

Constraint Programming Approach to Quay Crane

Scheduling Problem

by

Celal Özgür Ünsal

A Thesis Submitted to the

Graduate School of Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Industrial Engineering

Koç University

February, 2013

Koç University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a master’s thesis by

Celal Özgür Ünsal

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Date: 08.02.2013

Ceyda Oğuz, Ph.D. (Advisor)

Serpil Sayın, Ph.D.

Deniz Aksen, Ph.D.

ABSTRACT

Minimizing the average vessel berthing time is one of the challenges for container

terminals. Since containers are deployed from vessels by a quay crane, operations of

this huge equipment may cause a bottleneck for the overall performance of a terminal.

This study examines the quay crane scheduling problem (QCSP) at the seaside of

container terminals. The QCSP requires completion of all loading and unloading

operations of a berthed vessel. A constraint programming (CP) model, which consists of

global constraints and propositional logic, is constructed by taking numerous properties

of the problem such as safety margins, travel times and precedence relations into

account. The performance of the proposed CP model is compared with algorithms

presented in recent QCSP literature. The result from the computational experiments

indicates that the proposed CP model is able to produce good results for the QCSP

while reducing the computational time. Lastly, to show the robustness and the flexibility

of the proposed model, extensions of the problem with ready times and time windows

are also discussed.

Keywords: Quay Crane Scheduling, Constraint Programming, Container Terminals,

Ready Times, Time Windows

ÖZET

Gemilerin rıhtıma bağlı kalma sürelerinin enazlanması konteyner terminallerinin önemli

sorunlarındandır. Bu çalışmada konteyner terminallerindeki rıhtım vinci çizelgeleme

problemi incelenmiştir. Rıhtım vinci çizelgeleme (RVÇ) probleminde rıhtıma yerleşmiş

bir gemideki tüm konteynerlerin boşaltılması ve yerine yeni konteynerlerin yüklenmesi

işlemlerinin tamamı gerçekleştirilir. Bu problem için vinçlerin hareket süreleri, güvenlik

mesafeleri, işlerin öncelik ilişkileri, vinçlerin birbirini geçmemesi gibi birçok kısıt

içeren zengin bir kısıt programlama (KP) modeli geliştirilmiştir. Bu KP modeli,

literatürde daha önce yapılmış düzeltmeler dikkate alınarak, tamamen evrensel kısıtlar

ve basit mantıksal kısıtlarlarla oluşturulmuştur. Geliştirilen KP modelinin performansı,

literatürde sunulan en güçlü çözüm yöntemleriyle karşılaştırılmıştır. Hesaplamalı

deneyler, RVÇ problemi için geliştirilen KP modelinin istikrarlı bir biçimde en iyiye

çok yakın sonuçlara daha önceki çözüm sürelerini önemli miktarda azaltarak ulaştığını

göstermiştir. Yöntemin esnekliğini göstermek için RVÇ probleminin vinçlerin hazır

olma sürelerinin ve zaman pencerelerinin olduğu çeşitleri de çalışılmıştır.

Anahtar Kelimeler: Kısıt Programlama, Konteyner Terminalleri, Rıhtım Vinci

Çizelgeleme , Hazır Olma Zamanları, Zaman Pencereleri

to Rococo…

TABLE OF CONTENTS

List of Tables

List of Figures

Chapter 1: Introduction 1

1.1 Container Terminals

1.2 Significance

1.3 Operations in Container Terminals

1.3.1 Seaside Operations

1.3.1.1 Berth Allocation

1.3.1.2 QC Allocation

1.3.1.3 QC Scheduling

1.3.1.4 Stowage Planning

1.3.2 Landside Operations

1.3.2.1 Operations in Storage Area

1.3.2.2 Transportation Operations

1.4 Container Flows

3

6

7

7

8

9

9

10

10

11

12

Chapter 2: Quay Crane Scheduling Problem 14

2.1 Problem Definition

2.2 Literature Review

2.3 Assumptions

14

17

21

Chapter 3: Methodology 23

3.1 Propositional Logic

3.2 Constraint Programming

3.2.1 Modeling

3.2.1.1 Interval and Sequence Variables

3.2.1.2 Global Constraints

23

23

25

26

27

3.2.2 Constraint Filtering

3.2.3 Search

28

28

Chapter 4: Modeling and Solving QCSP 31

4.1 Common Deficiencies in QCSP Literature

4.2 MIP Model of QCSP

4.3 Constraint Programming Model

4.4 Lower Bounds for QCSP

4.5 Descriptions of the Constraints

4.5.1 Makespan Constraint

4.5.2 Assignment Constraint

4.5.3 Non-Overlapping Constraint

4.5.4 Non-Interference Constraint

4.5.5 Safety Margin Constraint

4.5.6 Non-Allowed Assignments Constraint

4.5.7 Travel Times Constraint

4.5.8 Revised Travel Times Constraint

4.5.9 Precedence Constraint

4.5.10 Non-Crossing Constraint

4.5.11 Revised Non-Crossing Constraint

4.5.12 Correction of the Deficiency Caused by Idle QCs

4.6 QCSP with Ready Times

4.7 QCSP with Time Windows

4.8 Advantages of Using CP

Chapter 5: Computational Experiments

 5.1 Design of Computational Experiments

5.2 Search

5.3 Results

5.3.1 Results of Set B for QCSP

5.3.2 Results of Set C for QCSP

5.3.3 Results of Set C for QCSP with Ready Times

5.3.4 Results of Set C for QCSP with Time Windows

32

33

37

41

44

44

45

46

47

48

49

51

52

52

54

56

57

59

62

63

63

68

69

72

75

76

77

Chapter 6: Conclusion 77

References

Appendix A: OPL Model and Data for QCSP

Appendix B: New Set B results for benchmark instances

Appendix C: New Set C results for benchmark instances

Appendix D: New Set C results for QCSP with ready times

Appendix E: New Set C results for QCSP with time windows

80

85

90

92

94

96

LIST OF TABLES

Table 1.1: Workload of some CTs

Table 2.1: Comparison of QCSP literature

Table 5.1: Task-per-bay ratios

Table 5.2: Overview of computational experiments

Table 5.3: Results for each instance of Set B

Table 5.4: Average results for Set B

Table 5.5: Results for each instance of Set C

Table 5.6: Average results for Set C

Table 5.7: Results for each instance of Set C (with ready times)

Table 5.8: Results for QCSP with ready times

Table 5.9: Individual %RSD values

Table 5.10: Results of QCSP with time windows instances

Table 5.11: Average results for QCSP with time windows

LIST OF FIGURES

Figure 1.1: Seaside operations in container terminals

Figure 1.2: A representation of QCs working on a vessel (Kim and Park

(2004))

Figure 1.3: A container

Figure 1.4: A general representation of maritime container terminal

Figure 1.5: A quay crane

Figure 1.6: Representation of container positions on a vessel

Figure 1.7: Container flows

Figure 2.1: Positioning of QCs and bays

Figure 2.2: A drawing of QCs working on a vessel

Figure 2.3: Initial positions

Figure 3.1: A general framework for LNS

Figure 4.0: Berthed container vessels

Figure 4.1: An example of constraint set 12

Figure 4.2: Safety margin constraint

Figure 4.3: Travel times of a QC

Figure 4.4: Non-crossing constraint

Figure 4.9: A modeling deficiency

Figure 4.5: A modeling deficiency

Figure 4.6: Representation of QCSP with ready times

Figure 4.7: QCSP with time windows

Figure 5.1: QCSP with ready times instance

Figure 5.2: QCSP with time windows instance

Chapter 1: Introduction 1

CHAPTER 1

INTRODUCTION

As the distance between manufacturing and consumption locations increases, the

container traffic and the competition between the container terminals grow accordingly.

To exist in this competitive market, the container terminal operations must be efficient.

In any container terminal, all of the inbound and the outbound containers pass through

the seaside. Some important seaside operations in container terminals and their

relationships are shown in Figure 1.1. Therefore, a container terminal management

should allocate berth positions, assign (allocate) and schedule quay cranes for each

vessel which is going to arrive to the terminal.

Comprehensive surveys for the problems related to the seaside operations in

container terminals are presented by Vis and de Koster (2003), Steenken et al (2004),

and Stahlbock and Voß (2008).

In this thesis, scheduling of quay cranes is studied. A quay crane (QC) is huge

equipment which is used to load and unload container vessels in container terminals

(see Figure 1.2). The speed and the reliability of QC operations strongly depend on

work schedules which are projected for the QCs. In the real-world, the quay crane

Figure 1.1: Seaside operations in container terminals.

Chapter 1: Introduction 2

scheduling significantly affects the waiting time of a container vessel since quay cranes

are the interface between the land and the water side in any port container terminal.

At the same time, a QC is the most expensive equipment in any container terminal

and this restricts the number of QCs that a terminal equips. Therefore, it is a prerequisite

to carry out QC operations efficiently to provide a high quality service to vessels with a

limited number of QCs.

Also the nature of the problem will entail a large number of side constraints.

Accordingly there is a need for an alternative solution technique which can respond to

wide variety of changes (additions) in the problem. Therefore the motivation in this

thesis is to propose a solution technique to QCSP which is not only able to generate

high quality results, but also is flexible to the changes in the problem.

The thesis is organized as follows. In Chapter 1, some key elements of container

terminals are described. Then container terminal operations are classified and briefly

introduced. Chapter 2 describes the problem and then gives a comprehensive literature

review. The methodologies used in this study are explained in Chapter 3; that is, a

general introduction to constraint programming is presented. Firstly in Chapter 4, a

mixed integer programming (MIP) model for QCSP is introduced. Then a new

constraint programming model which is functionally analogous to MIP model is

proposed for QCSP and a bin packing based mixed-integer programming model is

developed for a relaxed version of the QCSP to find a lower bound to the original one.

Later in Chapter 4, two different extensions of the problem, QCSP with ready times and

QCSP with time windows are studied. At the end of Chapter 4, computational

experiments and their results are also explained and discussed in details. The thesis

concludes in Chapter 5 with a discussion of future research possibilities.

Figure 1.2: A representation of QCs working on a vessel (Kim and Park (2004)).

Chapter 1: Introduction 3

1.1 Container Terminals

In this section, some important concepts related with container terminal operations

are introduced. Then a brief introduction to operational problems that exist in container

terminals is made. Comprehensive surveys for these problems can be found in Vis and

de Koster (2003), Steenken et al (2004), and Stahlbock and Voß (2008).

 1.1.1 Container

A container is a box-shaped equipment which is used to transport goods from one

destination to another. Standard sizes for containers are 20-foot (6.1 m) and 40-foot

(12.2 m) and the standard measure of a container is called TEU, which is equivalent to

20-foot container. Total workload and capacity of the container vessels are often

represented in TEUs. Most common container types of this size are 1-TEU dry

(standard), 2-TEU dry, open top, refrigerated and flat rack. All of these containers are

built by considering some international standards to make them interchangeable

between different companies and carriers. This standardization helps to carry and

handle containers easily by all means of transportation. Also containers are

manufactured from very strong materials. For this reason, they can be stacked easily. A

proper type of a container is the most secure alternative to transport goods without

being damaged.

To sum up containers are widely used, because a container is;

 safe and enduring,

 can meet different kind of

requirements,

 easy to handle,

 and easy to storage in

stacks.

1.1.2 Container Terminal

Since first container vessel docked in 1956, containerization of cargoes is becoming

ever more popular worldwide and almost all type of goods are now transported by

Chapter 1: Introduction 4

containers. Containers supported a vast increase in overseas trading by allowing the

effective transportation of goods over long distances. This intercontinental container

traffic passes through a large number of container terminals all around the world.

Container terminals are huge facilities where containers are transshipped between

different vehicles, for onward transportation. There are two types of container terminals;

maritime container terminals and inland container terminals. Maritime container

terminals are located at a seaside and provide connection between sea-freight and means

of land transportation. Usually they are located around major harbors. On the other

hand, inland container terminals are the connection points for different means of land

transportation. They are usually located in territories with good rail connections to

maritime container terminals.

In this thesis, from now on, a container terminal (CT) will refer to maritime container

terminals. The most general representation of a CT can be found in Figure 1.4 below.

Figure 1.4: A general representation of a maritime container terminal.

As previously denoted, a CT connects sea-freight to land transportation. Then, any

CT can be divided into two major areas based on operations performed; seaside and

landside. At the seaside, container vessels dock to berths and their loading and

unloading operations are completed by a set of quay cranes. At the landside, there is a

storage area in which containers are temporarily stored in stacks. Trucks and/or

Chapter 1: Introduction 5

automated guided vehicles (AGVs) transfer containers between the seaside and the

storage area continuously. Moreover the containers which are coming from (or going to)

land transportation are also transferred between storage area and gates of CT by trucks

and/or AGVs.

1.1.3 Quay Crane

A quay crane (QC) is a huge equipment which is used to load and unload container

vessels in container terminals (see Figure 1.5). There must be a number of QCs at the

seaside of any maritime container terminal because it is the one and the only equipment

to load (unload) containers to (from) vessels.

Therefore their workload is very intense and they often restrict the performance of

whole container terminal. Having and operating dozens of QCs would be better for the

performance of any container terminals, however, at the same time it is very costly to

purchase and operate even a single

QC. The purchasing cost of a QC is

more than 5-million dollars.

Therefore, there is an important

trade-off for QCs: “service speed

vs. cost”.

As a result, it is very crucial to

operate QCs effectively in any

container terminal.

1.2 Significance of CTs

Today, most of the cargoes are transported by sea-freight around the world (Ebeling

(2009)). According to this, most of the CTs are facing with very intensive levels of

workload. This intensity mainly centered at far-east countries because of the cheap

labor. Even western companies tend to manufacture their products in areas where labor

Figure 1.5: A quay crane.

Chapter 1: Introduction 6

costs are relatively low, and then transport products to all around the world by container

vessels because sea-freight is at least five-times cheaper than rail, truck and air freight.

The workload of some major CTs in 2005 and 2010 are listed in Table 1.1 below.

Table 1.1: Workload of some CTs.

ng

1 Shanghai 18,084 29,069 60.8

2 Singapore 23,192 28,431 22.6

3 Hong Kong 22,427 23,699 5.7

48 Ambarlı-İstanbul

İstanbul

1,446 2,540 75.7

These numbers alone do not indicate much; however, if these numbers are converted

to daily workload in terms of approximate number of vessels, the intensity of the

workload can be understood clearly. For example, based on 2010 data, the daily average

of 333 container vessels were arrived to Hong Kong container terminal, and

approximately 65,000 containers were loaded and unloaded every day. This huge

amount of workload makes sense here for quay crane scheduling operations since every

single container must be loaded and unloaded by QCs. Operations of QCs are a key

factor for the productivity of a container terminal because it is the operation with the

highest workload and is often causing a bottleneck for the performance of not only

seaside operations, but also the whole container terminal.

Recently, the advantages of using sea-freight are started to be recognized in Turkey.

Therefore, with an increasing demand to this transportation method, the need for new

CTs and additional capacities for existing ones is also becoming a current issue in

Turkey. As can be seen in Table 1.1, between 2005 and 2010 the largest increase of

workloads among these four CTs is observed in Ambarli, İstanbul container terminal

and this trend towards sea-freight is expected to continue.

Chapter 1: Introduction 7

1.3 Operations in Container Terminals

As previously mentioned, operations in container terminals can be divided into two

as seaside and landside operations.

1.3.1 Seaside Operations

The major seaside operations consist of berth allocation, quay crane allocation

(assignment) and quay crane scheduling. These three activities must be performed

sequentially. Seaside operations for each vessel start with approaching of a vessel to CT

and finish with the departure of this vessel. Also stowage planning is required to define

the layout of containers on a vessel.

1.3.1.1 Berth Allocation

A berth position must be allocated for each vessel which is scheduled to arrive to a

CT. Schedules of large ocean vessels can be known couple of months in advance,

however CT managements made exact decision for their berth allocations closer to their

arrival because lots of smaller-sized vessels also arrives with more immediate

notifications of their schedules. Often berth allocation for a large ocean vessel begins

two or three weeks before its arrival. The decision for berth allocation also requires a

careful investigation of some parameters, for example, availability of different depths of

berth positions, length and workload of vessels, priorities, etc. Also there can be

different objectives for this problem; however, most of the time minimizing the average

waiting times for arriving vessels and minimizing the total distance between all vessels

on the berth is considered. The former is mainly for the benefit of vessels, while the

latter is desired by CT practitioners for performing more effective QC operations.

Berth allocation problem (BAP) is often modeled as a two-dimensional bin-packing

problem (Lim (1998)), while a bin is considered as a space-time graph. In this

representation, each rectangle in the bin represents the berthed vessel where vertical and

horizontal axes stand for its berth position and handling time, respectively. Of course,

all rectangles in a bin must be non-overlapping. Lim (1998) also proves that BAP is NP-

complete, and develops an effective problem specific heuristic. Nishimura et al (2001)

study dynamic berth allocation problem and develop a genetic algorithm to solve this

Chapter 1: Introduction 8

problem. Hansen et al (2008) solve the problem effectively with a variable

neighborhood search. Comprehensive literature review and a classification scheme for

BAP can be found in Bierwirth and Meisel (2010).

Since berth allocation is the first decision made by a CT for each arriving vessel, it

affects the performance of other CT operations. Hence one can claim that the decision

of berth allocation is strongly related with allocation of QCs (Bierwirth and Meisel

(2010)).

1.3.1.2 Quay Crane Allocation

Based on the berthing plan of arriving vessels, quay cranes must be allocated to these

vessels by considering that QCs operate on a same rail-track. The number of QCs to be

allocated to a vessel mainly depends on the amount of total workload and the priority of

each vessel. We have to choose between two planning alternatives while allocating

QCs:

- QCs are allocated to a vessel to complete all of jobs on this vessel; that

is, the number of QCs assigned to a vessel is the same during whole makespan.

