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Abstract

Representation of words as dense real vectors in the Euclidean space

provides an intuitive definition of relatedness in terms of the distance or the

angle between one another. Regions occupied by these word representations

reveal syntactic and semantic traits of the words. On top of that, word

representations can be incorporated in other natural language processing

algorithms as features.

In this thesis, we generate word representations in an unsupervised man-

ner by utilizing paradigmatic relations which are concerned with substi-

tutability of words. We employ an Euclidean embedding algorithm (S-

CODE) to generate word context and word token representations from the

substitute word distributions, in addition to word type representations. Word

context and word token representations are capable of handling syntactic cat-

egory ambiguities of word types because they are not restricted to a single

representation for each word type.

We apply the word type, word context and word token representations to

the part-of-speech induction problem by clustering the representations with

k-means algorithm and obtain type and token based part-of-speech induction

for Wall Street Journal section of Penn Treebank with 45 gold-standard tags.

To the best of our knowledge, these part-of-speech induction results are the

state-of-the-art for both type based and token based part-of-speech induction

with Many-To-One mapping accuracies of 0.8025 and 0.8039, respectively.

We also introduce a measure of ambiguity, Gold-standard-tag Perplexity,

which we use to show that our token based part-of-speech induction is indeed

successful at inducing part-of-speech categories of ambiguous word types.



Özetçe

Kelimelerin Öklit uzayında gerçek yoğun vektörler tarafından temsili ke-

limeler arasındaki ilgililiğin uzaklık ve açı cinsinden tamınlanmasına olanak

sağlamaktadır. Kelime temsilleri tarafından işgal edilen bölgeler kelimelerin

sözdizimsel ve anlamsal özelliklerini yansıtmaktadırlar. Bunlara ek olarak,

kelime temsilleri doğal dil işleme algoritmalarına öznitelik olarak eklenebilmek-

tedirler.

Bu tez içinde, kelime temsillerini denetimsiz olarak, örneksel ilişkilerini

yani kelimelerin değiştirilebilirliğini kullanarak üretiyoruz. S-CODE isimli

Öklitsel gömme algoritmasını çalıştırarak kelime türü temsillerine ek olarak,

kelime bağlamı ve kelime andacı temsilleri elde ediyoruz. Kelime bağlamı ve

kelime andacı temsilleri her kelime türü için sadece bir temsille kısıtlanmadıkları

için çok sözdizimsel kategorili kelimerle başa çıkma yeteneğine sahiptirler.

Kelime türü, kelime bağlamı ve kelime andacı temsilerini k-means algo-

ritmasını kullanarak kümeleyip sözcük türü tümevarımı (part-of-speech in-

duction) problemine uyguluyoruz. Penn Treebank bütüncesinin 45 sözcük

türü etiketli Wall Street Journal kısımı için tür ve andaç temelli sözcük

türü tümevarımları elde ediyoruz. Sözcük türü tümevarımlarımız ile tür

temelliler icin 0.8025 ve andaç temelliler icin 0.8039 Çoktan-Bire eşleme

kesinlikleri elde ediyoruz. Bildiğimiz kadarıyla tekniklerimiz bu sonuçlarla

alandaki en gelişmiş teknikler olmuşlardır. Bununla beraber, çok anlamlılığı

ölçmek için ‘Altın Standart Etiket Tereddütü’ ölçüsünü takdim ederek andaç

temelli sözcük türü tümevarımlarımızın çok sözdizimsel kategorili kelimelerde

başarılı olduğunu gösteriyoruz.
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Eryiğit for their valuable comments and for taking their time to take a part

in my thesis committee.

I thank to my colleagues and friends in Koç University Artificial Intelli-
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with him, Emre Ünal, Aydın Han, Volkan Cirik and Hüsnü Şensoy were fun
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Glossary

context is the ordered sequence of word types that surrounds a target word

token.

part-of-speech induction is the process of tagging the word tokens in a

corpus with identifiers to cluster the word tokens of the same syntactic

category in an unsupervised manner.

representation (or word representation) is a dense real vector in the d

dimensional Euclidean space that is associated with a word.

target word token is the word token of interest in a sentence or a docu-

ment.

token based part-of-speech induction is a part-of-speech induction pro-

cess that is not obliged to assign the same category to word tokens of

the same word type.

type based part-of-speech induction is a part-of-speech induction pro-

cess that assigns the same category to word tokens of the same word

type. Ambiguous word types that are observed with di↵erent syntactic

categories depending on their context can not be tagged with di↵erent

identifiers.

word context representation (or context representation) is the represen-

tation of the context of a word token. If contexts of two di↵erent word

5
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tokens are the same (same sequence of word types), context represen-

tations result in the same representation. Context representations are

independent of the target word the contexts surround.

word token (or token) is an instance (observation) of a word type.

word token representation (or token representation) is the representa-

tion of a word type with its context. Word token representations has

traits of both word types and word context representations.

word type (or type) is a unique word (sequence of characters including

numbers and punctuation) in a vocabulary generated from a corpus.

word type representation (or type representation) is the representation

of a word type. Each word token of the word type shares the same

representation.

Please note that this glossary describes the terms according to their usage

in thesis and the descriptions may not be completely compatible with other

works in the literature.



