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ABSTRACT

Oscillators as key components of many natural and engineered systems have been a re-

search focus for decades in many disciplines such as electronics and biology. The time keeping

capability of autonomous oscillators and the synchronization of coupled oscillators are best

described in terms of a scalar quantity, so-called the phase of an oscillator. Phase compu-

tations for perturbed and coupled oscillators and equations that describe phase dynamics

have been quite useful in both electronics and biology in forming a rigorous understanding

of oscillatory system behavior and designing oscillators that are least affected by undesired

disturbances such as noise.

We first review the notion of isochrons, which forms the basis for the generalized phase

notion for an oscillator that we cover in a rigorous manner. The notion of isochrons for os-

cillators has been first introduced by Arthur Winfree in 1974 and heavily utilized in mathe-

matical biology in studying biological oscillators. Isochrons were instrumental in introducing

a notion of generalized phase for an oscillator and form the basis for oscillator perturbation

analysis formulations. Calculating the isochrons of an oscillator is a very difficult task. Ex-

cept for some very simple planar oscillators, isochrons can not be calculated analytically

and one has to resort to numerical techniques. Previously proposed numerical methods for

computing isochrons can be regarded as brute-force, which become totally impractical for

non-planar oscillators with dimension more than two. In this thesis, we present a precise

and carefully developed theory and numerical techniques for computing local but quadratic

approximations for isochrons. Previous work offers the theory and the numerical methods

needed for computing only local linear approximations. Our treatment is general and appli-

cable to oscillators with large dimension. We present examples for isochron computations,

verify our results against exact calculations in a simple analytically calculable case, test our

methods on complex oscillators.

We next present a unified theory of phase equations for autonomous oscillators through

an assimilation of the work that has been done on oscillator analysis in both electronics and
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biology during the past seventy years. Based on the generalized oscillator phase notion that

is founded on the theory of isochrons, we present a general framework for phase equations

and derive in a unified manner a phase equation for perturbed oscillators that is exact but

practically unusable, and practically useful ones that are based on linear (previously known

in the literature) and quadratic (new, more accurate) isochron approximations. We discuss

the utility of these phase equations in performing (semi) analytical phase computations

and also describe simpler and more accurate schemes for numerical phase computations.

Carefully run numerical experiments on several examples are presented which compare the

accuracy of the various phase computation schemes and the phase equations described.

Biochemical oscillators perform crucial functions in cells, e.g., they set up circadian

clocks. Phase computation techniques for continuous oscillators that are based on isochrons

have been used for characterizing the behavior of various types of oscillators under the

influence of perturbations such as noise. In this thesis, we also extend the applicability of

these phase equations and phase computation schemes to biochemical oscillators as discrete,

molecular systems. In particular, we describe techniques for computing the instantaneous

phase of discrete, molecular oscillators for SSA (Stochastic Simulation Algorithm) generated

sample paths. The impact of noise that arises from the discrete and random nature of the

mechanisms that make up molecular oscillators can be characterized based on these phase

computations.

Modeling and analysis studies of oscillators in electronics and biology seem to have

progressed independently, without any cross-fertilization in between. Even though work on

oscillator analysis in electronics did not directly make use of isochrons, similar concepts,

models and perturbation analysis techniques, though using completely different terminology

and formulations, have been developed in both disciplines. In this thesis, we reveal the

connection between oscillator analysis work in these two seemingly disparate disciplines.



ÖZETÇE

Osilatörler, doğal ve mühendislik ürünü birçok sistemin önemli bileşenleri olarak, elekt-

ronik ve biyoloji gibi birçok disiplinde, onlarca yıldır bir araştırma odağı haline gelmişlerdir.

Otonom osilatörlerin zaman referansı sağlama becerisi ve bağlaşımlı osilatörlerin senkroni-

zasyonu, en iyi şekilde, osilatör fazı olarak adlandırılan bir değer ile betimlenir. Değişikliğe

uğratılmış ve bağlaşımlı osilatörler için faz hesaplamaları ve faz dinamiğini ortaya koyan

denklemler, elektronik ve biyolojide, salınımlı sistem davranışı ve gürültü gibi istenmeyen

olgulardan en az şekilde etkilenen osilatörlerin tasarımı konusunda bir anlayış geliştirilmesini

sağlamışlardır.

Öncelikle, osilatörler için genelleştirilmiş faz mefhumunu oluşturan isokron kavramını su-

nuyoruz. Osilatörler için isokron kavramı, 1974 yılında Arthur Winfree tarafından ilk olarak

ortaya atılmıştır ve matematiksel biyolojide biyolojik osilatörleri incelemek üzere yoğun şe-

kilde kullanılmıştır. İsokronlar, bir osilatör için genelleştirilmiş faz kavramını geliştirmede

kullanılmışlardır ve osilatör sarsım analizi formülasyonlarının temelini oluşturmaktadırlar.

Bir osilatörün isokronlarını hesaplamak çok güçtür. Bazı çok basit düzlemsel osilatörler dı-

şında, isokronlar analitik olarak hesaplanamazlar ve bu durumda nümerik teknikler kullanıl-

mak zorundadır. İsokronların hesaplanması için önceden önerilen nümerik metodlar, boyutu

ikiden yüksek olan ve bu durumda düzlemsel olmayan osilatörler için tamamen kullanışsız

hale gelir. Bu tezde, isokronların lokal fakat karesel yaklaşımlarını hesaplamak için kesin ve

dikkatle geliştirilmiş bir teori ile nümerik teknikler sunuyoruz. Bu konuda, önceki yayınlarda

isokronların ancak lokal doğrusal yaklaşımlarını hesaplamak için teori ve nümerik metodlar

önerilmektedir. Geliştirdiğimiz metodlar geneldir ve yüksek boyuttaki osilatörlere uygulana-

bilmektedir. Bu tezde ayrıca, isokron hesaplamaları için örnekler sunuyoruz, basit ve analitik

bir örnekte yaklaşık sonuçlarımızı kesin değerlerle karşılaştırıyoruz ve karmaşık osilatörlerde

metodlarımızı test ediyoruz.

Elektronik ve biyoloji disiplinlerinde son 70 yılda osilatör analizi konusunda yapılmış ça-

lışmalardan faydalanarak, otonom osilatörler için faz denklemleri üzerine birleştirici bir teori

vi



sunuyoruz. İsokron teorisine dayalı olan genelleştirilmiş faz kavramı temeline bağlı olarak, faz

denklemleri için genel bir teori takdim ediyoruz ve birleştirici bir teorinin parçaları halinde,

değişikliğe uğratılmış osilatörler için kesin fakat pratik anlamda kullanışsız bir faz denklemi

ile isokronların doğrusal (literatürde önceden gösterildiği şekilde) ve karesel (yeni ve daha

yüksek doğruluğa sahip) yaklaşımlarına dayalı kullanışlı faz denklemleri çıkarıyoruz. Bu faz

denklemlerinin (yarı) analitik faz hesaplamaları için kullanımlarını tartışıyoruz ve nümerik

faz hesaplamaları için daha basit ve daha yüksek doğruluğa sahip faz hesaplama yöntemle-

rini açıklıyoruz. Birkaç örnek üzerinde koşulmuş nümerik hesaplama deneyleri aracılığıyla,

açıklanan değişik türdeki faz hesaplama yöntemlerinin ve faz denklemlerinin doğruluklarını

karşılaştırıyoruz.

Biyokimyasal osilatörler hücrelerde değişik fonksiyonları yerine getirmektedirler. Örne-

ğin, canlıların biyolojik saatlerini belirlemektedirler. Sürekli değerli osilatörler için isokron-

lara dayalı faz hesaplama teknikleri, gürültü gibi bazı sarsımlardan etkilenen değişik türdeki

osilatörlerin davranışlarını karakterize etmek için kullanılmışlardır. Bu tezde, bu faz denk-

lemlerinin ve faz hesaplama düzenlerinin kullanım alanını, ayrık değerli moleküler sistemler

olan biyokimyasal osilatörleri içine alacak şekilde genişletiyoruz. Özellikle, ayrık değerli mo-

leküler osilatörler için SSA (Stokastik Simülasyon Algoritması) ile oluşturulmuş örnek yollar

üzerinde anlık faz hesaplamaları yapmayı sağlayan teknikleri açıklıyoruz. Moleküler osilatör-

leri oluşturan mekanizmaların ayrık değerli ve rastgele tabiatından kaynaklanan gürültünün

etkileri, bu faz hesaplamaları aracılığıyla karakterize edilebilir.

Elektronik ve biyolojide, osilatörlerin modellenmesi ve analizi üzerine çalışmaların, birbir-

leriyle etkileşime girmeden bağımsız olarak yürütüldükleri anlaşılmaktadır. Osilatör analizi

üzerine elektronik alanındaki çalışmalarda isokron kavramından doğrudan yararlanılmama-

sına rağmen, her iki disiplinde birbirinden tamamıyle farklı terminolojiler ve formülasyonlar

kullanılmış olsa da benzer kavramlar, modeller ve sarsım analiz teknikleri geliştirilmiştir. Bu

tezde, birbirinden ayrık gözüken bu iki disiplindeki osilatör analizi üzerine yapılan çalışma-

lardaki bağlantılar da ortaya çıkarılmaktadır.
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Chapter 1

INTRODUCTION

1.1 Oscillators

Oscillatory behavior is encountered in many types of systems including electronic, opti-

cal, mechanical, biological, chemical, financial, social and climatological systems. Carefully

designed oscillators are intentionally introduced into many engineered systems to provide

essential functionality for system operation. In electronic systems, oscillators are used to

generate clock signals that are needed in the synchronization of operations in digital cir-

cuits and sampled-data systems. The periodic signal generated by an electronic oscillator

is used as a carrier and for frequency translation of signals in all types of communication

systems. Electromagnetic fields oscillating at a very high frequency (on the order of a peta

Hz) are behind laser operation. Lasers generate monochromatic (with power concentrated

at a single frequency or wavelength) light and are used in many applications in medicine,

telecommunications, etc. Oscillatory behavior in biological systems is seen in population

dynamics models (prey-predator systems), in neural systems [1], in the motor system, and

in circadian rhythms [2]. Intracellular and intercellular oscillators of various types perform

crucial functions in biological systems. Due to their essentialness, and intricate and inter-

esting dynamical behavior, biological oscillations have been a research focus for decades.

Genetic oscillators that are responsible for setting up the circadian rhythms have received

particular attention [3]. Circadian rhythms are crucial for the survival of many species, and

there are many health problems, including cancer, caused by the disturbance of these clocks

in humans.

Oscillators in electronic and telecommunication systems are adversely affected by the

presence of undesired disturbances in the system. Various types of disturbances such as

noise affect the spectral and timing properties of the ideally periodic signals generated by
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oscillators, resulting in power spreading in the spectrum and jitter and phase drift in the

time domain [4]. Unlike other systems which contain an implicit or explicit time reference,

autonomously oscillating systems respond to noise in a peculiar and somewhat nonintuitive

manner. Understanding the behavior of oscillators used in electronic systems in the presence

of disturbances and noise has been a preoccupation for researchers for many decades [5]. The

behavior of biological oscillators under various types of disturbances has also been the focus

of a good deal of research work in the second half of the 20th century [1, 2, 6, 7].

1.2 Isochrons

The influence of perturbations and noise on oscillators can be analyzed and quantified best by

referring to the sets called isochrons. Oscillators can be modeled as autonomous dynamical

systems with a system of differential equations. Almost all oscillators that are useful in

practice have stable periodic solutions, i.e., attracting limit cycles or periodic closed orbits

that reside in a high-dimensional space. The notion of isochrons for oscillators that are

associated with stable periodic solutions has been introduced and utilized in mathematical

biology in studying biological oscillations [2, 8].

An isochron can be thought to be a set of synchronized points in the neighborhood of

the attracting limit cycle of an oscillator. The notion of isochrons is intimately related to

the notion of asymptotic phase for stable periodic solutions of oscillators [9, 10]: All of the

points that reside on a particular isochron have the same asymptotic phase. For an N -

dimensional oscillator, each isochron is an (N − 1)-dimensional hypersurface. The isochrons

of a periodic orbit foliate its domain of attraction, i.e., their union covers the neighborhood of

the orbit [8, 1]. Isochrons were first introduced by Winfree [2], but it was Guckenheimer [11]

who rigorously proved their existence and revealed their mathematical properties.

1.3 Isochrons, PPVs and PRCs

The isochron concept is crucial in introducing a notion of generalized phase for an oscillation

and lies at the foundation of scalar (one-dimensional) phase domain models for oscillators

that have been widely utilized in studying various forms of oscillation phenomena and syn-

chronization of coupled oscillators [8, 1]. In mathematical biology, the phase response curves

(PRCs) that are used in the perturbation analysis of oscillators in the phase domain are
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defined based on isochrons [1].

Understanding and characterizing the behavior of oscillators used in electronic systems

in the presence of disturbances and noise has been a preoccupation of researchers for many

decades [5]. The works on the modeling and analysis of oscillators in electronics and biology

seem to have progressed independently, without any cross-fertilization in between. How-

ever, a comparative study of the literature on the topic from both disciplines shows that

similar concepts, models and perturbation analysis techniques have been developed in both,

but using completely different terminology and formulations. For instance, the so-called

infinitesimal phase response curves (along state variables) that are used in studying the

perturbation behavior of biological oscillators [1] turn out to be the entries of the so-called

perturbation projection vector (PPV) that has been used in performing perturbation anal-

ysis for electronic oscillators [12]. Infinitesimal PRCs and PPVs are intimately related to

isochrons [1], as we also show in this thesis.

1.4 Computing Isochrons: Previous Work

Due to their importance and utility in oscillator analysis, finding (calculating) the isochrons

of periodic solutions for oscillators is crucial. However, this is a very difficult task [2, 1]. Ex-

cept for some very simple two-dimensional oscillators, exact isochrons can not be calculated

in a fully analytical manner and one has to resort to numerical techniques [8]. The main

numerical method for computing isochrons [8, 1] works as follows: “Many” initial points in

the domain of attraction “near” a point on the periodic orbit are chosen. Then, the dif-

ferential equations that describe the oscillator are integrated backwards for “some” time to

compute a collection of trajectories that end (not start, because of backward integration) at

each of these initial points. The collection of the points from all of these trajectories at a

particular time t approximately lie on the same isochron [1]. With this method, approxima-

tions for isochrons are computed point by point, in a brute-force manner. A compact, nice

Matlab implementation (restricted to planar two-dimensional oscillators) of this technique

that starts with only two initial points and adaptively introduces more points as necessary

is provided by Izhikevich in [1]. An illustration of the method running on the limit cycle of

a simple polar oscillator and computing a single isochron belonging to this periodic orbit is

given in Figure 1.1. Notice how the worm-like baby isochron evolves into maturity through
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Figure 1.1: Brute-force method for isochron computation.

backward integration. After a full cycle of computations, we reach the original point, where

now the “mature” isochron crosses the limit cycle. However, there are several shortcomings

of this numerical method, the most important one being that it becomes totally impractical

for non-planar oscillators with dimension more than two. In N dimensions, an isochron is

an N − 1-dimensional hypersurface: The computational cost of a method that constructs a

hypersurface in a point by point manner obviously increases exponentially with the dimen-

sion of the hypersurface. Even if one is somehow willing to live with exponential complexity,

the implementation of this method for non-planar oscillators seems to be a very challenging

task.

1.5 Local Approximations for Isochrons

In order to attain a tractable and meaningful technique for computing isochrons, one idea is

to find local approximations to isochrons in the neighborhood of a point on the periodic orbit
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of the oscillator [8]. A local approximation makes sense in practical applications, because

useful oscillators usually stay close to their stable periodic orbits even when they are expe-

riencing disturbances. The simplest local approximation for a hypersurface around a point

is simply the tangent hyperplane, which corresponds to a first-order, linear approximation.

The tangent hyperplane for an isochron at a point on the periodic orbit can be characterized

by finding a vector that is normal to it. It turns out (as we show in this thesis) that the

PPVs (or the infinitesimal PRCs along the state variables of the oscillator assembled into

a vector) at each point on the periodic orbit are actually orthogonal to the tangent hyper-

planes for the isochrons [8]. The PPVs and the infinitesimal PRCs can be computed by

finding a periodic solution of the so-called adjoint equation (which we discuss in this thesis)

along with a normalization condition [5, 12, 13, 14, 15, 1]. The linear, hyperplanar local

approximations for isochrons (and hence the PPVs and infinitesimal PRCs) form the basis

for deriving scalar phase domain differential equations for oscillators [5, 1]. These first-order

accurate phase domain models have been used in various disciplines to study the behavior

of oscillators under perturbations and noise and the synchronization of coupled oscillators.

1.6 Phase of an Oscillator

The dynamical behavior of autonomous and coupled oscillators is best described and ana-

lyzed in terms of a scalar quantity, called the phase of an oscillator. There are many notions

and definitions of phase that appeared in the literature. The simplest and most straightfor-

ward phase definition is perhaps obtained when the equations of a two-dimensional, planar

oscillator are expressed in polar coordinates, with amplitude and polar angle as the state

variables. While it is useful in some cases to define the polar angle as the phase of an os-

cillator, this definition does not easily generalize to oscillators that are higher dimensional.

In the general case, it is our conviction that the most useful, rigorous and precise defini-

tion of phase that appeared in the literature is the one that is based on the isochrons of

an oscillator [2, 1, 8]. The phase of an oscillator that is defined based on isochrons is inti-

mately related to time. In fact, the phase of an autonomous oscillator that is in periodic

steady-state, or one that is in the domain of attraction of a limit cycle and hence in the

process of converging to a periodic steady-state, is simply equal to time. This makes perfect

sense, since an autonomous oscillator that is not experiencing any perturbations performs
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as an ideal, precise time keeper when it is in the domain of attraction of a limit cycle, even

when it has not yet settled to a periodic steady-state solution. For perturbed oscillators,

the actual phase deviates from time, capturing the degrading impact of disturbances on the

time keeping ability and synchronization capability of the oscillator.

1.7 Oscillator Phase Models

Since phase serves as a crucial and useful quantity in compactly describing the dynamical

behavior of an oscillator, one would be first of all interested in simply computing the phase

of an oscillator that is experiencing perturbations. Furthermore, if the phase of a non-trivial,

practical oscillator can somehow be computed or characterized in a semi or fully analytical

manner, one can then draw concrete conclusions and obtain useful characterizations that

can be used in practice in assessing the time keeping performance and the synchronization

behavior of oscillators. Indeed, we observe in the literature that, in various disciplines,

researchers have derived phase equations that compactly describe the dynamics of weakly

perturbed oscillators [1, 5]. It appears that a phase equation for oscillators has first been

derived by Malkin [16] in his work on the reduction of weakly perturbed oscillators to

their phase models [1], and the same equation in different forms has been subsequently

reinvented by various other researchers in several disciplines [17, 2, 5]. This phase equation

has been used in mathematical biology to study circadian rhythms and coupled oscillators in

models of neurological systems [2, 1], and in electronics for the analysis of phase noise and

timing jitter in oscillators [18, 5]. The acclaimed phase equation is a nonlinear but scalar

differential equation. As such, it represents the ultimate reduced-order model for a complex

nonlinear dynamical system. Its scalar nature and the specific form of the nonlinearity in

this equation makes it possible in some cases to solve, or characterize the solutions of, this

equation in (semi) analytical form, e.g., in the investigation of synchronization of coupled

oscillators [17, 1] and in characterizing phase noise in electronic oscillators with stochastic

perturbations as models of electronic noise sources.

1.8 Novel Contributions and Outline of the Thesis

The concise list of the work accomplished in this thesis is as follows. We focus first on re-

viewing the concept of isochrons and developing better (i.e., quadratic) approximations for
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isochrons. As a second task, we improve the famous phase model [16, 17, 2, 19, 1, 14, 5] in

terms of accuracy, laying the foundations of such a study on an isochron-based framework.

In the course of developing new models, we also propose simpler phase computation schemes,

as algebraic equations, which are very accurate and fast methods for transient phase simula-

tions. The last task is applying the paradigms and models we have proposed to an intricate

and interesting research problem, i.e. phase computations for discrete molecular oscillators.

This thesis has the following novel contributions. First, to the best of our knowledge,

this is the first work that systematically treats the problem of computing quadratic approxi-

mations for isochrons in a general setting, without being restricted to planar oscillators with

two state variables. As a matter of fact, we are not aware of any previous work on quadratic

approximations of isochrons even for planar oscillators, even though most of the literature

on oscillators concentrates on the planar, two-dimensional case. Our theory and the nu-

merical algorithm proposed applies to any N -dimensional oscillator which is described by a

system of differential equations that possesses a stable periodic solution for which isochrons

are assumed to exist.

Second, we present a unified framework and rigorous theory for the phase definition, the

phase equations and phase computation schemes for perturbed oscillators by subsuming the

work that has been done both in mathematical biology (e.g., [16, 17, 2, 14, 8, 1] and others)

and in electrical engineering (e.g., [18, 5], their references and many others). In doing

so, we rederive the acclaimed phase equation that has been used for decades by putting

it into context and emphasizing its origins and the exact nature of the approximations

it incorporates. The phase equation derivations presented in [14] in particular, from the

mathematical biology literature, form the basis for our treatment on a unified theory of

phase equations.

Third, we derive new, more accurate phase equations based on the theory of local

quadratic isochron approximations The second-order accurate phase model, founded upon

the concept of quadratic isochron approximations, will be useful in analyzing the behavior

of oscillators under stronger disturbances, injection or phase-locking with stronger injec-

tion/reference signals, and the synchronization of oscillators that are not weakly coupled.

Fourth, we derive and emphasize the utility of simpler and more accurate phase com-

putation schemes that should replace phase equations when very accurate transient phase
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computations are necessary and analytical phase characterizations are not desirable.

Fifth, observing that the oscillator phase computation techniques that are developed are

applicable to oscillators having continuously changing states, we extend the endeavor to

molecular oscillators with states inherently changing in a discrete manner. Note that for

this purpose, one needs to manipulate a discrete oscillator model appropriately and employ

several intricate approximations so that the developed paradigms pertaining to oscillator

phase computations can capture such models.

We have proposed the quadratic isochron concept, along with the theoretical character-

ization and the numerical method for its computation in [20] (a preliminary version of the

findings were presented in [21]). The phase computation schemes have appeared also in [20].

The unified framework of phase computation methods based on the concept of isochrons, the

revealing account on phase equations, and the actual derivation of the novel second-order

phase equation were published in [22]. Our preliminary findings and results on discrete

molecular oscillators appeared recently in a conference presentation [23], and in [24].

The outline of the thesis on a chapter basis is as follows. In Chapter 2, we will review

the literature, separately for the two disciplines, electronics and biology, that have helped

build a powerful background and foundations upon which a comprehensive oscillator phase

theory was constructed.

Chapter 3 includes the basic mathematical background necessary to carry out the deriva-

tions in the following chapters. Particular focus is on paradigms and quantities that must be

computed using the nonlinear autonomous Ordinary Differential Equation (ODE) describing

an oscillator and also on Floquet theory [9].

In Chapter 4, we review the mathematical definition and necessary properties of the

sets of points called isochrons. The local approximations of isochrons are also related in this

chapter. The (already known) PPV or the infinitesimal PRCs actually characterize the linear

approximations of isochrons [1, 8, 14, 13, 15, 5, 12, 25]. The idea can be conceived, however,

that higher order isochron approximations may help improve the accuracy of phase compu-

tation methods. Accordingly, we introduce the (new) notion of quadratic approximations

for the isochrons through a matrix function that we call H(t) and also propose a numerical

method for its computation. Local isochron information for a simple oscillator and several

intricate oscillators are computed through the methods stated. The validity of the proposed
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algorithm for the computation of quadratic approximations, i.e., H(t), is confirmed with

the results provided in Chapter 4. The sections of Chapter 4 that are on the theoretical

characterization and numerical computation of H(t) were proposed in [20].

Chapter 5 reviews the definition of oscillator phase (a scalar quantity) based on the

isochrons of oscillators [1, 8, 14]. The phase computation problem is stated, as it can

be formulated benefitting from [14]. This problem is to be solved in practice through

approximate methods that in turn depend on local isochron approximations. As required

for further investigation, Chapter 5 rigorously relates the PPV v1(t) (or infinitesimal PRCs)

and H(t), characterizing the linear and quadratic approximations of isochrons, respectively,

to the scalar phase of an oscillator. The contents of this chapter expand on part of the work

in [22].

In Chapter 6, the oscillator phase computation methods based on the isochrons of os-

cillators are described. Note that the phase of a noiseless or unperturbed oscillator is un-

interesting, since the phase in this case is time itself. Therefore, we focus our attention

on particularly noisy and perturbed oscillators. We describe phase computation methods

that depend on the exact forms of isochrons and then, utilizing the concept of local isochron

approximations, devise approximate methods. The methods come in two forms: phase equa-

tions and phase computation schemes. We also put these methods into a unified framework

based on several attributes. Comments on the accuracies of the approximations involved

and computational complexities entailed in the methods are also provided. Phase computa-

tion experiments on several intricate oscillators are presented. This chapter details the work

in [22].

All phase computation theory and methods stated up to this point capture oscillators

with states changing in a continuous manner. However, in molecular scale where state

changes are in discrete form, some biochemical systems exhibit oscillatory behavior as well.

Such systems prove to be very important in inter- and intra-cellular operations in living or

synthetically composed organisms since they maintain the upkeep of vital phenomena, such

as circadian rhythms. As any other oscillator, these molecular oscillators are afflicted by

noise of various origins. It is necessary to quantify the effect of noise on the phase of molec-

ular oscillators as well. However, the devised phase computation techniques for continuous

oscillators do not directly apply to such molecular oscillators with discrete states. In fact,
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some subtleties have to be resolved before the designed methods of phase computation can

be used to calculate the phase of discrete molecular oscillators. An account describing these

subtleties, how we managed to resolve them, an illustration of the phase computation meth-

ods applied to several intricate molecular oscillators is given in Chapter 7, which extends

the workshop presentation in [23], and the article [24].

Lastly, Chapter 8 concludes the thesis by suggesting some further research directions.
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Chapter 2

PREVIOUS WORK

In this chapter, we present a brief literature review of the previous work on analysis of

oscillator phase. The focus is on the work done in two disciplines, in particular, electronics

and biology. We aim to illustrate separately in these two disciplines the similarity of the

ideas, theoretical and computational paradigms that have rendered the challenging task of

oscillator phase analysis a thriving and rewarding research preoccupation.

2.1 Previous Work in Biology

2.1.1 PRCs (Phase Response Curves)

PRCs (Phase Response or Resetting Curves) show how an autonomous oscillator responds

to a perturbing stimulation in terms of phase [26, 2, 1, 14]. The perturbation in this

sense is usually taken to be a pulse usually without offset (alternatively the upper half of

a sinusoid can be used) of desired duration and magnitude that “pokes” the autonomous

oscillator starting at a particular time along the period. The phase change incurred by the

perturbation should be measured (the temporarily perturbed oscillator state should return to

the attracting periodic orbit and the phase shift with respect to an originally unperturbed

and thus impeccably periodic solution should be observed and recorded). It is generally

observed that an oscillator responds differently (i.e., the phase of the oscillator is affected

in a different manner) when such a pulse hits a particular state variable of the oscillator at

different times. This phenomenon might be attributed to the autonomous and periodically

time-variant nature of oscillators. If the phase change values on the oscillator are measured

experimentally, recorded and plotted in a trace for a particular type of perturbation (e.g.,

for a pulse with a fixed duration and magnitude) hitting one of the state variables of the

oscillator independently at consecutive discrete times along the period, one obtains a PRC

for that perturbation and that state variable [26, 2, 1, 14].

PRCs have been used for quantifying the perturbation and noise susceptibility of oscilla-
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tors in biology. PRCs yield valuable information as to the intervals along the period during

which a state variable is most sensitive to perturbations and how much the phase of the

oscillator is degraded accordingly.

2.1.2 Isochrons and Infinitesimal PRCs

One may well appreciate that given a mathematical model for an oscillator in the form of a

differential equation, the PRCs can be produced computationally, though in a pain-staking

manner. It is then desirable to lay more insight into the computational techniques used. For

this purpose, Winfree discovered the isochrons [2], the sets of equiphase points associated

with the periodic orbit of an oscillator. Though Winfree was not aware of the connection, the

isochrons are founded upon a mathematical property that belongs to a majority of oscillators,

called “asymptotic phase” [11, 9, 1]. Guckenheimer proved the existence and mathematical

properties of isochrons [11]. Through isochrons, it is possible to rigorously define oscillator

phase. Therefore, all computational techniques designed for calculating oscillator phase (and

PRCs in that respect) naturally depend on the concept of isochrons.

Isochrons are very hard to compute numerically and the few techniques for calculat-

ing them are not really practicable for oscillators of high dimension [1]. Considering this

difficulty, the computational quantities called infinitesimal PRCs were introduced [2, 1],

a premise on which PRCs for desired types of pulses or any other perturbation can be

computed through the techniques that were derived and to be stated shortly. In a sense,

infinitesmall PRCs serve as a sort of impulse response which can then be used to compute

response to other perturbations. We will also elucidate the connection between isochrons

and infinitesimal PRCs.

We describe now how infinitesimal PRCs are calculated [2]. A particular state variable

in the mathematical model of the oscillator is excited, at a particular timepoint along the

period, with a narrow pulse, approximating in essence an impulse although the magnitude

should be limited so as to make the oscillator states remain within the domain of attraction

of the periodic orbit. More precisely, the magnitude of the pulse should be small enough

so that the phase response changes linearly with this magnitude. Then, the phase change

incurred by the perturbation is computed as described above, in the case of PRCs. This

phase shift should then be scaled so that it becomes the phase shift due to an impulse of
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proper magnitude. These phase shifts computed as such at a set of discrete timepoints for

a particular oscillator state variable constitutes the (inherently periodic) infinitesimal PRC

for that variable.

It has been pointed out that the vector composed of the infinitesimal PRCs stacked

together is the periodic solution of the adjoint LPTV (Linear Periodically Time Varying)

system obtained through linearization of the original differential equation describing an

oscillator [16, 1]. It can also be shown that if an isochron is linearized around the point

on the periodic orbit that it passes through, the resulting hyperplane is orthogonal to this

vector of infinitesimal PRCs corresponding to that point on the orbit [14, 1].

2.1.3 Phase Models in Biology

Having now all the necessary ingredients, the aim is to design a model or a method through

which general PRCs (corresponding to particular types of perturbations) can be calculated

making use of the infinitesimal PRCs. To the best of our knowledge it was Malkin in

1949, who designed the phase model for weakly perturbed oscillators [16]. Later, Kuramoto

independently came up with virtually the same model [17]. Winfree, having the concept of

isochrons at his disposal, developed again the same model through a geometrical point of

view that he adopted [2]. It is to be emphasized that all these scientists made use of the

infinitesimal PRCs in designing their models.

The works of Malkin [16] and Kuramoto [17] captured the phase computation of coupled

oscillators as well. Later, Hoppensteadt and Izhikevich reviewed in their work the model

developed independently by Malkin, Kuramoto, and Winfree [19]. Brown et al. outlined the

derivation of the model particularly of Winfree, using the isochron concept [14].

Other interesting and useful findings based on the phase model formalism or related

phenomenal insight include the case where the forcing perturbation is noise of stochastic

nature. It has been shown in various biological disciplines that white noise forcing on

oscillators causes phase diffusion and spreading around harmonics in the power spectrum [27,

28].
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2.2 Previous Work in Electronics

2.2.1 ISFs (Impulse Sensitivity Functions) and PPV (Perturbation Projection Vector)

Culmination of the work of about six decades on oscillator phase analysis in electronics

occurred in the 1990s. Parallels of the isochron concept and (infinitesimal) PRCs of biology

emerged in the form of ISFs and the PPV.