It would be easier for planning and operating QCs; however at the same time it

causes QCs to have lower productivities and a decrease in overall performance

of seaside operations (Bierwirth and Meisel (2010)).

- The number of QCs can change during the operation, which allows a

terminal to reach higher overall performance. On the other hand, it is very

complex for planning and operating QCs. It will lead CT management to solve

more complex QC scheduling problems with ready times or time windows.

Detailed explanations of these problems can be found in Sections 4.5 and 4.6.

On average two to six QCs operate at a single ocean vessel. Studies for the problem

of allocating QCs (QCAP) are often integrated with BAP and the problem of scheduling

of QCs (QCSP) because considering QCAP itself often gives impractical and inefficient

output for overall performance of CTs. Integration of BAP and QCAP is studied by

Chapter 1: Introduction 9

Blazewicz et al (2011) and Park and Kim (2003), and of QCAP and QCSP is studied by

Tavakkoli-Moghaddam et al (2009).

1.3.1.3 Quay Crane Scheduling

This operation consists of scheduling QCs to load and unload berthed vessels. The

input for this operation is the plan of the workload of a vessel and the complete

allocation information of QCs to this vessel. Detailed problem definition and literature

review for this operation will be given in the next chapter.

1.3.1.4 Stowage Planning

A stowage plan of a vessel defines the location of containers over the vessel. Each

location is defined as a triplet of <bay-row-tier>. Each container vessel is split into

longitudinal parts which are termed as bays. Row is the position in which the container

is placed across the width of the vessel. Tier indicates that at which level a container is

placed, namely how high the container is stacked. Figure 1.6 depicts a representation of

a stacking area of a vessel.

This plan is updated at each port the vessel visits. Both shipping lines and CT

management involve in this planning process at different levels. Most of the input

parameters to schedule QCs –precedence relationships, processing times, bay locations-

are determined based on the stowage plan of the vessel.

1.3.2 Landside Operations

Some crucial operations are run continuously at the landside, as in the seaside.

Landside of a CT consists of storage area, intermodal transportation vehicles, stacking

equipment and gates which are providing the only connection of a CT with means of

land transportation (trains and/or trucks). Some important operations in storage area and

the means of intermodal transportation are described below.

Chapter 1: Introduction 10

Figure 1.6: Representation of container positions on a vessel.

More information about stowage planning can be found in Wilson and Roach (2000).

1.3.2.1 Operations in Storage Area

Number of containers to be stacked in the storage area has increased accordingly

with the volume of sea freight traffic. Almost every container needs to be stored in

stacks for some amount of time because it is very hard to match arrival and departure

times of different means of transportation to which a container is assigned. Accordingly,

a storage area can be considered as a scarce resource and this fact makes the

optimization of a storage area more important. For each container which needs to be

temporarily stored in the CT, the terminal management has to select a storage position

in terms of block, bay, row and tier with the same pattern as represented in Figure 1.6

above. Often there are different storage areas available for different types of containers.

The distance of the storage position to the arrival and the departure points of a container

is one of the key measures while allocating a storage position for a container. However,

consideration of remarshalling and reshuffling of containers makes the problem harder.

Firstly, a number of reshufflings in the whole storage area need to be minimized. A

reshuffling in a stack occurs when a specific container which is not directly accessible,

Chapter 1: Introduction 11

needs to leave the stack. That is, to reach this specific container, all other containers

which are placed on its top must be removed first and restacked again after removal.

 The other important measure is the number of total moves, which is remarshalling.

A remarshalling refers to a more general concept; every move of a container (removal,

shifting, transfer and etc.) in a storage area called remarshalling. For an example move,

a container can be transferred to other stacks to prevent potential reshufflings. Therefore

it is also important to minimize the total number of moves of containers in a whole

storage area. Even a single move of a container took some significant time; therefore,

effective operations of storage area can reduce the overall handling time significantly.

Different storage allocation strategies are presented and discussed by Vis and de

Koster (2004). Storage allocation can be considered as a dynamic operation, since also

arrive after the start of the planning period. Accordingly, dynamic approaches are

proposed by Kim et al (2000) and Kim and Park (2003).

1.3.2.2 Transfer operations

There are many different transfer and handling equipments used at the landside. Most

common ones are AGVs, trucks and yard cranes.

Containers are transferred between QCs, storage area and gates of the terminal by

AGVs and trucks. Automated systems are hard to operate and requires some

considerable investment but offer more effective transfer operations. More information

about operating AGV systems can be found in Qui et al (2002). Note that, the

management of complex AGV systems can be considered as one of the trending

subjects in container terminal optimization.

In storage area, stacking operations are carried out by yard cranes. Yard cranes for

the same block operate on the same rail-track, therefore their scheduling operations

requires a non-crossing constraint similar to scheduling of QCs.

1.4 Container Flows

Containers can also be classified based on their routes. First of all, an export

container arrives to CT by land transportation and waits in the storage area until loaded

Chapter 1: Introduction 12

to a vessel. On the other hand, import containers arrive by vessels and then depart the

terminal by land transportation. Transit containers arrive by vessels, stacked in a storage

area temporarily until loaded to another vessel. Each category of containers follows

different operations flow in the terminal. General operations flow of different types of

containers in container terminals represented in Figure 1.7.

Chapter 1: Introduction 13

Figure 1.7: Container flows.

Chapter 2: QC Scheduling Problem 14

CHAPTER 2

THE QUAY CRANE SCHEDULING PROBLEM

2.1 Problem Definition

The quay crane scheduling problem (QCSP) is to find a schedule for the loading and

the unloading of tasks of a single vessel by using a set of quay cranes with the aim of

optimizing some objective function. In more detail, we are given a set of tasks

 , which are on a set of bays , and a set of assigned

quay cranes where and stand for number of tasks,

bays and quay cranes, respectively. A very general representation of the QCSP of a

single vessel with these parameters is shown below, in Figure 2.1.

Figure 2.1: Positioning of QCs and bays.

Each task must be performed by a single QC without preemption. QCs are

operated on the same track; consequently, they cannot cross each other. Each task has a

processing time which represents the time required to complete task by any

crane. The problem is to find time-intervals in which the tasks are processed by the

cranes with respect to a wide variety of problem constraints. Most of the time, the

objective is to minimize the completion time of the latest completed job (makespan).

Chapter 2: QC Scheduling Problem 15

This problem with makespan minimization is NP-hard (Lim et al (2007), Lee et al

(2008)).

 Figure 2.2: A drawing of QCs working on a vessel.

The more realistic representation of a general instance of the problem can be found

in Figure 2.2. In this instance, and are defined as 10 and 3, respectively.

However the number of tasks would be varied based on the definition of task.

The definition of a task divides the general QCSP into two major classes:

 QCSP with complete bays, in which a vessel is divided into parts longitudinally into

bays. A single task consists of all unloading and loading tasks of a bay.

 QCSP with container groups, in which a task represents a group of containers that

are stored in a bay and usually have a common destination.

To compare two major classes in the simplest way, in QCSP with complete bays, the

maximum number of tasks equals the number of bays. However, in QCSP with

container groups, there can be more than one container group in a single bay; hence, the

number of tasks is not restricted and can be more than the number of bays. In the

literature, these two classes are treated separately according to a survey conducted by

Bierwirth and Meisel (2010).

In this thesis a task is defined as a container group and accordingly number of tasks

per bay is more than one, more precisely, varies between 3 and 5. From now on, QCSP

will refer to QCSP with container groups in rest the of the thesis.

Two important decisions must be made to solve this problem. First, each task must

be assigned to one and only one quay crane (QC). The latter is to schedule these

Chapter 2: QC Scheduling Problem 16

assigned tasks for each QC. From this perspective, the problem can be considered as a

fundamental planning and scheduling problem which consists of assignment part as

planning and then generating schedules based on this plan.

Furthermore, the roots of the QCSP come from the parallel machine scheduling

problem (Guinet (1993)) where a QC is a machine and a container group (or a complete

bay, based on the definition) is a task. Then each task must be processed with one of the

machines which are identical and have capacity of one. However, QCSP is harder than

the general parallel machine scheduling problem because of five additional constraints.

1. Non-crossing constraint: QCs are moving on the same rail-track, hence QCs

cannot cross each other.

2. Non-interference: QCs must not interfere with each other, namely, at any

time only one QC can work on a single bay.

3. Safety Distances: Other than non-interference constraint, at any time there

should be a predefined space between two adjacent QCs to avoid some

potential collusions on a rail track.

4. Precedence relationships among tasks based on a stowage plan (also may

exist in parallel machine scheduling).

5. Travel Times: It takes some time for a QC to travel horizontally on a rail-

track between bays. This constraint of the problem corresponds to sequence

dependent setup times in parallel machine scheduling.

As a result, it can be easily stated that an instance of a QCSP with machines and

tasks is harder than the same instance of a parallel machine scheduling problem with

precedence relationships and sequence dependent setup times. Note that, solving the

latter problem itself is even very hard (Lenstra et al (1977)).

Chapter 2: QC Scheduling Problem 17

2.2 Literature Review

As previously stated, the definition of task divides the general QCSP into two major

classes:

a) QCSP with complete bays, in which a vessel is divided into parts longitudinally into

bays. A single task consists of all unloading and loading tasks of a bay.

b) QCSP with container groups, in which a task represents a group of containers that

are stored in a bay and usually have a common destination.

In this study, the latter is considered. In the existing literature these two classes are

treated separately according to the survey of Bierwirth and Meisel (2010). In this

survey, the authors investigate berth allocation problem and QCSP literatures

comprehensively and they develop classification schemes for both problems.

The QCSP with complete bays is introduced by Daganzo (1989) and it is also the

first QCSP article in the literature. In this study tasks can be preemptive; therefore one

bay can be served by more than one crane. A mixed-integer programming model which

considers more than one vessel is proposed. The objective is to minimize the weighted

sum of the completion times of tasks. However they do not take even non-crossing of

QCs into account and solve a problem which is very similar to parallel machine

scheduling of preemptive tasks with identical machines. Peterkofsky and Daganzo

(1990) solve the same mixed-integer programming model provided by Daganzo (1989)

by developing a branch and bound method.

Lim et al (2004) state that non-crossing of QCs can be easily established for QCSP

with complete bays by considering unidirectional schedules. In unidirectional

schedules, all QCs have only one and the same moving direction. They develop an

approximation algorithm to find feasible solutions. The objective is to minimize the

makespan of the schedule.

Zhu and Lim (2005) prove that the problem with non-preemptive tasks is NP-hard.

They formulate a mixed-integer programming model for QCSP with the objective of

makespan minimization. They develop a branch and bound method to obtain optimal

results. Also they apply a simulated annealing metaheuristic to QCSP to cope with

larger instances. However, the only constraint that they take into account is non-

crossing of QCs and this makes the problem much easier to solve.

Chapter 2: QC Scheduling Problem 18

Liu et al (2006) propose a mixed-integer-programming model for QCSP with

complete bays by considering unidirectional schedules. The objective is to minimize the

makespan of the schedule. The model considers moving speed and travel times of QCs,

initial QC positions and safety margins between QCs; therefore their problem is much

more complex than any other QCSP with complete bays study. However the last

positions of the cranes are always greater than their initial positions because of the

unidirectional schedules, hence all QCs must return to their initial position before any

new operation. It is not practical since it requires a non-negligible amount of travel time

for such operation.

In another study that deals with complete bays, Lim et al (2007) show that the

optimal solution can be found by searching all unidirectional schedules. The authors

also introduce that all unidirectional schedules can be obtained from QC-to-bay

assignments. Based on this premise, they develop a constraint propagation method,

simple approximation heuristics and a simulated annealing metaheuristic. Again, the

only constraint that they take into account is non-crossing of QCs.

Lee et al (2008) prove that the QCSP with complete bays is NP-hard. They formulate

a mixed-integer programming model which is derived from the model of Kim and Park

(2004). The objective is to minimize the makespan of the schedule. They develop an

efficient genetic algorithm to find near optimal solutions. In this study travel times of

the QCs are assumed to be zero. Also there is no interference between QCs since only

one QC serves a single bay. This situation holds for every QCSP with complete bays

study with non-preemptive tasks.

Lee and Chen (2010) identify some important deficiencies that are mainly found in

the models which are constructed based on the model of Kim and Park (2004). They

develop a couple of approximation algorithms by using dynamic programming after

resolving such deficiencies. Again, in that QCSP with complete bays study, they ignore

travel times of QCs. Similar to studies which are listed above they do not consider

precedence relations among tasks, safety margins (only exists in Liu et al (2006)) and

QC interferences.

The QCSP with container groups, which is the most complex QCSP class among

other classes, is formulated by Kim and Park (2004). In this problem, there can be more

than one crane assigned to a single bay. Therefore there may be some interference

among QCs and such interference must be avoided to obtain a feasible schedule. The

Chapter 2: QC Scheduling Problem 19

authors develop a detailed mathematical model that covers a wide variety of problem

constraints. The objective is to minimize the weighted sum of makespan of the schedule

and the completion times of QCs. They propose a branch and bound method to solve

small instances and a greedy randomized adaptive search procedure (GRASP) heuristic

for larger instances.

The mathematical model of Kim and Park (2004) is improved by the stronger

formulation of Moccia et al (2006). The authors also develop a branch and cut method

to solve the problem. Sammarra et al (2007) identify some interference among QCs in

Moccia et al (2006) and present a modified formulation. Then they solve the modified

QCSP model by using tabu search metaheuristic. Recently, Lee and Chen (2010)

identify some important deficiencies in container groups studies..

 Bierwirth and Meisel (2009) investigate and fix the QC interference constraints and

then develop a branch and bound based heuristic solution procedure for the problem.

The objective is to minimize makespan of the schedule. The authors also show that the

optimal schedules of QCSP with container groups do not have to be unidirectional

schedules.

Meisel and Bierwirth (2011) introduce a unified approach to compare different quay

crane scheduling problems. Moreover they provide a scheme for generating benchmark

instances with certain characteristics.

Meisel (2011) considers that QCs have definite time windows. In this problem, QCs

are only available in some certain time windows. The problem has a practical relevance

because in container terminals QCs are frequently redeployed between vessels to

provide faster service. For this version of QCSP with container groups, he formulates a

mixed-integer programming model by using previously fixed QC interference

constraints. The objective of the problem is makespan minimization of the schedule. He

also constructs a tree-search based heuristic to solve large size QCSP with time

windows instances.

Legato et al (2012) present a rich QCSP with numerous different properties of the

problem as ready times, time windows, crane dependent processing times (with non-

uniform QCs). They develop an independent-unidirectional heuristic called Timed-

Petri-Net to solve these different types of problems.

Recently, Chung and Choy (2012) develop a genetic algorithm based on the model of

Moccia et al (2006). The objective is to minimize makespan of the schedule. Although

Chapter 2: QC Scheduling Problem 20

it is the latest QCSP paper published in the literature, neither QC interference

deficiencies caused by travel times (Bierwirth and Meisel (2009)) nor other deficiencies

identified by Lee and Chen (2010) are considered.

In Table 2.1 below, overview of qualities for all of these studies are listed. Note that,

columns D1 and D2 shows the existence of corrections of modeling deficiencies

identified by Bierwirth and Meisel (2009) and Lee and Chen (2010), respectively.

Table 2.1: Comparison of QCSP literature.

Container

Groups

Complete

Bays

Preemptive
Precedence

Travel

 times

Non -

crossing

Safety

margin

Ready

times

Time

Windows
D1 D2

Tasks

Daganzo(1989)

x x

Peterkovsky and
Daganzo(1990)

x x

Kim and

Park(2004) x

x x x x x

Lim et al (2004)

x

x x

Moccia et

al(2006)
x

x x x x x

Ng and

Mak(2006)
x

x x x

Liu et al (2006)

x

x x x x

Zhu and

Lim(2006)
x

x

Lim et al(2007)

x

x

Samarra et

al(2007)
x

x x x x

Lee et al(2008)

x

x

Bierwirth and

Meisel (2009)
x

x x x x x

x

Lee and

Chen(2010)
x

x

x

Meisel(2011) x

x x x x x x x

Meisel and

Bierwirth(2011)
x x x x

x

Chung and

Choy(2012)
x

x x x x

Legato et al

(2012)
x

x x x x x x x

This study x

x x x x x x x x

Chapter 2: QC Scheduling Problem 21

The last column of Table 2.1 should be treated carefully. Some of these methods,

except that of Lee and Chen (2010) and our study, may be generating schedules which

do not allow assigned QCs to pass the boundaries of the vessel, while the corresponding

mathematical model that they represented as a base QCSP model in their studies are

contrarily allowing such movements. Each of the methods represented in these studies

should be carefully investigated to find out if they possess this deficiency.

2.3 Assumptions

The following assumptions are made for the QCSP:

 Every task must be completed by a single crane.

 Tasks are non-preemptive.

 QCs are identical and are operated on the same track.

 In a single bay, only one QC can work because of its size.

 The physical presence of idle QCs, if any, is not ignored. (Bierwirth and Meisel

(2009) and Lee and Chen (2010) both identified that, in most of the previous QCSP

models, ignoring idle cranes caused some deficiencies.) Idleness is a state of a QC

which is waiting in some bay without operating on any task. Based on findings of

the researchers, while a QC is idle, active QCs behave as if idle cranes do not exist

on the rail track in most of the literature.

 Two QCs cannot be operated simultaneously in adjacent bays; therefore there must

be one bay of safety margin between two adjacent QCs at any time.

 Travel time of a QC between two adjacent bays is one time unit.

