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ABSTRACT 

 

 

 

Minimizing the average vessel berthing time is one of the challenges for container 

terminals. Since containers are deployed from vessels by a quay crane, operations of 

this huge equipment may cause a bottleneck for the overall performance of a terminal. 

This study examines the quay crane scheduling problem (QCSP) at the seaside of 

container terminals. The QCSP requires completion of all loading and unloading 

operations of a berthed vessel. A constraint programming (CP) model, which consists of 

global constraints and propositional logic, is constructed by taking numerous properties 

of the problem such as safety margins, travel times and precedence relations into 

account. The performance of the proposed CP model is compared with algorithms 

presented in recent QCSP literature. The result from the computational experiments 

indicates that the proposed CP model is able to produce good results for the QCSP 

while reducing the computational time. Lastly, to show the robustness and the flexibility 

of the proposed model, extensions of the problem with ready times and time windows 

are also discussed.  

 

Keywords: Quay Crane Scheduling, Constraint Programming, Container Terminals, 

Ready Times, Time Windows 

 

 

 

 

 

 



 

ÖZET 

 

 

 

Gemilerin rıhtıma bağlı kalma sürelerinin enazlanması konteyner terminallerinin önemli 

sorunlarındandır. Bu çalışmada konteyner terminallerindeki rıhtım vinci çizelgeleme 

problemi incelenmiştir. Rıhtım vinci çizelgeleme (RVÇ) probleminde rıhtıma yerleşmiş 

bir gemideki tüm konteynerlerin boşaltılması ve yerine yeni konteynerlerin yüklenmesi 

işlemlerinin tamamı gerçekleştirilir. Bu problem için vinçlerin hareket süreleri, güvenlik 

mesafeleri, işlerin öncelik ilişkileri, vinçlerin birbirini geçmemesi gibi birçok kısıt 

içeren zengin bir kısıt programlama (KP) modeli geliştirilmiştir. Bu KP modeli, 

literatürde daha önce yapılmış düzeltmeler dikkate alınarak, tamamen evrensel kısıtlar 

ve basit mantıksal kısıtlarlarla oluşturulmuştur. Geliştirilen KP modelinin performansı, 

literatürde sunulan en güçlü çözüm yöntemleriyle karşılaştırılmıştır. Hesaplamalı 

deneyler, RVÇ problemi için geliştirilen KP modelinin istikrarlı bir biçimde en iyiye 

çok yakın sonuçlara daha önceki çözüm sürelerini önemli miktarda azaltarak ulaştığını 

göstermiştir. Yöntemin esnekliğini göstermek için RVÇ probleminin vinçlerin hazır 

olma sürelerinin ve zaman pencerelerinin olduğu çeşitleri de çalışılmıştır. 

 

 

Anahtar Kelimeler: Kısıt Programlama, Konteyner Terminalleri, Rıhtım Vinci 

Çizelgeleme , Hazır Olma Zamanları, Zaman Pencereleri 
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CHAPTER 1 

 

INTRODUCTION 

 

 

As the distance between manufacturing and consumption locations increases, the 

container traffic and the competition between the container terminals grow accordingly. 

To exist in this competitive market, the container terminal operations must be efficient. 

In any container terminal, all of the inbound and the outbound containers pass through 

the seaside. Some important seaside operations in container terminals and their 

relationships are shown in Figure 1.1. Therefore, a container terminal management 

should allocate berth positions, assign (allocate) and schedule quay cranes for each 

vessel which is going to arrive to the terminal.  

 

 

 

 

Comprehensive surveys for the problems related to the seaside operations in 

container terminals are presented by Vis and de Koster (2003), Steenken et al (2004), 

and Stahlbock and Voß (2008). 

In this thesis, scheduling of quay cranes is studied. A quay crane (QC) is huge 

equipment which is used to load and unload container vessels in container terminals 

(see Figure 1.2). The speed and the reliability of QC operations strongly depend on 

work schedules which are projected for the QCs. In the real-world, the quay crane 

Figure 1.1: Seaside operations in container terminals. 
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scheduling significantly affects the waiting time of a container vessel since quay cranes 

are the interface between the land and the water side in any port container terminal.  

At the same time, a QC is the most expensive equipment in any container terminal 

and this restricts the number of QCs that a terminal equips. Therefore, it is a prerequisite 

to carry out QC operations efficiently to provide a high quality service to vessels with a 

limited number of QCs.  

Also the nature of the problem will entail a large number of side constraints. 

Accordingly there is a need for an alternative solution technique which can respond to 

wide variety of changes (additions) in the problem. Therefore the motivation in this 

thesis is to propose a solution technique to QCSP which is not only able to generate 

high quality results, but also is flexible to the changes in the problem. 

The thesis is organized as follows. In Chapter 1, some key elements of container 

terminals are described. Then container terminal operations are classified and briefly 

introduced. Chapter 2 describes the problem and then gives a comprehensive literature 

review. The methodologies used in this study are explained in Chapter 3; that is, a 

general introduction to constraint programming is presented. Firstly in Chapter 4, a 

mixed integer programming (MIP) model for QCSP is introduced. Then a new 

constraint programming model which is functionally analogous to MIP model is 

proposed for QCSP and a bin packing based mixed-integer programming model is 

developed for a relaxed version of the QCSP to find a lower bound to the original one. 

Later in Chapter 4, two different extensions of the problem, QCSP with ready times and 

QCSP with time windows are studied. At the end of Chapter 4, computational 

experiments and their results are also explained and discussed in details. The thesis 

concludes in Chapter 5 with a discussion of future research possibilities.  

 

 

Figure 1.2: A representation of QCs working on a vessel (Kim and Park (2004)). 
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1.1 Container Terminals 

In this section, some important concepts related with container terminal operations 

are introduced. Then a brief introduction to operational problems that exist in container 

terminals is made. Comprehensive surveys for these problems can be found in Vis and 

de Koster (2003), Steenken et al (2004), and Stahlbock and Voß (2008).  

     1.1.1 Container 

A container is a box-shaped equipment which is used to transport goods from one 

destination to another. Standard sizes for containers are 20-foot (6.1 m) and 40-foot 

(12.2 m) and the standard measure of a container is called TEU, which is equivalent to 

20-foot container. Total workload and capacity of the container vessels are often 

represented in TEUs. Most common container types of this size are 1-TEU dry 

(standard), 2-TEU dry, open top, refrigerated and flat rack.  All of these containers are 

built by considering some international standards to make them interchangeable 

between different companies and carriers. This standardization helps to carry and 

handle containers easily by all means of transportation. Also containers are 

manufactured from very strong materials. For this reason, they can be stacked easily. A 

proper type of a container is the most secure alternative to transport goods without 

being damaged.  

To sum up containers are widely used, because a container is; 

 

 safe and enduring, 

 can meet different kind of 

requirements, 

 easy to handle, 

 and easy to storage in 

stacks. 

 

1.1.2 Container Terminal 

Since first container vessel docked in 1956, containerization of cargoes is becoming 

ever more popular worldwide and almost all type of goods are now transported by 
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containers. Containers supported a vast increase in overseas trading by allowing the 

effective transportation of goods over long distances. This intercontinental container 

traffic passes through a large number of container terminals all around the world. 

Container terminals are huge facilities where containers are transshipped between 

different vehicles, for onward transportation. There are two types of container terminals; 

maritime container terminals and inland container terminals. Maritime container 

terminals are located at a seaside and provide connection between sea-freight and means 

of land transportation. Usually they are located around major harbors. On the other 

hand, inland container terminals are the connection points for different means of land 

transportation. They are usually located in territories with good rail connections to 

maritime container terminals. 

In this thesis, from now on, a container terminal (CT) will refer to maritime container 

terminals. The most general representation of a CT can be found in Figure 1.4 below. 

 

Figure 1.4: A general representation of a maritime container terminal. 

 

As previously denoted, a CT connects sea-freight to land transportation. Then, any 

CT can be divided into two major areas based on operations performed; seaside and 

landside. At the seaside, container vessels dock to berths and their loading and 

unloading operations are completed by a set of quay cranes. At the landside, there is a 

storage area in which containers are temporarily stored in stacks. Trucks and/or 
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automated guided vehicles (AGVs) transfer containers between the seaside and the 

storage area continuously. Moreover the containers which are coming from (or going to) 

land transportation are also transferred between storage area and gates of CT by trucks 

and/or AGVs. 

 

1.1.3 Quay Crane 

A quay crane (QC) is a huge equipment which is used to load and unload container 

vessels in container terminals (see Figure 1.5). There must be a number of QCs at the 

seaside of any maritime container terminal because it is the one and the only equipment 

to load (unload) containers to (from) vessels. 

Therefore their workload is very intense and they often restrict the performance of 

whole container terminal. Having and operating dozens of QCs would be better for the 

performance of any container terminals, however, at the same time it is very costly to 

purchase and operate even a single 

QC. The purchasing cost of a QC is 

more than 5-million dollars. 

Therefore, there is an important 

trade-off for QCs: “service speed 

vs. cost”. 

As a result, it is very crucial to 

operate QCs effectively in any 

container terminal. 

 

 

1.2 Significance of CTs 

Today, most of the cargoes are transported by sea-freight around the world (Ebeling 

(2009)). According to this, most of the CTs are facing with very intensive levels of 

workload. This intensity mainly centered at far-east countries because of the cheap 

labor. Even western companies tend to manufacture their products in areas where labor 

Figure 1.5: A quay crane. 
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costs are relatively low, and then transport products to all around the world by container 

vessels because sea-freight is at least five-times cheaper than rail, truck and air freight. 

The workload of some major CTs in 2005 and 2010 are listed in Table 1.1 below.  

 

Table 1.1: Workload of some CTs. 

     

ng 

                                                       

1 Shanghai 18,084 29,069 60.8 

2 Singapore 23,192 28,431 22.6 

3 Hong Kong 22,427 23,699 5.7 

48 Ambarlı-İstanbul 

İstanbul 

1,446 2,540 75.7 

 

These numbers alone do not indicate much; however, if these numbers are converted 

to daily workload in terms of approximate number of vessels, the intensity of the 

workload can be understood clearly. For example, based on 2010 data, the daily average 

of 333 container vessels were arrived to Hong Kong container terminal, and 

approximately 65,000 containers were loaded and unloaded every day. This huge 

amount of workload makes sense here for quay crane scheduling operations since every 

single container must be loaded and unloaded by QCs. Operations of QCs are a key 

factor for the productivity of a container terminal because it is the operation with the 

highest workload and is often causing a bottleneck for the performance of not only 

seaside operations, but also the whole container terminal.   

Recently, the advantages of using sea-freight are started to be recognized in Turkey. 

Therefore, with an increasing demand to this transportation method, the need for new 

CTs and additional capacities for existing ones is also becoming a current issue in 

Turkey. As can be seen in Table 1.1, between 2005 and 2010 the largest increase of 

workloads among these four CTs is observed in Ambarli, İstanbul container terminal 

and this trend towards sea-freight is expected to continue. 
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1.3 Operations in Container Terminals 

As previously mentioned, operations in container terminals can be divided into two 

as seaside and landside operations.  

1.3.1 Seaside Operations 

The major seaside operations consist of berth allocation, quay crane allocation 

(assignment) and quay crane scheduling. These three activities must be performed 

sequentially. Seaside operations for each vessel start with approaching of a vessel to CT 

and finish with the departure of this vessel. Also stowage planning is required to define 

the layout of containers on a vessel.  

 

1.3.1.1 Berth Allocation  

A berth position must be allocated for each vessel which is scheduled to arrive to a 

CT. Schedules of large ocean vessels can be known couple of months in advance, 

however CT managements made exact decision for their berth allocations closer to their 

arrival because lots of smaller-sized vessels also arrives with more immediate 

notifications of their schedules. Often berth allocation for a large ocean vessel begins 

two or three weeks before its arrival. The decision for berth allocation also requires a 

careful investigation of some parameters, for example, availability of different depths of 

berth positions, length and workload of vessels, priorities, etc. Also there can be 

different objectives for this problem; however, most of the time minimizing the average 

waiting times for arriving vessels and minimizing the total distance between all vessels 

on the berth is considered. The former is mainly for the benefit of vessels, while the 

latter is desired by CT practitioners for performing more effective QC operations.  

Berth allocation problem (BAP) is often modeled as a two-dimensional bin-packing 

problem (Lim (1998)), while a bin is considered as a space-time graph. In this 

representation, each rectangle in the bin represents the berthed vessel where vertical and 

horizontal axes stand for its berth position and handling time, respectively. Of course, 

all rectangles in a bin must be non-overlapping. Lim (1998) also proves that BAP is NP-

complete, and develops an effective problem specific heuristic. Nishimura et al (2001) 

study dynamic berth allocation problem and develop a genetic algorithm to solve this 
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problem. Hansen et al (2008) solve the problem effectively with a variable 

neighborhood search. Comprehensive literature review and a classification scheme for 

BAP can be found in Bierwirth and Meisel (2010). 

Since berth allocation is the first decision made by a CT for each arriving vessel, it 

affects the performance of other CT operations. Hence one can claim that the decision 

of berth allocation is strongly related with allocation of QCs (Bierwirth and Meisel 

(2010)). 

 

1.3.1.2 Quay Crane Allocation 

Based on the berthing plan of arriving vessels, quay cranes must be allocated to these 

vessels by considering that QCs operate on a same rail-track. The number of QCs to be 

allocated to a vessel mainly depends on the amount of total workload and the priority of 

each vessel. We have to choose between two planning alternatives while allocating 

QCs: 

 

- QCs are allocated to a vessel to complete all of jobs on this vessel; that 

is, the number of QCs assigned to a vessel is the same during whole makespan. 

It would be easier for planning and operating QCs; however at the same time it 

causes QCs to have lower productivities and a decrease in overall performance 

of seaside operations (Bierwirth and Meisel (2010)). 

- The number of QCs can change during the operation, which allows a 

terminal to reach higher overall performance. On the other hand, it is very 

complex for planning and operating QCs. It will lead CT management to solve 

more complex QC scheduling problems with ready times or time windows. 

Detailed explanations of these problems can be found in Sections 4.5 and 4.6.  

 

On average two to six QCs operate at a single ocean vessel. Studies for the problem 

of allocating QCs (QCAP) are often integrated with BAP and the problem of scheduling 

of QCs (QCSP) because considering QCAP itself often gives impractical and inefficient 

output for overall performance of CTs. Integration of BAP and QCAP is studied by 



 

Chapter 1: Introduction  9 

 

Blazewicz et al (2011) and Park and Kim (2003), and of QCAP and QCSP is studied by 

Tavakkoli-Moghaddam et al (2009). 

 

1.3.1.3 Quay Crane Scheduling  

This operation consists of scheduling QCs to load and unload berthed vessels. The 

input for this operation is the plan of the workload of a vessel and the complete 

allocation information of QCs to this vessel. Detailed problem definition and literature 

review for this operation will be given in the next chapter. 

 

1.3.1.4 Stowage Planning 

A stowage plan of a vessel defines the location of containers over the vessel. Each 

location is defined as a triplet of <bay-row-tier>. Each container vessel is split into 

longitudinal parts which are termed as bays. Row is the position in which the container 

is placed across the width of the vessel.  Tier indicates that at which level a container is 

placed, namely how high the container is stacked. Figure 1.6 depicts a representation of 

a stacking area of a vessel.  

This plan is updated at each port the vessel visits. Both shipping lines and CT 

management involve in this planning process at different levels. Most of the input 

parameters to schedule QCs –precedence relationships, processing times, bay locations- 

are determined based on the stowage plan of the vessel. 

 

1.3.2 Landside Operations 

Some crucial operations are run continuously at the landside, as in the seaside. 

Landside of a CT consists of storage area, intermodal transportation vehicles, stacking 

equipment and gates which are providing the only connection of a CT with means of 

land transportation (trains and/or trucks). Some important operations in storage area and 

the means of intermodal transportation are described below. 
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Figure 1.6: Representation of container positions on a vessel. 

More information about stowage planning can be found in Wilson and Roach (2000).   

 

1.3.2.1 Operations in Storage Area 

Number of containers to be stacked in the storage area has increased accordingly 

with the volume of sea freight traffic. Almost every container needs to be stored in 

stacks for some amount of time because it is very hard to match arrival and departure 

times of different means of transportation to which a container is assigned. Accordingly, 

a storage area can be considered as a scarce resource and this fact makes the 

optimization of a storage area more important. For each container which needs to be 

temporarily stored in the CT, the terminal management has to select a storage position 

in terms of block, bay, row and tier with the same pattern as represented in Figure 1.6 

above. Often there are different storage areas available for different types of containers. 

The distance of the storage position to the arrival and the departure points of a container 

is one of the key measures while allocating a storage position for a container. However, 

consideration of remarshalling and reshuffling of containers makes the problem harder.  

Firstly, a number of reshufflings in the whole storage area need to be minimized. A 

reshuffling in a stack occurs when a specific container which is not directly accessible, 
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needs to leave the stack. That is, to reach this specific container, all other containers 

which are placed on its top must be removed first and restacked again after removal. 

 The other important measure is the number of total moves, which is remarshalling. 

