is released, its further release is suppressed by

its products and activity of the target cells. Feedback regulation of hormones can occur at all

levels, including in the synthesis and processing of hormones and releasing stored hormones

[67]. Consider hormone secretion as a negative feedback regulatory system. Note that the

endocrine cell acts as a sensor. For example, any increase in blood glucose level triggers

pancreas secretory glands to increase the hormonal information, i.e., insulin, emission rate

into transmission channel, i.e., bloodstream, for further transduction of hormonal molecular
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information to target cells, i.e., receptors. After signaled, targets of the molecular information

start glucose uptake and utilization. Hence, the glucose level of the blood is decreased by

molecular feedback regulation between the transmission channel and hormonal molecular

information source [52].

Overall hormonal molecular communication channel is constructed by considering endocrine

glands as transmitter and the target cells are the receiver as in Fig. 2.4. The bloodstream is

the communication channel between the transmitter and the receiver. Channel is a feedback

channel, which regulates the overall system using the negative feedback given by the target

cell concentration. Furthermore, the system is under the control, h(t), of nervous network

nodes, i.e., hypothalamus and pituitary gland, regulating the hormonal activities inside the

body. On the other hand, the channel is susceptible to some disturbance factors (D), such

as stressors, annoyance, antipsychotic agents, depression, fat gain and sound [169, 109]. In

addition to that, the transmitter side is exposed to noise (Nw) due to the extracellular ion con-

centrations and mechanical vibrations during secretion, and protein bounds during hormone

transmission through the feedback channel, i.e., bloodstream [133].

2.3 Intra-body Molecular Nanonetworks

We explore the basic communication interactions among the main functional subunits of

multi-terminal molecular structures inside the human. In fact, we mainly concentrate on

intra-body molecular nanonetworks, i.e., nervous, cardiovascular, endocrine nanonetworks.

2.3.1 Nervous Nanonetwork

The nervous nanonetwork is intrinsically a large-scale network of nanotransceivers, i.e., neu-

rons, spanning the overall body. It is divided into two main subnetworks, namely central

nervous network (CNN) and peripheral nervous network (PNN). CNN integrates the sensory

input information and provides the motor output to the effector cells, i.e., muscle cells, gland

cells [79, 124]. It is the main processor of the body. PNN is grouped into two parts, which are

somatic nervous subnetwork (SoNS) and autonomic nervous subnetwork (ANS). SoNS collects

information from the receptors of five-senses and heads through sensory neurons to convey

to CNN. ANS transports the motor outputs generated by CNN to muscles and glands through
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Figure 2.5: Communication architecture for overall nervous network.

motor neurons. The main function of the PNN is to connect the CNN to the systems. ANS

carries information from CNN through motor neurons to smooth muscles, cardiac muscles

and glands [124]. Hence, we consider PNN as the gateway network for CNN to reach the rest

of the Internet in human body.

ANS is composed of two subnetworks, i.e., sympathetic nervous subnetwork (SNS) and parasym-

pathetic nervous subnetwork (PSNS). SNS controls most of the internal organs, neural and

hormonal stress, i.e., flight-or-fight responses.

Hence, SNS directly communicates with the cardiovascular and endocrine networks. PSNS

is responsible for regulation of internal organs and glands, which occurs unconsciously. Its

action is basically complementary to that of the SNS. PSNS is the energy conservation and

restoration center of the body unlike the flight-or-fight response of SNS [124]. Naturally,

rather than functioning in opposition to each other, sympathetic and parasympathetic divisions

complement each other’s operation. The sympathetic division typically functions in actions

requiring quick responses. The parasympathetic division functions with actions that do not

require immediate reaction.

Finally, the brain, built by complex synaptic connections of interacting neurons in CNN, is

also a nervous communication network itself as the main processor and memory for the infor-

mation coming from all other networks inside the human body and controlling their activity.

It acts like a large-scale ultrafast network switch among the other networks inside us, and

by collecting the sensory inputs for further processing in CNN, and delivering motor outputs
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through the spinal cord, it achieves the communication with the rest of the internel Internet.

Hence, the complete architecture for the nervous nanonetwork can be established using the

connections and communication relations among its subnetworks, i.e., SoNS, CNN and ANS.

Furthermore, nervous nanonetwork is susceptible to various major noise sources, which are

sensory and cellular noises apart from axonal and synaptic noises described in the model

for nanoscale neuro-spike communication channel. Sensory noise (S) is noise in sensory

signals and sensory receptors. It limits the amount of information that is available to other

areas of the CNN. Cellular noise (C) is an underestimated contributor to neuronal variability.

The stochastic nature of neuronal mechanisms becomes critical in the many small structures

of the CNN. Finally, synaptic noise (W) results from the noisy biochemical processes that

underlie synaptic transmission. Adding up these noise sources can account for the observed

postsynaptic-response variability. Incorporating the noise sources into the network model,

communication architecture for overall nervous network is established, as depicted in Fig.

2.5. Despite excluded in nervous network model, there is another noise type, due to the

random opening and closing of ion channels, which is Iw. It is the electrical noise in neurons,

especially channel noise from voltage-gated ion channels, limits neuronal reliability and cell

size, producing millisecond variability in action-potential initiation and propagation [50].

2.3.2 Cardiovascular Molecular Nanonetwork

Cardiovascular system, a broad network reaching to every single cell inside the body, is basi-

cally a large-scale molecular communication network. It transports amino acids, electrolytes,

gases, hormones, and blood cells from or to the cells. Hence, we consider cardiovascular sys-

tem, i.e., the system of blood, heart and blood vessels, as a huge dynamical communication

network distributed over the body, i.e., cardiovascular molecular nanonetwork.

Understanding the multi-molecule transmission scheme helps determine the transmission char-

acteristics of systemic blood circulation.

Plasma communicates with interstitial fluid, a solution surrounding the cells, through pores

and inter-cellular clefts to provide the cells with nutrients and helps waste removal [78]. This

molecular communication process is guided by hydrostatic and osmotic pressures of plasma

and interstitial fluid, determining the rate and direction of the transmission for each granule
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of molecular information.

To construct the overall communication model of heart as a nanonetwork of cardiomyocytes,

we need to carefully investigate not only individual communication channels, but also the

interactions with other specific nodes in the cardiovascular and nervous nanonetworks. For

example, the pacemaking cells in SA node are controlled by ANS. Thus, when stimulated

by SNS and PSNS, action potentials are enhanced and degraded, respectively. The capacity

of blood flow through coroners also controls the molecular communication channels among

cardiomyocytes by varying the ion diffusion, and hence, the action potential and its duration,

which, in turn, affects the pumping rate of ventricles.

2.3.3 Endocrine Nanonetwork

Endocrine system, which is a network of glands, provides the communication among cells,

senses the molecule concentration changes in the tissues and initiates the hormonal secretion

process for the regulation of the molecular stability inside body. Hence, it acts like a sensor

and actor network, to maintain the homeostasis.

In analyzing the overall communication model of endocrine nanonetwork, a network model

with the source nodes, where hormone is generated, and the end-to-end path composed of

links, through which the hormones are transmitted to destinations, should be defined. The en-

docrine nanonetwork nodes should be modeled as broadcast stations providing unidirectional

transmission of hormone molecules from glands to target destinations in a broadcast medium,

and bloodstream as the communication link of hormonal molecular communication, which

will finally pave the way for analyzing the information generation and delivery capacity of

the overall endocrine nanonetwork with network information theory.

2.4 Network of Intra-body Molecular Nanonetworks

To understand the molecular communication among different intra-body nanonetworks, we

need to consider the relation between nervous, cardiovascular and endocrine nanonetworks,

and intra-body molecular nanosensor networks.

Five senses, i.e., audition (hearing), vision (sight), tactition (touch), olfaction (smell) and gus-
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tation (taste), along with the nervous nanonetwork and brain construct a large-scale nanosen-

sor network within human body. The external stimuli signal, e.g., acoustic, visual, pressure

signal, detected by these sensors are converted into neuro-spike signals by sensory neurons,

which act as signal converters, and carried by the nervous nanonetwork to the brain. Depend-

ing on the nature of the external stimuli, e.g., a loud scream, a frightening scene, pressure

sense, communication paths emanate from nervous nanonetwork and extend to special nodes

of endocrine and cardiovascular nanonetworks.

2.4.1 Communication among Nervous, Cardiovascular Molecular, and Endocrine Nanonet-

works

In the communication between sympathetic nervous subnetwork and cardiovascular molecu-

lar nanonetwork, the vasomotor centre, a special portion of medulla in nervous nanonetwork,

has a substantial role. It transmits excitatory impulses through the sympathetic nerve fibers to

the heart when there is need to increase heart rate and contractility, such as muscle exercise

and under other types of stress. Conversely, it sends signals to the vagus nerves, which, in

turn, transmit parasympathetic impulses to the heart to decrease the rate and contractility and

hence, heart pumping when needed. The neurons of the sensory area receive sensory nerve

signals from the cardiovascular molecular nanonetwork. Output signals emanating from the

sensory area, then help control activities of both the vasoconstrictor and vasodilator areas

of the vasomotor center, thus providing “reflex" control of many cardiovascular functions

[67]. Hypothalamus and many parts of the cerebral cortex can also excite or inhibit the va-

somotor center [67]. Thus, widespread basal areas of the brain can have profound effects on

cardiovascular nanonetwork functions.

Nervous nanonetwork causes rapid increases or decreases in the amount of action potential

traffic flow in cardiomyocyte nanonetwork, which is detected by way of receptors. Activation

of receptors stimulate related hormonal molecular information emission, causing vasodila-

tion or vasoconstriction, i.e., changes in the blood pressure. The best known of the nervous

network arterial pressure control mechanisms is the baroreceptor reflex, which is based on

special neurons, baroreceptors [78]. They reside mainly in the aorta and function as a molec-

ular nanonetwork by sensing the drastic changes in blood pressure and communicating this

information to the brain.
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Hormonal changes and molecular concentrations inside the body are detected by endocrine

and nervous nanonetworks, and these nanonetworks complement each other in order to main-

tain homeostasis. Chemically, both nervous and endocrine nanonetworks utilize hormonal

molecular information in signaling and communication, but in different ways. As an example,

norepineprine functions as a neurotransmitter and as an adrenal hormone in the nervous and

endocrine nanonetworks, respectively [79]. Endocrine nanonetwork nodes, i.e., glands, are

responsible for hormonal molecular emission process. The hormonal molecular information

is directly secreted, i.e., transmitted, into cardiovascular nanonetwork. Nervous nanonetwork

nodes, i.e., neurons, collect the molecular information from cardiovascular nanonetwork by

sympathetic and parasympathetic fiber connections, and transmit the information to CNN re-

gions. The hypothalamus controls the communication between the nervous and the endocrine

nanonetworks, and regulates the hormonal emission process by signaling the endocrine nodes

[79]. When it signals, the specific endocrine node, i.e., pituitary gland, releases hormones that

control many of the endocrine system’s functions.

2.4.2 Communication between Nanosensor Networks and Nervous Nanonetwork

2.4.2.1 Audio Molecular Nanosensor Network

The nerve impulses travel from the left and right ears to both sides of the brain stem and up

to the portion of the cerebral cortex dedicated to sound, which is in the temporal lobe [67].

Human localize sound within the CNN, by comparing arrival-time differences and loudness,

i.e., signal powers, in brain circuits that are connected to both ears, which is commonly re-

ferred to as Echo Positioning (EPS) [78]. The outer ear helps get sound and imposes low-pass

filtering to the sound signal and transmitting it to the middle ear. The middle ear includes the

ear bones, i.e., ossicles [67]. Besides their role in the transmission of sound, these bones help

protect the ear from damage by constricting and limiting sound transmission when sound is

too loud [151]. Therefore, the middle ear should be modeled as an adaptive communication

channel, in which the bones attenuate the carrier when sound level is too high. The inner ear

has a crucial role in hearing by the cochlea. After sound strikes the ear drum, the movement

is transferred to the ear bones, which press it into one of its fluid-filled ducts through the

oval window of cochlea. Therefore, inner ear should be analyzed considering and modeling

it as an acoustic-to-molecular nanoscale communication gateway. The fluid inside this duct
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is moved, flowing against the receptor cells, and stimulating the nerve cells, which then send

information through the auditory nerve to the center of the nervous nanonetwork, i.e., the

brain [67].

Different methods are developed for identification and modeling of the audio molecular

nanosensor network. For example, in [97], benefiting from artificial neural networks, au-

thors investigate an extended ear type system for multiple inputs and outputs. Measurement

of auditory evoked potential responses for the extended system enables the characterization

of auditory disorders. Furthermore, in [32], authors develop a computer processing method

to evaluate audition using analytical technology of speech signal.

2.4.2.2 Visual Nanosensor Network

Our visual nanonetwork perceives the objects by distinguishing their energy levels. Here,

the important issue about how to detect and store the information arises. Information, i.e.

photons coming from source, enters the eye through an opening in the center of iris, i.e.,

pupil. Eye has the ability to focus on the information using its inherent adjustable lens. After

gathering the information, the lens output is transmitted to the retina, the inner part of the

eye containing visual receptors, i.e., rods and cones. Basically, the information is detected in

the visual nanonetwork by rods and cones responding to faint and bright light information,

respectively. When light stroke the receptors, the strength of the stimulus specified by the

number of photons and their frequency determines the amount of depolarization of a receptor

cell. In the visual nanosensor network, retinal, a light-sensitive form of vitamin A, is an

essential signaling molecule in the rods and cones. In the presence of light, the chemical

structure of retinal molecule is altered for nerve impulse, i.e., action potential, generation

[28]. The amplitude of the receptor’s response determines the number of action potential

generating neurons extending from the retina through the visual nerves for further processing

in the CNN [78, 67]. Which neurons have responded to the stimuli and how much they

respond give a way to interpret how efficiently the cells are processing the information coming

from light. Moreover, the timing of the responses gives an idea about the sustainability of the

information during processing. Information storage in the visual nanonetwork is managed by

the variability of the responses of the neurons.

Visual nanosensors have applications in optical industry, optical communications and pat-
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tern recognition. Appropriate design of nanosensors for optically selective, sensitive sensing

systems is needed for naked-eye detection of pollutants for environmental cleanup of toxic

heavy-metal ions [48]. In [175], authors present an automatic speech recognition (ASR) tech-

nique integrating audio-visual sensory information, which makes ASR more robust against

speaker’s distance, interference and environmental noises.

2.4.2.3 Somatosensory Network

The somatosensory receptors are distributed over the skin, muscles, internal organs and the

cardiovascular nanonetwork. The body can react many different stimuli, such as temperature,

pressure, texture and chemical properties of the objects, through specialized receptors. After

the stimulus is detected by sensory cells, nerve endings are depolarized and then an action

potential is initiated, which is then transmitted to CNN for further processing. This action

potential usually travels towards the spinal cord [53].

Somatosensory networks have clinical and neurological applications. Somatosensory evoked

potential (SEP) is widely used for detecting the abnormal nerve conduction in various diseases

[55]. Authors in [10] propose a new signal processing method in order to predict externally ap-

plied forces to human hands by deriving a relationship between the surface electromyographic

(SEMG) signals, i.e., the electrical potential generated by muscle cells when activated, and

experimentally known forces. Furthermore, in [90], the relation between the objects weight

and the motor outputs during the grasping motion is investigated [91].

2.4.2.4 Olfactory Nanosensor Network

The receptor neurons in the nose are particularly interesting because they are the only direct

recipient of stimuli among the nanosensory networks. When the molecules of odorant are

detected by the receptors, an action potential in the receptor neuron is generated by the acti-

vation of ion channels, causing Ca++ inflow into the cells. Olfactory sensory neurons project

axons within the olfactory nerve to the brain. These axons pass to the olfactory bulb, which, in

turn, projects olfactory information to the olfactory cortex and other areas. Odor information

is stored in long-term memory and has strong connections to emotional memory, possibly due

to the olfactory nanonetwork’s close anatomical ties to the limbic system and hippocampus,
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areas of the brain that have long been known to be involved in emotion and placing mem-

ory, respectively [134]. Different from other nanosensor networks, olfaction, i.e., smell, is an

adaptive sense. Olfactory adaptation, which is the normal inability to distinguish a particu-

lar odor after exposed to the specific odorant, is the adaptation mechanism of the neurons to

protect themselves from being overloaded. Therefore, if the particular odor information does

not change, the system ignores that information until a different information, i.e., odorant, is

sensed and system starts to respond to this new information [39], i.e., olfactory nanosensory

network responds primarily to changes in stimulation.

Nanosensor systems for the rapid detection of specific odorants have applications in biotech-

nology, medicine, and food safety. In [84], authors explore the real time detection of odorant

molecules with single atomic resolution and high sensitivity using a ‘bioelectronic nose’ in-

spired from human olfactory receptor. In [72], authors introduce a gas discrimination system

that integrates a cross-reactive array of chemiresistive nanosensors to accurately and effi-

ciently identify the gas (odor) to which the system is exposed.

2.4.2.5 Gustatory Molecular Nanosensor Network

Taste is detected through the taste receptors, i.e., the ion channels and G-protein coupled re-

ceptors, which are capable of detecting bitterness, sweetness, saltiness, sourness and umami-

ness [18]. Tongue has taste pores top of the taste receptors, where the food is dissolved to

contact with the receptors and ion channels. After detection, the taste information is simply

sent to the brain via nerves.

Gustatory molecular nanosensors have applications in many fields ranging from medicine and

food industry to military defence and national safety. In [88], authors describe the develop-

ment of the biosensor intelligent system with software on electronic tongue and electronic

nose for rapid analysis of gaseous, liquid and heterogeneous matters.

Nanosensor networks, in brief, build our connection with external sensible stimuli, e.g.,

sound, light, temperature, pressure, texture, smell, taste and so on. The response of these

networks are directly communicated through nervous nanonetwork for further processing in

special lobes of brain. Besides, nanosensory networks prepare the body responses, i.e., ac-

tions and reactions, to various stimuli through elaborated communication relations among
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molecular nanonetworks. In fact, even a simple special case, e.g., intra-body audio molecu-

lar nanosensor network, is a very complex process in terms of communication and informa-

tion theory perspectives. It involves audition sense, nervous, cardiovascular and endocrine

nanonetworks. External acoustic wave initiates a series of communication processes in the

network. First, it is transduced into neuro-spike communication signal. Next, the molecular

communication within the endocrine nanonetwork as a response to this stimulus amplifies

the traffic load in the cardiovascular molecular nanonetwork. Therefore, investigation of the

communication principles, end-to-end rate and delay characteristics, flow control, bottlenecks

and potential communication failures, even for a nanosensory network to single stimulus from

the perspectives of communication, information, and network theories needs lots of effort and

devotion.

Akyildiz et al. describe nanosensor technology and electromagnetic communication among

nanosensors [5]. The state of the art in nanosensor technology is surveyed. Furthermore, some

applications of wireless nanosensor networks are highlighted to emphasize the need for com-

munication among nanosensor devices. A new network architecture for the interconnection

of nanosensor devices with existing communication networks is provided. The communica-

tion challenges in terms of terahertz channel modeling, information encoding and protocols

for nanosensor networks are highlighted, defining a roadmap for the development of this new

networking paradigm.

2.5 Future Research Avenues

The biological systems provide the cooperation of human body as a whole even in abnormal

conditions. However, in some diseases, biological systems cannot overcome the problems

related to peripheral factors or originating from body itself. In this section, we focus on

the unsolved or partially diagnosed problems of human health, related to the improper or

inadequate operation of cardiovascular, endocrine, nervous nanonetworks and nanosensory

networks.

Medicine has been mainly concentrating on the recruitments of the physiologically indispens-

able organ systems in human body. As a matter of fact, urgent treatment of cardiac and brain

diseases are crucial as these organs are strategically much more important for survival and
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they have control mechanisms over the other vital organ systems in human body. Thus, cru-

cial effort is attached on cardiovascular surgery, neurosurgery, endocrinology and metabolic

diseases, etc. Major advances in medicine has enabled the treatment many illnesses, such as

diabetes, heart failure, cardiac arrhythmias, renal failure, and many cancer types [122]. How-

ever, especially for some nervous system related illnesses, such as multiple sclerosis (MS),

epilepsy, meningitis, medicine has been inadequate, as main reasons for these illnesses have

been still not understood [31]. Moreover, for the remaining physiological illnesses, the reme-

dies that medicine provided can be strengthened by understanding the underlying causes for

illnesses by investigation of molecular communication principles and relations among bio-

logical systems. In this section, we aim to open the way for extracting the communication

relations and channels for molecular nanonetworks, and analyzing the problems in molecular

and signal transmission paths that cause burdens to harmonic operation of molecular commu-

nication of nanonetworks independently, or as a whole.

To realize the communication links and failures among intra-body nanonetworks, we need

to concentrate on the foundations of communication structures and tasks inside the biologi-

cal systems from the perspectives of molecular communications and network theory. Open

research issues, hence, include the modeling and analyses for molecular communication chan-

nels, intra-body molecular nanonetworks, and finally, investigation of operational principles

and diseases arisen from improper processing of molecular nanonetworks inside the body

from the perspective of communication and networking theories.

2.5.1 Molecular Communication Channels

Molecular communications has been widely investigated in the literature, most particularly

from the perspectives of propagation media, diffusion and the noise sources employed in

the diffusion process. In [125], several bio-inspired techniques are discussed according to

whether a fixed physical link is required for signal propagation or not, i.e., either wired or

wireless communication. Pheromones, spores, pollen and light transduction are discussed. In

the second group, neuron-based communication techniques and capillaries flow circuit are ex-

plored. In [4], nano-electromagnetic communication and molecular communication are envi-

sioned, and propagation models are discussed. In [129], a new physical end-to-end communi-

cation model for molecular communication is introduced, and numerical results are provided.
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In [132], authors provide a mathematical study of the noise at the reception of the molecular

information in a diffusion-based molecular communication system when the ligand-binding

reception is employed. The reception noise is modeled by following the ligand-receptor kinet-

ics and the stochastic chemical kinetics. In [59], diffusion-based molecular communication is

studied through N3Sim, a physical simulation framework for molecular communication. In

[102], the diffusion-based molecular communication, whose physical channel is governed by

Fick’s laws of diffusion, is focused on. In [131], the noise sources in diffusion-based molec-

ular communication are analyzed using signal processing, statistics and communication engi-

neering instruments. Important diffusion-based noise sources, i.e., the particle sampling and

counting noise, are investigated.

Although there exists preliminary research on diffusion-based molecular communication com-

monly for generic frameworks, the main molecular communication directions for biological

systems and specifically, communication pathways inside the human body are not explored

yet. Hence, future research issues include the communication models and extensive perfor-

mance analyses for intra-body molecular communication channels. More specifically:

2.5.1.1 Nanoscale Neuro-spike Communication Channel

• Based on the neuro-spike communication channel model in [21], the neuro-spike synap-

tic multiple-access, relay, and broadcast channels should be defined, derived, and ana-

lyzed from communication theoretical perspective.

• Fundamental communication parameters and metrics, such as interference, channel ac-

cess, and collision probability over multi-neuron connections, should be investigated.

• Network information theoretical analysis of the realistic multi-terminal neuronal com-

munication channels should also be performed to find the corresponding achievable

rate regions. Furthermore, the results in [20], can be extended to multi-output case for

achieving automatic gain control.