The concept of isochrons and geometrical point of view in the development of oscillator

phase models was missing in electronics until recently [25]. However, other paradigms have

been in use. It has to be noted that computation of the so-called ISFs as described in [29] is

exactly the same as for infinitesimal PRCs explained above. In this sense, we may rightfully

state that ISFs in electronics and infinitesimal PRCs in biology are exactly the same quantity.

The PPV (introduced and utilized in [18, 5, 12]) is described to be exactly the vector

that comprises the ISFs and is obtained by solving for the periodic solution of the adjoint

LPTV system derived from the differential equation model of an oscillator [5, 12]. Therefore,

the PPV is exactly the vector that emerges (the one that consists of the infinitesimal PRCs)

in the phase models of Malkin [16], Kuramoto [17], and Winfree [2].

In [5], a method of numerical computation for the PPV is outlined, apparently based on

the shooting algorithm [30]. A more accurate, harmonic balance based algorithm for again

PPV calculation is given in [12].

2.2.2 Phase Models in Electronics

Having drawn the parallels between the computational paradigms in electronics and biology,

it is not surprising now to state that the phase models developed in electronics [5] are

extraordinarily similar to those in biology [16, 17, 2, 19, 1, 14]. Particularly, the seminal

work of Demir et al. in [5] is partly inspired by the work of Kaertner [18], who makes use

of Floquet theory [9] to describe the vector we have stated to be consisting of the ISFs [29],

this vector coming to be called the celebrated PPV [12].

A rigorous characterization of phase noise through SDEs (Stochastic Differential Equa-

tions) forced by white noise inherent in electronic devices and related semi-analytical inves-

tigation based on stochastic calculus is given also in [5]. Phase diffusion and the pertaining

diffusion of power into nearby frequencies in the power spectrum has been mathematically
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justified [5]. Recall that similar analytical findings are also reported in biology [27, 28].

2.3 Summary

We have pointed out the similarities and direct parallels between paradigms and models

used in biology and electronics, in the study of oscillator phase. It appears that while the

pertaining foundations in biology bear outstanding theoretical value (such as the concept

of isochrons and accordingly the rigorous definition of phase), in electronics exquisite de-

velopments lead to reliable and efficient numerical calculation of pertaining computational

quantities (such as the infinitesimal PRCs, or with aliases, ISFs or the PPV). The renowned

phase model was developed independently by several scientists in the two disciplines. Both

algebraic and geometrical (regarding the use of the isochron concept) points of view were

taken in this development. Further semi-analytical insight into the phase phenomena of os-

cillators through this phase model revealed astounding discoveries that marked an alliance of

experimental observations and theoretical findings (as in the case of inherent phase diffusion

and spectral power density spreading around the harmonics).
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Chapter 3

BACKGROUND AND PRELIMINARIES

In this chapter, we review a set of mathematical tools that will be beneficial in the fol-

lowing chapters, while presenting the revealing account on oscillator phase and its numerical

computation. Section 3.1 includes some basic definitions and properties on mathematical

models of oscillators. Section 3.2 provides a few properties of an amazingly helpful tool,

called Floquet theory, which facilitates the mathematical treatment of oscillator models.

3.1 Oscillator Models

The dynamics of an oscillator is described by a system of autonomous ODEs (Ordinary

Differential Equations):
dx

dt
= f(x), (3.1)

where x ∈ <N and f : <N → <N is a nonlinear vector function.

Definition 3.1.1 (STF) The State Transition Function (STF) Φ of the ODE in (3.1) is

defined by

x(t) = Φ(t, s,x(s)). (3.2)

Φ merely returns the solution of (3.1) at time t, given an initial condition x(s) at time

s. The analytical form of Φ is not available except in some very simple cases, but it can be

computed numerically.

Under certain conditions, (3.1) is the mathematical representation of an oscillator and

has possibly more than one periodic solutions. Usually, only one of these periodic solutions

is of interest. We denote this particular solution by xs(t) and the period of xs(t) by T .

Definition 3.1.2 (Limit Cycle or Periodic Orbit) The set of points given by

γ =
{
x ∈ <N

∣
∣ x = xs(t),∀t ∈ <+

}
(3.3)

is called the limit cycle or the periodic orbit traced by xs(t).
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There are specifically two crucial properties that the limit cycles of the oscillators that

are of interest to us possess, namely asymptotic orbital stability and asymptotic phase [9]:

Definition 3.1.3 (Asymptotic Orbital Stability) Let x0(t) be a solution of the ODE

in (3.1) such that the distance between γ, the limit cycle as in Definition 3.1.2, and x0(t)

approaches zero as t → +∞. If there are such solutions around γ, then γ is said to possess

asymptotic orbital stability [9]. The initial conditions x0(t = 0), for those solutions x0(t)

that ultimately run within an ε-tube of points on γ, reside in the set W, the domain of

attraction, i.e., x0(0) ∈ W. Clearly, xs(t) ∈ W, ∀t.

Definition 3.1.4 (Asymptotic Phase) xs(t) has the asymptotic phase property if for

each solution x0(t), such that x0(0) ∈ W, there is a constant α(x0(0)) (called the asymptotic

phase), such that

lim
t→+∞

[x0(t)− xs(t+ α(x0(0)))] = 0. (3.4)

3.2 Floquet Theory

Expanding (3.1) to first-order (linearization) around γ, we obtain

dy

dt
= G(t)y, (3.5)

with G(t) = ∂f(xs(t))/∂xs(t). (3.5) is an LPTV (Linear Periodically Time-Varying) system.

Definition 3.2.1 (STM for LPTV) The State Transition (Sensitivity) Matrix (STM) of

(3.5), from time s to time t, is defined as follows as the Jacobian of the state transition

function Φ in Definition 3.1.1 evaluated on the periodic orbit represented by xs(t):

Υ(t, s) =
∂xs(t)

∂xs(s)
=

∂Φ(t, s,xs(s))

∂xs(s)
. (3.6)

Υ(t, 0) is the matrix solution of (3.5) at time t, with the initial condition Υ(0, 0) = IN ,

where IN is the (N ×N) identity matrix. Note that Υ(t, 0) is nonsingular for all time.

Remark 3.2.1 It can be easily checked that ẋs(t), dot denoting time derivative, solves (3.5)

and ẋs(0) is an eigenvector of Υ(T, 0) (the Monodromy Matrix) corresponding to the eigen-

value 1.
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Through Floquet Theory [9], Υ(T, 0) can be expressed as follows

Υ(t, s) =

N∑

i=1

exp(µi(t− s))ui(t)v
T

i (s), (3.7)

where ui(t) and vj(t), for 1 ≤ i, j ≤ N , are T -periodic Floquet vector functions and form

two bi-orthonormal sets, i.e.,

vT

j (t)ui(t) = δij ∀t ∈ < (3.8)

and the constants µi ∈ C are called the Floquet exponents. It can be verified that the vector

solutions of (3.5) are linear combinations of exp(µit)ui(t), 1 ≤ i ≤ N .

Remark 3.2.2 We set µ1 = 0 and u1(t) = ẋs(t), in view of Remark 3.2.1.

Remark 3.2.3 All of the other Floquet exponents are assumed to be such that Re {µi} < 0

for 2 ≤ i ≤ N . This condition, i.e., having a single Floquet exponent that is equal to zero

with the rest having negative real parts, ensures that the limit cycle γ possesses the asymptotic

orbital stability and the asymptotic phase properties [9].

The adjoint form of (3.5) is given by

dz

dt
= −GT(t)z. (3.9)

The state transition matrix of (3.9) can be expressed as follows

ΥT(s, t) =
N∑

i=1

exp(−µi(s− t))vi(s)u
T

i (t), (3.10)

in terms of the Floquet components defined above. ΥT(t, 0) is the matrix solution of (3.9)

at time t, with the initial condition ΥT(0, 0) = IN . The vector solutions of (3.9) are linear

combinations of exp(−µit)vi(t), 1 ≤ i ≤ N . It follows that the scalar product of the general

vector solution z(t) of (3.9) and the general vector solution y(t) of (3.5), i.e., zT(t)y(t), is

constant for all time.

Figure 3.1 summarizes the above account. Through linearization of the autonomous ODE

in (3.1), the generic forms for the forward and adjoint LPTV equations are found as in (3.5)

and (3.9), respectively. The relation between the solutions of these two equations is noted.

Floquet theory provides more insight into the solutions than the immediate observations

can supply. In Figure 3.1, we also remark the significance of u1(t) and v1(t) along with the

biorthonormal sets formed by the solutions to (3.5) and (3.9).
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Figure 3.1: Floquet theory review.

Since exp(µit)ui(t), 1 ≤ i ≤ N , solves the forward LPTV equation in (3.5), we obtain

through substitution and manipulations

dui(t)

dt
−G(t)ui(t) = −µiui(t) (3.11)

which can be considered as an eigenvalue equation for the operator d·
dt −G(t) with −µi as

the eigenvalue and ui(t) as the eigenfunction. Similarly, since exp(−µit)vi(t), 1 ≤ i ≤ N ,

solves the adjoint LPTV equation in (3.9), we have

−dvi(t)

dt
−GT(t)vi(t) = −µivi(t). (3.12)

These eigenvalue equations can be solved numerically (as both an eigenvalue and a periodic

boundary value problem) to compute all of µi, ui(t) and vi(t) for 1 ≤ i ≤ N .

Definition 3.2.2 The PPV (Perturbation Projection Vector) is defined as the T -periodic

vector solution of the adjoint LPTV equation in (3.9), i.e., v1(t) corresponding to the Floquet
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exponent µ1 = 0 (u1(t) = ẋs(t) corresponds to the same exponent, see Remark 3.2.2), which

satisfies the following normalization condition

vT

1(t)u1(t) = 1, ∀t ∈ <, (3.13)

due to the bi-orthonormality condition in (3.8).

The PPV is intimately related to isochrons and plays a pivotal role in deriving scalar

phase domain models for oscillators [5]. The so-called infinitesimal phase response curves

(PRCs) along state variables that are used in studying the perturbation behavior of bio-

logical oscillators [1] are in fact nothing but the entries of the PPV, which have been used

in performing perturbation analysis for electronic oscillators [12, 25]. The adjoint LPTV

equation in (3.9) that defines the PPV seems to have first appeared in Malkin’s work (1949)

on the reduction of weakly perturbed oscillators to their phase models [1]. The adjoint

equation and the normalization condition in (3.13) has been used in mathematical biology

in computing PRCs [1, 8, 14, 13, 15], and in electronics, in computing the PPV [5, 12, 25].
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Chapter 4

ISOCHRONS OF OSCILLATORS AND THEIR LOCAL

APPROXIMATIONS

Isochrons are the sets associated with a periodic orbit (or equivalently a limit cycle) of an

oscillator. These sets were discovered and introduced first in mathematical biology by the

two pioneers, Winfree (1974) [2] and Guckenheimer (1975) [11]. They have been beneficial in

articulating a rigorous definition of oscillator phase [8, 1] and also in structuring numerical

methods for oscillator phase computations [2, 8, 1, 5, 12].

In this chapter, we first review isochrons and their basic useful properties along with

the difficulties encountered in their numerical calculations (Section 4.1). Computing local

approximations of isochrons (local around the limit cycle) seems to be the best route to

take in order to incorporate isochrons to numerical oscillator phase computation studies.

Section 4.2 is then about the numerical computation of local isochron approximations. As we

have related in previous chapters, linear approximations of isochrons are already known in the

literature and have been extensively used in phase computations [1, 8, 14, 13, 15, 5, 12, 25].

We introduce the quadratic approximations of isochrons as a novel paradigm and also propose

numerical methods for computing them, as explained in detail in Section 4.2. The local

approximations for isochrons are going to be most helpful in deriving the practically usable

oscillator phase computation methods of Chapter 6. In Section 4.3, we test the algorithms

for numerical isochron computations on several oscillators.

4.1 Isochrons of Oscillators

In this section, we review the notion of isochrons for an oscillator, on which the phase

computation schemes and the phase equations we discuss in Chapter 6 are founded. We

provide a formal definition, summarize their basic properties (Section 4.1.1) and review

computational techniques for characterizing the isochrons of an oscillator (Section 4.1.2).
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4.1.1 Isochrons and Basic Properties

Isochrons of oscillators are associated with stable periodic solutions (i.e., limit cycles).

Isochrons can be simply described as follows [8, 1] (see Figure 4.1): x0 = x(0) (on γ)

and y0 are two initial points that generate the trajectory solutions x(t) (on γ) and y(t),

respectively, such that y(t) → x(t) as t → ∞. The set of all such points in W like y0

(satisfying the same condition) is called the isochron (denoted by η0) of x0 [8, 1]. All points

constituting the isochron of x0 are thought to be synchronized with x0, i.e., they are in

phase. The formal definition of isochrons is as follows:

Definition 4.1.1 (Isochrons) Let xη(t) be a solution of (3.1) such that xη(t0) ∈ W. The

isochron with time tag t0, which is to be called ηt0 , is defined as the set

ηt0 =

{

xη(t0)

∣
∣
∣
∣

lim
τ→+∞

[

xη(τ)− xs(τ)

]

= 0

}

(4.1)

where xη(τ) = Φ(τ, t0,xη(t0)) and, xs(τ) = Φ(τ, t0,xs(t0)) is the periodic solution.

An isochron comprises points having the same asymptotic phase [9, 10]. For an N -

dimensional oscillator, each isochron is an N − 1-dimensional hypersurface. The union of

isochrons covers the neighborhood of the orbit [8, 1].

The following property of isochrons serves as the key in defining a generalized phase for

an oscillator. It is related to the periodic behavior of any solution of (3.1) (not just xs(t))

with its initial condition in W: Any general solution x(t) of (3.1) with x(0) ∈ W (which is

not periodic if x(0) is not on γ) hits exactly the same isochron at subsequent points in time

exactly T (the period on γ) apart from each other, albeit at different locations. The formal

proof requires the following lemma:

Lemma 4.1.1 By definition, the point xs(0) on the limit cycle γ resides on the isochron

with time tag 0, i.e., xs(0) ∈ η0. Let x(t) be a solution of (3.1) with the initial condition

x(0) ∈ η0, i.e., x(0) resides on the same isochron as xs(0). Then, for any t, both x(t) and

the steady-state periodic solution xs(t) reside on the same isochron ηt, i.e. x(t),xs(t) ∈ ηt

[2].

Proof: By definition, we have

lim
τ→+∞

Υ(τ, 0,x(0)) = lim
τ→+∞

Υ(τ, 0,xs(0)). (4.2)
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Figure 4.1: A stable, attracting periodic orbit and one of its isochrons.

Since

Υ(τ, t,xs(t)) = Υ(τ, t,Υ(t, 0,xs(0))) (4.3)

for τ > t, we obtain

Υ(τ, t,xs(t)) = Υ(τ, 0,xs(0)). (4.4)

Similarly, we have

Υ(τ, t,x(t)) = Υ(τ, 0,x(0)) (4.5)

for τ > t. Then, through (4.4), (4.5), and (4.2), we obtain

lim
τ→+∞

Υ(τ, t,x(t)) = lim
τ→+∞

Υ(τ, t,xs(t)) (4.6)

which proves that x(t),xs(t) ∈ ηt. �

The following theorem precisely characterizes the periodic behavior of a general solution:

Theorem 4.1.1 Let x(t) be a solution of (3.1), with the initial condition x(0) residing on

a particular isochron, i.e., x(0) ∈ η0. Then, x(nT ) ∈ η0, for any integer n, i.e., the solution

(3.1) hits the same isochron η0 periodically, with the same period T of the limit cycle γ or

the periodic solution xs(t).
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Proof: By Lemma 4.1.1 and the hypothesis, it must be true that x(nT ),xs(nT ) ∈ ηnT .

However, since xs(nT ) = xs(0), ηnT and η0 must be the same isochron. �

4.1.2 Computing Isochrons

Due to their importance and utility in oscillator analysis (as we later demonstrate in this

thesis), finding (calculating) the isochrons of periodic solutions for oscillators is crucial.

However, this is a very difficult task [2, 1]. Analytical methods are out of the question

most of the time [8]. The main numerical method for computing isochrons [8, 1] is based

on the property of isochrons captured by Theorem 4.1.1 above. A detailed description

can be found in Chapter 1 and Section 4.3.2. Basically, the difficulty of implementation

and the exponential complexity entailing point-by-point constructions of surfaces are the

shortcomings of this method, which preclude its feasibility for oscillators other than planar

ones.

4.2 Local Approximations of Isocrons

In this section, we review the linear approximations for isochrons (defined by the PPV

v1(t)) and explain in detail the quadratic approximation, which furthermore require a matrix

function H(t) for their characterization. Section 4.2.1 is an overview of this section on local

approximations for isochrons. Section 4.2.2 below shows how the two functions v1(t) and

H(t) fully characterize the quadratic approximations of isochrons and how the particular

formulation of the account helps us rigorously observe that indeed v1(t) is the vector defining

the hyperplanar (linear) approximations for isochrons on exactly the points on the limit cycle.

Section 4.2.3 includes the theoretical analysis of the novel function H(t), and in Section 4.2.4

we propose a numerical method for the computation of H(t).

4.2.1 Overview

A tractable technique for isochron computations is based on local approximations around

points on γ [8], since useful oscillators stay close to their limit cycles even when afflicted

by perturbations. The linear approximation (i.e., hyperplane) of a surface (in this case an

isochron) in the neighborhood of a point (on γ) is characterized by a vector (normal to the

hyperplane). It turns out that the normal vector is the PPV v1(t), the vector whose entries
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are the infinitesimal PRCs [8, 21]. Therefore, the linear approximation for the isochron ηt

passing through xs(t) is given by the hyperplane equation

vT

1(t) y = 0 (4.7)

where y = x−xs(t), i.e., the loci of points x satisfying (4.7) define a hyperplane tangent to

ηt at xs(t). We will shortly show that quadratic approximations can be characterized by a

quadric hypersurface equation given by

vT

1(t) y +
1

2
yT H(t) y = 0 (4.8)

where H(t) = ∂v1(t)/∂xs(t) is the PPV Jacobian, computed numerically through intricate

BVP (Boundary Value Problem) formulations. (4.8) captures the linear case in (4.7) when

the quadratic term in (4.8) is omitted. v1(t) and H(t) are crucial quantities, and we will

hereon assume that these are available numerically at a set of points along the limit cycle

γ. The technically detailed and revealing explanations on local isochron approximations are

shortly to be presented.

4.2.2 Linear and Quadratic Approximations for Isochrons

We now formulate the quadratic approximation of isochrons problem formally and in a

precise manner. We first define a matrix H(t) as follows:

Definition 4.2.1 H(t) ∈ <N×N is defined to be the Jacobian of the PPV, i.e. v1(t), eval-

uated on the periodic orbit represented by xs(t):

H(t) =
∂v1(xs(t))

∂xs(t)
. (4.9)

Note that, in the above definition, PPV v1 ∈ <N is formally considered to be a function

of xs(t) ∈ <N , with v1(t) = v1(xs(t)). The PPV is a periodic solution of the adjoint equation

in (3.9) obtained by linearizing the oscillator equations in (3.1) around the periodic solution

xs(t). Hence, H(t) defined as the Jacobian of the PPV v1 with respect to xs(t) is meaningful

and nonzero. For notational simplicity, we use v1(t) instead of v1(xs(t)). Note that H(t) is

also defined at every point of the periodic orbit, parameterized by time t.

We next state and prove one of the main results of this chapter in the thesis, which

rigorously reveals the crucial roles of the PPV v1(t) and H(t) in forming linear and quadratic

approximations for isochrons:
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Theorem 4.2.1 Let xη(t) and xs(t) be on the same isochron, which is ηt according to the

notation given in Definition 4.1.1. The locus of the vectors y that satisfy

vT

1(t)y +
1

2
yTHT(t)y = 0 (4.10)

with y = xη(t)−xs(t) form the quadratic approximation for ηt around xs(t). (4.10) represents

an N − 1-dimensional quadric surface that forms a second-order approximation (expansion)

for the isochron ηt (an N − 1-dimensional hypersurface) passing through xs(t).

Proof: With xη(t) = xs(t) + y, the Taylor expansion of xη(τ) around xs(t) can be

written as

xη(τ) = Φ(τ, t,xη(t)) = xs(τ) + LIN+QUAD+R (4.11)

where LIN = LIN(τ, t) (see (4.14) below) and QUAD = QUAD(τ, t) (see (4.15) below)

and R = R(τ, t) = O(c(τ)||y||3) (for some function c(τ)). Assuming that at τ = t the values

xη(t) and xs(t) are on the same isochron yields

lim
τ→+∞

[

LIN+QUAD+R

]

= 0. (4.12)

We assume that ||R|| < ε||LIN+QUAD|| for some ε < 1. Then with Z = LIN+QUAD,

we have

||Z|| = ||Z+R−R|| ≤ ||Z+R||+ ||R||

≤ ||Z+R||+ ε||Z||

Hence (1− ε)||Z|| ≤ ||Z+R|| → 0, which then implies due to (4.12)

lim
τ→+∞

[LIN+QUAD] = 0 (4.13)

It is clear that one may solve for y from (4.13) provided that the natures of the partial

derivative expressions in the explicit forms for LIN and QUAD as in

LIN =
∂Φ(τ, t,xs(t))

∂xs(t)
y (4.14)

and

QUAD =
1

2

∂2Φ(τ, t,xs(t))

∂xs(t)∂xs(t)
(y ⊗ y) (4.15)

are demystified. Notice that in (4.15) the second order partial derivative is an N×N2 matrix

and y⊗ y is a Kronecker product with size N2 × 1. Therefore, it will be better to resort
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to an analysis utilizing indices. We will focus on (4.14) first. Examining (3.6) and (3.7), a

single entry of LIN is

LINj =

N∑

k=1

N∑

i=1

exp(µi(τ − t))ui,j(τ)vi,k(t)yk (4.16)

where ui,j and vi,k are the jth and kth entries of ui and vi respectively. We now analyze

(4.15). In view of (3.6) and (3.7),

∂Υjk(τ, t)

∂xs,l(t)
=

N∑

i=1

exp(µi(τ − t))ui,j(τ)
∂vi,k(t)

∂xs,l(t)
, (4.17)

where Υjk and xs,l are the (j, k)th and lth entries of Υ and xs respectively. Then, by (4.15)

QUADj =
1

2

N∑

l=1

N∑

k=1

N∑

i=1

exp(µi(τ − t))ui,j(τ)
∂vi,k(t)

∂xs,l(t)
ykyl. (4.18)

For τ → +∞, (4.16) and (4.18) reduce to

LINj,∞ = u1,j(τ)

[
N∑

k=1

v1,k(t)yk

]

(4.19)

and

QUADj,∞ = u1,j(τ)

[

1

2

N∑

l=1

N∑

k=1

∂v1,k(t)

∂xs,l(t)
ykyl

]

, (4.20)

respectively, since Re {µi} < 0 for 2 ≤ i ≤ N . Since u1,j(τ) cannot be all zero for 1 ≤ j ≤ N ,

we may choose a j such that u1,j(τ) 6= 0 and then divide both (4.19) and (4.20) by this

u1,j(τ). Using Definition 4.2.1 in (4.20) and noting (4.19), (4.13) reduces to (4.10). �

Theorem 4.2.1 above, one of the novel contributions of this thesis, precisely characterizes

the quadratic approximations for isochrons and captures linear approximations (previously

known in the literature) as a special case:

Corollary 4.2.1 If the quadratic term is omitted in (4.10), we obtain the linear approxi-

mation for isochrons

vT

1(t)y = 0, (4.21)

which represents a hyperplane that is tangent to the isochron ηt passing through xs(t). The

PPV v1(t) is obviously the normal vector for this hyperplane.

In order to utilize the result in Theorem 4.2.1 to obtain a practical method for computing

quadratic approximations for isochrons, one needs the means to compute the PPV v1(t) and
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the matrix H(t) defined in Definition 4.2.1. The computation of v1(t) is well covered in the

literature. In the next two sections, we develop the theory and numerical methods needed

to compute H(t).

4.2.3 Theoretical Characterization of H

In order to characterize H(t), we first derive a matrix differential equation that it satisfies,

then we formulate a BVP based on this equation, and we analyze the properties of this BVP.

Matrix Differential Equation for H(t)

One of the main results and novel contributions of the thesis is captured in the following

theorem that derives an equation for H(t):

Theorem 4.2.2 H(t) in (4.9) satisfies (with Ψ(t) = H(t))

dΨ(t)

dt
+Ψ(t)G(t) +GT(t)Ψ(t) = −M(t), (4.22)

where the entries of the (N ×N)-sized square matrix M(t) are given as in

Mil(t) =

N∑

j=1

∂Gji(t)

∂xs,l(t)
v1,j(t). (4.23)

Proof: We begin by computing

∂

∂xs(0)

[
dv1(t)

dt
= −GT(t)v1(t)

]

, (4.24)

noting that v1(t) satisfies the adjoint LPTV equation in (3.9). The left-hand side of (4.24),

i.e. ∂[v̇1(t)]/∂xs(0), is

d

dt

[

H(t)
∂xs(t)

∂xs(0)

]

=

[
dH(t)

dt
+H(t)G(t)

]
∂xs(t)

∂xs(0)
, (4.25)

where we have used (4.9) and noted the significance of Definition 3.2.1 for (3.5), because

simply
d

dt

[
∂xs(t)

∂xs(0)

]

= G(t)
∂xs(t)

∂xs(0)
. (4.26)

The right-hand side of (4.24), which is ∂[−GT(t)v1(t)]/∂xs(0), has two terms to be com-

puted, i.e. −GT(t) [∂v1(t)/∂xs(0)] and − [∂GT(t)/∂xs(0)]v1(t). The first one is simply

−GT(t)
∂v1(t)

∂xs(0)
= −GT(t)H(t)

∂xs(t)

∂xs(0)
. (4.27)
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The second one can be written as a matrix S(t, 0) whose entries are

Sik(t, 0) = −
N∑

j=1

∂Gji(t)

∂xs,k(0)
v1,j(t)

= −
N∑

j=1

[
N∑

l=1

∂Gji(t)

∂xs,l(t)

∂xs,l(t)

∂xs,k(0)

]

v1,j(t)

= −
N∑

l=1





N∑

j=1

∂Gji(t)

∂xs,l(t)
v1,j(t)




∂xs,l(t)

∂xs,k(0)
(4.28)

= −
N∑

l=1

Mil(t)
∂xs,l(t)

∂xs,k(0)
, (4.29)

where we have used (4.23) in the transition from (4.28) to (4.29). Therefore, simply

S(t, 0) = −M(t)
∂xs(t)

∂xs(0)
. (4.30)

Observing that we have (4.25) for the left-hand side and the sum of (4.27) and (4.30) for

the right-hand side of (4.24), (4.24) can be expressed as
[
dH(t)

dt
+H(t)G(t) = −GT(t)H(t)−M(t)

]
∂xs(t)

∂xs(0)
. (4.31)

Since ∂xs(t)/∂xs(0) is nonsingular (see Definition 3.2.1), we conclude after simple manipu-

lations that H(t) satisfies (4.22). �

Equation (4.22) is an instance of the continuous-time Lyapunov matrix differential equa-

tion. The general form for its solution is given as follows [31] (a proof is given in Appendix

Section C.1):

Lemma 4.2.1 Ψ(t), the general solution of (4.22), is expressed as

Ψ(t) = ΥT(t, 0)Ψ(0)Υ(0, t) −
∫ t

0
ΥT(t, τ)M(τ)Υ(τ, t)dτ, (4.32)

where ΥT(s, t) and Υ(t, s) are the STMs given in (3.10) and (3.7), respectively.

Before we use (4.22) in order to formulate a BVP for H(t), we state two important and

obvious properties of H(t):

• As it is defined on the periodic orbit xs(t), parameterized by time t, H(t) is T -periodic

just like u1(t), PPV v1(t) and xs(t).

• H(t), as well as M(t) defined in (4.23), is symmetric.

In all, H(t) is a symmetric and T -periodic solution of (4.22).
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Boundary Value Problem for H(0)

We now formulate a periodic BVP based on (4.22), using a shooting formulation. Let us

first define Hg(t) to be a generic periodic solution for (4.22). Supposing Hg(0) is known and

(4.22) is solved from t = 0 backwards in time (due to the instability of the equation when

solved forward in time), we are certain to obtain Hg(−T ) = Hg(0). Then, through the form

in (4.32), we obtain after some manipulations

ΥT(−T, 0)Hg(0)Υ(0,−T ) −Hg(0)

−
−T∫

0

ΥT(−T, τ)M(τ)Υ(τ,−T )dτ = 0. (4.33)

Equation (4.33) is an instance of the discrete Lyapunov matrix equation [31]. If (4.33) can be

solved for Hg(0), it can be used as the correct initial condition to obtain a periodic solution

for (4.22).

Solutions of the BVP

If (4.33) had a unique solution, it would give us H(0), and we would immediately be resorting

to numerical methods for solving (4.33). However, (4.33) has infinitely many solutions as

we demonstrate next. In analyzing the uniqueness/existence of the solutions of (4.33), the

basis set that is established with the following lemma will be most useful:

Lemma 4.2.2 Any N ×N matrix K can be uniquely expressed as a linear combination of

the set of rank-one matrices {vr(t)v
T

p(t), r = 1 . . . N, p = 1 . . . N} for any t as follows

K =

N∑

r=1

N∑

p=1

arp(t) vr(t)v
T

p(t), (4.34)

with

arp(t) = uT

r(t)Kup(t). (4.35)

In other words, the N2 rank-one matrices in the above set form a basis for N ×N matrices.

Proof: Substituting (4.35) into (4.34), we obtain

K =

[
N∑

r=1

vr(t)u
T

r(t)

]

K





N∑

p=1

up(t)v
T

p(t)



 = [IN ]K [IN ] (4.36)
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due to the biorthonormality property in (3.8). �

Now we are equipped with all the tools to state and prove a theorem about the nature

of the solutions of (4.33):

Theorem 4.2.3 The infinitely many solutions of the BVP in (4.33) are in the form

Hg(0) = c11v1(0)v
T

1(0) +
∑

r, p not

both 1

crpvr(0)v
T

p(0) (4.37)

where crp, for r and p not both 1, are fixed, and c11 is an arbitrary scalar constant that marks

the single degree of freedom.

Proof: By substituting (3.7), (3.10) and (4.37) into (4.33) and multiplying both sides

with uT

r(0) from the left and with up(0) from the right, we obtain the following after some

manipulations

[λrλp − 1] {crp}

= [λrλp]







−T∫

0

exp(µrτ)u
T

r(τ)M(τ)up(τ) exp(µpτ)dτ






.

(4.38)

for 1 ≤ r, p ≤ N where λi = exp(µiT ). Note that (4.38) represents a set of N2 equations.

Let us focus on the equation obtained when both r = 1 and p = 1 in (4.38). Since λ1 = 1

for µ1 = 0, the left-hand side of (4.38) is zero even if c11 6= 0. Equation (4.33) will not have

a solution unless the right-hand side of (4.38) is also equal to zero for r = p = 1. Using the

identity in (4.39) of Theorem 4.2.4 (to be explained shortly), the right-hand side of (4.38),

for r = p = 1, can be shown to be identically equal to zero as well. Thus, a solution exists

for (4.38) and hence (4.33), but it is not unique. Equation (4.38) is trivially satisfied for

r = p = 1 and does not impose a constraint on c11 while all of the other coefficients crp in

the decomposition in (4.37) are fully determined by the other (N2 − 1) equations in (4.38).