Chapter 1

Introduction

This thesis investigates representations of words as dense real vectors in the

Euclidean space that are generated in an unsupervised manner and their

application to the part-of-speech (also called lexical or syntactic) category

induction problem.

Learning a mapping from words to vectors in the Euclidean space provides

an intuitive definition of relatedness in terms of the distance (e.g. Euclidean

distance) or the angle (e.g. cosine similarity) between the word represen-

tations. These similarities reveal semantic and syntactic relations between

words (Huang et al., 2012; Mikolov et al., 2013; Schütze, 1998). These re-

lations are useful in constituent parsing (Socher et al., 2013), part-of-speech

induction (Lamar et al., 2010b; Maron et al., 2010; Schütze, 1995), sentiment

analysis (Maas et al., 2011), word sense disambiguation (Schütze, 1998).

In addition, it is possible to incorporate the word representations as if

they are additional features in order to improve the performance of super-

vised natural language processing algorithms for tasks like chunking, named

entity recognition, part-of-speech tagging, semantic role labeling and senti-

ment classification (Collobert et al., 2011; Dhillon et al., 2011, 2012; Turian

et al., 2010).

Learning part-of-speech categories of words, on the other hand, is one of

the fundamental problems in natural language processing. Since the grammar

rules do not apply to the individual words but to their syntactic categories,

7



CHAPTER 1. INTRODUCTION 8

any word in a well formed sentence can be exchanged with an arbitrary word

and the sentence would still be well formed as long as the replacement word

is in the same part-of-speech category as the replaced word (but most likely

the semantics of the sentence would be di↵erent). Being able to group words

into part-of-speech categories has its benefits in applications such as parsing

and machine translation that aim to learn or utilize grammar.

Young children are able to form original syntactically correct sentences

without ever knowing the formal definition of nouns or verbs by being exposed

to natural language from adults, other children or TV over time (Brown and

Berko, 1960), which suggests that they form a categorization of word types.

However, there is still no computational model for acquisition of the part-of-

speech categories from unlabeled text (i.e. part-of-speech induction) that is

comparable in performance with humans which is one of the reasons we are

interested in the problem. Another reason for the interest is that languages

with poor reserve of labeled data benefit from the unsupervised methods

as only raw text data is required instead of costly human labor. Part-of-

Speech categories to be induced would prove to be useful in natural language

processing applications in these languages.

In this thesis, we build on the work of Yatbaz et al. (2012) who generate

word type representations from large amounts of unlabeled text by represent-

ing the paradigmatic relations of word tokens in their contexts as substitute

word distributions and utilizing an Euclidean embedding algorithm named

S-CODE. Paradigmatic relations are concerned with the substitutability of

the word token with another word type. Another type of relation between

the word tokens and their contexts are syntagmatic relations which are con-

cerned with the positioning of the word token within the context. Figure 1.1

is an illustration of these relationships as axes on a simple sentence.

By applying the word type representations to the part-of-speech induction

problem and outperforming previous work, Yatbaz et al. (2012) show that

paradigmatic relations are powerful at capturing the syntactic similarities.

The presented word type representations are successful at capturing the syn-

tactic properties of unambiguous word types as shown by their performance

at the part-of-speech induction task. However, word type representations
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Figure 1.1: Syntagmatic and paradigmatic axes on a the sentence “the man
cried” (Chandler, 2007).

are fundamentally limited in their ability to reflect the semantic and syntac-

tic properties of ambiguous word types as they do not take the individual

contexts the word types are observed into consideration. For a concrete ex-

ample, observe the following sentences containing the word type ‘work’: “I

work at a public library.” and “I am at work right now.”. From the context

they are observed in, it is clear that both instances of ‘work’ are assigned

with di↵erent syntactic and semantic duties in the sentences and a single

representation simply can not capture both of these observations.

In this thesis, in addition to the word type representations, we gener-

ate representations for word contexts and word tokens from paradigmatic

relations captured as substitute word distributions. Word context represen-

tations are vectors associated with the ordered sequence of words surrounding

the target word type of interest. Two di↵erent word tokens with identical

surrounding words would have the same context representations, since the ac-

tual target word types do not a↵ect the word context representations. Word

token representations are vectors that capture the properties of both target

word’s type representation and the target word’s context representation.

To show that our word context and word token representations capture

syntactic similarities and handle ambiguities of word types, we once again

decided to apply them to the task of part-of-speech induction. While the

part-of-speech induction task has a high upper bound for type based induc-

tion, non-trivial portions of corpora still consist of ambiguous word types
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(e.g. most frequent tags for word types in Wall Street Journal section of

Penn Tree Bank (Marcus et al., 1999) result in 93.69% Many-To-One accu-

racy but 14.94% of the tokens in the corpus consist of considerably ambigu-

ous types (see Section 4.4)). Induction of the part-of-speech categories are

based on clustering of the word type, word context and word token repre-

sentations. Clustering of the word type representations result in type based

part-of-speech induction. Clustering of the word context and word token

representations result in token based part-of-speech induction.

The structure of the thesis is as follows:

Chapter 2 details the related work on the word representations and part-

of-speech induction. We examine the word representations under three

categories based on how they are obtained. The literature review on

the part-of-speech induction are focussed on HMMs and their training.

We also examine few methods that are not based on HMMs as well.