2.5.1.2 Action Potential-based Cardiomyocyte Molecular Communication Channel

• The information theoretical foundations of molecular communication between two car-

diomyocytes should be investigated. The reception of an action potential by the receiver
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cardiomyocyte should be modeled by molecular detection and counting process under

the light of detection and estimation theory.

• Based on the cardiomyocyte molecular communication channel model given in Sec-

tion 2.2.3, the investigation of the realistic multi-terminal channel models for multiple-

access, broadcast, and relay channels and analysis of their information theoretical ca-

pacities to find the required molecular communication rates for sustainability of heart

functions should be implemented.

• The statistical properties of all noise and disturbance sources should be mathematically

investigated and modeled through stochastic modeling of the potential sources for in-

terference and fading of the communication signal in the channel. The information

capacity of cardiomyocyte molecular communication channel should be derived.

2.5.1.3 Hormonal Molecular Communication Channel

• Ligand-receptor binding models could be benefited to mathematically model and ana-

lyze the molecular diffusive communication channel, in which hormones propagate and

bind to the receptors [24, 11, 12, 13, 14, 16].

• The noise sources of the communication system should be defined and mathematically

modeled, and the rate and delay performance of hormonal molecular communication

channel should be analyzed.

2.5.2 Intra-body Molecular Nanonetworks

Realization of molecular nanonetworks stem from the development of nanomachines. In [6],

the state-of-the-art in nanomachines are explained for a better understanding of the nanonet-

work scenarios. Furthermore, nanonetworks and components are described and compared

with traditional communication networks. In [62], molecular transmission between nano-

scale devices over medium distances, is studied, and a molecular network architecture is

proposed to realize the communication between nano-machines that can be deployed over

different distances. In addition, flagellated bacteria and catalytic nanomotor techniques are

proposed to cover the medium-range. Both techniques are based on the transport of DNA en-

coded information between emitters and receivers by means of a physical carrier. In [130], a
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mathematical expression for the capacity of diffusion-based molecular communication nanonet-

works is provided. In [89], Concentration Shift Keying and Molecule Shift Keying modulations

are proposed for coding and decoding information in nanonetworks. In [34], a bacteria-based

nanonetwork for communication between nanoscale devices is described. The communica-

tion is achieved by switching of DNA molecules by chemotaxis. Furthermore, an analyti-

cal model is developed to assess the communication range, capacity, end-to-end delay and

throughput by considering the available information about the biological mechanisms used.

In [1], authors propose Quorum Sensing, a mechanism used by bacteria to sense their own

population and coordinate their actions, through the emission and sensing of molecules called

autoinducers, as a novel way to achieve synchronization between nodes of a nanonetwork.

Molecular nanonetworks have been explored with different perspectives. Many studies con-

centrate on developing new modulation scenarios and molecular sensing mechanisms with-

out considering intra-body molecular pathways. However, understanding of molecular chan-

nel foundations inside human body will contribute to extension of single-input single-output

(SISO) channel models to multi-input multi-output (MIMO) cases, i.e., intra-body molecu-

lar nanonetworks: nervous, cardiovascular, endocrine nanonetworks, and then, the overall

network of multi-terminal molecular communication nanonetworks will be concentrated on.

2.5.2.1 Nervous Nanonetwork

Extension of the results in the modeling and analysis of neuro-spike communication channels

to the study of the overall nervous nanonetwork composed of ultra-large scale and heteroge-

neous connections of various types of neurons should be implemented as illustrated in Fig.

2.5. Therefore, this architecture should correspond to combination of multiple-access, relay

and broadcast channels. The network information theoretical analysis of the entire nervous

network should be performed to reveal its network information capacity.

2.5.2.2 Cardiovascular Molecular Nanonetwork

To construct the overall communication model of heart as a nanonetwork of cardiomyocytes,

not only individual communication channels, but also the interactions with other specific

nodes in the cardiovascular and nervous nanonetworks should be carefully investigated.

Hence, all these factors should be incorporated into the model of cardiovascular nanonet-
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work, and the overall model should be analyzed using information, communication and net-

work theoretical tools.

2.5.2.3 Endocrine Nanonetwork

Overall communication model of endocrine nanonetwork with the source nodes, where hor-

mone is generated, and the end-to-end path composed of links, through which the hormones

are transmitted to destinations, should be defined. The endocrine nanonetwork nodes as

broadcast stations providing unidirectional transmission of hormone molecules from glands

to target destinations in a broadcast medium should be considered and mathematically mod-

eled. The information generation and delivery capacity of the overall endocrine nanonetwork

should be analyzed.

2.5.2.4 Multi-terminal Molecular Communication inside Us

• The noise, potential communication failures, and the information capacity should be

analyzed in order to reveal the fundamental limits for intra-body molecular channels.

• The principle communication relations among the nervous, cardiovascular and endocrine

nanonetworks should be investigated. Basically, nanosensor networks, which collect

the information through various receptors, are the communication links between the

intra-body networks and the outside world. The output signals of nanosensory net-

works are transduced into neuro-spike communication channels. Nervous network, is

then stimulated and hormonal molecular information, depending on the type of the stim-

ulation, is secreted into the bloodstream. To understand the communication between the

nervous and endocrine nanonetworks, a detailed communication theoretical analysis on

the neuro-secretion process should be performed. Finally, the traffic load in the cardio-

vascular molecular nanonetwork is altered, which is to be sensed by nervous nanonet-

work. Thus, the overall network of intra-body nanonetworks communicate through

feedback regulation mechanisms, and each response emanating from a nanonetwork

is transported to another nanonetwork for the generation of required response. Thus,

intra-body multi-terminal molecular communication nanonetworks should be analyzed

from the perspectives of communication, information, and network theories, by proper
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understanding of the physiology, and mathematical modeling of these interactions, in-

vestigating the theoretical limitations, and identifying the potential communication fail-

ures.

• To the best of our knowledge, there is no unified network simulator for intra-body

molecular nanonetworks although there are some web-based neural network simulators

implemented by modeling of motor neurons [33], and a cardiovascular simulator to

complement research with the medical experimental data [116], and a diffusion-based

molecular communication simulator, NanoNS, developed based on the commonly used

network simulator (NS-2) [63]. A molecular nanonetworks simulator should be de-

veloped to evaluate the theoretical results, capture potential communication failures in

each of these nanonetworks leading to diseases, and pave the way for the design of

ICT-inspired diagnosis and treatment techniques.

2.5.3 Physiology and Underlying Pathology of Intra-body Systems from Communica-

tion Theory Perspective

Biological operation principles and most particularly, diseases of intra-body systems should

be investigated from the perspectives of communication and network theories.

2.5.3.1 Nervous Nanonetwork:

• Multiple sclerosis (MS), the illness resulted from destruction of myelin, affects the

ability of nerve cells in the brain and spinal cord to communicate with each other [82].

In MS, the human immune system attacks and damages the myelin. When myelin

is lost, the axons can no longer effectively conduct signals. Therefore, analyzing the

symptoms of MS could enable us to discover the role of myelin in nervous system.

• Epilepsy, a demyelinating disease, is the damage of myelin sheath of neurons. One

of the reasons for epilepsy is neuroleptics [107]. Hence, understanding the role of

neuroleptics on myelin tissue loss helps nanomedicine improve treatment opportunities,

such as enhancing the effectiveness of communications between neurons by enabling

the myelin sheath to be more resistant to this type of drugs.

• Meningitis, which is the inflammation of the meninges covering the brain and spinal
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cord, can lead to serious long-term consequences, such as deafness, epilepsy, hydro-

cephalus and cognitive deficits [123]. Symptoms of meningitis, such as the decrease of

sodium amount in blood and dehydration, can give a path to analyze the reasons behind

signal transmission failures and molecular communication ion channel nonfunctionali-

ties.

• Destruction of occipital lobe causes cortical blindness. Hence, communication rela-

tions of occipital lobe with visual nanosensor network, and role of this brain portion

especially in visual perception should be investigated, and thus, the main causes for

visual deficits could be analyzed.

• Damage of temporal lobe can result in fear to display normal fear and anxieties. There-

fore, operation of temporal lobe in controlling this kind of actions should be analyzed

and

alternative treatment methods for enabling effective communication inside nervous

nanonetwork should be developed, suppressing such damages caused by deterioration

of signaling pathways.

2.5.3.2 Cardiovascular Nanonetwork:

• Reasons for sudden cessation of normal cardiac rhythm, i.e., cardiac arrest, tachycar-

dia, i.e., extremely rapid heart beat, and asystole, i.e., losing the ability of contraction,

could be analyzed from the perspectives of communication and information theories by

studying the cardiac action potential waveform texture.

• Cardiac tamponade, which is the condition that the tissue surrounding the heart fills

with excess fluid or blood [153], blocking the proper heartbeat rate, could also be stud-

ied to find the relation between the permeability of this tissue and the extracellular fluid

molecules, which will help extract the characteristics of heart tissue.

• The partial pressure of oxygen in blood, and its effect on suppressing other molecules

in vessels could also be analyzed to investigate the effect of oxygen amount in pressure

regulation mechanism of cardiovascular nanonetwork.

• Cardiovascular transmission problems due to overactivity of daily living, such as var-

sity, due to long periods of standing on feet and over walking should be analyzed, and
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ICT solutions for regulation of the blood circulation should be proposed.

• High blood pressure, i.e., hypertension, should be studied to understand the reaction of

body to external stimuli. Studying the molecular communication principles and signal-

ing interactions among nervous, cardiovascular and endocrine nanonetworks provides

a mathematical model for the response of body to environment, and hence, treatment of

hypertension could be succeeded through joint contribution of medicine and ICT fields.

2.5.3.3 Endocrine Nanonetwork:

• The role of endocrine nanonetwork in regulating the amounts of blood molecules, i.e.,

the fundamentals of communication between endocrine and cardiovascular nanonet-

works should be understood. Especially for glucose and lipid molecules, in order to

understand the role of liver in adjusting blood cholesterol level and model insulin and

glucagon secretion processes, hormonal signaling mechanisms and models should be

investigated and molecular emission, propagation and reception processes should be

incorporated into them.

• Circadian rhythm, which is important in adjusting the body to environmental alter-

ations, such as seasonal changes, variation in the amount of light during the day and

night, and temperature variations, should be investigated and solutions for how the

human body establishes the communication with outside world through nanosensory

networks should be quested.

• Neurotransmitters should be analyzed to understand the relation between endocrine and

nervous nanonetworks, and to provide the reasons behind spike transmission capability

of neurons.

2.5.3.4 Nanosensor networks:

• The communication theoretical behavior of inner ear should be analyzed considering

and modeling it as an acoustic-to-molecular nanoscale communication gateway.

• The human eye is a complex nanosensor collecting light, i.e., photonic molecular infor-

mation, and conveying through the network of light sensors, i.e., rods and cones, where

they convert the light input to neural signals to be finally transmitted to brain. However,
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the human eye is disturbed by the nerves and blood vessels in front of the visual sensors,

which leads to imperfections in vision. Therefore, visual sensing mechanism should be

analyzed by incorporating the effect of visual nerves and vessels on the ability to see,

and a communication model for human eye can be developed to pave the way for future

diagnosis and enhanced treatment opportunities.

• Tactition is an important sense to be studied in detail. The conditions under which the

human cannot sense and respond to various stimuli should be investigated and com-

munication models to overcome inability to sense pain, chemical stimuli and pressure

could be developed.

• Neural adaptation mechanisms underlying olfactory fatigue should be investigated to

understand how the human body responds to over stimuli.

• Common gustation disorders, such as ageusia and dysgeusia (which may be resulted

from chemotherapy) [35] that prevent the detection of taste, could be studied and solu-

tion approaches could be developed.
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CHAPTER 3

A COMMUNICATION THEORETICAL ANALYSIS OF

SYNAPTIC MULTIPLE-ACCESS CHANNEL IN

HIPPOCAMPAL-CORTICAL NEURONS

Communication between neurons occurs via transmission of neural spike trains through junc-

tional structures, either electrical or chemical synapses, providing connections among nerve

terminals. Since neural communication is achieved at synapses, the process of neurotrans-

mission is called synaptic communication. Learning and memory processes are based on the

changes in strength and connectivity of neural networks which usually contain multiple synap-

tic connections. In this chapter, we investigate multiple-access neuro-spike communication

channel, in which the neural signal, i.e., the action potential, is transmitted through multiple

synaptic paths directed to a common postsynaptic neuron terminal. Synaptic transmission

is initiated with random vesicle release process from presynaptic neurons to synaptic paths.

Each synaptic channel is characterized by its impulse response and the number of available

postsynaptic receptors. Here, we model the multiple-access synaptic communication channel,

and investigate the information rate per spike at the postsynaptic neuron, and how postsynaptic

rate is enhanced compared to single terminal synaptic communication channel. Furthermore,

we analyze the synaptic transmission performance by incorporating the role of correlation

among presynaptic terminals, and point out the performance improvement in terms of post-

synaptic rate. Finally, we concentrate on the disorders characterized by abnormalities in pre-

and postsynaptic terminals and synaptic connections, and establish relations between neural

diseases and synaptic communication problems.

44



3.1 Introduction

Molecular communication is a new communication paradigm in which molecules are the

information carriers [3], [69]. Some examples of molecular communication mechanisms are

calcium signaling [119], molecular motors, pheromones, neurotransmitters [3].

The calcium signaling concept is described in [3]. In [119], the authors describe the design of

a molecular communication system based on intercellular calcium signaling networks. There

is also some current work focusing on communication with biological molecular motors [3],

intra-cellular aqueous nanobubbles [114], and artificial cell-to-cell communication systems

[172].

In the literature, different molecular network architectures are proposed to realize the commu-

nication between nanomachines that can be deployed over different distances. In [62], flag-

ellated bacteria and catalytic nanomotor techniques are proposed to cover the medium-range.

In addition, there are various molecular communications options for short range [92], and

long range [125]. Although, neural signaling has a long history initiated from the Hodgkin’s

pioneering work [70], among all molecular communication paradigms, neuro-spike commu-

nication that uses the neurotransmitters as information carriers has not been studied to the

fullest extent [21].

There are several studies about the physiological principles of the neuron. The axonal prop-

agation in the hippocampal neurons and the reliability of this transmission are investigated

in [111] and [137]. The vesicle release process, which initiates the synaptic transmission in

hippocampal neurons is described [42, 159]. Trial-to-trial variability in synapses is explained

in [108]. These contributions mediate the analysis of neurons from the perspective of com-

munication theory.

Neuro-spike communication is an interdisciplinary research area, which combines the fields

of neuroscience, communications and nanotechnology. The transferred amount of informa-

tion through a synaptic connection has an important role in learning and memory processes.

There has been some research concentrating on the limits on information transmission over

synaptic terminals [106]. In [21], authors investigate the communication behavior of neurons

as a new nanoscale communication paradigm and model the end-to-end neural communica-

tion channel. A synaptic communication model is suggested in [106]. It involves the funda-
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mental events during the synaptic transmission as different blocks, namely the vesicle release

in response to a spike, Excitatory PostSynaptic Potential (EPSP), which is the temporary in-

crease in the postsynaptic membrane potential caused by the flow of positively charged ions

into the postsynaptic cell due to the vesicle release [22], and trial-to-trial variability of this po-

tential. The authors derive the theoretical lower bounds on the capacity of a simple model of

a cortical synapse by signal estimation and signal detection paradigms. However, the model

is based on point-to-point synaptic connections. Furthermore, authors employ univesicular

release in their model, and do not take into account the variability in vesicle fusion rate on

different sites of the presynaptic terminal.

In this chapter, we investigate the multiple-access communication among hippocampal-cortical

neurons occuring via exchange of molecules through chemical synapses, which involve neu-

rotransmitters and are far more common and modifiable compared to electrical synapses that

do not involve neurotransmitters [36]. We perform analysis to observe how the postsynaptic

rate improves with increasing number of users, i.e., presynaptic terminals. Our main motiva-

tion in this work is that learning and memory processes are based on the changes in strength

and connectivity of neural networks, which usually contain multiple synaptic connections.

Therefore, we specifically focus on the multi-input single-output neuro-spike communication

channel characteristics to observe the tradeoff between multiple users and total rate at the

output. Synaptic plasticity, i.e., the changes in the synaptic connection strengths depending

on the presynaptic input strengths and channel parameters, is the main mechanism behind

learning and memory. Learning occurs through cooperation between synaptic inputs and the

plasticity rules select inputs which have a strong correlation with other inputs [146]. Synaptic

plasticity contributes to memory storage, and the activity-dependent development of neuronal

networks. Therefore, we especially concentrate on the positive influence of correlation among

presynaptic neural spike trains on the communication rate at the postsynaptic neuron. For that

purpose, after focusing on the transmission capability in neuronal connections when there are

multiple presynaptic terminals, we analyze the role of spike train correlations on synaptic

performance. We investigate the rate region for two different cases: a) uncorrelated firing of

neurons where the neural spike trains generated at each presynaptic terminal are independent,

and b) correlated firing of neurons where the neural spike trains have a first order correla-

tion. Our analysis reveals that the information rate at the synaptic communication channel is

improved as the number of presynaptic terminals increases. Furthermore, the total commu-
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nication rate is reinforced in the same way as of the amount of correlation among the action

potentials generated at the input neurons.

In this chapter, we apply existing techniques in communications to analyze the performance

of the neuronal channels. However, we provide a comprehensive mathematical model of the

communication channel including the stochastic behavior of the input, the action potential

generation, dynamic and stochastic nature of vesicle release process, stochastic nature of

the communication channel. Although the point-to-point synaptic channel performance is

studied in the literature widely as in [74], [66] and [21], we provide a more comprehensive

neuro-spike communication channel model in Section 3.2. Our contributions range from

incorporation of the stochastic nature of all the parameters along the communication line into

the dynamic nature of processes, including the random nature of the input, the communication

channel, the quantal variability, multivesicular release process, pool-based synapse model.

Furthermore, the multiple-access neuronal communication channel model we develop in this

chapter is completely new. Multiple-access extension is not simply the addition of the input

signals. To the best of our knowledge, the effect of the correlation among the presynaptic

terminals has not been studied yet in the literature. In this chapter, we develop a rate region

analysis for the multiple-access communication channel, and show the boosting effect of the

correlation on the sum rate at the channel output. In addition, incorporation of the effect

of correlation among presynaptic terminals on the postsynaptic rate is also provided for the

first time in the literature. We analytically show that as the correlation between presynaptic

terminals increase, the postsynaptic rate is enhanced.

The remainder of this chapter is organized as follows. In Section 3.2, we provide the linear-

nonlinear-Poisson (LNP) model of spike generation, vesicle release and postsynaptic response

variability in a link-to-link synaptic communication channel. In Section 3.3, we extend the

single-input single-output channel model to a multiple-access synaptic communication chan-

nel and obtain the analytical expression for multiuser channel rate regions. In Section 3.4,

we evaluate the performance of the multiple-access synaptic communication channel, quan-

titatively investigate the total information rate per spike at the postsynaptic neuron for the

multiuser communication system, and compare it to a single terminal synaptic channel. In

Section 3.5, we concentrate on the disorders characterized by abnormalities in pre- and post-

synaptic terminals and synaptic connections, and establish relations between neural diseases

and synaptic communication problems.
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3.2 Model Description

In this section, first, we give an overall picture of point-to-point neural communication and

biological processes specifically pertinent to the functioning of integrated living cells behind

this communication paradigm to provide the reader with the essential background knowl-

edge of neural signaling. Then, stating our objectives and methodology, we concentrate on

the fundamental blocks of the single-input single-output (SISO) neuro-spike communication

channel.

Neural Signaling Background: we provide the essential components of neural signaling.

These include action potential generation, neural firing, vesicle release, postsynaptic poten-

tial and postsynaptic response variability.

Action potential is a short-lasting event in which the electrical membrane potential of a cell

rapidly rises and falls, following a consistent trajectory [21]. During the action potential, part

of the neural membrane opens to allow positively charged ions inside the cell and negatively

charged ions out. This process causes a rapid increase in the positive charge of the nerve

fiber. When the charge reaches +40mV, the impulse is propagated down the nerve fiber. This

electrical impulse is carried down the nerve through a series of action potentials. Neural firing

is the response of a neuron when it is stimulated. A neuron that emits an action potential is

often said to fire.

Synaptic vesicles store neurotransmitters to be released at synapses and constantly reproduced

by the cells. These vesicles are essential for conduction of nerve impulses among neurons.

Action potentials trigger the complete fusion of the synaptic vesicle with the cellular mem-

brane, and then, the excretion from the cell through exocytosis, which is called vesicle release

[110].

Postsynaptic potential is the membrane potential at the postsynaptic terminal of a chemical

synapse. In neuroscience, an EPSP is a temporary depolarization of postsynaptic membrane

potential caused by the flow of positively charged ions into the postsynaptic cell as a result

of opening of ligand-gated ion channels [22]. An Inhibitory PostSynaptic Potential (IPSP),

which is the opposite of an EPSP, makes a postsynaptic neuron less likely to generate an action

potential. Postsynaptic response variability is the trial-to-trial variability in the amplitude of

the postsynaptic response to a vesicular release.
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Objectives and Methodology: we aim to analyze the rate region at the postsynaptic terminal

when there are multiple presynaptic terminals. Hence, as the initial step to the rate region

analysis, in this section, we focus on the SISO synaptic channel characteristics. Therefore, we

first explain the firing and spike generation mechanisms. Then, we provide a model for vesicle

release from presynaptic terminals, and the model of channel response depending on the trial-

to-trial variability in vesicle release process. To characterize the rate region, we need to find

the power spectral densities (PSDs) of the signal and noise components at the postsynaptic

terminal by incorporating the stochastic characteristics of presynaptic input, neuron terminal,

and the synaptic channel parameters. Therefore, in this section, we provide the main blocks

and steps for analytically obtaining the PSD at the postsynaptic terminal for the SISO synaptic

communication channel, and calculate the statistical parameters, i.e., the means and variances

of the random variables denoting the action potential rate, vesicle release processes, quantal

variability, which play fundamental roles on the performance of neuro-spike communication.