The multiple solutions of (4.33) are marked by a single degree of freedom, c11 in (4.37). �

The BVP equation in (4.33) does not determine the coefficient of the v1(0)v
T

1(0) com-

ponent of H(0) in a decomposition using the basis given in Lemma 4.2.2, so (4.33) is not

sufficient by itself to determine and compute H(0). The coefficient of the v1(0)v
T

1(0) com-

ponent of H(0) is determined based on a normalization condition given by the following

theorem:
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Theorem 4.2.4 It follows from the normalization condition (for the PPV v1(t)) in (3.13)

that

H(t)u1(t) = −GT(t)v1(t) (4.39)

and

uT

1(t)H(t)u1(t) = −uT

1(t)G
T(t)v1(t). (4.40)

Proof: (4.39) is obtained simply through

H(t)u1(t) =
∂v1(t)

∂xs(t)

dxs(t)

dt
=

dv1(t)

dt
(4.41)

noting that u1(t) = ẋs(t) and dv1(t)/dt = −GT(t)v1(t). �

With (4.40) and based on Lemma 4.2.2, we can determine the coefficient of the v1(0)v
T

1(0)

component as follows:

c11 = −uT

1(0)G
T(0)v1(0). (4.42)

In Section 4.2.4 below, we will combine the BVP equation in (4.33) and the normalization

condition in (4.40) to obtain an augmented BVP formulation that will enable us to develop

a rigorous numerical method for computing H(t).

4.2.4 Numerical Method for Computing H

In the numerical scheme to be described, it is taken for granted that the periodic solution

xs(t) along with u1(t) = ẋs(t) and the PPV v1(t) have been computed through either the

shooting method [5] or harmonic balance [12]. We describe here a numerical method for

computing H(t).

It is possible to augment the BVP formulation in (4.33) in order to embed the information

in (4.40) so that H(0) out of the infinitely many solutions of (4.33) can be “hand-picked”,

followed with the computation of H(t) for a single period. However, we devise a different

scheme here which has better numerical properties. We first define Hd(t), i.e., the deflated

H(t):

Definition 4.2.2 The deflated form of H(t) is

Hd(t) = H(t)− [uT

1(t)H(t)u1(t)]v1(t)v
T

1(t). (4.43)

Hd(t) is essentially H(t) with the v1(t)v
T

1(t) component extracted.
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Our numerical scheme proceeds as follows:

• Construct an augmented BVP for Hd(0).

• With Hd(0), compute Hd(t) for an entire period.

• Add the missing component [uT

1(t)H(t)u1(t)] v1(t)v
T

1(t) to Hd(t) to obtain H(t).

We explain each of the steps above in sequence:

Augmented BVP for Computing Hd(0)

Definition 4.2.3 The integral in (4.32) is denoted by

INTG(t, 0) = −
∫ t

0
ΥT(t, τ)M(τ)Υ(τ, t)dτ. (4.44)

The computation of INTG(t, 0) is accomplished by numerically solving the differential equa-

tion in (4.22) with a zero initial condition.

Lemma 4.2.3 Omitting the t dependence for all terms, with (4.43) and (4.39), we obtain

Hdu1 = (IN − v1u
T

1) [−GTv1] . (4.45)

It follows that

uT

1Hdu1 = 0. (4.46)

Proof:

Hdu1 = (H− v1u
T

1Hu1v
T

1)u1

= (IN − v1u
T

1) [Hu1] (4.47)

= (IN − v1u
T

1) [−GTv1] , (4.48)

where the identity Hu1 = −GTv1 of (4.39) is used to obtain (4.48) from (4.47). (4.46) is

true because in Hd, the v1v
T

1 component is missing. �

The following theorem statement provides all that is necessary to implement the aug-

mented BVP scheme for computing Hd(0).
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Theorem 4.2.5 There exist certain nontrivial constants a 6= ±1, b, c, and d such that H′,

as given by

H′ =




Hd(0) v1(0)

vT

1(0) b



 , (4.49)

is the unique solution of the matrix equation

AH′AT −EH′ET +Q = 0, (4.50)

which is an instance of the generalized discrete Lyapunov matrix algebraic equation [32]

with

A =




ΥT(−T, 0) 0

uT

1(0) 0



 , E =




IN dv1(0)

auT

1(0) c



 , (4.51)

and

Q =




Q11 Q12

Q21 Q22



 , (4.52)

where

Q11 = INTG(−T, 0) + (2d+ bd2)v1(0)v
T

1(0) (4.53)

Q12 = aHd(0)u1(0) + (ad+ c+ bcd)v1(0)

− ΥT(−T, 0)Hd(0)u1(0) (4.54)

Q21 = [Q12]
T (4.55)

Q22 = 2ac+ bc2 (4.56)

noting that in (4.54), the identity in (4.45) can be used to compute Hd(0)u1(0).

Proof: We compute AH′AT and EH′ET. Blockwise we have

AH′AT =




(AH′AT)11 (AH′AT)12

(AH′AT)21 (AH′AT)22



 (4.57)

and

EH′ET =




(EH′ET)11 (EH′ET)12

(EH′ET)21 (EH′ET)22



 , (4.58)
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where

(
AH′AT

)

11
= ΥT(−T, 0)Hd(0)Υ(0,−T ) (4.59)

(
AH′AT

)

12
= ΥT(−T, 0)Hd(0)u1(0) (4.60)

(
AH′AT

)

21
=

[(
AH′AT

)

12

]
T

(4.61)
(
AH′AT

)

22
= uT

1(0)Hd(0)u1(0) (4.62)

and

(
EH′ET

)

11
= Hd(0) + (2d+ bd2)v1(0)v

T

1(0) (4.63)
(
EH′ET

)

12
= aHd(0)u1(0) + (ad+ c+ bcd)v1(0) (4.64)

(
EH′ET

)

21
=

[(
EH′ET

)

12

]
T

(4.65)
(
EH′ET

)

22
= a2uT

1(0)Hd(0)u1(0) + 2ac+ bc2 (4.66)

respectively.

In view of (4.59)-(4.62), (4.63)-(4.66), and (4.53)-(4.56), (4.50) is expressed explicitly as

AH′AT −EH′ET +Q

=




(LHS)11 (LHS)12

(LHS)21 (LHS)22



 = 0 (4.67)

where

(LHS)11 = ΥT(−T, 0)Hd(0)Υ(0,−T )

− Hd(0) + INTG(−T, 0) (4.68)

(LHS)12 = 0 (4.69)

(LHS)21 = 0 (4.70)

(LHS)22 = (a2 − 1)uT

1(0)Hd(0)u1(0) (4.71)

Setting (LHS)11 = 0 in (4.68) complies with Hd(0) being a solution of the original BVP.

Setting (LHS)22 = 0 in (4.71), with a 6= ±1 ensures that uT

1(0)Hd(0)u1(0) = 0, as it should

be. �

The augmented BVP formulation given above essentially enforces uT

1(0)Hd(0)u1(0) = 0

as given by (4.46) of Lemma 4.2.3, ensuring the removal of the v1(0)v
T

1(0) component to

obtain the deflated Hd(0).
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Computing Hd(t) for One Period

In order to compute Hd(t) with the initial condition Hd(0) known, we need a modified

differential equation for Hd(t), which does not satisfy (4.22):

Theorem 4.2.6 The deflated Hd(t) satisfies

dHd(t)

dt
+Hd(t)G(t) +GT(t)Hd(t)

= − [M(t)− [uT

1(t)M(t)u1(t)]v1(t)v
T

1(t)] . (4.72)

Adding the missing component to obtain H(t)

We compute H(t) from Hd(t) using

H(t) = Hd(t)− [uT

1(t)G
T(t)v1(t)] v1(t)v

T

1(t) (4.73)

based on (4.40) and (4.43).

Implementation Notes

xs(t), u1(t), v1(t) are computed using either the shooting or harmonic balance method. M(t)

in (4.23) is computed with the symbolically available second-order derivatives of f(x) with

respect to x, through the use of Matlab’s symbolic toolbox. For the solution of the augmented

BVP equation (Section 4.2.4), INTG(−T, 0) in (4.44) and ΥT(−T, 0) are computed by

integrating (backwards in time, using trapezoidal discretization) (4.22) (with zero initial

condition) and (3.9) (with the identity matrix as the initial condition) respectively. In order

to compute INTG(−T, 0) and solve (4.50) [31, 4], we use variants of the Bartels-Stewart

algorithm [32, 33] as implemented in the control systems toolbox of Matlab that are based on

SLICOT [34]. Hd(0), as yielded by the augmented BVP, makes the initial condition for (4.72)

to compute Hd(t) for one period (again through backward integration and the trapezoidal

scheme). H(t) is finally computed for one period through (4.73). The computational cost

incurred is O
(
KN3

)
where N is the number of state variables and K is the number of time

steps used per period for discretization. The cubic complexity (due to dense numerical linear

algebra) is not as overwhelming as the exponential one incurred by the brute-force method

for computing isochrons. Quadratic isochron approximations for oscillators with hundreds

of state variables can be computed with reasonable resources in this manner.



Chapter 4: Isochrons of Oscillators and Their Local Approximations 37

4.3 Results for Local Isocron Approximation Computations

We first verify the correctness of the theory and the numerical methods we have presented

for quadratic isochron approximations and our implementation by comparing the numerical

results we obtain for a simple planar oscillator with analytical isochron characterizations.

We then present results for the Van der Pol oscillator and more complex biological oscillators

for which analytical calculations are not possible.

4.3.1 Simple Analytical Oscillator

This simple planar oscillator is described in polar coordinates with

ṙ = 1− r

θ̇ = r
(4.74)

The only limit cycle (stable periodic solution) of (4.74) is described by r = 1 (the unit

circle), with the initial condition (r0 = 1, θ0 = 0), corresponding to xs(t) = (cos(t), sin(t))

in Cartesian coordinates. It can be shown that the system in (4.74) has isochrons described

by [2]

θ + r − 1 = tc, with tc ∈ [0, 2π), (4.75)

where an isochron corresponding to a particular tc passes through xs(tc) on the limit cycle

(see Appendix Section A.1 for the justification). A number of these isochrons are shown in

Figure 4.2 along with the limit cycle.

For this simple planar oscillator, u1(t), the PPV v1(t), INTG(t, 0) in (4.44), the STM

Υ(t, s) and the matrix H(t) can all be analytically calculated, and thus this oscillator also

provides an excellent problem for testing the implementation. With v1(t) and H(t), linear

and quadratic approximations for the isochrons can be computed using (4.21) and (4.10),

as shown in Figure 4.3 along with the exact isochrons in Figure 4.2 based on (4.75). The

quadratic approximation follows the exact isochron much more closely compared with the

linear approximation, especially when further away from the limit cycle.

For this case, xs(t), v1(t), and H(t) are analytically calculable and purely sinusoidal

quantitites (which makes harmonic balance [5, 12] the most suitable method for the numerical

computations of xs(t) and then v1(t)). Since the trapezodidal discretization scheme (a

second-order scheme) is used to compute ΥT(−T, 0), INTG(−T, 0), and H(−T ) as described
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Figure 4.2: Limit cycle and isochron portrait for the simple analytical oscillator.

in Section 4.2.4, we expect the error due to discretization to decrease quadratically as the

time step is reduced. A plot of the relative 2-norm error between the exact and computed

H(−T ) as a function of the time step used for discretization (uniform in this case) is shown

in Figure 4.4. In this plot, an error curve that shows ideal quadratic decrease as a function

of time step is also included, which completely coincides with the error curve obtained by

our numerical scheme. These results, comparing the numerically computed H(t) against the

analytically calculated H(t) for the simple oscillator, bear witness to the correctness of our

theory and the numerical methods for computing H(t).

4.3.2 Van der Pol Oscillator

The particular version of the Van der Pol oscillator we consider is described as follows in

Cartesian coordinates
ẋ = y

ẏ = −x+ y − y x2.
(4.76)
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Figure 4.3: Isochrons and their approximations for the simple analytical oscillator.

The periodic solution xs(t), the PPV v1(t), or the matrix H(t) is not analytically calculable

in this case. We rely on the well-established numerical methods for computing xs(t) and

v1(t), and our proposed numerical method for H(t). However, since (4.76) is a planar

oscillator, a brute-force numerical scheme can alternatively be used to compute its complete

isochron portrait. Apart from this brute-force scheme explained below (also see Chapter 1

for an intuitive account), see Appendix Section A.2 for an alternative scheme that can yield

partial information about the local behavior of the exact isochrons of an oscillator in virtually

any dimension.

It can be shown that if two points x1(0) and x2(0), belonging to two different solutions

x1(t) and x2(t) of an oscillating system, are initially on the same isochron, then at any

time t = tc, x1(tc) and x2(tc) will also be on the same isochron. This is also true for

tc < 0. Since γ is an attracting limit cycle (when oscillator equations are integrated forward

in time) in view of our assumptions, γ becomes a “repelling” limit cycle when oscillator

equations are integrated backward in time. This means that when x1(0) and x2(0) are

chosen to be very close to some point xs(tp) on γ (so that it may be assumed x1(0) and

x2(0) are on the same isochron as xs(tp)), at t = tc < 0, x1(tc) and x2(tc) will be further

away from each other but be on the same isochron as xs(tp − tc). Adaptively inserting new

points between x1(tc) and x2(tc) and integrating the oscillator equations backward in time,



Chapter 4: Isochrons of Oscillators and Their Local Approximations 40

10
−3

10
−2

10
−1

10
0

10
−5

10
−4

10
−3

10
−2

10
−1

Timestep

R
e
la

ti
v
e
 E

rr
o

rs
 i

n
 H

Relative Errors in H vs. Timestep

Computed Quadratic

Figure 4.4: Relative error between numerically computed and analytical H(−T ).
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Figure 4.5: Limit cycle and isochron portrait for the Van der Pol oscillator.

it is possible to obtain a somewhat reasonably accurate depiction for the isochron passing

through xs(tp−T ) = xs(tp) when t = −T is reached. Izhikevich provides a compact Matlab

code for this technique in [1], which works reasonably well although it uses forward Euler

in backward integration. We have improved this code to utilize the trapezoidal scheme and

to provide more detailed and explanatory illustrations. Our experience shows that utmost

care must be taken in any case when using Izhikevich’s method even for very simple planar
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Figure 4.6: Isochrons and their approximations for the Van der Pol oscillator.

oscillators, since backward integration around attracting limit cycles of oscillatory, especially

stiff, systems is by nature unstable. Figure 4.5 shows the isochron portrait for the Van

der Pol oscillator of (4.76) computed with this technique. In Figure 4.6, several isochrons

along with their corresponding linear and quadratic approximations computed using the

techniques described in this thesis are shown. As we observe in this figure, the quadratic

approximation (computed using the techniques proposed in this thesis) fits the real isochron

(computed through the method of Izhikevich [1] described above) extraordinarily well for

one isochron, and in general, quadratic approximations are much more accurate than the

linear ones, especially when further away from the limit cycle.

4.3.3 Mammalian Circadian Oscillator with 7 State Variables

Biological oscillators (based on genetic networks) that are responsible for setting up the

circadian (24-hour) rhythms are crucial for the survival of many species, and there are many

health problems caused by the disturbance of these clocks in humans. We now apply the

techniques proposed in the thesis to a model of the mammalian circadian clock described

in [35]. Since this oscillator model has seven state variables, it is not possible to visualize its

isochrons in a graph. Instead, we choose a different method to demonstrate the properties

of an isochron of this oscillator, after computing xs(t), v1(t), and H(t) using the schemes

described in the thesis. In Figure 4.7, the (normalized) distance between the linear and
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Figure 4.7: Distance between the linear and quadratic isochron approximation.

quadratic approximations for a particular isochron is shown as one moves away from the limit

cycle in a certain direction in the seven-dimensional space. We deduce that the quadratic

approximation will be much better in approximating the exact isochron. There is no other

method which can give us a better approximation than the quadratic approximation we are

able to compute. The brute-force method [1] is totally out of the question.

4.3.4 Drosophila Circadian Oscillator with 25 State Variables

Finally, we present results obtained on a model of the Drosophila circadian rhythm described

in [36] in order to indicate the computational resources required with our current implemen-

tation of the numerical methods based on dense numerical linear algebra. The Drosophila

circadian model in [36] has only 15 state variables. However, this model contains a pure time

delay operator. By modeling this delay operator with a 10th order Pade approximation, we

were able to generate an oscillator model with 25 state variables. We computed the matrix

H(t) for this oscillator in 5 seconds of CPU time on a PC running Linux with a 2.6 GHz

Opteron processor. The computation was done with an implementation of our numerical

methods in Matlab using dense numerical linear algebra. The time discretization was done

using 1000 points. Recalling that the computational complexity for this implementation is

O
(
KN3

)
, where K is the number of timepoints and N is the number of state variables,
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H(t) for an oscillator with 200 state variables can be computed in under one hour with 1000

time points. We should note here that it is difficult to come by biological oscillator models

with more than tens of state variables. In fact, we were not able to find a biological oscillator

model with more than 20-30 state variables in the model databases available on the Inter-

net. As such, we believe that an implementation of the numerical schemes proposed in this

thesis based on dense numerical linear algebra can be used to compute quadratic isochron

approximations for all practical biological oscillator models.

4.4 Summary

In this chapter, we reviewed the isochron concept for autononous oscillators, stated and

proved some of the crucial properties of the sets of in-phase points called isochrons. Com-

ments were made on the difficulty entailed in the exact numerical calculation of isochrons.

The need to resort to local approximations was then pointed out. After stating that the lin-

ear approximation is indeed a hyperplane determined by the point on the limit cycle, which

the exact isochron crosses, and the vector called the PPV (or infinitesimal PRCs or ISFs

stacked into a vector). We then proposed that quadratic, instead of linear, approximations

should locally provide a higher level of accuracy. It was shown that another quantity, i.e.

a matrix function H(t), is necessary to characterize the proposed quadratic approximations

for isochrons. Then, a theoretical characterization of H(t) was accomplished, and a reliable

method for its numerical computation was designed. Several tests on a simple polar oscil-

lator (with analytical expressions for any attribute available) and other intricate oscillators

were run, and the numerical method was shown to be robust.
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Chapter 5

PHASE OF AN OSCILLATOR

We now define and discuss a generalized notion of instantaneous phase, uniformly ap-

plicable to oscillators that are (1) autonomous and in periodic steady-state, i.e., tracing a

limit cycle, (2) autonomous but not in steady-state, i.e., not have settled to a limit cycle

yet. In this chapter, we concentrate on the generalized instantaneous phase definition for

oscillators that are autonomous, i.e., that are not experiencing any perturbations. We later,

in Chapter 6, extend the phase definition to non-autonomous oscillators, i.e., ones that are

experiencing perturbations, hence not in steady-state, but that stay in the domain of at-

traction of a particular limit cycle. The phase definition we discuss shortly is based on the

notion of isochrons described in Chapter 4 and the key periodic behavior property captured

by Theorem 4.1.1.

The outline of this chapter is as follows. In Section 5.1, we formulate the generalized

period definition by the use of the isochron concept. The instantaneous oscillator phase

definition is given in Section 5.2. Isochrons are established as the level sets of instantaneous

phase in Section 5.3. The oscillator phase computation problem is rigorously formulated

in Section 5.4. Chapter 6 describes numerical methods for computationally solving this

problem. Since approximate methods for oscillator phase computation are the ones that are

practically usable as we reveal in again Chapter 6, local approximations of isochrons have

to be incorporated into these methods via the functions v1(t) and H(t) (both explained

in Chapter 4). However, first we have to reveal the connection between the instantaneous

oscillator phase and these two functions. This is done in Section 5.5.

Most of the insight and intuitive explanations in Sections 5.1 through 5.4 are inspired by

the work in [14].
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5.1 Generalized Period

Prior to the definition of phase, we first introduce, as the formulation in [14] suggests, a

generalized periodicity notion applicable to the solutions of autonomous (unperturbed) oscil-

lators which are not necessarily periodic, i.e., which have not yet settled to a periodic limit

cycle. The simple periodicity notion of Section 3.1 only applies to autonomous oscillators

that have already settled to a limit cycle, i.e., that are in periodic steady-state.

Definition 5.1.1 (Generalized Period) Let x(t) be a solution of (3.1) such that the ini-

tial condition x(0) ∈ η0 but not on the limit cycle, i.e., x(0) 6= xs(0). Hence, x(t) is not

periodic. With the set T as

T =

{

Ti
∣
∣
∣
∣
Φ(Ti, 0,x(0)) ∈ η0

}

, (5.1)

the generalized period of x(t) is defined as the smallest positive number in T .

Based on Theorem 4.1.1, the generalized period defined above is equal to T , the “familiar”

period on the limit cycle γ, for any solution of the autonomous oscillator equations in (3.1)

with an initial condition in the domain of attraction, i.e., x(0) ∈ W.

5.2 Generalized Instantaneous Phase

We now precisely and formally, following the formulation in [14], define a generalized instan-

taneous phase, denoted by t̂, that has units of time, for every point x ∈ W in the domain of

attraction of a limit cycle γ as well as at all of the points on the limit cycle itself:

Definition 5.2.1 (Phase in Units of Time) t̂(x) : <N → < is defined at a particular

point x ∈ W as follows:

1. If x ∈ γ (on the limit cycle), i.e., x = xs(t
∗):

t̂(x) = t̂(xs(t
∗)) = t∗. (5.2)

2. If x ∈ W−γ (in the domain of attraction but not on the limit cycle), the phase t̂(x) is

again computed through (5.2), but we maintain in this case that x ∈ ηt∗ and xs(t
∗) ∈

ηt∗ .
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With the above definition, the phase of a point on the limit cycle is simply defined to be

the time tag t of that point in the periodic steady-state solution xs(t). For all other points

x in the domain of attraction but not on the limit cycle, the phase is defined to be the time

tag of another point xs(t
∗) that (a) resides exactly on the limit cycle, and, (b) is on the

same isochron as the point x.

The fact that the phase t̂ is defined above as a function of solely points x in the state-

space, i.e., t̂(x) : <N → <, enables us to treat the independent time variable t as an implicit

parameter, i.e., t̂(x(t)) = t̂(x). One of the benefits of this is that once we have the whole

isochron portrait of an oscillator in the domain of attraction of a limit cycle, any point x in

W can be associated with a phase value. The fact that x may be an instantaneous point in

the trajectory of a particular solution of (3.1), i.e., x(t), becomes implicit and, in a sense,

irrelevant with this definition. From this perspective, the phase of a point x is always the

same value, and this fact is consistent with the uniqueness of the solutions of (3.1) given an

initial condition. Any two solutions, i.e., trajectories, of (3.1) that intersect at some point

x(t) become the same trajectory afterwards and hence have the same instantaneous phase.

Let x(t) be a solution (i.e., a trajectory) of (3.1) with the initial condition x(0) ∈ η0,

i.e., x(0) resides on the isochron η0 that passes through xs(0) on the limit cycle γ. Due

to Lemma 4.1.1, both x(t) and the steady-state periodic solution xs(t) reside on the same

isochron ηt, i.e. x(t),xs(t) ∈ ηt for all t. Now, as a direct result of Definition 5.2.1, we can

deduce that

t̂(x(t)) = t (5.3)

for 0 ≤ t ≤ T , which means that the instantaneous phase t̂ for an autonomous oscillator that

is not experiencing any perturbations is simply equal to time t, even if the oscillator is not in

periodic steady-state. For t > T , t̂ = t− b t
T
c T where b·c rounds its argument to the closest

integer less than or equal to its argument. Here, t̂ is a discontinuous quantity as a function

of time, since it wraps between 0 and the period T . It makes sense to define an unwrapped

version of t̂ which is continuous, i.e., t̂(x(t)) = t for all t ≥ 0. With this unwrapped version,

the phase of an oscillator which is not experiencing any perturbations, is simply equal to

time t. This in a sense means that an oscillator not experiencing any perturbations performs

as an ideal, precise time keeper, when it is in the domain of attraction of a limit cycle, even

when it has not yet settled to the periodic steady-state solution. Later in the thesis, we will
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discuss the case of perturbed oscillators, for which (5.3) does not hold anymore.

5.3 Isochrons as Level Sets of Generalized Phase

A straightforward but profoundly significant consequence of the phase definition in Defini-

tion 5.2.1 is the following: The isochrons in the domain of attraction of a limit cycle simply

become the level sets of the generalized phase, which is formally captured by the following

lemma (also suggested in [14]):

Lemma 5.3.1 Isochrons are the level sets of the phase t̂, i.e., the isochron ηt∗ with time tag

t∗ is given by

ηt∗ =

{

x

∣
∣
∣
∣
t̂(x) = t∗

}

(5.4)

Proof: It follows directly from Definition 5.2.1. �

In (5.4), if we let t∗ vary in the range [0, T ), it is possible to pick out all of the level sets

of t̂, i.e., all of the isochrons. Also note that t̂ = t∗ + nT , for integer n, are all associated

with the same level set, i.e., the same isochron ηt∗ .

5.4 Oscillator Phase Computation Problem

Oscillator phase computation is interesting only when the phase t̂ deviates from time t, i.e.,

when the oscillator is afflicted by perturbations or noise. The phase computation problem

to be defined shortly is to be solved either exactly or approximately via the methods to be

described in Chapter 6.

Let us assume we have a perturbed oscillator and that at the outset the oscillator state

lies on the limit cycle for convenience (see Figure 5.1). We call the perturbed oscillator

trajectory as x(t). We will elaborate more on the differential equation that x(t) satisfies

and the implications of this model along with the exact and approximate methods (that

are induced by the mathematical oscillator model) to solve for the instantaneous phase in

Chapter 6. If the perturbations or noise affecting the oscillator are somehow shut down right

at the outset, the oscillator will trace the limit cycle, i.e., the mathematical expression for

the trajectory solution will be xs(t) (recall that we start at a point on the limit cycle and

this point can always be set as xs(0)).



Chapter 5: Phase of an Oscillator 48

Figure 5.1: Oscillator phase computation problem (x(t) and xs(t̂(x(t))) are in-phase).

The essence of the phase computation problem is indeed computation of the instan-

taneous phase of the perturbed oscillator solution x(t), i.e., t̂(x(t)). This value of this

instantaneous phase is related to the unperturbed solution xs(t), as the following theorem

shows (also stated in [14]).

Theorem 5.4.1 Let x(t) be a solution of the perturbed oscillator in question. Then, at any

instant t∗, x(t∗) and xs(t̂(x(t
∗))) are on the same isochron as depicted in Figure 5.1.

Proof: Examining Definition 5.2.1 for t̂, we observe that

t̂(xs(t̂(x(t
∗)))) = t̂(x(t∗)), (5.5)

which proves that x(t∗) and xs(t̂(x(t
∗))) are on the same level set of t̂. By Lemma 5.3.1,

isochrons are the level sets of t̂. Hence, the claim. �

Theorem 5.4.1 states that x(t) and xs(t̂(x(t))) are in phase at any t. Hence, it makes

sense to approximate quantities involving x(t) by expansions around an in-phase point on

γ, which is xs(t̂(x(t))). This is how we approximately keep track of the phase of a solution

x(t) that may never even once cross the limit cycle. We define the difference between the

perturbed solution x(t) and the point xs(t̂(x(t))) on the limit cycle as

y = x(t)− xs(t̂(x(t))) (5.6)

and call it the orbital deviation.
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The next section concretizes the link between the functions (v1(t) and H(t)) character-

izing the local approximations of isochrons and the instantaneous phase t̂. Based on the

results to be stated, approximations involving expansions around an in-phase point on γ,

i.e., approximations of the perturbed or noisy x(t) around the in-phase xs(t̂(x(t))), will be

possible, and this is the mainspring of the derivation of nearly all the approximate phase

computation methods to be described in Chapter 6.

5.5 Phase Gradient and Hessian

Having defined the generalized phase t̂ and established isochrons as the level sets of t̂, we

exploit the connection between the local (linear and quadratic) isochron approximations

that were described in Section 4.2 and the phase t̂ in order to determine the gradient and

the Hessian of t̂ evaluated on the limit cycle γ. The phase gradient (v1(t) as will be proved

next) and Hessian (H(t)) on the limit cycle will be essential in deriving approximate phase

equations for oscillators later in our treatment. The isochron-PPV connection has been

rigorously established also in [25].

Theorem 5.5.1 1. The gradient of phase t̂ (defined as a column vector here) evaluated

on γ is given by the PPV v1(t):

∇x t̂(x)

∣
∣
∣
∣
x=xs(t)

= v1(t). (5.7)

2. The Hessian of phase t̂ evaluated on γ is given by the matrix H(t) in (4.10):

∇2
x t̂(x)

∣
∣
∣
∣
x=xs(t)

= H(t). (5.8)

Since the Hessian of a function is simply equal to the Jacobian of its gradient, it follows

that the matrix H(t) is simply equal to the Jacobian of the PPV evaluated on the limit

cycle γ.

Proof:

1. Since the isochron ηt passing through xs(t) is a level set for the phase t̂, the gradient

∇x t̂(xs(t)) must be normal to the tangent plane for ηt at xs(t). Due to (4.21), v1(t) is
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normal to ηt at xs(t). Therefore, we may declare ∇x t̂(xs(t)) = cv1(t), for some c 6= 0.

Then,

dt̂(x)

dt

∣
∣
∣
∣
xs(t)

= [∇x t̂(xs(t))]
T
dxs(t)

dt

= [c v1(t)]
T
u1(t). (5.9)

The last expression in (5.9) is obviously equal to c due to the normalization condition

in (3.13), but it is also equal to 1 due to (5.3). Therefore, c = 1. Hence, the claim.

[25] contains an alternative derivation.

2. See Section 4.2.

�

The approximate first-order and second-order phase equations for perturbed oscillators

that we will later derive in the thesis will make use of the phase gradient and Hessian that

we have established above.

5.6 Summary

In this chapter, a rigorous definition of oscillator phase is established based on the isochron

concept, and the phase computation problem is formulated. We first remarked the gen-

eralized period notion for oscillators. Following the phase definition, isochrons were then

shown to be the level sets of the phase previously defined. Upon these premises, it was then

possible to formulate and state the oscillator phase computation problem. Considering the

high computational costs of isochron computations, it is easy to deduce that phase compu-

tation methods depending on exact isochron information will be computationally expensive.

Therefore, we foresee that practically usable methods must make use of isochron approxi-

mations, characterized by v1(t) and H(t). The last task in this chapter was constructing

the link between oscillator phase and these two functions.
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Chapter 6

PHASE EQUATIONS AND

PHASE COMPUTATION SCHEMES FOR OSCILLATORS

In the previous chapter, we have formally stated the oscillator phase computation prob-

lem. The methods to be described in this chapter are designed to solve this problem either

exactly or approximately. These methods come in two flavors: There are phase equations in

the form of ODEs and phase computation schemes as algebraic equations, all to be solved

for the instantaneous phase t̂ of a trajectory of perturbed oscillator states. The phase

equations are theoretically intricate, both in derivation and analysis, and also amenable

to semi-analytical investigation. An exact phase equation (reviewed in Section 6.1 in line

with the explanations provided in [14]), although itself practically not usable, facilitates

the derivation of the already known, acclaimed and extensively used first-order phase equa-

tion, employing linear approximations for isochrons, (of Section 6.2 and extensively analyzed

in [16, 1, 2, 17, 18, 5, 14, 25]) and the novel second-order phase equation, making use of

quadratic approximations for isochrons (of Section 6.3). The phase computation schemes are

simpler, computational complexitywise more costly but more accurate with respect to the

equations, as explained in Section 6.4. An overview of these phase computation methods,

along with a unified classification framework characterized by the approximations employed

in the attributes of isochrons (see Chapter 4) and orbital deviations (see Section 5.4) is pro-

vided in Section 6.5, where we also state suggestions to the prospective user, in terms of the

computational complexities incurred with each method and where it would be advantageous

to favor a higher order method. Section 6.6 includes phase computation results on several

intricate oscillators, obtained with the proposed methods.