Chapter 3 describes the pipeline of operations that begin with the repre-

sentation of paradigmatic relations with substitute distributions and

end with the evaluation of part-of-speech induction.

Chapter 4 reports our experimental settings, results and compares them to

part-of-speech induction systems in the literature. We also introduce

morphological and orthographic features and compare our system to

other feature incorporating part-of-speech induction systems. In what

follows, we compare our word representations with the word representa-

tions in the literature on the part-of-speech induction task. We end the

chapter with an analysis of parameters and word token representations.

Chapter 5 concludes the thesis with a summary of our work and o↵ers

future topics to be investigated based on the word representations we

present.



Chapter 2

Related Work

In this chapter, we survey the previous studies on word representations and

on part-of-speech induction systems in two separate sections. We start the

discussion of word representations with systems that only produce word type

representations and end the section with systems that are able to produce

word context or word token representations as well. We complete the chapter

with a short review of the part-of-speech induction literature.

2.1 Word Representations

There are two popular means of obtaining word representations from unla-

beled text. The first of them is utilization of frequency matrices. A frequency

(or co-occurrence) matrix F is a matrix whose elements fij are the frequency

(or number times) of observing events i and j together. If the rows of such

matrix are associated with words and the columns are associated with an-

other event (e.g. the contexts), then employing rows as word representations

is one of the many ways of obtaining representations from the matrix. Tur-

ney and Pantel (2010) present a comprehensive review of frequency matrix

based methods used to derive word representations for investigating seman-

tic relations. The second popular means of obtaining word representations

is based on neural networks. Neural network based language models, whose

performance challenge the established n-gram and discounting based lan-

11



CHAPTER 2. RELATED WORK 12

guage models, predict the word following a sequence of words and generate

word representations as a side e↵ect of the learning process. There are also

methods that do not fall into these two categories.

We begin with the literature on word type representations. We follow up

with the literature on word context and word token representations.

2.1.1 Word Type Representations

Word type representations stand for the case of association of all tokens of

a word type with a single representation. These representations, obviously,

are unable to handle word types with multiple meanings or taking on more

than one syntactic duty in sentences depending on the word’s context (i.e.

ambiguous word types).

In Latent Semantic Analysis (LSA) (Deerwester et al., 1990), a frequency

matrix of word types and contexts (word, document or any other context)

is formed where each element fwc is the number of occurrences of word type

w in the context c. Then, dimensionality of this matrix is reduced using

singular value decomposition (SVD) and the resulting rows are used as word

type representations.

Kanerva et al. (2000) and Sahlgren (2005) obtain word type representa-

tions very similarly to LSA, by reducing the dimensionality of a frequency

matrix of word types and contexts. But instead of using computationally

costly SVD, they use Random Indexing. In Random Indexing, first, a ran-

dom low dimensional representation for each context is generated. Then,

for each word type, weighted (by their observation frequency with the word

type) sum of these representations are determined to be the word type rep-

resentation.

Collobert and Weston (2008) present a convolutional neural network ar-

chitecture that not only learn a language model and generate word type

representations from unlabeled data, but also jointly train predictors for

part-of-speech tags, named entities, semantic roles and chunking using la-

beled data.

Mnih and Hinton (2007) introduce the log-bilinear language model that
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can be interpreted as a feed-forward neural network with one linear hid-

den layer and a softmax output layer. The model learns and utilizes linear

combination of word type representations of the words preceding the word

position to be predicted. Mnih and Hinton (2009) modify this model to have

a hierarchical structure in order to reduce computational cost and name it

hierarchical log-bilinear language model.

Mikolov et al. (2010) use recurrent neural networks to train a language

model and obtain word type representations. Mikolov et al. (2013) show that

these representations capture syntactic and semantic regularities in terms of

o↵sets in the vector space, such as xapple � xapples ⇡ xcar � xcars ⇡ xfamily �
xfamilies where xw is the representation of word type w.

Maron et al. (2010) introduce the S-CODE framework, an extension of

the CODE (Globerson et al., 2007) framework, that obtains word type rep-

resentations from co-occurrence data generated from syntagmatic relations

of words. Yatbaz et al. (2012) extend this work by generating word type

representations from paradigmatic relations, which we extend in thesis to

obtain word context and word token representations.

Lamar et al. (2010b) employ the approach of Schütze (1995) (see Section

2.1.2) in a two step manner to obtain word type representations. In the

first step, authors replicate the method of Schütze (1995) to obtain word

type representations. In the second step, word type representations from

the previous step are clustered. Two new co-occurrence matrices for left

and right cluster neighbors of each word type are formed and first step is

reapplied to these new matrices to generate word type representations.

Maas et al. (2011) develop a probabilistic model inspired by Latent Dirich-

let Allocation to learn word type representations from unlabeled data that

reflect semantic relations. Additionally, authors incorporate labeled senti-

ment data to capture sentiment relations on top of the semantic relations.

Luong et al. (2013) train their neural network language model on mor-

pheme level instead of word level and generate representations for the mor-

phemes. Word type representations are generated on the fly from the mor-

phemes that construct them which in turn estimates rare, morphologically

complex or unseen word types more sensibly.
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2.1.2 Word Context and Word Token Representations

Word context representations are associated with the contexts of the words

instead of the words themselves. These representations can handle ambiguous

word types, since each observation of a word type has a unique context which

has a unique representation.