3.2.1 Neuronal Firing: The Soma Channel

In a SISO neuron channel model, when a random stimulus, m(t), is applied to the presy-

naptic terminal, a spike train, S(t), is generated at its axon which has a time varying neu-

ronal firing rate λ(t). In our model, m(t) and S(t) are jointly wide-sense stationary (jointly

WSS), implying that both m(t) and S(t) are WSS processes, and the cross correlation function

Rm,S(τ) = E [m(t)S(t + τ)] is independent of t for all τ.
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Figure 3.1: A simplified functional model of neural spike responses [156]. In [156], a Linear-
Nonlinear-Poisson (LNP) model for neural responses is proposed, which has been success-
fully used to describe the neuronal response characteristics.
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3.2.1.1 Low Pass Filtering

Consider that the stimulus m(t), which is a wide sense stationary (WSS) process, with band-

width Bm, and autocorrelation function (ACF) Rm(t + τ, t) = Rm(τ) enters the hypothetical

k(t) filter, which simulates the empirical characteristics of axonal filtering process. We ignore

axonal noise for simplicity. Hence, the filter response, i.e., v(t) is

v(t) = m(t)∗ k(t), k(t) =
1
C

exp
(
− t

RC

)
U(t). (3.1)

k(t) is a low-pass filter denoting axonal response. Hence, k(t) corresponds to the first block

of LNP model shown in Fig. 3.1. The absolute square of the frequency response of k(t) filter

is |K( f )|2 = R2

1+(2π f RC)2 , which is later utilized in the calculation of the PSD of the generated

spike train. Hence, the ACF of v(t), i.e., Rv(t + τ, t) = Rv(τ), is obtained as

Rv(τ) =

∞∫
0

∞∫
0

Rm(τ−α+β)
1

C2 exp
(
−α+β

RC

)
dαdβ, (3.2)

which is also a WSS random process since it is obtained by low-pass (linear) filtering of the

stimulus m(t), which is a zero mean random process. Hence, the PSD of v(t) is obtained as

Sv( f ) = |K( f )|2Sm( f ) =
R2

1+(2π f RC)2 Sm( f ). (3.3)

3.2.1.2 Point (Sigmoidal) Nonlinearity

Point nonlinearity block, the second stage of the LNP model, transforms the linearly weighted

input into an inhomogenous spike rate function, which is later utilized in Poisson encoder,

the third stage of the LNP model, to generate Poisson impulses [156]. The inhomogeneous

spike rate can be determined as λ(t) = f (m(t) ∗ k(t)), where f is a sigmoidal nonlinearity,

and is a scalar and continuous function with nonnegative outputs. In the limit of small time

bins, the probability of spike generation becomes P(Spike) ∝ f (m(t)∗ k(t)). Considering the

number of arrivals in the time interval ∆t, given as k, which follows a Poisson distribution with

associated parameter λ∆t =
∫
∆t

λ(t)dt, Prob(k) = e−λ∆t λk
∆t/k!. In the limit of very small ∆t,

Prob(0) = 1−λ(t)∆t. Hence, the spike generation probability is given as P(Spike) = λ(t)∆t,

which is proportional to λ(t).

The sigmoidal nonlinearity function is given as

f (v(t)) =
1

1+ exp
(
−a
(
v(t)− v1/2

)) , (3.4)
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which is a mapping on v(t) and depends on the constant parameters a and v1/2. In [41], authors

model the spike rate for cortical neurons of a monkey, and the sigmoidal nonlinearity curve

is fitted with the parameters a = 1
0.029◦ and v1/2 = 0.036◦ and scaled with λmax = 36.03 Hz.

These parameters are also applicable to our analysis.

The sigmoidal nonlinearity is a result of the saturation of presynaptic neurons. As the firing

rate increases, the synaptic channel is saturated with available vesicles in the docked pool.

Hence, the number of available vesicles in the docked pool decreases. In this section, the neu-

ronal firing rate should be high enough to avoid zero throughput. Furthermore, we assume that

the synaptic channel could be saturated. However, to simplify the analysis, we approximate

the nonlinear model about the non-saturated region of the sigmoidal curve by linearizing the

sigmoidal function around f (v(t)) = 0.5λmax, where v(t) = v1/2. Hence, we can approximate

f (v(t)) as

f (v) =


0 if v(t)≤ v1/2− 2

a

λmax

(
1
2 +

a(v−v1/2)
4

)
if
∣∣v(t)− v1/2

∣∣≤ 2
a

λmax if v(t)≥ v1/2 +
2
a

, (3.5)

where f (v1/2− 2
a)≈ 0.12λmax, and f (v1/2 +

2
a)≈ 0.88λmax. Therefore, linearizing the output

of the sigmoidal nonlinearity block, we obtain

λ(t) = λmax

(
2−av1/2

4
+

av(t)
4

)
P
(
|v(t)− v1/2| ≤

2
a

)
+λmaxP

(
v(t)− v1/2 ≥

2
a

)
, (3.6)

where the rate of the Poisson spike generation process changes linearly, provided that v1/2− 2
a ≤

v(t) ≤ v1/2 +
2
a is satisfied. When v(t) ≥ v1/2 +

2
a , the neuron is saturated and λ(t) = λmax.

Hence, the mean firing rate can be determined as

λ̄ = E [λ] = λmax

(
2−av1/2

4

)
P
(
|v(t)− v1/2| ≤

2
a

)
+λmaxP

(
v(t)− v1/2 ≥

2
a

)
.(3.7)

We assume that the stimulus to each presynaptic terminal is normal distributed with zero mean

and variance σ2. Hence,

P
(
|v(t)− v1/2| ≤

2
a

)
=

1
2

[
erf

(
g−1

(2
a + v1/2

)
σ
√

2

)
+ erf

(
g−1

(2
a − v1/2

)
σ
√

2

)]
(3.8)

P
(

v(t)− v1/2 ≥
2
a

)
=

1
2

[
1− erf

(
g−1

(2
a + v1/2

)
σ
√

2

)]
,

where g(m(t)) = m(t) ∗ k(t) is a function of the stimulus, and we assume that g(.) is one-

to-one. Hence, the inverse of g, denoted by g−1, is the unique function with domain equal
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to the range of g that satisfies g
(
g−1(x)

)
= x for all x in the range of g. Furthermore, since

we assume that v(t) ≥ v1/2− 2
a (to prevent firing rate from being zero), we should scale the

probabilities in (3.8) so that they add up to 1. From (3.6), (3.7) and (3.8), we obtain

λ(t) = λ̄+ λ̄bv(t), (3.9)

where b = aλmax
4λ̄

P
(
|v(t)− v1/2| ≤ 2

a

)
. Using (3.9), the ACF of λ(t) can be determined as

Rλ(τ) = E [λ(t + τ)λ(t)] = λ̄
2E [(1+bv(t + τ))(1+bv(t))] = λ̄

2 (1+b2Rv(τ)
)
. (3.10)

Hence, the autocovariance function of λ(t) can be obtained by subtracting λ̄2 from Rλ(τ) as

Cλ(τ) = λ̄2b2Rv(τ). The variance of the spike rate, i.e., σ2
λ
=Cλ(0) can be obtained as

σ
2
λ
= λ̄

2b2Rv(0) = λ̄
2b2

σv
2, (3.11)

where σv
2 is the variance of v(t), which is a zero mean WSS process. Using (3.7) and (3.11),

the coefficient of variation, i.e., the contrast of firing rate, for the spike train could be found

as

cλ = σλ/λ̄ = bσv. (3.12)

3.2.1.3 Poisson Encoding

The Poisson spike train at the output of the axon of the presynaptic neuron, denoted as S(t),

can be formulated as

S(t) =
N

∑
i=1

δ(t− ti) =
d
dt

N

∑
i=1

u(t− ti) =
dN(t)

dt
,

where N(t) models an inhomogeneous, i.e., non-constant rate, Poisson arrival process charac-

terized with rate parameter λ(t), which is the expected number of arrivals that occur per unit

time. The mean of this Poisson arrival process is E[N(t)] =
t∫

0
λ(τ)dτ. Hence, the average rate

for spike generation at the presynaptic terminal is

λ(t) = 〈S(t)〉= E[S(t)] =
dE[N(t)]

dt
. (3.13)

The ACF RS(t,s) belonging to the spike train, which is an inhomogeneous Poisson process

with rate λ(t), can be calculated using the ACF of the Poisson spike process, i.e., RN(t,s), as

RS(t,s) =
∂

∂t

[
∂RN(t,s)

∂s

]
=


∂

∂t

[
λ(s)

t∫
0

λ(η)dη+λ(s)
]

if t > s

∂

∂t

[
λ(s)

t∫
0

λ(η)dη

]
if t < s

= λ̄
2 + λ̄

2b(v(t)+ v(s))+(λ̄b)
2
v(t)v(s)+(λ̄+ λ̄bv(s))δ(t− s). (3.14)
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However, RS(t,s) is not a WSS random process. Therefore, it does not make sense to talk

about its power spectrum. Hence, we assume that the process is ergodic, and take its expec-

tation. The expectation can be replaced by the limit of a time average. Then, we calculate the

autocorrelation of time averaged process using the result (3.14), which we interpret as

RS̄(t,s) = λ̄
2 +(λ̄b)

2
Rv(t− s)+ λ̄δ(t− s), (3.15)

which is a WSS process, and we can rewrite (3.15) as

RS̄(τ) = λ̄
2 +(λ̄b)

2
Rv(τ)+ λ̄δ(τ), (3.16)

of which we can talk about the power spectrum. The PSD of RS̄(τ), thus, can be found as

SS̄( f ) = λ̄+
(
λ̄b
)2|K( f )|2Sm( f )+ λ̄

2
δ( f ). (3.17)

Authors in [106] have shown that, the mean firing rate should be at least three times as large

as the standard deviation of firing rate to ensure linear encoding, for which the probability that

λ(t) is negative is less than 0.01. Hence, the contrast (the coefficient of variation) of firing

rate, i.e., the ratio of the standard deviation to the mean of the neural firing process, shoud be

less than or equal to 1/3, i.e., cλ ≤ 1/3 condition should be satisfied. Using (3.12), it is clear

that σλ = λ̄bσv as the rate, i.e., λ(t) is linearly dependent on v(t), which is a zero mean linear

filtered WSS random process. Therefore, σv ≤ 1/(3b) is the required condition for linear

encoding. Due to the linear relation between m(t) and v(t), we infer that

σ
2
v =

∫
Sm( f )

R2

1+(2π f RC)2 d f ≤
(

1
3b

)2

. (3.18)

Hence, the variance of the presynaptic stimulus should satisfy the constraint given in (3.18)

to ensure linear encoding.

3.2.2 Vesicle Release Model

We use a pool-based synapse model for each presynaptic neuron to study vesicle depletion

and recovery. The vesicle release process depends primarily on the vesicle pool size and

postsynaptic receptor saturation [110]. In chemical synapses, some vesicles are docked at

the membrane waiting to release their content upon the arrival of a trigger signal. Others are

stored in the membrane pool, just above the docked vesicles, being more distant to the cell
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Figure 3.2: The pool-based synapse model.

membrane. Vesicles in the neural terminal can be grouped into three sub-pools according to

their relative mobilities: the readily releasable pool (RRP), the recycling pool and the reserve

pool, which differ on the basis of the relative mobility of vesicles in each pool [142]. It takes

the longest to mobilize the vesicles in the reserve pool while in RRP, vesicles are ready to

mobilize upon arrival of a spike.

Let the pool sizes, i.e., the number of vesicles in pools, be denoted as N, NA−N, and NR, for

RRP, the recycling pool and the reserve pool, respectively. NA is the total vesicle size in the

recycling pool and RRP. The recycling pool is close to the cell membrane, and tends to be

cycled at moderate stimulation, so that the rate of vesicle release is the same as, or lower than,

the rate of vesicle formation. Once the RRP and the recycling pool are exhausted, the reserve

pool is mobilized [142]. A pool-based synapse model is illustrated in Fig. 3.2.

In the pool model shown in Fig. 3.2, pr(N) is the release probability per stimulus, and the

available pool is considered to be exhausted with a rate 1/τD. Therefore, the reserve pool

should recover the available, i.e., docked, pool with a time constant τD [110].

The release of a single vesicle upon arrival of a spike is governed by a Poisson process with

non-constant presynaptic firing rate λ(t). Then, the fusion rate, i.e., the rate at which the

vesicles are expelled from the cell through exocytosis [110], for a single vesicle is determined
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as

αvk =

∆tk∫
0

λ(t)dt, (3.19)

where the integration is evaluated over the duration of the presynaptic pulse [110]. In the

calculation of αvk , we divide λ(t) into windows of equal durations. If we choose sufficiently

large number of windows of equal duration, there exists at most one spike at each window.

Discretizing the fusion rate, as soon as the spike is within a specified window and the window

size is small enough, the fusion rate is the same independent of at which time point the spike

is. This makes sense because the fusion rate stays constant for a sufficiently small interval.

This is also a realistic assumption since we need to discretize the time axis in our simulations.

In (3.19), subscript k denotes the window index, and the integration on the right hand side

is from the start of the presynaptic stimulus taken as the time origin until the end of kth time

window of the stimulus denoted as ∆tk.

Additional to presynaptic firing rate, the level of activation of inhibitory auto-receptors, i.e.,

the receptors located in the presynaptic membrane that serve as a part of a feedback loop

in signal transduction by inhibiting further release or synthesis of the neurotransmitters, also

affect the fusion rate [110]. Furthermore, the vesicle release probability is dependent on a

power of the spike-triggered Ca2+ influx. Therefore, the vesicle fusion rate can be replaced

with αvk →
αvk

(1+Cxx(t))q , where the constant Cx controls the strength of the inhibitory effect, and

parameter q specifies Ca2+ cooperativity of vesicle release [110]. However, to simplify our

analysis, we ignore the effect of inhibitory auto-receptors.

Using the vesicle fusion rate defined in (3.19), the single-vesicle release probability is pvk =

1− exp(−αvk). The release probability per stimulus is the complement of the failure proba-

bility, which is the probability that no vesicle is released during the window of interest, given

by

pr(Nk) = 1− exp(−αvk Nk), (3.20)

where Nk is the number of vesicles available for release at the window of interest and the

failure probability is 1− pr(Nk) = exp(−αvk Nk) [42].

For the more realistic case where each release site is permitted to have its own release proba-

bility, the probability that no vesicles fuses on the kth interval can be calculated as ∏
Nk
j=1 (1− pv jk),
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where pv jk = 1−exp
(
−αv jk

)
, as explicitly pointed out in [43]. Here pv jk and αv jk are the prob-

ability that the jth vesicle fuses on during kth interval, and its fusion rate, respectively, and Nk

is the number of vesicles in the RRP at the kth window.

To find the mutual release probability, i.e., p∗vk
, that gives the same result as the calculation

with different release probabilities per vesicle, we set ∏
Nk
j=1 (1− pv jk) = (1− p∗vk

)Nk .

p∗vk
=

1
Nk

Nk

∑
j=1

pv jk . (3.21)

p∗vk
is the average release probability per vesicle for the pool of vesicles. Using the pv jk

expression and (3.21), the mutual fusion rate, i.e., α∗vk
, can be obtained as

α
∗
vk

= ln(Nk)− ln

(
Nk

∑
j=1

exp
(
−αv jk

))
. (3.22)

Equation (3.22) gives a compact expression when each vesicle has a distinct fusion rate de-

pending on the distinct release sites on presynaptic neuron, regional differences in the strength

of inhibitory effects, Ca2+ concentration levels, and presynaptic auto-receptors.

There is some previous work concentrating on univesicular release mechanism [159, 47]. The

all-or-none synaptic transmission that arises from the saturation of postsynaptic receptors by

neurotransmitter content of a single vesicle is suggested in [163], implying the same postsy-

naptic response regardless of the number of vesicles released. In [106], it is assumed that each

action potential yields at most one vesicle release and the vesicle release process is modeled

by a Z-channel because without stimuli the probability of spontaneously generated vesicles is

very low, and hence, ignored. Additional to single vesicle release case, multivesicular release

is studied in [110]. Moreover, it is found that the temporal correlation between stochastic

responses to a repetitive train of stimuli behaves differently depending on whether multiple

releases are allowed.

In univesicular release case, the probability of release is given by pvk . This is equivalent

to saying that vesicle release at kth spike arrival is bernoulli distributed with probability pvk .

Hence, expected number of vesicles released at kth spike is equivalent to pvk . In multivesicular

release, on the other hand, each vesicle has an independent (not necessarily identical) release

probability, i.e, pv jk . Therefore, in multivesicular case, each vesicle also has Z-channel model

with an average release probability pvk as calculated in (3.21). The model for multivesicular

release can be represented by a non-binary Z-channel. Binary symbols of the SISO Z-channel
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are scaled by Nk, which is the total number of available vesicles in the RRP to be released

upon spike generation at the presynaptic terminal. This assumption is valid since the vesicle

release rate is scaled by Nk in multivesicular release case. Thus, expected number of released

vesicles in multivesicular case is pvk Nk.

In this section, we study the multivesicular release case. We model the number of vesicles

released in response to an action potential exerted at kth window with a random variable

denoted as Wk. Wk is determined by a binomial distribution with parameters pvk and Nk. The

average number of vesicles released is then given by 〈Wk〉= pvk Nk for fixed Nk.

P(Wk = i) =
(

Nk

i

)
(pvk)

i(1− pvk)
Nk−i. (3.23)

Assuming that each vesicle has the same probability of release, i.e., pvk , upon a stimulus, the

expected number of vesicles released on window k can be calculated as

〈Wk〉=
Nk

∑
i=0

iP(Wk = i) = pvk Nk. (3.24)

The release probability, i.e., the probability that at least one vesicle is released, on window k

is

Pk = 1− (1− pvk)
Nk . (3.25)

The release probability on the next window, i.e., Pk+1, can be iteratively calculated using pvk+1

and Nk+1 by applying the relation

Nk+1 = Nk−〈Wk〉+Nr f
k+1 = Nk(1−Pk)

1
Nk +Nr f

k+1 (3.26)

into (3.25), where Pk is the measured release probability for the previous, i.e., kth time window,

〈Wk〉 is the average number of vesicles released on kth window and Nr f
k+1 is the number of

vacancies in the releasable pool refilled by the reserve pool during the time difference between

consecutive windows, i.e., one inter-spike interval (ISI), which can be calculated as Nr f
k+1 =

NRPr f
k+1. NR and Pr f

k+1 are the reserve pool size and the vesicle refill probability during one ISI,

respectively. According to the derivation in [110], the reserve pool fills the vacancies with a

time constant τD, which is the refill time constant. Therefore, it takes τD time for the system

to reach 1− 1/e of its final value, which is Pr f∗
k = 1. Hence, provided the reserve pool size

remains unchanged, the refill probability is

Pr f
k = 1− exp(−∆tk/τD), (3.27)

where ∆tk is the time interval between the start of the stimulus until the end of kth window and

τD is the refill time constant which is inverse of vacancy refill rate [110].
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3.2.3 Postsynaptic Response with Variability in Vesicle Release

The postsynaptic response function to the release of a single vesicle is denoted by h(t). Output

of this response filter is subject to additive white gaussian noise denoted as n(t) and the

channel output is the postsynaptic voltage, i.e., Z(t).

We model the postsynaptic response by a function h(t), which corresponds to the EPSP wave-

form of a fast, voltage-independent AMPA-like synapse modeled as an alpha function [138],

h(t) = hp
t
tp

exp
(

1− t
tp

)
, (3.28)

where hp is the peak EPSP magnitude and tp is the corresponding time-to-peak. The Fourier

transform of h(t), denoted as H( f ) can be calculated as H( f ) = hpexp(1)/tp

(
1
tp
+ j2π f

)2
,

which is utilized in the rate region analysis for synaptic communication channel in Section

3.3.2.

We assume that the postsynaptic responses to a sequence of vesicle releases add linearly.

We incorporate synaptic variability by multiplying the response h(t) by a random variable q

drawn from a probability distribution P(q), which can be measured empirically. q models

the trial-to-trial variability in the amplitude of the postsynaptic responses observed for central

neurons. In some cases, the variance in the size of EPSP is as large as the mean. Despite

being possibly biased due the inability of measuring very small synaptic events, the experi-

mentally observed amplitude distributions are usually skewed to high amplitudes and can be

modeled by a Gamma distribution [25]. Here, we model P(q) by a gamma distribution. A

gamma-distributed random variable Q with shape α and rate β is denoted by Q ∼ Γ(α,β).

The probability density function (pdf) of Q is

f(q;α,β) = β
α 1

Γ(α)
qα−1 exp(−βq) for q≥ 0 and α,β > 0, (3.29)

where α is the order of the distribution. If α is a positive integer, then Γ(α) = (α−1)!.

The mean q̄, standard deviation σq and the coefficient of variation of the gamma distribution

are defined as q̄ = α/β, σq = α/β2 and cq = 1/β, respectively. In this section, we choose

α = β = 0.6−1, consistent with the postsynaptic quantal variation, i.e., the variation in the

transmitter content among vesicles as determined by vesicle volume, model proposed in [106].

Four parameters are thought to be particularly important in determining trial-to-trial EPSC

variability: the time course and probability of quantal release, i.e., the amount of neurotrans-

58



mitter released following neural stimulation,, the number of release sites, where the secretion

of a quantum of neurotransmitter occurs, and the quantal size, which is the postsynaptic re-

sponse to the release of neurotransmitter from a single vesicle [147]. Although in [147],

authors claim that multivesicular release can cause postsynaptic saturation, i.e., full receptor

occupancy, in this section, we assume that receptors at the postsynaptic terminal are not sat-

urated by multivesicular release assuming the available number of postsynaptic receptors is

high enough.

The postsynaptic membrane voltage is

Z(t) =
M

∑
l=1

∑
i

ql
iW

l
i hl(t− ti)+n(t), (3.30)

where q is the random EPSP amplitude and W is a binomial variable representing the spike-

conditioned vesicle release process. Superscript l refers to the lth synaptic connection. If the

synapses are distributed at different electrotonic locations, i.e., positions along the excitable

cell with unequal electrical state in the absence of repeated action potentials, on the postsy-

naptic neuron, the corresponding EPSP waveforms hl(t) are different [106]. In this chapter,

to simplify the analysis, we assume that synaptic connections are at the same electrotonic

location, and hence, they are identical and have the same EPSP characteristics.

Assuming a point-to-point synaptic connection between a pre- and postsynaptic neuron ter-

minal pair, the postsynaptic membrane voltage can be calculated as

Z(t) = ∑
i

qiWih(t− ti)+n(t) =

[
h(t)∗∑

i
qiWiδ(t− ti)

]
+n(t), (3.31)

where Wi is a binomial random variable representing the spike-conditioned vesicle release

process to a spike generated at t th
i time instant. If the spike generated at time ti does not lead

to vesicle release at input neurons, Wi = 0. The model for the SISO neuro-spike channel

model is given in Fig. 3.3. In Section 3.3, we extend the single-input synaptic model to multi

terminal input case, and investigate its rate region.

3.3 Multiple-Access Neuron Channel

We extend the SISO channel model to MISO, i.e., multiple-access, channel model. In this

model, we assume that presynaptic terminals are identical, i.e., the axons share the LNP

model features and spike generation mechanisms, and the EPSP characteristics are the same.
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Figure 3.3: Single-input single-output neuro-spike channel model between presynaptic and
postsynaptic neuron terminals.

A conceptual model for the multiple-access synaptic communication channel and the main

blocks of the multiuser neuronal channel are illustrated in Fig. 3.4 and 3.5, respectively.
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Figure 3.4: Multiple-access synaptic communication channel model.
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Figure 3.5: Multiple-access channel model between presynaptic and postsynaptic neuron ter-
minals.
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In Fig. 3.5, the hypothetical model for multiple-access channels among neuron terminals is

illustrated. Each presynaptic terminal generates its own stochastic impulse train. Upon ar-

rival of the spike train, the presynaptic terminals release vesicles with an average probability

of p independent of each other. Therefore, the vesicle release instances are determined by

each presynaptic terminal’s own spike characteristics. The released vesicles are directed to

a common postsynaptic terminal through distinct synapses with separate input terminals. In

this chapter, we assume that the synaptic impulse responses, i.e., the EPSP characteristics,

are identical in shape. However, each synaptic channel is characterized by a random ampli-

tude determined by a Gamma distributed variable q. Hence, the synaptic channels can be

independently characterized. At the end of the transmission process, each presynaptic ter-

minal delivers vesicles to the same postsynaptic terminal through a succession of stochastic

processes. Hence, the voltage seen at the postsynaptic terminal is stochastically determined

by the random spike generation and vesicle release processes at each input terminal, and the

channel variabilities at each synaptic channel. In this section, we analyze the rate region for

multiple-access synaptic communication channel.