 Allocated rail-track width must be equal to vessel size. This means that a QC

assigned to a vessel cannot travel out of the boundary of this vessel. Boundaries can

be defined as the rail-track area between leftmost (bay 1) and rightmost (bay)

bays of this vessel, including both. This assumption limits some task-to-QC

assignments; for example, QC cannot be assigned to a task on bay

 to keep QC within boundaries. If such an assignment is made, then

QC have to pass left side of the boundary because of the safety margin and

non-crossing requirements.

Chapter 2: QC Scheduling Problem 22

 Initial positions of QCs are ignored in this study. Initial positions of QCs may be

essential to generate unidirectional schedules, but in any non-unidirectional method,

some good solutions may be restricted by using pre-definite initial positions. Since

an optimal solution for an instance is directly dependent to initial positions of QCs,

in this study, a starting position of a QC is set to be the bay in which it starts

processing tasks in the schedule. That is, we are generating a schedule without

defining initial positions, and then QCs are starting from the bay of the first

scheduled task. In the literature, the QC schedules are evaluated somewhat non-

realistically because travel times of QCs from last positions to pre-definite initial

positions are completely ignored in a QC scheduling cycle (Figure 2.3).

Figure 2.3: Initial positions.

What is more, if we use pre-definite initial positions, then we may have a

different optimal solution for each permutation of these positions. However these

optimal results are always greater than or equal to the optimal value of the same

instance without pre-definite initial positions. Also there is no statistical or logical

evidence which shows that time units are longer than or even time

units. As a result, we prefer time units with optimal value rather than

with optimal value , while for each instance. As a result,

 in a strong sense.

Chapter 3: Methodology 23

CHAPTER 3

METHODOLOGY

In this chapter the methodologies that we used in this thesis are briefly introduced.

Constraint programming offers rich modeling language that supports using logical

constraints directly in the model and this type of constraints is widely used in the

constraint programming context for representing all kinds of problems. Accordingly, we

have used propositional logic multiple times in our CP model.

3.1 Propositional Logic

Propositional logic (or simply, logic) is a system in which formulas of a formal

language can be interpreted as propositions. The language of a propositional calculus

consists of logical operators. The operators are used in this thesis are AND (∧), OR (),

exclusive OR (⊻) and THEN (). A proposition can be “the weather will be rainy

tomorrow”, or “ ”. A proposition in logic context can only take values of true

or false.

Assume that and are different propositions. Then,

 is true if at least one of the propositions is true,

 ⊻ is true if exactly one of the propositions is true,

 ∧ is true if both of them are true,

 is true if is true regardless of ’s value or

is true if both of them are false.

 3.2 Constraint Programming

 Constraint programming (CP) is a technique that is used for representing and solving

combinatorial optimization problems which are hard to solve. Similar to mathematical

Chapter 3: Methodology 24

programming, CP is a combination of defining constraints about the problem via

decision variables and finding a solution that satisfies all of the constraints. However,

in CP, constraints are used actively to infer new constraints from the existing ones and

to the reduce domains of variables by removing inconsistent values which are violating

the constraints.

Constraint programming can be stated as a combination of three important

components: modeling, filtering and search.

A CP model can be represented as an instance of a Constraint Satisfaction Problem

(CSP) with the addition of concept of global constraints. In more details, a CSP is

defined by a set of decision variables , and corresponding set of

domains , , which defines the allowable values for these variables. There

are also constraints over these variables. Then the

problem is to assign values for all variables from corresponding domains, while

satisfying all constraints. The whole solution space for this problem (both feasible and

infeasible) can be represented as Most of the time this problem also

involves an objective function in CP context. A general CSP can be

represented as below:

 :

 .

Then, in CP, this problem is solved by using the combination of filtering and search;

simply, the domains of variables (or the search space) are reduced via constraint

filtering and good solutions are searched within these reduced search space.

3.2.1 Modeling

The most important property of constraint programming paradigm is its modeling. In

CP context, there are rich tools available for modeling. Therefore it allows representing

the real-world concepts more directly (Lustig and Puget (2001)). A CP model is often

Chapter 3: Methodology 25

considered independently from its solution strategy (propagation + search); that is, a

specific model can be solved by very different approaches.

First of all, CP supports the same domain types (Discrete, Continuous and Boolean)

with mathematical programming. Similarly the main scope is intensified over discrete

and boolean variables. Differently from mathematical programming, CP offers two

different types of decision variables; interval and sequence. Although these can be

considered as compound decision variables which are constructed from discrete and

boolean variables. They are unique and are allowing CP to have a very powerful and

compact language. These new type of decision variables is introduced in Section

3.2.1.1.

CP supports most of the constraint types; linear, non-linear, logical, global and etc.

By using well-known and simple constraint filtering algorithms, linear ()

and non-linear () constraints can be straightforwardly handled for

reducing domains of variables. Ability to use logical constraints makes CP to be able to

represent real-world constraints in a more declarative way. Assume that and are two

binary (Boolean) decision variables. A constraint ensures that, can take value

of “ ” (or 1), if and only if is also “ ”. As a result, the big-M technique is no

more required. This fact simply allows CP users to be more independent and creative

while building a model to represent real-world structures.

In CP context, there exists another important concept to represent the real-world

structures: global constraints. They allow representing complex structures in a very

direct way, most of the times with a single constraint. They also bring very effective

constraint filtering and this can be stated as one of the most important properties of the

constraint programming. Global constraints are discussed in Section 3.2.3.

3.2.1.1 Interval and Sequence Variables

The QCSP must be represented in terms of activities and resources to define some

concepts which are widely used in the proposed CP model. In this representation, the

tasks to be performed by quay cranes correspond to the activities and the quay cranes

correspond to the resources. Then each activity has a start time an end

time and a processing time . Each QC

is a unary resource, i.e., a QC can handle only one task at a time and this kind of

resources and activities refers to a well-known disjunctive scheduling problem. In

Chapter 3: Methodology 26

disjunctive scheduling, each resource can execute a single activity at a time and

accordingly the activities which are assigned to the same resource shall not overlap.

Therefore, if two different activities and are assigned to same unary resource,

then:

 ⊻

An interval variable (Laborie and Rogerie (2008)) is an interval of time during which

an activity is executed. The decision here is to select when to execute this activity

during the planning horizon. Each interval variable is characterized not only by a start

time, but also with an end time and a processing time and the presence information,

 . An interval variable can be optional; therefore, the activity can be left

unexecuted. In these situations, unexecuted activity is represented by

 . On the other hand, all executed optional interval variables are represented

by . This property of an interval variable helps to model

when there are activities that can be executed on a set of alternative resources. In this

study, a task can be executed on a set of QCs; therefore, optional interval variables are

used to model this case.

A sequence variable (Laborie et al (2009)) is a decision variable for which the value

is a permutation of some group of variables. Sequence variables can also keep transition

times between interval variables. We can simply construct the same model without

using any sequence variable; however, their presence brings more effective constraint

filtering. Hence sequence variables are also preferred to implement the travel times of

the QCs in this study.

3.2.1.2 Global Constraints

A global constraint in CP can represent the complex relationships between the

problem variables as a single constraint. Usually it captures most of the problem

variables, therefore provides faster and more effective domain reduction by using

specialized filtering algorithms. The most widely known global constraint is

 (), where is a decision variable with

 . It ensures that each variable must take a different value from its domain. In

Chapter 3: Methodology 27

contrast, constraints are required to represent such a relationship in a

mixed-integer programming model.

There are many different global constraints in the literature and two of them are

considered in this study. The constraint (Beck and Fox (1999))

simply assigns each activity to a single resource. The property of being optional of the

interval variables makes sense here. Assume that there are resources in the problem

and interval variable indicates that activity is assigned to a resource . Since each

activity is assigned to only one resource, variables are not taken into account

when .

Furthermore a global constraint ensures that the activities

which are elements of some set , should not overlap. That is,

 .

In other words, a disjunctive global constraint refers to disjunctive scheduling in

which activities performed on a unary resource. On the other hand, activities can be

performed on a resource that can process more than one activity at any moment. In CP

context, this type of resources denoted by () global

constraint where is the maximum capacity. Therefore, this cumulative constraint

stands for a resource with capacity and the number of activities performed on this

resource must be less than or equal to at any time. If , then this global constraint

is simply reduced to a constraint.

There are numerous global constraints to represent the real-world structures other

than presented in this section. More information can be found in “global constraint

catalog” of Beldiceanu (2010), which is the most comprehensive study over the

global constraints.

3.2.2 Constraint Filtering

Constraint filtering is a systematic way to reduce the domains of decision variables

by eliminating the inconsistencies in the model. This important process is accomplished

by different algorithms.

The most general constraint filtering algorithm type is arc-consistency. Arc-

consistency algorithms are mainly executed for all constraints except the global

Chapter 3: Methodology 28

constraints. The most well-known algorithm of this type is AC-3 (Bessiere et al (2005)),

which investigates all values in the domain of each variable, and removes the

inconsistent ones. Note that, a value-variable assignment is inconsistent if at least one

constraint is not satisfied.

A simple example can be given as follows: assume that there are three variables A, B

and C with the same domain of . Also there exist two constraints involving

these variables: and . By a simple inference, a new constraint

 can also be obtained. If every value of each variable is checked for these

three constraints, some inconsistent values can be straightforwardly removed from their

domains. As a result, initial domains are reduced to

 by constraint filtering, which leads to the reduction of the number of possible

assignments for these three variables from 125 to 36.

Additionally, global constraints have many specialized filtering algorithms. One can

refer to the studies by Régin (1994), and Lopez-Ortiz et al (2003) for alldifferent

constraint and by Baptiste and Le Pape (1996) and Vilim (2004) for

constraint. These kinds of filtering algorithms usually offer more effective domain

reductions by considering more than one relationship at once. Therefore in the

constraint programming context it is really important to represent the model with global

constraints as much as possible.

3.2.3 Search

Constraint filtering alone is not sufficient to find even a single feasible solution,

unless all domains are reduced to a singleton value, which is almost impossible for any

combinatorial problem. Thus, we need a search phase within reduced domains to find

feasible solutions. The most common, yet the simplest systematic approach to be used

in a search phase, is a tree-based constructive search called backtracking (Dechter et al

(1998)).

Backtracking is a search method that incrementally attempts to extend a partial

solution by assigning values to variables one by one toward a complete solution. The

feasibility of each assignment is checked via constraint filtering to make domains

consistent with the current partial solution. If a selection is inconsistent with any of the

problem constraints, the search backtracks to an upper node and tries another selection.

Chapter 3: Methodology 29

We can impose a strategy that defines which variables and values to be fixed first,

hence by applying different selection strategies the search can be completely directed.

The literature presents more complex constraint-based search methods (Focacci et al

(2002)). One of these powerful methods is Large Neighborhood Search (LNS) (Shaw

(1998)) in which a tree-based search (backtracking) is used with constraint

programming to evaluate the cost and the feasibility of the move in the local search.

Generally, this procedure is based on a process of continuous relaxation and re-

optimization; an initial solution is constructed first and then improved iteratively until

some stopping condition is satisfied (see Fig. 7).

Figure 7: General framework for LNS.

An iteration of relaxing a complete solution and re-optimizing the partial solution

can be considered as the examination of a powerful neighborhood move and therefore

the farthest parts of the search space can be reached by a single move. The process of

re-optimization can use the full power of the constraint programming via constraint

filtering and backtracking.

A different version of LNS is represented in Godard et al (1999) which generates

initial solutions and re-optimizes partial solutions by using the setTimes algorithm of Le

Pape (1994).

The general setTimes algorithm is presented above.

1. Let S to be the set of selectable (non-fixed) activities.

2. If all activities are fixed then exit with a solution. Otherwise go to step 3.

3. If set S is empty go to step 4. If set S is not empty:

Chapter 3: Methodology 30

a) Select an activity from S which has the minimum earliest start time, that

is, sort lowest elements of each domain increasingly and select the

activity corresponding to first element of this sorted list. If there is a tie,

select the one with smaller domain size (common case). If tie is not

broken, then select one of them randomly.

b) Create a choice point to allow backtracking and fix the start time of

selected activity to the lowest element of its domain. Turn back to step 2.

4. Set S is empty, then backtrack to most recent choice point. Upon

backtracking, mark the activity that was scheduled at the considered choice

point as “not selectable” as long as lowest element in its domain has not

changed. This prevents the algorithm to get stuck with same solutions by

selecting different activities. Turn back to step 2.

By applying setTimes algorithm once, starting times of all tasks are fixed and a

complete schedule is constructed. Godard et al (1999) also extend LNS by improving its

relaxation part because they argue that the relaxation scheme of Shaw (1998) lacks of

flexibility for scheduling problems. Accordingly, they relax an initial solution into

resource temporal network of current solution via partial order schedules (Laborie

(2003)), and then delete some parts of the solution in a randomized manner. By default,

ILOG’s CP Optimizer 12.3 uses the Self-Adaptive LNS approach of Laborie and

Godard (2007), which simply extends the work of Godard et al (1999) by adding a

learning scheme. Learning is a key factor in the robustness of the approach because it

helps to converge on the most efficient neighborhoods and completion strategies. Note

that, in this thesis we have used this version of LNS.

Chapter 5: Computational Experiments 31

CHAPTER 4

MODELING AND SOLVING QCSP

The comprehensive constraint programming model for QCSP which consist of

numerous properties of the problem is proposed in this section. Moreover, common

deficiencies found in QCSP literature by Lee et al (2010), Bierwirth and Meisel (2009)

and their corrections are introduced. The corrected version of MIP model is represented

just before individually representing the functions of the constraints of the proposed CP

model. Also two different extensions of the QCSP are also presented in this chapter.

For applicability of any QCSP study to real-world problems, constraints of the

problem should be reflected properly into the model. Therefore, the main motivation in

this study is to develop a model that not only works fast and is flexible for all sizes and

types of practical instances, but also is highly applicable in real-world container

terminals.

The aim during the modeling process is initially determined based on the

methodology which is used to model and solve QCSP. Hence, constraint programming

modeling context is widely investigated. Using effective global constraints instead of

complex model structures whenever possible will be a key to success for any CP model,

at least theoretically. Also keeping number of decision variables at minimum may

significantly affect the solution speed and quality since CP is a technique that mainly

works by reducing the domain of each decision variable. As a result, this CP model for

QCSP is constructed based on these premises. To sum up, it is aimed to use as much as

global constraints to model problem concepts while keeping the number of decision

variables used to represent the whole model at minimum.

4.1 Common Deficiencies in QCSP Literature

The feasible solutions provided by previous QCSP studies may result in

inappropriate and non-applicable schedules for the real-world problems. Hence this may

cause some important consequences, such as crane interference and different kind of

Chapter 5: Computational Experiments 32

inefficiencies. In this section, common deficiencies that are found in QCSP literature

are briefly discussed. Three important deficiencies of previous QCSP models are

identified and then treated in two recent articles, Lee and Chen (2010) and Bierwirth

and Meisel (2009). Although their problem classes are different, these deficiencies are

related with both problem classes.

The first deficiency is caused by the travel times of QCs. Travel times of QCs

between bays are supposed to be positive in most of the QCSP with container groups

studies. Accordingly, the movements of QCs must be carefully reinvestigated to

completely avoid potential crane interferences. Bierwirth and Meisel (2009) note that,

despite the fact that there were some treatments proposed in Moccia et al (2006) and

Sammarra et al (2007), some significant QC interferences are still exist on the feasible

schedules based on their movements along the rail-track. They show that QCs may

collapse or their safety margins may be violated in the schedules that are generated by

previous models. This deficiency and its treatment are introduced in Section 4.5.10 and

can be found in Bierwirth and Meisel (2009) in more details.

Secondly, Lee and Chen (2010) and Bierwirth and Meisel (2009) both identified

similar deficiencies in two independent studies. They show that simultaneous positions

of QCs may be disrespected in previous studies, especially when some of the cranes are

idle during the makespan. Most of the time, other QCs behave as if these idle QCs do

not exist on the rail-track in previous QCSP models. To get rid of this deficiency, there

must be enough distance between any two non-adjacent QCs at any time to

accommodate in-between QC(s) safely. QCs are huge equipment and simultaneous

positions of QCs must be respected. This deficiency and its treatment are also

introduced in more details in Section 4.5.12.

The last deficiency is identified by Lee and Chen (2010) and it is related with the

effective usage of the berthing area. All QCs are operated on the same rail-track,

therefore the effective allocation of the rail-track area is needed. In most of the real-

world cases, the workload of container terminals is very intense; so that berth

allocations for vessels can be very close. See the Figure 4.0 below for an example of

such a situation.

Chapter 5: Computational Experiments 33

Figure 4.0: Berthed container vessels

By this deficiency, they identified that if QCs which are allocated to complete

loading and unloading tasks of a definite vessel, pass the boundary of this vessel, then

these QCs enter other areas of rail-track, which are probably required to accomplish

loading and unloading operations of other vessels. It is not practically effective even if it

is not infeasible. To make the study more applicable in real-world problems, rail-track

areas must be allocated to berthed vessels, and these areas must be used effectively by

QCs. In this study, this fact is also taken into account by restricting the movements of

QCs. This deficiency and its treatment are also investigated in Section 4.5.6.

4.2 MIP Model of QCSP

In this section the mixed-integer programming model proposed by Bierwirth and

Meisel (2009) is introduced. The researchers build this model by taking the MIP model

of Kim and Park (2004) and the improvements of Moccia et al (2006) and Sammarra

 (2007) as a basis. In this thesis, model of Bierwirth and Meisel (2009) is also

extended with the correction of the deficiency noted by Lee and Chen (2010) for QCSP

with container groups.

Sets and Parameters

 number of QCs assigned to the vessel;

Chapter 5: Computational Experiments 34

 number of tasks of the vessel;

 number of bays of the vessel;

 set of tasks, ;

 set of QCs,

 processing time of task , ;

 location (bay) of task , ;

 travel time of a QC between two adjacent bays (0).