Word token representations are associated with the context of a word and

the word itself at the same time. In a sense, they are hybrids of word type

representations and word context representations. Word token representa-

tions are able to handle ambiguous word types as well, since they take the

context into consideration.

It is possible to have duplicate word context representations for two dif-

ferent word types with the same context, since word context representations

are independent of the target word itself. Word token representations do not

have this issue, because the extra information from the word type di↵erenti-

ates word types with the same context from each other.

Schütze (1995) forms two separate co-occurrence matrices for left and

right neighbors of each word type. Combinations of these matrices such as

concatenation of left and right matrices are used to compose new matrices.

By applying SVD to these new matrices, in order to reduce dimensionality

and sparseness, word type, word context and word token representations are

generated.

Schütze (1998) performs word sense discrimination by forming a word

context representation for each occurrence of an ambiguous word type and

clustering them. These word context representations are obtained by the

weighted average of the representations of the word types in the context

window. Each word type representation is derived from a co-occurrence

matrix of neighboring words.

Reisinger and Mooney (2010) conceive word context representations from

the word types in the context windows of word tokens. Word context rep-

resentations corresponding to each word type are clustered and cluster cen-

troids are used to represent word types in a level that is finer than type level

but coarser than token level (i.e. k representations for word type w where
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k ⌧ n and n is the number of tokens with type w) and are called prototypes

of the word types.

Huang et al. (2012) train a neural language model by using both local

(word sequence) and global (document) context via a joint training objective

and generate word type representations. By taking the weighted average of

the representations of word types in the fixed size context windows of word

tokens, authors form word context representations for those tokens. Just as

Reisinger and Mooney (2010), authors cluster these word context represen-

tations for each word type to obtain word type prototypes that account for

homonymy and polysemy.

Dhillon et al. (2011) introduce Low Rank Multi-View Learning model that

learns word token representations from left and right co-occurrence matrices

which have a row for each word token in the training corpus. The model

uses left and right matrices to generate a matrix that projects high dimen-

sional co-occurrence matrices to lower dimensional matrices using Canonical

Correlation Analysis (CCA).

2.2 Part-of-Speech Induction

We begin this section by focusing on the Hidden Markov Models because a

great deal of previous work on part-of-speech induction are based on HMMs.

A bigram HMM assumes that there is a sequence of tags T = t1, . . . , tn that

are invisible during the observation and they generate the word sequence

W = w1, . . . , wn we observe in the corpus and the likelihood of the corpus

is expressed as P (W,T ) = P (w1|t1)P (t1)
Qn

i=2 P (wi|ti)P (ti|ti�1) where n is

the number of word tokens in the corpus. A trigram HMM is same as the

bigram model with the exception of each hidden tag depends on two hidden

tags before it instead of just one. Models try to discover the tag assignment

sequence that maximize the likelihood of the system. Christodoulopoulos

et al. (2010) o↵er a wide ranging review of the systems that tackle part-

of-speech induction problem with HMMs and evaluation measures for the

induced tags.

Brown clustering (Brown et al., 1992) is an approximate greedy hierar-
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chical clustering algorithm that starts from a trivial tag sequence (e.g. each

word type is in its own cluster) and merge clusters that improve the likelihood

stated above and result in a type based part-of-speech induction.

Clark (2003) employs an approach similar to Brown clustering. Instead

of hierarchical clustering, the author uses a search algorithm that iteratively

changes cluster of the word types to the cluster that provides the maximum

improvement in the likelihood of the model. The model is also augmented to

incorporate morphology and frequency of the word types. The system results

in type based part-of-speech induction.

Biemann (2006) splits the word types into two overlapping subsets ac-

cording to frequencies, high to medium frequency word types and medium

to low frequency word types, and applies Chinese Whispers graph cluster-

ing algorithm to partition both of the subsets. One more clustering is done

on the overlapping of two subsets to form the final clustering. Using this

final clustering as the lexicon a trigram Viterbi HMM with a morphological

component used to obtain token based part-of-speech induction.

Goldwater and Gri�ths (2007) build on the standard trigram HMM with

Dirichlet priors, whose parameters can be fixed or inferred, over the pa-

rameters. The system uses a Gibbs sampler to carry out the token based

part-of-speech induction. Johnson (2007) adopts a similar approach by using

a standard bigram HMM with Dirichlet priors and uses EM, Gibbs sampling

and Variational Bayes estimator for token based part-of-speech induction.

Graça et al. (2009) employ the bigram HMM, but encourages sparsity by

constraining the posterior distributions using posterior regularization frame-

work of Graça et al. (2007). Blunsom and Cohn (2011) use hierarchical

Pitman-Yor process priors for a trigram HMM with Gibbs sampling enforc-

ing one tag per word type restriction for training it.

Berg-Kirkpatrick et al. (2010) propose a logistic regression method for

state-state and state-emission distributions for a standard HMM. Logistic

regression incorporates features to the model and the model is trained with

EM algorithm with a gradient based maximization step.

Haghighi and Klein (2006) claim that supervised prototypes are canoni-

cal examples of the annotation labels and demonstrate their use in unsuper-
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vised learning. Christodoulopoulos et al. (2010) develop further this semi-

supervised prototype-driven method. Instead of procuring the prototypes

from the gold standard labels of a corpus as in Haghighi and Klein (2006),

the prototypes are extracted from the labels generated with part-of-speech

induction methods such as Brown clustering.