A remarshalling refers to a more general concept; every move of a container (removal, 

shifting, transfer and etc.) in a storage area called remarshalling. For an example move, 

a container can be transferred to other stacks to prevent potential reshufflings. Therefore 

it is also important to minimize the total number of moves of containers in a whole 

storage area. Even a single move of a container took some significant time; therefore, 

effective operations of storage area can reduce the overall handling time significantly.  

Different storage allocation strategies are presented and discussed by Vis and de 

Koster (2004). Storage allocation can be considered as a dynamic operation, since also 

arrive after the start of the planning period. Accordingly, dynamic approaches are 

proposed by Kim et al (2000) and Kim and Park (2003).   

 

1.3.2.2 Transfer operations 

There are many different transfer and handling equipments used at the landside. Most 

common ones are AGVs, trucks and yard cranes.  

Containers are transferred between QCs, storage area and gates of the terminal by 

AGVs and trucks. Automated systems are hard to operate and requires some 

considerable investment but offer more effective transfer operations. More information 

about operating AGV systems can be found in Qui et al (2002).  Note that, the 

management of complex AGV systems can be considered as one of the trending 

subjects in container terminal optimization. 

In storage area, stacking operations are carried out by yard cranes. Yard cranes for 

the same block operate on the same rail-track, therefore their scheduling operations 

requires a non-crossing constraint similar to scheduling of QCs.  
 

   

1.4 Container Flows 

Containers can also be classified based on their routes. First of all, an export 

container arrives to CT by land transportation and waits in the storage area until loaded 
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to a vessel. On the other hand, import containers arrive by vessels and then depart the 

terminal by land transportation. Transit containers arrive by vessels, stacked in a storage 

area temporarily until loaded to another vessel. Each category of containers follows 

different operations flow in the terminal.  General operations flow of different types of 

containers in container terminals represented in Figure 1.7. 
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Figure 1.7: Container flows. 
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CHAPTER 2 

 

THE QUAY CRANE SCHEDULING PROBLEM 

 

2.1 Problem Definition 

The quay crane scheduling problem (QCSP) is to find a schedule for the loading and 

the unloading of tasks of a single vessel by using a set of quay cranes with the aim of 

optimizing some objective function. In more detail, we are given a set of tasks   

             , which are on a set of bays                , and a set of assigned 

quay cranes                  where         and      stand for number of tasks, 

bays and quay cranes, respectively. A very general representation of the QCSP of a 

single vessel with these parameters is shown below, in Figure 2.1. 

 

 

Figure 2.1: Positioning of QCs and bays. 

Each task     must be performed by a single QC without preemption. QCs are 

operated on the same track; consequently, they cannot cross each other. Each task has a 

processing time    which represents the time required to complete task     by any 

crane. The problem is to find time-intervals in which the tasks are processed by the 

cranes with respect to a wide variety of problem constraints. Most of the time, the 

objective is to minimize the completion time of the latest completed job (makespan). 
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This problem with makespan minimization is NP-hard (Lim et al (2007), Lee et al 

(2008)). 

 

 

 Figure 2.2: A drawing of QCs working on a vessel.  

The more realistic representation of a general instance of the problem can be found 

in Figure 2.2. In this instance,      and     are defined as 10 and 3, respectively. 

However the number of tasks would be varied based on the definition of task. 

The definition of a task divides the general QCSP into two major classes: 

 QCSP with complete bays, in which a vessel is divided into parts longitudinally into 

bays. A single task consists of all unloading and loading tasks of a bay.  

 QCSP with container groups, in which a task represents a group of containers that 

are stored in a bay and usually have a common destination. 

 

To compare two major classes in the simplest way, in QCSP with complete bays, the 

maximum number of tasks equals the number of bays. However, in QCSP with 

container groups, there can be more than one container group in a single bay; hence, the 

number of tasks is not restricted and can be more than the number of bays. In the 

literature, these two classes are treated separately according to a survey conducted by 

Bierwirth and Meisel (2010).  

In this thesis a task is defined as a container group and accordingly number of tasks 

per bay is more than one, more precisely, varies between 3 and 5. From now on, QCSP 

will refer to QCSP with container groups in rest the of the thesis. 

Two important decisions must be made to solve this problem. First, each task must 

be assigned to one and only one quay crane (QC). The latter is to schedule these 
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assigned tasks for each QC. From this perspective, the problem can be considered as a 

fundamental planning and scheduling problem which consists of assignment part as 

planning and then generating schedules based on this plan.  

Furthermore, the roots of the QCSP come from the parallel machine scheduling 

problem (Guinet (1993)) where a QC is a machine and a container group (or a complete 

bay, based on the definition) is a task. Then each task must be processed with one of the 

machines which are identical and have capacity of one. However, QCSP is harder than 

the general parallel machine scheduling problem because of five additional constraints.  

1. Non-crossing constraint: QCs are moving on the same rail-track, hence QCs 

cannot cross each other. 

2. Non-interference: QCs must not interfere with each other, namely, at any 

time only one QC can work on a single bay. 

3. Safety Distances: Other than non-interference constraint, at any time there 

should be a predefined space between two adjacent QCs to avoid some 

potential collusions on a rail track. 

4. Precedence relationships among tasks based on a stowage plan (also may 

exist in parallel machine scheduling).  

5. Travel Times: It takes some time for a QC to travel horizontally on a rail-

track between bays. This constraint of the problem corresponds to sequence 

dependent setup times in parallel machine scheduling. 

As a result, it can be easily stated that an instance of a QCSP with   machines and   

tasks is harder than the same instance of a parallel machine scheduling problem with 

precedence relationships and sequence dependent setup times. Note that, solving the 

latter problem itself is even very hard (Lenstra et al (1977)). 
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2.2 Literature Review 

As previously stated, the definition of task divides the general QCSP into two major 

classes: 

a) QCSP with complete bays, in which a vessel is divided into parts longitudinally into 

bays. A single task consists of all unloading and loading tasks of a bay.  

b) QCSP with container groups, in which a task represents a group of containers that 

are stored in a bay and usually have a common destination. 

 

In this study, the latter is considered. In the existing literature these two classes are 

treated separately according to the survey of Bierwirth and Meisel (2010). In this 

survey, the authors investigate berth allocation problem and QCSP literatures 

comprehensively and they develop classification schemes for both problems.  

The QCSP with complete bays is introduced by Daganzo (1989) and it is also the 

first QCSP article in the literature. In this study tasks can be preemptive; therefore one 

bay can be served by more than one crane. A mixed-integer programming model which 

considers more than one vessel is proposed. The objective is to minimize the weighted 

sum of the completion times of tasks. However they do not take even non-crossing of 

QCs into account and solve a problem which is very similar to parallel machine 

scheduling of preemptive tasks with identical machines. Peterkofsky and Daganzo 

(1990) solve the same mixed-integer programming model provided by Daganzo (1989) 

by developing a branch and bound method.  

Lim et al (2004) state that non-crossing of QCs can be easily established for QCSP 

with complete bays by considering unidirectional schedules.  In unidirectional 

schedules, all QCs have only one and the same moving direction. They develop an 

approximation algorithm to find feasible solutions. The objective is to minimize the 

makespan of the schedule.  

Zhu and Lim (2005) prove that the problem with non-preemptive tasks is NP-hard. 

They formulate a mixed-integer programming model for QCSP with the objective of 

makespan minimization. They develop a branch and bound method to obtain optimal 

results. Also they apply a simulated annealing metaheuristic to QCSP to cope with 

larger instances. However, the only constraint that they take into account is non-

crossing of QCs and this makes the problem much easier to solve.  
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Liu et al (2006) propose a mixed-integer-programming model for QCSP with 

complete bays by considering unidirectional schedules. The objective is to minimize the 

makespan of the schedule.  The model considers moving speed and travel times of QCs, 

initial QC positions and safety margins between QCs; therefore their problem is much 

more complex than any other QCSP with complete bays study. However the last 

positions of the cranes are always greater than their initial positions because of the 

unidirectional schedules, hence all QCs must return to their initial position before any 

new operation. It is not practical since it requires a non-negligible amount of travel time 

for such operation. 

In another study that deals with complete bays, Lim et al (2007) show that the 

optimal solution can be found by searching all unidirectional schedules. The authors 

also introduce that all unidirectional schedules can be obtained from QC-to-bay 

assignments. Based on this premise, they develop a constraint propagation method, 

simple approximation heuristics and a simulated annealing metaheuristic. Again, the 

only constraint that they take into account is non-crossing of QCs. 

Lee et al (2008) prove that the QCSP with complete bays is NP-hard. They formulate 

a mixed-integer programming model which is derived from the model of Kim and Park 

(2004). The objective is to minimize the makespan of the schedule. They develop an 

efficient genetic algorithm to find near optimal solutions. In this study travel times of 

the QCs are assumed to be zero. Also there is no interference between QCs since only 

one QC serves a single bay.  This situation holds for every QCSP with complete bays 

study with non-preemptive tasks. 

Lee and Chen (2010) identify some important deficiencies that are mainly found in 

the models which are constructed based on the model of Kim and Park (2004). They 

develop a couple of approximation algorithms by using dynamic programming after 

resolving such deficiencies. Again, in that QCSP with complete bays study, they ignore 

travel times of QCs. Similar to studies which are listed above they do not consider 

precedence relations among tasks, safety margins (only exists in Liu et al (2006)) and 

QC interferences. 

The QCSP with container groups, which is the most complex QCSP class among 

other classes, is formulated by Kim and Park (2004). In this problem, there can be more 

than one crane assigned to a single bay. Therefore there may be some interference 

among QCs and such interference must be avoided to obtain a feasible schedule. The 
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authors develop a detailed mathematical model that covers a wide variety of problem 

constraints. The objective is to minimize the weighted sum of makespan of the schedule 

and the completion times of QCs. They propose a branch and bound method to solve 

small instances and a greedy randomized adaptive search procedure (GRASP) heuristic 

for larger instances.  

The mathematical model of Kim and Park (2004) is improved by the stronger 

formulation of Moccia et al (2006). The authors also develop a branch and cut method 

to solve the problem. Sammarra et al (2007) identify some interference among QCs in 

Moccia et al (2006) and present a modified formulation. Then they solve the modified 

QCSP model by using tabu search metaheuristic. Recently, Lee and Chen (2010) 

identify some important deficiencies in container groups studies..  

 Bierwirth and Meisel (2009) investigate and fix the QC interference constraints and 

then develop a branch and bound based heuristic solution procedure for the problem. 

The objective is to minimize makespan of the schedule. The authors also show that the 

optimal schedules of QCSP with container groups do not have to be unidirectional 

schedules. 

Meisel and Bierwirth (2011) introduce a unified approach to compare different quay 

crane scheduling problems. Moreover they provide a scheme for generating benchmark 

instances with certain characteristics.  

Meisel (2011) considers that QCs have definite time windows. In this problem, QCs 

are only available in some certain time windows. The problem has a practical relevance 

because in container terminals QCs are frequently redeployed between vessels to 

provide faster service. For this version of QCSP with container groups, he formulates a 

mixed-integer programming model by using previously fixed QC interference 

constraints. The objective of the problem is makespan minimization of the schedule. He 

also constructs a tree-search based heuristic to solve large size QCSP with time 

windows instances.  

Legato et al (2012) present a rich QCSP with numerous different properties of the 

problem as ready times, time windows, crane dependent processing times (with non-

uniform QCs). They develop an independent-unidirectional heuristic called Timed-

Petri-Net to solve these different types of problems.  

Recently, Chung and Choy (2012) develop a genetic algorithm based on the model of 

Moccia et al (2006). The objective is to minimize makespan of the schedule. Although 
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it is the latest QCSP paper published in the literature, neither QC interference 

deficiencies caused by travel times (Bierwirth and Meisel (2009)) nor other deficiencies 

identified by Lee and Chen (2010) are considered.  

In Table 2.1 below, overview of qualities for all of these studies are listed. Note that, 

columns D1 and D2 shows the existence of corrections of modeling deficiencies 

identified by Bierwirth and Meisel (2009) and Lee and Chen (2010), respectively.  

 

Table 2.1: Comparison of QCSP literature. 

      
Container 

Groups 

Complete 

Bays 

Preemptive 
Precedence 

Travel 

 times 

Non -

crossing 

Safety 

margin 

Ready 

times 

Time 

Windows 
D1 D2 

Tasks 

Daganzo(1989) 
 

x x 
        

Peterkovsky and 
Daganzo(1990)  

x x 
        

Kim and 

Park(2004) x 
  

x x x x x 
   

Lim et al (2004) 
 

x 
  

x x 
     

Moccia et 

al(2006) 
x 

  
x x x x x 

   

Ng and 

Mak(2006) 
x 

  
x x x 

     

Liu et al (2006) 
 

x 
  

x x x x 
   

Zhu and 

Lim(2006)  
x 

   
x 

     

Lim et al(2007) 
 

x 
   

x 
     

Samarra et 

al(2007) 
x 

  
x x x x 

    

Lee et al(2008) 
 

x 
   

x 
     

Bierwirth and 

Meisel (2009) 
x 

  
x x x x x 

 
x 

 

Lee and 

Chen(2010)  
x 

   
x 

    
x 

Meisel(2011) x 
  

x x x x x x x 
 

Meisel and 

Bierwirth(2011)    
x x x x 

  
x 

 

Chung and 

Choy(2012) 
x 

  
x x x x 

    

Legato et al 

(2012) 
x 

  
x x x x x x x 

 

This study x 
  

x x x x x x x x 
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The last column of Table 2.1 should be treated carefully.  Some of these methods, 

except that of Lee and Chen (2010) and our study, may be generating schedules which 

do not allow assigned QCs to pass the boundaries of the vessel, while the corresponding 

mathematical model that they represented as a base QCSP model in their studies are 

contrarily allowing such movements.  Each of the methods represented in these studies 

should be carefully investigated to find out if they possess this deficiency. 

 

2.3 Assumptions 

The following assumptions are made for the QCSP: 

 

 Every task must be completed by a single crane. 

 Tasks are non-preemptive. 

 QCs are identical and are operated on the same track.  

 In a single bay, only one QC can work because of its size. 

 The physical presence of idle QCs, if any, is not ignored. (Bierwirth and Meisel 

(2009) and Lee and Chen (2010) both identified that, in most of the previous QCSP 

models, ignoring idle cranes caused some deficiencies.) Idleness is a state of a QC 

which is waiting in some bay without operating on any task. Based on findings of 

the researchers, while a QC is idle, active QCs behave as if idle cranes do not exist 

on the rail track in most of the literature.  

 Two QCs cannot be operated simultaneously in adjacent bays; therefore there must 

be one bay of safety margin between two adjacent QCs at any time. 

 Travel time of a QC between two adjacent bays is one time unit. 

 Allocated rail-track width must be equal to vessel size. This means that a QC 

assigned to a vessel cannot travel out of the boundary of this vessel.  Boundaries can 

be defined as the rail-track area between leftmost (bay 1) and rightmost (bay    ) 

bays of this vessel, including both. This assumption limits some task-to-QC 

assignments; for example, QC       cannot be assigned to a task on bay 

      to keep QC     within boundaries. If such an assignment is made, then 

QC     have to pass left side of the boundary because of the safety margin and 

non-crossing requirements. 
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 Initial positions of QCs are ignored in this study. Initial positions of QCs may be 

essential to generate unidirectional schedules, but in any non-unidirectional method, 

some good solutions may be restricted by using pre-definite initial positions. Since 

an optimal solution for an instance is directly dependent to initial positions of QCs, 

in this study, a starting position of a QC is set to be the bay in which it starts 

processing tasks in the schedule. That is, we are generating a schedule without 

defining initial positions, and then QCs are starting from the bay of the first 

scheduled task. In the literature, the QC schedules are evaluated somewhat non-

realistically because travel times of QCs from last positions to pre-definite initial 

positions are completely ignored in a QC scheduling cycle (Figure 2.3).  

 

 
  

Figure 2.3: Initial positions. 

 

What is more, if we use pre-definite initial positions, then we may have a 

different optimal solution for each permutation of these positions. However these 

optimal results are always greater than or equal to the optimal value of the same 

instance without pre-definite initial positions. Also there is no statistical or logical 

evidence which shows that     time units are longer than       or even    time 

units. As a result, we prefer    time units with optimal value    rather than       

with optimal value    , while       for each instance.  As a result,        

          in a strong sense. 
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CHAPTER 3 

 

METHODOLOGY 

 

In this chapter the methodologies that we used in this thesis are briefly introduced. 

Constraint programming offers rich modeling language that supports using logical 

constraints directly in the model and this type of constraints is widely used in the 

constraint programming context for representing all kinds of problems. Accordingly, we 

have used propositional logic multiple times in our CP model. 

3.1  Propositional Logic 

Propositional logic (or simply, logic) is a system in which formulas of a formal 

language can be interpreted as propositions. The language of a propositional calculus 

consists of logical operators. The operators are used in this thesis are AND (∧), OR ( ), 

exclusive OR (⊻) and THEN ( ).  A proposition   can be “the weather will be rainy 

tomorrow”, or “      ”. A proposition in logic context can only take values of true 

or false. 