Dummy tasks and with processing times 0 are also added to be

able to model initial positions, then , , ;

 set of precedence constrained task pairs;

 number of in-between bays required to keep between adjacent vessels, namely

safety margin, ;

 set of all task pairs for which it is known in advance that they cannot be

processed simultaneously, . This set contains task pairs which are located

on adjacent bays as well as precedence constrained task pairs. It also contains the

fact that two QCs cannot operate at the same bay at the same time.

 ready time of crane ;

 initial position of crane , then -

 ∧

 a very large number.

Chapter 5: Computational Experiments 35

Decision Varibles

 completion time of task , ;

 binary decision variable that takes value

 1 if tasks and are processed consecutively by crane , ,

 0 otherwise;

 binary decision variable that takes value

 1 if task starts after the completion of task ,

 0 otherwise.

MIP Model

Chapter 5: Computational Experiments 36

 0

 0

 The objective is to find the smallest completion time of the latest task and is denoted

by (M1). The paths followed by QCs to complete tasks of the vessel are defined by

constraint sets (M2) to (M6). Precedence relationships among tasks are defined by

constraint set (M7). The variables are defined in constraint sets (M8) and (M9). In

order to express a safety margin of one bay, Sammarra (2007) include those pairs

of tasks in set that belong to adjacent bays. Constraints set (M10) ensure that these

tasks are not processed simultaneously. In constraint set (M11), the assignments of tasks

to QCs that are realized in the schedule are identified. Here,
 if task is

processed by QC , and
 if task is processed by QC . If both

assignments take place, the left-hand side reveals a value of two and the tasks are not

allowed to be processed simultaneously, i.e., either or . In the case of

 , constraint set (M12) insert the minimum temporal distances calculated by

between the completion time of task and the starting time of task . The corresponding

case of is handled by constraint set (M13). Initial positions of QCs are defined

by constraint set (M14). In this thesis, the deficiency is identified by Lee and Chen

(2010) is also corrected for QCSP with container groups. Therefore constraint sets

Chapter 5: Computational Experiments 37

(M18) and (M19) are added to MIP model to forbid some movements of assigned QCs

to keep them within boundaries of the vessel during the makespan.

4.3 Constraint Programming Model

In this section, a new constraint programming model to QCSP is proposed.

Sets and Parameters

 number of tasks of the vessel to be processed;

 number of bays in the vessel;

 number of quay cranes assigned to the vessel;

 set of tasks, ;

 set of bays, ;

 set of quay cranes, ;

 processing time of task . Each quay crane is identical; therefore

processing time for task is same for all quay cranes;

 set of precedence among tasks acquired from the stowage plan of a vessel, i.e.,

 ;

 location (bay) of a task ;

 the minimum required number of bays between two adjacent QCs at any time;

namely safety margin;

 sum of processing times of all tasks, i.e., ;

 set of tasks at bay , i.e., ;

 earliest starting time for task ; that is, total workload of predecessors of task ,

 i.e., .

Decision Variables

 an interval variable that represents the interval in which task is processed (by

any quay crane), ;

Chapter 5: Computational Experiments 38

 an optional interval variable that represents the interval in which task is

processed by quay crane , ;

Z an integer variable that defines the makespan, i.e. the maximum completion time

of all tasks by quay cranes, , where is a lower bound

on the optimum value of the makespan. The procedure to generate lower bound

 is presented in Section 4.4.

CP Model

The constraint programming model is formulated as follows:

Subject to:

 (1)

 (2)

 (3)

 (4)

 (5)

 (6)

 , (7)

 (8)

 ⊻

 (9)

Chapter 5: Computational Experiments 39

 ⊻

 (10)

 ⊻

 (11)

The objective function is to minimize the completion time of the latest QC which is

calculated by constraint (1). Constraint set (2) is a global constraint to assign each task

to one and only one QC. The following two constraints are global constraints to forbid

definite tasks to overlap. Global constraint set (3) ensures that tasks which are assigned

to the same QC will not overlap. Also global constraint set (4) avoids the interference

among QCs by not allowing the overlap of the tasks which are located in the same bay.

Constraint set (5) ensures that two tasks that are located in adjacent bays cannot be

processed simultaneously; that is, the safety margin is assumed to be one bay.

Constraint sets (6) and (7) resolve two deficiencies that are identified by Lee and Chen

(2010). Constraint set (6) is defined to keep QCs within the boundaries of the vessel.

Constraint set (7) ensures that there will always be enough space between two cranes to

accommodate in-between cranes, even if they are idle. Precedence relations among

tasks are defined by constraint set (8). Constraint sets (9) and (10) together ensure that

QCs cannot cross each other since they are operated on the same track. Travel times of

QCs are implemented in constraint set (11). By using some logical operators directly, a

two-indexed decision variable is sufficient to represent this feature. Moreover the

correct treatment of travel times and safety margins proposed by Bierwirth and Meisel

(2009) is embedded in (9) and (10).

A complete model can be constructed by using only these decision variables above;

however, a set of sequence decision variables is added to the model to strengthen the

inference among problem elements.

 a sequence variable that keeps the permutation of the tasks to be processed by

QC , ,

with transition distance matrix . This matrix keeps the

minimum time required between and if they are executed sequentially.

Chapter 5: Computational Experiments 40

 a sequence variable that keeps the relative order of tasks and processed by

QCs and , respectively. , with

transition distance matrix

By default, a sequence variable orders the set of decision variables according to their

starting times; however, if it is used within a disjunctive global constraint, this ordered

set of variables are also forced to be non-overlapping. These sequence variables are

auxiliary in the model. Hence they will be active in the model only when related

conditions occurred.

For more effective filtering and to break the symmetry, constraint sets (9) and (10)

are replaced by a new constraint set which is constructed with sequence variables:

 (12)

Also constraint set (11) is replaced by a new constraint set (13) for faster reductions

of domains. This new travel time constraint set consists of and keeps the transition

distances among the locations of couple of tasks which are sequentially processed by

QC .

 (13)

Since constraint set (13) also ensures that tasks which are processed by the same QC

should not overlap, constraint set (3) is no longer required and can be deleted from the

model.

The minimum required time between and variables is defined by transition

distance matrix , considering bay positions and the indices of QCs. For example, if

QC is assigned to task and QC is assigned to task where and are located at

bay and bay , respectively, then this constraint ensures that there must be at least

time units of temporal distance between the processing of task and because of crane

Chapter 5: Computational Experiments 41

interference and safety margin requirements, regardless of their relative order (see

Figure 4.1).

4.4 Lower Bounds for QCSP

Two simple lower bounds are calculated for the makespan of QCSP with container

groups. It would be very helpful to generate tight lower bound values for QCSP

instances because of two main reasons. First, a tight lower bound allows determining

the solution quality of the CP results more accurately. Moreover, a tight lower bound

helps the CP model to terminate earlier with an optimal result when equals

to

These two lower bounds are presented below:

Theoretical LB:

The first lower bound is widely used in uniform parallel machine scheduling

problems. In this simple lower bound, the total duration of all tasks is calculated and

then divided by the total number of machines. That is,

,

Figure 4.1: An example of constraint set 12.

Chapter 5: Computational Experiments 42

where and refer to the processing time of task and the total number of QCs in

the instance, respectively. In this case, it is assumed that machines are working without

any interruptions during the makespan. For example, consider an instance with three

tasks and two identical machines. Processing times for the tasks are 5, 17 and 8,

respectively. This lower bound is 10, while the minimum makespan is 17, therefore the

gap between optimal value and this preemptive lower bound is 70%. If

 ratio grows, may probably end up

with smaller gaps because of the higher possibility of better distribution of total

workload.

The MIP model:

In this study, the results show that most of the time the simplest parallel-machine

scheduling lower bound provides considerably closer values to the optimal

solution value. However, in some instances the gap with this simple lower bound

reaches 20%. It is observed that, this result is due to the excessive workload of some

bays and/or some operational restrictions caused by safety distances. After this

observation, a simple yet powerful bin-packing based mixed-integer programming

model was developed to find tighter lower bounds () for QCSP with container

groups, especially in such cases described above.

 In this relaxed QCSP model, all sets and parameters are the same with those of the

proposed CP model. Additional parameters and decision variables are presented below:

 a binary decision variable that takes value 1 if task is assigned to ,

otherwise 0, ;

 a binary decision variable that takes value 1 if is assigned to at least one

task of bay , otherwise 0, ;

 an integer decision variable that represents a lower bound on the makespan;

 a parameter that calculates the total workload of two adjacent bays; that is,

 =
 +

 ;

 a very large number.

Then, the mixed-integer programming model is formulated as follows:

Chapter 5: Computational Experiments 43

minimize

Subject to:

 (14)

 (15)

 (16)

 (17)

 (18)

 (,) (19)

 , (20)

 In this model, each task is assigned to a QC by constraint set (14) while minimizing

the workload of the densest QC. Constraint (15) defines the parallel-machine scheduling

pre-emptive lower bound. Task-to-QC assignments are also restricted by the constraint

set (16) which determines the rail-track area for the vessel. In order to add travel times

in the simplest form, QC-to-bay assignments are tracked for each QC by using two-

indexed binary decision variables in (17). Constraint (18) defines one lower bound with

respect to the workload of QCs. If a QC is assigned to different bays, then

time unit is added to the total workload of this QC. time units are added rather

than because the initial position of the QC and one of the assigned bays can be the

same; therefore, the initial travel of this QC before starting to process assigned tasks

will not be needed. Also the safety margin requirements are considered from a different,

but a simpler, perspective. It is not possible to process two adjacent bays simultaneously

with two different QCs because of the safety margin requirements. First listing total

workloads of each bay and then selecting the maximum total workload of two adjacent

bays will give us another potential lower bound for the instance. Call this value , then

 is always greater than or equal to because of the safety margin requirements;

that is, if these two adjacent bays are processed by the same QC, one unit of travel time

is required for that QC to travel between these bays. On the other hand, if these two

bays are processed by two different QCs, the second QC cannot start processing the

Chapter 5: Computational Experiments 44

second bay before the first QC leaves the other bay because of the safety margin.

Therefore, again one time unit is required. Constraint set (19) defines this lower bound.

Non-crossing, non-interference and precedence constraints are not considered in this

MIP model, hence it represents a relaxed version of the QCSP. Nevertheless, the model

generates very tight lower bounds for the QCSP quickly. For example, in one of the

instances of Meisel and Bierwirth (2011), is 1000, however the obtained

from the above MIP is 1174. Note that the best observed result for this instance is also

listed as 1174 in their study. In addition, the MIP model is solved to the optimality in 2

minutes, most of the times. For most of the instances, it is solved in less than 30

seconds.

4.5 Descriptions of the Constraints

In this section, each constraint of the CP model is introduced in more detail with the

help of relevant bay-time illustrations. Corresponding MIP constraints (if any) are also

identified for each constraint in the CP model. Note that there may not be a hundred

percent correspondence between two models, since they are built by using two different

modeling techniques.

4.5.1 Makespan constraint

 (0)

 (1)

Since the objective function of the problem is to minimize the makespan which is

denoted by an integer decision variable Z, the definition of the makespan must be

declared in the objective function or as a problem constraint (1). The term makespan

refers to the completion time of the latest element of the schedule. In other words, it is

the completion time of the quay crane which ends processing lastly among other QCs.

The makespan may also be defined directly in the objective function line. However,

while using the CP Optimizer, it can be ineffective to define more complex objective

functions (i.e. weighted sum of makespan and completion times of QCs) directly in the

objective function line.

Chapter 5: Computational Experiments 45

Constraint (0) defines a lower bound for each QCSP instance. In Section 4.4, the

procedure to obtain this value is introduced in details. Lower bound can be added as a

problem constraint or it can simply cut the domain of decision variable at the

beginning; that is, Computational experiments with different

instances show that the latter consistently reached better schedules in a shorter time;

therefore, we deleted constraint (0) from the model. The reason behind such a solution

performance difference is not known exactly because of the black-box nature of the

commercial off-the-shelf software. However, most likely, keeping the search space

tighter at the beginning helps the constraint programming engine to find good schedules

more effectively.

4.5.2 Assignment Constraint

 (2)

The assignment global constraint ensures that each task must be assigned to a one

and only one quay crane. It has a very critical function in the model because these task-

to-QC assignments are required to be able to investigate other constraints which consist

of optional variables. Note that, the whole model, except this constraint, is constructed

by only using the optional variables.

At the beginning of the execution of the model, all optional interval variables are set

to be inactive. Then, this constraint is processed firstly to determine which optional

variables are active in the model. Then, search space is investigated based on the current

task-to-crane assignments. These task-to-crane assignments are continuously modified

by backtracking and LNS algorithms. This iterative procedure continues until an

optimal solution is found and its optimality is also proved. More formally, if

variable is assigned to optional interval variable, then variable becomes active

in the model and its domain set to be . At the same time other

 variables for all where becomes inactive and their domain set to be

Chapter 5: Computational Experiments 46

Note that, this constraint set of CP corresponds to constraint sets (M4) and (M11) of

MIP model.

4.5.3 Non-Overlapping Constraint

 (3)

It is previously described in the global constraints section in details that what

disjunctive global constraint does and which propagation algorithm is working in the

background. As also described in the same section, in simple terms, two tasks and

can only be non-overlapping if any of them ends before the other one starts. In this case,

disjunctive global constraint ensures that all tasks assigned to the QC must be non-

overlapping. More formally, interval variables where that are assigned to

the same QC by assignment constraint (3) are non-overlapping for each QC

 where because of this global constraint.

This constraint not only makes complex functions easy to represent in the model, but

also it has very effective and well-studied propagation algorithms. This is why

disjunctive global constraint is one of the most well known constraints in the constraint

programming context, and is also used to model several problem concepts in this study.

Note that this constraint set of CP model partially corresponds to the constraint set

(M10) of MIP model.

4.5.4 Non-Interference Constraint

 (4)

In QCSP, the tasks which are located in the same bay should not overlap to have a

feasible schedule in terms of non-overlapping of tasks. Such cases are prevented in the

model by using another constraint, non-interference. In other words, non-interference

constraint indicates that in a single bay two QCs cannot work simultaneously because

QCs are working on the same rail-track. This constraint itself is not sufficient to prevent

Chapter 5: Computational Experiments 47

all possible interferences among QCs, therefore we also need to keep some definite

safety distance between two adjacent QCs. Note that this constraint set of CP model

partially corresponds to the constraint set (M10) of MIP model.

4.5.5 Safety Margin Constraint

 (5)

Since all QCs are operated on the same rail-track, margins between QCs must be

carefully investigated. Therefore while scheduling QCs, we need to keep a pre-

determined space between two adjacent QCs at any time, which is called safety distance

or safety margin. In parallel with the literature, safety margin is assumed to be one bay

length in this study. That is, two QCs cannot work on adjacent bays simultaneously.

We need this margin because of two reasons. First, potential interference of arms of

QCs is prevented. Second, potential collusion of bodies of QCs during their travels

among the rail-track are also prevented by this constraint.

In Figure 4.2 below, QCs operate and travel within the minimum allowable distance

to each other since safety distance of 1 bay defines the minimum distance must be kept

between two adjacent vessels. Note that this constraint of CP model corresponds to the

constraint (M10) of MIP model.

Figure 4.2: Safety margin constraint.

Chapter 5: Computational Experiments 48

4.5.6 Non-Allowed Assignments Constraint

 (6)

As noted in common deficiencies section, Lee and Chen (2010) claim that all QCs

assigned to a vessel must stay between the leftmost and the rightmost bays of the vessel.

We can simply see these two bays as the boundaries of the vessel, and it is assumed that

the rail-track area between these boundaries is allocated to QCs which are assigned to

the vessel. Accordingly, if a QC passes these boundaries, it will probably enter rail-

track areas which are allocated for another vessel because of very intense berth

allocations. Note that, most of the time a CT practitioner tends to keep the distance

between berth positions of vessels at minimum (Vis and de Koster (2004)). Therefore

QCs that pass out these boundaries will probably cause QC collusions or considerable

inefficiencies in QC scheduling for other vessels by blocking other QCs to reach some

bays.

Consider a generic instance with bays and QCs. Then some task-to-QC

assignments at the left side is restricted, for example QC 2 cannot reach to tasks which

are located at bays 1 and 2 because of QC 1, and similarly QC 3 cannot reach to tasks

located at bays 1, 2, 3 and 4 because of QC 1 and QC 2. It is similar for all QCs and can

be generally represented as . Note that, by constructing this set of

constraints, we assumed that there is a safety margin of 1 bay, that is . For right

side of the vessel, similar restrictions are required to keep QCs between boundaries of

the vessel during makespan. That is, QC cannot reach bays and

because of the presence of QC on a rail-track, and it goes on for all QCs

 . Then a task-to-QC assignment is forbidden if at least one of

these two conditions is satisfied. This is denoted by OR () operator.

Consider an instance with , and task 5 is located at bay 9. We

should check whether it is possible to assign task 5 to QC 2:

Chapter 5: Computational Experiments 49

 .

Also, in our computational experiments we observed that, in at least one of the

optimal solutions (if any), QCs stay within the boundaries without using this constraint.

However, other optimal solutions will cause inefficiencies or QC collusions. Therefore

presence of this constraint is very important, especially for keeping QCs within the

boundaries in non-optimal schedules.

Note that this constraint set of CP model corresponds to constraint sets (M18) and

(M19) of MIP model.

4.5.7 Travel Time Constraint

 ⊻

 (11)

In QCSP, each QC travels along the rail-track to process tasks located at different

bays. This horizontal movement requires some amount of time which is called travel

time. In this study, it is assumed that for a QC to travel from one bay to an adjacent bay

takes one unit of time.