6.1 Exact Phase Equation

Having discussed isochrons, introduced the formal definition of the generalized instanta-

neous phase and also stated formally the oscillator phase computation problem, we are now
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fully equipped to embark on deriving phase equations for autonomous (Section 6.1.1) and

perturbed oscillators (Section 6.1.2). A concise and rigorous treatment of phase equations

based on isochrons, similar to the one described in this section, is given in [14], though with

certain gaps in the derivations. Here, we start with the derivations in [14] and provide a de-

tailed and revealing account based on the rigorous definition of generalized phase discussed

in Chapter 5.

6.1.1 Autonomous Unperturbed Oscillators

We first consider an autonomous oscillator described by (3.1) that is not experiencing any

perturbations but not necessarily in periodic steady-state. We assume an initial condition

x(0) for (3.1) that is in the domain of attraction W of a limit cycle γ associated with the

periodic steady-state solution xs(t), i.e., x(0) ∈ W. Without loss of generality, we assume

that x(0) ∈ η0, i.e., x(0) resides on the isochron η0 that passes through xs(0) on the limit

cycle γ. Then, for any x(0) ∈ W and x(t), we can derive

dt̂(x)

dt
= [∇x t̂(x(t))]T

dx(t)

dt
(6.1)

= [∇x t̂(x(t))]T f(x(t)) = 1 (6.2)

using the chain rule for derivatives and (3.1). The equality to 1 follows from (5.3) that

was derived in Section 5.2. We should point out here that (6.2) holds point-wise for t (an

observation reported in [14]), i.e., it is irrelevant whether x(t) is in fact a solution trajectory

obtained by solving (3.1) with a particular initial condition or any other set of points x

indexed by t.

The exact phase equation for autonomous, unperturbed oscillators is given by

dt̂(x)

dt
= [∇x t̂(x(t))]T f(x(t)) = 1, t̂(x(0)) = 0 (6.3)

where we assume, without loss of generality, that x(0) ∈ η0. The solution of (6.3) above is

simply

t̂ = t (6.4)

as previously identified in (5.3) in Section 5.2. If (6.3) above is evaluated on the limit cycle

γ it takes the form

[∇x t̂(xs(t))]
T f(xs(t)) = v1(t)

Tu1(t) = 1 (6.5)
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6.1.2 Perturbed Oscillators

We now concentrate on perturbed oscillators described by

dx

dt
= f(x) + b(x(t), t). (6.6)

where b(x(t), t) is the perturbation vector, dependent on both the state vector x and explic-

itly on time t. We assume that the solutions of the perturbed oscillator in (6.6) never leave

the domain of attraction W for a particular limit cycle γ. In other words, if the perturbation

b(x(t), t) is turned off at some point, the oscillator returns back to the same attracting limit

cycle eventually. Next, we derive the form of the exact phase equation for the perturbed

oscillator in (6.6) as captured by the following theorem:

Theorem 6.1.1 The following is an exact equation describing the time evolution of t̂ for

the perturbed oscillator described by (6.6):

dt̂(x(t))

dt
= 1 + [∇x t̂(x(t))]T b(x(t), t), t̂(0) = 0 (6.7)

Proof: (6.7) is obtained through

[∇x t̂(x(t))]T
[
dx

dt
= f(x) + b(x(t), t)

]

, (6.8)

i.e., the scalar product of the phase gradient [∇x t̂(x(t))] and (6.6). Noting that (6.2) holds

point-wise at all t (with t as an implicit parameter) irrespective of the fact that x(t) is

a solution trajectory for an autonomous or perturbed oscillator, (6.7) follows. A similar

derivation of the exact phase equation was given in [14]. �

Eqn. (6.7) above is an exact equation for t̂, but ∇x t̂(x(t)) above is the phase gradient

at x(t) in W which is not necessarily on the limit cycle γ. As shown in Theorem 5.5.1, the

phase gradient on the limit cycle is given by the PPV, but the computation of its value at

other points in W requires the complete isochron portrait of the oscillator. As discussed

before, computing the isochrons of an oscillator is a very difficult task. Still, one can use the

phase Hessian H(t) on the limit cycle to compute an approximation for the phase gradient at

other points in W. In fact, later we indirectly make use of this fact in deriving approximate,

second-order phase equations for perturbed oscillators.

We are now in a position to derive approximate phase equations for perturbed oscillators

that are useful in practice. Particularly, we are going to make use of Theorem 5.4.1 for the

purpose.
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6.2 First-Order Phase Equation

In this section, we start with the exact phase equation in (6.7) and, through some approx-

imations, derive a first-order phase equation. We call this equation a first-order equation,

because, as we show in this section, it is founded on first-order, i.e., linear approximations

for the isochrons of an oscillator.

In order to justify the approximations we will apply on the exact phase equation in (6.7),

we first state two assumptions.

Assumption 6.2.1 (Weak Perturbation) We assume that the perturbation vector b(x(t), t)

in (6.6) is of small magnitude for all t, so that the orbital deviation in (5.6) stays small,

i.e., the oscillator does not wander too far away from its limit cycle, which is made precise

below.

Assumption 6.2.2 (Linear Orbital Deviation Dynamics) We assume that the orbital

deviation in (5.6) is of small magnitude so that it always (approximately) resides in an

hyperplane that is defined by the linear approximation for the isochron ηt̂(x(t)) in (4.21)

passing through xs(t̂(x(t))). More precisely, the orbital deviation is approximately in the

linear subspace spanned by the Floquet eigenmodes ui(t̂(x(t))), i = 2 . . . N of (3.5) excluding

the persistent mode, i.e.,

y ≈
N∑

i=2

ci ui(t̂(x(t))), (6.9)

which follows from (3.8) and (4.21).

We now derive the first-order phase equation from the exact equation in (6.7) by employ-

ing two approximations: The phase gradient ∇x t̂(x(t)) and the state dependent perturbation

b(x(t), t) at x(t) are approximated with the ones evaluated at xs(t̂(x(t))), exactly on the

limit cycle, as follows.

∇x t̂(x(t)) ≈ ∇x t̂(xs(t̂)) = v1(t̂), (6.10)

b(x(t), t) ≈ b(xs(t̂), t). (6.11)

where (6.10) follows from (5.7). The above approximations are motivated by the assump-

tion that the orbital deviation in (5.6) is small, and hence x(t) and xs(t̂(x(t))) are close to

each other. The approximations in (6.10) and (6.11) can be considered as zeroth order Tay-

lor’s series expansions for the phase gradient and the state dependent perturbation around
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xs(t̂(x(t))) on the limit cycle. Later below, we will prove that the above approximations

are completely consistent with Assumption 6.2.2. By substituting (6.10) and (6.11) into the

exact phase equation in (6.7), we arrive at the first-order phase equation

dt̂

dt
= 1 + vT

1(t̂) b(xs(t̂), t), t̂(x(0)) = 0, (6.12)

where t̂ = t̂(x(t)). We observe that in (6.12), vT

1(t̂) b(xs(t̂), t) is the coefficient of the

component along u1(t̂), the persistent mode, of the perturbation vector b(xs(t̂), t).

The first-order phase equation in (6.12) is in fact the acclaimed phase equation we men-

tioned in Chapter 1 that has been used in various disciplines as a reduced model for weakly

perturbed or noisy oscillators [16, 1, 2, 17, 18, 5, 14, 25].

We will shortly prove the consistency of the first-order phase equation with Assump-

tion 6.2.2 and demonstrate that it is founded on linear isochron approximations. The first-

order phase equation along with some of the results discussed in this section have appeared

previously in the literature in various forms. However, we delve on the topic in order to

have a unified treatment of first and second-order phase equations and to put the acclaimed

first-order phase equation into context and emphasize its origins and approximate nature.

The following lemma states that if the state dependent perturbation is first evaluated on

the limit cycle and then projected onto the persistent Floquet mode u1, then the solution

of the perturbed oscillator equations is simply equal to a time/phase-shifted version of the

periodic steady-state solution xs(t), where the phase shift is exactly characterized by the

generalized phase t̂ that is the solution of the first-order phase equation in (6.12).

Lemma 6.2.1 The solution t̂ of the first-order phase equation in (6.12) satisfies the follow-

ing equation:
dxs(t̂)

dt
= f(xs(t̂)) +

[
vT

1(t̂)b(xs(t̂), t)
]
u1(t̂) (6.13)

where t̂ = t̂(x(t)).

Proof: Noting that
dxs(t̂)

dt̂
= f(xs(t̂)) = u1(t̂) (6.14)

we can write

dxs(t̂)

dt
=

[
dxs(t̂)

dt̂

] [
dt̂(x(t))

dt

]

=
[
u1(t̂)

] [
1 +

[
vT

1(t̂)b(xs(t̂), t)
]]

(6.15)
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where (6.12) was used. Eqn. (6.13) immediately follows from (6.15). �

The above result may seem surprising at first: The first-order phase equation is an

approximate equation, but its solution t̂ somehow satisfies the perturbed oscillator equations

in (6.13) exactly. One can resolve this dilemma easily by simply noting that the projected

perturbation
[
vT

1(t̂)b(xs(t̂), t)
]
u1(t̂) in (6.13) is in a particular form which makes sure that

the perturbed oscillator never leaves its limit cycle, i.e., the orbital deviation in (5.6) is

always zero. As such, the approximations in (6.10) and (6.11) that involve zeroth order

expansions around the limit cycle, which are used in deriving the first-order phase equation,

become exact. However, for general perturbations that are not projected onto the persistent

Floquet mode on the limit cycle, the perturbed oscillator will leave its limit cycle, in which

case, the first-order phase equation will become approximate. The accuracy of the first-order

phase equation is then determined by the degree Assumption 6.2.2 is violated. Below, we

make these arguments more precise.

Next, we proceed to derive an equation for the orbital deviation. We first approximate

the perturbed oscillator equations in (6.6) through first and zeroth order Taylor expansions

of f(x(t)) and b(x(t), t), respectively, around xs(t̂) and obtain

dxs(t̂)

dt
+

dy

dt
= f(xs(t̂)) +G(t̂)y + b(xs(t̂), t) (6.16)

where y = x(t)−xs(t̂) is the orbital deviation. The linearization, i.e., first-order expansion,

of f(x(t)) around xs(t̂) is justified based on Assumption 6.2.2. We then perform a decom-

position of the perturbation vector b(xs(t̂), t) evaluated on the limit cycle using the Floquet

basis as follows

b(xs(t̂), t) =

N∑

i=1

[
vT

i (t̂)b(xs(t̂), t)
]
ui(t̂) (6.17)

which follows from the fact that ui(t̂) and vj(t̂) are bi-orthonormal. We can now precisely

characterize the orbital deviation as below:

Theorem 6.2.1 With the approximations in (6.16), the orbital deviation y = x(t) − xs(t̂)

satisfies
dy

dt
= G(t̂)y +

[

b(xs(t̂), t)−
[

vT

1(t̂)b(xs(t̂), t)

]

u1(t̂)

]

(6.18)

with the solution

y =
N∑

i=2

[−vT

i (t̂)b(xs(t̂), t)

µi

]

ui(t̂). (6.19)
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Note that the second term on the right hand side of (6.18) is b(xs(t̂), t) with its component

along the persistent mode u1(t̂) extracted.

With Theorem 6.2.1 (lengthy proof included in Appendix Section C.2), we have thus

shown that the first-order phase equation in (6.12) is consistent with Assumption 6.2.2.

6.3 Second-Order Phase Equation

We now derive a novel, more accurate second-order phase equation for perturbed oscillators.

This equation is called second-order, because it is founded on second-order, i.e., quadratic,

approximations for the isochrons of an oscillator. Many of the derivation steps for the

second-order phase equation prove to be very similar to those that were carried out for the

first-order phase equation. In this case, we will make use of the phase Hessian H(t) in (4.10)

and (5.8), as well as the phase gradient v1(t), evaluated on the limit cycle γ.

6.3.1 Normalization Condition for Phase Hessian H(t)

A comprehensive treatment of the phase Hessian H(t), a periodic and symmetric matrix

function, can be found in Section 4.2. We state here a normalization condition for H(t) that

connects with the normalization condition in (3.13) for the PPV v1(t): simply H(t)u1(t) =

−GT(t)v1(t) (see Lemma 4.2.4 for the justification).

6.3.2 Generalized Bi-Orthonormal Bases

In deriving and verifying the first-order phase equation in Section 6.2, we have employed

zeroth order expansions on the limit cycle and hence used the bi-orthonormal Floquet modes

in (3.8) that are valid only exactly on the limit cycle in order to perform decompositions for

the perturbation and the orbital deviation. For the second-order phase equation, we will be

employing higher-order expansions around the limit cycle, and hence we will need to perform

decompositions of the perturbation and the orbital deviations around, and not exactly on,

the limit cycle. Thus, we need to establish a generalized set of bi-orthonormal basis vectors

that is also valid at points around the limit cycle. This is what we do next. We derive a

generalized, approximately bi-orthonormal set starting with ui(t) and vj(t), for 1 ≤ i, j ≤ N

as follows: We recall that ui(t) and vj(t) are derived from the forward and adjoint LPTV
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equations in (3.5) and (3.9) that are obtained by linearizing the oscillator equations around

the limit cycle characterized by the periodic steady-state solution xs(t). As such, ui and vj

are in fact explicit functions of xs(t) and can be expressed as ui(xs(t)) and vj(xs(t)). Their

dependence on t is actually implicit, through xs(t). The following theorem establishes an

approximately bi-orthonormal set of basis vectors that are also valid around the limit cycle:

Theorem 6.3.1 Let us expand ui(xs(t) + y) and vj(xs(t) + y) (where y is of small mag-

nitude, accounting for the displacement, i.e., orbital deviation, from γ) into a first-order

Taylor series around xs(t) and obtain

ui(xs(t) + y) ≈ ui(t) +
∂ui(t)
∂xs(t)

y

vj(xs(t) + y) ≈ vj(t) +
∂vj(t)
∂xs(t)

y
(6.20)

The approximate forms of ui(xs(t) + y) and vj(xs(t) + y) in (6.20) for 1 ≤ i, j ≤ N form

two sets of approximately bi-orthonormal basis vectors. More precisely,
[

vi(t) +
∂vi(t)

∂xs(t)
y

]
T
[

ui(t) +
∂ui(t)

∂xs(t)
y

]

≈ δij (6.21)

approximately holds if the second-order term

yT

[
∂vj(t)

∂xs(t)

]
T
[
∂ui(t)

∂xs(t)

]

y (6.22)

is negligible compared with the first-order terms in y.

Proof: We first obtain

vT

j (t)
∂ui(t)

∂xs(t)
+ uT

i (t)
∂vj(t)

∂xs(t)
= 0 (6.23)

for 1 ≤ i, j ≤ N , which directly follows from

∂

∂xs(t)

[
vT

j (t)ui(t) = δij
]

(6.24)

that is based on (3.8). If we expand the left-hand-side of (6.21), make use of (3.8) and (6.23),

and omit (6.22), we obtain (6.21). �

Next, we use the bi-orthonormal bases established by Theorem 6.3.1 in order to decom-

pose a state dependent perturbation. Let b(x(t), t) be an N ×1 vector, explicitly depending

on both x and t, where x(t) = xs(t) +y. We first expand b(x(t), t) into a first-order Taylor

series around xs(t)

b(xs(t) + y, t) ≈ b(xs(t), t) +
∂b(xs(t), t)

∂xs(t)
y (6.25)
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and decompose it using the bases established in Theorem 6.3.1 as below

b(xs(t), t) +
∂b(xs(t), t)

∂xs(t)
y =

N∑

i=1

ci

[

ui(t) +
∂ui(t)

∂xs(t)
y

]

(6.26)

where the coefficients ci are given by

ci =

[

vi(t) +
∂vi(t)

∂xs(t)
y

]
T
[

b(xs(t), t) +
∂b(xs(t), t)

∂xs(t)
y

]

(6.27)

We note here that, as stated in Theorem 6.3.1, the quadratic term (in y) above is assumed

to be negligible compared with the first-order terms.

In order to use the general approximate procedure described above for projections not

exactly on but close to γ, we need the partial derivatives of the Floquet modes ui(xs(t))

and vj(xs(t)) with respect to xs(t) in (6.20). We already have ∂v1(t)/∂xs(t) = H(t) as

the phase Hessian on the limit cycle. ∂u1(t)/∂xs(t) is also readily available: Since u1(t) =

ẋs(t) = f(xs(t)), the partial derivative of u1(t) with respect to xs(t) is given by

∂u1(t)

∂xs(t)
=

∂f(xs(t))

∂xs(t)
= G(t). (6.28)

The partial derivatives with respect to xs(t) of modes other than u1(xs(t)) and v1(xs(t)) are

not available. We recall that the other Floquet modes ui(xs(t)) and vj(xs(t)) (for i 6= 1 and

j 6= 1) themselves are not available either, since they are not needed eventually in performing

computations. However, their existence is used in the derivations.

Now, if we set i = j = 1 in (6.21) we obtain

[v1(t) +H(t)y]T [u1(t) +G(t)y] ≈ 1 (6.29)

which holds if we note (4.39) and omit the second-order term yTH(t)G(t)y.

Now, all the tools are available for carrying out reasonably accurate projections around

γ. We will be resorting to projections onto the perturbed persistent mode u1(xs(t) + y) to

account for the phase of our perturbed oscillator.

6.3.3 Derivation of the Second-Order Phase Equation

In deriving the second-order phase equation, we still uphold Assumption 6.2.1, but the phase

equation we eventually derive will be more accurate than the first-order phase equation for

perturbations of similar magnitude, or equivalently, for the same accuracy level, we will be
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able to handle oscillators which are not as weakly disturbed. For the second-order case,

Assumption 6.2.2 will however be replaced with the following:

Assumption 6.3.1 (Quadratic Orbital Deviation Dynamics) We assume that the or-

bital deviation y = x(t)−xs(t̂(x(t))) is of small magnitude so that it (approximately) resides

in a quadric hypersurface that is defined by the quadratic approximation for the isochron

ηt̂(x(t)) in (4.10) passing through xs(t̂(x(t))).

We now obtain the second-order phase equation from the exact equation in (6.7) by

employing two approximations: The phase gradient ∇x t̂(x(t)) and the state dependent

perturbation b(x(t), t) at x(t) are both expanded into a first-order Taylor series around

xs(t̂(x(t))) on the limit cycle

∇x t̂(x(t)) ≈ v1(t̂) +H(t̂) y, (6.30)

b(x(t), t) ≈ b(xs(t̂), t) +
∂b(xs(t̂), t)

∂xs(t̂)
y. (6.31)

where (6.30) follows from (5.8) and the fact that the Hessian of a quantity is equal to the

Jacobian of its gradient. We note here that, in deriving the first-order phase equation in

Section 6.2, the expansions above were done to zeroth order. From this perspective, one can

refer to the phase equations being derived as zeroth and first-order. However, we have chosen

the naming convention currently in use in order to reflect the isochron approximation order

these phase equations correspond to. Essentially, the first-order expansion for the phase

gradient in (6.30) corresponds to a quadratic isochron approximation.

By substituting (6.30) and (6.31) into the exact phase equation in (6.7), we obtain the

second-order phase equation:

dt̂

dt
= 1+

[
v1(t̂) +H(t̂)y

]
T

[

b(xs(t̂), t) +
∂b(xs(t̂), t)

∂xs(t̂)
y

] (6.32)

with t̂(x(0)) = 0 as the initial condition. If we compare the second-order phase equation

above with the first-order one in (6.12), we observe that the right-hand-side of (6.32) has

extra terms which involve the orbital deviation y. These terms indeed help increase the

accuracy of the second-order equation over the first-order one, but the offshoot is that now

a differential equation for the orbital deviation y itself is indispensibly necessary, so that
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the two equations, (6.32) and the one describing the dynamics of y, which is to be derived

shortly, can be simultaneously solved in a coupled manner for both t̂(x(t)) and y. The first-

order phase equation in (6.12) does not have any terms that involve the orbital deviation y,

and hence it can be solved by itself without requiring a coupled solution for y using (6.18).

Finally we note that, recalling (6.26) and (6.27), the second term on the right-hand side

of (6.32) constitute the coefficient c1 of the component along u1(xs(t̂)+y) ≈ u1(t̂)+G(t̂)y,

of the perturbation vector b(xs(t̂)+y, t) ≈ b(xs(t̂), t)+
[
∂b(xs(t̂), t)/∂xs(t̂)

]
y. In contrast

with the first-order equation in (6.12) where u1(t̂) is the persistent mode, here, u1(t̂)+G(t̂)y

is employed as an approximation for the persistent mode off the limit cycle γ.

6.3.4 Orbital Deviation Equation and Consistency

Next, we derive a differential equation for the orbital deviation y, show that the second-order

phase equation is consistent with Assumption 6.3.1 and it is indeed founded on quadratic

isochron approximations. Our treatment here follows the flow in Section 6.2 used for the

first-order case.

The following lemma states that if the state dependent perturbation is first expanded into

a first-order Taylor series around the limit cycle and then projected (using the generalized

bases we have established in Section 6.3.2) onto the persistent mode u1, then the solution

of the perturbed oscillator equations is simply equal to a time/phase-shifted version of the

periodic steady-state solution xs(t), where the phase shift is exactly characterized by the

generalized phase t̂ that is the solution of the second-order phase equation in (6.32).

Lemma 6.3.1 The solution t̂ of the second-order phase equation in (6.32) satisfies the fol-

lowing equation:

dxs(t̂)

dt
= f(xs(t̂))+

[
v1(t̂) +H(t̂)y

]
T

[

b(xs(t̂), t) +
∂b(xs(t̂), t)

∂xs(t̂)
y

]

u1(t̂)

(6.33)

Proof: As in the proof of Lemma 6.2.1, we note that dxs(t̂)/dt̂ = f(xs(t̂)) = u1(t̂), and

evaluate
[
dxs(t̂)/dt̂

] [
dt̂/dt

]
. �

We now proceed to derive an equation for the orbital deviation. We approximate the

perturbed oscillator equations in (6.6) through second and first order (in contrast with the
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first and zeroth order expansions in Section 6.2) Taylor expansions of f(x(t)) and b(x(t), t),

respectively, around xs(t̂) and obtain

dxs(t̂)

dt
+

dy

dt

= f(xs(t̂)) +G(t̂)y +
1

2

∂G(t̂)

∂xs(t̂)
(y ⊗ y)

+ b(xs(t̂), t) +
∂b(xs(t̂), t)

∂xs(t̂)
y

(6.34)

where ∂G(t̂)

∂xs(t̂)
represents a N×N2 matrix and ⊗ denotes the Kronecker product making y⊗y

an N2 × 1 vector. More precisely:

[
1

2

∂G(t̂)

∂xs(t̂)
(y ⊗ y)

]

j

=
1

2

N∑

i=1

N∑

l=1

∂Gji(t̂)

∂xs,l(t̂)
yiyl. (6.35)

We note that two additional, higher-order terms are present in (6.34) compared to (6.16),

which correspond to the additional terms in the second-order phase equation on top of the

ones in the first-order equation in (6.12). We can now precisely characterize the orbital

deviation as below:

Theorem 6.3.2 With the approximations in (6.34), the orbital deviation y = x(t) − xs(t̂)

approximately satisfies

dy

dt
= G(t̂)y +

1

2

∂G(t̂)

∂xs(t̂)
(y ⊗ y)

+

[

b(xs(t̂), t) +
∂b(xs(t̂), t)

∂xs(t̂)
y

]

−
[
v1(t̂) +H(t̂)y

]
T

[

b(xs(t̂), t) +
∂b(xs(t̂), t)

∂xs(t̂)
y

]

[
u1(t̂) +G(t̂)y

]

(6.36)

Note that in view of (6.26) and (6.27), the last term on the right-hand side of (6.36) is

basically a deflated form of b(xs(t̂) + y, t) ≈ b(xs(t̂), t) +
[
∂b(xs(t̂), t)/∂xs(t̂)

]
y, with the

component along u1(xs(t̂) + y) ≈ u1(t̂) +G(t̂)y, the persistent mode off γ by y, extracted.

Proof: Subtracting (6.33) from (6.34), we obtain (6.36) with the addition of the following

term to the right-hand side

[
v1(t̂) +H(t̂)y

]
T

[

b(xs(t̂), t) +
∂b(xs(t̂), t)

∂xs(t̂)
y

]
[
G(t̂)y

]
(6.37)
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which is a higher-order term due to the presence of an additional y in G(t̂)y, and hence

deemed negligible compared with the other terms. �

The next theorem captures the consistency of the orbital deviation equation derived

above:

Theorem 6.3.3 The orbital deviation y that satisfies (6.36) is consistent with Assump-

tion 6.3.1, i.e., it (approximately) resides in a quadric hypersurface that is defined by the

quadratic isochron approximations in (4.10).

Proof: This is only a proof sketch. A full version of the proof is included in Appendix

Section C.2. We multiply (6.36) from the left by
[
v1(t̂) +H(t̂)y

]
T

. Then, assuming dy/dt ≈
dy/dt̂, omitting higher order terms, and through several manipulations from the phase

Hessian theory of Section 4.2, we show that the instantaneous value of y that solves (6.36)

satisfies (4.10) with t replaced by t̂. �

6.3.5 Simplified Second-Order Phase Equation

If we compare the first-order phase equation in (6.12) and the associated orbital deviation

equation (6.18) with the second-order versions in (6.32) and (6.36), we observe two key

distinctions:

• The coupling between the first-order equations are one way, i.e., the orbital deviation

equation in (6.18) requires the solution of the phase equation in (6.12), however, the converse

is not true, i.e., the phase equation can be solved by itself without coupling it to the solution

of (6.18). This is a key benefit, and the main reason behind the popularity of the first-order

phase equation as it represents a significantly-reduced-order nonlinear model (from many

equations to one) for an oscillator. On the other hand, the coupling between the second-

order equations for the phase and the orbital deviations is two way, requiring a coupled

solution.

• The phase equations in both cases are nonlinear, i.e., the right-hand-sides of both the

first-order phase equation in (6.12) and the second-order equation in (6.32) are nonlinear in

t̂. On the other hand, the first-order orbital deviation equation is linear in y whereas the

second-order one is nonlinear, i.e., the right-hand-side of (6.36) is a quadratic function of y

if the third-order quantity in the last term is ignored.
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Having to solve nonlinear coupled equations simultaneously for the phase and orbital

deviation is the price one pays in exchange for improved accuracy. One may argue that this

high a price is not justified. On the other hand, it is indeed possible to reach a compromise

between first and second order phase equations as follows, thanks to the phase equation

theory and approximation framework developed herein. The description of orbital deviation

dynamics by a set of equations as large as the original system for an oscillator is actually

what leads one to question the usefulness of the second order phase equation. One may apply

model order reduction techniques to the nonlinear (quadratic) orbital deviation equations,

but these methods are not yet well developed. Recalling that such reductions for linear

systems are well-established, one may replace the quadratic orbital deviation equations with

a set of linear ones, thus trading off some of the accuracy gained through our formulations

for the applicability of these reduction techniques. We present then the simplified (and

reducible) second order phase macromodel as

dt̂

dt
= 1+

[
v1(t̂)

]
T

[

b(xs(t̂), t) +
∂b(xs(t̂), t)

∂xs(t̂)
y

]

+

bT(xs(t̂), t)H(t̂)y

(6.38)

dy

dt
= G(t̂)y +

[

b(xs(t̂), t)−
[

vT

1(t̂)b(xs(t̂), t)

]

u1(t̂)

]

(6.39)

Above, (6.39) is exactly the same as (6.18), from the first order phase equation theory.

(6.38) is obtained from (6.32), by omitting the quadratic term in y. See also Appendix

Section A.4 for a procedure that suggests the derivation of perhaps a practically usable

and scalar phase equation that is in theory more accurate than again the scalar first-order

equation of Section 6.2.

6.4 Phase Computation Schemes

The phase computation schemes are simpler methods to compute the instantaneous phase of

a perturbed oscillator. Unlike the phase equations, the schemes must have a priori available

the perturbed oscillator solution, i.e., solution of (6.6), for which they are used to compute

the phase. The brute-force scheme to be described below in Section 6.4.1 aims to compute

on which exact isochron a point in the domain of attraction resides. This scheme directly

makes use of the asymptotic phase property. The linear and quadratic phase computation
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schemes (of Sections 6.4.2 and 6.4.3) compute, on the other hand, respectively the linear and

quadratic isochron approximations on which a point in W lies. In view of these explanations,

it is not really required for phase computations through the schemes to have oscillator

states residing in a perturbed oscillator trajectory, i.e., the schemes treat individual points

independently one by one. Some implementation notes and subtleties involved with the

schemes are given in Section 6.4.4.

6.4.1 Brute-Force Phase Computations for Perturbed Oscillators

The brute-force method for phase computations is directly based on Definition 3.1.4 for

asymptotic phase, Definition 4.1.1 for isochrons, and the connection between asymptotic

phase and isochrons. In this method, the perturbed solution x(t) of (6.6) and the unper-

turbed solution xs(t) (of (6.6) with perturbation b(t) set to zero) are computed and recorded

at a set of time points. Then, for each one of these time points, we determine the isochron on

which the perturbed solution x(t) resides and compute the corresponding phase shift with

respect to the unperturbed solution xs(t) as follows: At a particular time point t0, x(t0) is

not necessarily and not generally on γ and also will have registered a phase shift α(t0) (a

constant value since t0 is a particular time point) with respect to xs(t0). The unperturbed

ODEs for the oscillator (in (3.1) with the perturbation set to zero) are solved from t = t0

with initial condition x(t0) for “some” time (generally for a great many number of periods) in

order to obtain the steady-state periodic solution x∗(t), which will have become “almost” pe-

riodic for t � t0. In other words, x∗(t) eventually settles to tracing the limit cycle γ as time

progresses and after all of the transients have died. The phase shift between x∗(t) and the

unperturbed periodic solution xs(t) at some t � t0 will be α(t0). After the long simulation,

α(t0) can be calculated through various methods. For instance, the phase shift between x∗(t)

and xs(t) can be easily computed by calculating the first-harmonic Fourier series coefficients

for these periodic waveforms based on either the numerically evaluated Fourier integral or

DFT/FFTs depending on whether these waveforms have been uniformly sampled as a func-

tion of time. Then, the phase t̂(x(t0)) is found through t̂(x(t0)) = t0+α(t0). We stress here

that in order to obtain the transient phase trajectory for the perturbed solution, the above

computation has to be repeated for all of the recorded time points of the perturbed solution

x(t).
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The brute-force method for phase computations described above does not involve any

approximations for the isochrons, and can ideally yield very accurate results. However,

this method is hampered by the execrable need to simulate (i.e., solve) the ODEs for the

oscillator for very long (ideally infinite) intervals of time. Since inaccuracies may arise due

to finite simulation time and the residual transients that have not died completely, and as

a result of round-off error accumulation when ODEs are numerically solved for very long

time intervals, the brute-force method is not only extremely inefficient but may also yield

grossly inaccurate results. Still, it can be used to test the performances and accuracies of

alternative methods in carefully run experiments on simple examples, at the expense of the

predicament just stated.