Assume that   and   are different propositions.  Then, 

      is true if at least one of the propositions is true, 

 ⊻   is true if exactly one of the propositions is true, 

 ∧   is true if both of them are true, 

    is true if   is true regardless of  ’s value or  

is true if both of them are false. 

 

     3.2 Constraint Programming 

    Constraint programming (CP) is a technique that is used for representing and solving 

combinatorial optimization problems which are hard to solve. Similar to mathematical 
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programming, CP is a combination of defining constraints about the problem via 

decision variables and finding a solution that satisfies all of the constraints.  However, 

in CP, constraints are used actively to infer new constraints from the existing ones and 

to the reduce domains of variables by removing inconsistent values which are violating 

the constraints. 

Constraint programming can be stated as a combination of three important 

components: modeling, filtering and search. 

A CP model can be represented as an instance of a Constraint Satisfaction Problem 

(CSP) with the addition of concept of global constraints. In more details, a CSP is 

defined by a set of   decision variables    ,            and corresponding set of 

domains   ,           , which defines the allowable values for these variables. There 

are also   constraints                        over these variables. Then the 

problem is to assign values for all variables from corresponding domains, while 

satisfying all constraints. The whole solution space for this problem (both feasible and 

infeasible) can be represented as            Most of the time this problem also 

involves an objective function             in CP context. A general CSP can be 

represented as below: 

 

                                
 

           : 

                               

                           . 

 

Then, in CP, this problem is solved by using the combination of filtering and search; 

simply, the domains of variables (or the search space) are reduced via constraint 

filtering and good solutions are searched within these reduced search space. 

 

 

3.2.1 Modeling 
 

The most important property of constraint programming paradigm is its modeling. In 

CP context, there are rich tools available for modeling. Therefore it allows representing 

the real-world concepts more directly (Lustig and Puget (2001)). A CP model is often 
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considered independently from its solution strategy (propagation + search); that is, a 

specific model can be solved by very different approaches.  

First of all, CP supports the same domain types (Discrete, Continuous and Boolean) 

with mathematical programming. Similarly the main scope is intensified over discrete 

and boolean variables. Differently from mathematical programming, CP offers two 

different types of decision variables; interval and sequence. Although these can be 

considered as compound decision variables which are constructed from discrete and 

boolean variables. They are unique and are allowing CP to have a very powerful and 

compact language. These new type of decision variables is introduced in Section 

3.2.1.1.  

CP supports most of the constraint types; linear, non-linear, logical, global and etc. 

By using well-known and simple constraint filtering algorithms, linear (         ) 

and non-linear (          ) constraints can be straightforwardly handled for 

reducing domains of variables. Ability to use logical constraints makes CP to be able to 

represent real-world constraints in a more declarative way. Assume that   and   are two 

binary (Boolean) decision variables. A constraint     ensures that,   can take value 

of “    ” (or 1), if and only if   is also “    ”. As a result, the big-M technique is no 

more required. This fact simply allows CP users to be more independent and creative 

while building a model to represent real-world structures.   

In CP context, there exists another important concept to represent the real-world 

structures: global constraints. They allow representing complex structures in a very 

direct way, most of the times with a single constraint. They also bring very effective 

constraint filtering and this can be stated as one of the most important properties of the 

constraint programming. Global constraints are discussed in Section 3.2.3. 

 

3.2.1.1 Interval and Sequence Variables 

The QCSP must be represented in terms of activities and resources to define some 

concepts which are widely used in the proposed CP model.  In this representation, the 

tasks to be performed by quay cranes correspond to the activities and the quay cranes 

correspond to the resources. Then each activity    has a start time             an end 

time          and a processing time                                . Each QC 

is a unary resource, i.e., a QC can handle only one task at a time and this kind of 

resources and activities refers to a well-known disjunctive scheduling problem. In 
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disjunctive scheduling, each resource can execute a single activity at a time and 

accordingly the activities which are assigned to the same resource shall not overlap. 

Therefore, if two different activities    and    are assigned to same unary resource, 

then: 

 

                             ⊻                                 

An interval variable (Laborie and Rogerie (2008)) is an interval of time during which 

an activity is executed. The decision here is to select when to execute this activity 

during the planning horizon. Each interval variable is characterized not only by a start 

time, but also with an end time and a processing time and the presence information, 

            . An interval variable can be optional; therefore, the activity can be left 

unexecuted. In these situations, unexecuted activity is represented by              

            . On the other hand, all executed optional interval variables are represented 

by                         . This property of an interval variable helps to model 

when there are activities that can be executed on a set of alternative resources. In this 

study, a task can be executed on a set of QCs; therefore, optional interval variables are 

used to model this case.  

A sequence variable (Laborie et al (2009)) is a decision variable for which the value 

is a permutation of some group of variables. Sequence variables can also keep transition 

times between interval variables. We can simply construct the same model without 

using any sequence variable; however, their presence brings more effective constraint 

filtering. Hence sequence variables are also preferred to implement the travel times of 

the QCs in this study.  

 

3.2.1.2 Global Constraints 

A global constraint in CP can represent the complex relationships between the 

problem variables as a single constraint. Usually it captures most of the problem 

variables, therefore provides faster and more effective domain reduction by using 

specialized filtering algorithms. The most widely known global constraint is 

            (   ), where                is a decision variable with            

       . It ensures that each variable    must take a different value from its domain.  In 
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contrast,          constraints are required to represent such a relationship in a 

mixed-integer programming model.  

There are many different global constraints in the literature and two of them are 

considered in this study. The                      constraint (Beck and Fox (1999)) 

simply assigns each activity to a single resource. The property of being optional of the 

interval variables makes sense here. Assume that there are   resources in the problem 

and interval variable      indicates that activity   is assigned to a resource   . Since each 

activity is assigned to only one resource,     variables are not taken into account 

when     .  

Furthermore a                       global constraint ensures that the activities 

which are elements of some set  , should not overlap. That is, 

 

                                                                   . 

 

 

In other words, a disjunctive global constraint refers to disjunctive scheduling in 

which activities performed on a unary resource. On the other hand, activities can be 

performed on a resource that can process more than one activity at any moment. In CP 

context, this type of resources denoted by           (            ) global 

constraint where   is the maximum capacity. Therefore, this cumulative constraint 

stands for a resource with capacity   and the number of activities performed on this 

resource must be less than or equal to   at any time. If    , then this global constraint 

is simply reduced to a             constraint. 

There are numerous global constraints to represent the real-world structures other 

than presented in this section. More information can be found in “global constraint 

catalog” of Beldiceanu       (2010), which is the most comprehensive study over the 

global constraints. 

3.2.2 Constraint Filtering 

Constraint filtering is a systematic way to reduce the domains of decision variables 

by eliminating the inconsistencies in the model. This important process is accomplished 

by different algorithms. 

The most general constraint filtering algorithm type is arc-consistency. Arc-

consistency algorithms are mainly executed for all constraints except the global 
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constraints. The most well-known algorithm of this type is AC-3 (Bessiere et al (2005)), 

which investigates all values in the domain of each variable, and removes the 

inconsistent ones. Note that, a value-variable assignment is inconsistent if at least one 

constraint is not satisfied.   

A simple example can be given as follows: assume that there are three variables A, B 

and C with the same domain of            . Also there exist two constraints involving 

these variables:     and      . By a simple inference, a new constraint 

      can also be obtained. If every value of each variable is checked for these 

three constraints, some inconsistent values can be straightforwardly removed from their 

domains. As a result, initial domains are reduced to                          

        by constraint filtering, which leads to the reduction of the number of possible 

assignments for these three variables from 125 to 36.  

Additionally, global constraints have many specialized filtering algorithms. One can 

refer to the studies by Régin (1994), and Lopez-Ortiz et al (2003) for alldifferent 

constraint and by Baptiste and Le Pape (1996) and Vilim (2004) for             

constraint. These kinds of filtering algorithms usually offer more effective domain 

reductions by considering more than one relationship at once. Therefore in the 

constraint programming context it is really important to represent the model with global 

constraints as much as possible. 

 

3.2.3 Search 
 

Constraint filtering alone is not sufficient to find even a single feasible solution, 

unless all domains are reduced to a singleton value, which is almost impossible for any 

combinatorial problem.  Thus, we need a search phase within reduced domains to find 

feasible solutions. The most common, yet the simplest systematic approach to be used 

in a search phase, is a tree-based constructive search called backtracking (Dechter et al 

(1998)).  

Backtracking is a search method that incrementally attempts to extend a partial 

solution by assigning values to variables one by one toward a complete solution. The 

feasibility of each assignment is checked via constraint filtering to make domains 

consistent with the current partial solution.  If a selection is inconsistent with any of the 

problem constraints, the search backtracks to an upper node and tries another selection. 
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We can impose a strategy that defines which variables and values to be fixed first, 

hence by applying different selection strategies the search can be completely directed.  

The literature presents more complex constraint-based search methods (Focacci et al 

(2002)). One of these powerful methods is Large Neighborhood Search (LNS) (Shaw 

(1998)) in which a tree-based search (backtracking) is used with constraint 

programming to evaluate the cost and the feasibility of the move in the local search. 

Generally, this procedure is based on a process of continuous relaxation and re-

optimization; an initial solution is constructed first and then improved iteratively until 

some stopping condition is satisfied (see Fig. 7).  

 
Figure 7: General framework for LNS. 

An iteration of relaxing a complete solution and re-optimizing the partial solution 

can be considered as the examination of a powerful neighborhood move and therefore 

the farthest parts of the search space can be reached by a single move. The process of 

re-optimization can use the full power of the constraint programming via constraint 

filtering and backtracking. 

A different version of LNS is represented in Godard et al (1999) which generates 

initial solutions and re-optimizes partial solutions by using the setTimes algorithm of Le 

Pape (1994).  

The general setTimes algorithm is presented above.  

  

1. Let S to be the set of selectable (non-fixed) activities. 

2. If all activities are fixed then exit with a solution. Otherwise go to step 3. 

3. If set S is empty go to step 4. If set S is not empty: 
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a) Select an activity from S which has the minimum earliest start time, that 

is, sort lowest elements of each domain increasingly and select the 

activity corresponding to first element of this sorted list.  If there is a tie, 

select the one with smaller domain size (common case). If tie is not 

broken, then select one of them randomly. 

b) Create a choice point to allow backtracking and fix the start time of 

selected activity to the lowest element of its domain. Turn back to step 2. 

4. Set S is empty, then backtrack to most recent choice point. Upon 

backtracking, mark the activity that was scheduled at the considered choice 

point as “not selectable” as long as lowest element in its domain has not 

changed. This prevents the algorithm to get stuck with same solutions by 

selecting different activities. Turn back to step 2. 

 

By applying setTimes algorithm once, starting times of all tasks are fixed and a 

complete schedule is constructed. Godard et al (1999) also extend LNS by improving its 

relaxation part because they argue that the relaxation scheme of Shaw (1998) lacks of 

flexibility for scheduling problems. Accordingly, they relax an initial solution into 

resource temporal network of current solution via partial order schedules (Laborie 

(2003)), and then delete some parts of the solution in a randomized manner. By default, 

ILOG’s CP Optimizer 12.3 uses the Self-Adaptive LNS approach of Laborie and 

Godard (2007), which simply extends the work of Godard et al (1999) by adding a 

learning scheme. Learning is a key factor in the robustness of the approach because it 

helps to converge on the most efficient neighborhoods and completion strategies. Note 

that, in this thesis we have used this version of LNS. 
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CHAPTER 4 

 

MODELING AND SOLVING QCSP 

 

The comprehensive constraint programming model for QCSP which consist of 

numerous properties of the problem is proposed in this section. Moreover, common 

deficiencies found in QCSP literature by Lee et al (2010), Bierwirth and Meisel (2009) 

and their corrections are introduced. The corrected version of MIP model is represented 

just before individually representing the functions of the constraints of the proposed CP 

model. Also two different extensions of the QCSP are also presented in this chapter.  

For applicability of any QCSP study to real-world problems, constraints of the 

problem should be reflected properly into the model. Therefore, the main motivation in 

this study is to develop a model that not only works fast and is flexible for all sizes and 

types of practical instances, but also is highly applicable in real-world container 

terminals.  

The aim during the modeling process is initially determined based on the 

methodology which is used to model and solve QCSP. Hence, constraint programming 

modeling context is widely investigated. Using effective global constraints instead of 

complex model structures whenever possible will be a key to success for any CP model, 

at least theoretically.  Also keeping number of decision variables at minimum may 

significantly affect the solution speed and quality since CP is a technique that mainly 

works by reducing the domain of each decision variable. As a result, this CP model for 

QCSP is constructed based on these premises. To sum up, it is aimed to use as much as 

global constraints to model problem concepts while keeping the number of decision 

variables used to represent the whole model at minimum.  

 

4.1 Common Deficiencies in QCSP Literature 

The feasible solutions provided by previous QCSP studies may result in 

inappropriate and non-applicable schedules for the real-world problems. Hence this may 

cause some important consequences, such as crane interference and different kind of 



 

Chapter 5: Computational Experiments  32 

 

inefficiencies. In this section, common deficiencies that are found in QCSP literature 

are briefly discussed. Three important deficiencies of previous QCSP models are 

identified and then treated in two recent articles, Lee and Chen (2010) and Bierwirth 

and Meisel (2009). Although their problem classes are different, these deficiencies are 

related with both problem classes. 

The first deficiency is caused by the travel times of QCs. Travel times of QCs 

between bays are supposed to be positive in most of the QCSP with container groups 

studies. Accordingly, the movements of QCs must be carefully reinvestigated to 

completely avoid potential crane interferences. Bierwirth and Meisel (2009) note that, 

despite the fact that there were some treatments proposed in Moccia et al (2006) and 

Sammarra et al (2007), some significant QC interferences are still exist on the feasible 

schedules based on their movements along the rail-track. They show that QCs may 

collapse or their safety margins may be violated in the schedules that are generated by 

previous models. This deficiency and its treatment are introduced in Section 4.5.10 and 

can be found in Bierwirth and Meisel (2009) in more details.  

Secondly, Lee and Chen (2010) and Bierwirth and Meisel (2009) both identified 

similar deficiencies in two independent studies. They show that simultaneous positions 

of QCs may be disrespected in previous studies, especially when some of the cranes are 

idle during the makespan. Most of the time, other QCs behave as if these idle QCs do 

not exist on the rail-track in previous QCSP models. To get rid of this deficiency, there 

must be enough distance between any two non-adjacent QCs at any time to 

accommodate in-between QC(s) safely. QCs are huge equipment and simultaneous 

positions of QCs must be respected. This deficiency and its treatment are also 

introduced in more details in Section 4.5.12. 

The last deficiency is identified by Lee and Chen (2010) and it is related with the 

effective usage of the berthing area. All QCs are operated on the same rail-track, 

therefore the effective allocation of the rail-track area is needed. In most of the real-

world cases, the workload of container terminals is very intense; so that berth 

allocations for vessels can be very close. See the Figure 4.0 below for an example of 

such a situation.  
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Figure 4.0: Berthed container vessels 

 

By this deficiency, they identified that if QCs which are allocated to complete 

loading and unloading tasks of a definite vessel, pass the boundary of this vessel, then 

these QCs enter other areas of rail-track, which are probably required to accomplish 

loading and unloading operations of other vessels. It is not practically effective even if it 

is not infeasible. To make the study more applicable in real-world problems, rail-track 

areas must be allocated to berthed vessels, and these areas must be used effectively by 

QCs. In this study, this fact is also taken into account by restricting the movements of 

QCs. This deficiency and its treatment are also investigated in Section 4.5.6. 

 

4.2 MIP Model of QCSP 

In this section the mixed-integer programming model proposed by Bierwirth and 

Meisel (2009) is introduced. The researchers build this model by taking the MIP model 

of Kim and Park (2004) and the improvements of Moccia et al (2006) and Sammarra 

      (2007) as a basis. In this thesis, model of Bierwirth and Meisel (2009) is also 

extended with the correction of the deficiency noted by Lee and Chen (2010) for QCSP 

with container groups. 

Sets and Parameters 

  number of QCs assigned to the vessel;  
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   number of tasks of the vessel; 

  number of bays of the vessel; 

  set of tasks,           ; 

  set of QCs,              

   processing time of task  ,      ; 

   location (bay) of task  ,      ; 

  travel time of a QC between two adjacent bays (         0). 

Dummy tasks   and       with processing times        0 are also added to be 

able to model initial positions, then          ,          ,           ; 

  set of precedence constrained task pairs;  

   number of in-between bays required to keep between adjacent vessels, namely 

safety margin,     ; 

   set of all task pairs for which it is known in advance that they cannot be 

processed simultaneously,     . This set contains task pairs which are located 

on adjacent bays as well as precedence constrained task pairs. It also contains the 

fact that two QCs cannot operate at the same bay at the same time.  

   ready time of crane       ; 

   initial position of crane  , then          -                

   

      

 
 
 

 
                                                

                                               

                                                                              

  

                         ∧              

  a very large number. 
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Decision Varibles 

   completion time of task  ,      ; 

     binary decision variable that takes value 

 1 if tasks   and   are processed consecutively by crane  ,             , 

 0     otherwise; 

    binary decision variable that takes value 

 1 if task   starts after the completion of  task  ,          

 0 otherwise. 