Das and Petrov (2011) obtain a graph based projection of part-of-speech

tags from a labeled corpus in language L0 to the parallel unlabeled corpus

in language L1. These projected labels are used as features for the model

in Berg-Kirkpatrick et al. (2010) to perform part-of-speech induction on the

parallel unlabeled corpus in language L1.

Another way to induce part-of-speech categories involves generation of

word representations and clustering to form the categories from them. Some

of the word representations in the literature (Lamar et al., 2010b; Maron

et al., 2010; Schütze, 1995) are readily applied to the part-of-speech induc-

tion problem we do not mention them in this section again. We also apply

clustering algorithms, for inducing part-of-speech categories, to the word rep-

resentations in the literature that we were able to obtain (see Section 4.5).

Christodoulopoulos et al. (2011) present a multinomial mixture model

with Dirichlet priors over the mixing weights and use collapsed Gibbs sam-

pling for inference. The system also incorporates features and restricts itself

to type based part-of-speech induction.

Lamar et al. (2010a) forms two separate co-occurrence matrices from

left and right neighbors of each word type and initial left and right latent

descriptors for word types are generated from the rows of the left and right

co-occurrence matrices by projection on unit-sphere (i.e. rows are scaled by

inverse of their l2 norms). Using these left and right latent descriptors a

labeling is obtained by clustering. These labels are used to obtain new co-

occurrence matrices from left and right neighbors’ labels of each word type

and new latent descriptors are obtained those matrices. Labeling followed

by generation of new latent descriptors continue iteratively with weakening

learning parameters and the final labeling results in type based part-of-speech

induction.



Chapter 3

Procedure

In this chapter, we present the pipeline of operations we carry out to obtain

word type, word context and word token representations, both type based

and token based part-of-speech induction and the measures we use to gauge

their performance.

We begin by describing how we compute the probability distributions of

the substitutable word types for word tokens — aptly named the substitute

word distribution — which represents the paradigmatic relations of the word

tokens, in Section 3.1. Section 3.2 presents the methods we utilize to generate

co-occurrence data with the word types and the contexts they are observed

in from the substitute word distributions. Section 3.3 details the Euclidean

embedding algorithm S-CODE, which inputs the co-occurrence data from

the previous section and outputs embeddings in the Euclidean space of the

co-occurrence data variables. Section 3.4 reveals how we obtain word type,

word context and word token representations from the resulting embeddings.

Section 3.5 demonstrates how we perform type based and token based part-

of-speech induction. Finally, Section 3.6 explains the measures we employ to

assess the performance of the induction.

18
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3.1 Paradigmatic Relations with Substitute

Word Distributions

In this thesis, we use the approach of Yuret and Yatbaz (2010) and Yatbaz

et al. (2012) to capture the paradigmatic (substitutability based) relations of

word tokens with categorical distributions — substitute word distributions

— whose outcomes are the word types in our vocabulary. The probability

of each word type (outcome) is the probability of observing the word type

in place of the target word token (in other words in the context of the word

token).

Context of a target word in a sentence is defined as the sequence of words

in the window of size 2n�1 centered at the position of the target word token.

The context excludes the target word token. For example, in the sentence

“There is no asbestos in our products now.”, the context of the word token

‘asbestos ’, for n = 4, is ‘There is no — in our products ’ (where — specifies

the position of the target word token).

Assuming the position of the target word token is 0, the context spans

from positions �n+1 to n� 1 and the probability of observing each type w

in our vocabulary in the context of the target word token is computed using

the following equation:

P (w0 = w|cw0) / P (w�n+1 . . . w0 . . . wn�1) (3.1)

= P (w�n+1) . . . P (w0|w�1
�n+1) . . . P (wn�1|wn�2

�n+1) (3.2)

⇡ P (w�n+1) . . . P (w0|w�1
�n+1) . . . P (wn�1|wn�2

0 ) (3.3)

/ P (w0|w�1
�n+1) . . . P (wn�1|wn�2

0 ) (3.4)

Where wj
i is the word sequence from wi to wj (for i < j) and cw0 is the

context of the target word token at position 0 of length 2n � 1, meaning

w�1
�n+1 to the left and wn�1

1 to the right of w0.

In the Equation 3.1, the right-hand side is proportional to the left-hand

side because P (cw0) is independent of any given word w for w0. With ap-

plication of the chain rule, Equation 3.2 is obtained from the Equation 3.1.
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There There (0.7557), This (0.0757), It (0.0706)
is is (0.2639), are (0.2144), was (0.1950)
no no (0.9063), an (0.0338), some (0.0191)
asbestos question (0.4901), doubt (0.1935), one (0.0576)
in in (0.5882), for (0.0396), that (0.0320)
our fertilizer (0.1675), other (0.1632), commercial (0.0856)
products right (0.2096), own (0.1117), history (0.0458)
now out (0.1713), are (0.0955), business (0.0592)
. . (0.8973), ? (0.0803), ! (0.0224)

Figure 3.1: Most probable substitute word types for each context in the
sentence “There is no asbestos in our products now.”. The values in the
parentheses are the substitution probability of the word type to the left.