6.4.2 Phase Computations with Linear Isochron Approximations

In this new scheme we propose for phase computations, the perturbed solution x(t) is first

computed by numerically integrating the set of ODEs in (6.6). At every time point during

this numerical integration, we simply use the linear isochron approximations in order to

determine on which isochron the perturbed solution x(t) resides and hence determine its

phase t̂ = t̂(x(t)). We do this by solving the following equation (that describes linear

isochrons) for t̂

vT

1(t̂)
[
x(t)− xs(t̂)

]
= 0 (6.40)

that is based on (4.21) and y = x(t) − xs(t̂). In solving the above equation for t̂, we are

essentially searching for that point xs(t̂) on the limit cycle γ which is in-phase with x(t)

using the linear isochron approximations. We note here that even though the above equation

is based on linear isochron approximations, it is a nonlinear equation in terms of t̂. We use

Newton’s method to numerically solve this equation for t̂ at every time point during the

numerical integration of (6.6) for x(t). In applying Newton’s method to (6.40), we need the

Jacobian (in this case a scalar) of the equations with respect to t̂, which can be determined

as follows by applying (3.9)

d

dt̂

[
vT

1(t̂)
[
x(t)− xs(t̂)

]]

= −vT

1(t̂)G(t̂)
[
x(t)− xs(t̂)

]
− vT

1(t̂)u1(t̂)

= −vT

1(t̂)G(t̂)
[
x(t)− xs(t̂)

]
− 1, (6.41)
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noting that x(t) in this context is merely a constant and that we have used (3.13). For the

Newton’s method to converge reliably, a close enough initial guess for t̂ is needed as well.

Due to the assumption on the initial condition of (6.6), we have x(0) = xs(0) and therefore

t̂(x(0)) = 0. In solving (6.40) at time point t for t̂(x(t)), we simply use t̂(x(t −∆t)) as the

initial guess, i.e., the value of t̂ from the previous time point that has just been computed,

which should be sufficient in most cases. If it is needed, one can always use more elaborate

extrapolation schemes that involve more than one previous time point in order to generate

a better initial guess for t̂.

We note here that since the quantities xs(t) and v1(t) are available only at discrete time

points as they are numerically computed, interpolations will be necessary when carrying out

Newton’s method explained above.

6.4.3 Phase Computations with Quadratic Isochron Approximations

The phase computation scheme we have proposed in Section 6.4.2 can be modified in a

straightforward manner to use the quadratic isochron approximations instead of the linear

ones so that its accuracy is improved. One would simply replace (6.40) with

vT

1(t̂)
[
x(t)− xs(t̂)

]

+
1

2

[
x(t)− xs(t̂)

]
T

H(t̂)
[
x(t)− xs(t̂)

]
= 0. (6.42)

that is based on the quadratic isochron approximation in (4.10) with y(t̂) = x(t) − xs(t̂).

In solving the scalar nonlinear equation above for t̂ using Newton’s method, we need the

following derivative

d

dt̂

[

vT

1(t̂)
[
x(t)− xs(t̂)

]

+
1

2

[
x(t)− xs(t̂)

]
T

H(t̂)
[
x(t)− xs(t̂)

]
]

= −vT

1(t̂)G(t̂)
[
x(t)− xs(t̂)

]
− vT

1(t̂)u1(t̂)

−uT

1(t̂)H(t̂)
[
x(t)− xs(t̂)

]

+
1

2

[
x(t)− xs(t̂)

]
T dH(t̂)

dt̂

[
x(t)− xs(t̂)

]
(6.43)

= −1 +
1

2

[
x(t)− xs(t̂)

]
T dH(t̂)

dt̂

[
x(t)− xs(t̂)

]
(6.44)

Above, the first two terms arise similarly as in (6.41); note that the transition from (6.43)

to (6.44) is possible through (3.13) and (4.39), and again the fact that H(t) is symmetric.
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Also, the differential term in (6.44) can be calculated through the fact that H(t) satisfies

(4.22) so that we have

dH(t̂)

dt̂
= −GT(t̂)H(t̂)−H(t̂)G(t̂)−M(t̂). (6.45)

This scheme as well requires interpolations on all of xs(t), v1(t), and H(t) when implementing

Newton’s method as these quantities are computed numerically and available at a set of

discrete time points.

6.4.4 Implementation Notes for the Approximate Phase Computation Schemes

The new phase computation schemes of Sections 6.4.2 and 6.4.3 may suffer failures originat-

ing from one main issue if the Newton’s methods for numerically solving (6.40) and (6.42) are

not implemented carefully: Isochrons foliate the domain of attraction of the limit cycle and

one and only one isochron passes through a particular point in W. This is required for all of

the points in the domain of attraction to have a well-defined, unique phase. Well behaved

oscillators that have the asymptotic phase property obey this condition. However, in some

regions in the domain of attraction, different isochrons can come close to each other and

result in a situation where (6.42) possesses multiple solutions that are close to each other.

If the bare, standard Newton’s method is used in this case to solve (6.42), the derivative

(Jacobian) may become quite small due to the other nearby solutions and cause problems.

Since the desired solution is still the one that is closest to the initial guess, a modified (with

limiting or damping, or a simple homotopy) Newton’s method can rectify the problem here.

We also note that (6.40) and (6.42) always have multiple solutions that are separated from

each other with integer multiples of the period of oscillation, but these rarely cause problems

in Newton’s method as the undesired solutions are far away from the desired one and the

initial guess used.

One can also encounter other problems in solving (6.40) and (6.42) due to relatively mild

inaccuracies of linear and quadratic isochron approximations. If exact isochrons are consid-

ered, one and only one isochron passes through every point in the domain of attraction of a

limit cycle. However, this is not necessarily true for the linear or quadratic approximations

of isochrons. Given a point in the domain of attraction, there may not exist any isochron

approximation passing through it even though there may be one that is close to it. In this
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case, (6.40) and (6.42) will not have solutions where the LHS evaluates to zero. In such

a situation, a sensible algorithm should find the value of t̂ such that the absolute value of

the LHS of (6.40) or (6.42) is minimized, i.e., compute the t̂ corresponding to the closest

isochron approximation. Here, an algorithm that searches for a minimum as opposed to a

zero-crossing makes more sense. We should recall here that (6.40) and (6.42) are both scalar

nonlinear equations with a single scalar unknown t̂, a much easier problem to solve than a

multi-dimensional nonlinear equation. One can use a variety of algorithms for solving nonlin-

ear scalar equations, ranging from bisection search to minimization approaches to Newton’s

method, some of which are not practical (or do not make sense) in the multi-dimensional

case.

Finally, we should note that if the numerical solutions of (6.40) and (6.42) fail to produce

sensible results despite the utilization of a sophisticated algorithm for finding the zero-

crossing or the extremum, it most likely means that the oscillator solution is moving too far

away from the limit cycle for the kinds of perturbations considered rendering the linear and

quadratic isochron approximations inaccurate for phase computations.

6.5 Overview of Phase Computation Schemes and

Phase Equations for Perturbed Oscillators

We now present a classification framework for the phase equations (exact, first-order, second-

order, simplified second-order) discussed so far in the thesis (in Sections 6.1 through 6.3) and

also put them into context with other phase computation schemes for perturbed oscillators

that were described in Section 6.4.

As discussed previously, the phase equations that were derived in this thesis can serve

as reduced-order or reduced-complexity models for perturbed oscillators. As such, they are

used to replace the original equations for perturbed oscillators in (6.6) in analytical as well

as numerical studies of various phenomena such as phase noise and timing jitter in electronic

oscillators [5] and the synchronization of coupled oscillators in neurological models [1]. The

great utility of phase equations in analytical studies arises from two distinct properties:

1) The phase equations explicitly involve a scalar quantity or concept called phase, that

is related to time, which makes it very convenient to define and analyze the time keeping

performance and synchronization of oscillators.
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2) The phase equations are in a much simpler form when compared with the original oscilla-

tor equations. For instance, the first-order phase equation described in Section 6.2 is a scalar

nonlinear differential equation, and the simplified second-order phase equation described in

Section 6.3.5 reduces the original set of nonlinear differential equations for the oscillator to

a scalar nonlinear differential equation and a set of linear differential equations.

On the other hand, there exist certain applications, where numerical simulations of oscil-

lation phenomena are performed and a technique for transient phase computations is needed

(i.e., the phase of an oscillator given a particular perturbation waveform needs to be com-

puted). In this case, the model reduction aspect of phase equations is not needed, and

indeed, at the expense of having available a priori the numerical solution of (6.6) for the

given perturbation, one can perform more accurate phase computations through the schemes

that were explained in detail in Section 6.4, which will be appropriately acronymized next.

In all of the three phase computation schemes, one first numerically solves the original

oscillator equations in (6.6) for a given perturbation to obtain the perturbed solution x(t).

Then, the phase t̂(x(t)) that corresponds to x(t) is computed by simply determining the

isochron on which x(t) resides. The three schemes differ from each other in the sense

whether they employ approximations for the isochrons in this determination, and if they do,

whether the approximation is linear or quadratic.

PhCompBF Brute-Force Phase Computation Scheme with No Approximations for Isochrons:

See Section 6.4.1 for the detailed explanation. This method finds the exact isochron on which

a point in W resides.

PhCompLin Phase Computation Scheme based on Linear Approximations for Isochrons:

See Section 6.4.2. This method finds the linear isochron approximation that a particular

point lies on.

PhCompQuad Phase Computation Scheme based on Quadratic Approximations for Isochrons:

This technique is very similar to the scheme PhCompLin (see Section 6.4.3). With this

method, the quadratic isochron approximation that accommodates a particular point is

computed.
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Figure 6.1: Unified framework of phase computation methods.

6.5.1 Classification of

Phase Computation Schemes and Phase Equations

We are now in a position to put into context the phase equations (explained in Sections

6.1 through 6.3) and the phase computation schemes (of Section 6.4). The classification

framework to be presented reveals that basically two intertwined approximations are at

work. First, isochrons may be approximated linearly (as in the model of Section 6.2 and

PhCompLin) or quadratically (as in the model in Section 6.3, the simplified model of

Section 6.3.5, and PhCompQuad). Second, the orbital deviation approximation can be

not employed at all (as in PhCompLin and PhCompQuad, and this is the reason that

the computation schemes need the perturbed solution to be available), or linear (as in the

models of Section 6.2 and Section 6.3.5), or quadratic (as in the model of Section 6.3).

We now classify the phase computation schemes and the phase equations based on the

two kinds of approximations described above. The phase computation schemes introduced

in Section 6.4 were labeled as PhComp(IsoApp) where IsoApp was set to either Lin or Quad

to indicate whether linear or quadratic isochron approximations were used, and to BF to

indicate that the isochrons were computed in a brute-force manner without employing any

approximations. The phase equations are now labeled as PhEqn(IsoApp)(OrbApp), where
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IsoApp is set to L or Q indicating that (L)inear or (Q)uadratic isochron approximations are

being used, whereas OrbApp is set to L or Q to indicate the nature of the approximations

employed for the orbital deviation:

PhEqnLL : First-order phase equation in (6.12) with the associated (linear) orbital devi-

ation equation in (6.18).

PhEqnQQ : Second-order phase equation in (6.32) with the associated (quadratic) orbital

deviation equation in (6.36).

PhEqnQL : The simplified second-order phase equation in (6.38) and the associated (lin-

ear) orbital deviation equation in (6.39).

The classifications of the phase computation schemes and phase equations are summa-

rized in Figure 6.1. We note that the phase computation schemes, PhCompLin and Ph-

CompQuad are new and were introduced in Section 6.4.2 and Section 6.4.3, respectively.

The phase macromodels PhEqnQQ and PhEqnQL are new and introduced in Section 6.3

and Section 6.3.5, respectively. The new methods have unshaded background whereas the

ones previously known in the literature have shaded backgrounds in Figure 6.1. The starred

phase equations do not need to have the perturbed solution available to compute the phase

shift.

6.5.2 Choice of Phase Computation Method

The choice depends on both the accuracy of the method, which is a direct consequence of

the isochron approximation employed, and also the computational complexity incurred.

First, we comment on accuracy. Particularly in the case of phase equations, we will have

to decide whether to employ linear (first order) or quadratic (second order) approximations.

The simple rule of thumb is as follows: We compute the phase t̂ and y with a second order

method. If the component of y along v1(t̂) (this component is always zero through a first

order method) turns out to be significant on average (by some pre-determined measure),

then we stick with the second order method. If not, a first order method can be used. A

more detailed account on this issue is given in Appendix Section A.3.
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Figure 6.2: Phase computation schemes for the simple oscillator.

Second, we comment on complexity. Let us denote by N the number of states, K

the number of timepoints along a single period, and L the number of timepoints along

the interval of phase computation. We assume xs(t) and v1(t) are computed exploiting

sparsity in O(N K) time, whereas H(t) (not sparse) takes O(N3 K) (see Section 4.2.4).

Perturbed solution computation is O(N L). We assume that matrix vector multiplications

and linear system solutions with sparse matrices can be done in linear time. Then we have:

PhCompBF incurs O(nperKN L + LK log2 K) (nper, ideally infinite, is the number of

periods to simulate before making sure the solution settles to γ, and the logarithmic term is

due to FFT), PhCompLinO(N L), PhCompQuadO(N2 L), PhEqnLLO(N L), and the

multi-dimensional PhEqnQQ and PhEqnQL both O(N3 L). We observe that the phase

computation problem poses a trade-off between accuracy and speed. A lengthy and detailed

explanation on the derivation of these complexities is provided in Appendix Section B.1.

6.6 Results for Phase Computation Methods

We now compare the phase computation schemes and the phase equations (both already

known and new) based on the carefully computed results of the brute-force method Ph-

CompBF. In all figures, the resulting phase shift α(t) = t̂(xp(t)) − t due to perturbations

as described are shown. We present results for a simple polar oscillator and two electronic

oscillators.
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Figure 6.3: Phase equations for the simple oscillator.

6.6.1 Simple Oscillator

This simple planar oscillator is described in polar coordinates with the equations ṙ = 1− r

and θ̇ = r. The only limit cycle (stable periodic solution) is given by r = 1 (the unit

circle), with the initial condition (r0 = 1, θ0 = 0), corresponding to xs(t) = (cos(t), sin(t)) in

Cartesian coordinates. The phase of this system around r = 1 is given by t̂(r, θ) = θ+ r− 1

[2] (see Appendix Section A.1 for analytical derivations on this oscillator). We may thus

use the exact phase equation PhEqnExact in (6.7), but PhCompBF complies well with

PhEqnExact for this oscillator. Therefore, we compare the accuracies of approximate

methods against PhCompBF, as for the other oscillators in this section.
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Figure 6.4: Pulse perturbations on the simple oscillator.
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We first perturb the simple oscillator with b1(t) = 0.5 exp(−0.1 t) for 1.5 periods, i.e. for

0 ≤ t ≤ 1.5T . Note that b1(t) is the first entry of the perturbation vector b(t) in (6.6), and

b2(t) = 0. For 1.5T < t ≤ 2T , b1(t) = 0. Therefore, the phase shift must exhibit changes in

the interval 0 ≤ t ≤ 1.5T and must remain constant for 1.5T < t ≤ 2T . In Figure 6.2, where

we compare phase computation schemes and PhEqnLL with PhCompBF, it is observed

that PhCompQuad and PhCompBF are almost a perfect match. PhCompLin deviates

from PhCompQuad only a little but it is also extraordinarily accurate. The acclaimed

model PhEqnLL is not as accurate. In Figure 6.3, the phase equations are compared

against PhCompBF. The proposed macromodels PhEqnQQ and PhEqnQL are both

more accurate than PhEqnLL, and PhEqnQQ appears to be the most accurate model

among the phase equations. Also note that none of the phase equations in Figure 6.3 are

more accurate than the phase computation schemes of Figure 6.2.

The other simulation concerning the simple oscillator involves pulse-shaped perturba-

tions. We test the accuracy of PhEqnLL and PhEqnQQ against that of PhEqnExact

(computable in this case and interchangable with PhCompBF), by perturbing the oscil-

lator with pulses of a fixed duration and varying magnitudes. The duration is two (about

one third of T ), i.e., a pulse of magnitude A (A varies between 0.05 and 0.75) afflicts the

oscillator for 0 ≤ t ≤ 2 and afterwards the oscillator runs free. We compute the cumulative

phase shift that the oscillator suffers, with PhEqnExact, PhEqnLL and PhEqnQQ. The

results are depicted in Figure 6.4. It is observed that PhEqnLL differs significantly from

PhEqnExact as the magnitude of the pulse increases. PhEqnQQ follows PhEqnExact

much more closely and is still accurate for larger pulse magnitudes, as expected, though in

the extreme case (when A = 0.75) PhEqnQQ error is significant as well.

6.6.2 LC Oscillator

Figure 6.5 depicts an LC oscillator with the following set of differential equations describing

its operation.

−C
dv(t)

dt
=

v(t)

R
+ i(t) + S tanh

(
Gn

S
v(t)

)

+ b(t)

L
di(t)

dt
= v(t) (6.46)
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Figure 6.5: LC oscillator.

b(t) is the perturbation. When b(t) = 0, the circuit is a free-running oscillator. The param-

eters are given as L = 4.869× 10−7/(2π) H, C = 2× 10−12/(2π) F, R = 100 ohms, S = 1/R

and Gn = −1.1/R. The LC circuit resonates at 1 GHz. The set of parameters is borrowed

from [37].

We perturb this oscillator with b(t) = 3×109×C× exp(−0.05 t / 10−9), for 0 ≤ t ≤ 1.5T

and then the perturbation is shut off. In Figure 6.6, it is observed that both PhCom-
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Figure 6.6: Phase computation schemes for the LC oscillator.
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Figure 6.7: Phase equations for the LC oscillator.

Figure 6.8: 3-stage ring oscillator.

pLin and PhCompQuad follow PhCompBF fairly closely, whereas PhEqnLL deviates

significantly from these three. Findings for the phase equations (in Figure 6.7) show that

PhEqnQQ and PhEqnQL are closer to PhCompBF, with PhEqnQQ tracing a more

accurate curve. PhEqnLL is again observed to drift away from the other three.
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Figure 6.9: Phase computation schemes for the ring oscillator.

6.6.3 Ring Oscillator

Figure 6.8 depicts a three-stage ring oscillator with the differential equations

−C1
dv1(t)

dt
=

v1(t)

R1
− tanh(Gm3 v3(t))

R1

−C2
dv2(t)

dt
=

v2(t)

R2
− tanh(Gm1 v1(t))

R2
(6.47)

−C3
dv3(t)

dt
=

v3(t)

R3
− tanh(Gm2 v2(t))

R3

having identical stages with C = 2 nF, R = 1 kohms, and Gm = −5, resulting in an

oscillation frequency of 1/T = 153498 Hz. The parameter set is borrowed from [37].
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Figure 6.10: Phase equations for the ring oscillator.
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We perturb this oscillator with b1(t) = 1.1 × 105 × C1 × exp(−0.19 t / (6.5147 × 10−6))

for 0 ≤ t ≤ T/3 and then the perturbation is shut off. Note that b2(t) = b3(t) = 0 in

(6.6). Figure 6.9 shows that PhCompQuad follows PhCompBF just a little more closely

than PhCompLin. PhEqnLL is somewhat off the target. In Figure 6.10, PhEqnQQ,

PhEqnQL and PhEqnLL are sorted in order of decreasing accuracy, as expected.

6.7 Summary

In this chapter, we have made use of the isochron concept and the local (both linear and

quadratic) approximations of isochrons (explained in Chapter 4) in order (a) to review and

explicate in a precise manner known and (b) to construct and propose novel phase compu-

tation methods (both phase equations and phase computation schemes). These methods are

all designed to solve the oscillator phase computation problem stated in Section 5.4. Phase

equations can be used when the capability is needed to delve into semi-analytical investi-

gation about phase perturbations and noise. Phase computation schemes provide accurate

and fast transient phase simulation results. Phase equations can also be used for transient

phase simulations. Analyses and tests in this chapter reveal that the phase equations provide

faster but less accurate transient simulation results, compared to the schemes. However, the

phase computation schemes appear to yield extraordinarily accurate results in many cases.
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Chapter 7

PHASE COMPUTATIONS AND PHASE MODELS

FOR DISCRETE MOLECULAR OSCILLATORS

This chapter is aimed to apply the phase computation techniques of Chapter 6 to dis-

crete molecular biochemical oscillators. These proposed methods are not applicable to such

oscillators in a straightforward manner. On the contrary, several manipulations and approx-

imations have to be taken into account. We will shortly review molcular oscillators, provide

information on several technical points. Then, after a literature review on previous work, we

will proceed to explain how our methods can be applied to extract useful phase information

from noisy biochemical oscillators. An intuitive presentation of the results will follow.

7.1 Introduction

7.1.1 Oscillators in Biological Systems

Biological oscillations are observed in population dynamics models, in neural systems [1],

and in circadian rhythms [2]. Genetic oscillators are responsible for setting up the circadian

rhythms [3]. Circadian rhythms are crucial for the survival of many species, therefore their

impairment causes many health problems [38, 39]. For instance, working night shifts has been

recently listed as a probable cause of cancer by the World Health Organization [40, 41, 42].

A milestone in synthetic biology is the work in [43] reporting on a genetic regulatory network

called the repressilator, essentially a synthetic genetic oscillator.

In addition to studies in electronics analyzing the effects of perturbations and noise on

oscillators (i.e., degraded spectral and timing properties) [4, 5], a good deal of research work

for several decades has focused on the behavior of biological oscillators under various types

of disturbances [1, 2, 6, 7].
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7.1.2 Phase Computations for Discrete Oscillators

We have proposed in Section 4.2 a numerical method for the computation of quadratic ap-

proximations for the isochrons of oscillators, and along with linear approximations, which

were previously covered in the literature, we have used these paradigms to establish the

theory on the phase computation methods proposed in Chapter 6. In Section 6.2, we have

reviewed the derivation of the first-order phase equation, with a formulation based on the

isochron-theoretic oscillator phase. The first-order phase equation is based on the linear

approximations for isochrons [2, 14, 1]. On top of this, in Section 6.3 we have also made use

of again the quadratic isochron approximations of Section 4.2 to derive a novel second-order

phase equation that is more accurate than the linear. The phase computation schemes of

Section 6.4 are algebraic equations that can be used to solve for oscillator phase in a simple

direct manner. However, the phase equations and phase computation schemes discussed

above are founded on continuous oscillators described by differential equations. Therefore,

these models and techniques do not directly facilitate the analysis of molecular oscillators

with discrete-space models. In this chapter, we present a methodology, enabling the ap-

plication of these continuous phase models and phase computation schemes on biological

oscillators modeled in a discrete manner at the molecular level. This chapter details and

expands on our contributions over this methodology.

We now summarize the workflow followed in the methodology and also give an outline

of the chapter. Section 7.2 provides background information describing how the discrete

model of the oscillator is transformed into a continuous, differential equation model through

a limiting process based on the assumption that the concentration of molecular species in the

model of the oscillator are large so that discrete effects are negligible [44, 45, 46, 47, 48, 49].

Section 7.2.5 reviews Gillespie’s Stochastic Simulation Algorithm (SSA) [45], a Monte Carlo

type of simulation scheme for discrete-state molecular systems. Reaction events in an SSA

sample path are the most crucial ingredients in translating the continuous-state formalism

on oscillator phase for use on molecular oscillators.

In Section 7.3, we provide a brief literature review of the approaches taken in the phase

noise analysis of oscillators. Several seminal articles in the literature [50, 51, 28, 27, 52,

5, 53] are categorized according to three classification schemes in particular: the nature

of the oscillator model used, the nature of the analysis method, and the phase definition
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adopted. We also classify in Section 7.3 the approach proposed in this chapter within the

same framework.

Section 7.4 actually describes the novel contribution of this chapter, i.e., how discrete-

state oscillator phase computation is accomplished using the paradigms of phase equations

and phase computation schemes. Based on the continuous model developed in Section 7.2,

a continuous phase model is constructed in a straightforward manner using the phase mod-

eling techniques mentioned before. The continuous phase model is then discretized. In

this discretization, the noise sources that are associated with the phase model are repre-

sented as a cumulation of the events that occur in the discrete, molecular level model of

the oscillator. Through this two-way continuous-discrete transformation mechanism, we are

able to perform phase computations for discrete, molecular oscillators based on the phase

model theory for continuous oscillators. Moreover, a one-to-one comparison with full SSA

(Stochastic Simulation Algorithm) [45] based simulations is possible, since the noise sources

in the phase computation are synthesized from exactly the same events in the SSA simula-

tion. If this technique is employed to run phase simulations for intricate discrete, molecular

oscillators and the results are compared to the ones from full discrete simulations using

SSA, it is expected that, for oscillators with a large number of molecules for every species,

the transient phase waveforms should be quite accurate, since the oscillator that involves a

large number of molecular species operates close to its continuous-deterministic limit, with

small deviations. As such, the phase model constructed from the continuous-limit model

of the oscillator is accurate. However, in many biological molecular oscillators, the number

of molecules can be quite small. Such oscillators deviate too much from their continuous

limit, and hence phase computations via continuous first-order phase models based on linear

isochron approximations become inaccurate. This observation in fact prompted our work

on the quadratic approximation theory and computational techniques for the isochrons of

oscillators. With phase computation schemes based on quadratic isochron approximations,

more accurate phase computations for discrete oscillators even with few molecules can be

performed. The deviations from the continuous-deterministic limit is much better captured

with quadratic (instead of linear) isochron approximations.

Section 7.5 explains how and where molecular oscillator models can be obtained to test

the proposed algorithms, which types of information are obtained from the models in prepa-
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ration for oscillator phase analysis, numerical implementation details for the proposed phase

computation methods, and in this section are also derived the computational complexities for

these methods. Section 7.6 provides performance results for the phase computation methods

running on inricate molecular oscillators. The results are as expected, i.e., phase equations

are quite accurate and fast for oscillators in a larger volume with big molecule numbers for

the species, but they lose accuracy when a smaller volume is considered and noise effects

become pronounced. Phase computation schemes are always very accurate, even in smaller

volumes, but they are not as fast as the equations. Section 7.7 concludes the chapter and

suggests some future research directions.

7.2 Modeling and simulation of discrete molecular oscillators

In this section we review, after giving preliminary information (Section 7.2.1), some crucial

paradigms in the modeling of discrete molecular oscillators: a model that is the complete

probabilistic characterization of a discrete system, known as the Chemical Master Equation

or CME (Section 7.2.2), a continuous deterministic approximation to the CME in the form

of the Reaction Rate Equation or RRE (Section 7.2.3), and the steps that let us proceed

to a continuous stochastic model, the Chemical Langevin Equation (CLE), from again the

CME (Section 7.2.4). Also a descriptive review of the SSA algorithm of Gillespie [45] for

the simulation of molecular models is provided in Section 7.2.5.

7.2.1 Preliminaries

We first describe a mathematical model for an autonomous, discrete molecular oscillator

based on a stochastic chemical kinetics formalism [44, 45, 46, 47, 48, 54]. We consider N

molecular species denoted by S1,S2, . . . ,SN . Let X be the stochastic vector [X1,X2, . . . ,XN ]T

where Xi is the number of molecules of species Si in the reaction chamber (i.e., a cell). The

M reactions taking place among these molecular species are denoted by R1,R2, . . . ,RM . Let

aj(X) denote the propensity [45, 47] of reaction j, i.e., the probability that one Rj reaction

will occur somewhere in the system in the next infinitesimal time interval [t, t+ dt) is given

by aj(X) dt, i.e.,

P (Rj occurs in [t, t+ dt)) = aj(X) dt (7.1)



Chapter 7: Phase Computations and Phase Models

for Discrete Molecular Oscillators 84

Let sji denote the change in the number of molecules of species Si as a result of one Rj

reaction. We define the stoichiometry vector sj

sj = [sj1, sj2, . . . , sjN ]T (7.2)

for reaction Rj , and the N ×M stochiometry matrix [47]

S = [s1, s2, . . . , sM ] (7.3)

7.2.2 Chemical master equation

The following derivation follows closely that outlined in [47]. Let us take a note of the

events X(t+ dt) = x, X(t) = x − sj and X(t) = x, where dt is an infinitesimal time

element. Through several manipulations making use of these events and taking the limit as

dt → 0 [47], we obtain

d P (x, t)

dt
=

M∑

j=1

[aj(x− sj)P (x− sj , t)− aj(x)P (x, t)]
(7.4)

where P (x, t) denotes the probability that the system is at state x at time t. The above is

known as the CME [47, 48, 49, 54]. If we enumerate all the (discrete) state configurations

X can be in as C1, C2, . . . , Cns and define

pi(t) = P (x = Ci, t) (7.5)

p(t) = [p1(t), p2(t), . . . , pns(t)]
T (7.6)

then, the CME in (7.4) can be written as

d p(t)

dt
= Q p(t) (7.7)

where Q is a constant square matrix with dimension ns× ns, known as the transition rate

matrix [48, 49]. The above is a linear system of homogeneous ODEs, but the number of

state configurations ns is possibly huge. It is usually not practically feasible to construct

and solve (7.7). CME in (7.4) and (7.7) above corresponds to a homogeneous, continuous-

time Markov chain model [48, 49, 54]. The state transitions of this Markov chain are highly

structured and compactly described by the list of the reactions as in the CME. The CME
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provides the ultimate probabilistic characterization for a discrete molecular oscillator. It was

shown that the solution of the CME converges to a unique stationary distribution. For a

discrete molecular oscillator with a limit cycle, this stationary probability distribution takes

the form of a “probability crater” for a planar system with two species [55].

7.2.3 From the stochastic CME to the deterministic rate equations

If we multiply both sides of CME in (7.4) with x and sum over all x, we obtain, as shown

especially in [47, 44],

d E [X(t)]

dt
=

M∑

j=1

sj E [aj(X(t))] (7.8)

We note here that E [aj(X(t))] 6= aj(E [X(t)]) unless aj(x) is a linear function of x. Thus,

in general, (7.8) can not be solved for E [X(t)] since the term aj(E [X(t)]) involves higher-

order moments of X(t) [47]. However, if we assume that the fluctuations of X(t) around

its mean E [X(t)] is negligible and thus can perform a crude moment closure scheme, i.e., if

E [X(t)] = X(t), then (7.8) simplifies to

dX(t)

dt
=

M∑

j=1

sj aj(X(t)) = S a(X(t)) (7.9)

where S is the stoichiometry matrix defined in (7.3) and

a(X(t)) = [a1(X(t)), a2(X(t)), . . . , aM (X(t))]T (7.10)

is an M × 1 column vector of reaction propensities evaluated at X(t). The above system of

deterministic ODEs in (7.9) is known as the RRE [47, 44].

7.2.4 From CME to Langevin model

The derivations in this section have been particularly borrowed from [46]. If we assume

that the reaction propensities aj(X(t)) for j = 1, . . . ,M are constant in [t, t+ dt) (known

as the leap condition) [46, 47], then the number of the times reactions fire in [t, t+ τ) are

independent Poisson random variables [46, 47, 48, 49, 54] with mean and variance equal to

aj(x(t)) τ , denoted by Pj(aj(x(t)) τ) for j = 1, . . . ,M . Hence, we can write

X(t+ τ) = X(t) +

M∑

j=1

Pj(aj(X(t)) τ) sj (7.11)
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If we further assume that aj(x(t)) τ � 1, then Pj(aj(x(t)) τ) can be approximated with

Gaussian random variables:

Pj(aj(x(t)) τ) ≈ aj(x(t)) τ +
√

aj(x(t)) τ Nj(0, 1) (7.12)

where Nj(0, 1) for j = 1, . . . ,M are independent Gaussian random variables with zero mean

and unity variance [46, 47, 48, 49, 54]. Incorporating (7.12) into (7.11), we recognize the

(forward) Euler discretization of the following stochastic differential equation (SDE), known

as a Langevin equation [46, 47, 48, 54]:

dX(t)

dt
= S a(X(t)) + S D

([√

a(X(t))
])

ξ(t) (7.13)

where ξ(t) denotes an M×1 vector of independent white stationary Gaussian processes with

unity (two-sided) spectral density, and

D

([√

a(X(t))
])

=














√

a1(X(t)) 0 · · · · · · 0

0
√

a2(X(t)) 0 · · · 0
... 0

. . . . . .
...

...
...