 

 

MIP Model 
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  The objective is to find  the smallest completion time of the latest task and is denoted 

by (M1). The paths followed by QCs to complete tasks of the vessel are defined by 

constraint sets (M2) to (M6). Precedence relationships among tasks are defined by 

constraint set (M7). The variables     are defined in constraint sets (M8) and (M9). In 

order to express a safety margin of one bay, Sammarra       (2007) include those pairs 

of tasks in set   that belong to adjacent bays. Constraints set (M10) ensure that these 

tasks are not processed simultaneously. In constraint set (M11), the assignments of tasks 

to QCs that are realized in the schedule are identified. Here,          
   if task   is 

processed by QC  , and          
   if task   is processed by QC  . If both 

assignments take place, the left-hand side reveals a value of two and the tasks are not 

allowed to be processed simultaneously, i.e., either       or      . In the case of   

     , constraint set (M12) insert the minimum temporal distances calculated by       

between the completion time of task   and the starting time of task  . The corresponding 

case of       is handled by constraint set (M13). Initial positions of QCs are defined 

by constraint set (M14). In this thesis, the deficiency is identified by Lee and Chen 

(2010) is also corrected for QCSP with container groups. Therefore constraint sets 
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(M18) and (M19) are added to MIP model to forbid some movements of assigned QCs 

to keep them within boundaries of the vessel during the makespan. 

  

4.3 Constraint Programming Model 

In this section, a new constraint programming model to QCSP is proposed. 

Sets and Parameters 

    number of tasks of the vessel to be processed; 

    number of bays in the vessel; 

     number of quay cranes assigned to the vessel; 

  set of tasks,             ; 

  set of bays,             ; 

   set of quay cranes,             ; 

   processing time of task        . Each quay crane is identical; therefore 

processing time for task   is same for all quay cranes; 

     set of precedence among tasks acquired from the stowage plan of a vessel, i.e., 

                    ; 

   location (bay) of a task       ; 

  the minimum required number of bays between two adjacent QCs at any time; 

namely safety margin; 

    sum of processing times of all tasks, i.e.,        ; 

   set of tasks at bay  , i.e.,                       ;  

       earliest starting time for task  ; that is, total workload of predecessors of task  , 

  i.e.,                             . 

 

Decision Variables 

      an interval variable that represents the interval in which task   is processed (by 

any quay crane),                            ; 
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    an optional interval variable that represents the interval in which task   is 

processed by  quay crane  ,                                  ; 

Z  an integer variable that defines the makespan, i.e. the maximum completion time 

of all tasks by quay cranes,                  , where    is a lower bound 

on the optimum value of the makespan. The procedure to generate lower bound 

   is presented in Section 4.4. 

 

CP Model 

The constraint programming model is formulated as follows: 

 

                                 

Subject to: 

     

                                  (1) 

                                                 (2) 

                                            (3) 

                                             (4) 

                                                              (5) 

                                                              (6) 

                                             

             ,                                                                     (7) 

                                                      (8) 

                                                 

                                       ⊻                                          

                                         (9)  
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                                       ⊻                                         

                                            (10) 

                                        

                              ⊻                                

                     (11) 

     

The objective function is to minimize the completion time of the latest QC which is 

calculated by constraint (1). Constraint set (2) is a global constraint to assign each task 

to one and only one QC. The following two constraints are global constraints to forbid 

definite tasks to overlap. Global constraint set (3) ensures that tasks which are assigned 

to the same QC will not overlap. Also global constraint set (4) avoids the interference 

among QCs by not allowing the overlap of the tasks which are located in the same bay. 

Constraint set (5) ensures that two tasks that are located in adjacent bays cannot be 

processed simultaneously; that is, the safety margin is assumed to be one bay. 

Constraint sets (6) and (7) resolve two deficiencies that are identified by Lee and Chen 

(2010). Constraint set (6) is defined to keep QCs within the boundaries of the vessel. 

Constraint set (7) ensures that there will always be enough space between two cranes to 

accommodate in-between cranes, even if they are idle. Precedence relations among 

tasks are defined by constraint set (8). Constraint sets (9) and (10) together ensure that 

QCs cannot cross each other since they are operated on the same track. Travel times of 

QCs are implemented in constraint set (11). By using some logical operators directly, a 

two-indexed decision variable is sufficient to represent this feature. Moreover the 

correct treatment of travel times and safety margins proposed by Bierwirth and Meisel 

(2009) is embedded in (9) and (10).  

A complete model can be constructed by using only these decision variables above; 

however, a set of sequence decision variables is added to the model to strengthen the 

inference among problem elements. 

    a sequence variable that keeps the permutation of the tasks to be processed by 

QC  ,                                                                , 

with transition distance matrix                        . This matrix keeps the 

minimum time required between     and     if they are executed sequentially. 
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         a sequence variable that keeps the relative order of tasks   and   processed by 

QCs   and  , respectively.                                      , with 

transition distance matrix                                        

   

By default, a sequence variable orders the set of decision variables according to their 

starting times; however, if it is used within a disjunctive global constraint, this ordered 

set of variables are also forced to be non-overlapping. These sequence variables are 

auxiliary in the model. Hence they will be active in the model only when related 

conditions occurred. 

For more effective filtering and to break the symmetry, constraint sets (9) and (10) 

are replaced by a new constraint set which is constructed with        sequence variables: 

  

 

                                                                 (12) 

 

 

Also constraint set (11) is replaced by a new constraint set (13) for faster reductions 

of domains.  This new travel time constraint set consists of     and keeps the transition 

distances among the locations of couple of tasks which are sequentially processed by 

QC  . 
 

                                                                                                                     (13)  

 

 

Since constraint set (13) also ensures that tasks which are processed by the same QC 

should not overlap, constraint set (3) is no longer required and can be deleted from the 

model.  

The minimum required time between     and     variables is defined by transition 

distance matrix   ,  considering bay positions and the indices of QCs.  For example, if 

QC   is assigned to task   and QC   is assigned to task   where   and   are located at 

bay   and bay  , respectively, then this constraint ensures that there must be at least   

time units of temporal distance between the processing of task   and   because of crane 
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interference and safety margin requirements, regardless of their relative order (see 

Figure 4.1).  

 

 

 

 

4.4 Lower Bounds for QCSP 

 

Two simple lower bounds are calculated for the makespan of QCSP with container 

groups. It would be very helpful to generate tight lower bound values for QCSP 

instances because of two main reasons. First, a tight lower bound allows determining 

the solution quality of the CP results more accurately. Moreover, a tight lower bound 

helps the CP model to terminate earlier with an optimal result when           equals 

to              
 

These two lower bounds are presented below: 

Theoretical LB:  

The first lower bound is widely used in uniform parallel machine scheduling 

problems. In this simple lower bound, the total duration of all tasks is calculated and 

then divided by the total number of machines. That is, 

 

      
      

   
, 

 
 

Figure 4.1: An example of constraint set 12. 
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where    and     refer to the processing time of task   and the total number of QCs in 

the instance, respectively. In this case, it is assumed that machines are working without 

any interruptions during the makespan. For example, consider an instance with three 

tasks and two identical machines. Processing times for the tasks are 5, 17 and 8, 

respectively. This lower bound is 10, while the minimum makespan is 17, therefore the 

gap between optimal value and this preemptive lower bound is 70%. If 

                                    ratio grows,     may probably end up 

with smaller gaps because of the higher possibility of better distribution of total 

workload.   

 

The MIP model: 

In this study, the results show that most of the time the simplest parallel-machine 

scheduling lower bound          provides considerably closer values to the optimal 

solution value. However, in some instances the gap with this simple lower bound 

reaches 20%. It is observed that, this result is due to the excessive workload of some 

bays and/or some operational restrictions caused by safety distances. After this 

observation, a simple yet powerful bin-packing based mixed-integer programming 

model was developed to find tighter lower bounds (  ) for QCSP with container 

groups, especially in such cases described above. 

 In this relaxed QCSP model, all sets and parameters are the same with those of the 

proposed CP model. Additional parameters and decision variables are presented below: 

     a binary decision variable that takes value 1 if task   is assigned to     , 

otherwise 0,           ; 

     a binary decision variable that takes value 1 if      is assigned to at least one 

task of  bay  , otherwise 0,          ; 

    an integer decision variable that represents a lower bound on the makespan; 

       a parameter that calculates the total workload of two adjacent bays; that is,   

        =          
 +           

                 ; 

  a very large number. 

Then, the mixed-integer programming model is formulated as follows: 
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minimize                 

Subject to: 

                                                                                          (14) 

                     (15) 

                                                           (16) 

                                  (17) 

                                        (18) 

       (     ,           )           (19) 

     ,                          (20) 

 In this model, each task is assigned to a QC by constraint set (14) while minimizing 

the workload of the densest QC. Constraint (15) defines the parallel-machine scheduling 

pre-emptive lower bound. Task-to-QC assignments are also restricted by the constraint 

set (16) which determines the rail-track area for the vessel. In order to add travel times 

in the simplest form, QC-to-bay assignments are tracked for each QC by using two-

indexed binary decision variables in (17). Constraint (18) defines one lower bound with 

respect to the workload of QCs. If a QC is assigned to   different bays, then       

time unit is added to the total workload of this QC.       time units are added rather 

than   because the initial position of the QC and one of the assigned bays can be the 

same; therefore, the initial travel of this QC before starting to process assigned tasks 

will not be needed. Also the safety margin requirements are considered from a different, 

but a simpler, perspective. It is not possible to process two adjacent bays simultaneously 

with two different QCs because of the safety margin requirements. First listing total 

workloads of each bay and then selecting the maximum total workload of two adjacent 

bays will give us another potential lower bound for the instance. Call this value  , then 

   is always greater than or equal to     because of the safety margin requirements; 

that is, if these two adjacent bays are processed by the same QC, one unit of travel time 

is required for that QC to travel between these bays. On the other hand, if these two 

bays are processed by two different QCs, the second QC cannot start processing the 
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second bay before the first QC leaves the other bay because of the safety margin. 

Therefore, again one time unit is required. Constraint set (19) defines this lower bound. 

Non-crossing, non-interference and precedence constraints are not considered in this 

MIP model, hence it represents a relaxed version of the QCSP. Nevertheless, the model 

generates very tight lower bounds for the QCSP quickly. For example, in one of the 

instances of Meisel and Bierwirth (2011),        is 1000, however the   obtained 

from the above MIP is 1174. Note that the best observed result for this instance is also 

listed as 1174 in their study. In addition, the MIP model is solved to the optimality in 2 

minutes, most of the times. For most of the instances, it is solved in less than 30 

seconds.  

 

4.5 Descriptions of the Constraints 

In this section, each constraint of the CP model is introduced in more detail with the 

help of relevant bay-time illustrations. Corresponding MIP constraints (if any) are also 

identified for each constraint in  the CP model. Note that there may not be a hundred 

percent correspondence between two models, since they are built by using two different 

modeling techniques.  

 

4.5.1 Makespan constraint 

 

                                    (0) 

 

                                 (1) 
 

Since the objective function of the problem is to minimize the makespan which is 

denoted by an integer decision variable Z, the definition of the makespan must be 

declared in the objective function or as a problem constraint (1). The term makespan 

refers to the completion time of the latest element of the schedule. In other words, it is 

the completion time of the quay crane which ends processing lastly among other QCs. 

The makespan may also be defined directly in the objective function line. However, 

while using the CP Optimizer, it can be ineffective to define more complex objective 

functions (i.e. weighted sum of makespan and completion times of QCs) directly in the 

objective function line. 



 

Chapter 5: Computational Experiments  45 

 

Constraint (0) defines a lower bound for each QCSP instance. In Section 4.4, the 

procedure to obtain this value is introduced in details. Lower bound can be added as a 

problem constraint or it can simply cut the domain of decision variable   at the 

beginning; that is,                    Computational experiments with different 

instances show that the latter consistently reached better schedules in a shorter time; 

therefore, we deleted constraint (0) from the model. The reason behind such a solution 

performance difference is not known exactly because of the black-box nature of the 

commercial off-the-shelf software. However, most likely, keeping the search space 

tighter at the beginning helps the constraint programming engine to find good schedules 

more effectively.   

 

4.5.2 Assignment Constraint  

 

                                           (2) 

 

 

The assignment global constraint ensures that each task must be assigned to a one 

and only one quay crane. It has a very critical function in the model because these task-

to-QC assignments are required to be able to investigate other constraints which consist 

of optional variables. Note that, the whole model, except this constraint, is constructed 

by only using the     optional variables. 

At the beginning of the execution of the model, all optional interval variables are set 

to be inactive. Then, this constraint is processed firstly to determine which optional 

variables are active in the model. Then, search space is investigated based on the current 

task-to-crane assignments. These task-to-crane assignments are continuously modified 

by backtracking and LNS algorithms. This iterative procedure continues until an 

optimal solution is found and its optimality is also proved. More formally, if      

variable is assigned to       optional interval variable, then        variable becomes active 

in the model and its domain set to be                     . At the same time other 

     variables for all     where      becomes inactive and their domain set to be 
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Note that, this constraint set of CP corresponds to constraint sets (M4) and (M11) of 

MIP model. 

4.5.3 Non-Overlapping Constraint  

 

                                             (3) 

 

 

It is previously described in the global constraints section in details that what 

disjunctive global constraint does and which propagation algorithm is working in the 

background. As also described in the same section, in simple terms, two tasks   and    

can only be non-overlapping if any of them ends before the other one starts. In this case, 

disjunctive global constraint ensures that all tasks assigned to the QC   must be non-

overlapping.  More formally,      interval variables where      that are assigned to 

the same QC by assignment constraint (3) are non-overlapping for each QC 

  where      because of this global constraint. 

This constraint not only makes complex functions easy to represent in the model, but 

also it has very effective and well-studied propagation algorithms. This is why 

disjunctive global constraint is one of the most well known constraints in the constraint 

programming context, and is also used to model several problem concepts in this study.  

Note that this constraint set of CP model partially corresponds to the constraint  set 

(M10) of MIP model. 

4.5.4 Non-Interference Constraint  

 

                                             (4) 

 

 

In QCSP, the tasks which are located in the same bay should not overlap to have a 

feasible schedule in terms of non-overlapping of tasks. Such cases are prevented in the 

model by using another constraint, non-interference. In other words, non-interference 

constraint indicates that in a single bay two QCs cannot work simultaneously because 

QCs are working on the same rail-track. This constraint itself is not sufficient to prevent 
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all possible interferences among QCs, therefore we also need to keep some definite 

safety distance between two adjacent QCs.  Note that this constraint set of CP model 

partially corresponds to the constraint set  (M10) of MIP model. 

4.5.5 Safety Margin Constraint  

 

                                                              (5) 

 

 

Since all QCs are operated on the same rail-track, margins between QCs must be 

carefully investigated. Therefore while scheduling QCs, we need to keep a pre-

determined space between two adjacent QCs at any time, which is called safety distance 

or safety margin. In parallel with the literature, safety margin is assumed to be one bay 

length in this study. That is, two QCs cannot work on adjacent bays simultaneously.   

We need this margin because of two reasons. First, potential interference of arms of 

QCs is prevented. Second, potential collusion of bodies of QCs during their travels 

among the rail-track are also prevented by this constraint.  

In Figure 4.2 below, QCs operate and travel within the minimum allowable distance 

to each other since safety distance of 1 bay defines the minimum distance must be kept 

between two adjacent vessels.  Note that this constraint of CP model corresponds to the 

constraint (M10) of MIP model. 

 

Figure 4.2: Safety margin constraint. 
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4.5.6 Non-Allowed Assignments Constraint  

 

                                                               (6) 

 

 

As noted in common deficiencies section, Lee and Chen (2010) claim that all QCs 

assigned to a vessel must stay between the leftmost and the rightmost bays of the vessel. 

We can simply see these two bays as the boundaries of the vessel, and it is assumed that 

the rail-track area between these boundaries is allocated to QCs which are assigned to 

the vessel. Accordingly, if a QC passes these boundaries, it will probably enter rail-

track areas which are allocated for another vessel because of very intense berth 

allocations. Note that, most of the time a CT practitioner tends to keep the distance 

between berth positions of vessels at minimum (Vis and de Koster (2004)). Therefore 

QCs that pass out these boundaries will probably cause QC collusions or considerable 

inefficiencies in QC scheduling for other vessels by blocking other QCs to reach some 

bays.  

Consider a generic instance with     bays and     QCs. Then some task-to-QC 

assignments at the left side is restricted, for example QC 2 cannot reach to tasks which 

are located at bays 1 and 2 because of QC 1, and similarly QC 3 cannot reach to tasks 

located at bays 1, 2, 3 and 4 because of QC 1 and QC 2. It is similar for all QCs and can 

be generally represented as                . Note that, by constructing this set of 

constraints, we assumed that there is a safety margin of 1 bay, that is    . For right 

side of the vessel, similar restrictions are required to keep QCs between boundaries of 

the vessel during makespan. That is, QC       cannot reach  bays     and       

because of the presence of QC     on a rail-track, and it goes on for all QCs     

                 . Then a task-to-QC assignment is forbidden if at least one of 

these two conditions is satisfied. This is denoted by OR ( ) operator.   