With nth-order Markov assumption, only the closest n�1 words in each term

of the Equation 3.2 are needed and result is the Equation 3.3. The Equation

3.4 is proportional to the Equation 3.3 because any term that does not de-

pend on w0 is fixed since the context of the word at position 0 is fixed. Near

the boundaries of the sentence, specifically the first and last n � 1 words,

appropriate terms of the Equation 3.4 are truncated or dropped (e.g. if 0 is

the first word of a sentence, P (w0|w�1
�n+1) becomes P (w0)).

The probabilities required to compute the Equation 3.4 can be obtained

from an n-gram language model. Figure 3.1 displays examples of substi-

tute word distributions that capture paradigmatic relations, with three most

probable substitute word types per context and their respective probabilities

in parentheses.

3.2 Discretization of Substitute Word Distri-

butions

The Euclidean embedding algorithm we employ in this thesis requires its

input as co-occurring observations from two categorical variables. We let

the word types and the contexts they are observed in to be the categorical

variables. We associate each word token with the pair of word type (of

the word token) and context (of the word token). A simple method for
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representing the word tokens in this manner is to prepare a two column data

set where the first column is filled with the word types and second column

is filled with respective substitute word distributions as specified in Section

3.1. However, the substitute word distributions we generate are categorical

distributions and it is not obvious how we can transform them to a discrete

setting.

This section aims to describe our approaches to address discretization

of substitute word distributions generated from the contexts. We describe

the substitute sampling method of Yatbaz et al. (2012) and present a new

discretization approach, nearest neighbors. Both of the techniques are intu-

itive, preserve the characteristics of the distributions in some way and result

in satisfactory performance.

3.2.1 Substitute Sampling

One way to discretize the substitute word distributions is to choose k most

probable word types in the distributions. This approach, however, fails to

capture the characteristics of the distributions of the word types. For exam-

ple, consider two di↵erent substitute word distributions with exactly same k

most probable types, but one of them is a skewed distribution while the other

one is a flat distribution. Both of them generate the exact same co-occurrence

data, but clearly it is not possible to distinguish the source distribution from

the co-occurrence data.

Yatbaz et al. (2012) fix this approach by sampling k word types from

the substitute word distributions (with replacement) instead of selecting k

most probable word types. This change helps transferring the skewness or

the flatness of the source distribution to the co-occurrence data. Figure

3.2 demonstrates the sampling process on the substitute word distributions

present in the Figure 3.1.

The k value should be chosen with reason. If it is too small it may

a↵ect the system negatively since samples may not accurately represent the

distribution they are drawn from (especially valid for flat distributions). A

very large k value, on the other hand, won’t a↵ect the system negatively or
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There There
There There
There This
is is
is are
is is
no no
no no
no no
asbestos point
asbestos question
asbestos doubt
in using
in in
in in
our fertilizer
our commercial
our other
products view
products country
products right
now out
now business
now out
. .
. ?
. .

Figure 3.2: Sampling thrice from the substitute word distributions in Figure
3.1. Notice that Figure 3.1 only has 3 most probable substitute distributions
for typographic purposes while we sampled from the whole distribution, hence
the unseen substitute words.
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positively (see Section 4.2), but it will increase the computational burden.

3.2.2 Nearest Neighbors

The other approach to discretize a substitute word distribution, that we pro-

pose in this thesis, is to implicitly express it in terms of the similar substitute

word distributions for the contexts we have in our test corpus. We assign

unique identifiers to each context. Then, for each context, we find their

nearest neighbors based on the similarity of their substitute word distribu-

tions. Examples of nearest neighbor data and the forming of the two column

co-occurrence data are presented in Figure 3.3 and 3.4, respectively.

Most intuitive similarity, in this setting, is a distribution similarity func-

tion, such as Jensen-Shannon divergence. However, if we consider substitute

distributions as vectors in Euclidean space lying on the standard n� 1 sim-

plex where n is the size of our vocabulary, similarity functions such as cosine

similarity or Euclidean distance are viable options as well.

A question that can come to the mind of the reader may be why using the

top k nearest substitute word distributions is a good way capture the source

distribution while using the most probable k word types is not. Sampling

from a distribution is well defined while sampling from a nearest neighbor list

is not. We tried to use ad-hoc methods to transform similarities to probability

distributions (e.g. take inverse of the similarities and normalize to obtain a

distribution, use a normal distribution parameterized on the similarities and

a bandwidth value, etc.), but results were not as strong as using top k nearest

neighbors.

Once again k value should be chosen with care, but for di↵erent reasons

than sampling discretization. If it is too small it can a↵ect the system nega-

tively since nearest neighbors may not su�ciently represent the distribution

they are close to (see Section 4.2). A very large k value will also a↵ect the

system negatively. In the limit, k will be equal to the number of word tokens

in the test set, meaning that every context will be a nearest neighbor of ev-

ery other context. This clearly reduces the descriptive power of the nearest

neighbors because many of the neighbors are not actually similar to each
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There 215 (0), 395558 (0), 147918 (5.286e-05)
is 216 (0), 865116 (0), 66458 (0)
no 217 (0), 900787 (1.626e-01), 1130405 (1.967e-01)
asbestos 218 (0), 76648 (4.369e-01), 1134041 (4.649e-01)
in 219 (0), 416560 (3.377e-01), 98543 (3.391e-01)
our 220 (0), 1074457 (6.240e-01), 230752 (6.739e-01)
products 221 (0), 791857 (6.871e-01), 296915 (6.871e-01)
now 222 (0), 888828 (6.656e-01), 495685 (6.949e-01)
. 223 (0), 53448 (3.298e-04), 27774 (3.888e-03)

Figure 3.3: Most similar substitute word distribution IDs in the test corpus
for each context in the sentence “There is no asbestos in our products now.”,
according to Jensen-Shannon divergence. The values in the parentheses are
the similarity score (smaller is better) of the ID to the left. We assumed
‘There’ has the context ID of 215 and rest of the word tokens have appropriate
context IDs in increasing order. Notice that each context is the nearest
neighbor of itself with score of 0.

other at all.