In most of the previous QCSP studies, a set of three-indexed decision variables that

keeps the sequence information is used. This 0-1 integer decision variable takes

value 1 if and only if task is processed just after task at QC (see the section of MIP

model). Therefore travel time was easily added to the model easily by the help of such

a decision variable. In this proposed CP model of QCSP, however, only a two-indexed

decision variable, which is not keeping the sequence information, is preferred. This two-

indexed decision variable is enough to model travel times correctly without bringing

any modeling difficulty because it is possible to represent such similar problem

constraints straightforwardly in CP context.

Chapter 5: Computational Experiments 50

 Constraint set (7) ensures that between executions of any two tasks which are

assigned to the same QC, there must be a time equal to the absolute value of the

difference between their locations (bays) of these tasks. This constraint works correctly

without requiring any sequence information because it states not only the minimum

required time between successive tasks, but also denotes minimum required times

between any two tasks assigned to the same QC. Also it is no more required to be

known which task is going to be processed before other tasks that are assigned to the

same QC because exclusive-or logical operator can be directly used in any CP model.

As a result, this constraint is enough to express travel time of a single QC correctly,

without requiring any other additional decision variable. In Figure 4.3, the illustration

shows the schedule generated by the help of this constraint. It shows correct travel times

implied for a single QC. For example, tasks 1, 2, 3 and 4 are located at bays 2, 5, 5 and

6, respectively. Note that in this instance QC is initially located at bay 1.

Also note that this constraint set of CP model corresponds to the constraint sets (M6)

of MIP model.

Figure 4.3: Travel times of a QC.

4.5.8 Revised Travel Time Constraint

 (13)

Chapter 5: Computational Experiments 51

The constraint set (5) is replaced by constraint set (13), which consists of set of

sequence variables correlated with disjunctive global constraints. As previously said,

using global constraints rather than others would probably end up with better domain

reductions. Therefore constraint set (13) is preferred to represent travel times. Let’s

remind definition of this variable :

 is a sequence variable that keeps the permutation of the tasks to be processed

by QC ,

 , with transition distance matrix . Namely,

this matrix keeps the minimum time required between and if they are

executed sequentially.

In more details, keeps the permutation of tasks which are assigned to QC based

on their starting times. That is, by itself only defines the sequence based on starting

times and to make these tasks also non-overlapping we need to correlate these variables

with disjunctive constraints, since a QC can process at most one task simultaneously. As

a result, constraint set (13) not only provides a more direct representation of travel

times, but also it is faster and more efficient from (6) by far.

Note that this constraint set of CP model corresponds to the constraint sets (M2) to

(M6) of MIP model.

4.5.9 Precedence Constraint

 (8)

Constraint set (8) simply defines precedence relationships among tasks. That is, if

task is defined to precede task , it is ensured by this simple set of temporal

constraints for all QCs. There is no precedence relationship among QCs, because

precedence relationships among tasks are obtained from their locations on a vessel,

denoted by a stowage plan. Precedence constraints in CP-scheduling context may

reduce domains significantly and therefore make good solutions easier to be found. For

Chapter 5: Computational Experiments 52

example if is present and task precedes task , then the CP engine straightforwardly

reduce domains of , that is,

Note that this constraint of CP model corresponds to the constraint (M7) of MIP

model.

4.5.10 Non-Crossing Constraint

 ⊻

 (9)

 ⊻

 (10)

At a single port, all QCs are located on the same rail-track; therefore they cannot

cross each other. Assume that all QCs are labeled in increasing order from left to right

where QC 1 and QC indicate the rightmost and the leftmost QCs, respectively.

That is, it must be ensured that QC always stays between two adjacent QCs, QC

and QC (if both exist), otherwise the schedule will be infeasible.

To ensure a QC not to cross other QC during operations, we need a two-way control

of QC positions. Therefore at any time QC must stay at the left

side of QC . Also we need to control QC positions from other side; that is, QC

 must stay at the left side of QC . By applying this two-way

control for each QC, non-crossing of QCs is ensured. Of course QCs can pass some

relative positions at different times. That is, QC can work at bay 10 and QC can

work at bay 7. This situation can also occur if two operations are held in different times.

In other saying, such a situation can occur if and only if these two operations are non-

overlapping. At its simplest form, non-crossing of QCs can be restricted by constraint

sets (9’) and (10’).

Chapter 5: Computational Experiments 53

 ⊻

 , () (9’)

 ⊻

 () (10’)

However, these sets of constraints are not sufficient to ensure feasibility of

schedules. There must be a definite space of time between these two non-overlapping

operations because of travel times and safety margins associated with QCs.

Accordingly, travel times and safety distances must be correctly implemented into

non-crossing constraint. In most of the QCSP literature, this amount of space of time is

miscalculated; it causes interferences and QC collusions, therefore the schedules

generated in these studies are not feasible. This deficiency is identified and corrected by

Bierwirth and Meisel (2009). They claimed that, between and there must be

 unit space of time is needed.

By adding into (9’) and (10’), they turned into set of constraints (9) and (10).

Consider Figure 4.4 below. Tasks and have processing times of 20 and 15,

respectively. Also QC 4 and QC 5 are assigned to process tasks and located at bays

11 and 9, respectively without causing any infeasibility. By constraint sets (9) and (10),

it is ensured that these two operations are not only non-overlapping but also there are at

least 4 time units between end of the former and start of the latter. More information

about this correction can be found in Bierwirth and Meisel (2009).

Note that this constraint set of CP model corresponds to the constraint sets (M12)

and (M13) of MIP model.

Chapter 5: Computational Experiments 54

Figure 4.4: Non-crossing constraint.

4.5.11 Revised Non-Crossing Constraint

 (12)

While testing and verifying the correctness of non-crossing constraint, it is observed

that there is symmetry between these set of constraints. That is, non-crossing of each

QC to other QC is checked twice. Consider the instance presented in previous

section and in Figure 4.4. If constraint sets (9) and (10) are examined carefully, it can be

seen that (9) checks QC 4’s crossing of QC 5, while (10) checks QC 5’s crossing of QC

4. Clearly one of them is enough to ensure non-crossing of QCs.

This brings a considerable computational work and should be removed. By replacing

constraints sets (9) and (10) with constraint set (12) we also removed the symmetry

which exists in constraint sets (9) and (10). For more effective constraint filtering and

lesser computational effort, this symmetry is broken with this new set of revised non-

crossing constraint. Therefore, a set of constraint (12), which consists of set of

sequence variables correlated with disjunctive global constraints, is constructed.. Let’s

remind the definition of the variable :

Chapter 5: Computational Experiments 55

 is a sequence variable that keeps the relative ordering of tasks and

processed by QCs and , respectively.

 , with transition distance matrix

These sequence variables are auxiliary in the model. Hence they are considered by

the engine only when related conditions occurred. For more effective filtering and to

break the symmetry, constraint sets (9) and (10) are replaced by a new constraint set

(12) which is constructed by sequence variables

Note that this constraint set of CP model also corresponds the constraint sets (M12)

and (M13) of MIP model.

4.5.12 Correction of the Deficiency Caused by Idle QCs

 , (7)

Physical presence (existence) of idle QCs on a rail-track must be respected. That is,

between two non-adjacent QCs there should be enough space to be able to

accommodate in-between QCs safely. In most of the QCSP literature, physical presence

of idle QCs is overlooked and this will end up with potential QC collusions. Therefore

the schedules generated by the methods presented in these studies may be infeasible.

This deficiency is identified and corrected in two independent studies of Bierwirth and

Meisel (2009) and Lee and Chen (2010). Figure 4.5 shows a schedule containing this

deficiency.

This schedule is considered to be feasible in previous QCSP models, even though it

is infeasible. QCs 2 and 4 move along the rail-track as if QC 3 is not exist because in

previous studies safety margin requirements are only considered for active QCs. As a

result QCs 2 and 4 both violate the safety margin requirements of QC 3. In the proposed

CP model, constraint set (7) is added to correct this modeling error. This constraint set

ensures that decision variables and must not overlap if

 . In the previous example

Chapter 5: Computational Experiments 56

 and , hence conditions are satisfied. Therefore and must be non-

overlapping. Assume that and , then and can be overlapping

since QC 3 can be safely accommodated between these two non-adjacent QCs even if it

is idle. In such a situation QC 3 is located at bay 9, while bays 8 and 10 are kept empty

because of safety requirements.

Figure 4.5: A modeling deficiency.

4.6 QCSP with Ready Times

The main aim in this section is to test whether CP can cope with different extensions

of the problem, rather than making a comprehensive study on this subject; QCSP with

ready times. Meta-heuristics often provide good solution quality for different types of

combinatorial problems which CPLEX cannot cope even with their small instances.

However, problem-specific heuristics and meta-heuristics are often implied by

considering very-specific problem configurations (constraints); that is, they are not

flexible to even small additions to the problem (Blum and Roli (2003)). They may be

totally unsuitable for the new constraints or may have resulted in poor solution quality.

On the other hand in real-world problems, there exist more side constraints than initially

projected. Therefore it is important to use a method that can cope with different

extensions of the problem; a method that not only is able to add new constraint easily,

but also will end up with same good solution quality for different extensions of the

initial QCSP problem.

Chapter 5: Computational Experiments 57

Accordingly, we studied a different version of QCSP, in which QCs have individual

ready times. This problem has some practical relevance in any container terminal

because it is not desirable that QCs are staying idle without being assigned to any

vessel. Instead of this, a QC which is completed its work on a departing vessel will be

assigned to another vessel which has already started its handling operations to shorten

its completion time. We obtain the constraint programming model for QCSP with ready

times by extending the previous QCSP model.

Differently from previous QCSP models with ready times, dummy tasks are added to

the model for representing the unavailability of QCs. In other words, it is assumed that

these subsequent QCs are processing dummy tasks outside the boundaries of the vessel

before their ready times. By this way, we are able to convert the initial QCSP model

into QCSP with ready times straightforwardly, while keeping all constraints of QCSP

model valid.

New and revised parameters for the QCSP with ready times are listed below.

 number of QCs that operate for the vessel from beginning to end;

 number of subsequent QCs that will be able to start operating for the vessel from

the left-side at their ready times;

 number of subsequent QCs that will be able to start operating for the vessel from

the right-side at their ready times;

 revised set of tasks, ;

 revised set of bays, ;

 revised set of quay cranes, ;

 ready time for each QC

 and in the QCSP model are replaced by revised sets and

respectively, in the QCSP with ready times model. All constraints of the QCSP model

also exist in the extended model. In addition, we need to fix the time-positions of the

variables that corresponds to dummy tasks by adding the constraints below:

Chapter 5: Computational Experiments 58

 (21)

 (22)

e (23)

Constraint sets (21), (22) and (23) also reduce the domains of the dummy variables

by considering them as fixed time intervals. That is, if the ready time for QC is 100,

then the dummy task is created and and are reduced to

 0,100 with 100.

 (24)

Also domains of decision variables related with subsequent QCs are

reinvestigated by constraint set (24). As a result, the domains of these variables for all

tasks other than the dummy variables are reduced to [,].

Figure 4.6: Representation of QCSP with ready times.

This extension of the problem is illustrated in Figure 4.6 where the rectangles labeled

by indicating that dummy task is processed by QC . Therefore each subsequent

QC can travel in the direction pointed out by arrows in the illustration and starts

operating for the vessel after its ready time. Note that, QCs are already operating

from the beginning to the end within the bays 1 to .

Chapter 5: Computational Experiments 59

Also, QCSP model can be converted into QCSP with time windows (Meisel (2011))

straightforwardly by considering the point of view of unavailability of QCs.

4.7 QCSP with Time Windows

As noted in Meisel (2011), in practice, QCs are frequently redeployed among vessels

to speed up the operations of high-priority vessels. As a result, the extension of the

problem with time windows can be considered as the most appropriate way to represent

real-world scheduling operations of QCs. In QCSP with time windows, QCs can have

different time windows in which they are available to operate for the vessel. In this

study these QCs with time windows are assumed to be operating for adjacent vessels at

any time except these pre-defined intervals.

Differently from the literature, we built QCSP with time windows model from the

perspective of QC unavailability rather than considering available time intervals.

Accordingly, each unavailable period for QCs is represented as a dummy task. These

dummy tasks must be performed and are added to the model as fixed intervals; that is,

the execution times and the positions of these tasks are fixed. As a result, domains of

decision variables related with these tasks are reduced to a single value. Dummy bays

are also considered to implement travel times and safety margins correctly. QCSP with

time windows model is built by extending the QCSP model developed in Section 4.1.

Hence, these dummy tasks are defined on an extended set of bays to denote the waiting

locations of these QCs during their unavailability period (at either the left or the right

side of the vessel), by considering the non-crossing constraint. For instance, in Figure

4.7, QC and QC are associated with a left and a right side of the boundary,

respectively. Note that each QC of this type can only be associated with one side. QCSP

with time windows model is then built by extending the QCSP model developed in

Section 4. Additional and revised parameters for this extended model are listed below:

 number of QCs which are available during the makespan;

 number of QCs which have at least one unavailability and are also associated

with left-side;

 number of QCs which have at least one unavailability and are also associated

with right-side;

Chapter 5: Computational Experiments 60

 extended set of bays,

 i.e., ;

 extended set of QCs, i.e. ;

 number of unavailable periods for left associated QC , ;

 number of unavailable periods for right associated QC ,

 ;

 extended set of tasks, i.e. ;

 set of indices of dummy tasks which represent the unavailability of QC related

with left side.

 ;

 set of indices of dummy tasks which represent the unavailability of QC related

with right side.

 ;

 starting times for each unavailable period of left-associated QCs ;

 starting times for each unavailable period of right-associated QCs.

Note that, sets and of the QCSP model are replaced by the revised sets

and respectively, and and are also extended by considering the durations of

unavailability and the dummy bays for retaining unavailable QCs. Also some of the

existing constraints are revised and new constraints are added to the extended model.

 (1’)

 (25)

 , (26)

 (27)

 , (28)

Chapter 5: Computational Experiments 61

Constraint set (1’) represents the revisited constraint set (1), in which dummy tasks

are excluded from the calculation of the makespan. Constraint sets (25) and (26) ensure

that dummy tasks must be executed by corresponding QCs. Constraint sets (27) and

(28) ensure that all dummy tasks are fixed intervals, by fixing the starting times. For

instance, if QC is unavailable at time period 80,120 , then the processing time of the

related dummy task is 40 and the corresponding domains are fixed as

 =[80,120] and =[80,120]. Also the durations of dummy tasks

are excluded from the domains of other tasks operated by related QCs because of the

combination of constraint sets (27), (28) and (13). For example

 for left-associated QCs.

A general representation of QCSP with time windows can be found in Figure 4.7.

Figure 4.7: QCSP with time windows.

In this generalized instance, there are two QCs with unavailability. QC is at the

leftmost and QC is at the rightmost of all QCs assigned to the vessel. They are

assigned to adjacent vessel from time and to + and

 + , however, they can operate for the vessel except these intervals plus required

travel times. It is important to point out that while some QCs are unavailable because of

redeployments, available QCs can travel within the boundaries of the vessel from end to

end (bay to bay) by only considering non-crossing constraint.

Chapter 5: Computational Experiments 62

4.8 Advantages of Using CP for QCSP

In the constraint programming context, variables are enough to

represent the whole problem, while the corresponding mixed-integer programming

model has variables. We can see the

effects of these numbers with an instance of bays, 30 tasks and 4 quay cranes. For

this instance, the proposed CP model and the MIP model can be represented with 151

and 4903 decision variables, respectively. This significant difference is mainly due to

the synthesis of rich modeling tools of CP and the efficient modeling by using global

constraints. On the other hand, there is no significant difference between the models

with respect to the number of constraints. However, most of the constraints only consist

of variables in the CP model. The fact of having a very small number of variables

and a large number of global constraints with strong relations helps the constraint

programming model to work effectively for QCSP.

In the real-world problems, it is possible that there exist additional constraints other

than the ones presented here. For example, quay cranes may have certain time-windows

due to different reasons according to Meisel (2011). Another example is the case that

task has to be completed before a given time because there is another vessel in the

terminal which is urgently waiting to receive task before departure. The wide variety

of such additional constraints can be easily added to the proposed CP model. Most of

the time, however, such additional constraints will not make the problem harder to solve

by using CP. Each new constraint that consists of existing variables may probably help

to strengthen the inferences, prune more domains, and consequently, will reduce the

size of the search space. Therefore, solving more complex problems with CP can be

easier. Hence, constraint programming can be an appropriate method to solve not only

QCSP but also different extensions of the problem.

Chapter 5: Computational Experiments 63

CHAPTER 5

COMPUTATIONAL EXPERIMENTS

5.1. Design of Computational Experiments

Computational experiments were conducted to test the performance of the proposed

CP model for QCSP with container groups. In this study, QCSPgen (Meisel and

Bierwirth (2011)) is used to generate the test instances. There exists one other group of

benchmark instances in the literature (Kim and Park (2004)). However in these

instances, the number of bays equals to number of tasks, which is unrealistic. Hence we

did not use this set of instances.

QCSPgen is a benchmark instance generator for QCSP that allows comparing

different models and solution procedures. This generator also provides the most realistic

benchmark instances in the literature. QCSPgen is constructed by considering four

principles; purpose, comparability, unbiasedness and reproducibility. First of all Meisel

and Bierwirth (2011) claim that QCSPgen is generated for the purposes of

demonstrating the ability of a procedure or comparing competing procedures regarding

one certain QCSP model as well as across different QCSP models. Accordingly, in this

thesis, proposed constraint-programming model is fairly compared with the ones of

Meisel and Bierwirth (2011) and Meisel (2011) by using QCSPgen. For better

comparisons, the researchers compose QCSPgen instances from stowage plan and QC

data, to allow considering the service of a vessel under variable QC assignments, travel

times and safety margins. Moreover QCSPgen is unbiased; that is, it is not constructed

by considering the advantages or abilities of a specific QCSP model. Therefore the

generation process is designed by considering typical dimensions of container vessels

and reasonable handling volumes by carefully considering task processing times, spatial

distributions over bays and precedence relations are generated with well known

randomization techniques. As a result, it generates sets of different but identically

Chapter 5: Computational Experiments 64

structured benchmark instances. The benchmark instances generated by this generator

are completely reproducible by the help of random seeds. That is, if we generate an

instance with same parameters and the random seed, then we always obtain the same

instance. It allows that the same data can be instantly reproduced by any researcher

around the world, and it creates a quick and fair comparison environment. More detailed

information about QCSPgen and the benchmark sets created by this instance generator

software can be found in Meisel and Bierwirth (2011).