Consider an instance with      ,        and task 5 is located at bay 9. We 

should check whether it is possible to assign task 5 to QC 2: 
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                        . 

Also, in our computational experiments we observed that, in at least one of the 

optimal solutions (if any), QCs stay within the boundaries without using this constraint. 

However, other optimal solutions will cause inefficiencies or QC collusions. Therefore 

presence of this constraint is very important, especially for keeping QCs within the 

boundaries in non-optimal schedules. 

Note that this constraint set of CP model corresponds to constraint sets (M18) and 

(M19) of MIP model. 

 

4.5.7 Travel Time Constraint  

 

                                       

                              ⊻                                

                     (11) 

 

In QCSP, each QC travels along the rail-track to process tasks located at different 

bays. This horizontal movement requires some amount of time which is called travel 

time. In this study, it is assumed that for a QC to travel from one bay to an adjacent bay 

takes one unit of time. 

In most of the previous QCSP studies, a set of three-indexed decision variables that 

keeps the sequence information is used. This 0-1 integer decision variable      takes 

value 1 if and only if task   is processed just after task   at QC   (see the section of MIP 

model).  Therefore travel time was easily added to the model easily by the help of such 

a decision variable. In this proposed CP model of QCSP, however, only a two-indexed 

decision variable, which is not keeping the sequence information, is preferred. This two-

indexed decision variable is enough to model travel times correctly without bringing 

any modeling difficulty because it is possible to represent such similar problem 

constraints straightforwardly in CP context.  
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 Constraint set (7) ensures that between executions of any two tasks which are 

assigned to the same QC, there must be a time equal to the absolute value of the 

difference between their locations (bays) of these tasks.  This constraint works correctly 

without requiring any sequence information because it states not only the minimum 

required time between successive tasks, but also denotes minimum required times 

between any two tasks assigned to the same QC.  Also it is no more required to be 

known which task is going to be processed before other tasks that are assigned to the 

same QC because exclusive-or logical operator can be directly used in any CP model.  

As a result, this constraint is enough to express travel time of a single QC correctly, 

without requiring any other additional decision variable. In Figure 4.3, the illustration 

shows the schedule generated by the help of this constraint. It shows correct travel times 

implied for a single QC. For example, tasks 1, 2, 3 and 4 are located at bays 2, 5, 5 and 

6, respectively. Note that in this instance QC is initially located at bay 1.  

Also note that this constraint set of CP model corresponds to the constraint sets (M6) 

of MIP model. 

 

Figure 4.3: Travel times of a QC. 

 

4.5.8 Revised Travel Time Constraint  

 

                                         (13)  
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The constraint set (5) is replaced by constraint set (13), which consists of set of 

sequence variables correlated with disjunctive global constraints. As previously said, 

using global constraints rather than others would probably end up with better domain 

reductions. Therefore constraint set (13) is preferred to represent travel times. Let’s 

remind definition of this variable :  

    is a sequence variable that keeps the permutation of the tasks to be processed 

by QC  ,                                                             

    , with     transition distance matrix                        . Namely, 

this matrix keeps the minimum time required between     and     if they are 

executed sequentially. 

In more details,     keeps the permutation of tasks which are assigned to QC   based 

on their starting times. That is,      by itself only defines the sequence based on starting 

times and to make these tasks also non-overlapping we need to correlate these variables 

with disjunctive constraints, since a QC can process at most one task simultaneously. As 

a result, constraint set (13) not only provides a more direct representation of travel 

times, but also it is faster and more efficient from (6) by far.  

Note that this constraint set of CP model corresponds to the constraint sets (M2) to 

(M6) of MIP model. 

 

4.5.9 Precedence Constraint  

 

                                                      (8) 

 

 

Constraint set (8) simply defines precedence relationships among tasks. That is, if 

task   is defined to precede task   , it is ensured by this simple set of temporal 

constraints for all QCs. There is no precedence relationship among QCs, because 

precedence relationships among tasks are obtained from their locations on a vessel, 

denoted by a stowage plan. Precedence constraints in CP-scheduling context may 

reduce domains significantly and therefore make good solutions easier to be found. For 
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example if     is present and task   precedes task  , then the CP engine straightforwardly 

reduce domains of     , that is,                              

Note that this constraint of CP model corresponds to the constraint (M7) of MIP 

model. 

4.5.10 Non-Crossing Constraint 

 

                                          

                                       ⊻                                          

                                         (9)  

  

                                  

                                       ⊻                                         

                                            (10) 

 

 

At a single port, all QCs are located on the same rail-track; therefore they cannot 

cross each other. Assume that all QCs are labeled in increasing order from left to right 

where QC 1 and QC     indicate the rightmost and the leftmost QCs, respectively. 

That is, it must be ensured that QC   always stays between two adjacent QCs, QC     

and QC      (if both exist), otherwise the schedule will be infeasible.  

To ensure a QC not to cross other QC during operations, we need a two-way control 

of QC positions. Therefore at any time QC                 must stay at the left 

side of QC    . Also we need to control QC positions from other side; that is, QC 

             must stay at the left side of QC    . By applying this two-way 

control for each QC, non-crossing of QCs is ensured. Of course QCs can pass some 

relative positions at different times. That is, QC   can work at bay 10 and QC     can 

work at bay 7. This situation can also occur if two operations are held in different times. 

In other saying, such a situation can occur if and only if these two operations are non-

overlapping. At its simplest form, non-crossing of QCs can be restricted by constraint 

sets (9’) and (10’).  
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                      ⊻                         

                   , (     )   (9’)  

                                  

                      ⊻                        

                     (     )  (10’) 

 

However, these sets of constraints are not sufficient to ensure feasibility of 

schedules. There must be a definite space of time between these two non-overlapping 

operations because of travel times and safety margins associated with QCs.  

Accordingly, travel times and safety distances must be correctly implemented into 

non-crossing constraint. In most of the QCSP literature, this amount of space of time is 

miscalculated; it causes interferences and QC collusions, therefore the schedules 

generated in these studies are not feasible. This deficiency is identified and corrected by  

Bierwirth and Meisel (2009). They claimed that, between     and     there must be 

      unit space of time is needed.  

 

      

 
 
 

 
 

                                            

                                            

                                                                             

  

 

By adding      into (9’) and (10’), they turned into set of constraints (9) and (10). 

 

Consider Figure 4.4 below. Tasks   and   have processing times of 20 and 15, 

respectively. Also QC 4 and QC 5 are assigned to process tasks   and   located at bays 

11 and 9, respectively without causing any infeasibility. By constraint sets (9) and (10), 

it is ensured that these two operations are not only non-overlapping but also there are at 

least 4 time units between end of the former and start of the latter. More information 

about this correction can be found in Bierwirth and Meisel (2009). 

Note that this constraint set of CP model corresponds to the constraint sets (M12) 

and (M13) of MIP model. 
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Figure 4.4: Non-crossing constraint. 

 

4.5.11 Revised Non-Crossing Constraint 

 

                                                                 (12) 

 

 

While testing and verifying the correctness of non-crossing constraint, it is observed 

that there is symmetry between these set of constraints. That is, non-crossing of each 

QC   to other QC    is checked twice. Consider the instance presented in previous 

section and in Figure 4.4. If constraint sets (9) and (10) are examined carefully, it can be 

seen that (9) checks QC 4’s crossing of QC 5, while (10) checks QC 5’s crossing of QC 

4. Clearly one of them is enough to ensure non-crossing of QCs. 

This brings a considerable computational work and should be removed. By replacing 

constraints sets (9) and (10) with constraint set (12)  we also removed the symmetry 

which exists in constraint sets (9) and (10). For more effective constraint filtering and 

lesser computational effort, this symmetry is broken with this new set of revised non-

crossing constraint.  Therefore, a set of constraint (12), which consists of set of 

sequence variables correlated with disjunctive global constraints, is constructed.. Let’s 

remind the definition of the variable : 
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      is a sequence variable that keeps the relative ordering of tasks   and   

processed by QCs   and  , respectively.   

                                     , with transition distance matrix 

                                          

These sequence variables are auxiliary in the model. Hence they are considered by 

the engine only when related conditions occurred. For more effective filtering and to 

break the symmetry, constraint sets (9) and (10) are replaced by a new constraint set 

(12) which is constructed by        sequence variables 
 

Note that this constraint set of CP model also corresponds the constraint sets (M12) 

and (M13) of MIP model. 

 

4.5.12 Correction of the Deficiency Caused by Idle QCs 

 

                           

         

             ,                                                                     (7) 
 
 

Physical presence (existence) of idle QCs on a rail-track must be respected. That is, 

between two non-adjacent QCs there should be enough space to be able to 

accommodate in-between QCs safely. In most of the QCSP literature, physical presence 

of idle QCs is overlooked and this will end up with potential QC collusions. Therefore 

the schedules generated by the methods presented in these studies may be infeasible. 

This deficiency is identified and corrected in two independent studies of Bierwirth and 

Meisel (2009) and Lee and Chen (2010). Figure 4.5 shows a schedule containing this 

deficiency. 

This schedule is considered to be feasible in previous QCSP models, even though it 

is infeasible. QCs 2 and 4 move along the rail-track as if QC 3 is not exist because in 

previous studies safety margin requirements are only considered for active QCs. As a 

result QCs 2 and 4 both violate the safety margin requirements of QC 3. In the proposed 

CP model, constraint set (7) is added to correct this modeling error. This constraint set 

ensures that decision variables      and      must not overlap if                  

                                         . In the previous example 



 

Chapter 5: Computational Experiments  56 

 

     and      , hence conditions are satisfied. Therefore      and     must be non-

overlapping. Assume that      and      , then      and      can be overlapping 

since QC 3 can be safely accommodated between these two non-adjacent QCs even if it 

is idle. In such a situation QC 3 is located at bay 9, while bays 8 and 10 are kept empty 

because of safety requirements. 

 

Figure 4.5: A modeling deficiency. 
 

4.6 QCSP with Ready Times 

The main aim in this section is to test whether CP can cope with different extensions 

of the problem, rather than making a comprehensive study on this subject; QCSP with 

ready times. Meta-heuristics often provide good solution quality for different types of 

combinatorial problems which CPLEX cannot cope even with their small instances. 

However, problem-specific heuristics and meta-heuristics are often implied by 

considering very-specific problem configurations (constraints); that is, they are not 

flexible to even small additions to the problem (Blum and Roli (2003)). They may be 

totally unsuitable for the new constraints or may have resulted in poor solution quality. 

On the other hand in real-world problems, there exist more side constraints than initially 

projected. Therefore it is important to use a method that can cope with different 

extensions of the problem; a method that not only is able to add new constraint easily, 

but also will end up with same good solution quality for different extensions of the 

initial QCSP problem.  
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Accordingly, we studied a different version of QCSP, in which QCs have individual 

ready times. This problem has some practical relevance in any container terminal 

because it is not desirable that QCs are staying idle without being assigned to any 

vessel. Instead of this, a QC which is completed its work on a departing vessel will be 

assigned to another vessel which has already started its handling operations to shorten 

its completion time. We obtain the constraint programming model for QCSP with ready 

times by extending the previous QCSP model.  

Differently from previous QCSP models with ready times, dummy tasks are added to 

the model for representing the unavailability of QCs.  In other words, it is assumed that 

these subsequent QCs are processing dummy tasks outside the boundaries of the vessel 

before their ready times. By this way, we are able to convert the initial QCSP model 

into QCSP with ready times straightforwardly, while keeping all constraints of QCSP 

model valid.  

New and revised parameters for the QCSP with ready times are listed below. 

     number of QCs that operate for the vessel from beginning to end; 

     number of subsequent QCs that will be able to start operating for the vessel from 

the left-side at their ready times; 

    number of subsequent QCs that will be able to start operating for the vessel from 

the right-side at their ready times; 

   revised set of tasks,                      ; 

   revised set of bays,                                ; 

    revised set of quay cranes,                       ; 

       ready time for each QC       

 

    and    in the QCSP model are replaced by revised sets       and      

respectively, in the QCSP with ready times model. All constraints of the QCSP model 

also exist in the extended model. In addition, we need to fix the time-positions of the 

variables that corresponds to dummy tasks by adding the constraints below: 
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                                                                (21) 

                                                             (22) 

e                                            (23) 

 

Constraint sets (21), (22) and (23) also reduce the domains of the dummy variables 

by considering them as fixed time intervals. That is, if the ready time for QC    is 100, 

then the dummy task   is created and             and               are reduced to 

 0,100  with      100. 

 

                                                             (24) 

 

Also domains of      decision variables related with subsequent QCs are 

reinvestigated by constraint set (24).  As a result, the domains of these variables for all 

tasks other than the dummy variables are reduced to [      ,  ]. 

 

Figure 4.6: Representation of QCSP with ready times.  

 

This extension of the problem is illustrated in Figure 4.6 where the rectangles labeled 

by       indicating that dummy task   is processed by QC  . Therefore each subsequent 

QC can travel in the direction pointed out by arrows in the illustration and starts 

operating for the vessel after its ready time. Note that,     QCs are already operating 

from the beginning to the end within the bays 1 to    . 
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Also, QCSP model can be converted into QCSP with time windows (Meisel (2011)) 

straightforwardly by considering the point of view of unavailability of QCs. 

4.7 QCSP with Time Windows 

As noted in Meisel (2011), in practice, QCs are frequently redeployed among vessels 

to speed up the operations of high-priority vessels. As a result, the extension of the 

problem with time windows can be considered as the most appropriate way to represent 

real-world scheduling operations of QCs. In QCSP with time windows, QCs can have 

different time windows in which they are available to operate for the vessel. In this 

study these QCs with time windows are assumed to be operating for adjacent vessels at 

any time except these pre-defined intervals.  

Differently from the literature, we built QCSP with time windows model from the 

perspective of QC unavailability rather than considering available time intervals. 

Accordingly, each unavailable period for QCs is represented as a dummy task. These 

dummy tasks must be performed and are added to the model as fixed intervals; that is, 

the execution times and the positions of these tasks are fixed. As a result, domains of 

decision variables related with these tasks are reduced to a single value. Dummy bays 

are also considered to implement travel times and safety margins correctly. QCSP with 

time windows model is built by extending the QCSP model developed in Section 4.1. 

Hence, these dummy tasks are defined on an extended set of bays to denote the waiting 

locations of these QCs during their unavailability period (at either the left or the right 

side of the vessel), by considering the non-crossing constraint. For instance, in Figure 

4.7, QC   and QC       are associated with a left and a right side of the boundary, 

respectively. Note that each QC of this type can only be associated with one side. QCSP 

with time windows model is then built by extending the QCSP model developed in 

Section 4. Additional and revised parameters for this extended model are listed below: 

 

     number of QCs which  are available during the makespan; 

     number of QCs which have at least one unavailability and are also associated 

with left-side; 

     number of QCs which have at least one unavailability and are also associated 

with right-side; 
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     extended set of bays, 

 i.e.,                                             ; 

     extended set of QCs, i.e.                                     ; 

    number of unavailable periods for left associated QC  ,                 ; 

    number of unavailable periods for right associated QC  ,                  

                         ;    

    extended set of tasks, i.e.                                   ; 

     set of indices of dummy tasks which represent the unavailability of QC   related 

with left side.              
 
                                   ; 

     set of indices of dummy tasks which represent the unavailability of QC   related 

with right side.                   
 
                          

                   ; 

     starting times for each unavailable period of left-associated QCs ; 

     starting times for each unavailable period of right-associated QCs. 

 

Note that, sets     and   of the QCSP model are replaced by the revised sets         

and      respectively, and     and    are also extended by considering the durations of 

unavailability and the dummy bays for retaining unavailable QCs. Also some of the 

existing constraints are revised and new constraints are added to the extended model. 

 

                                                               (1’) 

                                              (25) 

                                              ,         (26) 

                                                          (27) 

                                               ,           (28) 
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Constraint set (1’) represents the revisited constraint set (1), in which dummy tasks 

are excluded from the calculation of the makespan. Constraint sets (25) and (26) ensure 

that dummy tasks must be executed by corresponding QCs. Constraint sets (27) and 

(28) ensure that all dummy tasks are fixed intervals, by fixing the starting times. For 

instance, if QC    is unavailable at time period  80,120 , then the processing time of the 

related dummy task    is 40 and the corresponding domains are fixed as 

           =[80,120] and              =[80,120]. Also the durations of dummy tasks 

are excluded from the domains of other tasks operated by related QCs because of the 

combination of constraint sets (27), (28) and (13). For example             

                                                    for left-associated QCs. 

A general representation of QCSP with time windows can be found in Figure 4.7. 

 

Figure 4.7: QCSP with time windows. 