. . .
. . . 0

0 0 · · · 0
√

aM (X(t))















(7.14)

denotes the diagonal M × M matrix function shown in (7.13). We note here that if the

stochastic, fluctuation term (known as the diffusion term) above is omitted, we obtain the

RREs in (7.9). We note here that, with the Langevin model, the stochastic fluctuations in

the oscillator are captured by the second term in the right hand side in (7.13). This term

represents an additive noise in the model. By zeroing this additive noise term, we are able

to obtain the mean, deterministic dynamics of the oscillator as the solution of the RREs in

(7.9). On the other hand, in the discrete, Markov chain model of the oscillator, the mean,

deterministic behavior of the system and the stochastic fluctuations are not separable from

each other [46, 47, 48, 54].

7.2.5 Stochastic simulation algorithm (SSA)

Even though the CME in (7.4) and (7.7) provides the ultimate probabilistic characterization

for a discrete molecular oscillator, its solution is most often not practical due to the huge
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number of possible state configurations. As a result, one most often performs a stochastic

simulation of the continuous-time Markov chain that models the oscillator and generates a

sample path or a realization for the state vector X(t) as a function of time t. This kind of a

simulation can be performed with a technique called the SSA, proposed in Gillespie’s seminal

work [45]. In the original SSA algorithm [45], the computational cost per reaction event (due

to the generation of a random variable from a dynamic discrete probability distribution)

is O(M) in the number of reactions M . The cost per reaction event can be reduced to

O(logM ) by using a binary tree for random selection of reactions [56], and to O(1) under

certain conditions [57]. One also has to consider the fact that the time gap between reactions

tends to shrink as the number of reactions M , the number of species N , and the number of

molecules of every species increases. This means that the total computational cost of SSA for

a given time period increases as a result [44]. On the other hand, if the numbers of molecules

of all of the species are very large, discrete stochastic simulation of a discrete molecular

oscillator in the sense of SSA may be unnecessary [47, 44]. In this case, the fluctuations

around the deterministic limit cycle will be small, and the continuous Langevin model in

(7.13) may be adequate. As the number of molecules increase, the reaction propensities

aj(X(t)) become larger, and the fluctuation term in the Langevin model in (7.13) become

less and less pronounced in comparison with the drift term, since the magnitude of the drift

term is proportional to the reaction propensities whereas the fluctuation term is proportional

to their square root [46, 47, 48].

Molecular models, their nature (as discrete or continuous, and as stochastic or deter-

ministic), and the algorithms to solve these models are summarized in Figure 7.1. The

approximation that leads us from the discrete stochastic CME to the continuous stochastic

CLE is the Gaussian approximation to Poisson random variables and accordingly the τ -leap

approximation. Similarly, infinite volume approximation takes us from the CLE to the con-

tinuous deterministic RRE. Sample paths in line with the CME can be generated through

SSA. CLE is a type of stochastic differential equation, so it can be solved via appropri-

ate algorithms. Solution of the RRE requires algorithms designed for ordinary differential

equations (ODEs) [46, 47, 48].
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Figure 7.1: Summary of molecular models and corresponding algorithms.

7.3 Related work

A classification scheme for categorizing previous work, pertaining to the phase noise analysis

of biochemical oscillators, can be described as follows.

First, we note that there are basically two types of models for inherently noisy biochemical

oscillators, i.e., discrete and continuous-state. CME describes the probabilistic evolution of

the states of an oscillator, and it is referred to as the most accurate characterization for

discrete molecular oscillators. Through approximations, one derives from CME the CLE,

a continuous-state noisy model. CLE can be used to extract crucial information about the

continuous-state system that is an approximate representation of its discrete-state ancestor.

We note here that, in oscillator phase noise analyses, mostly the continuous-state model has

been utilized [51, 28, 27, 52, 5, 53, 50].

Second, the nature of the phase noise analyses conducted can be considered in two cat-

egories, i.e., semi-analytical techniques and sample path-based approaches. Semi-analytical



Chapter 7: Phase Computations and Phase Models

for Discrete Molecular Oscillators 89

techniques have been developed, in particular, for the stochastic characterization of phase

diffusion in oscillators [50, 51, 28, 27, 52, 5, 53]. In biology, CLE has been used as a tool in

illustrating and quantifying the phase diffusion phenomena [50, 51, 28, 27, 53]. Characteriza-

tion and computations pertaining to phase diffusion in electronic oscillators were carried out

through a stochastic phase equation and the probabilistic evolution of its solutions [5], noting

that the phase equation used was derived from an SDE (a Stochastic Differential Equation

describing a noisy electronic oscillator) that corresponds to the CLE for biochemical oscilla-

tors. In all, these semi-analytical techniques are based on the continuous-state model of an

oscillator. Regarding sample path-based approaches, one may recall that, in discrete state,

SSA is used to generate sample paths, whose ensemble obeys the CME. In continuous state,

CLE can in turn be used to generate sample paths. A recent study [52] illustrates derivations

of the crucial findings presented in [28, 27, 5] and adopts an approach for phase diffusion

constant computation, based on the transient phase computation of CLE-generated sample

paths in an ensemble.

Third, oscillator phase can be defined via two different methods. There are the Hilbert

transform-based and the isochron-based definitions. The phase computation based on the

Hilbert transform [58] takes the evolution of a single state variable within a sample path to

compute the phases of all time points in the whole sample path. The Hilbert transform-based

phase computation technique can be used to compute the phase of any oscillatory waveform,

without any information as to where this waveform came from. The oscillatory waveform

could belong to one of the state variables of an oscillator generated with a simulation. This

method has been utilized in [52, 50] for phase computations of sample paths. The isochron-

theoretic phase (recall that an isochron portrait belongs to a limit cycle of the deterministic

RRE) makes use of all of the state variables and equations for an oscillator. The isochron-

based phase definition assigns a phase value to the points in the state space of the oscillator,

making phase a property of the whole oscillator, not a property of just a certain state variable

or a waveform obtained with a simulation of the oscillator [59, 22]. Note that even though

there appears to be empirical evidence [52, 50] that there is a correspondence between the

Hilbert transform-based and isochron-based phase definitions, a precise connection has not

been worked out in the literature.

The hybrid phase computation techniques proposed in this chapter apply to discrete-
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state models and particularly the SSA generated sample paths of these models, based on the

isochron-theoretic oscillator phase definition. Our approach is hybrid because isochrons are

obtained based on the continuous model but the phase traces are computed for the sample

paths generated by an SSA simulation that is based on the discrete model for an oscillator.

This hybrid approach targets moderately noisy oscillators, within a container of not too large

or small volume, consequently with not too high or low molecule numbers for the species in

the system, respectively.

7.4 Phase Computations based on Langevin Models

There exists a well developed theory and numerical techniques for phase characterizations

of oscillators with continuous-space models based on differential and stochastic differential

equations. As described in Section 7.2.3 and Section 7.2.4, continuous models in the form

of differential and stochastic differential equations can be constructed in a straightforward

manner for discrete molecular oscillators. Thus, one can in principle apply the previously

developed phase models and computation techniques (explained in Chapter 6) to these

continuous models.

The outline of this section is as follows: After presenting the preliminaries (Section 7.4.1),

the phase computation problem is introduced (Section 7.4.2). The methods in Section 7.4.3

(phase models in the form of ordinary differential equations) and in Section 7.4.4 (phase

computation schemes that involve the numerical solution of certain algebraic equations) are

designed to numerically solve the phase computation problem of Section 7.4.2.

7.4.1 Preliminaries

For a molecular oscillator, we observe that the deterministic RREs in (7.9) are indeed in the

form of the autonomous ODEs as in (3.1). Moreover, we assume that these RREs have a

stable periodic solution xs(t) (with period T ) that represents a periodic orbit or limit cycle.

Then, all the information in Chapter 3 concerning the state transition function, linearization

of (3.1) into a forward LPTV form, the existence of the adjoint LPTV system, the Floquet

functions (both forward and adjoint), particularly u1(t) and v1(t) applies directly to these

RREs. A slight subtlety that must be pointed out is the form of the matrix function G(t)
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in the case of RREs:

G(t) =
d S a(x)

dx

∣
∣
∣
∣
x=xs(t)

(7.15)

Moreover, it must be noted that the isochron theory of Chapter 4 including the approxi-

mations (linear and quadratic) and therefore existence of the phase Hessian H(t) (see Sec-

tion 4.2) is taken for granted in the case of (7.9) as well.

7.4.2 Phase Computation Problem

The phase computation problem for oscillators (as adapted from Section 5.4 to the case in

hand) can be stated as follows. It is observed in Figure 7.2 that assuming an SSA sample path

and the periodic RRE solution start at the same point on the limit cycle (note that the two

are in-phase initially), the two trajectories may end up on different isochrons instantaneously

at t = t0 (i.e., the two traces at this instant are out of phase). However, according to the

properties of isochrons, there is always a point on the limit cycle that is in-phase with a

particular point near the limit cycle. Therefore, the existence of xs(t̂) in-phase with the

instantaneous point xssa(t0) is guaranteed. We call then the time argument t̂ of xs(t̂) the

instantaneous phase of xssa(t0) [8, 1, 2]. All methods described below in this section are

designed to numerically compute this phase value.

7.4.3 Phase Equations based on Langevin Models

In this section, oscillator phase models in the form of ODEs as applies to discrete molecular

oscillators are described. See Sections 6.1 through 6.3 for the phase equation theory in the

case of continuous oscillators. We will now explain how to apply these models to discrete

oscillator phase computation.

First-order phase equation based on linear isochron approximations

The first-order phase equation based on linear isochron approximations can be derived from

the continuous Langevin model in (7.13) using the theory and numerical techniques described

in Section 6.2, which takes the form

dt̂

dt
= 1 + vT

(
t̂
)
S D

([√

a1:M
(
xs

(
t̂
))
])

ξ(t), t̂(0) = 0, (7.16)
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Figure 7.2: Phase computation problem for continuous oscillators.

where t̂ represents the total phase of the oscillator (in units of time) and v(t) is the PPV

discussed above. xs

(
t̂
)
, the periodic solution xs(t) evaluated at the perturbed phase t̂,

represents possibly a good approximation for the solution of the Langevin equation in (7.13)

provided that the perturbed oscillator does not wander off too far away from the deterministic

limit cycle represented by xs(t).

The phase t̂ defined above and the phase equation in (7.16), capture the deviations (from

the periodic steady-state) of the perturbed oscillator only along the limit cycle, i.e., phase

deviations. A perturbed oscillator also exhibits orbital deviations away from its deterministic

limit cycle. Moreover, for a discrete, molecular oscillator, the deterministic periodic solution

xs(t) is merely the solution of its continuous and deterministic limit when the number

of molecules are assumed to be very large. As such, the solution of a discrete molecular

oscillator may exhibit large fluctuations around this continuous and deterministic limit.

Thus, xs

(
t̂
)

may not serve as a good approximation in such a case. In order to truly assess
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the quality of xs

(
t̂
)

as an approximation in a meaningful manner, we need to compare it

with a sample path solution of the discrete, Markov chain model that can be generated

with an SSA simulation. However, a one-to-one comparison of xs

(
t̂
)

based on the solution

of the phase equation in (7.16) and a sample path obtained with an SSA simulation is

not straightforward. In solving (7.16), one would normally generate sample paths for the

independent white stationary Gaussian processes denoted by ξ(t). In an SSA simulation,

sample paths are generated as described in Section 7.2.5. If done so, a one-to-one comparison

between a sample path from an SSA simulation and xs

(
t̂
)

would not make sense. In order

to make this sample path based comparison meaningful, we use the same discrete random

events that are generated in an SSA simulation in order to synthesize the sample paths

for the independent white stationary Gaussian processes ξ(t) in the numerical simulation

of (7.13). More precisely, we proceed as follows. We numerically compute the solution of

(7.16) in parallel and synchronous with an SSA simulation. We discretize the SDE in (7.16)

using time steps that are dictated by the reaction occurrence times in the SSA simulation.

Assuming that the last reaction has just occurred at time t, the next reaction will occur at

time t+ τ and it will be the jth reaction, we form the update equation for t̂ as follows

t̂(t+ τ) = t̂(t) + τ + vT
(
t̂(t)

)
S
[
ej − a

(
xs

(
t̂(t)

))
τ
]

(7.17)

where ej is the M × 1 unit vector with the jth entry set to 1 and the rest of the entries set

to 0, and

a
(
xs

(
t̂
))

=
[
a1
(
xs

(
t̂
))
, a2

(
xs

(
t̂
))
, · · · , aM

(
xs

(
t̂
))]

T

(7.18)

is an M×1 column vector of reaction propensities evaluated at xs

(
t̂
)
. The form of the update

rule above in (7.17) can be deduced by examining (7.12) where we have approximated a

Poisson random variable with a Gaussian one. With (7.17) above, the sample paths for the

white Gaussian processes ξ(t) in (7.13) (and hence the Wiener processes as their integral)

are being generated as a cumulation of the individual events, i.e., reactions, that occur in

the SSA simulation of the oscillator at a discrete, molecular level. In the update rule (7.17),

we subtract a
(
xs

(
t̂(t)

))
τ from ej that represents an individual reaction event in order to

make the synthesized ξj(t) zero mean. The mean, deterministic behavior of the oscillator

is captured by the first drift term on the right hand side of (7.13) which is used in the

computation of the periodic steady-state solution xs(t) and the PPV v(t). Thus, the mean
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behavior is already captured, and that is why, it needs to be subtracted in (7.17). We can

now compare xs

(
t̂
)

and the SSA generated sample path in a one-to-one manner in order

to assess the quality of xs

(
t̂
)
. We should note here that the SSA simulation that is run

in parallel and synchronous with the solution of the phase equation in (7.16) is necessary

only for a meaningful sample path based comparison. One would normally not run an SSA

simulation but simply generate sample paths for the Gaussian processes ξ(t) and numerically

solve (7.16) with an appropriate technique and generate a sample path for the phase t̂. In

this case, we would not be synthesizing ξ(t) as a cumulation of reaction events from SSA,

but instead directly as white Gaussian processes.

Figure 7.3 summarizes the phase equations (as opposed to the phase computation schemes,

to be introduced later) approach for oscillator phase computations. An SSA sample path is

generated. Then, the reaction events in the SSA sample path are recorded. This informa-

tion, along with limit cycle and isochron approximations computed from the RRE, are fed

into phase equations (the first-order phase equation in (7.16) has been given as an example

in Figure 7.3), which in turn yield the phase t̂.

In (7.17), we evaluate the reaction propensities at xs

(
t̂
)
, on the solution of the system

projected onto the limit cycle represented by xs(t). However, the oscillator also experiences

orbital fluctuations and rarely stays on its limit cycle. Based on linear isochron approxi-

mations, we can in fact compute an approximation for the orbital fluctuations as well by

solving the following equation (see Section 6.2)

dY

dt
=G

(
t̂
)
Y + S D

([√

a1:M
(
xs

(
t̂
))
])

ξ(t)

−
[

vT(t) S D

([√

a1:M
(
xs

(
t̂
))
])

ξ(t)

]

u
(
t̂
)

(7.19)

With the orbital fluctuation computed by solving the above linear system of differential

equations, we can form a better approximation for the solution of the oscillator:

X(t) ≈ xs

(
t̂
)
+Y(t) (7.20)

Then, one can evaluate the reaction propensities at xs

(
t̂
)
+Y(t) instead of xs

(
t̂
)

in (7.16),

(7.17) and (7.19), in order to improve the accuracy of phase computations. One can further

improve accuracy, by replacing G
(
t̂
)

in (7.19) with

G
(
t̂
)
=

d S a(x)

dx

∣
∣
∣
∣
x=xs(t̂)+Y(t)

(7.21)
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Figure 7.3: Phase computations through phase equations methodology.

Still, the equations in (7.16) and (7.19) are both based on linear isochron approximations.

Phase and orbital deviation equations based on quadratic approximations for isochrons will

provide even better accuracy, which we discuss next.

Second-order phase equation based on quadratic isochron approximations

The second-order phase equation based on quadratic isochron approximations can be derived

from the continuous Langevin model in (7.13) using the theory and numerical techniques

described in Section 6.3, which takes the form

dt̂

dt
= 1 +

[
v
(
t̂
)
+H

(
t̂
)
Y
]
T

S D

([√

a1:M (X(t))
])

ξ(t)

t̂(0) = 0,

(7.22)
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with
dY

dt
= G(t̂)Y+

1

2

∂G(t̂)

∂xs(t̂)
(Y ⊗Y)

+ S D

([√

a1:M (X(t))
])

ξ(t)

−
{[

v
(
t̂
)
+H

(
t̂
)
Y
]
T

S D

([√

a1:M (X(t))
])

ξ(t)
}

[
u
(
t̂
)
+G(t̂)Y

]

(7.23)

where X(t) = xs

(
t̂
)
+Y(t), ∂G(t̂)

∂xs(t̂)
represents an N×N2 matrix, and ⊗ denotes the Kronecker

product making Y ⊗Y an N2 × 1 vector.

With quadratic approximations for the isochrons of the oscillator, the phase computations

based on (7.22) and (7.23) will be more accurate. We can assess the accuracy of the results

obtained with these equations again by numerically solving them in synchronous fashion with

an SSA simulation while synthesizing the white Gaussian processes ξ(t) as a cumulation of

the reaction events in SSA, as described above.

7.4.4 Phase Computation Schemes based on Langevin Models and SSA Simulations

With the phase equations based on linear and quadratic isochron approximations described

in Section 7.4.3, we can compute the phase of an oscillator without having to run SSA simu-

lations based on its discrete, molecular model. We note here again that the SSA simulations

described in Section 7.2.5 were necessary only when a one-to-one comparison between the

results of phase computations based on phase equations and SSA simulations was required.

On the other hand, more accurate phase computations can be attained if they are based on,

i.e., use information, from SSA simulations. In this hybrid scheme, we run an SSA simula-

tion based on the discrete, molecular model of the oscillator. For points (in the state-space)

on the sample path generated by the SSA simulation, we compute a corresponding phase

by essentially determining the isochron on which the point in question lies. Here, one can

either employ no approximations for the isochrons or perform phase computations based on

linear or quadratic isochron approximations. In Section 6.4, we have established the theory

for these types of approximate phase computation schemes based on linear and quadratic

isochron approximations.

The brute-force phase computations without isochron approximations, which we call

PhCompBF in short, aims to compute the phase difference between two individual given
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Figure 7.4: Brute-Force Phase Computation Scheme (PhCompBF).
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points, based on the isochron-theoretic phase definition with respect to the periodic solution

xs(t) tracing the limit cycle. This method is computationally costly (see Section 6.4.1), as

the following explanation based on Figure 7.4 will reveal. An SSA sample path is computed

and the instantanous phase of xssa(t0) is desired to be found. Note that t0 is a particular

value in time. For this purpose, in the transition from Figure 7.4 (a) to Figure 7.4 (b), all

noise is switched off and RRE solutions (trajectories in state space) starting from xs(t0) (star

on the limit cycle) and xssa(t0) (circle off the limit cycle) in Figure 7.4 (a) are computed.

We can compute the phase shift between these two traces only when the off-cycle solution

converges as in Figure 7.4 (c), that is we will have to integrate RRE for this solution until it

becomes approximately periodic in the time domain. In this plot, the illustration has been

prepared such that the convergence to the limit cycle takes one period or so, but this may

not always be the case. Indeed, ideally this process takes infinite time. This is why the

brute-force method is costly. Eventually, the phase shift between the two trajectories can

be computed and added to instantaneous time t0, to compute the phase t̂.

The phase computation based on isochron approximations and SSA simulations proceeds

as follows (adapted from Sections 6.4.2 and 6.4.3): Let xssa(t) be the sample path for the

state vector of the oscillator that is being computed with SSA. We either solve

vT
(
t̂
)[
xssa(t)− xs

(
t̂
)]

= 0 (7.24)

based on linear isochron approximations or

vT
(
t̂
) [

xssa(t)− xs

(
t̂
)]
+

1

2

[
xssa(t)− xs

(
t̂
)]

T

H
(
t̂
) [

xssa(t)− xs

(
t̂
)]

= 0
(7.25)

based on quadratic isochron approximations for the phase t̂ that corresponds to xssa(t).

The above computation needs to be repeated for every time point t of interest. Above, for

xssa(t), we essentially determine the isochron (in fact, a linear or quadratic approximation

for it) that passes through both the point xs

(
t̂
)

on the limit cycle and xssa(t). The phase

of xs

(
t̂
)
, i.e., t̂, is then the phase of xssa(t) as well since they reside on the same isochron.

An illustration of the linear scheme is given in Figure 7.5. In this plot, we are looking for

an isochron whose linear approximation goes through xssa(t0), and this is the isochron of

the point xs(t̂lin). Notice that the linear approximation (the straight line in Figure 7.5) is

tangent to the isochron of xs(t̂lin) at exactly xs(t̂lin). t̂lin then is the phase computed by
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Figure 7.5: Phase computation scheme depending on linear isochron approximations.

the linear scheme. Notice that there is some difference between the exact solution t̂ and the

approximate t̂lin. This difference is certain to shrink if generally isochrons are locally closer

to being linear. For more accurate but still approximate solutions, the quadratic scheme can

be used.

We should note here that, even though xssa(t) above is computed with an SSA simulation

based on the discrete model of the oscillator, the steady-state periodic solution xs

(
t̂
)
, the

phase gradient v
(
t̂
)

and the Hessian H
(
t̂
)

(i.e., all of the information that is used in con-

structing the isochron approximations) are computed based on the continuous, RRE model

of the oscillator. The phase computation schemes we describe here can be regarded as hy-

brid techniques that are based both on the continuous, RRE and the discrete, molecular

model of the oscillator. On the other hand, the phase computation schemes discussed in

Section 7.4.3 based on phase equations are completely based on the continuous, RRE and

Langevin models of the oscillator. Figure 7.6 explains the ingredients that the phase compu-
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Figure 7.6: Phase computation schemes methodology.

tation schemes utilize. An SSA sample path is generated (note that alternatively a sample

path may be generated through the CLE). From the RRE model, limit cycle information

(xs(t)) and isochron approximations (v(t) and H(t)) are computed. All this information

is fed into the phase computation schemes (in Figure 7.6 we have given the expression for

the linear scheme for convenience, as this is the method likely to be preferred due to its

lower complexity despite its inferior accuracy as compared to the quadratic scheme) and

then finally the phase t̂ is found.

7.5 Oscillator Models, Numerical Methods, and Implementation Notes

This section briefly describes where suitable oscillator models can be found particularly on

the internet and how these models can be modified when possible (Section 7.5.1), how the

obtained ODE models can be handled computationally (Section 7.5.2), a description of the

numerical methods used in the simulations (Section 7.5.3), and the computational costs that
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they incur (Section 7.5.4).

7.5.1 Biochemical Oscillator Models

Oscillator models for analysis can be found from multiple resources on the web. Models

generally come in two separate forms, described briefly as follows.

Models of the first type are translated directly from actual biochemical reactions. Propen-

sities of the reactions are functions of a reaction rate parameter and appropriate algebraic

expressions of molecule numbers associated with the reacting species. As such, the propen-

sities are always positive. Moreover, the volume parameter (associated with the container

or the cell accommodating the species) can easily be incorporated into the propensity func-

tions. Volume of the cell implies the level of noisiness in the sample path simulations, i.e.,

basically, the more voluminous a cell, the more the number of each reacting species, and

then the closer the sample path solution to the ensemble average. Therefore, one may right-

fully declare that every different value for the volume parameter defines a new oscillator to

be analyzed, although the mechanism of the reactions and the pattern for the propensities

remain the same for a pre-determined setting.

Models of the second type are provided directly as ODE (Ordinary Differential Equation)

models. In some cases, the propensity functions are difficult to handle, and it is not obvious

how the crucial volume parameter can be incorporated into the equations. Then, it happens

that analysis of these oscillators is a little restricted, not having the capability to adjust the

level of noisiness in a correct and reliable manner. However, in all, the simulations can be

carried out for the value of the volume implied by the ODE model.

As to where oscillator models can be found on the web, there are multiple alternatives.

[60] is the website for a simulator, in which particularly models from [61] have been modified

in appropriate form to be analyzed. We have benefitted extensively from the models we have

obtained from these references, as most of them are models of the first type described above.

One of the other alternatives is obtaining ODE models (models of the second type stated

above) from online repositories such as [62, 63, 64] and manipulate them via appropriate

software toolboxes [65, 66].
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7.5.2 Information Computed from the ODE Model and SSA

Oscillator models are approximated by ODEs in the deterministic sense, through procedures

already explained in the previous sections. Our purpose before handling a sample path

generated by SSA is to have available in hand some crucial computational quantities that

will help compute the phase along the sample path. All these crucial quantities will be

computed using the ODE model. A shooting type of formulation [30] is preferred to obtain

the periodic solution, more particularly a number of discrete timepoints for xs(t) along a

single period. The shooting method solves this boundary value problem efficiently even

for large systems of ODEs [30]. A further key benefit is that by-products of the shooting

method can be utilized in solving for v(t), namely the PPV or the phase gradient [5]. On

top of xs(t) and v(t) and using again the by-products of these computations, H(t), the

phase Hessian, can be obtained through the algorithm proposed in Section 4.2.4. Now, SSA

simulations for the sample paths of the noisy molecular oscillator can be performed [45], and

these sample paths are analyzed in terms of phase with the following numerical methods.

It should be recalled, however, that during the SSA simulation, also pieces of information

have to be stored at each reaction event, conveying which reaction was chosen randomly to

be simulated and what were the propensity function values at that particular instant.

7.5.3 Phase Simulations

In this section, we provide details concerning the numerical aspects of the proposed phase

computation methods.

The brute-force scheme (PhCompBF) (described in Section 7.4.4, as adapted from

Section 6.4.1) is basically run for all of the timepoints in an SSA-generated sample path,

and it is very costly in terms of computation. If xssa(t0) is a timepoint in the sample

path (naturally at where a state change takes place) the RRE is integrated with this initial

condition at t = 0 for a long time so that this deterministic solution settles to the limit cycle

in continuous time. The solution of the RRE with the initial condition xs(t0) at t=0 can

be readily computed, this is a shifted version of the periodic solution xs(t) that is available.

If the phase shift between the two solutions is computed, this shift is the phase shift of the

sample path xssa at t = t0 (see Section 6.4.1). Since one generally does not know the phase

value at the very first timepoint of an SSA sample path, the brute-force scheme is mandatory
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in computing this phase value and providing the initial condition, on which all of the other

approximate phase computation schemes and equations can operate.

The approximate phase computation schemes (again described in Section 7.4.4, as adapted

from Sections 6.4.2 and 6.4.3) consist of solving the algebraic equation in (7.24) or (7.25),

depending on whether linear or quadratic approximations are respectively preferred to be

used, and they are also run for all points in the SSA sample path. Benefitting from the scalar

nature of these equations, the bisection method is used extensively in their numerical solu-

tion. Details and subtleties involved with these schemes (of considerably less computational

load compared to PhCompBF) are provided in Section 7.4.4.

Phase equations, described in Section 7.4.3 (as adapted from Sections 6.2 and 6.3), are

in this context stochastic differential equations, operating on the recorded reaction events

of an SSA sample path. The specific discretization scheme applied to the first order phase

equation is explained in detail in Section 7.4.3. This discretization scheme can be easily

extended to the second order phase equation of Section 7.4.3.

We will denote each method analyzed and used in generating results by some abbre-

viations, for ease of reference. The brute-force scheme explained above is denoted by Ph-

CompBF, the scheme depending on linear isochron approximations (summarized by (7.24))

by PhCompLin, and that depending on quadratic in (7.25) by PhCompQuad. The first

order phase equation of (7.16) is denoted by PhEqnLL (the first L for linear isochron ap-

proximations and the second L for linear orbital deviation approximations). The second

order phase equation of (7.22) and (7.23) is denoted by PhEqnQQ (Q for both type of

approximations, isochron and orbital deviation). We prefer to use instead of PhEqnQQ

a simpler, but numerically more reliable, version of the second order equation. This sim-

pler version is described by the equations (7.22) and (7.19). (7.19) is the orbital deviation

equation belonging to the first order phase equation theory. In turn, we denote this simpler

model by PhEqnQL.

7.5.4 Analysis of Computational Complexities

In this section, we analyze the computational costs of phase computation schemes and

phase equations. Note that a more detailed explanation including the derivation of the

computational complexities in this section is given in Appendix Section B.2. Most of the
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complexities in this section are different compared to those in Section 6.5.2, since we are

using different algorithms in implementation, with the exception of PhCompBF.

Let us denote by N the number of states in an oscillator, K the number of timepoints

along a single period, L the number of total timepoints along the interval where a phase

computation method is run.

Preliminary statements on computational complexities are as follows. We assume as well-

known complexities that xs(t), G(t) (assumed to be sparse), u(t) and v(t) are computable

along a single period in O(N K) time. The computation of H(t) (which is usually not sparse)

upon the stated quantities takes O(N3 K) time. We assume that if a matrix is sparse, then

matrix vector multiplications and solving a linear system of equations involving this matrix

can be done in linear time.

For PhCompBF, in order to compute the phase of a point xssa(t0), we have to integrate

the RRE with initial condition xssa(t0) for an ideally infinite number, namely nper, of periods,

so that the states vector can be assumed more or less to be tracing the limit cycle. If FFT

(Fast Fourier Transform) properties are used to compute the phase shift between periodic

waveforms, the overall complexity of PhCompBF can be shown to amount to O(nperKN L+

LK log2 K).

The approximate phase computation schemes consist of solving the algebraic equations

in (7.24) or (7.25) (depending on whether the linear or quadratic scheme is preferred). The

bisections method is used to solve these equations. In order to compute the phase value of a

particular timepoint, an interval has to be formed. In forming such an interval, we start with

an interval, of length dmin and centered around the phase value of the previous timepoint,

and double this length value until the interval is certain to contain the phase solution. The

allowed maximum interval length is denoted by dmax. Then, the bisections scheme starts to

chop down the interval until a tolerance value dtol for the interval length is reached. The

PhCompLin computational complexity can be shown to be

O
(

N L log2

⌈
d2max

dtol dmin

⌉ )

(7.26)

and PhCompQuad complexity is

O
(

N2 L log2

⌈
d2max

dtol dmin

⌉ )

(7.27)

based on the explanations above.
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Table 7.1: Computational complexities for the phase computation schemes.

Scheme Computational Complexity

PhCompBF O(nperKN L+ LK log2 K)

PhCompQuad O
(

N2 L log2

⌈
d2max

dtol dmin

⌉ )

PhCompLin O
(

N L log2

⌈
d2max

dtol dmin

⌉ )

Table 7.2: Computational complexities for the phase equations.

Equation Complexity (best) Complexity (worst)

PhEqnLL O(M L+N L) O(N M L)

PhEqnQL O(N2 L+M L) O(N2 L+N M L)

The computational complexity expressions for all of the phase computation schemes are

summarized in Table 7.1.

Phase equation solution complexities depend (in extreme conditions) mainly on the sto-

ichiometric matrix S being sparse (few nonzero entries per row) or totally dense. Note that

in realistic problems S is observed to be usually sparse. These stated respective conditions

lead us to come up with best and worst case complexities. As such, PhEqnLL complexity

in the best and worse case can be shown to be O(M L+N L) and O(N M L), respectively.

PhEqnQL complexities are O(N2 L+M L) (best case) and O(N2 L+N M L) (worst case).

Complexities for the phase equations are summarized in Table 7.2.