3.3.1 Modulated Input Power Spectral Density

Using the approximation for the PSD of the spike train in (3.17), we have

Ss( f )≈ λ̄+
(
λ̄b
)2|K( f )|2Sm( f )+ λ̄

2
δ( f ) (3.32)

σ
2
λ
=

∫ [(
λ̄b
)2|K( f )|2Sm( f )+ λ̄

2
δ( f )

]
d f . (3.33)

Similar to spike generation process, the vesicle release process is also Poisson with rate

pvk Nkλ(t). Therefore, the PSD for vesicle release process at kth window, i.e., S(k)w can be

obtained as

S(k)w ( f ) = (pvk Nk)
2
[(

λ̄b
)2|K( f )|2Sm( f )+ λ̄

2
δ( f )

]
+(pvk Nk) λ̄. (3.34)

Next, by considering the effect of channel variability, represented by the random variable

q, we define S(k)l ( f ) as the PSD of the modulated input l at kth window of interest. Here,

modulated input is the presynaptic neuron stimulus passing through LNP filter to be Poisson

encoded, and converted into binomial vesicle release form and then scaled with random quan-

tal amplitude to be filtered with postsynaptic response function. Modulated input is a function

of frequency and random due to the stochastic variables denoting vesicle release and synaptic
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filter amplitude.

S(k)l ( f ) = q̄2(pvk Nk)
2
[
(λ̄lb)

2|K( f )|2Sml ( f )+(λ̄l)
2
δ( f )

]
+(q̄2 +σ

2
q)(pvk Nk) λ̄l,(3.35)

following from (3.34), the linear encoding restriction and the approximation of Var(qpλl(t))

as

Var(qpλl(t)) = E
[
q2(pvk Nk)

2
λ

2
l (t)
]
− q̄2(pvk Nk)

2
λ̄

2
l

=
(
q̄2 +σ

2
q
)
(pvk Nk)

2
σ

2
λl
+
(
q̄2 +σ

2
q
)
(pvk Nk)

2
λ̄

2
l − q̄2(pvk Nk)

2
λ̄

2
l

≈ σ
2
q(pvk Nk)

2
λ̄

2
l + q̄2(pvk Nk)

2
σ

2
λl
. (3.36)

Approximation in (3.36) follows from the fact that the mean firing rate is at least three times

larger than the standard deviation of firing rate to ensure linear encoding [106]. Hence, cλ =

σλ/λ̄≤ 1/3 should be satisfied, and the σ2
q(pvk Nk)

2
σ2

λl
term in (3.36) is negligible.

From (3.36), variability of q only affects the frequency independent part of the modulated

input, i.e., the term (pvk Nk)λ̄l in (3.34), due to linear encoding condition. As a result of linear

encoding assumption, the variation at the frequency dependent part is ignored.

For single synapse channel, the power spectrum of z(t) can be calculated as in [106], i.e.,

SZ( f ) = |H(l)( f )|2S(k)l ( f )+Sn( f ). (3.37)

Extending this model to multiple input case for M number of presynaptic neurons, we obtain

SZ( f ) =
M

∑
l=1
|H(l)( f )|2S(k)l ( f )+Sn( f ). (3.38)

3.3.2 Multiuser Channel Rate Regions

The multiaccess coding theorem asserts that if source l, 1 ≤ l ≤M(l ≥ 2) has rate Rl and is

constrained to a PSD Sl over the given bandwidth B, then, arbitrarily small error probability

can be achieved for all sources if for each subset A⊆ {1,2, . . . ,M} [58],

∑
l∈A

Rl <

B/2∫
−B/2

log

1+
∑

l∈A
Sl|H(l)( f )|2

N0

 d f , (3.39)

where H(l)( f ) is the Fourier transform of h(l)(t). The quantity on the right hand side of (3.39)

is the conditional average mutual information per unit time, I(A), between the inputs in A and
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Table 3.1: Analysis parameters.

Parameter Symbol Value / Range
Soma time constant τ = RC 20 ms
AWGN bandwidth Bn 100 Hz
AWGN standard deviation σn 0.1 mV
Peak magnitude of the EPSP waveform hp 1 mV
Time at which EPSP reaches its peak tp 0.5 ms
Firing rate control parameter a 1/0.029◦

Voltage at half the maximum firing rate v1/2 0.036◦

The vesicle release probability pvk 0.4
Average firing rate αvk 10 spikes/s
Available pool size NA 3−10
Reserve pool size NR 60
Vesicle refill time constant τD 2 s
Quantal amplitude CV cq 0.6
Mean of quantal amplitude q̄ 1

the output, conditional on the inputs not in A; this assumes that the inputs are independent

stationary white Gaussian noise processes over the bandwidth B. From multiaccess coding

theorem,

∑
l∈A

Rl <
max

S(k)l ( f )

B/2∫
−B/2

log

1+
∑

l∈A
|H(l)( f )|2S(k)l ( f )

N0

 d f

s.t. ∑
l∈A

∫
S(k)l ( f ) d f ≤∑

l∈A
P(k)

l , (3.40)

for multiple input synaptic communication channel, where P(k)
l is the power constraint of

the lth presynaptic neuron over the bandwidth B, and the input subset is denoted by A ⊆

{1, . . . ,M}.

3.4 Performance Evaluation

In this section, we evaluate the analytical expressions obtained in Sections 3.2-3.3. The pa-

rameters for numerical evaluations, as tabulated in Table 3.1, are obtained from [42], [106],

[41].

Initially, we generate spike trains using the LNP model discussed in Section 3.2.1. The lin-

earized LNP model with λmax = 36.03 Hz is illustrated in Fig. 3.6(a). We apply a normal

distributed stimulus to each presynaptic neuron terminal. The outputs of the LNP filters, i.e.,

the generated spike trains based on the firing rates are illustrated in Fig. 3.6(b).
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Figure 3.6: (a) Linear approximation for the rate of the Poisson arrival process, and (b) the

spike train at the output of the LNP filter under varying firing rates.

Spike trains, i.e, action potentials, are converted into the form of vesicle release. Rate of

the spike trains determines the triggering level for vesicle release mechanism. During each

repetition of the train, the RRP decreases by 1 each time a vesicle is released. The release

probability at a synapse is directly correlated with the size of its readily releasable vesicle

pool, which is N. In [42], authors choose NA = 3− 10 in their simulations. For the vesicle

refill time constant they use a value of τD = 2 s, which agrees with the time of recovery of the

RRP measurements in hippocampal slice experiments. Therefore, we choose the refill rate and

reserve pool size based on these experiments. The simulation result for the dynamic vesicle

release process, which is initiated with the spike train given in Fig. 3.6(b) with E[λ] = 15.84,

is depicted in Fig. 3.7.

Passing through the synaptic channel, the released molecules are modulated. Modulation is

due to the variability in the number of available receptors on the surface of the postsynaptic

neuron. Furthermore, the synaptic channel behaves like an alpha-shaped filter, the input and

the output of which are the modulated input and the postsynaptic potential observed at the

destination neuron, respectively. A segment of a typical EPSP waveform is shown in Fig. 3.8.

We observe the vesicle release probability during a spike train to characterize how the average

rate per spike varies. We analyze the fusion rate by dividing the spike train into 100 windows

of equal duration. As fusion rate, i.e, αv, is solely dependent on the integration duration of

λ(t), it increases during train as seen in Fig. 3.9(a). Furthermore, the average vesicle release

probability, i.e., pv, also increases with αv, which agrees with the results obtained in [43].

Therefore, average number of vesicles released increases during train, which is illustrated in
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Figure 3.7: Random vesicle release process in the course of Poisson distributed spike train.
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Figure 3.8: A segment of the EPSP waveform at the postsynaptic membrane, E[λ] = 15.84.

Fig. 3.9(b). Hence, the information rate is also augmented with impulse train duration as

shown in Fig. 3.9(c).
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Figure 3.9: Time dependent neuronal (a) vesicle fusion rate, (b) vesicle release process, and

(c) average rate during spike train.

As the presynaptic firing rate enhances, the information bits delivered per spike increases.

Making realistic assumptions on the rate of spike trains, authors in [42] come across the

typical spike rate of neurons, which is 1 spike per 100 ms. Therefore, we limit λ(t) to be

around this typical value in our simulations. Using (3.40), we can obtain the rate region for

SISO neuro-spike communication channel. The rate region for varying RRP size, i.e., NA, and

reserve pool size, i.e, NR, and vesicle refill time constant, i.e., τD, is pointed out in Fig. 3.10.

As NA increases the available number of vesicles ready for release gets higher. For large NR

values since the refill rate gets larger, size of the available pool gets larger during the stimulus,

causing improved rate values at the postsynaptic terminal. As τD increases, as more time is

required to fill the docked pool, the docked pool depletes faster, and the rate drops.

Although in [56], authors calculate that the maximum amount of information that can be

transmitted by an ideal synapse is approximately equal to 1.13 bits per spike, their analysis

is based on unitary vesicle release. In this chapter, as we allow multivesicular release, higher

information rates become possible. We hypothetically show that rate is affected by firing of

presynaptic terminal, vesicle pool sizes and refill process, vesicle fusion rate and postsynaptic

receptors. Furthermore, in this study, the saturation of postsynaptic receptors, which, in fact,

adversely influences the vesicle release process, is ignored. The model could be extended

to observe the feedback relationship between the postsynaptic receptors and vesicle release

process.

Extension of the model to multiple-access neuro-spike channel is the next step. Using (3.40),

we can obtain the rate upper bounds for any user subset A ⊆ {1, . . . ,M}. Depending on

whether the set of users has correlation among them or not, in this section, we investigate the

rate regions.
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Figure 3.10: The achievable rate region for SISO synaptic communication channel under
variable vesicle pool conditions.

Assume that M neurons are fired with an input vector m(t) = {m1(t),m2(t), ...,mM(t)}, and

neurons release their vesicles through the channel, i.e., the synapse. We investigate two dif-

ferent cases regarding the dependence of the individual presynaptic neurons.

3.4.1 Independent Firing of Neurons

Let Sl ∼ Pois(λl), for l ∈ {1, . . . ,M} be an inhomogeneous and independent Poisson pro-

cess with rate λl(t) corresponding to the model of spike generation at lth input neuron. The

probability mass function (pmf) of Sl is given by

f(k;λl(t)) = P(Sl = k) =
λk

l (t)
k!

exp(−λl(t)), l ∈ {1, . . . ,M}, k ∈ Z≥0. (3.41)

We define a new random process S, denoting the sum of individual independently but not

necessarily identically distributed random processes Sl , i.e., S= ∑
M
l=1 Sl . The pmf of S is

P(S) = P(S1 = k1,S2 = k2, . . . ,SM = kM) =
M

∏
l=1

λ
kl
l

kl!
exp(−λl) = exp

(
−

M

∑
l=1

λl

)
M

∏
l=1

λ
kl
l

kl!
.(3.42)

In independent firing of neurons, lth neuron releases vesicles with rate λl(t) independent of

other neurons. Therefore, at the lth input neuron, the vesicle release probability is determined
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by a Poisson distribution with a rate parameter λl(t)p, where p = pvk Nk at kth window of

interest. Let Xl be the random process modeling the vesicle release at lth input neuron. Hence,

Xl ∼ Pois(λl(t)p), for l ∈ {1, . . . ,M} independently vesicle releasing input neurons.

The vesicles released by all input neurons are accumulated at the synaptic channel. Therefore,

the total vesicle release to the synaptic channel can be determined by the process X = ∑
M
l=1 Xl ,

the rate of which is ∑
M
l=1 λl(t)p = p∑

M
l=1 λl(t) = pλ(t), where λ(t) = ∑

M
l=1 λl(t). Therefore,

the vesicle release process can be modeled by a Poisson distribution, X ∼ Pois
(

p∑
M
i=1 λl(t)

)
.

Under independently firing of presynaptic neurons, Fig. 3.4.2 illustrates the rate region for

a subset A ⊆ {1, . . . ,M} of M = 35 user synaptic multiple-access channel determined by

(3.40). As shown in Fig. 3.4.2, the total rate does not scale with the same order as the raise

in the number of users as the multiple-access synaptic communication channel experiences

interference.

3.4.2 Correlated Firing of Neurons

Let Tl ∼ Pois(θl), for l ∈ {1, . . . ,M} are independent random variables. Consider the random

variables Sl = Tl +T0, ∀l ∈ {1, . . . ,M}. Then, {S1,S2, . . . ,SM} jointly follow a multivariate

Poisson distribution [29]. The joint pmf P(S) = P(S1 = k1,S2 = k2, . . . ,SM = kM) is given by

P(S) = exp

(
−

M

∑
l=1

θl

)
M

∏
l=1

θ
kl
l

kl!

kmin

∑
l=0

M

∏
j=1

(
k j

l

)
l!

(
θ0/

M

∏
l=1

θl

)l

, (3.43)

where kmin = min(k1,k2, . . . ,kM). Marginally, each presynaptic input Sl follows a Poisson

distribution with rate parameter θl + θ0. Therefore, E[Sl] = θl + θ0, and Var[Sl] = θl + θ0.

The correlation coefficient between Si and S j, i.e., ρi j, can be calculated as

ρi j = corr (Si,S j) =
E [(Si−E [Si]) (S j−E [S j])]

σiσ j
=


θ0√

(θi+θ0)
√
(θ j+θ0)

if i 6= j

1 if i = j

. (3.44)

Hence, given the rate parameters (θi) of uncorrelated distributions (Ti), and assuming the

correlation coefficients (ρi j) are experimentally known, θ0 can be determined as

θ0 =
(θi +θ j)ρi j +

√
(θi +θ j)

2
ρ2

i j +4(1−ρi j)θiθ jρi j

2(1−ρi j)
. (3.45)

θ0 is the covariance between all the pairs of random variables. In this section, we assume com-

mon covariance for all pairs, which is a simple yet powerful conjecture enough to demonstrate
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Figure 3.11: The rate region for multiple-access synaptic communication channel under in-
dependent firing of presynaptic neurons for a subset A ⊆ {1, . . . ,M} of M = 35 presynaptic
terminals

the improvement in additive rate compared to the case where presynaptic inputs are uncorre-

lated.

In correlated firing of neurons, lth neuron releases vesicles with rate λl(t) = θl +θ0, where θ0

denotes the common correlation parameter between any two neurons. At the lth input neuron,

the vesicle release probability is determined by a Poisson distribution with a rate parameter

(θl +θ0) p, where p = pvk Nk. Let Xl be the random process modeling the vesicle release at lth

input neuron. Hence, in correlated firing of presynaptic neurons, the vesicle release process

at each presynaptic terminal can be modeled by Xl ∼ Pois((θl +θ0) p), for l ∈ {1, . . . ,M}.

The vesicles released by all input neurons are accumulated at the synaptic channel. There-

fore, the total vesicle release to the synaptic channel can be determined by the process X =

∑
M
l=1 Xl = p∑

M
l=1 Tl + pMT0, the rate of which is ∑

M
l=1 (θl +θ0) p = p∑

M
l=1 (θl +θ0) = pθ+

pMθ0, where θ = ∑
M
l=1 θl . Since Tl s are independent of each other, ∑

M
l=1 Tl has a Poisson

distribution with rate parameter ∑
M
l=1 θi, which is independent from the rate coming from dis-

tribution of MT0. However, it is nontrivial to characterize the pdf of X because MT0 is not

Poisson distributed.
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Figure 3.12: The rate region for multiple-access synaptic communication channel under cor-
related firing of presynaptic neurons for M = 5 presynaptic terminals with ρ = 0 : 0.1 : 0.6.

Note that when θ0 = 0, X ∼ Pois
(

p∑
M
l=1 θl

)
, which simplifies to the case of independently

firing of input neurons. A constant correlation, i.e., θ0, among each pair of input neurons

increases the overall vesicle release rate to the synaptic cleft by pMθ0.

Fig. 3.4.2 illustrates the rate region for M = 5 user synaptic multiple-access channel deter-

mined by (3.40) given that users’ firing rates have first-order correlation. Since the transmitted

information bits per spike remains the same independent of the correlation amount, we scale

the delivered information per spike by spike count in a second, and obtain the rate as infor-

mation bits per second. Compared to uncorrelated firing of neurons, the curve corresponding

to ρ = 0, as the firing rates become more correlated, total rate in bits per second enhances.

Hence, incorporating correlation, more information is conveyed through synapses to the post-

synaptic end.

3.5 Implications of Synaptic Communication on Neurological Disorders

Neurons are susceptible to electrochemical and structural disruption. Disorders of neuromus-

cular transmission are due to a wide variety of agents, such as genetic disorders, systemic
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diseases, drugs, environmental health problems, infections, lifestyle, hormones, some are ge-

netically determined, many are of unknown etiology [161]. All such disorders interfere with

one or more events in the sequence whereby a nerve impulse excites an action potential. Here,

we establish relations between synaptic communication problems and the neuronal disorders,

focusing on the presynaptic, synaptic and postsynaptic abnormalities.

3.5.1 Disorders Characterized by Presynaptic Abnormality

Impairments in action potential generation, vesicle fusion process and neurotransmitter re-

lease are the main causes for presynaptic abnormalities.

3.5.1.1 Action Potential and Neural Transmission Performance

Action potentials get amplified and degraded depending on outside factors. For example,

nicotine enhances neurotransmission rate by causing more action potentials in the presynaptic

neuron [127]. This dependence between the action potentials and transmission rate is also

shown in Fig. 3.9, utilizing the relation between action potential and fusion rates as in (3.19).

Alcohol, on the other hand, blocks neurotransmission by inhibiting the excitatory channels on

the postsynaptic neuron, and then lowering the rate of action potentials from the presynaptic

neuron [61]. As a result, fusion rate decays, and hence, the synaptic performance drops as

shown in Fig. 3.9(c).

3.5.1.2 Vesicle Fusion Rate, Neurotransmitters and Neural Transmission Performance

Diminishing neurotransmitter release is directly linked to neurological syndromes. Depres-

sion is associated with fewer neurotransmitters released per vesicle [177]. Cocaine provides

a sense of euphoria by blocking the reuptake of dopamine by the presynaptic neuron. As

the reuptake rate drops, higher amount of vesicles, i.e., NA, would be available for release as

illustrated in Fig. 3.10. This leads to a higher dopamine concentration in the synapse, which

increases neurotransmission in brain reward system, i.e., the brain circuit that reinforces be-

havior by inducing pleasurable effects, hence more postsynaptic firing [60]. Heroin is thought

to increase the rate of vesicle fusion in the presynaptic neurons that use dopamine as a neu-

rotransmitter [118]. Fig. 3.13 depicts the deteriorating effect of drug use and depression on

71



Normal Depression Caffeine Alcohol Cocaine Nicotine Heroin
0

100

200

300

400

500

600

700

800

Drugs / Diseases

P
o

s
ts

y
n

a
p

ti
c
 F

ir
in

g
 R

a
te

 %

Figure 3.13: The effects of drugs and diseases on synaptic transmission [118].

postsynaptic firing of neurons.

3.5.2 Disorders Characterized by Synaptic Abnormality

Synaptic transmission is the most vulnerable step in neuronal signaling because synaptic plas-

ticity has a crucial role in learning and memory.

3.5.2.1 Synaptic Depression

Depletion of the readily releasable vesicles leads to synaptic fatigue and depression. Decrease

in RRP, i.e., NA, leads to significant drop in postsynaptic firing rates. The neural transmission

rate pattern under variable pool conditions is also drawn in Fig. 3.10.

3.5.2.2 Abnormal Synaptic Plasticity

Synaptic plasticity is the ability of the synapse to change in strength in response to either use

or disuse of transmission over synaptic pathways. Quantal variations of neurotransmitters re-
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leased into a synapse and the postsynaptic response variability cooperate to achieve plasticity

[57]. As in (3.30), the postsynaptic voltage directly depends on the quantal variations in EPSP.

Furthermore, variations in quantal amplitude change the PSD of the modulated presynaptic

inputs as in (3.35), affecting the neural communication performance.

3.5.3 Disorders Characterized by Postsynaptic Abnormality

Excessive postsynaptic firing rates and disorders arising from postsynaptic receptor saturation

are the main health problems attributed to postsynaptic abnormalities.

3.5.3.1 Postsynaptic Firing Rate and Neural Disorders

High postsynaptic firing rates could lead to sleepiness at synapses where adenosine is the pri-

mary transmitter. Caffeine inhibits sleepiness by inhibiting adenosine receptors [140]. Hence,

available neurotransmitter amount at synapses decreases, yielding to decrement in postsynap-

tic firing rates, as previously indicated in Fig. 3.10.

3.5.3.2 Postsynaptic Receptor Saturation and Neural Transmission Performance

Various neurodegenerative disorders including schizophrenia, epilepsy, Alzheimer’s and Hunt-

ington’s diseases are associated with increased and decreased stimulation of a special type of

postsynaptic receptor, i.e., NMDA receptor [75]. Variable stimulation of postsynaptic re-

ceptors causes alterations in EPSP amplitudes and neuronal communication performance as

indicated in (3.30) and (3.40), respectively.

Multivesicular release could cause postsynaptic receptors to be saturated. When receptors

are saturated, the quantal variability, i.e., q, drops, yielding to decreased level of postsynaptic

firing rates as derived in (3.35) and (3.40). When specific receptor types take up too much of

glutamate, a neurotransmitter known for exciting neurons and is very important in neural sig-

nal propagation in the brain, it can result in mass cell death and, over time, neurodegeneration

[139].
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CHAPTER 4

ADAPTIVE WEIGHT UPDATE IN CORTICAL NEURONS

AND ESTIMATION OF CHANNEL WEIGHTS IN SYNAPTIC

INTERFERENCE CHANNEL

Synaptic channels automatically adapt their weights in order to compensate the variations de-

pending on the synapse input and output characteristics, i.e., spike frequency, correlation if

there are multiple inputs, time difference between presynaptic and postsynaptic action poten-

tials. Modification of the synaptic conductances, i.e., channel weights, is the main mechanism

that enables learning in neurons. In this chapter, we approach this learning mechanism from a

different perspective. First, we use an optimal linear estimation method to estimate the chan-

nel weights for both single-input single-output (SISO) and multi-input single-output (MISO)

synaptic interference channels. Next, using this estimation method, we derive an optimal

learning algorithm, which minimizes the interference in the synaptic channel in the presence

of multiple presynaptic neuron terminals, and analyze the mean square error performance for

SISO and MISO synaptic interference channels. Moreover, we provide the natural adaptive

weight update algorithm for neurons based on experimental findings. Then, we compare the

performance of the natural learning algorithm conducted by neurons to the optimal learning

algorithm we developed. Our results demonstrate that neurons are capable of mitigating the

interference, and achieve rates close to the capacity.

4.1 Introduction

The biological spiking neuron model is a mathematical description of the properties of neu-

rons, which is designed to accurately characterize the biological processes. A simple model

74



of the response of an excitable cell to a periodic stimulus is provided by the integrate-and-fire

model [86], [80]. In this model, the membrane potential v(t) is assumed to behave linearly

unless the threshold is reached. If the threshold is reached, then, the membrane fires and

is immediately reset to zero. In another model, Hodgkin-Huxley model, the cell membrane

can be modeled as a capacitor in parallel with an ionic current. FitzHugh-Nagumo model

is a simplified form of the Hodgkin-Huxley model. The Hodgkin-Huxley model is the most

important model in all of the physiological literature [81].