 

In this generalized instance, there are two QCs with unavailability. QC   is at the 

leftmost and QC       is at the rightmost of all QCs assigned to the vessel. They are 

assigned to adjacent vessel from time         and     to        +         and 

   +  , however, they can operate for the vessel except these intervals plus required 

travel times. It is important to point out that while some QCs are unavailable because of 

redeployments, available QCs can travel within the boundaries of the vessel from end to 

end (bay   to bay    ) by only considering non-crossing constraint.  
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4.8 Advantages of Using CP for QCSP 

In the constraint programming context,              variables are enough to 

represent the whole problem, while the corresponding mixed-integer programming 

model has                                 variables. We can see the 

effects of these numbers with an instance of    bays, 30 tasks and 4 quay cranes. For 

this instance, the proposed CP model and the MIP model can be represented with 151 

and 4903 decision variables, respectively. This significant difference is mainly due to 

the synthesis of rich modeling tools of CP and the efficient modeling by using global 

constraints. On the other hand, there is no significant difference between the models 

with respect to the number of constraints. However, most of the constraints only consist 

of     variables in the CP model. The fact of having a very small number of variables 

and a large number of global constraints with strong relations helps the constraint 

programming model to work effectively for QCSP.  

In the real-world problems, it is possible that there exist additional constraints other 

than the ones presented here. For example, quay cranes may have certain time-windows 

due to different reasons according to Meisel (2011). Another example is the case that 

task   has to be completed before a given time because there is another vessel in the 

terminal which is urgently waiting to receive task   before departure. The wide variety 

of such additional constraints can be easily added to the proposed CP model. Most of 

the time, however, such additional constraints will not make the problem harder to solve 

by using CP. Each new constraint that consists of existing variables may probably help 

to strengthen the inferences, prune more domains, and consequently, will reduce the 

size of the search space. Therefore, solving more complex problems with CP can be 

easier. Hence, constraint programming can be an appropriate method to solve not only 

QCSP but also different extensions of the problem.  
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CHAPTER 5 

 

COMPUTATIONAL EXPERIMENTS 

 

 

5.1.  Design of Computational Experiments 

Computational experiments were conducted to test the performance of the proposed 

CP model for QCSP with container groups. In this study, QCSPgen (Meisel and 

Bierwirth (2011)) is used to generate the test instances. There exists one other group of 

benchmark instances in the literature (Kim and Park (2004)). However in these 

instances, the number of bays equals to number of tasks, which is unrealistic. Hence we 

did not use this set of instances. 

QCSPgen is a benchmark instance generator for QCSP that allows comparing 

different models and solution procedures. This generator also provides the most realistic 

benchmark instances in the literature. QCSPgen is constructed by considering four 

principles; purpose, comparability, unbiasedness and reproducibility. First of all Meisel 

and Bierwirth (2011) claim that QCSPgen is generated for the purposes of 

demonstrating the ability of a procedure or comparing competing procedures regarding 

one certain QCSP model as well as across different QCSP models. Accordingly, in this 

thesis, proposed constraint-programming model is fairly compared with the ones of 

Meisel and Bierwirth (2011) and Meisel (2011) by using QCSPgen. For better 

comparisons, the researchers compose QCSPgen instances from stowage plan and QC 

data, to allow considering the service of a vessel under variable QC assignments, travel 

times and safety margins. Moreover QCSPgen is unbiased; that is, it is not constructed 

by considering the advantages or abilities of a specific QCSP model. Therefore the 

generation process is  designed by considering typical dimensions of container vessels 

and reasonable handling volumes by carefully considering task processing times, spatial 

distributions over bays and precedence relations are generated with well known 

randomization techniques. As a result, it generates sets of different but identically 
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structured benchmark instances. The benchmark instances generated by this generator 

are completely reproducible by the help of random seeds. That is, if we generate an 

instance with same parameters and the random seed, then we always obtain the same 

instance. It allows that the same data can be instantly reproduced by any researcher 

around the world, and it creates a quick and fair comparison environment. More detailed 

information about QCSPgen and the benchmark sets created by this instance generator 

software can be found in Meisel and Bierwirth (2011). 

In this study, Set B and Set C of Meisel and Bierwirth (2011) are since instances with 

this structure reflect the real-world cases. In all Set B instances, the number of bays 

(   ) and the number of QCs       were taken as 15 and 4, respectively. Also six 

different numbers of tasks       were selected as 45, 50, 55, 60, 65 and 70. For the 

experiments with Set C, six different     were selected from 75 to 100 with the same 

pattern with Set B and     and     were increased to 20 and 6, respectively. For each 

number of tasks, ten different instances were generated by using random seeds 1 to 10, 

in line with the literature. Therefore a total of 120 QCSP benchmark instances were 

generated by QCSPgen.  Since the search phase of CP has randomness (Laborie and 

Godard (2007)), 10 trials with different random seeds were run for each instance. Set C 

and Set B benchmark instance sets generated by QCSPgen provides different average 

number of tasks per bay ratios ranging 3 to 5, which are presented in Table 5.1. 

 

 

Table 5.1: Task-per-bay ratios. 

 

    

         

 

             

      

 

     

        

 

             

      

45 3 75 3.75 

50 3.33 80 4 

55 3.67 85 4.25 

60 4 90 4.50 

65 4.33 95 4.75 

70 4.67 100 5 
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 In the instances of Kim and Park (2004) number of tasks per bays is distributed from 

0 to 4 uniformly, with an average of 1 task per bay. This means that there will be lots of 

bays without any task, which is also contradictory to the real-world cases. On the other 

hand, task-per-bay ratios ranging 3 to 5 with very lesser number of empty bays are 

considered to be more appropriate to represent the real-world scheduling of QCs. 

Hence, the benchmark instances of Kim and Park (2004) is disregarded not only in this 

study but also in recent QCSP literature. 

QCSP is one of the problems to be solved frequently in container terminals. 

Therefore it is important to find a good solution in a short time. Even though CP is a 

powerful approach for QCSP with respect to the problem structure, it may have a 

disadvantage as CP may not result in an optimal solution within a reasonable time. 

Hence, CP is not used as an exact method in our study, which brings the question of 

when to terminate a CP search. In our experiments, after generating a lower bound 

value in a very short time, we let CP search the solution space to find a feasible solution 

  with its objective function value    and, each time a better solution is found, the 

constraint      is added to the model. Note that, the incumbent value is taken as   , 

if the optimal solution cannot be found by CPLEX within 2-minutes. In all Set B 

instances    refer to the optimal solution of the corresponding lower bound model, 

however in Set C, approximately just one third of    values refer to optimal ones. Note 

that, the time spent for solving lower bound model (MIP) is not added to the time limit, 

that is, in the worst case             –      minutes is left for CP.  

Obviously, when    is equal to the lower bound (  ), the search is terminated with 

an optimal solution. Otherwise, CP search will be stopped after  1.5    10  minutes 

for Set B and half an hour for Set C with the best solution found so far. The results of 

the computational experiments were compared with the results for Set B and Set C 

instances presented by Meisel and Bierwirth (2011) and Legato et al (2012). 

Next, a set of new instances were generated to test the QCSP model with ready 

times. We assume that three QCs are operating for the vessel from the beginning to end. 

Also one QC will be available after 300 time-units at the left side of the vessel, and two 

QCs will be available, one after 600 and the after 900 time units at the right side. 

Therefore, all Set C instances were modified based on this scheme and then used for 

testing our QCSP model with ready times. A general representation of QCSP with ready 

times instances used in this study is given in Figure 5.8. 
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Figure 4.8: QCSP with ready times instance. 

To test the QCSP model with time windows, we applied the third instance generation 

pattern designed by Meisel (2011). In this pattern, six QCs jointly start the operation, 

but a subset of them (three QCs) is temporarily removed from the vessel to operate for 

another vessel located at the right side between times 400 and 800, and then turned back 

to the vessel.  

This structure can be seen in Figure 5.9. This situation frequently occurs when QCs 

at a vessel of low priority are temporarily removed for accelerating the operation of a 

vessel of higher priority. As with Meisel (2011), these new instances were obtained by 

extending 10 Set C instances with       .  

 

 

Figure 5.9: QCSP with time windows instance. 
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Note that, for the computational experiments of QCSP with ready times and QCSP 

with time windows, we start solving the models immediately rather than generating    

first and then adding it to the model as a tighter lower bound. In these two models, only 

pre-emptive lower bound is used and that is why no instances were terminated with an 

optimal solution. Time-limits for these extensions were set as half an hour. For QCSP 

with time windows 10-minute results are also presented to make a fair comparison with 

the results of Meisel (2011).  

Overview of the computational experiments used in this study is presented in Table 

5.2. Note that the number of different instances of each instance size is represented as 

                           , and time limit is represented in minutes and 

     stands for pre-emptive parallel machine scheduling lower bound.  

 

Table 5.2: Overview of computational experiments. 

         

     

     

      

     

      

         

      

        

      

(size) x # (45)x10 (75)x10 (75)x10 - 

(size) x # (50)x10 (80)x10 (80)x10 (80)x10 

(size) x # (55)x10 (85)x10 (85)x10 - 

(size) x # (60)x10 (90)x10 (90)x10 - 

(size) x # (65)x10 (95)x10 (95)x10 - 

(size) x # (70)x10 (100)x10 (100)x10 - 

Time-limit 1.5nbT/10 30 30 10 & 30 

Total ins. 60 60 60 10 

Total Runs 600 600 600 100 

LB MIP MIP         
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5.2  Results 

IBM ILOG’s CP Optimizer 12.3 and CPLEX 12.3 were used to solve the constraint 

programming and the mixed-integer programming models, respectively. All tests were 

conducted on a personal computer with 2.53 GHz processor and 4 GB ram.   
 

First, to show that the proposed CP model is a viable tool for solving QCSP, we 

analyzed the performance of CP by considering the percentage deviation of CP results 

from the lower bound LB, i.e.,        100          –                 . Since CP was run for 10 

trials with different random seeds for each instance,      means the average result of 

these 10 trials. Moreover, there are ten different instances for each instance size in Set B 

and Set C. Hence,           and        indicate the average values of 10 instances of the same 

size.  

Second, we show the improvement of the new lower bound values        over the 

average lower bound values (          produced by Meisel and Bierwirth (2011), i.e. 

        100        –                    . These          values were derived by CPLEX within a 2-

hour time limit.  

After showing the success of the proposed CP model on finding near optimal 

solutions, we compared the solution time of CP model to a UDS heuristic (Bierwirth 

and Meisel (2009)) and a TPN procedure (Legato et al (2012)). We disregarded the gap 

between the solution times of our method and UDS heuristic because the TPN 

procedure surpasses the UDS heuristic at each instance size. Hence, the percentage gap 

between the average solution times of the CP model (   ) and the TPN procedure 

(     ) is defined as        100          –                         . We also listed the average 

relative standard deviation                 between trials for each instance size.  

As previously denoted, each instance set consists of 10 different instances for each 

size. Since each instance set consists of instances with six different     , there exist 60 

different instances in each Set B and Set C. Therefore the results for all 60 instances 

were represented by taking the average of 10 different trials as well as more detailed 

average results for each    . 

 

5.2.1 Results of Set B for QCSP 

Results of the computational experiments for Set B were presented in Tables 5.3 and 

5.4. For Set B, the new lower bound    which is generated in, at worst, 30 seconds 
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provides 1.46% tighter bounds for the problem. Therefore, the average       value of 

0.62% indicates that the proposed CP model is a good alternative to solve the QCSP. 

The maximum average gap is observed for        and it is 0.9%. Furthermore, very 

low average relative standard deviation values over 10 trials indicate the robustness of 

the CP approach. During computational experiments for Set B, in 193 of 600 trials, the 

search was terminated with the optimal result within the time limit, mainly by the help 

of new lower bound values. Detailed results of 10 trials were also listed in Appendix B. 

 

Table 5.4: Average results for Set B. 

                         % 

 

                               % % 

                                                                  UDS TPN CP             

45 4 754.3 770.5 2.15 775.8 775.8 773.4 0.09 11.88 5.73 5.27 -8.03 0.38 

50 4 753.4 763.1 1.29 770.9 770.9 769.3 0.09 20.85 13.78 6.8 -50.65 0.81 

55 4 753.6 767.1 1.79 771.9 771.9 771.8 0.12 17.97 10.36 7.38 -28.76 0.61 

60 4 753.1 764.0 1.45 771.1 771.1 770.9 0.18 21.95 22.47 8.07 -64.09 0.90 

65 4 753.5 765.9 1.65 769.0 769.0 768.7 0.13 35.3 19.6 8.22 -58.06 0.37 

70 4 753.1 756.3 0.42 762.1 761.9 761.3 0.14 37.18 22.59 8.9 -60.6 0.66 

         753.5 764.5 1.46 770.1 770.1 769.2 0.13 24.19 15.76 7.44 -52.78 0.62 

 

 

5.2.2 Results of Set C for QCSP 
 

Results of computational experiments for Set C were presented in Tables 5.5 and 5.6 

below. For Set C, the solution quality is similar to the results of Set B.  Even though the 

time-limit is set to 30 minutes, the average solution time for this instance set is 

approximately 16 minutes, because in 494 out of 600 trials, the search was terminated 

with an optimal value  earlier than the time limit (mostly within 10 minutes). The reason 

for this is not only longer time limit, but also the tightness of the new lower bound 

values for Set C instances which have more intense workload for QCs than Set B. This 

fact also resulted in an even lower average relative standard deviation of 0.04% and 

      value of 0.29%. Detailed results of 10 trials were also listed in Appendix C. 
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Table 5.3: Results for each instance of Set B. 

     
                               

 

     
                               

45 1 754 758 758.6 0.61 0.08 

 

60 1 778 781 779.6 0.21 -0.18 

45 2 759 759 759.0 0.00 0.00 

 

60 2 754 756 759.2 0.69 0.42 

45 3 754 759 759.2 0.69 0.03 

 

60 3 754 758 760.0 0.80 0.26 

45 4 783 789 783.0 0.00 -0.76 

 

60 4 755 765 765.7 1.41 0.09 

45 5 754 758 760.4 0.85 0.32 

 

60 5 754 760 760.6 0.88 0.08 

45 6 765 789 771.5 0.85 -2.22 

 

60 6 754 758 760.8 0.90 0.37 

45 7 795 798 796.0 0.13 -0.25 

 

60 7 754 786 779.0 3.32 -0.89 

45 8 754 759 759.6 0.75 0.11 

 

60 8 754 757 758.5 0.60 0.22 

45 9 797 797 797.0 0.00 0.00 

 

60 9 784 785 785.0 0.13 0.00 

45 10 790 792 790.0 0.00 -0.25 

 

60 10 799 805 800.0 0.13 -0.62 

     770.5 775.8 773.4 0.38 -0.30 

 
     764 771.1 770.9 0.90 -0.02 

50 1 754 774 774.0 2.65 0.00 

 

65 1 754 758 759.2 0.69 0.16 

50 2 768 771 769.0 0.13 -0.26 

 

65 2 799 799 799.0 0.00 0.00 

50 3 768 772 769.6 0.21 -0.31 

 

65 3 801 803 802.0 0.12 -0.12 

50 4 754 765 763.4 1.25 -0.21 

 

65 4 754 758 758.8 0.63 0.10 

50 5 754 762 762.4 1.11 0.05 

 

65 5 754 758 758.5 0.60 0.07 

50 6 754 765 765.3 1.52 0.08 

 

65 6 754 757 758.8 0.63 0.23 

50 7 775 782 775.0 0.00 -0.90 

 

65 7 754 757 757.5 0.46 0.07 

50 8 753 761 758.5 0.73 -0.29 

 

65 8 754 756 756.5 0.33 0.07 

50 9 797 798 798.0 0.13 0.00 

 

65 9 754 758 759.5 0.73 0.20 

50 10 754 759 758.5 0.60 -0.05 

 

65 10 781 786 782.0 0.13 -0.51 

     763.1 770.9 769.3 0.81 -0.19 

 

     765.9 769 768.7 0.37 -0.03 

55 1 754 758 758.5 0.58 0.10 

 

70 1 754 766 761.0 0.93 -0.65 

55 2 773 783 775.3 0.32 -0.94 

 

70 2 754 764 765.8 1.56 0.24 

55 3 777 779 779.0 0.26 0.00 

 

70 3 754 760 759.6 0.74 -0.05 

55 4 754 759 763.0 1.18 0.50 

 

70 4 754 760 757.2 0.42 -0.37 

55 5 754 758 760.8 0.90 0.36 

 

70 5 754 757 757.0 0.40 0.00 

55 6 787 789 787.0 0.00 -0.25 

 

70 6 760 761 761.2 0.16 0.03 

55 7 764 768 770.3 0.83 0.30 

 

70 7 754 759 758.6 0.61 -0.05 

55 8 754 767 765.7 1.55 -0.17 

 

70 8 754 758 757.8 0.51 -0.04 

55 9 800 801 800.0 0.00 -0.12 

 

70 9 753 757 759.0 0.80 0.26 

55 10 754 757 759.8 0.76 0.30 

 

70 10 772 779 774.4 0.31 -0.59 

     767.1 771.9 771.9 0.61 0.01 

 

     756.3 762.1 761.3 0.66 -0.12 
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Table 5.5: Results for each instance of Set C. 