The essence of the above analyses is that there is a trade-off between accuracy and

computational complexity. For mildly noisy oscillators, the phase equations should remain

somewhat close to the results of the golden reference PhCompBF and the other approxi-

mate phase computation schemes, which imitate PhCompBF very successfully with much

less computation times. For more noisy oscillators, we should expect the phase computation

schemes to do still well, although the phase equations will compute some inaccurate results

very fast. PhCompBF is always very slow.
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7.6 Results

We now present results obtained with the proposed methods for oscillator phase computa-

tions on several intricate molecular oscillators. Accuracy demonstrations and computational

speed-up figures will be given with respect to PhCompBF, the brute-force scheme, which

we accept as the golden reference for oscillator phase computations. Section 7.6.1 below, in

which we analyze the brusselator, contains details pertaining to the general flow of the phase

computations and the preparatory procedures for all the methods. Section 7.6.2 and Sec-

tion 7.6.3 are brief sections illustrating the performance of the methods for oscillators called

the oregonator and the repressilator, respectively. All simulations were run on a computer

with an Intel i7 processor at 3.07 GHz and accommodating 6 GB of memory.

7.6.1 Brusselator

The Brusselator is a theoretical model for a type of autocatalytic reaction. The Brusselator

actually describes a type of chemical clock, and the Belousov-Zhabotinsky (BZ in short)

reaction is a typical example [61]. The model below in (7.28) has been largely adapted from

[60], which is based on [61].

A
k1→ X

B+ X
k2→ R+ Y

Y + 2X
k3→ 3X

X
k4→ S

(7.28)

Parameter values in (7.28) are: k1 = 0.025 s−1, k2 = 1 s−1 mL, k3 = 1 s−1 (mL)2, and

k4 = 0.01 s−1. Volume is set to 250mL. Molecule numbers of A, B, R, and S are held

constant.

Several models and quantities must be derived from the reactions in (7.28) before moving

onto phase analysis. The stoichiometric matrix in this case reads

S =




1 −1 1 −1

0 1 −1 0



 (7.29)

where the first row is for the species X and the second is for Y. The columns each denote

the changes in molecule numbers as a reaction takes place, e.g., column one is for the first

reaction in (7.28). Let us also call X the random process denoting the instantaneous molecule
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number for the species X, similarly Y is for Y in the same fashion. Then, the random process

vector X = [X Y ]T concatenates these numbers for convenience. The propensity functions

for the reactions can be written as

a1(X) = k1 A

a2(X) =
k2BX

Ω

a3(X) =
k3 Y X (X − 1)

Ω2

a4(X) = k4 X

(7.30)

where Ω denotes the volume parameter. Using (7.30), the CME for the Brusselator can be

derived in line with (7.4) as

dP (X,Y ; t)

dt
=−

[

k1 A+
k2 BX

Ω

+
k3 Y X (X − 1)

Ω2
+ k4 X

]

P (X,Y ; t)

+ k1 AP (X − 1, Y ; t)

+
k2 B (X + 1)

Ω
P (X + 1, Y − 1; t)

+
k3 (Y + 1) (X − 1) (X − 2)

Ω2

P (X − 1, Y + 1; t)

+ k4 (X + 1)P (X + 1, Y ; t)

(7.31)
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Now it is possible to derive the CLE as in (7.13)

dX

dt
=

[

k1 A− k2 BX

Ω

+
k3 Y X (X − 1)

Ω2
− k4X

]

+

[
√

k1 Aξ1(t)−
√

k2 BX

Ω
ξ2(t)

+

√

k3 Y X (X − 1)

Ω2
ξ3(t)

−
√

k4 X ξ4(t)

]

dY

dt
=

[
k2 BX

Ω

− k3 Y X (X − 1)

Ω2

]

+

[√

k2 BX

Ω
ξ2(t)

−
√

k3 Y X (X − 1)

Ω2
ξ3(t)

]

(7.32)

It is easy to extract from (7.32) the RRE in (7.9) as

dX

dt
=

[

k1 A− k2 BX

Ω

+
k3 Y X (X − 1)

Ω2
− k4 X

]

dY

dt
=

[
k2 BX

Ω

− k3 Y X (X − 1)

Ω2

]

(7.33)

In preparation for phase analysis, some computational quantities have to be derived from

(7.33).

The phase analysis of a continuous oscillator (modeled by nonlinear systems of ODEs

such as an RRE) depends on linearizations around the steady-state periodic waveform xs(t)

solving the RRE. xs(t) for the Brusselator in (7.28) is given in Figure 7.7. xs(t) has been

computed for a whole period (with the actual approximate value for the period T = 1000 s)

through the shooting method [30]. The species A, B, R, and S, with their molecule numbers

constant, should be excluded from the machinery of the shooting method for it to work.

In fact, xs(t) computation is enough preparation for running the brute-force scheme

PhCompBF as will be demonstrated next. Recalling that we aim to solve for the possibly
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Figure 7.7: xs(t) for the Brusselator.
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Figure 7.8: An SSA-generated sample path (species Y) for the Brusselator.

constantly changing phase along individual SSA-generated sample paths, we run the SSA

algorithm to generate the sample path given in Figure 7.8. In this plot, the SSA simulation

result and the unperturbed xs(t) have been plotted on top of each other, for only species Y,

for illustration purposes. It must be noted that both xs(t) and the SSA sample path start

initially at the same state on the limit cycle, therefore the star and the circle are on top of

each other at t = 0 s. Due to isochron-theoretic oscillator phase theory, the initial relative

phase, or the initial phase shift of the SSA sample path with respect to xs(t) is zero.

In Figure 7.8, we would like to solve eventually for the time-evolving relative phase shift

of the SSA sample path, for now with PhCompBF. This means solving for the phase shift

for the visited states in the sample path, denoted by circles in the figure, and preferably for

all the states in between the circles along the path as well. PhCompBF requires running
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a particular type of simulation for computing the relative phase shift of each visited state.

We will demonstrate the method shortly, but let us comment on how much information can

be gained by inspecting only the plot in Figure 7.8. The SSA simulation suggests that the

system continually introduces noise, so that everything about the system appears noisy, the

phase, the amplitude, etc. Phase is a particular quantity that helps quantify the effect of

noise on an autonomously oscillating system. One may easily guess that the relative phase

shift of the SSA sample path is always changing along the interval of simulation. It is not

obvious at all how to compute this phase shift at particular points in time in Figure 7.8.

Perhaps, one may argue that the sudden decrease that should take place at about t = 200 s

for the unperturbed xs(t), appears about 200 s in time later for the SSA path. However,

this is only an educated guess and an approximate value. Also, that the stars and circles

appear very close to each other for example in between 600 s and 1000 s does not directly

help invoke the isochron-theoretic phase theory to deduce that the phase shift along this

interval is close to zero. Recalling that Figure 7.8 depicts only species Y, one has to inspect

also the other species to arrive at such a conclusion. It is also needless to state as a reminder

that for two states to have the same relative phase, having the two states equal to each other

is a sufficient but not necessary condition, again due to isochron theory. In all, accurately

what happens to the phase shift along the interval is still obscure. As a side note, one should

also note that without the perfectly periodic xs(t), it is awfully difficult to guess the period

T , inspecting only a long SSA sample path. Relevant theory for noisy oscillators suggests

that inspecting the zero-crossings of a whole ensemble of long and mildly noisy SSA sample

paths yields information related to the period and phase diffusion constant of an oscillator,

in a brute-force manner [5].

In order to demostrate PhCompBF, we have first plotted both the SSA sample path

and the limit cycle (the closed curve traced over and over by xs(t)) in 2-D state space as in

Figure 7.9. As stated earlier, the star and the circle are initially coincident. Then, as time

progresses, xs(t) just traces the limit cycle, but the SSA sample path xssa(t) runs berserk.

At t0 = 600 s, we have again indicated where the two traces end up. The SSA path at this

time is off the limit cycle. Since we do not have exact isochron information, it is not possible

to compute the phase t̂ value that makes xssa(t0 = 600 s) and xs(t̂) in-phase, i.e., on the

same isochron. If we could find this t̂ value, then α(t0 = 600 s) = t̂ − 600 would be the
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Figure 7.9: Limit cycle and SSA sample path for the Brusselator.
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Figure 7.10: PhCompBF for the Brusselator.

sought phase shift value.

The value of the phase shift α can, however, be computed through a possibly long, ideally

infinitely long, simulation, in line with the theory of asymptotic phase (a theory on intimate

terms with isochrons). The following is the essence of PhCompBF. One takes in Figure 7.9

the states xssa(t0 = 600 s) (the circle on the SSA path) and xs(t0 = 600 s) (the star on the

limit cycle) and feeds them as initial conditions to the RRE in (7.9) and then simulates both

traces for some time. The result is the two traces in Figure 7.10. In this plot, again only the

species Y is demonstrated. The circular marker (along with the corresponding star) has been

put only at the beginning of the simulation in Figure 7.10 to note the fact that only the initial

value belongs to the SSA sample path. After this initial time, both traces are part of separate

RRE solutions. Incorporation of these two new simulated traces into the plot of Figure 7.9
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Figure 7.11: PhCompBF in state space for the Brusselator.

would be as follows (see Figure 7.11): The plot starting with the circle in Figure 7.10 (with

both of the two states) would be a curve in the state space of Figure 7.9 starting from the

circle off the limit cycle but gradually converging to it. Meanwhile, the plot starting from

the star in Figure 7.10 would resume tracing the limit cycle in Figure 7.9 from again the star.

Then, as shown in Figure 7.11, the two simulated plots are observed to be tracing the limit

cycle after simulating long enough in time, the star of the unperturbed path always leading

the circle of the initially perturbed path (but notice that during the simulation for both

traces in Figure 7.11 all perturbations or noise are removed). Observe in Figure 7.11 that

the star has went ahead to make the rightmost turn on the limit cycle, travelling clockwise,

whereas the circle is still way behind. However, all along this simulation of Figure 7.11, the

instantaneous phase shift between the two traces has remained the same. As the simulation

goes on along the limit cycle, the circle (originating from the SSA simulation) and the star

(of the unperturbed xs(t)) would appear sometimes near, and sometimes far away from

each other. This effect is due to particularly the varying velocity along the limit cycle, all

determined by the dynamic properties of the RRE. The constant difference in time between

the circle and star is the phase shift α(t0 = 600 s) that we aim to compute. Notice that in

the state space of Figure 7.9 and Figure 7.11, time is only an implicit parameter. Therefore,

we have to inspect plots of the type in Figure 7.10 to obtain the desired phase shift value.

For some oscillators (as determined by the dynamics of the RRE again), a state off the

limit cycle converges fast to begin tracing quickly an almost periodic curve, as in the case

in hand. Almost two periods is enough to deduce the phase shift between the two curves.
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After RRE simulations, the phase shift can be computed using Fourier transforms.

One question that may arise is why we are particularly using the traces belonging to the

species Y to compute phase shifts in Figure 7.10. Indeed, it follows from the theory that

phase is a scalar-valued property of the whole system, therefore investigating phase shifts

over non-constant periodic molecule numbers for any species in a system would yield the

same phase shift value. In this case, employing Y is only a matter of choice.

Notice that this brute-force scheme is carried out to compute the relative phase shift of

the SSA sample path at only t0 = 600 s. The phase shift for each state along the sample

path can be computed one by one through the just outlined PhCompBF.

It has already been stated that PhCompBF is almost the golden reference for phase

computations but also that the method is very time-consuming. It was for this reason that

new methods depending on isochron and orbital deviation approximations were proposed.

Particularly, two quantities are necessary for characterizing isochron approximations: the

phase gradient v(t) and the phase Hessian H(t). These are depicted for the Brusselator

respectively in Figure 7.12 and Figure 7.13. Recall that v(t) is a vector function, but H(t)

is a matrix function. Therefore, only the phase Hessian diagonals have been plotted in

Figure 7.13.

Phase computation schemes are fairly easy to comprehend geometrically. Regarding for

example the limit cycle depicted in Figure 7.9, there are both a hyperplane (accounting

for the linear isochron approximation) and a quadric surface (for quadratic approximation)

associated with each point on the limit cycle. Equations for these characterizations are given

in (7.24) and (7.25), respectively. A phase computation scheme aims to solve for that point

on the limit cycle whose linear or quadratic isochron approximation passes through a given

point, for example the stated point denoted by the circle off the limit cycle in Figure 7.9,

xssa(t0 = 600 s). Notice that PhCompBF is also a variant of these phase computation

schemes, but in this case not the isochron approximations but the exact isochrons themselves

associated with points on the limit cycle are used.

The geometrical interpretations of phase equations, on the other hand, are not easy to

visualize. As stated in previous sections, phase equations are differential equations involving

orbital deviation in addition to isochron approximations. Phase computation schemes are

expected to be more costly but then more accurate with respect to phase equations. Phase
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Figure 7.12: Phase Gradient for the Brusselator.
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Figure 7.13: Phase Hessian Diagonals for the Brusselator.
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equations, as they are differential equations and need to be discretized, suffer from local

truncation errors and global errors, whereas this is not the case for the schemes that are in

the form of algebraic equations. An approximate phase computation scheme may deviate

from the golden reference (PhCompBF result) at times (particularly if the noisy state

is too far off the limit cycle), but the scheme (if carefully designed) does not suffer from

accumulation of global errors and its phase results are expected to be almost always very

close to that of PhCompBF.

Computational complexity-wise the phase equations are indeed very fast. This makes

the phase equations a feasible and accurate choice for the phase computations of less noisy

oscillators, possibly with a dense grid of timepoints in an SSA sample path and high molecule

numbers for every species in the system (especially in a container of large volume), deviating

not much from their limit cycles.

The numerical procedures associated with the schemes render them more costly in com-

putational complexity with respect to the equations. Therefore, one may rightfully contend

that the phase computation schemes are tailored to fit phase computations for moderately

noisy oscillators in small volume, with low molecule numbers for each species and possibly

a sparse grid of timepoints in an SSA sample path.

We now check the performance of the phase computation methods for this oscillator,

on a sample path that lasts about 1000 s, with the period about the same as that. The

results are depicted in Figure 7.14. PhCompBF takes about 138 minutes. Speed-up of

the methods on this duration are as follows: PhCompLin 56x, PhEqnLL 8583x, and

PhEqnQL 2257x. The phase equations are most of the time sharing a common accuracy

level, not disregarding the apparent attempt of PhEqnQL to come closer to PhCompBF

around 400-600 s. PhCompLin is slower than the equations but almost as accurate as can

be.

7.6.2 Oregonator

In this section, we present phase computation results for a well-known and studied biochem-

ical oscillator, the oregonator [61]. This realistic oscillator accurately models the Belousov-

Zhabotinsky reaction, an autocatalytic reaction that serves as a classical example of non-

equilibrium thermodynamics. The molecular reactions model, adapted mostly from [60], is
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Figure 7.14: Phase computation methods on the Brusselator.

given as follows. Names of the reactants have been simplified for convenience.

A+ Y
k1→ X+ R

X+ Y
k2→ 2R

A+ X
k3→ 2X+ 2Z

2X
k4→ A+ R

2B + 2Z
k5→ Y

(7.34)

In (7.34), the propensity functions, employing also the volume of the container, can

easily be derived. Parameter values are: k1 = 0.005 s−1 mL, k2 = k3 = k4 = 1 s−1 mL,

and k5 = 1.25 × 10−4 s−1 (mL)3. Molecule numbers for the reactants A, B, and R are held

constant. For this model, the volume initially is set to 12,000mL. In this case, noise will

not have considerable effect on a sample path. Then, we set the volume to 3,200mL in

order to obtain a moderately noisy oscillator. Later on, we will halve the value of the

volume parameter, resulting in a very noisy oscillator, and the performance of the phase

computation methods will be demonstrated for this latter case as well.

With the volume as 12000mL, the performance of the phase computation methods on

a particular sample path of length 4 × 104 s (the period is about 4.43 × 104 s) is depicted

in Figure 7.15. PhCompBF simulation takes 502 minutes, with two periods of RRE com-

putations before setting out to compute the phase shift values. There are a total of 8114

timepoints on the sample path. As the volume is decreased, the number of timepoints per

unit time will reduce. The speed-up of the methods over PhCompBF are: PhCompLin
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Figure 7.15: Phase computation methods on the Oregonator (volume=12000mL).

70x, PhEqnLL 10733x, PhCompQuad 46x, and PhEqnQL 2791x. It is observed that all

the methods for a good part of the sample path stick to the PhCompBF result. However,

towards the end the phase equations (with PhEqnQL a little more accurate compared to

PhEqnLL) begin accumulating global errors, Otherwise, they are exquisitely fast all the

time and accurate at the beginning until they start deviating from the golden reference. The

phase computation schemes are not as fast as the equations, but they are always accurate

in this simulation.

We have also tested the phase computation methods on a sample path, with the volume

set to 3200mL. Figure 7.16 illustrates the results. The simulation interval length (5× 104 s)

is a little more than the period (about 4.37 × 104 s). The simulation for PhCompBF

took 242 minutes, and there are 2981 timepoints in total. The observed speed-ups were:

PhCompLin 70x, PhEqnLL 13971x, PhCompQuad 51x, and PhEqnQL 3203x. It is

observed that the phase equations are really fast, keeping track of the exact phase though

not very closely, whereas the computation schemes, though not as fast, are almost a perfect

match for the exact phase in terms of accuracy.

We then set volume to 1600mL, resulting in a noisier oscillator. We expect the phase

equations results to deviate much more from the exact one, and the computation schemes

to still do well. Again for a sample path (of length 5× 104 s with the period 4.3× 104 s), the

PhCompBF simulation now takes 76 minutes. There are 1033 timepoints. Speed-ups with

the methods are: 12637x (PhEqnLL), 74x (PhCompLin), and 44x (PhCompQuad).

PhEqnQL apparently suffers from numerical problems for such a noisy oscillator, and the
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Figure 7.16: Phase computation methods on the Oregonator (volume=3200mL).
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Figure 7.17: Phase computation methods on the Oregonator (volume=1600mL).

result for this method is not included. In Figure 7.17, we observe in line with our expectations

that although PhEqnLL is again very fast, the result it produces is almost unacceptably

inaccurate, whereas both the computation schemes maintain their relative speed-ups (as

compared to the less noisy version) along with their accuracies.

7.6.3 Repressilator

The Repressilator is a synthetic genetic regulatory network, designed from scratch and imple-

mented in Escherichia coli using standard molecular biology methods [43]. Its development

is a milestone in synthetic biology. We have obtained the model as an SBML file in XML

format [62, 63, 64]. We have used the libSBML [65] and SBMLToolbox [66] libraries to

interpret the model and incorporate it to our own manipulation and simulation toolbox for
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Figure 7.18: Phase computation methods on the Repressilator.

phase computations. The period of the continuous oscillator obtained from the model is

about 2.57 h. A sample path running for about 3 h was generated, and the phase meth-

ods were applied. The results are in Figure 7.18. PhCompBF takes about 76 minutes.

Speed-ups obtained with the methods are: PhCompLin 58x, PhEqnLL 7601x, and PhE-

qnQL 1994x. It appears in Figure 7.18 that PhEqnLL towards the end of the simulation

has started to accumulate a global error. PhEqnQL looks a little more accurate. Again

PhCompLin is, excepting a few minor intervals, the most accurate.

7.7 Conclusions and future work

The phase computation methods described in this chapter basically target three classes of

discrete molecular oscillators. First, the continuous phase models, based on the information

obtained from the oscillator model in the continuous-state limit (i.e., basically the limit cycle

and isochron approximations), are acceptably accurate for discrete molecular oscillators with

a large number of molecules for each species, in a big volume. Indeed, we have shown in

this chapter that the phase equations serve this purpose well. Second, for oscillators with

very few molecules for each species in a small volume, a new phase concept needs to be

developed, without resorting to continuous limit approximations. This one is as yet an

unsolved problem. Third, there are systems in between the two classes just stated, with

moderate number of molecules, for which the continuous phase concept is still useful but

requires a hybrid approach with combined use of both discrete and continuous models for

acceptable accuracy (note that the phase computation schemes are tailored to concretize
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this hybrid approach), and this is where the contribution of this chapter should be placed.

As yet, the described methods benefit extensively from continuous state-space approxi-

mations derived from the molecular descriptions of such oscillators, and the assumed most

accurate brute-force scheme shares this aspect. A future direction furthering this study can

be described as follows, in line with the necessity of handling the second class of oscillators

stated above. A proper phase model theory (not relying on continuous limit approximations)

for discrete-space oscillators modeled with Markov chains needs to be developed. We believe

that such a discrete phase model theory can be developed based on cycle representations

for Markov chains [67, 55, 68]. We made progress also on this problem. We have developed

a theory that precisely characterizes the phase noise of a single cycle in a continuous-time

Markov chain. We were able to show that the phase noise theory we have developed for a

single cycle in fact reduces to the previously developed continuous-space phase noise theory

in the limit. We are currently working on extending this discrete phase noise theory to many

cycles, i.e., to a cycle decomposition of a continuous-time Markov chain.
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Chapter 8

CONCLUSIONS

8.1 Summary

The notion of isochrons can almost be presumed the most reliable concept, on which the

oscillator phase definition can be depended. Information on the isochron portrait of a par-

ticular oscillator is crucial, when the oscillator is perturbed or noisy and thus its phase has

to be quantified for analysis.

The exact computation of isochrons is very costly (see Chapter 1, Section 4.3.2, and also

Appendix Section A.2). Therefore, one must resort to local approximations for isochrons.

The linear approximations, defined by the celebrated PPV or the infinitesimal PRCs, are

already known in the literature. However, heavily perturbed oscillators with states wan-

dering away from their limit cycles are a challenge in analysis and demand more accurate

information on their isochrons.

In this thesis, we have developed the notion of quadratic approximations for the isochrons

of oscillators and have also proposed a numerical method for their numerical computation

(see Section 4.2).

Furthermore, in this thesis, we have developed a unified framework of oscillator phase

computations that is applicable virtually to any oscillator from an arbitrary discipline that

can be described in a nonlinear autonomous ODE model (see Chapter 6). This framework

subsumes the pertaining studies carried out in the last few decades on oscillator phase

computations and is founded upon the concept of isochrons. Local (linear and quadratic)

approximations of isochrons enable the development of practically usable phase models.

The notion of phase models in the form of differential equations, i.e., phase equations,

is already known in the literature, and quite a substantial amount of work has been done

in the analysis of such models, several of them have proved themselves tenacious enough to

be transported to commercialization. We have successfully put these phase models into the

context of our framework (see Section 6.2).
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On top of the isochron concept (of Chapter 4) and our recent work on the quadratic

local approximations of isochrons, we have developed second-order phase equations that are

locally more accurate with respect to the already known phase model (see Section 6.3). This

model will help analysis of oscillators that are affected by more than weak perturbations.

Accordingly, analysis of more than weakly coupled oscillators will be possible thanks to this

new model.

The phase equations are amenable to further semi-analytical investigation of oscillator

phase. However, in essence, they are differential equations, and through discretizations and

due to related numerical analysis considerations, the phase equations suffer from accumula-

tion of global errors, when we use them for transient phase simulations. In Section 6.4, we

have described, as another flavor of phase models, simpler phase computation schemes in

the form of algebraic equations. These schemes, being more accurate than the phase equa-

tions (for they do not employ orbital deviation approximations) and due to their nature, are

tailored to fit the transient simulation of oscillator phase.

As an application of the various phase models reviewed or proposed in this thesis, in

Chapter 7 we have first worked several approximations on the inherently noisy discrete

oscillator models and then utilized the phase computation methods to calculate the phases

of individual SSA-generated sample paths of these oscillators. Based on the simulation

results, it appears that the phase equations are very fast and quite accurate on less noisy

oscillators. The phase computation schemes are not as fast as the equations but they retain

their exquisite accuracies even on highly noisy molecular oscillators.

8.2 Future Work

It must first be noted that any future work that should in the natural course of research

benefit from and utilize the methods proposed in this thesis would aim somehow to explore

and gain deeper insight into oscillatory phenomena in various disciplines, including electron-

ics and biology. Below, we outline some future research directions that could be taken in

both adhering to this emphasis and enhancing the potential capabilities of the framework

proposed.

• We have in this thesis mainly discussed the perturbations affecting the states of an
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oscillator. It is possible that the parameters determining the very nature of oscillators

could be perturbed. Such type of perturbations are common particularly in biology,

but they have drawn attention in electronics as well. A study unifying the analyses

of parameter perturbations on oscillator phase founded upon isochrons seems to be

missing in the literature.

• Injection locking and coupled oscillator analysis together with the phase noise analysis

of PLLs (Phase Locked Loops) are important aspects of synchronization that deserve

substantial research attention. The models developed in this thesis can perhaps be

adapted to capture analysis of the diverse phenomena that take place in such applica-

tions.

• Scalar phase equations are especially important since they determine the ultimate

reduced model of noisy oscillators, capturing the phase fluctuations only. As a more

accurate model than PhEqnLL (of Section 6.2), the scalar model whose derivation is

outlined in Appendix Section A.4 can perhaps inspire further semi-analytical research

and therefore some more interesting findings.

• As briefly explained in Section 7.7, application of the proposed phase computation

methods (developed for continuous models) to discrete molecular oscillators might be

taking away some of the accuracy, and in doing this, one might not be exploring the

full diversity of the research problem in hand. Therefore, a phase model theory directly

treating discrete oscillators must be developed.

• In [52], it is suggested that an outright method of phase computation through Hilbert’s

transform yields correct results. However, considering the relative intricacies and com-

putational costs of the methods reviewed and proposed in this thesis and Hilbert’s

transform, we hesitate in conceding to the validity of the approach in [52] employing

the latter. It has to be examined thoroughly whether or not a direct method such as

Hilbert’s transform can indeed yield the sought phase results, and one has to ensure

either the validity of such an approach or reveal if the particular method has resulted

in theoretically correct values due to the special structure of the oscillating system

analyzed.
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In all of the possible research problems above, the work in this thesis can guide the work-

flow which eventually defines the approach to solution, and furthermore the techniques to

be developed in solving these problems can perhaps be adapted from the methods developed

herein.
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Appendix A

MORE ON ISOCHRON AND PHASE COMPUTATIONS

A.1 Analytical Derivations for Exact Isochrons

We demonstrate (as a justification of the isochron expression stated in Sections 4.3.1 and

6.6.1) analytical information about a special polar oscillator, whose equations are given in

polar coordinates as

ṙ = 1− r

θ̇ = r
(A.1)

Notice that for the initial conditions (r0, θ0) = (1, 0) the oscillator in (A.1) traces the unit

circle. Therefore, the unit circle is a limit cycle for this oscillator. Through the transforma-

tion

d

dt

[

r exp(jθ)

]

=
d

dt

[

r cos(θ)
︸ ︷︷ ︸

x

+j r sin(θ)
︸ ︷︷ ︸

y

]
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[
1

r

dr
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+ j

dθ

dt

][

r exp(jθ)
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=

[
x

r

dr
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− y
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]

+ j

[
y

r

dr
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+ x

dθ

dt

]

(A.2)

(A.1) can be written in Cartesian coordinates as

ẋ = x√
x2+y2

[

1−
√

x2 + y2
]

− y
√

x2 + y2

ẏ = y√
x2+y2

[

1−
√

x2 + y2
]

+ x
√

x2 + y2
(A.3)

The oscillator in (A.3) then traces the unit circle for the initial conditions (x0, y0) = (1, 0).

In order to compute the phase of points in the domain of attraction of the unit circle,

we have to solve the PDE

∂t̂

∂x

[
x

√

x2 + y2

[

1−
√

x2 + y2
]

− y
√

x2 + y2
]

+

∂t̂

∂y

[
y

√

x2 + y2

[

1−
√

x2 + y2
]

+ x
√

x2 + y2
]

= 1

(A.4)
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with the boundary condition

t̂(x, y) = arctan

(
y

x

)

on the unit circle (A.5)

where arctan is the four-quadrant version yielding values between 0 and 2π. Solving the

problem given by (A.4) and (A.5) can be very difficult, both analytically and computation-

ally.

Winfree in [2] demonstrates an alternative method of analytically solving this problem.

It can be deduced that the isochron portrait of this oscillator has polar symmetry, so in

polar coordinates we have the valid form t̂(r, θ) = θ − g(r) for some function g(r). We then

immediately have
dt̂

dt
=

d

dt

[

θ − g(r)

]

= 1 (A.6)

The following is then obtained.

dg

dr
=

θ̇ − 1

ṙ
=

r − 1

1− r
= −1 (A.7)

It is observed now that t̂(r, θ) = θ + r − c for some constant c. This constant turns out to

be one since t̂(1, θ) = θ. So we have

t̂(r, θ) = θ + r − 1

t̂(x, y) = arctan

(

y
x

)

+
√

x2 + y2 − 1
(A.8)

as equivalent forms for the phase. It can be easily checked that (A.8) satisfies the problem in

(A.4) and (A.5). The resulting portrait of isochrons (level sets of the phase t̂) is illustrated

in Figure 4.2.

A.2 Alternative Exact Isochron Computations

We outline in this section a procedure that may yield useful but partial information about

the local behavior of isochrons, as suggested in Section 4.3.2. Isochrons are hypersurfaces,

most of the time with nonlinear behavior changing according to position. Note that we

do not intend to compute isochrons exactly but employ only local approximations (linear

and quadratic) around points on the limit cycle. It is plausible that if a perturbed solution

traces not so close to the limit cycle, then phase computation methods depending on local

approximations may not yield very accurate results. One may then wish to see how nonlinear
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an isochron really is around points on γ, by observing how the real isochron looks like.

A method for computing isochrons in a brute-force manner is originally described in [1],

thoroughly explained with an improved implementation and results herein (see Chapter 1

for intuitive explanation and Section 4.3.2 for a more technical account). It is stated that

this method is not feasible for oscillators other than planar. Therefore, one is then compelled

to devise a method that can give relatively useful partial information about an isochron, for

oscillators with arbitrary dimension.

A method that may serve the purpose stated (gaining partial information about isochron

nonlinearities) can be described as follows. Let us have two distinct points x1 and x2, which

we somehow know are on the same isochron. Such two points can be generated for example

by picking a point x1 that is in W but not on γ, and then using this x1 as an initial condition

for the ODE in (3.1) and integrating (3.1) exactly an integer number of periods backward

or forward in time to obtain x2 (see Theorem 4.1.1 for the validity of this fact). The essence

of the current method is then to pick a number of initial points (for example along the line

segment joining x1 and x2) and through some optimization method iteratively update these

points in between, so that at the end (by some chosen tight tolerance) the path from x1 to x2

through these points forms a geodesic (shortest path) on the very isochron accommodating

all the stated points. The varying curvature along this path might then somehow yield some

partial information about the nonlinearity of the isochron, if carefully analyzed.

The details of the optimization problem stated are briefly as follows. This problem indeed

amounts to minimizing the discretized form

dist(z1, . . . , zR) =

∆u
R∑

i=0

exp(c
∣
∣t̂(zi)− t̂(x1)

∣
∣)

︸ ︷︷ ︸

weight

[ N∑

j=1

[
zi+1,j − zi,j

∆u

]2] (A.9)

where ∆u = 1/(R+1) and we set z0 = x1 and zR+1 = x2. dist is a sum of weighted squares

of distances between consecutive points along the path from x1 to x2. The minimization is

done on values of the points in between, i.e., z1, . . . , zR. The weight in (A.9) is especially

chosen to force the points z1, . . . , zR onto the same isochron with x1 and x2. c must be

a big positive real number. t̂(zi) and t̂(x1) can be computed through PhCompBF. The

gradient information required by the unconstrained optimization algorithm can be analyt-

ically computed in part, but the part concerning the weight must be computed by finite
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differences. This method yielding partial information about the nonlinearity of isochrons is

still computationally expensive, mostly due to the use of PhCompBF, but it is tractable

for oscillators in arbitrary dimension, unlike the brute-force full isochron computation [1].