In this study, Set B and Set C of Meisel and Bierwirth (2011) are since instances with

this structure reflect the real-world cases. In all Set B instances, the number of bays

() and the number of QCs were taken as 15 and 4, respectively. Also six

different numbers of tasks were selected as 45, 50, 55, 60, 65 and 70. For the

experiments with Set C, six different were selected from 75 to 100 with the same

pattern with Set B and and were increased to 20 and 6, respectively. For each

number of tasks, ten different instances were generated by using random seeds 1 to 10,

in line with the literature. Therefore a total of 120 QCSP benchmark instances were

generated by QCSPgen. Since the search phase of CP has randomness (Laborie and

Godard (2007)), 10 trials with different random seeds were run for each instance. Set C

and Set B benchmark instance sets generated by QCSPgen provides different average

number of tasks per bay ratios ranging 3 to 5, which are presented in Table 5.1.

Table 5.1: Task-per-bay ratios.

45 3 75 3.75

50 3.33 80 4

55 3.67 85 4.25

60 4 90 4.50

65 4.33 95 4.75

70 4.67 100 5

Chapter 5: Computational Experiments 65

 In the instances of Kim and Park (2004) number of tasks per bays is distributed from

0 to 4 uniformly, with an average of 1 task per bay. This means that there will be lots of

bays without any task, which is also contradictory to the real-world cases. On the other

hand, task-per-bay ratios ranging 3 to 5 with very lesser number of empty bays are

considered to be more appropriate to represent the real-world scheduling of QCs.

Hence, the benchmark instances of Kim and Park (2004) is disregarded not only in this

study but also in recent QCSP literature.

QCSP is one of the problems to be solved frequently in container terminals.

Therefore it is important to find a good solution in a short time. Even though CP is a

powerful approach for QCSP with respect to the problem structure, it may have a

disadvantage as CP may not result in an optimal solution within a reasonable time.

Hence, CP is not used as an exact method in our study, which brings the question of

when to terminate a CP search. In our experiments, after generating a lower bound

value in a very short time, we let CP search the solution space to find a feasible solution

 with its objective function value and, each time a better solution is found, the

constraint is added to the model. Note that, the incumbent value is taken as ,

if the optimal solution cannot be found by CPLEX within 2-minutes. In all Set B

instances refer to the optimal solution of the corresponding lower bound model,

however in Set C, approximately just one third of values refer to optimal ones. Note

that, the time spent for solving lower bound model (MIP) is not added to the time limit,

that is, in the worst case – minutes is left for CP.

Obviously, when is equal to the lower bound (), the search is terminated with

an optimal solution. Otherwise, CP search will be stopped after 1.5 10 minutes

for Set B and half an hour for Set C with the best solution found so far. The results of

the computational experiments were compared with the results for Set B and Set C

instances presented by Meisel and Bierwirth (2011) and Legato et al (2012).

Next, a set of new instances were generated to test the QCSP model with ready

times. We assume that three QCs are operating for the vessel from the beginning to end.

Also one QC will be available after 300 time-units at the left side of the vessel, and two

QCs will be available, one after 600 and the after 900 time units at the right side.

Therefore, all Set C instances were modified based on this scheme and then used for

testing our QCSP model with ready times. A general representation of QCSP with ready

times instances used in this study is given in Figure 5.8.

Chapter 5: Computational Experiments 66

Figure 4.8: QCSP with ready times instance.

To test the QCSP model with time windows, we applied the third instance generation

pattern designed by Meisel (2011). In this pattern, six QCs jointly start the operation,

but a subset of them (three QCs) is temporarily removed from the vessel to operate for

another vessel located at the right side between times 400 and 800, and then turned back

to the vessel.

This structure can be seen in Figure 5.9. This situation frequently occurs when QCs

at a vessel of low priority are temporarily removed for accelerating the operation of a

vessel of higher priority. As with Meisel (2011), these new instances were obtained by

extending 10 Set C instances with .

Figure 5.9: QCSP with time windows instance.

Chapter 5: Computational Experiments 67

Note that, for the computational experiments of QCSP with ready times and QCSP

with time windows, we start solving the models immediately rather than generating

first and then adding it to the model as a tighter lower bound. In these two models, only

pre-emptive lower bound is used and that is why no instances were terminated with an

optimal solution. Time-limits for these extensions were set as half an hour. For QCSP

with time windows 10-minute results are also presented to make a fair comparison with

the results of Meisel (2011).

Overview of the computational experiments used in this study is presented in Table

5.2. Note that the number of different instances of each instance size is represented as

 , and time limit is represented in minutes and

 stands for pre-emptive parallel machine scheduling lower bound.

Table 5.2: Overview of computational experiments.

(size) x # (45)x10 (75)x10 (75)x10 -

(size) x # (50)x10 (80)x10 (80)x10 (80)x10

(size) x # (55)x10 (85)x10 (85)x10 -

(size) x # (60)x10 (90)x10 (90)x10 -

(size) x # (65)x10 (95)x10 (95)x10 -

(size) x # (70)x10 (100)x10 (100)x10 -

Time-limit 1.5nbT/10 30 30 10 & 30

Total ins. 60 60 60 10

Total Runs 600 600 600 100

LB MIP MIP

Chapter 5: Computational Experiments 68

5.2 Results

IBM ILOG’s CP Optimizer 12.3 and CPLEX 12.3 were used to solve the constraint

programming and the mixed-integer programming models, respectively. All tests were

conducted on a personal computer with 2.53 GHz processor and 4 GB ram.

First, to show that the proposed CP model is a viable tool for solving QCSP, we

analyzed the performance of CP by considering the percentage deviation of CP results

from the lower bound LB, i.e., 100 – . Since CP was run for 10

trials with different random seeds for each instance, means the average result of

these 10 trials. Moreover, there are ten different instances for each instance size in Set B

and Set C. Hence, and indicate the average values of 10 instances of the same

size.

Second, we show the improvement of the new lower bound values over the

average lower bound values (produced by Meisel and Bierwirth (2011), i.e.

 100 – . These values were derived by CPLEX within a 2-

hour time limit.

After showing the success of the proposed CP model on finding near optimal

solutions, we compared the solution time of CP model to a UDS heuristic (Bierwirth

and Meisel (2009)) and a TPN procedure (Legato et al (2012)). We disregarded the gap

between the solution times of our method and UDS heuristic because the TPN

procedure surpasses the UDS heuristic at each instance size. Hence, the percentage gap

between the average solution times of the CP model () and the TPN procedure

() is defined as 100 – . We also listed the average

relative standard deviation between trials for each instance size.

As previously denoted, each instance set consists of 10 different instances for each

size. Since each instance set consists of instances with six different , there exist 60

different instances in each Set B and Set C. Therefore the results for all 60 instances

were represented by taking the average of 10 different trials as well as more detailed

average results for each .

5.2.1 Results of Set B for QCSP

Results of the computational experiments for Set B were presented in Tables 5.3 and

5.4. For Set B, the new lower bound which is generated in, at worst, 30 seconds

Chapter 5: Computational Experiments 69

provides 1.46% tighter bounds for the problem. Therefore, the average value of

0.62% indicates that the proposed CP model is a good alternative to solve the QCSP.

The maximum average gap is observed for and it is 0.9%. Furthermore, very

low average relative standard deviation values over 10 trials indicate the robustness of

the CP approach. During computational experiments for Set B, in 193 of 600 trials, the

search was terminated with the optimal result within the time limit, mainly by the help

of new lower bound values. Detailed results of 10 trials were also listed in Appendix B.

Table 5.4: Average results for Set B.

 %

 % %

 UDS TPN CP

45 4 754.3 770.5 2.15 775.8 775.8 773.4 0.09 11.88 5.73 5.27 -8.03 0.38

50 4 753.4 763.1 1.29 770.9 770.9 769.3 0.09 20.85 13.78 6.8 -50.65 0.81

55 4 753.6 767.1 1.79 771.9 771.9 771.8 0.12 17.97 10.36 7.38 -28.76 0.61

60 4 753.1 764.0 1.45 771.1 771.1 770.9 0.18 21.95 22.47 8.07 -64.09 0.90

65 4 753.5 765.9 1.65 769.0 769.0 768.7 0.13 35.3 19.6 8.22 -58.06 0.37

70 4 753.1 756.3 0.42 762.1 761.9 761.3 0.14 37.18 22.59 8.9 -60.6 0.66

 753.5 764.5 1.46 770.1 770.1 769.2 0.13 24.19 15.76 7.44 -52.78 0.62

5.2.2 Results of Set C for QCSP

Results of computational experiments for Set C were presented in Tables 5.5 and 5.6

below. For Set C, the solution quality is similar to the results of Set B. Even though the

time-limit is set to 30 minutes, the average solution time for this instance set is

approximately 16 minutes, because in 494 out of 600 trials, the search was terminated

with an optimal value earlier than the time limit (mostly within 10 minutes). The reason

for this is not only longer time limit, but also the tightness of the new lower bound

values for Set C instances which have more intense workload for QCs than Set B. This

fact also resulted in an even lower average relative standard deviation of 0.04% and

 value of 0.29%. Detailed results of 10 trials were also listed in Appendix C.

Chapter 5: Computational Experiments 70

Table 5.3: Results for each instance of Set B.

45 1 754 758 758.6 0.61 0.08

60 1 778 781 779.6 0.21 -0.18

45 2 759 759 759.0 0.00 0.00

60 2 754 756 759.2 0.69 0.42

45 3 754 759 759.2 0.69 0.03

60 3 754 758 760.0 0.80 0.26

45 4 783 789 783.0 0.00 -0.76

60 4 755 765 765.7 1.41 0.09

45 5 754 758 760.4 0.85 0.32

60 5 754 760 760.6 0.88 0.08

45 6 765 789 771.5 0.85 -2.22

60 6 754 758 760.8 0.90 0.37

45 7 795 798 796.0 0.13 -0.25

60 7 754 786 779.0 3.32 -0.89

45 8 754 759 759.6 0.75 0.11

60 8 754 757 758.5 0.60 0.22

45 9 797 797 797.0 0.00 0.00

60 9 784 785 785.0 0.13 0.00

45 10 790 792 790.0 0.00 -0.25

60 10 799 805 800.0 0.13 -0.62

 770.5 775.8 773.4 0.38 -0.30

 764 771.1 770.9 0.90 -0.02

50 1 754 774 774.0 2.65 0.00

65 1 754 758 759.2 0.69 0.16

50 2 768 771 769.0 0.13 -0.26

65 2 799 799 799.0 0.00 0.00

50 3 768 772 769.6 0.21 -0.31

65 3 801 803 802.0 0.12 -0.12

50 4 754 765 763.4 1.25 -0.21

65 4 754 758 758.8 0.63 0.10

50 5 754 762 762.4 1.11 0.05

65 5 754 758 758.5 0.60 0.07

50 6 754 765 765.3 1.52 0.08

65 6 754 757 758.8 0.63 0.23

50 7 775 782 775.0 0.00 -0.90

65 7 754 757 757.5 0.46 0.07

50 8 753 761 758.5 0.73 -0.29

65 8 754 756 756.5 0.33 0.07

50 9 797 798 798.0 0.13 0.00

65 9 754 758 759.5 0.73 0.20

50 10 754 759 758.5 0.60 -0.05

65 10 781 786 782.0 0.13 -0.51

 763.1 770.9 769.3 0.81 -0.19

 765.9 769 768.7 0.37 -0.03

55 1 754 758 758.5 0.58 0.10

70 1 754 766 761.0 0.93 -0.65

55 2 773 783 775.3 0.32 -0.94

70 2 754 764 765.8 1.56 0.24

55 3 777 779 779.0 0.26 0.00

70 3 754 760 759.6 0.74 -0.05

55 4 754 759 763.0 1.18 0.50

70 4 754 760 757.2 0.42 -0.37

55 5 754 758 760.8 0.90 0.36

70 5 754 757 757.0 0.40 0.00

55 6 787 789 787.0 0.00 -0.25

70 6 760 761 761.2 0.16 0.03

55 7 764 768 770.3 0.83 0.30

70 7 754 759 758.6 0.61 -0.05

55 8 754 767 765.7 1.55 -0.17

70 8 754 758 757.8 0.51 -0.04

55 9 800 801 800.0 0.00 -0.12

70 9 753 757 759.0 0.80 0.26

55 10 754 757 759.8 0.76 0.30

70 10 772 779 774.4 0.31 -0.59

 767.1 771.9 771.9 0.61 0.01

 756.3 762.1 761.3 0.66 -0.12

Chapter 5: Computational Experiments 71

Table 5.5: Results for each instance of Set C.

75 1 1177 1178 1177.0 0.00 -0.08

90 1 1003 1014 1010.6 0.76 -0.34

75 2 1003 1011 1014.6 1.16 0.36

90 2 1003 1020 1013.6 1.06 -0.63

75 3 1181 1182 1181.0 0.00 -0.08

90 3 1003 1011 1011.6 0.86 0.06

75 4 1103 1107 1103.0 0.00 -0.36

90 4 1057 1063 1057.0 0.00 -0.56

75 5 1185 1192 1185.0 0.00 -0.59

90 5 1062 1062 1062.2 0.02 0.02

75 6 1118 1123 1118.0 0.00 -0.45

90 6 1193 1193 1193.0 0.00 0.00

75 7 1192 1200 1192.0 0.00 -0.67

90 7 1105 1108 1105.0 0.00 -0.27

75 8 1166 1174 1166.0 0.00 -0.68

90 8 1086 1094 1086.0 0.00 -0.73

75 9 1170 1074 1170.0 0.00 8.94

90 9 1072 1075 1072.0 0.00 -0.28

75 10 1188 1188 1188.0 0.00 0.00

90 10 1049 1049 1049.0 0.00 0.00

 1148 1143 1149.5 0.12 0.64

 1063 1069 1066.0 0.27 -0.27

80 1 1172 1173 1172.0 0.00 -0.09

95 1 1173 1174 1173.0 0.00 -0.09

80 2 1003 1023 1021.0 1.79 -0.20

95 2 1086 1090 1086.0 0.00 -0.37

80 3 1003 1013 1015.6 1.26 0.26

95 3 1003 1014 1013.0 1.00 -0.10

80 4 1196 1202 1196.0 0.00 -0.50

95 4 1135 1138 1135.0 0.00 -0.26

80 5 1029 1036 1029.0 0.00 -0.68

95 5 1137 1144 1137.0 0.00 -0.61

80 6 1109 1117 1109.0 0.00 -0.72

95 6 1052 1055 1053.0 0.10 -0.19

80 7 1193 1201 1193.0 0.00 -0.67

95 7 1164 1173 1164.0 0.00 -0.77

80 8 1011 1040 1016.0 0.49 -2.31

95 8 1003 1015 1010.0 0.70 -0.49

80 9 1192 1192 1192.0 0.00 0.00

95 9 1019 1019 1019.0 0.00 0.00

80 10 1201 1207 1201.0 0.00 -0.50

95 10 1003 1011 1010.0 0.70 -0.10

 1111 1120 1114.5 0.35 -0.54

 1078 1083 1080.0 0.25 -0.30

85 1 1047 1049 1047.0 0.00 -0.19

100 1 1004 1014 1013.2 0.92 -0.08

85 2 1003 1017 1012.0 0.90 -0.49

100 2 1097 1104 1098.0 0.09 -0.54

85 3 1024 1027 1025.4 0.14 -0.16

100 3 1100 1107 1100.0 0.00 -0.63

85 4 1180 1186 1181.0 0.08 -0.42

100 4 1198 1202 1198.0 0.00 -0.33

85 5 1076 1082 1076.0 0.00 -0.55

100 5 1003 1015 1014.2 1.12 -0.08

85 6 1003 1010 1011.2 0.82 0.12

100 6 1135 1136 1135.0 0.00 -0.09

85 7 1193 1195 1193.0 0.00 -0.17

100 7 1095 1098 1095.0 0.00 -0.27

85 8 1097 1105 1097.0 0.00 -0.72

100 8 1151 1151 1151.0 0.00 0.00

85 9 1003 1010 1011.4 0.84 0.14

100 9 1003 1023 1014.8 1.18 -0.80

85 10 1166 1166 1166.0 0.00 0.00

100 10 1003 1015 1013.4 1.04 -0.16

 1079 1085 1082.0 0.28 -0.24

 1079 1087 1083.3 0.43 -0.30

Chapter 5: Computational Experiments 72

Table 5.6: Average results for Set C.

 UDS TPN UDS TPN CP

75 6
1138.3 1142.9 1142.9 1139.6 0.01 60.0 51.9 8.4 -83.8 0.11

80 6
1110.9 1120.4 1120.3 1114.9 0.05 54.1 48.0 14.6 -69.6 0.36

85 6
1079.2 1084.7 1084.7 1082.8 0.04 60.0 54.8 20.7 -62.2 0.33

90 6
1063.9 1068.9 1068.8 1066.4 0.06 60.0 56.4 13.6 -75.9 0.23

95 6
1077.5 1083.3 1082.9 1080.2 0.01 60.0 57.5 17.5 -69.6 0.25

100 6 1078.9 1086.5 1085.3 1083.4 0.06 60.0 60.0 19.0 -68.3 0.42

 1091.5 1097.8 1097.5 1094.6 0.04 59.0 54.8 15.6 -71.6 0.29

Moreover, the overall solution quality of the proposed CP model is almost similar to

the UDS and TPN methods. An insignificant advantage of our results in Set B and Set C

instances is probably caused by the inexistence of pre-defined initial positions in this

study. In just a very few instances of Set B and Set C, non-unidirectional schedules

provides considerable (more than 1%) improvement to unidirectional results. Therefore,

we can state that overall solution quality of unidirectional schedules for QCSP (or

independent-unidirectional schedules) is very similar to the non-unidirectional

schedules.