Neuro-spike communication, i.e., the communication of spiking neurons through the release

of neurotransmitter molecules to the synaptic clefts, is an interdisciplinary research area,

which combines the fields of neuroscience, communications and nanotechnology [21]. The

point-to-point synaptic communication channel is studied in the literature widely as in [21],

[66] and [74], and the multiple-access neuro-spike communication channel is studied in [105].

Development of these channel models is promising for future nanoscale and molecular com-

munication techniques and applications. However, considering the essential roles of neurons

and synaptic connections in memory and learning processes, more analysis is needed to cor-

rectly characterize neuro-spike communication.

Synapses are able to adjust their channel conductances depending on the action potential (AP)

characteristics, called as neural plasticity (NP) in the neuroscience literature [37]. NP aims

at building stronger connections among neurons so that actively transmitting neurons are sus-

tained to carry information, but on the other hand, other connections, which are usually not

correlated with the most of the transmitted information, are fade away. In this chapter, we

investigate the sustainability of the synaptic connections from a communication theory per-

spective. We treat the synapses that do not provide useful information transmission as inter-

fering connections. Information transfer via interfering connections should be cancelled out

at the output neuron. To achieve this task, neurons, through feedback mechanisms, manage to

adjust the synaptic conductances, i.e., synaptic weights. These mechanism among neuronal

connections enables the reduction of interference caused by uncorrelated synapses. In this

study, we investigate the optimality of this adaptive interference canceling method. To the

best of our knowledge, the effect of interference among a cluster of neurons has not been

investigated yet.

In this chapter, we consider the most basic model of a neuron, which consists of an input with
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some synaptic weight vector and an activation function or transfer function inside the neuron

determining output. This is the basic structure used in artificial neurons. We model neurons

as linear systems, to estimate their channel weights. Depending on the which have optimal

solutions when certain conditions are satisfied. Estimation of input signal waveforms are

conducted through Minimum Mean Square Error (MMSE) estimators, which minimize the

estimation error. Furthermore, MMSE estimation is also shown to be an optimal approach for

solving interference problems [144]. Here, we compare the Signal-to-Noise plus Interference

Ratio (SNIR) obtained for actual interference cancellation mechanism seen in neurons and

to the optimal interference prevention technique. The results show that neurons are actually

good interference canceling elements that are already available in the nature. This finding

could be exploited to build strong connections enabling the transfer of most common data

seen in the input side.

The remainder of this chapter is organized as follows. In Section 4.2, we give a background on

neural signaling and neural communication. In Section 4.3, we provide the discrete linear sys-

tem models for the SISO and MISO synaptic interference channels by projecting the stochas-

tic processes, i.e., inputs and the channel noise, onto interference eigenfunctions. Then, we

investigate and analyze the SISO and MISO synaptic interference channel after introducing

the interference eigenfunction concept. In Section 4.4, we provide the maximum information

rate for single input and multiple-access neuron interference channels. In Section 4.5, we

provide a technique for linear estimation of the synaptic channel weights for the point and

multiple-access neurons, and the optimal solutions to obtain maximum Signal-to-Interference

Ratio (SIR). In Section 4.6, we analyze the average power dissipation in the neural commu-

nication channel incorporating the channel noise and the neural input correlation. In Section

4.7, by explaining the neural learning algorithm through synaptic weight modification, i.e.,

STDP, we interpret the output neuron SIR, analytically. In Section 4.8, we provide the perfor-

mance results of optimal detection and STDP algorithms on the output SIR, and interpret the

results.
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4.2 Background and System Model

4.2.1 Background on Neural Signaling

In this section, we provide the essential components of neural signaling. These include AP

generation, neural firing, vesicle release processes and the postsynaptic potential.

AP is a short-lasting event in which the electrical membrane potential of a cell rapidly rises

and falls, following a consistent trajectory [21]. During the action potential, part of the neural

membrane opens to allow positively charged ions inside the cell and negatively charged ions

out. This process causes a rapid increase in the positive charge of the nerve fiber. When

the charge reaches +40mV, the impulse is propagated down the nerve fiber. This electrical

impulse is carried down the nerve through a series of action potentials. Neural firing is the

response of a neuron when it is stimulated. A neuron that emits an action potential is often

said to fire.

Synaptic vesicles store neurotransmitters to be released at synapses and constantly reproduced

by the cells. These vesicles are essential for conduction of nerve impulses among neurons.

Action potentials trigger the complete fusion of the synaptic vesicle with the cellular mem-

brane, and then, the excretion from the cell through exocytosis, which is called vesicle release

[110].

Postsynaptic potential is the membrane potential at the postsynaptic terminal of a chemical

synapse. In neuroscience, an EPSP is the temporary increase in the postsynaptic membrane

potential caused by the flow of positively charged ions into the postsynaptic cell due to the

vesicle release [22]. An Inhibitory PostSynaptic Potential (IPSP), which is the opposite of an

EPSP, is a kind of synaptic potential that makes a postsynaptic neuron less likely to generate

an action potential.

Postsynaptic potentials are subject to spatial and temporal summation. Spatial summation

occurs when a neuron is receiving input at two synapses that are near each other. In this

case, their postsynaptic potentials add together. If the neuron is receiving two Excitatory

PostSynaptic Potentials (EPSPs), they combine so that the membrane potential is depolarized

by the sum of the two changes. If there are two inhibitory potentials, they also sum, and

the membrane is hyperpolarised by that amount. If the cell is receiving both inhibitory and
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excitatory postsynaptic potentials, they can cancel out, or one can be stronger than the other,

and the membrane potential will change by the difference between them. The threshold of

firing is typically −50mV [145]. Therefore, to fire a neuron, the addition of the potentials of

Excitatory Synapses (EXS) and Inhibitory Synapses (INS) should be equal to or greater than

−50mV. Temporal summation occurs when a neuron receives inputs that are close together

in time. In this case, these inputs are added together, even if they are from the same synapse.

Thus, if a neuron receives an EPSP, and then the presynaptic neuron fires again, creating

another EPSP, then the membrane of the postsynaptic cell is depolarized by the total of the

EPSPs.

4.2.2 Background on Neural Communication

4.2.2.1 Transmitting Node: The Presynaptic Neuron

When a random stimulus is applied, the presynaptic neuron terminal generates a Poisson dis-

tributed AP train, S(t), at its axon, which has a firing rate λ. Neuronal response characteristics

are usually characterized by Linear-Nonlinear-Poisson (LNP) model. The details of the firing

and AP train generation can be found in [105]. AP train, i.e., S(t), triggers the vesicle release

process from the presynaptic terminal. The release process is shaped according to the rate of

AP generation, i.e., λ.

4.2.2.2 Transmission Process: The Synaptic Channel

AP generated by the presynaptic terminal enables vesicle release to the synaptic channel.

Release amount depends on the strength of the AP train, the size of available vesicle pool

located in the neural terminal, and the quantal release parameters. Quantal release is the se-

cretion process denoting the neurotransmitter amount excreted from release sites following

neural stimulation, i.e., AP generation. Quantal size is the synaptic response to the release of

neurotransmitter from a single vesicle, and quantal content is the number of effective vesi-

cles released in response to a nerve impulse [73]. Quantal variation is the alteration in the

transmitter content among vesicles as determined by vesicle volume [73]. These concepts are

explained in [110].
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Input the synaptic channel, S(t), is scaled by the synaptic conductance. Synaptic channels

have variable conductances. These conductances, i.e., weights, are adjusted through spike-

timing-dependent plasticity (STDP), which will be discussed in Section 4.7. In this section,

we simply call the synaptic weight, w, to use in our linear system model.

4.2.2.3 Receiving Node: The Postsynaptic Neuron

At the postsynaptic terminal, each input propagated through the soma is summed linearly in

the point neuron, i.e., perceptron, model. Perceptron can be described by

ri(t) =
√

PiβiwiSi(t)+Zi(t) = hiSi(t)+Zi(t), (4.1)

where Zi(t) is assumed to be an independent interference stochastic waveform that may be

composed of both thermal noise and interfering signals of other transmitting neurons, i.e.,

presynaptic terminals. For a single bit, the fundamental problem is to build a receiver which

guesses β with minimum probability of error. Alternatively, when β is one bit in a stream

of coded bits, we would like to produce a soft estimate of b with high SNIR. When Zi(t) is

composed of known waveforms in addition to independent Gaussian noise, that is

Zi(t) =
M

∑
j 6=i

√
Pjβ jαi jS j(t)+N(t), (4.2)

multiuser receivers have been designed for a variety of objectives, e.g., minimum probability

of error, maximum SNIR, or zero interference from other users. These multiuser systems

share the property that the receiver does as best it can given the set of transmitter signals Si(t).

In (4.2), Zi(t) is the interference signal seen at the soma [135], αi j’s and S j(t)’s are the synap-

tic interference weights and unit power synaptic inputs, respectively. β j denotes whether the

inputs coming from either EXS or INS. It is bipolar, 1 if the synapse is an EXS, -1 if an INS.

Pj is the input power at the jth synaptic connection, and finally N(t) stands for the axonal

noise, and M = MEX +MIN , where MEX and MIN are for the total number of EXSs and INSs,

is for the total number of EXSs and INSs to the soma.

From the perspective of the receiver neuron i for Si(t), the interference Zi(t) is simply a

stochastic process, which we assume zero mean with no loss of generality. Ideally, we would

like to obtain a set of uncorrelated (and preferably independent) sufficient statistics and then

optimally combine these either to detect the bit β j or to derive an estimate of β j. When Zi(t)
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is Gaussian, these projections would indeed be independent Gaussian random variables and

the optimal estimation (detection) problem would be easily solved. A complete and rigorous

development of the ideas can be found in [12].

4.2.2.4 Processing of Axonal Information

the perceptron equation is defined as

yi(t) = Θ(ri(t)−θ) = Θ(vi(t)) = Θ

(
√

PiβiwiSi(t)+
M

∑
j=1, j 6=i

√
Pjβ jαi jS j(t)+N(t)−θ

)
.(4.3)

In current applications, the sigmoidal AF is used, which is as

yi(t) = Θ(vi(t)) = (1+ exp(−vi(t)))−1, (4.4)

where Θ is the neural activation function (AF), and θ is the threshold at which a postsynaptic

response is exerted. yi(t) is the output of the node, and vi(t) is the weighted sum of the input

synapses [87], [156], [40]. The heaviside step function can also be used as an AF.

4.3 Synaptic Interference Channel

In this section, we first describe the interference eigenfunctions concept, and then, based on

this concept, we present a discrete-time linear neuron model. Then, using this linear model,

we investigate two different types of neuron interference channel. First, we investigate SISO

neuron interference channel, and then, we analyze the MISO neuron interference channel.

4.3.1 Interference Eigenfunctions

In general, for the given stochastic process, Z(t), we seek an orthonormal representation

Z(t) = lim
N→∞

N

∑
k=1

ZkΦk(t), Zk = 〈Z(t),Φk(t)〉=
T∫

0

Z(t)Φk(t)dt, (4.5)

where Φk(t)’s are the interference eigenfunctions and 〈 · , ·〉 denotes inner product operation

[144]. Assuming that the orthonormal representation for Z(t) exists and converges, we seek

a special set of orthonormal Φk which produce uncorrelated projections, i.e., Zk’s. Hence, we
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require that

〈
Φi(t),Φ j(t)

〉
=

T∫
0

Φi(t)Φ j(t)dt = δi j, (4.6)

where δi j is the Kronecker delta. Hence, we the following is required for the projections ak

being uncorrelated:

E [ZiZ j] = E
[
〈Φi(t),Z(t)〉

〈
Φ j(t),Z(t)

〉]
= E

 T∫
0

T∫
0

Φi(τ)Z(τ)Φ j(t)Z(t)dtdτ

= λ jδi j. (4.7)

Defining the autocorrelation function (ACF) of Z(t) RZ(t,τ) = E [Z(t)Z(τ)], and using (4.7),

we obtain the following integral equation

T∫
0

Φ j(t)

 T∫
0

RZ(t,τ)Φi(τ)dτ


︸ ︷︷ ︸

∗

dt = λ jδi j, (4.8)

where the requirement on ∗ is

∗=
T∫

0

RZ(t,τ)Φi(τ)dτ = λiΦi(t). (4.9)

Using an equivalent discrete representation of (4.9), and assuming that the set of the interfer-

ence eigenfunctions, i.e., Φi(t)’s, is a convenient basis function set over the time interval, we

define ri j in terms of the projections Zn as follows

ri j = E

 T∫
0

T∫
0

Z(t)Z(τ)Φi(t)Φ j(τ)dtdτ

= E [ZiZ j] . (4.10)

If Φi(t) is not a convenient basis function set, then, we can represent it by a finite sum Φi(t) =
N
∑

n=1
φinΨn(t), where Ψn(t) is a convenient basis function set over the interval. Then, using

(4.9), we need to follow a few steps to find the relation between λ j and rnk.

The receiver i, i.e., the soma of the postsynaptic terminal i, observes the signal ri(t) as input

on the interval [0,T ]. Projecting the received signal onto the interference eigenfunctions,

Φ1(t),Φ2(t), . . . ,Φn(t), we obtain the following vector output, which is a standard matrix

eigenvalue eigenvector equation of the form

E[z
∼
z
∼
ᵀ]φk = Rφk = λkφk. (4.11)
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Here, φk = [φk1 . . .φkN ]
ᵀ and z

∼
= [Z1 . . .ZN ]

ᵀ. Each eigenvector corresponds to an eigenfunc-

tion of (4.9) and it is easily verified that each eigenvalue is the amount of interference signal

energy carried by that eigenfunction. It is also easy to verify that since Rz∼(t,τ) = E[z
∼
z
∼
ᵀ]

is an ACF, R is symmetric and positive semi-definite. This implies that R has nonnegative

eigenvalues and an associated full set of orthonormal eigenvectors which span RN.

4.3.2 Single-Input Single-Output Neuron Synaptic Interference Channel

In the case of single input neuron channel, the receiver neuron i, i.e, the ith postsynaptic

terminal axon, observes the signal

ri(t) = hiSi(t)+Zi(t), (4.12)

as input on the interval [0,T ]. Projecting the received signal onto the interference eigenfunc-

tions Φ1(t), . . . ,ΦN(t) as described in Section 4.3.1, we obtain the vector output

ri
∼
= hisi

∼
+ zi
∼

(4.13)

where si
∼

and zi
∼

have nth components sin = 〈Si(t),Φn(t)〉, zin = 〈Zi(t),Φn(t)〉 and the zin’s are

mutually uncorrelated. In (4.13), si
∼

is an N × 1 vector with user’ signature, and hi is the

channel gain parameter equal to hi =
√

Piβiwii, and zi
∼
=
[
z1 z2 . . . zN

]ᵀ
is the channel

interference vector combined with the AWGN noise vector with zero mean and covariance

matrix σ2IN with size N×N, and σ2 = E
[
n2

k

]
= N0/2.

Here, to simplify the analysis, we first work with unit vectors, and then, generalize our anal-

ysis to non-unit vectors. With no loss of generality we assume that the basis functions Φn(t)

also span the signal space for Si(t), and hisi
∼

contains all available information about hiSi(t).

The correlation matrix of the received signal in vector form is

Rri∼
= E

[
ri
∼

ri
∼

ᵀ
]
= E

[(
hisi
∼
+ zi
∼

)(
hisi
∼

ᵀ+ zi
∼

ᵀ
)]

= h2
i E
[

si
∼

si
∼

ᵀ
]
+E

[
zi
∼

zi
∼

ᵀ
]
, (4.14)

which will be utilized in Section 4.4 in the rate analysis for SISO synaptic channel.

Using the perceptron equation given in (4.3), the vector output at the neural node is obtained

as

y
∼
= Θ

(
hs
∼
+ z
∼
−θ
∼

)
= Θ(v

∼
), (4.15)
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where Θ is the neural activation function (AF), and θ
∼

is the projection of θ onto the interfer-

ence basis vectors.

4.3.3 Multi-Input Single-Output Neuron Synaptic Interference Channel

When there are multiple presynaptic neuron terminals sending APs simultaneously, the re-

ceiver neuron i, i.e, the postsynaptic terminal ith axon, observes a summation of signals

ri(t) =
M

∑
j=1

h jS j(t)+N(t) (4.16)

as input on the interval [0,T ], where h j =
√

Pjβ jwi j. For multiple presynaptic terminal case,

projecting the received signal onto the interference eigenfunctions Φ1(t), . . . ,ΦN(t), we obtain

the the following linear system relation for the vector output

ri
∼
= Shi

∼
+ni
∼
, (4.17)

where S =

[
s1
∼

s2
∼

. . . sM
∼

]
is an N×M matrix with users’ signatures, and sj

∼
is the projec-

tion component of S j(t) onto interference eigenfunctions. and hi
∼
=
[
hi1 hi2 . . . hiM

]ᵀ
, is

the channel gain vector where hi j =
√

Pjβ jwi j, and zi
∼
=
[
z1 z2 . . . zN

]ᵀ
is the channel

interference vector combined with the AWGN noise vector with zero mean and covariance

matrix σ2IN with size N×N, and σ2 = E
[
n2

k

]
= N0/2.

The correlation matrix of the received signal in vector form is

Rri∼
= E

[
ri
∼

ri
∼

ᵀ
]
= E

[(
Shi
∼
+ni
∼

)(
hi
∼

ᵀSᵀ+ni
∼

ᵀ
)]

= SPSᵀ+E
[

ni
∼

ni
∼

ᵀ
]
, (4.18)

where P is the power matrix obtained as

P = E
[

hi
∼

hi
∼

ᵀ
]
= diag(w2

i1P1, . . . ,w2
iMPM), (4.19)

because we assume β j = 1 or β j = −1 with equal probability, and each synapse could be

either excitatory or inhibitory independent of each other. Hence, E [βi] = 0, and E [βiβ j] = δi j.

(4.18) will be utilized in Section 4.4 in the rate analysis for MISO synaptic channel.

4.4 Achievable Communication Rates in Synaptic Interference Channel

As neurons have very large-scale connections, and multiple neurons simultaneously transfer

data through synaptic connections among them, they suffer from interference. In this section,
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we investigate the capacity of single and multiple-access synaptic interference channels using

the linear system model developed in Section 4.3 and provide the output SNIR for both cases.

In the classical communication schemes, interference is treated as noise. Therefore, the chan-

nel capacity (or the rate of the communication) can be obtained using

R = log
(

1+
SNR

1+ INR

)
= log(1+SNIR). (4.20)

Assuming that there are M transmitting nodes directed to a receiving neuron node, i.e., the

axon hillock of the receiver neuron, the fictitious SNIR at the output neuron is

ζi(t) =
wiiSi(t)

ni +
M
∑

j=1, j 6=i
αi jS j(t)

, (4.21)

where ζi(t) is the fictitious SNIR at time step t, Si(t) is the state of the neuron, wii is the

feedback coefficient from its state to its input layer, and αi j is the weight from the output of

the jth neuron to the input of the ith neuron. ni represents the noise at the receiver neuron.

4.4.1 Single-Input Single-Output Neuron Synaptic Interference Channel

4.4.1.1 Total Signal Power at the Output

Total signal power at the output node can be found using

ri
∼
= hisi

∼
+ zi
∼
,

‖ri
∼
‖2

2 = ri
∼

ᵀri
∼
= h2

i

N

∑
k=1

s2
ik +2h

N

∑
k=1

sikzik +
N

∑
k=1

z2
ik. (4.22)

Hence, the SNIR at the output axon hillock i can be computed as

SNIRout,i =

E
[

h2
i

N
∑

k=1
s2

ik

]
E
[

2hi
N
∑

k=1
sikzik +

N
∑

k=1
z2

ik

] =
w2

iiPi

E
[
Tr(z

∼
z
∼
ᵀ)
] N

∑
k=1

s2
ik, (4.23)

where we assume that interference signal is independent from the input signal, and zero mean,

and (4.23) depends on the channel weight, i.e., wii, which changes adaptively depending on

the AP patterns. Hence, the time dependent output SIR can be calculated using the algorithm

described in Section 4.7.1.
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4.4.1.2 Channel Capacity

Using (4.20), for the node at the output side, and assuming unit power constraint on the

presynaptic terminal, we obtain the following rate expression

Ri =
1
2

log(1+SNIRout,i) =
1
2

log

1+
w2

iiPi

E
[
Tr(z

∼
z
∼
ᵀ)
]
=

1
2

log

1+
w2

iiPi
M
∑
j 6=i

Pjα
2
i j +σ2N

.(4.24)

Using (4.13), and assuming no synaptic interference, the capacity expression for the single

input neural communication channel can be simplified to AWGN channel with the capacity

as

C(s
∼
;r
∼
) = max

p( s∼)
I(s
∼
;r
∼
) = H(r

∼
)−H(n

∼
) =

1
2

log
(

1+
w2

iiPi

σ2N

)
. (4.25)

4.4.2 Multi-Input Single-Output Neuron Synaptic Interference Channel

4.4.2.1 Total Signal Power at the Output: Multiaccess Channel

Total signal power at the output node can be found using

ri
∼
= Shi

∼
+ni
∼
,

‖ri
∼
‖2

2 = hi
∼

ᵀSᵀShi
∼
+2hi

∼

ᵀni
∼
+ni
∼

ᵀni
∼
. (4.26)

Hence, the SNIR at the output axon hillock can be computed as

SNIRout,i =

E
[

hi
∼
ᵀSᵀShi

∼

]
E
[

2hi
∼
ᵀni
∼
+ni
∼
ᵀni
∼

] =

E
[

Tr(hi
∼
ᵀSᵀShi

∼
)

]
E
[

2hi
∼
ᵀni
∼

]
+E

[
Tr(ni

∼
ᵀni
∼
)

]

=

E
[

Tr(Shi
∼

hi
∼
ᵀSᵀ)

]
E
[

Tr(ni
∼

ni
∼
ᵀ)

] =
Tr(SE[hi

∼
hi
∼
ᵀ]Sᵀ)

Tr(E[ni
∼

ni
∼
ᵀ])

=
1

Tr(E[ni
∼

ni
∼
ᵀ])

N

∑
k=1

w2
ikPk Tr(sk

∼
sᵀk)
∼

(4.27)

(4.27) depends on the channel weights, i.e., w′ks, which change adaptively depending on the

AP patterns. Using the algorithm for modification of the synaptic weight as described in

Section 4.7.1, the time dependent SIR at the output neuron could be iteratively calculated.
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4.4.2.2 Channel Capacity

Using (4.20), for the node at the output side, and assuming unit power constraint on the

presynaptic terminals, we obtain the following rate expression

Ri =
1
2

log(1+SNIRout,i) =
1
2

log

1+

M
∑

k=1
w2

ikPk

E
[

Tr(ni
∼

ni
∼
ᵀ)

]
=

1
2

log

1+

M
∑

k=1
w2

ikPk

σ2N

. (4.28)

Using the expression in (4.17), and assuming no synaptic interference, the capacity expression

for the multiaccess neural communication channel can be simplified to AWGN channel with

the capacity as

C(S;r
∼
) = max

p(S)
I(S;r

∼
) = H(r

∼
)−H(n

∼
) =

1
2

logdet
(

SPSᵀ+ INσ2

σ2

)
. (4.29)

4.5 Classical Communication Techniques for Avoiding Interference in Neurons

Multiuser receivers have been designed for a variety of objectives, e.g., minimum probability

of error, maximum SIR, or zero interference from other users [168]. These multiuser systems

share the property that the receiver does as best it can given the set of transmitter signals S j(t).