A.3 Isochron Approximation Errors

This section provides detailed comments on how the choice on a phase computation method

can be made, considering isochron approximation errors committed by the methods (as

touched upon briefly in Section 6.5.2). Local approximations for isochrons are a requisite if

we would like to utilize the information that isochrons provide pertaining to the phase of an

oscillator. Generating complete isochron portraits is out of the question, extracting partial

information about isochrons as described above is still costly. Therefore, with the assistance

of the phase gradient v1(t) and phase Hessian H(t), we compute linear and quadratic ap-

proximations for isochrons. The fact that should be noted first and foremost is that these

approximations provide only local information, i.e., in regions close to points on the limit

cycle. Also, we note that in the close neighborhood of a point on γ, the quadratic approxima-

tion is more accurate than the linear one. However, even the quadratic approximation may

fail to be an accurate fit, if the exact isochron exhibits rapidly varying nonlinear behavior

around γ. Phase computation schemes, requiring perturbed solutions to be a priori com-

puted, generate more or less accurate results at the expense of this information that must be

provided beforehand. It seems that phase equations suffer the most from isochron approxi-

mation errors. In this sense, it may be right to declare that the LC oscillator has isochrons

with highly nonlinear behavior, such that even PhEqnQQ depending on quadratic approx-

imations generates phase shifts that are at variance with the exact results. PhEqnQQ

and PhEqnQL are the best we have among the phase equations in terms of accuracy (i.e.,

superior over PhEqnLL), again not disregarding the fact that the superiority of quadratic

approximations over linear ones is valid only locally, in the close neighborhood of γ. There-

fore, it is now a question of how to decide in favor of PhEqnQQ or PhEqnQL to compute

phase shift results, possibly not being content with the results of PhEqnLL. This is what

we briefly discuss next.

A thorough study on the effects of isochron approximation errors on phase equation

results should probably contain analyses that reveal the trend and rate, with which global
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errors in computed phase shifts accumulate. In this sense, the global error of a phase equation

should be analyzed with respect to another phase equation of one higher order, e.g., it would

be acceptable that we compare PhEqnLL to either PhEqnQQ or PhEqnQL. However,

observing the level of intricacy entailed in the derivations of the proposed equations, we

prefer not to delve into even more involved analyses as of the moment and adopt a local

approach, instead of global, in assisting us with our selection of a phase equation to generate

us accurate enough results, the choice being either PhEqnLL or one of the second order

equations (PhEqnQQ or PhEqnQL).

The local approach in shaping our preferences of phase equations is grounded upon the

actual phase t̂ = t̂(x(t)) and orbital deviation y = y(t) computed at discrete points in time

for a particular perturbation. Note that {v1(t),u2(t), . . . ,uN (t)} is a basis set spanning

<N , since {u2(t), . . . ,uN (t)} is a linearly independent set, and v1(t) is orthogonal to all

the vectors in this set. Therefore, it is wise to consider, through orthogonal projection,

separately the components of y along v1(t) and in the space spanned by {u2(t), . . . ,uN (t)}.
If we compute the quantities t̂ and y through any of the second-order equations, it is much

likely that y(t) will contain a component along both the PPV v1(t̂) and those Floquet modes

called ui(t̂) for 2 ≤ i ≤ N . (Note again that ideally, y(t) does not contain a component along

v1(t̂) when a) if the computation is done with PhEqnLL, b) if the computation is done

with any phase equation and the oscillator strictly has linear isochrons, i.e., hyperplanes,

which is very unlikely.) Then, having y(t) and t̂ available through a second-order equation,

we may calculate the component of y(t) along v1(t̂) through

y1(t) =
v1(t̂)v

T

1(t̂)

vT

1(t̂)v1(t̂)
y(t)

since v1(t̂) is orthogonal to the other modes. Similarly, the component along these other

modes is

y2(t) = y(t) − y1(t)

We may now compare the norms of y1(t) and y2(t) and decide that if the norm of y1(t)

is considerable (by some pre-determined figure of merit) on average compared to that of

y2(t), then we may stick with second-order phase equations since the isochrons on average

for the particular oscillator appear to be nonlinear, at least locally closer to quadratic. If the

above is not the case, i.e., we are confident that on average the isochrons are close to being
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linear, we may well embrace the first-order and scalar phase equation PhEqnLL, reducing

the computational cost of overall phase calculations. The described local method (suggested

briefly in Section 6.5.2) of shaping our decisions on which type of equations to choose should

be practically feasible in many cases, and thus we can avoid the intricate development of

the theory needed to quantify the global errors introduced by phase equations. In fact,

we have used a version of this method when computing the distance between linear and

quadratic approximations along a certain direction confined in the linear approximation (see

the results in Section 4.3.3. However, when the simple method for making our preferences is

not adequate, more involved theory for error bound calculations has to be derived, such as

the one we have already suggested. We finally note that such a derivation would make use

of virtually any type of approximation employed in the derivations of our phase equations.

In fact, we have listed every approximation and omitted terms throughout the thesis.

A.4 A Family of Scalar Phase Equations

In Section 6.3.5, it is suggested that formal model order reduction methods may be applied

in order to reduce the simplified second-order phase equation into an even simpler equation

of smaller size, solving for t̂. However, at this point, we may describe a family of scalar

phase equations (phase equations that consist of only one equation, i.e., the ultimate model

reduction), that originate from the same methodology facilitating the derivation of PhE-

qnQL. As explained in the Section 6.3.5, (6.38) for t̂ and (6.39) for y describe PhEqnQL.

We observe that an approximate form of (6.38) is actually a special case of the following

family of equations for t̂.
dt̂

dt
= 1 +

[

ξn(t̂, y)

]
T

b(xs(t), t) (A.10)

ξn(t̂, y) is the n th order approximation for v1(xs(t̂)+y) obtained through n th order Taylor

expansions. Observe that n = 0 in (A.10) leads to PhEqnLL directly and has no need for y

calculations, for n ≥ 1 we need y. Fortunately, in our formulation for PhEqnQL, (6.39) is a

differential equation for y. We adopt this equation (6.39) to use in conjunction with (A.10)

as well, and furthermore observe that the approximate solution y of (6.39) is explicitly given

by (6.19). This means that we are free to substitute the explicit (6.19) into (A.10) for y,

obtaining a family of scalar phase equations for n ≥ 0. We have already stated that n = 0

is equivalent to PhEqnLL. For n ≥ 2, third and higher order partial derivatives of the
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phase t̂ on γ are necessary, but these quantities are most probably intractable because of

the computational cost they entail. For n = 1, we need v1(t) and H(t), and another addi-

tional matrix quantity, for which numerical computation methods and preferably theoretical

analysis schemes must be invented. Therefore, the case n = 1 leads to the derivation of an

improved scalar model that may be tractable.
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Appendix B

COMPUTATIONAL COMPLEXITIES

B.1 Computational Complexities in Chapter 6

In this section, we analyze the computational costs of phase computation schemes and phase

equations, as used in Chapter 6. This section includes the derivation of the complexities

given in Section 6.5.2. Below is a detailed account that leads us to justify and state the

computational complexities in Section 6.5.2. Let us denote by N the number of states in

an oscillator, K the number of timepoints along a single period, L the number of total

timepoints along the interval where a phase computation method is run.

Preliminary statements on computational complexities are as follows. We assume as well-

known complexities that xs(t), G(t) (assumed to be sparse), u1(t) and v1(t) are computable

along a single period in O(N K) time. The computation of H(t) (which is usually not

sparse) upon the stated quantities takes O(N3 K) time. Also, since phase computation

schemes require it, we also state that computation of xp(t), a perturbed solution, along an

interval of interest takes O(N L) time. We assume that if a matrix is sparse, then matrix

vector multiplications and solving a linear system of equations involving this matrix can be

done in linear time.

For PhCompBF, in order to compute the phase of a point xp(t0), we have to integrate

(3.1) with initial condition xp(t0) for an ideally infinite number, namely nper, of periods,

so that the states vector can be assumed more or less to be tracing the limit cycle. This

initial stage then takes O(nperKN) time. On top of this, assuming that we use uniform

timesteps throughout the simulation, we must compute the FFT of the last period of the

stated simulation result to compute the phase shift with respect to the unperturbed solution

(the simulation that should simultaneously run along the stated one, but now with initial

condition xs(t0)). The FFT computation takes O(K log2 K). Note that this last one is the

complexity for the FFT of only one of the N states, since it is sufficient that we have the

first order harmonics of only one state for the current computation of phase. Therefore,
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the phase computation of the single point xp(t0) takes O(nperKN +K log2 K). Since we

have to carry out this computation for all of the L points along the interval, the overall

complexity is O(nperKN L+ LK log2 K).

We next analyze PhCompLin. The phase computation of each point xp(t0) requires

several number of Newton iterations. In each Newton iteration of PhCompLin, one inter-

polated value for each of xs(t), v1(t) and G(t) has to be computed. These computations

(required by both function and Jacobian calculations) take each O(N) time, assuming that

G(t) is sparse. Function and Jacobian evaluations then take O(N). The complexity of

a single phase computation is O(mlinN), where mlin is the maximum number of Newton

iterations in obtaining the result. The overall complexity for all L points is then O(mlinN L).

Next is PhCompQuad. In line with the style of PhCompLin, we analyze first a single

Newton iteration, which requires the computation of interpolated values for each of xs(t),

v1(t), G(t), H(t) and M(t) (a crucial matrix in phase Hessian theory, defined as in (4.23)).

For the first three quantities, the complexity is O(N) as previously stated, but H(t) and M(t)

require O(N2) time as these are not usually sparse. Function and Jacobian computations

are accordingly O(N2). The overall complexity for all L points is O(mquad N
2 L), where

mquad is the maximum number of Newton iterations in obtaining a single phase value.

The analysis of PhEqnLL can be done in two parts, since (6.12) for t̂ is independent

of (6.18) for y, but not the other way around. Note that in the computation for (6.12)

(which is a nonlinear equation, therefore requiring the use of Newton’s method), calculation

of interpolated values for xs(t) and v1(t) is necessary. These both take O(N), as well

as the scalar product vT

1(t̂)b(xs(t̂), t). Function and Jacobian (through finite differences)

calculations take O(N), which makes the cost of a single Newton iteration O(N). Then,

the computation of phase through (6.12) for all L points should take O(mLLN L), where

again mLL is the maximum number of Newton iterations in obtaining a single phase value.

Before the integration of (6.18) for y (which is a linear differential equation in y, therefore

Newton’s method is not required, i.e. a single Newton iteration is sufficient), several required

values in the computation will already have been ready through the integration of (6.12),

namely b(xs(t̂), t), vT

1(t̂)b(xs(t̂), t), xs(t̂) and v1(t̂). However, on top of these, interpolated

values for G(t) and u1(t) are necessary for all L timepoints, which are readily computable

in O(N L) time, noting the sparsity of G(t). Then, also making use of sparsity, a single y
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value can be computed in O(N) time, making the whole integration of (6.18) of complexity

O(N L). We finally note that t̂ and y computations through the two equations therefore

incur O(mLLN L).

For PhEqnQQ, unlike the case of PhEqnLL, (6.32) for t̂ and (6.36) for y are fully cou-

pled nonlinear equations and they have to be solved simultaneously. We note that for each

function evaluation necessary for Newton’s method, interpolated values for xs(t) (O(N)),

u1(t) (O(N)), v1(t) (O(N)), H(t) (O(N2)), G(t) (O(N)) and ∂G(t)/∂xs(t) (O(N2)) have

to be computed, incurring the complexities given in parentheses after each item, noting

again the sparsity of G(t) and non-sparsity of H(t). We then seek to find out the com-

putational complexity for function evaluations, as we have done previously for the other

methods. v1(t̂) +H(t̂)y computation incurs O(N2), and b(xs(t̂), t) +
[
∂b(xs(t̂), t)/∂xs(t̂)

]
y

is calculated in O(N) time since we assume that ∂b(xs(t̂), t)/∂xs(t̂) is sparse. We assume

that
[
∂G(t̂)/∂xs(t̂)

]
(y⊗y) incurs O(N2), while G(t̂)y and u1(t̂)+G(t̂)y take O(N) time.

Therefore, function evaluations in all incur O(N2) and Jacobian calculations (through finite

differences) cost O(N3) time. Assuming sparsity again linear system of equations solutions

should take O(N) time. In all, the whole integration of PhEqnQQ is to cost O(mQQN3 L),

where mQQ is the maximum number of iterations in solving for a single phase value, as usual.

The analysis for PhEqnQL is again similar and yields a complexity of the same form.

Note that in most of the above analyses, we have denoted the number of Newton iterations

by appropriately subscripted m. If these m are bounded and do not scale with the number

of states N (which in fact they do not most of the time), then all of the above m can be

omitted in expressions for the complexities above.

The overview of the complexities analyzed tells us that PhCompBF is indeed the most

expensive method as stated many times before. PhCompLin and PhEqnLL are linear

in the number of states, N . PhCompQuad is of quadratic complexity in N , and the

multi-dimensional PhEqnQQ and PhEqnQL are third order. More accurate methods

should incur more computation time so that the problem in hand poses a trade-off between

accuracy and speed, computational cost of the most accurate PhCompBF being very high.
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B.2 Computational Complexities in Chapter 7

In this section, we analyze the computational costs of phase computation schemes and

phase equations, as applied to SSA sample paths of discrete molecular oscillators (as in

Chapter 7). Particularly, this section provides details on Section 7.5.4. We have found

other implementations (compared to those of Chapter 6, therefore of Appendix Section B.1)

for several of the methods to be more suitable for the problem in hand. This is why the

derivations in this section are different. Let us denote by N the number of states in an

oscillator, K the number of timepoints along a single period, L the number of total timepoints

along the interval where a phase computation method is run, as in Appendix Section B.1.

Note that although SSA simulates all N species, some of these species might be required to

remain constant in molecule number throughout the simulation. In many of such cases, the

continuous models are required to disregard these constant number species algorithmically.

Therefore, in all of the expressions below we might be able to put instead of N a number

little less than that, the effect reducing the overall complexities. Preliminary statements on

computational complexities are as given in Appendix Section B.1.

We are using exactly the same algorithm for implementing PhCompBF as given in

Appendix Section B.1. Therefore, the complexity does not change.

Analyzing the complexities of the phase equations requires first the evaluation of the

modulated noise term that comes up in the update rule of (7.17), i.e. S
[
ej − a

(
xs

(
t̂(t)

))
τ
]
.

The propensity functions vector a in this expression can be obtained in O(M) time, where

M is the number reactions. Then, the subtraction
[
ej − a

(
xs

(
t̂(t)

))
τ
]

is also O(M). The

rest of the complexity depends on the sparsity of the stoichiometry matrix S. If S is sparse

(i.e., if there is roughly one nonzero entry in each row), the last complexity figure in the

evaluation becomes O(N), where N is the number of species. Else, if S is totally dense, the

last operation, multiplication of S with the other term takes O(N M) time. So, one may

deduce in this manner that the preparation of the modulated noise term that perturbs the

system and accordingly the phase equations is in the worst case O(N M) and in the best

case O(N +M).

As given by the update rule in (7.17), PhEqnLL requires an inner product with the

possibly interpolated (for evaluation at an arbitrary phase t̂) phase gradient v(t). Interpola-

tion and the inner product are both O(N). The rest of the update rule is scalar, O(1). The
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update rule has to be run for all L timepoints along the interval of simulation. Therefore,

PhEqnLL is in the worst case O(N M L) and in the best case O(M L+N L).

PhEqnQL update rule consists of forward Euler discretizations of the equations in (7.22)

and (7.19). For (7.22), phase Hessian H(t) interpolations and the H(t̂)Y product both take

O(N2), since H(t̂) is dense. These operations dominate v(t) interpolations (O(N)) and the

summation (O(N)). The scalar product of v + HY and the modulated noise term takes

O(N). For (7.19), since G(t) is sparse, both G(t) and u(t) interpolations and the GY

product takes O(N). Therefore, one may deduce that the update rule in (7.19) takes O(N).

The whole update rule carried out at L timepoints then takes O(N2 L+N M L) in the worst

case and O(N2 L+M L) in the best case.

The phase computation schemes consist of solving the algebraic equations in (7.24) or

(7.25) (depending on whether the linear or quadratic scheme is preferred). We favor the

bisection method to solve for the appropriate phase at each timepoint of an SSA sample

path. The complexity of solution computation through bisections is analyzed as follows.

In both types of phase computation schemes, the initial guess at a phase at the current

timepoint is taken as the computed phase of the previous timepoint in the history of the

sample path. The bisection method requires first an interval in which the solution is sure to

exist. Therefore, an interval of length dmin is selected, in the middle of which the previously

computed phase t̂prev resides. It is tested whether the phase of the current timepoint lies in

this interval. If not the interval length is doubled, keeping t̂prev in the middle. A maximum

value of the interval dmax is also predetermined. It is best to select dmax and dmin to be

appropriate fractions of the period T . Then, the maximum number of iterations for interval

finding in preparation for the bisection method is log2

⌈
dmax

dmin

⌉

. After the interval is found,

next comes the bisections. When the length of the interval is chopped down to some value

dtol, the current phase solution t̂soln is assumed to be found. If relative tolerances are utilized,

dtol becomes also a function of t̂soln as in dtol = εrelt̂soln+ εabs, where εrel and εabs are relative

and absolute tolerances, respectively. Since dtol indeed depends on the phase solution, let

us choose for it the smallest dtol value encountered in the history of the computation. Then,

the maximum number of iterations in bisections is log2

⌈
dmax

dtol

⌉

. As the complexities of valid

interval checking is the same in interval finding and bisections, the maximum total number

of iterations in bisections with the preparation is log2

⌈
d2max

dtol dmin

⌉

. It can be deduced that a
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single valid interval check in the PhCompLin scheme is roughly the same in complexity and

it is O(N). This complexity for PhCompQuad is roughly O(N2). In all, the complexity

of PhCompLin for L timepoints becomes

O
(

N L log2

⌈
d2max

dtol dmin

⌉ )

(B.1)

In similar fashion, the complexity of PhCompQuad can be derived to be

O
(

N2 L log2

⌈
d2max

dtol dmin

⌉ )

(B.2)

Notice that in (B.2) only the term involving N has changed with respect to (B.1).

The essence of the above analyses is that accuracy demands a trade-off of complexity. For

mildly noisy oscillators, the phase equations should remain somewhat close to the results of

the golden reference PhCompBF and the other approximate phase computation schemes,

which imitate PhCompBF very successfully with much less computation times. For more

noisy oscillators, we should expect the phase computation schemes to do still well, although

the phase equations will compute some inaccurate results very fast. PhCompBF is always

very slow.
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Appendix C

PROOFS OMITTED IN THE TEXT

C.1 The Differential Lyapunov Equation

Below is the proof of Lemma 4.2.1, which was omitted in the text and gives the generic

solution of a differential Lyapunov equation.

Proof of Lemma 4.2.1: Recall once more the differential Lyapunov equation for the

Jacobian of v1, which we call H, the phase Hessian. All time arguments below have been

omitted for convenience.
dΨ

dt
+ΨG+GTΨ = −M (C.1)

Let us multiply all terms with up to obtain

dΨ

dt
up +ΨGup +GTΨup = −Mup (C.2)

The following is again an identity.

dΨ

dt
up =

d

dt

[

Ψup

]

−Ψ
dup

dt
(C.3)

Plugging (C.3) into (C.2) and making use of (3.11),

d

dt

[

Ψup

]

−Ψ

(

Gup − µpup

)

+ΨGup +GTΨup = −Mup (C.4)

After a cancellation and some manipulations, (C.4) can be written as

d

dt

[

Ψup

]

+

(

GT + µpIM

)[

Ψup

]

= −Mup (C.5)

Now let us multiply (C.5) by uT

r from the left to obtain

uT

r

d

dt

[

Ψup

]

+ uT

r

(

GT + µpIM

)[

Ψup

]

= −uT

rMup (C.6)

Again, making use of identities similar to (C.3) and (3.11), we get the simplified form of

(C.6) as
d

dt

{

uT

rΨup

}

+

(

µr + µp

){

uT

rΨup

}

= −uT

rMup (C.7)
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after some tedious manipulations.

Note that (C.7) is a scalar linear inhomogeneous equation with constant coefficients.

Therefore, the form of its solution is readily available. We set as the initial condition

uT

r(0)Ψ(0)up(0). In the arguments of functions, we use the likes of t instead of xs(t), for

convenience. The solution of (C.7) is given by

uT

r(t)Ψ(t)up(t) = uT

r(0)Ψ(0)up(0) exp

(

− (µr + µp)t

)

−
∫ t

0
exp

(

− (µr + µp)(t− τ)

)[

uT

r(τ)M(τ)up(τ)

]

dτ (C.8)

In handling (C.8) once more, we multiply this equation from the left with vr and from th

right with vT

p and double sum all over r and p. In view of the identities

[ N∑

r=1

vr(t)u
T

r(t)

]

Ψ(t)

[ N∑

p=1

up(t)v
T

p(t)

]

=

[

IN

]

Ψ(t)

[

IN

]

= Ψ(t)

and
[ N∑

r=1

exp(−µr(t− 0))vr(t)u
T

r(0)

]

Ψ(0)

[ N∑

p=1

exp(µp(0− t))up(0)v
T

p(t)

]

=

[

ΥT(t, 0)

]

Ψ(0)

[

Υ(0, t)

]

and
[ N∑

r=1

exp(−µr(t− τ))vr(t)u
T

r(τ)

]

M(τ)

[ N∑

p=1

exp(µp(τ − t))up(τ)v
T

p(t)

]

=

[

ΥT(t, τ)

]

M(τ)

[

Υ(τ, t)

]

we obtain from (C.8)

Ψ(t) = ΥT(t, 0)Ψ(0)Υ(0, t)

−
∫ t

0
ΥT(t, τ)M(τ)Υ(τ, t)dτ (C.9)

which is the same as (4.32). �

C.2 Orbital Deviation Characterizations in Phase Equations

This section provides the proofs, which were omitted in the text, for orbital deviation char-

acterizations in phase equations. The first proof belongs to Theorem 6.2.1 of Section 6.2 on
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the first-order phase equation. The second proof is that of Theorem 6.3.3 in Section 6.3 for

the second-order phase equation.

Proof of Theorem 6.2.1: Subtracting the corresponding sides of the identity in (6.13)

from those of (6.16), also noting the decomposition in (6.17), we obtain exactly (6.18).

In order to find the solution in (6.19) for y, we have to contend that

dy

dt
=

[
dy

dt̂

] [
dt̂

dt

]

≈ dy

dt̂
(C.10)

based on Assumption 6.2.1. Then, through (C.10), (6.18) can be approximated as

dy

dt̂
= G(t̂)y +

N∑

i=2

[
vT

i (t̂)b(xs(t̂), t)
]
ui(t̂) (C.11)

Now, noting the identity
dui(t̂)

dt̂
= G(t̂)ui(t̂)− µiui(t̂) (C.12)

which is another form of the eigenvalue problem statement in (3.11), and the proposed form

of y in (6.9), (C.11) can be written alternatively as

dy

dt̂
= G(t̂)y −

N∑

i=2

ciµiui(t̂) (C.13)

Comparing (C.11) and (C.13), the identity

−
N∑

i=2

ci µi ui(t̂) =

N∑

i=2

[
vT

i (t̂) b(xs(t̂), t)
]
ui(t̂) (C.14)

can be deduced. Defining the matrix U and the vector d as

U =
[

u2(t̂) · · ·uN (t̂)
]

and d =








−µ2c2
...

−µNcN








(C.15)

respectively, it is possible to express the LHS of (C.14) in matrix-vector form as in

Ud =

N∑

i=2

[
vT

i (t̂) b(xs(t̂), t)
]
ui(t̂) (C.16)

Note that since U is an N×(N−1)-sized matrix with rank N−1, the solution of the system

in (C.16) is unique if there exists one. The right-hand side of (C.16) is without doubt in
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the column space of U. Therefore, (C.16) has a solution, and it is unique. Indeed, through

(C.16), we can write

di = −µici = vT

i (t̂)b(xs(t̂), t) (C.17)

which, after some manipulations and noting the form in (6.9), justifies (6.19). �

Proof of Theorem 6.3.3: As will be shortly shown, much of the proof relies on the

theory of the phase Hessian H(t) that is covered in Section 4.2.3. To conduct the proof, we

have to recall that H(t) satisfies the differential equation in (4.22) where M(t) is defined by

(4.23). The proof proceeds as follows.

Let us multiply (6.36) from the left by the transpose of v1(xs(t̂) + y) ≈ v1(t̂) +H(t̂)y.

First, as in the proof of Theorem 6.2.1 (which we also had to omit because of space

limitations), let us approximate dy/dt by dy/dt̂, assuming dt̂/dt ≈ 1.

Second, note that the last two terms on the right-hand side of (6.36) constitute the

forcing term. We know through Theorem 6.3.2 that this forcing term has no component

along u1(t̂) +G(t̂)y. Therefore, applying the approximation scheme of Theorem 6.3.1, this

forcing term multiplied by v1(t̂) +H(t̂)y from the left should vanish.

Third, we omit the scalar product of vectors H(t̂)y and 1/2
[
∂G(t̂)/∂xs(t̂)

]
(y ⊗ y) for

it is higher-order.

Fourth, the scalar product that has not yet been examined, can be simplified through

(6.35) and (4.23) as in

vT

1(t̂)

[
1

2

∂G(t̂)

∂xs(t̂)
(y ⊗ y)

]

=
1

2

N∑

i=1

N∑

l=1

yiyl





N∑

j=1

∂Gji(t̂)

∂xs,l(t̂)
v1,j(t̂)





=
1

2
yTM(t̂)y. (C.18)

In all, the computation of the current product yields, after the stated manipulations,

[
v1(t̂) +H(t̂)y

]
T

[
dy

dt̂
−G(t̂)y

]

− 1

2
yTM(t̂)y = 0. (C.19)

Let us now examine (C.19) in order to prove the claim. Simplifying, we obtain
[

vT

1(t̂)
dy

dt̂
− vT

1(t̂)G(t̂)y

]

+

[

yTH(t̂)
dy

dt̂
− yTH(t̂)G(t̂)y − 1

2
yTM(t̂)y

]

= 0.

(C.20)
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Observe right away that

[

vT

1(t̂)
dy

dt̂
− vT

1(t̂)G(t̂)y

]

=
d

dt̂

[
vT

1(t̂)y
]
. (C.21)

Also, we have

yTH(t̂)
dy

dt̂
=

d

dt̂

[
1

2
yTH(t̂)y

]

− 1

2
yT

dH(t̂)

dt̂
y. (C.22)

Note also the identity

yTH(t̂)G(t̂)y =
1

2

[
yTH(t̂)G(t̂)y + yTGT(t̂)H(t̂)y

]
. (C.23)

Based on (4.22),
dH(t̂)

dt̂
= −H(t̂)G(t̂)−GT(t̂)H(t̂)−M(t̂) (C.24)

(C.22), (C.23), and (C.24) convey that
[

yTH(t̂)
dy

dt̂
− yTH(t̂)G(t̂)y − 1

2
yTM(t̂)y

]

=
d

dt̂

[
1

2
yTH(t̂)y

] (C.25)

(C.21) and (C.25) imply that (C.20) simplifies to

d

dt̂

[

vT

1(t̂)y +
1

2
yTH(t̂)y

]

= 0. (C.26)

(C.26) means that the value in the square brackets is a constant, but that constant is exactly

equal to zero since at a particular point, namely xs(t̂), this value is zero (note again that

y = x(t)−xs(t̂) and equating x(t) = xs(t̂) we observe that the value in the brackets is zero).

Therefore, vT

1(t̂)y+1/2yTH(t̂)y = 0 throughout for all y that could instantaneously satisfy

the differential equation (6.36). Then observe also that the equality vT

1(t̂)y+1/2yTH(t̂)y = 0

is nothing but (4.10) with t̂ instead of t. Hence, the claim. �
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Appendix D

PRELIMINARIES FOR POISSON PROCESSES

This chapter provides simple preliminaries on Poisson processes (as would benefit com-

prehension of the material in Section 7.2.4), such as the probability distribution, the Master

Equation for the process and the Gaussian approximation valid in some conditions. The

material in this chapter is borrowed from [49, 48].

D.1 Poisson Processes

A Poisson process is a pure birth process that tells one how many occurences of a certain

event has come to pass. Let us call Nt the number of times of occurences observed until time

t. A crucial property that makes such a process Poisson is that the sojourn times between

consecutive occurences are exponentially distributed with the same parameter λ. Therefore,

if {S1, S2, S3, . . .} are the instances in time when the event occurs, then {S1, S2 − S1, S3 −
S2, . . .} are all exponentially distributed with λ (i.e. P (S1 < t) = 1 − exp(−λt)), moreover

we assume they are independent. Simple manipulations lead one to derive the probability

law for the process Nt as in

P (Nt = k) = Fk(t)
︸ ︷︷ ︸

P(Sk<t)

−
∫ t

0
Fk(t− s)λ exp(−λs)ds

︸ ︷︷ ︸

Fk+1(t)=P(Sk+1<t)

(D.1)

= exp(−λt)
(λt)k

k!
(D.2)

The formula in (D.1) is a compact one relating the exponential distribution of sojourn times

and that of the Poisson counting process Nt. Note that Fk(t) is the k-fold convolution of the

exponential distribution, computed in the manner given exactly in the integral expression

of (D.1). Note also that the expression in (D.1) is true for k ≥ 1. We know simply for k = 0

that P (Nt = 0) = P (S1 > t) = exp(−λt). Then, the formula in (D.2) is consistent in k ≥ 0.
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Also of some significance are the generating functions for discrete valued random pro-

cesses. The generating function for the Poisson process can be shown to be

E
[
αNt

]
= exp(λt(α − 1)) (D.3)

Moments of the Poisson distribution can be calculated through the generating function as

in

d

dα
E
[
αNt

]
∣
∣
∣
∣
α=1

= E [Nt] = λt (D.4)

d2

dα2
E
[
αNt

]
∣
∣
∣
∣
α=1

= E [Nt(Nt − 1)] = (λt)2 (D.5)

From (D.4) and (D.5) it can be deduced that

E [Nt] = var(Nt) = λt (D.6)

D.2 Master Equation for the Poisson Process

The Poisson process can indeed be shown to be a Markov process (continuous-time Markov

chain) with a master equation derived briefly as follows. Let us assume the probability of a

jump in a process Nt as (in fact the only type of jump that can occur for a Poisson process)

P (Nt : n → n+ 1 in∆t) = λ∆t (D.7)

Then, through probabilistic manipulations and letting ∆t go to zero, the following master

equation is derived.

d

dt
P (Nt = n) = λ

[

P (Nt = n− 1)− P (Nt = n)

]

(D.8)

It is also possible to derive a differential equation for the generating function of Nt through

(D.8), and then the generating function can be shown to be as in (D.3), which proves the

master equation in (D.8) belongs to a Poisson process.

D.3 Gaussian Approximations

A Gaussian approximation can be derived if we observe the following facts about Poisson

processes. Let Lt and Mt be independent Poisson processes with corresponding parameters

λ1 and λ2. The generating function for the process Lt +Mt is then

E
[
αLt+Mt

]
= E

[
αLt

]
E
[
αMt

]
= exp((λ1 + λ2)t(α− 1)) (D.9)
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Above, if we set Nt = Lt + Mt and λ = λ1 + λ2, it can be observed that the sum of

independent Poisson processes is another Poisson process, its parameter the sum of individual

parameters. In this sense, it is also true that any Poisson process can be decomposed into

a sum of independent individual Poisson processes. Utilizing the central limit theorem for

i.i.d. processes, a Gaussian approximation for Poisson random variables with big values for

parameters (decomposed into sums as such) can be derived. The mean and variance of the

approximation will inherently be equal and the same as those of the Poisson process.
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