 The proposed CP model also cuts the previous best solution time by averaging

52.78% and 71.70% for Set B and Set C; in other words, the problem is solved

approximately 2 and 3.5 times faster than previous fastest solution times in the literature

for Set B and Set C, respectively, which is a significant improvement for solving QCSP.

5.2.3 Results of Set C for QCSP with Ready Times

Results of computational experiments for Set B are presented in Tables 5.7 and

5.8.

Chapter 5: Computational Experiments 73

Table 5.7: Results for each instance of Set C (with ready times).

75 1 1302 1319.6 1.35

90 1 1302 1317.4 1.18

75 2 1302 1321.2 1.47

90 2 1302 1320.4 1.41

75 3 1302 1319.0 1.31

90 3 1302 1316.4 1.11

75 4 1302 1319.6 1.35

90 4 1302 1330.2 2.17

75 5 1302 1331.6 2.27

90 5 1302 1320.8 1.44

75 6 1302 1320.6 1.43

90 6 1302 1316.0 1.08

75 7 1302 1332.6 2.35

90 7 1302 1346.0 3.38

75 8 1302 1331.8 2.29

90 8 1302 1327.4 1.95

75 9 1302 1320.8 1.44

90 9 1302 1320.6 1.43

75 10 1302 1314.8 0.98

90 10 1302 1323.8 1.67

 1302 1323.2 1.63

 1302 1323.9 1.68

80 1 1302 1322.4 1.57

95 1 1302 1324.2 1.71

80 2 1302 1316.4 1.11

95 2 1302 1317.4 1.18

80 3 1302 1315.8 1.06

95 3 1302 1337.4 2.72

80 4 1302 1321.8 1.52

95 4 1302 1324.2 1.71

80 5 1302 1321.8 1.52

95 5 1302 1342.0 3.07

80 6 1302 1330.2 2.17

95 6 1302 1321.2 1.47

80 7 1302 1335.2 2.55

95 7 1302 1322.2 1.55

80 8 1302 1318.8 1.29

95 8 1302 1316.6 1.12

80 9 1302 1323.0 1.61

95 9 1302 1325.2 1.78

80 10 1302 1322.4 1.57

95 10 1302 1340.8 2.98

 1302 1322.8 1.60

 1302 1327.1 1.93

85 1 1302 1329.8 2.14

100 1 1302 1323.2 1.63

85 2 1302 1331.2 2.24

100 2 1302 1337.0 2.69

85 3 1302 1316.8 1.14

100 3 1302 1324.2 1.71

85 4 1302 1330.8 2.21

100 4 1302 1323.2 1.63

85 5 1302 1322.0 1.54

100 5 1302 1327.6 1.97

85 6 1302 1313.0 0.84

100 6 1302 1321.8 1.52

85 7 1302 1316.2 1.09

100 7 1302 1321.4 1.49

85 8 1302 1328.0 2.00

100 8 1302 1328.6 2.04

85 9 1302 1319.4 1.34

100 9 1302 1345.0 3.30

85 10 1302 1320.8 1.44

100 10 1302 1321.4 1.49

 1302 1322.8 1.60

 1302 1327.3 1.95

Chapter 5: Computational Experiments 74

Table 5.8: Results for QCSP with ready times.

75 6 1302 1323.2 0.35 30.0 1.63

80 6 1302 1322.8 0.38 30.0 1.60

85 6 1302 1322.8 0.30 30.0 1.60

90 6 1302 1323.9 0.30 30.0 1.68

95 6 1302 1327.1 0.41 30.

0

1.93

100 6 1302 1327.3 0.36 30.0 1.95

 1302 1324.5 0.35 30.0 1.72

Table 5.9: Individual %RSD values.

The results of the computational experiments for QCSP with ready times were

presented in Tables 5.8 and 5.9. In comparision to the values for QCSP, the gap

is increased because in this case we compared values with preemptive lower bound

not with a specific lower bound model for QCSP with ready times, as we did for QCSP.

After investigating the detailed results of Set C for QCSP, we observed that the solution

qualities of some definite instances (which are not detected as an optimal, and are not

terminated within 30 minutes) are similar to the results for QCSP with ready times.

Detailed results of 10 trials were also listed in Appendix D.

In Table 5.9 we presented the values for all 60 instances of Set C. The

maximum relative standard deviation observed is 0.765%, which indicates that the

approach still has very low variance between different trials. However, these levels of

variation are consistently higher than the for QCSP instances because even in a

single trial we cannot terminate the search with an optimal value within the time limit.

Like values, these values are also similar to of some specific

QCSP instances which are not detected as optimal.

5.2.4 Results of Set C for QCSP with Time Windows

Results of computational experiments for Set C were presented in Tables 5.10 and

5.11. Note that only a subset of 10 instances of Set C (with is selected

similar with the literature.

0

0,2

0,4

0,6

0,8

1

75 80 85 90 95 100

Chapter 5: Computational Experiments 75

Table 5.10: Results of QCSP with time windows instances.

 .

80 1 1208 1240.2 2.67 1235.8 2.30 0.36

80 2 1208 1255.2 3.91 1252.2 3.66 0.25

80 3 1208 1234.4 2.19 1232.4 2.02 0.17

80 4 1208 1316.2 8.96 1308.6 8.33 0.63

80 5 1208 1260.6 4.01 1249.6 3.44 0.57

80 6 1208 1323.6 9.57 1320.0 9.27 0.30

80 7 1208 1287.2 6.56 1284.6 6.34 0.22

80 8 1208 1285.4 6.41 1283.6 6.26 0.15

80 9 1208 1238.6 2.53 1236.2 2.33 0.20

80 10 1208 1274.0 5.46 1271.6 5.26 0.20

 1208 1271,5 5.23 1267.5 4.92 0.30

Table 5.11: Average results for QCSP with time windows.

80 6 1208 1271.9 5.23 0.54 1348.9 11.66 1267.46 4.92 0.37

The results from Tables 5.10 and 5.11 indicate that even though jumped to

5.23%, the solution quality is still decent, when compared to the results (of Meisel

(2011), which is 11.66% (. We observe that the unavailability of some QCs

during the makespan prevent us from finding solutions very near to preemptive lower

bound. That is, for any QC with at least one unavailable period, there is a considerable

amount of idle time between the completion time of its last assigned task and the

starting time of its unavailability. This unavailability occurs because most of the time a

suitable task to be assigned to these idle times cannot be found due to their processing

times, locations and precedence relations. As a result, these idle times of QCs ends up

with a significant deviation from the pre-emptive lower bounds. Detailed results of 10

trials were also listed in Appendix E.

Chapter 5: Computational Experiments 76

The improvement of values in the additional 20 minutes is relatively low

(0.3%), thus we can claim that 10 minutes time limit is enough for the convergence of

our approach for solving QCSP with time windows. As expected, the average

decreased by 0.17% because of the longer time limit. Differently from QCSP, we

observed that non-unidirectional schedules can provide very significant improvement in

the solution quality. For QCSP with time windows which is the most realistic extension

of the original problem. This important finding indicates the importance of generating

non-unidirectional schedules especially when QC operations of whole berth are

managed together as desired by the practitioners, rather than generating QC schedules

for each vessel separately.

Chapter 6: Conclusion 77

CHAPTER 6

CONCLUSION

In this thesis we studied quay crane scheduling which an important seaside

operation for any container terminals. It is a common problem for container terminals

because all loading and unloading operations of berthed vessels accomplished by QCs.

Since there exists different versions of this problem in the literature, we define our

problem as QCSP with container groups with travel times, safety distances, precedence

relationships, non-crossing and non-interference constraints.

For applicability of any QCSP study to the real-world problems, constraints of these

problems should be reflected properly into the model. Therefore the modeling

corrections for some deficiencies which are identified in recent literature are taken into

account. Since these deficiencies were identified by different researchers, our study is

the first which is fixed all of the errors in a single model. Then, a constraint

programming model for this version of QCSP is proposed. By using rich modeling tools

of the CP, the number of variables in the QCSP is reduced by an order of number of

tasks.

The computational experiments show that the proposed CP model proved itself as a

fast and a convenient alternative to obtain near optimal solutions for QCSP. The

solution quality of the proposed CP model for QCSP has a very little advantage over the

most efficient solution methods in the literature while reducing the solution time

significantly. For approximately half of the benchmark instances we found better

solutions which are independent from initial positions of QCs.

 Moreover, QCSP with ready times and QCSP with time windows models are also

discussed to show that CP is a proper method for solving not only QCSP but also its

more complex extensions. The computational experiments indicate that the non-

unidirectional schedules are able to provide significant improvements over the

unidirectional ones for the most realistic cases with time windows.

Chapter 6: Conclusion 78

A further research on the search technique for solving QCSP can be dispensable,

because we have already observed a very high solution quality for even the largest

instances with a large number of optimal solutions. Therefore, the future research could

address duplicating the success of constraint programming into solving very-large

scaled integrated operations of berth allocations and QC scheduling. Also the CP

models presented in this thesis can be converted into QC operations management

software by using C++ with constraint propagation libraries. Hence we can get rid of the

dependency to commercial software.

 Moreover, by developing new lower bound s rather than using theoretical

preemptive lower bounds for QCSP with ready times and time windows models, we

may significantly reduce the solution time by helping the model to terminate with

optimal results.

REFERENCES

Baptiste P. and Le Pape, C. (1996) Edge-Finding Constraint Propagation Algorithms for

Disjunctive and Cumulative Scheduling. Proceedings of the Fifteenth Workshop of

the U.K. Planning Special Interest Group, Liverpool, United Kingdom, 1996.

Bartak, R. (2005), Constraint propagation and backtracking-based search, First

International Summer School on CP, 2005.

Beck, J. C., and Fox, M. S. (1999), Scheduling Alternative Activities, Proceedings of

the 16th National Conference on Artificial Intelligence, Orlando, Florida, USA, 18-

22, July 1999.

Beldiceanu N., Carlsson M., and Rampon J. (2010), Global constraint catalog (second

edition),Technical Report T2010:07, SICS.

Bessiere, C., Regin, J.C., Yap, R.H.C. and Zhang, Y. (2005), An optimal coarse-

grained arc consistency algorithm, Artificial Intelligence, 165(2),165–185.

Bierwirth, C. and Meisel, F. (2009), A Fast Heuristic for Quay Crane Scheduling with

Interference Constraints, Journal of Scheduling, 12, 345-360.

Bierwirth, C. and Meisel, F. (2010), A Survey of Berth Allocation and Quay Crane

Scheduling Problems in Container Terminals, European Journal of Operational

Research, 202(3), 615-627.

Blazewicz, J., Cheng, T.C.E., Mahowiak, M. and Oğuz, C. (2011), Berth and Quay

Crane Allocation: A Moldable Task Scheduling Model, Journal of Operational

Research Society, 62(7), 1189-1197.

Daganzo, C.F. (1989), The Crane Scheduling Problem, Transportation Research B,

23(3), 159-175.

Dechter, R. and Frost, D (1998), Backtracking Algorithms for Constraint Satisfaction

Problems: a survey, Constraints, International Journal, 12, 33-42.

Godard, D., Laborie, P. and Nuijten,W. (2005), Randomized Large Neighborhood

Search for Cumulative Scheduling. ICAPS 2005, 81-89.

Ebeling , C. E. (2009), Evolution of a Box, Invention and Technology 23 (4): 8–9.

Focacci, F., Laburthe, F. and Lodi, A. (2002), Local Search and Constraint

Programming, In Glover F. and Kochenberger, G., editors, Handbook of

Metaheuristics, International Series in Operations Research & Management Science

57. Kluwer Academic Publishers, Norwell, MA, 2002.

Guinet, A. (1993), Scheduling Sequence-Dependent Jobs on Identical Parallel Machines

to Minimize Completion Time Criteria, International Journal of Production

Research, 31(7), 1579–1594.

Hansen, P., Oğuz, C. and Mladenović, N. (2008), Variable Neighborhood Search for

Minimum Cost Berth Allocation, European Journal of Operational Research,

191(3), 636-649.

Kim, K.H. and Park, Y.M. (2004), A Crane Scheduling Method for Port Container

Terminals, European Journal of Operation Research, 156,752–768.

Kim K.H., Park Y.M. and Ryu K.R. (2000), Deriving decision rules to locate export

containers in container yards, European Journal of Operational Research, 124, 89–

101.

Laborie, P. and Godard, D. (2007), Self-Adapting Large Neighborhood Search:

Application to single-mode scheduling problems, Proceedings of the 3rd

Multidisciplinary International Conference on Scheduling: Theory and Applications,

Paris, France, 28-31, August 2007.

Laborie, P. and Rogerie, J. (2008), Reasoning with Conditional Time-intervals,

Proceedings of the 21st International FLAIRS Conference, Coconut Grove, Florida,

USA, 15-17, May 2008.

Laborie, P., Rogerie, J., Shaw, P. and Vilim, P. (2009), Reasoning with Conditional

Time-intervals - Part II: an Algebraical Model for Resources, Proceedings of the

22nd International FLAIRS Conference, Sanibel Island, Florida, USA, 19-21, May

2009.

Le Pape, C. (1994), Implementation of resource constraints in ILOG Scheduler,

Intelligent Systems Engineering, 3(2), 55 – 66.

Lee, D-H. and Chen, J.H. (2010), An Improved Approach for Quay Crane Scheduling

with Non-Crossing Constraints, Engineering Optimization, 42(1), 1-15.

Lee, D-H., Wang, H.Q. and Miao, L. (2008), Quay Crane Scheduling with Non-

Interference Constraints in Port Container Terminals, Transportation Research E, 44,

124–135.

Lenstra, J.K., Rinnooy Kan, A.H.G., Brucker, P. (1977), Complexity of Machine

Scheduling Problems, Annals of Discrete Mathematics, 1, 342-362.

Legato, P., Trunfio, R. and Meisel, F. (2012), Modeling and Solving Rich Quay Crane

Scheduling Problems, Computers & Operations Research, 39, 2063–2078.

Lim, A., Rodrigues, B. and Xu, Z. (2007), A m-Parallel Crane Scheduling Problem with

a Non-Crossing Constraint, Naval Research Logistics, 54(2), 115–127.

Lopez-Ortiz, A., Quimper, C.G., Tromp, J. and van Beek, P. (2003), A Fast and Simple

Algorithm for Bounds Consistency of the alldifferent Constraint, Proceedings of the

18th International Joint Conference on Artificial Intelligence (IJCAI'2003), 245–

250, 2003.

Lustig, I.J. and Puget, J-F. (2001), Program Does Not Equal Program: Constraint

Programming and Its Relationship to Mathematical Programming,

Interfaces,31(6),29-53.

Mackworth, A.K. (1977), Consistency in Networks of Relations, Artificial Intelligence,

8(1), 99-118.

Meisel, F. (2011), The Quay Crane Scheduling with Time Windows, Naval Research

Logistics, 58(7), 619-636.

Meisel, F. and Bierwirth, C. (2011), A Unified Approach for the Evaluation of Quay

Crane Scheduling Models and Algorithms, Computers & Operations Research, 38,

683 –693.

Moccia, L., Cordeau, J.F., Gaudioso, M. and Laporte, G. (2006), A Branch-and-Cut

Algorithm for the Quay Crane Scheduling Problem in a Container Terminal, Naval

Research Logistics, 53(1), 45–59.

Nishimura, E., Imai, A., Papadimitriou, S. (2001), Berth Allocation Planning in the

Public Berth System by Genetic Algorithms, European Journal of Operational

Research, 131, 282–292.

Qiu L., Hsu W.J., Huang S.Y. and Wang H. (2002), Scheduling and routing algorithms

for AGVs: a survey, International Journal of Production Research, 40, 745–760.

Park, Y.M., Kim, K.H. (2003), A Scheduling Method for Berth and Quay Cranes, OR

Spectrum, 25(1), 1–23.

Peterkofsky, R.I. and Daganzo, C.F.(1990), A Branch-and-Bound Solution Method for

the Crane Scheduling Problem, Transportation Research Part B, 24(3), 159–172.

Régin, J.-C. (1994), A Filtering Algorithm for Constraints of Difference in CSP, 12th

National Conference on Artificial Intelligence, (AAAI-94), 362–367.

Sammarra, M., Cordeau, J.F., Laporte, G. and Monaco, M.F. (2007), A Tabu Search

Heuristic for the Quay Crane Scheduling Problem, Journal of Scheduling, 10(4-5),

327–336.

Shaw, P. (1998), Using Constraint Programming and Local Search Methods to Solve

Vehicle Routing Problems. In CP-98 (Fourth International Conference on Principles

and Practice of Constraint Programming), Lecture Notes in Computer Science,

1520, 417–431, 1998.

Stahlbock, R. and Voß, S. (2008), Operations Research at Container Terminals: a

Literature Update, OR Spectrum, 30(1), 1–52.

Steenken, D., Voß, S. and Stahlbock, R. (2004), Container Terminal Operation and

Operations Research – a Classification and Literature Review, OR Spectrum, 26(1),

3–49.

Tavakkoli-Moghaddam, R., Makui, A., Salahi, S., Bazzazi, M. and Taheri, F. (2009),

An Efficient Algorithm for Solving a New Mathematical Model for a Quay Crane

Scheduling Problem in Container Ports, Computers and Industrial Engineering, 56

(1), 241–248.