3.3 Spherical Co-Occurrence Data Embedding

In this thesis, we make use of the Spherical Co-Occurrence Data Embedding

(S-CODE) (Maron et al., 2010), which is an extension to the Symmetric In-

teraction Model of the Co-occurrence Data Embedding (CODE) (Globerson

et al., 2007), to map co-occurrence data we generate from the word types

and substitute word distributions in Section 3.2 to d dimensional Euclidean

space to cluster later in the process. This section is a short review of the

CODE and S-CODE frameworks. For illustrative purposes, Figure 3.5 de-

picts an artificial co-occurrence data and its embedding on a 2 dimensional

unit sphere using the S-CODE.

Let X and Y be two categorical variables with finite cardinality |X| and
|Y |. We observe a set of pairs {xi, yi}ni=1 drawn IID from the joint distri-

bution of X and Y . These pairs are summarized by the empirical distribu-

tions p̄(x, y), p̄(x) and p̄(y). The idea is to find such embeddings �(x) and

 (y), for each unique variable x and y, that reflect the statistical relation-
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There 215
There 395558
There 147918
is 216
is 865116
is 66458
no 217
no 900787
no 1130405
asbestos 218
asbestos 76648
asbestos 1134041
in 219
in 416560
in 98543
our 220
our 1074457
our 230752
products 221
products 791857
products 296915
now 222
now 888828
now 495685
. 223
. 53448
. 27774

Figure 3.4: Selection of 3 nearest neighbors from Figure 3.3 for each word
token.
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X Y
a 1
a 4
b 1
b 2
c 2
c 3
d 3
d 4
e 5
e 6
f 5
f 7
g 5
g 8
h 6
h 7

(a)

a

b

c

d

e

f
g

h
14

23

5

6

7

8

(b)

a
b

cd

e

fg

h

1
4 23

5

6

78

(c)

Figure 3.5: (3.5a) An artificial co-occurrence data set. X variable generates
letters from a to h, while Y variable generates digits from 1 to 8. Notice that
a–d are observed with 1–4 while e–h are observed with 5–8. (3.5b) Initially
all embeddings are distributed randomly on the unit circle. (3.5c) Once the
system converges embeddings of x and y pairs observed together are much
closer to each other than pairs that are not observed together, demonstrating
the attraction and repulsion forces.
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ship between the variables x and y in terms of square of Euclidean distance

d2x,y = k�(x)�  (y)k2, meaning that pairs occur together frequently embed-

ded close to each other in d dimensional space.

Globerson et al. (2007) describes a number of models to capture the

relationship between the joint distributions and distances. In this thesis, we

use the model extended by Maron et al. (2010):

p(x, y) =
1

Z
p̄(x)p̄(y)e�d2

x,y (3.5)

where Z =
P

x,y p̄(x)p̄(y)e
�d2

x,y is the normalization term. We can express

the log-likelihood of the joint distribution over all embeddings � and  as

the following:

`(�, ) =
X

x,y

p̄(x, y) log p(x, y)

=
X

x,y

p̄(x, y)(� logZ + log p̄(x)p̄(y)� d2x,y)

= � logZ + const�
X

x,y

p̄(x, y)d2x,y (3.6)

The gradient of the log-likelihood depends on the sum of embeddings �(x)

and  (y), for x 2 X and y 2 Y , and to maximize the log-likelihood, (Maron

et al., 2010) use a gradient-ascent approach. The gradient is as follows:

@`(�, )

@�(x)
=

X

y

2p̄(x, y)[ (y)� �(x)] +
1

Z

X

y

p̄(x)p̄(y)[�(x)�  (y)]e�d2
x,y

(3.7)
@`(�, )

@ (y)
=

X

x

2p̄(x, y)[�(x)�  (y)] +
1

Z

X

x

p̄(x)p̄(y)[ (y)� �(x)]e�d2
x,y

(3.8)

The first sum, the gradient of the part with d2x,y in (3.6), in (3.7) [(3.8)]

acts attraction force between the �(x) ( (y)) and all the embeddings  (�)

in proportion to respective joint empirical probabilities p̄(x, y).

The second sum, the gradient of � logZ in (3.6), in (3.7) [(3.8)] acts a

repulsion force between the �(x) ( (y)) and all the embeddings  (�) in
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proportion to respective marginal empirical probabilities p̄(x) and p̄(y).