     
                                 

 

     
                                

75 1 1177 1178 1177.0 0.00 -0.08 

 

90 1 1003 1014 1010.6 0.76 -0.34 

75 2 1003 1011 1014.6 1.16 0.36 

 

90 2 1003 1020 1013.6 1.06 -0.63 

75 3 1181 1182 1181.0 0.00 -0.08 

 

90 3 1003 1011 1011.6 0.86 0.06 

75 4 1103 1107 1103.0 0.00 -0.36 

 

90 4 1057 1063 1057.0 0.00 -0.56 

75 5 1185 1192 1185.0 0.00 -0.59 

 

90 5 1062 1062 1062.2 0.02 0.02 

75 6 1118 1123 1118.0 0.00 -0.45 

 

90 6 1193 1193 1193.0 0.00 0.00 

75 7 1192 1200 1192.0 0.00 -0.67 

 

90 7 1105 1108 1105.0 0.00 -0.27 

75 8 1166 1174 1166.0 0.00 -0.68 

 

90 8 1086 1094 1086.0 0.00 -0.73 

75 9 1170 1074 1170.0 0.00 8.94 

 

90 9 1072 1075 1072.0 0.00 -0.28 

75 10 1188 1188 1188.0 0.00 0.00 

 

90 10 1049 1049 1049.0 0.00 0.00 

     1148 1143 1149.5 0.12 0.64 

 
     1063 1069 1066.0 0.27 -0.27 

80 1 1172 1173 1172.0 0.00 -0.09 

 

95 1 1173 1174 1173.0 0.00 -0.09 

80 2 1003 1023 1021.0 1.79 -0.20 

 

95 2 1086 1090 1086.0 0.00 -0.37 

80 3 1003 1013 1015.6 1.26 0.26 

 

95 3 1003 1014 1013.0 1.00 -0.10 

80 4 1196 1202 1196.0 0.00 -0.50 

 

95 4 1135 1138 1135.0 0.00 -0.26 

80 5 1029 1036 1029.0 0.00 -0.68 

 

95 5 1137 1144 1137.0 0.00 -0.61 

80 6 1109 1117 1109.0 0.00 -0.72 

 

95 6 1052 1055 1053.0 0.10 -0.19 

80 7 1193 1201 1193.0 0.00 -0.67 

 

95 7 1164 1173 1164.0 0.00 -0.77 

80 8 1011 1040 1016.0 0.49 -2.31 

 

95 8 1003 1015 1010.0 0.70 -0.49 

80 9 1192 1192 1192.0 0.00 0.00 

 

95 9 1019 1019 1019.0 0.00 0.00 

80 10 1201 1207 1201.0 0.00 -0.50 

 

95 10 1003 1011 1010.0 0.70 -0.10 

     1111 1120 1114.5 0.35 -0.54 

 

     1078 1083 1080.0 0.25 -0.30 

85 1 1047 1049 1047.0 0.00 -0.19 

 

100 1 1004 1014 1013.2 0.92 -0.08 

85 2 1003 1017 1012.0 0.90 -0.49 

 

100 2 1097 1104 1098.0 0.09 -0.54 

85 3 1024 1027 1025.4 0.14 -0.16 

 

100 3 1100 1107 1100.0 0.00 -0.63 

85 4 1180 1186 1181.0 0.08 -0.42 

 

100 4 1198 1202 1198.0 0.00 -0.33 

85 5 1076 1082 1076.0 0.00 -0.55 

 

100 5 1003 1015 1014.2 1.12 -0.08 

85 6 1003 1010 1011.2 0.82 0.12 

 

100 6 1135 1136 1135.0 0.00 -0.09 

85 7 1193 1195 1193.0 0.00 -0.17 

 

100 7 1095 1098 1095.0 0.00 -0.27 

85 8 1097 1105 1097.0 0.00 -0.72 

 

100 8 1151 1151 1151.0 0.00 0.00 

85 9 1003 1010 1011.4 0.84 0.14 

 

100 9 1003 1023 1014.8 1.18 -0.80 

85 10 1166 1166 1166.0 0.00 0.00 

 

100 10 1003 1015 1013.4 1.04 -0.16 

     1079 1085 1082.0 0.28 -0.24 

 
     1079 1087 1083.3 0.43 -0.30 
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Table 5.6: Average results for Set C. 

           UDS TPN                UDS TPN CP             

75 6 
1138.3 1142.9 1142.9 1139.6 0.01 60.0 51.9 8.4 -83.8 0.11 

80 6 
1110.9 1120.4 1120.3 1114.9 0.05 54.1 48.0 14.6 -69.6 0.36 

85 6 
1079.2 1084.7 1084.7 1082.8 0.04 60.0 54.8 20.7 -62.2 0.33 

90 6 
1063.9 1068.9 1068.8 1066.4 0.06 60.0 56.4 13.6 -75.9 0.23 

95 6 
1077.5 1083.3 1082.9 1080.2 0.01 60.0 57.5 17.5 -69.6 0.25 

100 6 1078.9 1086.5 1085.3 1083.4 0.06 60.0 60.0 19.0 -68.3 0.42 

         1091.5 1097.8 1097.5 1094.6 0.04 59.0 54.8 15.6 -71.6 0.29 

 

Moreover, the overall solution quality of the proposed CP model is almost similar to 

the UDS and TPN methods. An insignificant advantage of our results in Set B and Set C 

instances is probably caused by the inexistence of pre-defined initial positions in this 

study. In just a very few instances of Set B and Set C, non-unidirectional schedules 

provides considerable (more than 1%) improvement to unidirectional results. Therefore, 

we can state that overall solution quality of unidirectional schedules for QCSP (or 

independent-unidirectional schedules) is very similar to the non-unidirectional 

schedules. 

 The proposed CP model also cuts the previous best solution time by averaging 

52.78% and 71.70% for Set B and Set C; in other words, the problem is solved 

approximately 2 and 3.5 times faster than previous fastest solution times in the literature 

for Set B and Set C, respectively, which is a significant improvement for solving QCSP. 

 

5.2.3 Results of Set C for QCSP with Ready Times 

Results of computational experiments for Set B are presented in Tables 5.7 and 

5.8. 
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Table 5.7: Results for each instance of Set C (with ready times). 

     
                       

 

     
                       

75 1 1302 1319.6 1.35 

 

90 1 1302 1317.4 1.18 

75 2 1302 1321.2 1.47 

 

90 2 1302 1320.4 1.41 

75 3 1302 1319.0 1.31 

 

90 3 1302 1316.4 1.11 

75 4 1302 1319.6 1.35 

 

90 4 1302 1330.2 2.17 

75 5 1302 1331.6 2.27 

 

90 5 1302 1320.8 1.44 

75 6 1302 1320.6 1.43 

 

90 6 1302 1316.0 1.08 

75 7 1302 1332.6 2.35 

 

90 7 1302 1346.0 3.38 

75 8 1302 1331.8 2.29 

 

90 8 1302 1327.4 1.95 

75 9 1302 1320.8 1.44 

 

90 9 1302 1320.6 1.43 

75 10 1302 1314.8 0.98 

 

90 10 1302 1323.8 1.67 

     1302 1323.2 1.63 

 

     1302 1323.9 1.68 

80 1 1302 1322.4 1.57 

 

95 1 1302 1324.2 1.71 

80 2 1302 1316.4 1.11 

 

95 2 1302 1317.4 1.18 

80 3 1302 1315.8 1.06 

 

95 3 1302 1337.4 2.72 

80 4 1302 1321.8 1.52 

 

95 4 1302 1324.2 1.71 

80 5 1302 1321.8 1.52 

 

95 5 1302 1342.0 3.07 

80 6 1302 1330.2 2.17 

 

95 6 1302 1321.2 1.47 

80 7 1302 1335.2 2.55 

 

95 7 1302 1322.2 1.55 

80 8 1302 1318.8 1.29 

 

95 8 1302 1316.6 1.12 

80 9 1302 1323.0 1.61 

 

95 9 1302 1325.2 1.78 

80 10 1302 1322.4 1.57 

 

95 10 1302 1340.8 2.98 

     1302 1322.8 1.60 

 
     1302 1327.1 1.93 

85 1 1302 1329.8 2.14 

 

100 1 1302 1323.2 1.63 

85 2 1302 1331.2 2.24 

 

100 2 1302 1337.0 2.69 

85 3 1302 1316.8 1.14 

 

100 3 1302 1324.2 1.71 

85 4 1302 1330.8 2.21 

 

100 4 1302 1323.2 1.63 

85 5 1302 1322.0 1.54 

 

100 5 1302 1327.6 1.97 

85 6 1302 1313.0 0.84 

 

100 6 1302 1321.8 1.52 

85 7 1302 1316.2 1.09 

 

100 7 1302 1321.4 1.49 

85 8 1302 1328.0 2.00 

 

100 8 1302 1328.6 2.04 

85 9 1302 1319.4 1.34 

 

100 9 1302 1345.0 3.30 

85 10 1302 1320.8 1.44 

 

100 10 1302 1321.4 1.49 

     1302 1322.8 1.60 

 

     1302 1327.3 1.95 
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Table 5.8: Results for QCSP with ready times. 

                                            

75 6 1302 1323.2 0.35 30.0 1.63 

80 6 1302 1322.8 0.38 30.0 1.60 

85 6 1302 1322.8 0.30 30.0 1.60 

90 6 1302 1323.9 0.30 30.0 1.68 

95 6 1302 1327.1 0.41 30. 

0 

1.93 

100 6 1302 1327.3 0.36 30.0 1.95 

         1302 1324.5 0.35 30.0 1.72 

 

 

 

Table 5.9: Individual %RSD values. 

 

 

The results of the computational experiments for QCSP with ready times were 

presented in Tables 5.8 and 5.9. In comparision to the       values for QCSP, the gap 

is increased because in this case we compared     values with preemptive lower bound 

not with a specific lower bound model for QCSP with ready times, as we did for QCSP. 

After investigating the detailed results of Set C for QCSP, we observed that the solution 

qualities of some definite instances (which are not detected as an optimal, and are not 

terminated within 30 minutes) are similar to the results for QCSP with ready times. 

Detailed results of 10 trials were also listed in Appendix D. 

In Table 5.9 we presented the      values for all 60 instances of Set C. The 

maximum relative standard deviation observed is 0.765%, which indicates that the 

approach still has very low variance between different trials. However, these levels of 

variation are consistently higher than the       for QCSP instances because even in a 

single trial we cannot terminate the search with an optimal value within the time limit. 

Like       values, these      values are also similar to      of some specific 

QCSP instances which are not detected as optimal.  

 

5.2.4 Results of Set C for QCSP with Time Windows 

Results of computational experiments for Set C were presented in Tables 5.10 and 

5.11. Note that only a subset of 10 instances of Set C (with          is selected 

similar with the literature. 
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Table 5.10:  Results of QCSP with time windows instances. 

                              

       .                                          

80 1 1208 1240.2 2.67 1235.8 2.30 0.36 

80 2 1208 1255.2 3.91 1252.2 3.66 0.25 

80 3 1208 1234.4 2.19 1232.4 2.02 0.17 

80 4 1208 1316.2 8.96 1308.6 8.33 0.63 

80 5 1208 1260.6 4.01 1249.6 3.44 0.57 

80 6 1208 1323.6 9.57 1320.0 9.27 0.30 

80 7 1208 1287.2 6.56 1284.6 6.34 0.22 

80 8 1208 1285.4 6.41 1283.6 6.26 0.15 

80 9 1208 1238.6 2.53 1236.2 2.33 0.20 

80 10 1208 1274.0 5.46 1271.6 5.26 0.20 

         1208 1271,5 5.23 1267.5 4.92 0.30 

 

 

Table 5.11: Average results for QCSP with time windows. 

   
           

   
           

 
                                                                       

80 6 1208 1271.9 5.23 0.54 1348.9 11.66 1267.46 4.92 0.37 

 

The results from Tables 5.10 and 5.11 indicate that even though       jumped to 

5.23%, the solution quality is still decent, when compared to the results (          of Meisel 

(2011), which is 11.66% (     . We observe that the unavailability of some QCs 

during the makespan prevent us from finding solutions very near to preemptive lower 

bound. That is, for any QC with at least one unavailable period, there is a considerable 

amount of idle time between the completion time of its last assigned task and the 

starting time of its unavailability. This unavailability occurs because most of the time a 

suitable task to be assigned to these idle times cannot be found due to their processing 

times, locations and precedence relations. As a result, these idle times of QCs ends up 

with a significant deviation from the pre-emptive lower bounds. Detailed results of 10 

trials were also listed in Appendix E. 
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The improvement of       values in the additional 20 minutes is relatively low 

(0.3%), thus we can claim that 10 minutes time limit is enough for the convergence of 

our approach for solving QCSP with time windows. As expected, the average      

decreased by 0.17% because of the longer time limit. Differently from QCSP, we 

observed that non-unidirectional schedules can provide very significant improvement in 

the solution quality. For QCSP with time windows which is the most realistic extension 

of the original problem. This important finding indicates the importance of generating 

non-unidirectional schedules especially when QC operations of whole berth are 

managed together as desired by the practitioners, rather than generating QC schedules 

for each vessel separately.  

  



 

Chapter 6: Conclusion  77 

 

 

CHAPTER 6 

 

CONCLUSION 

 

In this thesis we studied quay crane scheduling which an important seaside 

operation for any container terminals. It is a common problem for container terminals 

because all loading and unloading operations of berthed vessels accomplished by QCs. 

Since there exists different versions of this problem in the literature, we define our 

problem as QCSP with container groups with travel times, safety distances, precedence 

relationships, non-crossing and non-interference constraints. 

For applicability of any QCSP study to the real-world problems, constraints of these 

problems should be reflected properly into the model. Therefore the modeling 

corrections for some deficiencies which are identified in recent literature are taken into 

account. Since these deficiencies were identified by different researchers, our study is 

the first which is fixed all of the errors in a single model. Then, a constraint 

programming model for this version of QCSP is proposed. By using rich modeling tools 

of the CP, the number of variables in the QCSP is reduced by an order of number of 

tasks.  

The computational experiments show that the proposed CP model proved itself as a 

fast and a convenient alternative to obtain near optimal solutions for QCSP. The 

solution quality of the proposed CP model for QCSP has a very little advantage over the 

most efficient solution methods in the literature while reducing the solution time 

significantly. For approximately half of the benchmark instances we found better 

solutions which are independent from initial positions of QCs. 

 Moreover, QCSP with ready times and QCSP with time windows models are also 

discussed to show that CP is a proper method for solving not only QCSP but also its 

more complex extensions. The computational experiments indicate that the non-

unidirectional schedules are able to provide significant improvements over the 

unidirectional ones for the most realistic cases with time windows.  
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A further research on the search technique for solving QCSP can be dispensable, 

because we have already observed a very high solution quality for even the largest 

instances with a large number of optimal solutions. Therefore, the future research could 

address duplicating the success of constraint programming into solving very-large 

scaled integrated operations of berth allocations and QC scheduling. Also the CP 

models presented in this thesis can be converted into QC operations management 

software by using C++ with constraint propagation libraries. Hence we can get rid of the 

dependency to commercial software.  