Vilim, P. (2004), O(n log n) Filtering Algorithms for Unary Resource Constraint,

Proceedings of the First International Conference on the Integration of AI and OR

Techniques in Constraint Programming for Combinatorial Optimization Problems

(CP-AI-OR 04), 319–334, Nice, 2004.

Vis, I.F.A. and de Koster, R. (2003), Transshipment of Containers at a Container

Terminal: an Overview, European Journal of Operational Research, 147(1), 1–16.

Wilson, I.D. and Roach, P.A. (2000), Container stowage planning: A Methodology for

Generating Computerised Solutions, Journal of the Operational Research Society,

51, 1248–1255.

http://shippingandfreightresource.com/2009/04/16/container-stowage-planning-and-

how-it-works/.

ILOG, CPLEX Optimization Studio, User’s Manual (2011).

APPENDIX A

OPL MODEL AND DATA FOR QCSP WITH TIME-WINDOWS

MODEL:

using CP;

 int NbTask=...;

 int NbCrane=...;

 int NbBay=...;

 int NbLeft=...;

 int NbRight=...;

 range cranes=(1-NbLeft)..NbCrane+NbRight;

 range tasks=(1-NbLeft)..NbTask+NbRight;

 range bays=(1-2*NbLeft)..NbBay+2*NbRight;

 tuple prec

 {

 int i;

 int j;

 }

 {prec} Phi=...;

 int p[tasks]=...;

 int b[tasks]=...;

 int total=sum(i in tasks)p[i];

 int largest=max(i in tasks)p[i];

 int tottal=2000;

 int workload[r in bays]=sum(i in tasks:b[i]==r)p[i];

 int largestbay=max(r in bays)workload[r];

 int dummy_ready[cranes]=...;

 int xx[tasks][cranes]=...;

 int earliest[i in tasks]=maxl(sum(k in tasks:<k,i> in Phi)p[k],0);

 int lastt[tasks]=...;

 int ttt[i in tasks]=...;

 int eee[i in tasks]=maxl(earliest[i],ttt[i]);

 int son[i in tasks]=minl(tottal,lastt[i]);

int largee[i in tasks][j in cranes]=xx[i][j]+dummy_ready[j];

int largestt[i in tasks][j in cranes]=minl(tottal,largee[i][j]);

dvar interval acts[i in tasks] in earliest[i]..son[i] size p[i];

dvar interval actOnRes[i in tasks][j in cranes] optional in

eee[i]..largestt[i][j] size p[i];

int M=total;

 dvar int makespan in 0..total;

int Typet[j in 1..NbBay][k in cranes] = (NbBay+2*NbRight+1)*(k)+(j);

tuple triplet2 { int id1; int id2; int value; };

{triplet2} dist2 = { <Typet[b[i]][j],Typet[b[n]][m],ftoi(abs(b[i]-b[n]+2*(m-

j)))> | i,n in 1..NbTask,j,m in cranes: i!=n && j!=m && b[n]>=2*m-1 &&

b[n]<=(NbBay-(NbCrane-m)*2) && b[i]>=2*j-1 && b[i]<=(NbBay-(NbCrane-j)*2)};

 tuple trickk

 {int i;

 int j;

}

 {trickk} deneme[i in 1..NbTask][j in cranes][n in 1..NbTask][m in

cranes]={<i,j>,<n,m>};

dvar sequence seq[j in cranes] in all(i in tasks:b[i]>=2*j-1 && b[i]<=(NbBay-

(NbCrane-j)*2)) actOnRes[i][j] types all(i in tasks:b[i]>=2*j-1 &&

b[i]<=(NbBay-(NbCrane-j)*2))i;

dvar sequence seqq[i in 1..NbTask][j in cranes][n in 1..NbTask][m in cranes]

in all(<a,c> in deneme[i][j][n][m]:m>j && i!=n && j!=m &&b[n]>=2*m-1 &&

b[n]<=(NbBay-(NbCrane-m)*2) && b[i]>=2*j-1 && b[i]<=(NbBay-(NbCrane-

j)*2))actOnRes[a][c] types all(<a,c> in deneme[i][j][n][m]:m>j && i!=n && j!=m

&& b[n]>=2*m-1 && b[n]<=(NbBay-(NbCrane-m)*2) && b[i]>=2*j-1 && b[i]<=(NbBay-

(NbCrane-j)*2))Typet[b[a]][c];

 {int} TaskOnBay[t in bays]={j|j in tasks: b[j]==t};

 {int} t1[i in 1..NbTask][j in cranes][m in cranes]={n|n in 1..NbTask:i!=n &&

b[n]<b[i]+2*(m-j) && b[n]>=2*m-1 && b[n]<=(NbBay-(NbCrane-m)*2) && b[i]>=2*j-1

&& b[i]<=(NbBay-(NbCrane-j)*2) && j!=NbCrane+NbRight && m!=(1-NbLeft) && m>j

};

 {int} t3[i in 1..NbTask][j in cranes][m in cranes]={n|n in 1..NbTask: i!=n

&& b[n]!=b[i] && j<NbCrane+NbRight-1 && b[i]!=NbBay+2*NbRight && b[i]>=2*j-1

&& b[i]<=(NbBay-(NbCrane-j)*2) && m>1-NbLeft+2 && b[n]>b[i]+1 && m>j+1 &&

b[n]<b[i]+2*(m-j-1)+2 && b[n]>=2*m-1 && b[n]<=(NbBay-(NbCrane-m)*2)};

 int Maxi[t in bays]=maxl((max(i in TaskOnBay[t])i),0);

int Card[t in bays]=card(TaskOnBay[t]);

 minimize makespan;

 subject to

 {

 presenceOf(actOnRes[83][6])==1;

 presenceOf(actOnRes[81][4])==1;

 presenceOf(actOnRes[82][5])==1;

 forall(i in tasks)

 alternative(acts[i], all(j in cranes:b[i]>=2*j-1 && b[i]<=(NbBay-(NbCrane-

j)*2)) actOnRes[i][j]);

 forall(j in cranes)

 noOverlap(seq[j],dist);

 makespan==max(t in 1..NbBay:Card[t]>0)endOf(acts[Maxi[t]]);

 forall(t in 1..19)

 noOverlap(append(all(i in TaskOnBay[t])acts[i],all(k in

TaskOnBay[t+1])acts[k]));

forall(t in bays:Card[t]>1)

 {

 forall(i in TaskOnBay[t]: i<Maxi[t])

 {

 endBeforeStart(acts[i],acts[i+1]);

 forall(j in cranes:t>=2*j-1 && t<=(NbBay-(NbCrane-j)*2))

 {

 before(seq[j],actOnRes[i][j],actOnRes[i+1][j]);

 }

 }

}

 forall(i in 1..NbTask,j in cranes: j<NbCrane+NbRight-1 &&

b[i]!=NbBay+2*NbRight && b[i]>=2*j-1 && b[i]<=(NbBay-(NbCrane-j)*2))

 {

 forall(m in cranes: m>j+1)

 forall(n in t3[i][j][m])

 {

 noOverlap(append(actOnRes[i][j],actOnRes[n][m]));

 }

 }

 forall(i in 1..NbTask,j in cranes:b[i]>=2*j-1 && b[i]<=(NbBay-(NbCrane-

j)*2))

 {

 forall(m in cranes:j!=NbCrane+NbRight && m!=(1-NbLeft) && m>j

)

 forall(n in t1[i][j][m])

 {

 noOverlap(seqq[i][j][n][m],dist2);

 }

}

 };

DATA:

NbTask=80;

NbBay=20;

NbCrane=3;

NbRight=3;

NbLeft=0;

dummy_ready=[0,0,0,400,400,400];

p = [22, 46,166, 70, 99, 98, 21, 99, 10,234, 6, 71,190, 12, 18, 19, 92,

23,107, 5, 24, 33, 19, 20, 41, 22, 82,160, 26,139, 88,104, 65, 62, 39, 4,

75, 42, 5,122,221, 30, 17, 31, 21,158, 28,197,191, 7, 71, 58,106, 26, 75,

12,142, 19, 28, 46, 90,120, 4, 37, 23,190, 50,137,144,195,369, 34, 50,158,

62,150, 26, 26, 10, 61,400,400,400];

b = [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5,

5, 5, 5, 6, 6, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9,

10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 14,

15, 15, 15, 15, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 19, 19, 19, 20, 20,

20, 20, 20, 20,22,24,26];

Phi = {< 1, 2>,< 1, 3>,< 2, 3>,< 1, 4>,< 2, 4>,< 3, 4>,< 5, 6>,<

5, 7>,< 6, 7>,< 5, 8>,< 6, 8>,< 7, 8>,< 9, 10>,< 9, 11>,< 10, 11>,<

12, 13>,< 12, 14>,< 13, 14>,< 12, 15>,< 13, 15>,< 14, 15>,< 12, 16>,< 13,

16>,< 14, 16>,< 15, 16>,< 12, 17>,< 13, 17>,< 14, 17>,< 15, 17>,< 16, 17>,<

18, 19>,< 18, 20>,< 19, 20>,< 18, 21>,< 19, 21>,< 20, 21>,< 22, 23>,< 24,

25>,< 24, 26>,< 25, 26>,< 27, 28>,< 27, 29>,< 28, 29>,< 27, 30>,< 28, 30>,<

29, 30>,< 27, 31>,< 28, 31>,< 29, 31>,< 30, 31>,< 27, 32>,< 28, 32>,< 29,

32>,< 30, 32>,< 31, 32>,< 33, 34>,< 33, 35>,< 34, 35>,< 33, 36>,< 34, 36>,<

35, 36>,< 33, 37>,< 34, 37>,< 35, 37>,< 36, 37>,< 33, 38>,< 34, 38>,< 35,

38>,< 36, 38>,< 37, 38>,< 39, 40>,< 39, 41>,< 40, 41>,< 39, 42>,< 40, 42>,<

41, 42>,< 43, 44>,< 43, 45>,< 44, 45>,< 46, 47>,< 46, 48>,< 47, 48>,< 49,

50>,< 49, 51>,< 50, 51>,< 49, 52>,< 50, 52>,< 51, 52>,< 49, 53>,< 50, 53>,<

51, 53>,< 52, 53>,< 49, 54>,< 50, 54>,< 51, 54>,< 52, 54>,< 53, 54>,< 49,

55>,< 50, 55>,< 51, 55>,< 52, 55>,< 53, 55>,< 54, 55>,< 49, 56>,< 50, 56>,<

51, 56>,< 52, 56>,< 53, 56>,< 54, 56>,< 55, 56>,< 58, 59>,< 58, 60>,< 59,

60>,< 58, 61>,< 59, 61>,< 60, 61>,< 62, 63>,< 62, 64>,< 63, 64>,< 65, 66>,<

65, 67>,< 66, 67>,< 65, 68>,< 66, 68>,< 67, 68>,< 65, 69>,< 66, 69>,< 67,

69>,< 68, 69>,< 70, 71>,< 72, 73>,< 72, 74>,< 73, 74>,< 75, 76>,< 75, 77>,<

76, 77>,< 75, 78>,< 76, 78>,< 77, 78>,< 75, 79>,< 76, 79>,< 77, 79>,< 78,

79>,< 75, 80>,< 76, 80>,< 77, 80>,< 78, 80>,< 79, 80>};

lastt=[9999 9999 9999 9999 9999 9999 9999 9999 9999 9999

 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999

 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999

 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999

 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999

 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999

 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999

 9999 9999 9999 9999 800 800 800];

xx=[

[9999 9999 9999 9999 9999 9999],

[9999 9999 9999 9999 9999 9999],

...

[9999 9999 9999 9999 9999 9999],

[9999 9999 9999 9999 9999 9999],

[9999 9999 9999 9999 9999 9999],

[9999 9999 9999 400 9999 9999],

[9999 9999 9999 9999 400 9999],

[9999 9999 9999 9999 9999 400]]; (93th row)

ttt=[0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 400 400 400];

APPENDIX B

NEW SET B RESULTS FOR QCSP

Best results observed in 10 trials are presented.

45 1 754 758*

55 1 754 758*

45 2 759 759*

55 2 773 775**

45 3 754 758**

55 3 777 779*

45 4 783 783**

55 4 754 763

45 5 754 758*

55 5 754 758*

45 6 765 771**

55 6 787 787**

45 7 795 796**

55 7 764 770

45 8 754 759*

55 8 754 765**

45 9 797 797*

55 9 800 800**

45 10 790 790**

55 10 754 757*

770.5 772.9

767.1 771.2

50 1 754 774*

60 1 778 779**

50 2 768 769**

60 2 754 756*

50 3 768 768**

60 3 754 758*

50 4 754 763**

60 4 755 765*

50 5 754 762*

60 5 754 759**

50 6 754 765*

60 6 754 758*

50 7 775 775**

60 7 754 779**

50 8 753 758**

60 8 754 758

50 9 797 798*

60 9 784 785*

50 10 754 758**

60 10 799 800**

763.1 769.0

764 769.7

65 1 754 758*

70 1 754 759**

65 2 799 799*

70 2 754 765

65 3 801 802**

70 3 754 759**

65 4 754 758*

70 4 754 756**

65 5 754 758*

70 5 754 757*

65 6 754 757*

70 6 760 761*

65 7 754 757*

70 7 754 757**

65 8 754 756*

70 8 754 757**

65 9 754 758*

70 9 753 757*

65 10 781 781**

70 10 772 773**

765.9 768.4

756.3 760.2

* Previous best results are repeated.

** New best results are observed.

(note that, data are independent from initial positions of QCs)

APPENDIX C

NEW SET C RESULTS FOR QCSP

Best results observed in 10 trials are presented.

75 1 1177 1177**

85 1 1047 1047**

75 2 1003 1013

85 2 1003 1012**

75 3 1181 1181**

85 3 1024 1025**

75 4 1103 1103**

85 4 1180 1181**

75 5 1185 1185**

85 5 1076 1076**

75 6 1118 1118**

85 6 1003 1010*

75 7 1192 1192**

85 7 1193 1193**

75 8 1166 1166**

85 8 1097 1097**

75 9 1170 1170**

85 9 1003 1010*

75 10 1188 1188*

85 10 1166 1166*

1148.3 1149.3

1079.2 1081.7

80 1 1172 1172**

90 1 1003 1009**

80 2 1003 1021**

90 2 1003 1012**

80 3 1003 1013*

90 3 1003 1010**

80 4 1196 1196**

90 4 1057 1057**

80 5 1029 1029**

90 5 1062 1062*

80 6 1109 1109**

90 6 1193 1193*

80 7 1193 1193**

90 7 1105 1105**

80 8 1011 1013**

90 8 1086 1086**

80 9 1192 1192*

90 9 1072 1072**

80 10 1201 1201**

90 10 1049 1049*

 .

1110.9 1113.9

1063.3 1065.5

95 1 1173 1173**

100 1 1004 1013**

95 2 1086 1086**

100 2 1097 1098**

95 3 1003 1013**

100 3 1100 1100**

95 4 1135 1135**

100 4 1198 1198**

95 5 1137 1137**

100 5 1003 1014**

95 6 1052 1053**

100 6 1135 1135**

95 7 1164 1164**

100 7 1095 1095**

95 8 1003 1009**

100 8 1151 1151*

95 9 1019 1019*

100 9 1003 1009**

95 10 1003 1010**

100 10 1003 1013**

1077.5 1079.9

1078.9 1082.6

* Previous best results are repeated.

** New best results are observed.

(note that, data are independent from initial positions of QCs)

APPENDIX D

NEW SET C RESULTS FOR QCSP WITH READY TIMES

Best results observed in 10 trials are presented.

75 1 1302 1315

85 1 1302 1319

75 2 1302 1320

85 2 1302 1325

75 3 1302 1318

85 3 1302 1315

75 4 1302 1314

85 4 1302 1322

75 5 1302 1327

85 5 1302 1320

75 6 1302 1320

85 6 1302 1312

75 7 1302 1323

85 7 1302 1315

75 8 1302 1327

85 8 1302 1326

75 9 1302 1312

85 9 1302 1319

75 10 1302 1313

85 10 1302 1315

 .

1302 1318.9

 .

1302 1318.8

80 1 1302 1318

90 1 1302 1314

80 2 1302 1312

90 2 1302 1316

80 3 1302 1314

90 3 1302 1315

80 4 1302 1314

90 4 1302 1329

80 5 1302 1319

90 5 1302 1316

80 6 1302 1326

90 6 1302 1310

80 7 1302 1327

90 7 1302 1338

80 8 1302 1315

90 8 1302 1320

80 9 1302 1317

90 9 1302 1317

80 10 1302 1316

90 10 1302 1323

 .

1302 1317.8

 .

1302 1319.8

 1 1302 1317

 1 1302 1322

 2 1302 1316

 2 1302 1327

 3 1302 1332

 3 1302 1322

 4 1302 1319

 4 1302 1315

 5 1302 1332

 5 1302 1326

 6 1302 1314

 6 1302 1317

 7 1302 1318

 7 1302 1313

 8 1302 1313

 8 1302 1325

 9 1302 1321

 9 1302 1342

 10 1302 1337

 10 1302 1315

 .

1302 1321.9 .

1302 1322.4

APPENDIX E

NEW SET C RESULTS FOR QCSP WITH TIME WINDOWS

Best results observed in 10 trials are presented.

80 1 1208 1225 1225

80 2 1208 1248 1246

80 3 1208 1229 1228

80 4 1208 1307 1305

80 5 1208 1245 1241

80 6 1208 1320 1319

80 7 1208 1277 1277

80 8 1208 1283 1283

80 9 1208 1234 1234

80 10 1208 1270 1270

 1208 1263.8 1262.8