Using linear MMSE estimation techniques, we can measure the synaptic channel weights for

both point-to-point and multiple-access neuron interference channels.

4.5.1 Linear Estimation of the Channel Weight in Single Input Neural Channel

The signal at the receiver neuron is

r(t) = hS(t)+Z(t), (4.30)

where h =
√

Pbw. A matched filter on the rescaled signal vector components sk/λk is then

performed to complete the detection process.

It is worthwhile to note that in a CDMA system where Z(t) consists of the other usersï¿½

known signature waveforms and additive white Gaussian noise, the vector c
∼

with components

86



ck = sk/λk is a scaled version of the well known minimum mean squared error (MMSE) linear

filter and the decision rule [164] is the MMSE multiuser detector. We see that the filter output

(and decision statistic) is

ĥ = c
∼
ᵀr
∼
=

N

∑
k=1

ckrk =

(
N

∑
k=1

s2
k

λk

)
h+

N

∑
k=1

skzk

λk
. (4.31)

Hence, the output SNIR can be calculated as

SNIRh=

E

[(
h

N
∑

k=1

s2
k

λk

)2
]

E

[(
N
∑

k=1

skzk
λk

)2
]=Pw2

(
N
∑

k=1

s2
k

λk

)2

N
∑

k=1

N
∑

l=1

skslE[zkzl ]
λkλl

=Pw2
N

∑
k=1

s2
k

λk
. (4.32)

It is well known that among all linear filters c
∼
, the MMSE filter maximizes the output SNIR

[104]. However, (4.32) demonstrates that it remains possible to obtain a higher output SIR

by altering the components sk of the desired signal S(t). That is, when S(t) is subject to

the unit energy constraint ∑k s2
k = 1, we can maximize SNIRh by choosing sk = 1 for any

λk = λ∗ = min j λ j. In this case, we have S(t) = Φk(t). Equivalently, we could distribute the

signal energy in some arbitrary way over all such Φk(t). Hence, to obtain maximum SNIR,

we need to place all the signal energy where there is least interference.

4.5.2 Linear Estimation of the Channel Weights in Multiple-Access Neural Interfer-

ence Channel

When there is no interference, but AWGN only, the signal at the receiver neuron is r
∼
= Sh

∼
+

n
∼

. Hence, using the best linear minimum variance estimator for linear AWGN, the channel

weight estimation is

ĥ
∼
= Wr

∼
, W =

(
SᵀC−1

n S
)−1

SᵀC−1
n ,

where Cn is the covariance matrix for the AWGN.

In this section, we investigate the effect of interference between multiple-access neurons. For

a single input neuron k, we observe that SSᵀ =Rk+sk
∼

sᵀk
∼

, where Rk =∑i6=k si
∼

sᵀi
∼

, the correlation

matrix of the interference faced by user k, is analogous to the matrix R introduced in Section

4.3.1.

87



Using Zk = Rk +σ2I,

ck
∼
= (sᵀk

∼
Z−1

k sk
∼
)−1Z−1

k sk
∼
.

Replacing this with unit energy MMSE receiver filter, we obtain

ck
∼
= (sᵀk

∼
Z−2

k sk
∼
)

1
2 Z−1

k sk
∼
, k = 1, . . . ,M. (4.33)

Hence, ĥ = ck
∼
ᵀr
∼
=

N
∑

l=1
clk

(
M
∑

i=1
slihi +nl

)
, where sli = [S]li.

ĥ = ck
∼

ᵀr
∼
= (sᵀk

∼
Z−2

k sk
∼
)

1
2 sk
∼

ᵀZ−1
k (Sh

∼
+n
∼
)

= (sᵀk
∼

Z−2
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∼
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1
2 sᵀk
∼

Z−1
k

(
M

∑
i=1
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∼

hi +n
∼

)
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∼
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∼
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1
2

(
M

∑
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sᵀk
∼

Z−1
k si
∼

hi + sᵀk
∼

Z−1
k n
∼

)

= (sᵀk
∼

Z−2
k sk

∼
)−

1
2

(
hk(sᵀk

∼
Z−1

k sk
∼
)+∑

i6=k
sᵀk
∼

Z−1
k si
∼

hi+sᵀk
∼

Z−1
k n
∼

)
. (4.34)

Hence, the output SNIR, SNIRh can be calculated as

SNIRh =

E
[

h2
k(s

ᵀ
k
∼

Z−1
k sk

∼
)2
]

E

[
∑

i6=k
∑
j 6=k

(hih jsᵀk
∼

Z−1
k si
∼

sᵀj
∼

Z−1
k sk

∼
)+sᵀk

∼
Z−1

k n
∼

n
∼
ᵀZ−1

k sk
∼

]

=

h2
k(s

ᵀ
k
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Z−1
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∼
)

2
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i 6=k

(h2
i sᵀk
∼

Z−1
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∼

sᵀi
∼

Z−1
k sk

∼
)+σ2(sᵀk

∼
Z−2

k sk
∼
)

=

Pkw2
k

(
N
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l=1

a2
lk

λl

)2

∑
i 6=k

Piw2
i

(
N
∑

l=1

alkali
λl

)2

+σ2
N
∑

l=1

a2
lk

λ2
l

. (4.35)

In (4.35), we make the assumption that zn’s are uncorrelated. This yields Zk = QΛQᵀ and

sk
∼
ᵀZk

−1sk
∼
= sk

∼
ᵀQΛ−1Qᵀsk

∼
. We replace Qᵀsk

∼
by ak

∼
, where ak

∼
=
[
a1k . . . aNk

]ᵀ
, and

obtain (4.35). Using Qᵀsk
∼
= ak

∼
, the total power constraint on at each signal component is

‖ak
∼
‖2

2 = ‖sk
∼
‖2

2 = 1.

It is possible to obtain a higher output SNIR by altering the components sk of the desired signal

S(t). That is, when S(t) is subject to the unit energy constraint ∑l s2
l = 1, we can maximize
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SNIRh by choosing sl = 1 for any λl = λ∗ = min j λ j. In this case, we have S(t) = Φl(t).

Equivalently, we could distribute the signal energy in some arbitrary way over all such Φl(t).

We need to maximize the SNIRh expression in (4.35).

max
s.t.

N
∑

l=1
a2

lk=1

k∈{1,...,M}

Pkw2
k

(
N
∑

l=1

a2
lk

λl

)2

∑
i6=k

Piw2
i

(
N
∑

l=1

alkali
λl

)2

+σ2
N
∑

l=1

a2
lk

λ2
l

, (4.36)

so that power distribution is managed among the input nodes in the best possible way in order

to minimize the interference.

4.6 Power Consumption of the Synaptic Interference Communication Channel

The probability of a given code is the product of the probabilities for each individual binary

value in that code. This is mathematically defined as

Pr (Ck) =
M

∏
j=1

Pr (x j =Ck( j)) (4.37)

The average power dissipation of the codebook, i.e., the set of all possible codes, at output

node can be calculated as

E [Codebook Power] = ∑
k

Pr (Ck)Power(Ck), (4.38)

where Power(Ck) is the power dissipation of code Ck, which can be calculated as

Power(Ck) =
M

∑
j=1

Power(Ck( j)) =

(
∑

S j=Ck( j)

√
Pjβ jwi jS j

)2

=

(
∑

S j=Ck( j),S j=1

√
Pjβ jwi j

)2

(4.39)

The average power dissipation of the code k at the output node is hence,

E [Power(Ck)] = E

( ∑
S j=Ck( j)

√
Pjβ jwi jS j

)2
= ∑

S j=Ck( j)
∑

Sl=Ck(l)
h jE [S jSl]hl

= h
∼
ᵀ corr(S̄)h

∼
= h
∼
ᵀ
ΣS̄h
∼
+h
∼
ᵀµS̄µᵀS̄h

∼
, (4.40)

where S̄ =
[
S1 . . . SM

]ᵀ
is the input vector containing binary codeword bits, and µS̄ and ΣS̄

are its mean and covariance vectors, respectively.

We assume that the inputs are binary and bernoulli distributed with parameter p, and not

necessarily i.i.d. Hence, the correlation coefficient ρi j among Si and S j can be determined as

ρi j =
E[SiS j]− p2

p− p2 , (4.41)
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where E[Si] =E[S2
i ] = p. Hence, the entries of the correlation matrix are obtained as [corr(S̄)]i j =

E[SiS j] = ρi j(p− p2)+ p2, which follows from (4.41). Hence,

E[Power(Ck)] =
M

∑
i=1

h2
i +∑

i 6= j
2[corr(S̄)]i jhih j

=
M

∑
i=1

h2
i +∑

i 6= j
2[ρi j(p− p2)+p2]hih j

=
M

∑
i=1

Piw2
i +2∑

i6= j
[ρi j p+ρi j p2]

√
PiPjβiβ jwiw j, (4.42)

where ρi j is the complement of ρi j, i.e., ρi j = 1−ρi j.

4.7 Neural Plasticity (Learning) with Synaptic Conductance Modification

In this section, we focus on the actual characteristics of synaptic weights. First, we introduce

the mechanism behind the synaptic weight modification. Then, we incorporate the factors,

such as synaptic strength decrease and increase functions, synaptic conductance modification

characteristics, that enable us to understand these changes, and build an algorithm to describe

the synaptic weight update mechanism. Later, in the performance evaluation, in Section 4.8,

we compare the ideal synaptic communication rate to actual adaptive communication between

neuron terminals. Hence, this section provides a mean to understand the tradeoffs between

optimum and actual achievable transmission performance among multiple-access synaptic

connections.

Spike-timing-dependent plasticity (STDP) is a biological process that adjusts the strength of

connections between neurons in the brain. The process adjusts the connection strengths based

on the relative timing of a particular neuron’s output and input APs (or spikes). The STDP

process is a tentative candidate for a hypothesis that partially explains the development of an

individual’s brain, especially with regards to long-term potentiation and long-term depression

[37].

If an input spike to a neuron tends to occur immediately before that neuron’s output spike, then

that particular input is made somewhat stronger. If an input spike tends to occur immediately

after an output spike, then that particular input is made somewhat weaker, which is called the

STDP process. Thus, inputs that might be the cause of the post-synaptic neuron’s excitation

are made even more likely to contribute in the future, whereas inputs that are not the cause of
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the post-synaptic spike are made less likely to contribute in the future. The process continues

until a subset of the initial set of connections remain, while the influence of all others is

reduced to 0. Since a neuron produces an output spike when many of its inputs occur within a

brief period the subset of inputs that remain are those that tended to be correlated in time. In

addition, since the inputs that occur before the output are strengthened, the inputs that provide

the earliest indication of correlation will eventually become the final input to the neuron.

4.7.1 Spike Timing Dependent Plasticity (STDP) Algorithm

∆t is a random variable standing for the time difference between presynaptic potential and

postsynaptic potential at a neuron. We know the relation between δt and synaptic modifica-

tion. ḡmaxg(δt) is the modification amount in the peak synaptic conductance. g(δt) determines

the amount of synaptic modification arising from a single pair of pre- and postsynaptic spikes

separated by a time δt.

−40 −20 0 20 40
−0.5

0

0.5

g vs δt

δt (ms)

g
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Figure 4.1: Spike Timing Dependent Plasticity (STDP).

Hence, at each time step δt, the peak synaptic conductance is modified as

ḡmax(t +δt)) = ḡmax(t)+ ḡmaxg(δt), (4.43)
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where g(δt) is the percentage of modification and described as follows

g(δt) =


A+ exp(δt/τ+) if δt < 0

−A- exp(−δt/τ-) if δt ≥ 0
, (4.44)

where A+ and A-, which are both positive, determine the maximum amounts of synaptic

modification when δt is close to zero [157]. The parameters τ+ and τ- determine the ranges

of pre-to-postsynaptic interspike intervals over which synaptic strengthening and weakening

occur. In this chapter, to be consistent with [157], we choose τ = τ+ = τ- = 20ms, and

A+ = 0.005 and A- = 1.05A+, respectively. The STDP algorithm is presented in Fig. 4.1.

In order to determine the modification in conductance, or in exact words, the probability

density function (pdf) of conductance modification, we need to extract the pdf of δt.

Under the condition that neurons are regularly fired, δt is uniformly distributed, as stated in

[2].

f∆t(δt) =


1
2τ

if − τ < δt < τ

0 if otherwise
, (4.45)

Hence, using the following relation for functions of random variables

fY (y) = f∆t(g−1(y))
∣∣∣∣dg−1(y)

dy

∣∣∣∣ , (4.46)

the pdf of Y = g(∆t) can be obtained as

fY (y) =


1
|2y| if e−1A+≤y<A+,−A-≤y<−e−1A-

0 otherwise
. (4.47)

Synaptic weight w and the percentage synaptic weight modification δw can be obtained

through scaling the synaptic conductance and the percentage of synaptic conductance modi-

fication as

w = ḡmax/R, δw = ḡmaxg(δt)/R, (4.48)

respectively [157].

In this chapter, we assume that the APs are Poisson distributed. Hence, at each synapse,

the inter-arrival times are exponential distributed. Furthermore, δt = tpre− tpost is uniform
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Table 4.1: Function and variable definitions.

Definition Symbol Value / Range
EXS conductance gex(t) —
INS conductance gin(t) —
AWGN at axon, mean and standard deviation µN ,σN 0,O

(
10−4)

Peak magnitude of the EPSP waveform hp 50 mV
Time at which EPSP reaches its peak tp 0.5 ms
Synaptic strength decrease function M(t) —
Synaptic strength increase function Pa(t) —
Range of pre-to-postsynaptic interspike intervals over which strenghtening occurs τ+ 20 ms
Range of pre-to-postsynaptic interspike intervals over which weakening occurs τ- 20 ms
Max amount of synaptic modification A- 1.05A+
Max amount of synaptic modification A+ 0.005
Percentage of synaptic conductance modification g(δt) [−0.5,0.5]
Peak synaptic conductance ḡmax 0.035
Peak EXS conductance ḡa 0≤ ḡa ≤ ḡmax
Peak INS conductance ḡin 0≤ ḡin ≤ ḡmax

distributed. Hence, fTPost (tpost) = fTPre(tpre) ∗ f∆t(δt), where tpre ∼ Pois(λ) for each EXSs

or INSs. Hence, we use the pdfs for tpre and tpost to generate the random AP patterns and

postsynaptic potentials, respectively.

On arrival of a presynaptic AP, EXS and INS conductances are modified as

gex⇒ gex + ḡa, gin⇒ gin + ḡin, (4.49)

where ḡa and ḡin are the peak synaptic conductances. When there is no presynaptic AP,

both gex and gin decay exponentially as gex = exp(−t/τEX), gin = exp(−t/τIN), where τEX

and τIN are the EXS and INS time constants, respectively [157]. Synaptic modification is

generated through M(t) and Pa(t) functions. These decay exponentially as

M(t) = exp(−t/τ-) Pa(t) = exp(−t/τ+), (4.50)

where M(t) and Pa(t) are used to decrease and increase the strength of synapses, respectively.

Synaptic conductance is modified according to the arrival of presynaptic AP at EXSs or INSs.

If synapse a receives a presynaptic AP at time t, Pa(t) is incremented by an amount of A+, and

ḡa− > ḡa +M(t)ḡmax. Every time the postsynaptic neuron fires an AP, M(t) is decremented

by an amount A-, and ḡa− > ḡa +Pa(t)ḡmax. Thus, we need to know the time dependent

arrival probability to estimate the synaptic conductance changes. The details of the synaptic

modification are described in [157]. In Algorithm 1, we summarize the synaptic weight mod-

ification characteristics. The definitions of the functions and variables in the algorithm are
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given in Table 4.1.

4.8 Performance Evaluation

In this section, we analyze the SISO and MISO synaptic channels under interference, re-

spectively. First, we evaluate the estimation performance of the SISO and MISO synaptic

interference channels and evaluate the MSE for the channel weight estimations. Furthermore,

we investigate the SNIR performance of both channels and their achievable rates.

4.8.1 SISO Synaptic Interference Channel Performance Analysis

We first analyze the SISO channel performance, where there exists no interference, but axonal

noise only. The rate of the communication channel can be calculated using (4.24). In Fig.

4.2, we show how the Signal-to-Noise Ratio (SNR) varies with the axonal noise variance,

i.e., σ2. The SNR at the soma is sufficiently large provided that the axonal noise variance

σ2 < 0.5×10−7. In the same figure, we also illustrate the dependence of the capacity of the

SISO channel on the axonal noise.
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Figure 4.2: Capacity of the SISO neuron channel with respect to noise variance σ2.
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Algorithm 1 Modification of the Synaptic Weight
Require: tpre(1) = 0, tpost(1) = 0

Ensure: T = 1000ms, ∆t = 0.01ms

1: for i = 1, i++, while i < T
∆

do

2: tpre(i+1)− tpre(i)∼ Exp(1/λ)

3: tpost(i+1)− tpost(i)∼ Exp(1/λ)∗ f∆t(δt)∗ f∆t(δt)

4: end for

5: for k = 1, k++, while k < T
∆

do

6: t = t +∆t

7: M(t) = exp(−t/τ-)

8: Pa(t) = exp(−t/τ+)

9: if tpre(k) = t then {Synapse a receives an AP}

10: tpre⇐ t

11: if AP=1 then {Presynaptic AP is excitatory}

12: gex⇐ gex + ḡa

13: else[AP=-1] {Presynaptic AP is inhibitory}

14: gin⇐ gin + ḡin

15: end if

16: Pa(t)⇐ Pa(t)+A+

17: ḡa⇐ ḡa +M(t)ḡmax

18: if ḡa < 0 then

19: ḡa⇐ 0

20: end if

21: if tpost(k)= t then {PostsynapticneuronfiresanAP}

22: tpost ⇐ t

23: δt⇐ tpre− tpost

24: if δt < 0 then

25: g(δt) = A+ exp(δt/τ+)

26: else[δt ≥ 0]

27: g(δt) =−A- exp(−δt/τ-)

28: end if

29: ḡmax⇐ ḡmax + ḡmaxg(δt)

30: M(t)⇐M(t)−A-

31: ḡa⇐ ḡa +Pa(t)ḡmax

32: if ḡa > ḡmax then

33: ḡa⇐ ḡmax

34: end if

35: end if

36: else[tpre(k) 6= t] {Synapse a does not receive an AP}

37: gex = exp(−t/τEX )

38: gin = exp(−t/τIN)

39: end if

40: end for 95
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Figure 4.3: Capacity of the SISO neuron channel with respect to time, which is dependent on
the actual dynamics of the synaptic channel weight w for σ2 = 2.5×10−8.

The neuron synaptic weights are automatically updated by the synaptic channel itself accord-

ing to spike timing characteristics. This is also summarized in Algorithm 1 in Section 4.7.

Using the algorithm, we analyze how the capacity for the SISO interference channel changes

adaptively for a low axonal noise variance of σ2 = 2.5× 10−8. In Fig. 4.3, we illustrate the

time course of the capacity in bits/spike for the SISO channel for different AP generation

rates. As seen from the figure, the average capacity of the channel is proportional to the AP

generation rate. Higher rates are achievable as long as the presynaptic neuron terminal is not

saturated.

In Fig. 4.4, we illustrate how the MSE in the channel weight w estimation with respect to the

number of excitatory and inhibitory presynaptic inputs changes. In Fig. 4.4, we choose the

ratio for the excitatory to inhibitory synapses as 2.5, i.e., MEX/MIN = 2.5. As seen from the

figure, the estimation error is less than 1×10−5 for MEX ≤ 100. In the same plot, the linear

estimation filter output SNIR, i.e., SNIRh, with respect to MEX is also drawn.

Besides the SNR analysis, we also analyze the SNIR and the channel capacity for the SISO

synaptic interference channel. The performance result for the communication rate is shown in

Fig. 4.5 for varying ratios of MEX to MIN . As the MEX/MIN ratio increases, the interference
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Figure 4.4: MSE performance of weight estimation of the SISO neuron interference channel
for MEX/MIN = 2.5.

on the SISO synaptic interference channel increases. Hence, the communication rate drops.

For σ2 = 2.5×10−8, for small number of interfering presynaptic inputs, communication rates

around 3 bits/channel use are achievable.

4.8.2 MISO Synaptic Interference Channel Performance Analysis

In this section, we extend the interference analysis for SISO synaptic interference channel to

MISO synaptic interference channel. We analyze the interference depending on the synaptic

weights, i.e., strengths. We assume that at least one presynaptic input is strong, i.e., at least

one input has w = ḡmax. In the performance analysis, other inputs are given weights w =

αḡmax, where α < 1. We denote the number of strong and weak presynaptic inputs by NS and

NW , respectively.

In Fig. 4.6, we illustrate how the total MSE in the channel weights w’s estimation with respect

to MEX . In Fig. 4.6, we use different number of strong inputs NS and weak inputs NW with

variable synaptic strengths. In Fig. 4.6(a), the MSE for NS = 2 is investigated for varying

number of presynaptic inputs. The weak presynaptic inputs are assigned an average weight of

w = αḡmax, where α = [0.1,0.7] is incremented with a step size 0.2. As α increases, the total
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Figure 4.5: Communication rate of the SISO neuron interference channel for various values
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Figure 4.6: MISO synaptic interference channel estimation, (a) MSE for NS = 2, (b) MSE for

NS = 3, and (c) MSE for NS = 4, σ2 = 2.5×10−4.

weight of the presynaptic inputs, and the output SNR increases. Therefore, the estimation

performance increases, and thus, the MSE drops. The analysis is repeated for NS = 3 and

NS = 4 in Fig. 4.6(b) and 4.6(c), respectively. Performance analyses show that as the number

of strong inputs, i.e., NS, increases, lower MSE values could be achievable.

We also investigate the communication rate of the multiple-access synaptic interference chan-

nel. We analyze the communication rate of the multiuser channel under varying number of

MEX ’s with varying axonal noise levels. The dependence of the rate on the axonal noise and

channel weight are shown in Fig. 4.7. In Fig. 4.7(a), the channel capacity in bits/channel
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Figure 4.7: MISO synaptic interference channel communication rate with respect to (a) noise

variance σ2, and (b) channel weight w, where σ2 = 2.5×10−4.

use for varying synaptic strengths and for MEX = 1000 and a high level of axonal noise with

σ2 = 2.5× 10−4 is investigated. As α increases, the bits/channel use capacity increases. In

Fig. 4.7(b), the capacity in bits/channel use with respect to channel weight, i.e., w, is shown.

As MEX increases, the total rate of communication is enhanced. Furthermore, as w increases

towards the maximum, the maximum achievable rate per channel use can be incremented. As

seen from Fig. 4.7(b), as the number of strong inputs increases, the total communication rate

is enhanced. Furthermore, as the number of weak inputs increases, the rise in the output rate

is rather incremental. Here, the axonal noise variance is taken as σ2 = 2.5×10−4.

In Fig. 4.8, we illustrate how the communication rate for the MISO channel changes depend-

ing on the variable synaptic strengths of multiple users and the number of MEX and axonal

noise variance. In Fig. 4.8(a), the communication rate in bits/channel use for σ = 10−4 is

investigated for varying number of presynaptic inputs. The presynaptic inputs are assigned

an average weight of w = αḡmax, where α = [0.1,0.7] is incremented with a step size 0.2.

As α increases, the total weight of the presynaptic inputs, and the output rate increases. The

analysis is repeated for σ = 10−3, σ = 10−2 and σ = 10−1 in Fig. 4.8(b), 4.8(c) and 4.8(d),

respectively. Performance analyses points out the downward trend of the total rate of synaptic

communication as the axonal variance increases.