 Moreover, by developing new lower bound s rather than using theoretical 

preemptive lower bounds for QCSP with ready times and time windows models, we  

may significantly reduce the solution time by helping the model to terminate with 

optimal results.    
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APPENDIX A 

OPL MODEL AND DATA FOR QCSP WITH TIME-WINDOWS 

 

MODEL: 

 

 
using CP; 

  

 int NbTask=...; 

 int NbCrane=...; 

 int NbBay=...; 

 int NbLeft=...; 

 int NbRight=...; 

 

  

 range cranes=(1-NbLeft)..NbCrane+NbRight; 

 range tasks=(1-NbLeft)..NbTask+NbRight; 

 range bays=(1-2*NbLeft)..NbBay+2*NbRight; 

  

  

  tuple prec 

 {  

 int i; 

 int j; 

 } 

 

 {prec} Phi=...; 

 int p[tasks]=...; 

 int b[tasks]=...; 

 int total=sum(i in tasks)p[i];  

 int largest=max(i in tasks)p[i];  

 int tottal=2000; 

 int workload[r in bays]=sum(i in tasks:b[i]==r)p[i]; 

 int largestbay=max(r in bays)workload[r]; 

 int dummy_ready[cranes]=...; 

 int xx[tasks][cranes]=...; 

 int earliest[i in tasks]=maxl(sum(k in tasks:<k,i> in Phi)p[k],0); 

 int lastt[tasks]=...; 

 int ttt[i in tasks]=...; 

 int eee[i in tasks]=maxl(earliest[i],ttt[i]); 

 int son[i in tasks]=minl(tottal,lastt[i]); 

int largee[i in tasks][j in cranes]=xx[i][j]+dummy_ready[j]; 

int largestt[i in tasks][j in cranes]=minl(tottal,largee[i][j]); 

  

dvar interval acts[i in tasks] in earliest[i]..son[i] size p[i]; 

dvar interval actOnRes[i in tasks][j in cranes] optional in 

eee[i]..largestt[i][j] size p[i];  

int M=total; 

 dvar int makespan in 0..total; 

 

int Typet[j in 1..NbBay][k in cranes] = (NbBay+2*NbRight+1)*(k)+(j); 

tuple triplet2 { int id1; int id2; int value; }; 

{triplet2} dist2 = { <Typet[b[i]][j],Typet[b[n]][m],ftoi(abs(b[i]-b[n]+2*(m-

j)))> | i,n in 1..NbTask,j,m in cranes: i!=n && j!=m && b[n]>=2*m-1 && 

b[n]<=(NbBay-(NbCrane-m)*2) && b[i]>=2*j-1 && b[i]<=(NbBay-(NbCrane-j)*2)};     

  

 

 tuple trickk 

 {int i; 

 int j; 

} 

  



 

 {trickk} deneme[i in 1..NbTask][j in cranes][n in 1..NbTask][m in 

cranes]={<i,j>,<n,m>}; 

  

dvar sequence seq[j in cranes] in all(i in tasks:b[i]>=2*j-1 && b[i]<=(NbBay-

(NbCrane-j)*2)) actOnRes[i][j] types all(i in tasks:b[i]>=2*j-1 && 

b[i]<=(NbBay-(NbCrane-j)*2))i; 

 

 

dvar sequence seqq[i in 1..NbTask][j in cranes][n in 1..NbTask][m in cranes] 

in all(<a,c> in deneme[i][j][n][m]:m>j && i!=n && j!=m &&b[n]>=2*m-1 && 

b[n]<=(NbBay-(NbCrane-m)*2) && b[i]>=2*j-1 && b[i]<=(NbBay-(NbCrane-

j)*2))actOnRes[a][c] types all(<a,c> in deneme[i][j][n][m]:m>j && i!=n && j!=m 

&& b[n]>=2*m-1 && b[n]<=(NbBay-(NbCrane-m)*2) && b[i]>=2*j-1 && b[i]<=(NbBay-

(NbCrane-j)*2))Typet[b[a]][c]; 

  

 {int} TaskOnBay[t in bays]={j|j in tasks: b[j]==t}; 

  

 {int} t1[i in 1..NbTask][j in cranes][m in cranes]={n|n in 1..NbTask:i!=n && 

b[n]<b[i]+2*(m-j) && b[n]>=2*m-1 && b[n]<=(NbBay-(NbCrane-m)*2) && b[i]>=2*j-1 

&& b[i]<=(NbBay-(NbCrane-j)*2) && j!=NbCrane+NbRight && m!=(1-NbLeft) && m>j 

}; 

    {int} t3[i in 1..NbTask][j in cranes][m in cranes]={n|n in 1..NbTask: i!=n 

&& b[n]!=b[i] && j<NbCrane+NbRight-1 && b[i]!=NbBay+2*NbRight && b[i]>=2*j-1 

&& b[i]<=(NbBay-(NbCrane-j)*2) && m>1-NbLeft+2 && b[n]>b[i]+1 && m>j+1 && 

b[n]<b[i]+2*(m-j-1)+2 && b[n]>=2*m-1 && b[n]<=(NbBay-(NbCrane-m)*2)}; 

  

 

 int Maxi[t in bays]=maxl((max(i in TaskOnBay[t])i),0); 

int Card[t in bays]=card(TaskOnBay[t]); 

 

 

  minimize makespan; 

 

  subject to  

  { 

       presenceOf(actOnRes[83][6])==1; 

 presenceOf(actOnRes[81][4])==1; 

 presenceOf(actOnRes[82][5])==1; 

  

    forall(i in tasks) 

    alternative(acts[i], all(j in cranes:b[i]>=2*j-1 && b[i]<=(NbBay-(NbCrane-

j)*2)) actOnRes[i][j]); 

     

   

    

  forall(j in cranes) 

  noOverlap(seq[j],dist);   

   

   

  

         makespan==max(t in 1..NbBay:Card[t]>0)endOf(acts[Maxi[t]]); 

      

   

  forall(t in 1..19) 

  noOverlap(append(all(i in TaskOnBay[t])acts[i],all(k in 

TaskOnBay[t+1])acts[k])); 

      

      

   

forall(t in bays:Card[t]>1) 

  { 

  forall(i in TaskOnBay[t]: i<Maxi[t]) 

  { 

   endBeforeStart(acts[i],acts[i+1]); 

  

  forall(j in cranes:t>=2*j-1 && t<=(NbBay-(NbCrane-j)*2)) 

    { 



 

      

          before(seq[j],actOnRes[i][j],actOnRes[i+1][j]); 

      

     

    } 

   

  } 

   

}   

   

 

      forall(i in 1..NbTask,j in cranes: j<NbCrane+NbRight-1 && 

b[i]!=NbBay+2*NbRight && b[i]>=2*j-1 && b[i]<=(NbBay-(NbCrane-j)*2)) 

    { 

        forall(m in cranes: m>j+1 )  

        forall(n in t3[i][j][m]) 

     { 

 

     noOverlap(append(actOnRes[i][j],actOnRes[n][m])); 

     } 

    } 

    

    forall(i in 1..NbTask,j in cranes:b[i]>=2*j-1 && b[i]<=(NbBay-(NbCrane-

j)*2)) 

     { 

   

      forall(m in cranes:j!=NbCrane+NbRight && m!=(1-NbLeft) && m>j 

) 

      forall(n in t1[i][j][m])           

      { 

       noOverlap(seqq[i][j][n][m],dist2); 

      } 

      

} 

      

 

  }; 

   

 

 

 

 

 

 

 

DATA: 
 

  

NbTask=80; 

NbBay=20; 

 

 

NbCrane=3; 

 

NbRight=3; 

 

NbLeft=0; 

 

 

dummy_ready=[0,0,0,400,400,400]; 

 

p = [ 22, 46,166, 70, 99, 98, 21, 99, 10,234,  6, 71,190, 12, 18, 19, 92, 

23,107,  5, 24, 33, 19, 20, 41, 22, 82,160, 26,139, 88,104, 65, 62, 39,  4, 

75, 42,  5,122,221, 30, 17, 31, 21,158, 28,197,191,  7, 71, 58,106, 26, 75, 

12,142, 19, 28, 46, 90,120,  4, 37, 23,190, 50,137,144,195,369, 34, 50,158, 

62,150, 26, 26, 10, 61,400,400,400]; 



 

b = [  1,  1,  1,  1,  2,  2,  2,  2,  3,  3,  3,  4,  4,  4,  4,  4,  4,  5,  

5,  5,  5,  6,  6,  7,  7,  7,  8,  8,  8,  8,  8,  8,  9,  9,  9,  9,  9,  9, 

10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 14, 

15, 15, 15, 15, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 19, 19, 19, 20, 20, 

20, 20, 20, 20,22,24,26]; 

Phi = {<  1,  2>,<  1,  3>,<  2,  3>,<  1,  4>,<  2,  4>,<  3,  4>,<  5,  6>,<  

5,  7>,<  6,  7>,<  5,  8>,<  6,  8>,<  7,  8>,<  9, 10>,<  9, 11>,< 10, 11>,< 

12, 13>,< 12, 14>,< 13, 14>,< 12, 15>,< 13, 15>,< 14, 15>,< 12, 16>,< 13, 

16>,< 14, 16>,< 15, 16>,< 12, 17>,< 13, 17>,< 14, 17>,< 15, 17>,< 16, 17>,< 

18, 19>,< 18, 20>,< 19, 20>,< 18, 21>,< 19, 21>,< 20, 21>,< 22, 23>,< 24, 

25>,< 24, 26>,< 25, 26>,< 27, 28>,< 27, 29>,< 28, 29>,< 27, 30>,< 28, 30>,< 

29, 30>,< 27, 31>,< 28, 31>,< 29, 31>,< 30, 31>,< 27, 32>,< 28, 32>,< 29, 

32>,< 30, 32>,< 31, 32>,< 33, 34>,< 33, 35>,< 34, 35>,< 33, 36>,< 34, 36>,< 

35, 36>,< 33, 37>,< 34, 37>,< 35, 37>,< 36, 37>,< 33, 38>,< 34, 38>,< 35, 

38>,< 36, 38>,< 37, 38>,< 39, 40>,< 39, 41>,< 40, 41>,< 39, 42>,< 40, 42>,< 

41, 42>,< 43, 44>,< 43, 45>,< 44, 45>,< 46, 47>,< 46, 48>,< 47, 48>,< 49, 

50>,< 49, 51>,< 50, 51>,< 49, 52>,< 50, 52>,< 51, 52>,< 49, 53>,< 50, 53>,< 

51, 53>,< 52, 53>,< 49, 54>,< 50, 54>,< 51, 54>,< 52, 54>,< 53, 54>,< 49, 

55>,< 50, 55>,< 51, 55>,< 52, 55>,< 53, 55>,< 54, 55>,< 49, 56>,< 50, 56>,< 

51, 56>,< 52, 56>,< 53, 56>,< 54, 56>,< 55, 56>,< 58, 59>,< 58, 60>,< 59, 

60>,< 58, 61>,< 59, 61>,< 60, 61>,< 62, 63>,< 62, 64>,< 63, 64>,< 65, 66>,< 

65, 67>,< 66, 67>,< 65, 68>,< 66, 68>,< 67, 68>,< 65, 69>,< 66, 69>,< 67, 

69>,< 68, 69>,< 70, 71>,< 72, 73>,< 72, 74>,< 73, 74>,< 75, 76>,< 75, 77>,< 

76, 77>,< 75, 78>,< 76, 78>,< 77, 78>,< 75, 79>,< 76, 79>,< 77, 79>,< 78, 

79>,< 75, 80>,< 76, 80>,< 77, 80>,< 78, 80>,< 79, 80>}; 

 

 

lastt=[ 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999

 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999

 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999

 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999

 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999

 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999

 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999

 9999 9999 9999 9999 800 800 800 ]; 

 

xx=[ 

[ 9999 9999  9999 9999  9999 9999 ], 

[ 9999 9999  9999 9999  9999 9999 ], 

 

... 

 

[ 9999 9999  9999 9999  9999 9999 ], 

[ 9999 9999  9999 9999  9999 9999 ], 

[ 9999 9999  9999 9999  9999 9999 ], 

[ 9999 9999  9999 400  9999 9999 ], 

[ 9999 9999  9999 9999 400 9999 ], 

[ 9999 9999  9999 9999 9999 400 ]]; (93th row) 

 

ttt=[0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 400 400 400]; 

 

 



 

APPENDIX B 

NEW SET B RESULTS FOR QCSP  

Best results observed in 10 trials are presented. 

                
 

                

45 1 754 758* 
 

55 1 754 758* 

45 2 759 759* 
 

55 2 773 775** 

45 3 754 758** 
 

55 3 777 779* 

45 4 783 783** 
 

55 4 754 763 

45 5 754 758* 
 

55 5 754 758* 

45 6 765 771** 
 

55 6 787 787** 

45 7 795 796** 
 

55 7 764 770 

45 8 754 759* 
 

55 8 754 765** 

45 9 797 797* 
 

55 9 800 800** 

45 10 790 790** 
 

55 10 754 757* 

     
 

770.5 772.9 
 

     
 

767.1 771.2 

50 1 754 774* 
 

60 1 778 779** 

50 2 768 769** 
 

60 2 754 756* 

50 3 768 768** 
 

60 3 754 758* 

50 4 754 763** 
 

60 4 755 765* 

50 5 754 762* 
 

60 5 754 759** 

50 6 754 765* 
 

60 6 754 758* 

50 7 775 775** 
 

60 7 754 779** 

50 8 753 758** 
 

60 8 754 758 

50 9 797 798* 
 

60 9 784 785* 

50 10 754 758** 
 

60 10 799 800** 

     
 

763.1 769.0 
 

     
 

764 769.7 

 



 

                
 

                

65 1 754 758* 
 

70 1 754 759** 

65 2 799 799* 
 

70 2 754 765 

65 3 801 802** 
 

70 3 754 759** 

65 4 754 758* 
 

70 4 754 756** 

65 5 754 758* 
 

70 5 754 757* 

65 6 754 757* 
 

70 6 760 761* 

65 7 754 757* 
 

70 7 754 757** 

65 8 754 756* 
 

70 8 754 757** 

65 9 754 758* 
 

70 9 753 757* 

65 10 781 781** 
 

70 10 772 773** 

     
 

765.9 768.4 
 

     
 

756.3 760.2 

 

 

* Previous best results are repeated. 

** New best results are observed. 

(note that,     data are independent from initial positions of QCs) 

 

 

 

 

 

 

 

 

 

 



 

APPENDIX C 

NEW SET C RESULTS FOR QCSP  

Best results observed in 10 trials are presented. 

                
 

                

75 1 1177 1177** 
 

85 1 1047 1047** 

75 2 1003 1013 
 

85 2 1003 1012** 

75 3 1181 1181** 
 

85 3 1024 1025** 

75 4 1103 1103** 
 

85 4 1180 1181** 

75 5 1185 1185** 
 

85 5 1076 1076** 

75 6 1118 1118** 
 

85 6 1003 1010* 

75 7 1192 1192** 
 

85 7 1193 1193** 

75 8 1166 1166** 
 

85 8 1097 1097** 

75 9 1170 1170** 
 

85 9 1003 1010* 

75 10 1188 1188* 
 

85 10 1166 1166* 

     
 

1148.3 1149.3 
 

     
 

1079.2 1081.7 

80 1 1172 1172** 
 

90 1 1003 1009** 

80 2 1003 1021** 
 

90 2 1003 1012** 

80 3 1003 1013* 
 

90 3 1003 1010** 

80 4 1196 1196** 
 

90 4 1057 1057** 

80 5 1029 1029** 
 

90 5 1062 1062* 

80 6 1109 1109** 
 

90 6 1193 1193* 

80 7 1193 1193** 
 

90 7 1105 1105** 

80 8 1011 1013** 
 

90 8 1086 1086** 

80 9 1192 1192* 
 

90 9 1072 1072** 

80 10 1201 1201** 
 

90 10 1049 1049* 

   . 
 

1110.9 1113.9 
 

     
 

1063.3 1065.5 

 



 

                
 

                

95 1 1173 1173** 
 

100 1 1004 1013** 

95 2 1086 1086** 
 

100 2 1097 1098** 

95 3 1003 1013** 
 

100 3 1100 1100** 

95 4 1135 1135** 
 

100 4 1198 1198** 

95 5 1137 1137** 
 

100 5 1003 1014** 

95 6 1052 1053** 
 

100 6 1135 1135** 

95 7 1164 1164** 
 

100 7 1095 1095** 

95 8 1003 1009** 
 

100 8 1151 1151* 

95 9 1019 1019* 
 

100 9 1003 1009** 

95 10 1003 1010** 
 

100 10 1003 1013** 

     
 

1077.5 1079.9 
 

     
 

1078.9 1082.6 

 

 

* Previous best results are repeated. 

** New best results are observed. 

(note that,     data are independent from initial positions of QCs) 

 

 

 

 

 

 

 

 



 

APPENDIX D 

NEW SET C RESULTS FOR QCSP WITH READY TIMES 

Best results observed in 10 trials are presented. 

                
 

                

75 1 1302 1315 
 

85 1 1302 1319 

75 2 1302 1320 
 

85 2 1302 1325 

75 3 1302 1318 
 

85 3 1302 1315 

75 4 1302 1314 
 

85 4 1302 1322 

75 5 1302 1327 
 

85 5 1302 1320 

75 6 1302 1320 
 

85 6 1302 1312 

75 7 1302 1323 
 

85 7 1302 1315 

75 8 1302 1327 
 

85 8 1302 1326 

75 9 1302 1312 
 

85 9 1302 1319 

75 10 1302 1313 
 

85 10 1302 1315 

   . 
 

1302 1318.9 
 

   . 
 

1302 1318.8 

80 1 1302 1318 
 

90 1 1302 1314 

80 2 1302 1312 
 

90 2 1302 1316 

80 3 1302 1314 
 

90 3 1302 1315 

80 4 1302 1314 
 

90 4 1302 1329 

80 5 1302 1319 
 

90 5 1302 1316 

80 6 1302 1326 
 

90 6 1302 1310 

80 7 1302 1327 
 

90 7 1302 1338 

80 8 1302 1315 
 

90 8 1302 1320 

80 9 1302 1317 
 

90 9 1302 1317 

80 10 1302 1316 
 

90 10 1302 1323 

   . 
 

1302 1317.8 
 

   . 
 

1302 1319.8 



 

                                  

   1 1302 1317 
 

    1 1302 1322 

   2 1302 1316 
 

    2 1302 1327 

   3 1302 1332 
 

    3 1302 1322 

   4 1302 1319 
 

    4 1302 1315 

   5 1302 1332 
 

    5 1302 1326 

   6 1302 1314 
 

    6 1302 1317 

   7 1302 1318 
 

    7 1302 1313 

   8 1302 1313 
 

    8 1302 1325 

   9 1302 1321 
 

    9 1302 1342 

   10 1302 1337 
 

    10 1302 1315 

   . 
 

1302 1321.9      . 
 

1302 1322.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

APPENDIX E 

NEW SET C RESULTS FOR QCSP WITH TIME WINDOWS 

Best results observed in 10 trials are presented. 

 

   
                

                    

80 1 1208 1225 1225 

80 2 1208 1248 1246 

80 3 1208 1229 1228 

80 4 1208 1307 1305 

80 5 1208 1245 1241 

80 6 1208 1320 1319 

80 7 1208 1277 1277 

80 8 1208 1283 1283 

80 9 1208 1234 1234 

80 10 1208 1270 1270 

     1208 1263.8 1262.8 

 

 

 