In Fig. 4.9, using the Algorithm 1 presented in Section 4.7, the time course of MISO synaptic

channel capacity is investigated. Using the algorithm, we analyze how the capacity for the

MISO interference channel changes adaptively for a low axonal noise variance of σ2 = 2.5×

10−8. In Fig. 4.9, we illustrate the time course of the capacity in bits/spike for the MISO
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Figure 4.8: MISO synaptic interference channel capacity for (a) σ = 10−4, (b) σ = 10−3, (c)

σ = 10−2, and (d) σ = 10−1.

channel for AP generation rate λ = 10 spike/s for different MEX values. As seen from the

figure, the average capacity of the communication channel is incremented as MEX increases,

and higher rates are achievable at the postsynaptic neuron terminal. Comparing Fig. 4.9 to

Fig. 4.8, we infer that as the number of excitatory synapses increases, MISO synaptic channel

performs close to the maximum channel capacity curves drawn in Fig. 4.8(a).
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Figure 4.9: MISO synaptic interference channel capacity for σ2 = 2.5×10−8, (a) for MEX =

10, (b) for MEX = 100, and (c) for MEX = 1000.

CHAPTER 5

RATE-DELAY TRADEOFF WITH NETWORK CODING IN

MOLECULAR NANONETWORKS

Molecular communication is a novel nanoscale communication paradigm, in which informa-

tion is encoded in messenger molecules for transmission and reception. However, molecular
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communication is unreliable and has highly varying long propagation delays mainly due to

the stochastic behavior of the freely diffusing molecules. Thus, it is essential to analyze its

delay characteristics, as well as the tradeoff between the rate and delay, in order to reveal

the capabilities and limitations of molecular information transmission in nanonetworks. In

this chapter, first, a new messenger-based molecular communication model, which includes

a nano-transmitter sending information to a nano-receiver, is introduced. The information is

encoded on a polyethylene molecule, CH3(CHX)nCH2F , where X stands for H and F atoms

representing 0 and 1 bits, respectively. The emission of the molecules is modeled by puffing

process which is inspired by the alarm pheromone release by animals in dangerous situations.

In this work, the rate-delay characteristics of this messenger-based molecular communication

model are explored. Then, a Nano-Relay is inserted in the model, which XOR’s the incom-

ing messages from two different nanomachines. Performance evaluation shows that indeed, a

simple network coding mechanism significantly improves the rate given delay of the system,

and vice versa.

5.1 Introduction

Advances in nano and biotechnology require the development of biocompatible nanoma-

chines, which have fundamental roles in complex bio-hybrid structures. These machines have

a wide range of duties such as assisting the biological cells in performing the sustainment

of vital activities and taking charge of disorders in biological entities, i.e., molecules, cells,

organs. In order to attain macro scale objectives, nanomachines need to communicate with

each other to realize cooperative tasks, which leads to the development of nanoscale com-

munication techniques. Molecular communication, as one of these techniques, is inspired by

the natural behaviors of the existing biological structures, which paves the way for upcoming

communication applications in nanoscale environments.

Since molecular communication inherently exists in nature, it is biocompatible, biostable and

it has also the capability of operating at nanoscale. Hence, it may be applied to a wide variety

of areas such as environmental applications, which include water and air pollution control,

industrial applications, which include development of nanorobots, nano-processors and nano-

memory, and medical applications, which are drug delivery, disease treatment and health

monitoring [3].
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Molecular communication differentiates from standard wireless communication applications

with its dramatically higher and varying propagation delays [121], operational uncertainties

and proneness to noise and interference. To design nanomachines that compensate these

drawbacks, the operation limits of molecular communication systems should be thoroughly

investigated.

Although molecular communication is a very new alternative for nanoscale communication,

the concept is physically implemented. In [115], Cu2+ ions are propagated where gemini

peptid lipid is used as a molecular switch which acts as an artificial receptor. With the help

of fluorescence microscopic observations, in [174], the hybridization of DNA is used to em-

ploy a molecular communication path between vesicles. A physical reception mechanism is

discussed in [149] where a biomimetic nanosensory device is implemented for detection and

amplification of biologically important entities.

In the literature, the studies are concentrated on theoretical models for molecular commu-

nication [129], analysis of upper and lower bounds on information rates [46], capacity of

molecular channels [11], [9], noise analysis of molecular channels [131], and gain and delay

with respect to input frequency and transmission range [129]. None of these studies inves-

tigates the rate-delay tradeoff in molecular domain, which is very crucial to determine the

possible application areas. One of these areas is delay tolerant networks used for applications

such as health monitoring, drug delivery, and molecular computers [3], [150].

Molecular communication is unreliable and suffering from long propagation delays, even up

to hours [54], due to diffusion of large molecules. Moreover, the nanomachine spends time

generating multiple redundant molecules for a single message to guarantee the delivery of the

message and preparing them for transmission. This unfortunately yields low rates. There-

fore, a joint rate and delay analysis for molecular communication is needed to investigate its

capabilities and shortcomings.

In classical communications domain, the rate-delay tradeoffs are examined to accommodate

different types of traffic in electro-magnetic networks with composite links [96], to optimize

rate for two-layered, namely, physical and network packet transmission system [167], and

mitigate delay in multipath routed and network coded networks [170]. Albeit these studies

point out the rate-delay tradeoffs for classical communication domains, no study has concen-

trated on the trade-off between rate and delay in molecular communications, which led us to
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this very study.

In this chapter, a new diffusion-based model for molecular communication, whose main dis-

tinction with respect to previously proposed models, such as [11] and [129], arises from the

utilization of a messenger molecule as information carrier, is introduced. A hydrofluorocar-

bon molecule, fluorinated polyethylene, is chosen as the messenger molecule on the grounds

of biocompatibility of hydrofluorocarbons, which are the basic molecules used as reversible

oxygen carriers in artificial blood formulations [176].

We analyze the stochastic nature of a basic point-to-point messenger-based molecular com-

munication model with one nano-transmitter and one nano-receiver, named Nano-Alice and

Nano-Bob, respectively, from information encoding and transmission up to reception and de-

coding processes. A set of message molecules, i.e., puff, is generated and transmitted from

the surface of the spherical shaped nano-transmitter. Furthermore, a nanonetwork consisting

of two transmitting and receiving nanomachines and a nano-relay is established. Then, a sim-

ple network coding is applied on this nanonetwork, and the rate and delay for both uncoded

and network coded cases are derived to reveal the tradeoff between propagation delay and

reception rate. With network coding, we attain higher rates with the same delay compared to

the uncoded case, and lower delays for the same rate of operation, as discussed in Section 5.4.

The remainder of this chapter is organized as follows. Using the messenger-based molecular

communication model introduced in Section 5.2, we investigate the delay characteristics of

this model. In Section 5.3, to examine an analysis of rate-delay tradeoff over a networking

case with a single Nano-Relay, a simple network coding is applied. The expressions derived

in Section 5.2 and 5.3 are evaluated numerically and the results on the rate-delay tradeoff

are discussed thoroughly in Section 5.4. The improvement achieved by network coding is

highlighted by comparing the delays in both coded and uncoded cases.

5.2 A Messenger-Based Molecular Communication Model

Messenger-based molecular communication inherently exists in different types of cells from

the simplest prokaryotic cells such as bacteria using quorum sensing to more complex mam-

malian cells using intracellular communication [17]. For example, nitric oxide, an intra-

cellular messenger molecule, provides cell-to-cell communication system in mammalians,
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which is exploited in artificial intracellular communication for the purpose of gene regulation

[17]. Since messenger-based molecular communication is ubiquitous, it is crucial to build an

analytical model of it by benefiting from inherent communication mechanisms, which also

promotes nanomedicine applications.

In this section, a messenger-based molecular communication model is proposed. This messenger-

based model includes partially fluorinated polyethylene messenger molecules, CH3(CHX)nCH2F ,

carrying n bits of information on predefined X atoms by diffusion. X is replaced by an Hy-

drogen (H) or Fluorine (F) atom representing the bit 0 or 1. n can reach up to 109 bits, which

is a practically high amount of information for a single messenger molecule despite its longer

propagation delay [54]. Therefore, the messenger-based approach is an intriguing case for

realizing the rate-delay tradeoff.

In this approach, the transmitter only supplies the kinetic energy for the messenger molecules

to reach to the emission boundary, which is defined in Section 5.2.2. When the molecules

arrive to the emission boundary, the transmitter releases these molecules into the fluid medium

where these molecules are propagated by Brownian motion with drift, where the drift arises

from the mean drift velocity of the fluid medium. Then, they reach the receiver boundary

where the information embedded on them is decoded.

The transmitter and the receiver mentioned in this model are nanomachines which are capable

of performing some simple predefined tasks. In our model, the transmitter nanomachine is

capable of producing molecules on which the information is encoded, combining them into

puffs, and releasing the puffs to the medium. After, the receiver nanomachine, which has

the receptors that bind the propagating molecules, picks the molecules, it decodes them. The

radii of these nanomachines are assumed to be a few nanometers. Hence, they are capable of

handling fluorinated polyethylene molecules, the size of which is in the order of 10−2×n nm3.

Moreover, the nanomachines are assumed to be separated by a few micrometers so that the

size of the nanomachines are negligible compared to the distance travelled by the messenger

molecule [54].

Our model embodies five main processes; information encoding process, transmission pro-

cess, propagation process, reception process and information decoding process. In the fol-

lowing subsections, we investigate these five main processes.
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5.2.1 Information Encoding Process

In this model, it is assumed that nanomachines use information-storing molecular packets,

i.e., messenger molecules for the transfer of information. These molecular packets are similar

to data link-layer packets in classical wireless communication systems. These two differ in

that the molecular packets store information physically on themselves so that they cannot

interfere with each other. Besides, the messenger molecules are assumed to be bioinactive,

i.e., not easily corrupted or destroyed by natural processes. They are easily recognized by

nano-receptors such as molecular pumps or sorting rotors due to the special structure of these

molecules containing a distinctive head. Thus, the entire message need not be read in order to

identify the intended recipient [54].

The partially fluorinated polyethylene molecules [54] are candidates for such messenger

molecules. Suggested in [44] for nanocomputer memory systems, a partially fluorinated

polyethylene messenger molecule is in the form CH3(CHX)nCH2F , where X stands for H

and F atoms representing 0 and 1 bits, respectively. These coded atoms are in one side of

the chain while the other side of the chain is full of H atoms so that the receiver can recog-

nize the coded side easily, which facilitates reading. Otherwise, since the head and tail of the

molecule have the same symmetry axis as seen in Fig. 5.1, the receiver cannot decide which

side is coded. To overcome the ambiguity, only one side of the molecule is coded and the

other side is filled with H atoms. Hence, the receiver can decide which side is coded.

This molecule carries 50% H and 50% F atoms on the coded side of the molecule to equal-

ize the molecular weight, hence the diffusion coefficient of all the intended symbols, which

simplifies the analytical complexity of this work. Still, for any source distribution, the ratio of

the H and F atoms can be kept fixed doing an appropriate encoding at the nano-transmitter.

However, for the operation of the proposed model, any ratio of H and F atoms is feasible in

the expense of unequal diffusion coefficients.

The messenger molecule has a message molecule density of rmessage ∼ 1000 kg/m3 and mes-

sage molecule volume Vmessage ∼ (3.82×10−29)n m3 [54]. Since one molecule carries n bits

of information in volume Vmessage, the information density of this molecule is calculated as

dmessage ∼ 26 bits/nm3 which gives a distinguishably higher density when compared to DNA

whose information density is ∼ 1 bit/nm3 [54]. This is the reason why partially fluorinated
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polyethylene molecule is preferred to DNA in this study. During preparation for transmission,

these hydrofluorocarbon molecules with n >20 can be wound onto a bobin or can be folded

into a compact spherical shape ensuring easy reading and high packing density [44].

A partially fluorinated polyethylene molecule can carry lm bits of information which is ap-

proximately given by

lm ≈
4
3

πr3dmessage, (5.1)

where r is the spherical radius of the messenger molecule and dmessage is the information

density [54]. n 6= lm because of the non-information carrying H atoms on one side of the

molecule for easy reading and the allocation of some part of n bits for extra information

about the message such as message ID. In this study, to ease the decoding process at the

receiver nanomachine, we allocate n− lm bits (a few) at predefined locations for message ID

declaration. Therefore, actual information density is slightly less compared to dmessage. The

distinctive head and tail structure of the molecule, CH3 and CH2F forming the two ends of

the molecule, provides a decoding order for the message in such a way that the bits carrying

the extra information such as message ID are read before the entire message.

To increase the information carrying capacity of messengers, one needs to create larger molecules.

However, larger molecules diffuse more slowly in liquid environment. According to the

Einstein-Stokes relation [98], the diffusion coefficient D is inversely related with the size

of the particles, i.e.,

D =
kBT
6πηr

, (5.2)

where kB is Boltzmann’s constant, T is the absolute temperature and η is viscosity.

The information encoding process described here can exploit a molecular modulation tech-

nique such as Molecule Shift Keying modulation (MoSK) introduced in [89]. This modulation

scheme requires 2n different molecules to represent n bit logical information. For the trans-

mission of an intended symbol, one of these molecules are released by the transmitter and

the receiver decodes the intended symbol according to the type of the received molecule. In-

spired by [89], a n = 2 bit constellation diagram for Quadruple MoSK realized by fluorinated

polyethylene is shown in Fig. 5.1.
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Figure 5.1: Constellation diagram for QMoSK modulation, n = 2.

5.2.2 Transmission Process

The transmitter nanomachine is assumed to have a spherical shape and the messenger molecules

are released to the medium from the boundary of the nanomachine. This emission process is

uniformly distributed over this spherical boundary called emission boundary. If a living cell

is chosen as the nanomachine, the emission boundary corresponds to the cell membrane.

The transmission strategy is chosen as puffing of messengers, i.e., instantaneous emission of

puffs which are sets of released message molecules. Since the information is encoded in the

type of molecule and not in its concentration, the transmitter does not need to continuously

fill the medium with molecules. Instantaneous emission is a more suitable scheme than con-

tinuous emission for the messenger-based communication model proposed in this study. As

the model relies on the diversity of message molecules, it requires rapid fade out to increase

the number of messages that can be transmitted by a single transmitter nanomachine [125].

In nature, puffing is usually used for modeling pheromone release in alarm situations such as

presence of predators and enemies, fight, injured conspecifics, exposure to toxic compounds

[173]. Those alarm situations require a sudden release of a limited amount of pheromones.

Examples include insect pheromones dispersed within forest canopies [160] and pheromones

of ant Acanthomyops claviger [93].
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When a nanomachine needs to transmit a single message, it generates puffs of NM molecules.

The probability of successful transmission of the message with just one puff is very low,

therefore, for a single message NP puffs are sent. Thus, a single message consists of NP puffs

of NM molecules.

Accordingly, the transmission rate can be defined as

R(T X) =
lm

NPTM
, (5.3)

where TM is the process time required to prepare a puff. The transmitter nanomachine does

not prepare the molecules in advance, and does not store the molecules generated for future

use. This is mainly due to the sudden need for communication with pheromones in alarm

situations [173]. It requires NPTM time to produce a message of NP puffs, with each puff

containing NM molecules to be released immediately after message generation.
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Figure 5.2: Particle propagation and detection processes.

5.2.3 Propagation Process

The position of a messenger molecule due to random thermal noise as a function of time

is modeled as a Brownian motion. The radial position of a molecule with respect to the

transmitter is a stochastic process given by

Rt = νt +
√

2DWt , (5.4)
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where Wt is a standard Wiener process, v is the mean drift velocity of the medium, D is the

diffusion coefficient.

Therefore, the first hitting time, τ, to a spherical surface at a distance d away from the emission

boundary is distributed according to an inverse Gaussian probability density function [158],

i.e.,

τ = min{τ|Rt = d} ∼ fτ(τ), (5.5)

fτ(τ) =
d√

4πDτ3
exp
(
−(ντ−d)2

4Dτ

)
, τ≥ 0. (5.6)

The random variable τ can also be defined as the propagation delay of a single puff for a

distance d.

5.2.4 Reception Process

A messenger molecule is assumed to be received at the time instant when it hits the boundary

of the receiver and it is removed after the decoding takes place.

To calculate the reception rate, an interval of time beginning with the reception of the first

message, t1, and ending with the reception of the (k+1)th message, tk+1, is considered. The

length of this time interval is

∆t = tk+1− t1. (5.7)

Assume that tk+1− t1 = τk+1− τ1 + kNPTM, where τk+1 is the propagation delay for the (k+

1)th message and τ1 is the propagation delay for the first message. We assume that E {τk+1}=

E {τ1} for all k regarding that the channel imposes the same expected delay to all messages.

Hence, expected length of ∆t can be calculated by

E {∆t}= kNPTM. (5.8)

During this time interval, klm information carrying bits are received. Thus, reception rate is

expressed as

R(RX) =
lm

NPTM
. (5.9)

Having a closed-form expression for rate, we try to obtain an analytical expression for delay.

To obtain the Cumulative Distribution Function (CDF) of delay, the probability of receiving

the message is considered first.
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If the reception boundary is the entire spherical surface that encapsulates the transmitter

source, then, the probability of receiving the message before time t can be denoted by PM(t).

It is the probability of the complementary event that none of NMNP molecules that are released

for one message is received before time t.

For each molecule of the ith puff, Fτ (t− iTM) is the probability that it is received before

time t, hence, 1−Fτ (t− iTM) is the probability that it is not received. Thus, for that en-

tire puff, (1−Fτ (t− iTM))NM is the probability that all NM molecules of ith puff is not re-

ceived before time t. Multiplying these probabilities for all puffs of a message, we obtain

PM(t) = ∏
NP
i=1 (1−Fτ (t− iTM))NM , representing the probability that none of NMNP molecules

is received before t. Finally, the probability that at least one molecule carrying the intended

message is arrived, PM, can be found by 1−PM(t). PM(t) can be expressed by

PM(t) = 1−
NP

∏
i=1

[1−Fτ (t− iTM)]NM , (5.10)

where Fτ(τ) is the CDF of the propagation delay τ. For simplicity, the initiation time of the

message, i.e., release time of the first puff is taken as 0.

However, the reception boundary cannot encapsulate the transmitter source practically. Thus,

there should be a probability Pd for detecting a messenger molecule when it is d away from

the emission boundary. We assume that Pd is inversely proportional to the distance because

it can be expressed as the ratio of the length of receiving boundary, l (= 2πd0, for the shell

shaped receiver), to the perimeter of the circle at distance d. Pd is expressed by

Pd =

 1, if d ≤ d0

d0
d , if d > d0

, (5.11)

where the constant d0 is proportional to l and depends on the geometry of the receiver. Up

to a critical distance, d0, i.e., in the vicinity of the transmitter, the probability of reception

is close to 1. However, when the receiver moves away beyond d0, the receiving boundary

do no longer cover the nano-transmitter. Hence, the probability of receiving falls below 1.

As the receiver has a spherical shape, the receiving boundary cannot fit the arc with radius d

completely as the shell shaped receiver shown in Fig. 5.2. Thus, d0 is not directly equal to

l/2π but it is proportional with l/2π in this case.

At a distance d, the probability that a molecule is not received is 1−Pd . Hence, the probability

that none of the NM released molecules for a puff is received becomes (1−Pd)
NM . When NP
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puffs are released, the probability for receiving the message as time goes to infinity becomes

Pr = 1− (1−Pd)
NPNM . (5.12)

Then, to calculate the delay, we are conditioned that the message has to be received. Other-

wise, we cannot define a finite delay for a non-received message. The probability PM(t) in

(5.10) can be modified as a conditional probability, where M is the event that the message is

received, i.e.,

PM(t|M) =
1−∏

NP
i=1 [1−PdFτ(t− iTM)]NM

Pr
. (5.13)

The probability that the message is received before t corresponds to the CDF of the message

propagation delay, i.e., FτM(τM) = PM(t|M). Note that PM(t|M) goes to 1 as t goes to infinity,

hence, it can be the CDF of the message propagation delay τM given that the message M is

received as proposed.

Since τM is a nonnegative random variable, the expected message propagation delay can be

calculated by integrating the complementary CDF of τM,

E {τM|M}=
∫

∞

0
(1−FτM(t))dt. (5.14)

For a single puff containing a single molecule, i.e., NM = 1 and NP = 1 in (5.12) and (5.13),

the CDF of the delay denoted by FτM(t) becomes equal to Fτ(t) whose pdf is given in (5.6).

Hence, the expected message propagation delay is equal to d/ν, the expected value of Fτ(t),

which is an inverse gaussian distribution. This expected delay is utilized in Section 5.3 to

approximate puff propagation delays.

5.2.5 Information Decoding Process

Decoding of the messages is realized as the demodulation of the incoming molecule stream

according to MoSK described in Section 5.2.1. This demodulation is based on differentiating

between different molecule types containing different numbers of H and F atoms. In nature,

such a differentiating mechanism is found in pheromone receptors. For example, a very sensi-

tive reception of pheromones exists in a male moth who can recognize potential mates, prey,

and specific features of the environment such as food sources through the antennas placed

on its olfactory system [94]. The olfactory system of moths produces electrical signals in

112



�����

���	


�����

���

����


���

��
� ��

�
�

�
��

�����
� �� �

�����
� �

�
�� ����

� �
����

���������

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
��

�

�
�

���

��� ���

�
� ��

�
�

� �
��

�
�

�
��

�
�

� �� �
�

�
�

�
�

Figure 5.3: A simple uncoded network mechanism.
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Figure 5.4: A simple network coding mechanism.

their neurons according to the type of the received pheromone. A similar system of antennas

may be used by the receiver nanomachine which will process the information brought by the

messenger molecule.
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Another decoding mechanism may be constructed to read the encoded information on the

molecule, bit by bit using a convenient probe as suggested in [23]. In such a system, the

receiver nanomachine may be equipped with the specific C5H5B or C3H3N2B probe to identify

the H or F atom using the difference in interaction energies between B atom of the probe and

H/F atoms of the polyethylene molecule.

In this study, we assume that the receiver nanomachines use the second mechanism described

above. After decoding the message with the probing mechanism, the receiver needs to reveal

the meaning of the decoded bits. As suggested in Section 5.2.1, some portions of the bits, i.e.,

n− lm bits, may be used to encode a message ID which will be the same for all NM molecules

of all NP puffs carrying the same message.

A nanomachine may receive a message multiple times since there are redundant messenger

molecules in the communication medium. Upon detecting the first molecule for a message,

it ignores the remaining molecules carrying the same message. Once a message is received

and its ID is decoded, the subsequent molecules, which have the same ID, are not taken

into consideration. Assuming that the puff preparation time TM is the same for each type of

molecule, the whole message preparation time is NPTM. To reduce the energy for decoding

the redundant molecules, the receiver nanomachine may wait a time proportional to NPTM,

defined as Twait = αNPTM, where α > 1, after the reception of the first message since a second

message cannot be generated by the transmitter in a time duration of NPTM.

5.3 Rate-Delay Tradeoff with Network Coding

In this section, a mathematical model is derived for a relay network to characterize the rate-

delay tradeoff of a molecular nanonetwork. This section also describes a simple network

coding mechanism that improves the rate-delay performance of the molecular nanonetwork.

Consider a relay network containing a Nano-Relay as shown in Fig. 5.3, where Nano-Alice

and Nano-Bob need to send each other a message in a sufficiently long time interval.

Nano-Alice and Nano-Bob function as both nano-transmitter and nano-receiver. These nanoma-

chines realize all the five main processes mentioned in Section 5.2. Thus, rate and delay

derivations carried out in Section 5.2 are valid for both Nano-Alice and Nano-Bob. Assume
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also that Nano-Alice and Nano-Bob are not in the communication range of each other but in

the communication range of Nano-Relay, i.e., dAR < d0,dRB < d0,2d0 > dAB > d0. This means

that the messages of Nano-Alice and Nano-Bob are guaranteed to be received by Nano-Relay.

Nano-Relay can operate both as a nano-transmitter and a nano-receiver. Additionally, Nano-

Relay combines the incoming molecules from Nano-Alice and Nano-Bob and determines

whether to generate new molecules or relay the incoming molecules. Depending on the ar-

rival times of molecules sent from Nano-Alice and Nano-Bob, relay queues the molecules to

be forwarded.

In order to improve the rate-delay characteristics of this system, in the second part of this

section, we introduce a basic network coding mechanism where Nano-Relay XORs the mes-

sages coming from Nano-Alice and Nano-Bob. In molecular level, such an XOR operation is

feasible. Although there is no study on XOR operation for fluorinated polyethylene, an XOR

gate can be implemented at the molecular level by pseudorotaxane as described in [38].

In this scheme, the ultimate goal is that Nano-Alice and Nano-Bob exchange a pair of mes-

sages. Without network coding, Nano-Alice sends its message to Nano-Relay which forwards

it to Nano-Bob and Nano-Bob sends its message to Nano-Relay which forwards it to Nano-

Alice. Thus, we have four transmissions in total.

When the network coding mechanism is considered, Nano-Alice and Nano-Bob send their

messages to Nano-Relay which XORs and sends the combined message back to both Nano-

Alice and Nano-Bob which requires a total of three transmissions instead of four. By doing

so, we decrease the total number of transmissions by one. As Nano-Alice and Nano-Bob

know their sent message, they can decode Nano-Relay’s message and extract the messages

of their respective partners. Thus, the molecular network coding can be an efficient way of

increasing the rate since the same information is sent now with less number of transmission,

i.e., in a shorter time interval.

As described in Section 5.2, a partially fluorinated polyethylene molecule carries lm bits of

information by H and F atoms, denoting binary 0 and 1, respectively. Since a molecule can

convey lm bits of information through distinct sequences of H and F atoms, a molecular XOR

scheme can be generated such that Nano-Relay combines the information coming from Nano-

Alice and Nano-Bob by XORing lm number of H and F atoms sequentially, i.e., starting from

head of the molecule until its tail, which is in fact similar to binary XOR operation on a string

115



of zeros and ones. More specifically, if the message strings coming from both Nano-Alice

and Nano-Bob contain the same atom to be XORed, Nano-Relay outputs H. Otherwise, it

transmits F . Hence, knowing the bit they sent, Nano-Alice and Nano-Bob decide what was

sent by the other.

5.3.1 Rate-Delay Tradeoff for Uncoded Case

Assume that Nano-Alice and Nano-Bob start transmitting their messages at the same time

instant. Both of them do not know about the position of the other and release NP puffs of

messenger molecules into the communication medium. Since the propagation delay for a

Brownian message is a random variable, Nano-Relay receives messages from Nano-Alice

and Nano-Bob at random time instants. The forwarding procedure for a message starts when

it is received by Nano-Relay. However if a second message arrives during the transmission of

the first, Nano-Relay puts it in the queue and this second message waits until the transmission

of the first is finished. The waiting time of a message in the queue is denoted as Tq.

Let A and B be the messages of Nano-Alice and Nano-Bob, respectively. Both messages A

and B can reach their destinations directly or from the transmission path over Nano-Relay.

Then, the expected delay time E {TD} for a message to reach its destination can be calculated

as

E {TD}= E {TD|AB}P(AB)+E
{

TD|AB
}

P(AB), (5.15)

where AB is the event when the same message is transferred on both Nano-Relay and the direct

path between Nano-Alice and Nano-Bob, simultaneously. AB represents the complement

event when the message is transferred on only Nano-Relay.

The probability P(AB) can be calculated as

P(AB) = 1−
(

1− d0

dAB

)NP

. (5.16)

If the message fails to reach its destination on the direct path (AB case), then, the delay is

completely determined by the transmission path over Nano-Relay, which is given by

E
{

TD|AB
}
= E {TARB} , (5.17)

where TARB is the delay for the path ARB.
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Otherwise, i.e., when AB event takes place, the delay is the minimum of time delays to which

the message molecules are exposed for paths ARB and AB, namely,

E {TD|AB}= E {min(TAB,TARB)} , (5.18)

where TAB is the delay time for the path AB.

E {TD|AB} is upper bounded by E {TAB} since E {TAB} < E {TARB} due to the triangle in-

equality

E {TD|AB}< E {TAB}= E {τM} . (5.19)

Then, the expected message delay between A and B is

E {τM}=
∫

∞

0

[
∏

NP
i=1 (1−PdFτ (t− iTM))NM − (1−Pd)

NPNM

1− (1−Pd)
NPNM

]
dt. (5.20)

Nevertheless, it is troublesome to find a closed-form expression using this integral. Thus, we

provide the upper and lower bounds for this integral to show the behavior of delay. A lower

bound for the expected message delay between A and B is obtained as

E {τM}>
1− (1−Pd)

NPNM+1−Pd (NPNM +1)(1−Pd)
NPNM

ξPd (NPNM +1)Pr
. (5.21)

To arrive to this bound let us define a new CDF, F
τ(u)(t), which is the CDF of a uniform

random variable τ(u),

F
τ(u)(t) =


t/ξ, if t ∈ (0,ξ)

1, if t ≥ ξ

0, else

, (5.22)

where ξ is mode of the pdf of τ, i.e., the point where the peak of the pdf occurs, which can be

calculated by differentiating fτ(t) and equating to zero as follows:, i.e.,

ξ =−3D
v2 +

√
9D2 +d2v2

v2 > 0. (5.23)

Note that compared to the infinite duration pdf of τ, which is inverse Gaussian distribution,

we observe that the uniformly distributed τ(u) has a much narrower pdf. However, its density

is greater than fτ(t) for t ∈ (0,ξ). Hence, the CDF F
τ(u)(t) is larger than Fτ(t) for every t value

in (0, ∞).

Hence, uniform distribution approximation of fτ(t) yields an upper bound on the propagation

delay pdf, which, in turn, yields the lower bound for E{τM} in (5.21) calculated by substitut-

ing (5.22) into Fτ (t− iTM) for each i in (5.20).
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Similar to lower bound in (5.21), an upper bound is obtained as

E {τM}<−
(1−Pd)

NPNM

Pr
+

(1−PdNPNM/µ)NPNM+1− (1−Pd(NPNM +µ)/µ)NPNM+1

µPd (NPNM +1)Pr
.

(5.24)

To get this bound, we define a new CDF, F
τ(v)(t), which is the CDF of a uniform random

variable τ(v),

F
τ(v)(t) =


t/µ, if t ∈ (0,µ)

1, if t ≥ µ

0, else

, (5.25)

where µ is the expected value of the pdf of τ.

Note that for the expected value, µ, Fτ(t) reaches 0.99 which is sufficiently close to 1 so that

we can assume Fτ(t) is 1 for t > µ. Besides, F
τ(v)(t) increases very slowly compared to Fτ(t)

for t ∈ (0,µ). Hence, the CDF F
τ(v)(t) is smaller than Fτ(t) for every t value in ∈(0, ∞). To

simplify (5.20), we replace Fτ(t − iTM) by F
τ(v)(t −NPTM) for all i, since F

τ(v)(t −NPTM) ≤

Fτ(t−NPTM) ≤ Fτ(t− iTM) for all i. Thus, this approximation yields a lower bound on the

propagation delay CDF, which, in turn, yields the upper bound for E{τM} in (5.24).

Using (5.19), we obtain

E {TD}< E {TAB}P(AB)+
(
E {TARB}+E

{
Tq
})

P(AB). (5.26)

Here, E
{

Tq
}

is included in (5.26) to represent the expected queuing delay for message A in

the Nano-Relay, which is defined in Section 5.3.1. The expected queuing delay depends on

both the utilization factor of Nano-Relay and the reception time of the message.

First, assume that only messages A and B of Alice and Bob, respectively, need to be forwarded

by Nano-Relay without coding. In that case, if A is received during the transmission of the

message B, the message A waits a period of time, E
{

Tq
(C)
}

, which is expressed by

E
{

Tq
(C)
}
= P

{
Q(C)

}
E
{

Tq
(C)|Q(C)

}
, (5.27)

where Q(C) is the event that the message A is received in the transmission period of the mes-

sage B. The probability of queueing in uncoded case is

P
{

Q(C)
}
= Pr{NPTM > τA− τB > 0} , (5.28)
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where τA and τB are the respective propagation delays of messages A and B. We assume that

puff propagation delays are exponentially distributed with mean d/ν.

For exponentially distributed propagation delays, the probability P
{

Q(C)
}

is given by

P
{

Q(C)
}
=

dAR

dAR +dBR

(
1− exp

(
−νN2

PTM

dAR

))
. (5.29)

Suppose that message streams from Nano-Alice and Nano-Bob have Poisson arrivals with

rates α and β, respectively. Then, Nano-Relay can be modeled as an M/G/1 server having a

service time distribution with mean µ and variance σ2. Thus, the expected queueing delay can

be derived using the Pollaczek-Khintchine formula [83]. Specifically, Nano-Relay becomes

an M/D/1 server when network coding is not allowed, i.e. direct forwarding.

For M/D/1 case, the relay throughput is constant with rate 1/NPTM messages per unit time

and the expected queueing for an arbitrary message can be calculated by [83] as

E
{

Tq|Q(C)
}
=

1
2

(α+β)N2
PT 2

M

1− (α+β)NPTM
. (5.30)

Besides, reception rate for this case can be calculated by considering an interval of time

beginning with the reception of the first message, t1, and ending with the reception of the kth

message, tk. Similar to the reception rate calculation in 5.2.4, reception rate of Nano-Alice’s

messages at Nano-Bob can be calculated as follows;

R(RX)

C
=

lm
NPTM

. (5.31)

5.3.2 Rate-Delay Tradeoff for Network Coded Case

Now, consider the case when Nano-Relay uses a network coding mechanism, which is shown

in Fig. 5.4. When Nano-Relay receives a message, it starts waiting TW seconds for the other

message to arrive before transmitting the received message. If the other message arrives

within TW seconds or during the transmission of the first message, Nano-Relay starts trans-

mitting the XORed version of two messages. Otherwise, Nano-Relay transmits messages

separately.

If Nano-Relay forwards messages with the network coding mechanism described above, the

expected queuing delay for message A becomes

E
{

T (C)
q

}
= P

{
W (C)

}
E
{

T (C)
q |W

}
+P

{
W (C)

}
TW , (5.32)
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where W is the event when the message B arrives within the waiting time TW .

The probability that the message B arrives within the waiting time TW in the coded case,

P
{

W (C)
}

, again can be calculated assuming exponential propagation delays as

P
{

W (C)
}
=

dBR

dBR +dBR

(
1− exp

(
−νNPTW

dBR

))
. (5.33)

Even when each of Nano-Alice and Nano-Bob generates one single message, the advantage

of network coding is reflected as reduced resource consumption in Nano-Relay. However,

if both Nano-Alice and Nano-Bob generate message streams, then the forwarding efficiency

of Nano-Relay can significantly affect the delay amounts. When both sources continously

emit puffs of molecules, Nano-Relay continously combines the molecules. Since there are

always molecules ready to combine arriving from the other source, no molecule waits up to

TW seconds for its conjugate to arrive. Hence, the total waiting time which adversely affects

the delay decreases.

In the network coding case, the relay throughput can be assumed to have a bi-modal distribu-

tion. Assume that only messages transmitted at the same time can be coded with each other.

When a message is going to be transmitted and its conjugate message is in the queuing buffer,

then these messages can be forwarded together meaning that the relay throughput is 2/NPTM

messages per unit time. Otherwise, they are transmitted with rate 1/NPTM messages per unit

time.

Similar to the uncoded case, the expected queueing delay for an arbitrary message in network

coded case can be calculated by

E
{

T (C)
q |W

}
=

(1−0.75PAXB)(α+β)N2
PT 2

M

2(1− (α+β)(1−0.5PAXB)NPTM)
, (5.34)

where PAXB is the probability of coding the messages of A and B.

Note that as the probability PAXB increases, E
{

Tq
}

, i.e., the expected queueing delay, de-

creases. However, the probability PAXB is also a function of the queueing delay Tq since

longer queueing delays increase the chance for coding of conjugate messages. Therefore, the

probability PAXB can be defined as

PAXB = Pr
{
|τA− τB|< Tq

}
, (5.35)

where τA and τB are the reception times of conjugate messages from Nano-Alice and Nano-

Bob.
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Table 5.1: Simulation parameters.

Parameter Symbol Value
Diffusion coefficient D 2.2×10−11 m2/s
Drift velocity v 0.2×10−9 m/s
Distance b/w two transceivers d 10−5 m
Puff preparation time TM 10−3 s
Probability of coding messages PAXB 1
Poisson arrival rate of Alice α 0.1 s−1

Poisson arrival rate of Bob β 0.1 s−1

Distance b/w Alice and Relay dAR 10−6 m
Distance b/w Bob and Relay dBR 10−6 m
Distance b/w Alice and Bob dAB 2×10−6 m
Area of perfect reception A 10−10 m2

Number of molecules in a puff NM 10

Besides, reception rate for this case can be calculated by considering an interval of time

beginning with the reception of the first message, t1, and ending with the reception of the kth

message, tk. Similar to the reception rate calculation in 5.2.4, reception rate of Nano-Alice’s

messages at Nano-Bob can be calculated as follows;

R(RX)
C =

lm
NPTM

(
2P
{

WC}+(1−P
{

WC})) . (5.36)

5.4 Simulations

In this section, we evaluate rate and delay expressions found in Section 5.2 and 5.3 with the

necessary simulation parameters given in Table 5.1. In our implementation, the simulation

parameters are chosen in agreement with [54]. Subsequently, the uncoded and the network

coded cases are compared to reveal the rate-delay tradeoff.

5.4.1 Simulation for Uncoded Case

We investigate the rate-delay tradeoff of an uncoded case without a relay with increasing NP

in Fig. 5.5. The rate expression in (5.9) is utilized to evaluate the rate variation. Our analysis

is not based on the exact expressions of the delay. However, lower and upper bounds for prop-

agation delay, given respectively in (5.21) and (5.24) are compared to observe the variation of

delay with increasing NP. Although the two bounds follow the same trend, the lower bound
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Figure 5.5: Delay and rate characteristics with NP.

is far beyond the realistic propagation delays in molecular domain, hence, unreliable. Thus,

upper bound (5.24) is used for the analysis. The decaying trend of rate and delay estimations

is illustrated in Fig. 5.5.

On the one hand, for a single message, as the number of puffs (NP) increases, the preparation

time for the message increases proportionally. Therefore, the transmission rate R(T X) and

the reception rate R(RX) increase. On the other hand, increasing NP augments the message

reception probability, causing a descent in expected message propagation delay E {τM}. Thus,

there is a tradeoff between the expected message propagation delay E {τM} and the expected

reception rate R(RX). These results are also intuitively expected from (5.9), (5.21) and (5.24).

The tradeoff between rate and delay is illustrated in Fig. 5.6.

This rate-delay tradeoff analysis is crucial for designing an efficient molecular communica-

tion network. An important application of molecular networks is molecular computers which

will replace electronic computers in the future for some of the applications requiring huge

computing power [101]. This is due to the hundred times smaller size of molecules compos-

ing molecular computers with respect to silicon chips of electronic computers and the high

parallel computing capacity of molecular computers [117]. The rate and delay characteris-

tics of different molecular communication techniques will be essential criteria for the design

of these molecular computers which will boost the computing power to ten-thousandfold of

122



electronic computers. Especially in gene regulatory applications, molecular computers doing

DNA computations are highly investigated in various studies such as [26] and [141].
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Figure 5.6: Rate vs delay analysis.

5.4.2 Simulation for Network Coded Case
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Figure 5.7: Rate vs delay analysis in uncoded and coded network cases.

In Fig. 5.7, reception rates with respect to delay of both uncoded and network coded cases
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with different waiting times in Nano-Relay, denoted by TW , are illustrated. Tw = 0 represents

the uncoded case. On the one hand, as TW increases, the waiting interval for conjugate mes-

sages increases, which, in turn, increases the probability of coding. Therefore, total delay

increases due to the extra delay introduced by Nano-Relay before coding takes place. On the

other hand, as the probability of coding increases, the reception rate increases since Nano-

Relay combines the incoming messages to decrease the number of transmitted messages.

As illustrated in Fig. 5.7, by increasing the waiting time Tw, 40% higher reception rate com-

pared to uncoded case, i.e, Tw = 0, is achievable for a given delay. Thus, it is seen that network

coding provides an efficient operation for molecular nanonetworks.

The network coding technique is a beneficial tool to overcome long propagation delay prob-

lem for molecular communication in vast different applications. For medical applications, to

improve the intervention time of nanomachines placed in the human body, the communica-

tion rates between those nanomachines may be ameliorated by network coding. For example,

the molecular communication between nanorobots described in [30] may be accelerated by

network coding to correlate the nanorobots sensory data and to improve the collaboration be-

tween the nanorobots in order to identify the tumor cells effectively. Another medical appli-

cation can be stated as the regulation of the behaviours of engineered bacteria used in cancer

therapy [7]. These bacteria form quorum sensing networks by communicating via signaling

molecules to sense the environment of a tumourous cell, invade that cell and release cytotoxic

agents. The efficient operation of these bacteria arises from their proper synchronization. To

synchronize, a low delay molecular network may be established by network coding.
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CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

Incredible improvements in the field of nanotechnologies have yielded integrated functional

devices consisting of nanoscale components, i.e., nanomachines. Enabling nanomachines

to communicate with each other, and thus, forming nanonetworks will help realize envi-

sioned complex nanotechnology applications such as intelligent collaborative drug delivery,

glucose, sodium, and cholesterol monitoring, detecting the presence of different infectious

agents, jointly executing an application-specific task as nanocomputers. Several communica-

tion paradigms are considered for use in nanonetworks, but the most promising is molecular

communications, where molecules are used to encode, transmit and receive information. In-

deed, the human body is a large-scale heterogeneous communication network of molecular

nanonetworks as it is composed of billions of nanomachines, i.e., cells, whose functionalities

primarily depend on nanoscale molecular communications. Any communication failure that

is beyond the recovery capabilities of this network leads to diseases. Therefore, identifying

the intra-body molecular nanonetworks, realistically modeling the molecular communication

channels, analyzing and understanding its network and information theoretical capabilities

and shortcomings, and ultimately contributing to the development of bio-inspired solutions

for nanonetworks and information and communication and technology (ICT)-inspired solu-

tions for certain diseases are the interdisciplinary objectives of our research. Furthermore,

through the multiple-access synaptic communication channel model of neurons, it is possible

to analyze the failures in neurons via action potential transmission characteristics. It is also

possible to understand the main mechanisms behind learning, such as the effect of correlation

and interference among multiple neurons. Moreover, through the molecular puffing-based

nanomachine model, we mimic and extract the communication mechanism behind the alarm

situations that require a sudden release of a limited amount of pheromones. In the subsequent
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sections, we summarize our contributions and specify open issues in molecular communica-

tion nanonetworks and their performance analysis.

6.1 Contributions

In this section, we sum up the contributions of each chapter and underline the important

results.

6.1.1 Molecular Communication Nanonetworks inside Human Body

Molecular communication has been a promising field for nanoscale communication applica-

tions, and state-of-the-art technology enables the production of nanomachines, i.e., simple

nano devices capable of a wide range of tasks, especially for ICT and nanomedicine applica-

tions.

Human body itself has never been predicated on a resource for ICT field although it houses

different kinds of communication channels, and nanonetworks of sensory, signaling and molec-

ular pathways. Besides, the overall internal network, that we term as human internal Internet

in this thesis, supports the integrity of all biological systems by various controlling mecha-

nisms through communication of molecules and signals, as information carriers.

6.1.2 Synaptic Multiple-Access Channel in Hippocampal-Cortical Neurons

Synaptic communication has a very crucial role in learning and memory processes. In this

thesis, we investigate the rate region for SISO synaptic communication channel model, and

observe the time course of postsynaptic firing rate, and its dependence on dynamics of vesi-

cle release process and docked pool features. Furthermore, we extend the single terminal

model to multiple-access synaptic communication channel model and observe how the total

information rate adds up. Moreover, we analyze the contribution of first-order correlation on

the information rate at the postsynaptic neuron terminal. Our analysis puts forth the boosting

effect of spike correlation on the postsynaptic rate. Finally, investigating the disorders charac-

terized by pre- and postsynaptic and synaptic abnormalities, we reveal the potential relations

between neuronal coefficients and disorders.
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6.1.3 Adaptive Weight Update in Cortical Neurons and Estimation of Channel Weights

in Synaptic Interference Channel

Synaptic communication has a very crucial role in learning and memory processes. In this

thesis, we investigate the effect of interference among the presynaptic terminals in SISO and

MISO synaptic communication channels. We show that synaptic transmission performance is

enhanced as stronger connection strengths are established. Furthermore, in comparison with

maximum achievable rates in neuronal synaptic interference channel, we show that actual

adaptive synaptic weight update mechanism performs close to best achievable characteristics,

and also enables high communication performance in terms of postsynaptic rate.

6.1.4 Rate-Delay Tradeoff in Molecular Nanonetworks

Molecular communication is a promising field open to evolution because of its feasibility in

a vast variety of fields, such as environment, industry, military and especially biomedicine.

Biomedical applications utilize messenger-based approaches that have crucial roles in inter-

vening in biological processes to artificially control biosystems. For this reason, we build

our analysis on a specific case of messenger-based molecular communication model. First,

we model the puff propagation using a Brownian motion model. Next, using this model, the

mathematical relation between reception rate and message delay is extracted to justify the

tradeoff between them. Then, this model is applied to a simple nanonetwork in two different

cases, namely, uncoded and network coded cases. Finally, the expressions of rate and delay

are evaluated for both cases.

6.2 Future Research Directions

Investigation of the fundamental intra-body communication paths, and their role in provid-

ing the integrity of all biological systems through nanonetwork relations broadens the con-

tributions and promotes the development of ICT field. Thus, with this background, ICT is

anticipated to give substantial contributions for the development of nanoscale molecular com-

munication networks inspired from human’s biological network, and to pave the way for

developing ICT inspired curing strategies for intra-body diseases.
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The analysis on the synaptic multiple-access channel could be extended to observe the effect

of multi-order correlations among presynaptic terminals on the postsynaptic performance.

Open issues also include the detailed analysis of interference among multi-terminal neuronal

connections.

Our analysis on rate and delay tradeoffs in molecular nanonetworks shows that high data rate

and negligible propagation delay cannot be achieved simultaneously as opposed to an ideal

communication system. The tradeoff should be exploited in delay or rate sensitive molecular

nanoscale applications. This pioneering work constitutes a basis for rate and delay optimiza-

tion of future nanomolecular frameworks.
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