Additionally (Maron et al., 2010) restricts all embeddings � and  to lie

on the d dimensional unit sphere, hence the name S-CODE. This restriction,

justified by a coarse approximation in which all � and  distributed uniformly

and independently on the sphere, enables Z to be approximated by a constant

value. This saves us from re-computation of Z after every so many steps

which has the computational complexity O(LRd), where L and R are the

number of unique observations at the left and the right column of the co-

occurrence data, respectively, and d is number of dimensions of the Euclidean

embedding space.

For the experiments in the thesis, we use S-CODE with sampling based

stochastic gradient ascent, smoothly decreasing learning rates '0 and ⌘0, a

constant approximation of Z and randomly initialized � and  vectors.

3.4 Word Representations

Once S-CODE converges, we have � embeddings (vectors) for the word types

and  embeddings for the discretizations (substitute word types or context

IDs) of the substitute word distributions of the word tokens. As it will be

explained in the next section (3.4.1), Yatbaz et al. (2012) present a straight-

forward way to obtain word type representations from the � vectors. On the

other hand, word context and word token representations are not as obvious

as word type representations to acquire from the � and  vectors. We pro-

pose two approaches for word context representations and two approaches for

word token representations in Section 3.4.2 and Section 3.4.3, respectively.

Table 3.1 is a short summary of all the representations we describe in this

section.

3.4.1 Word Type Representations

Both discretization methods described in Section 3.2 generate co-occurrence

data that has the word types in the test corpus in their left columns. Lever-

aging this observation, Yatbaz et al. (2012) utilize � vectors produced by
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S-CODE as word type representations. These representations are not able

provide multiple representations for ambiguous word types, since there is

only one vector for each word type in our test corpus and it is not possible

to obtain di↵erent representations for the tokens of the same word type. In

the remainder of this thesis, we refer the word type representations obtained

this way as the X vectors.

3.4.2 Word Context Representations

First of the two approaches we propose to obtain word context representa-

tions is applicable only to the case of nearest neighbor discretization discussed

in Section 3.2.2. The reason for this method not being applicable to the sam-

pling discretization is that sampling discretization does not generate items

at the right column that uniquely identifies the word contexts.

As pointed out in the previous section each word type is associated with

a � vector. Symmetrically, this means each context ID is associated with a  

vector. As each word context in the test corpus is associated with a context

ID, we can just use the  vectors as a word context representations. We refer

the word token representations obtained this way as the Y vectors.

The second approach we propose is applicable to both of the discretization

methods we previously discussed. It can also be utilized for any discretization

method that may be conceived in future.

We observe that each substitute word distribution for a word context in

the test corpus is discretized k times in the co-occurrence data which means

there are k  vectors (which are not distinct, if the substitute word distribu-

tion’s discretizations are not distinct) corresponding to each word context.

For each word context, we sum k  vectors of the word context and scale the

resulting vector to a unit vector which we determine as the representation

of that word context. We refer to the word context representations obtained

this way as the Y vectors.
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Name Representation Type Summary
X vectors Word type � embeddings of S-CODE
Y vectors Word context  embeddings of S-CODE
Y vectors Word context Sum of  embeddings of S-CODE
XY vectors Word token Concatenation of X and Y vectors
XY vectors Word token Concatenation of X and Y vectors

Table 3.1: Summary of word representations.

3.4.3 Word Token Representations

In this thesis, we assume that word token representations capture character-

istics of both the type of the word token and the context of the word token.

Since in the previous Sections 3.4.1 and 3.4.2 we obtained representations

for word types and word contexts, respectively, we combine these representa-

tions to obtain the word token representations capturing the characteristics

of the word types and word contexts.

For each word token we simply concatenate word type representation

for the type of the token and word context representation for the context

of the token to form a representation for the word token. Note that by

concatenation we mean to create a new vector in Rn+m from two vectors in

Rn and Rm. We refer to the concatenation of X vectors and Y vectors the

as XY vectors and the concatenation of X vectors and Y vectors as the

XY vectors.

3.5 Part-of-Speech Induction

The simplest way to induce part-of-speech categories with the representations

we generated so far, is to cluster the representations with some clustering

algorithm such as k-means clustering. Clustering of the word type represen-

tations (X vectors) results in type based part-of-speech categories. We refer

the part-of-speech induction with X vectors as the X clusters. Clustering

of word context representations (Y or Y vectors) and word token represen-

tations (XY or XY vectors) result in token based part-of-speech categories.

We refer the part-of-speech induction with Y and XY vectors as the Y and
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Name Induction Type Summary
X clustering Type based Clustering of X vectors
Y clustering Token based Clustering of Y vectors
Y clustering Token based Clustering of Y vectors
XY clustering Token based Clustering of XY vectors
XY clustering Token based Clustering of XY vectors
YV clustering Token based Cluster  embeddings first, then vote

for each context
XYV clustering Token based Cluster concatenation of � and  em-

beddings first, then vote for each con-
text

Table 3.2: Summary of part-of-speech induction methods.

XY clusters, respectively (induction with Y and XY vectors are referred to

similarly).

We propose two additional methods to induce part-of-speech categories

that are not involved with the word representations. Each word context in

the test corpus is associated with k  vectors, as explained with the Y vec-

tors in Section 3.4.2. Instead of aggregating the  vectors, we simply cluster

them and end up with k cluster identities for each word context. We, then,

determine the cluster identity of the each word context by determining the

most common identity (i.e. voting) in the k cluster identities of the word con-

text. If there are ties we break them randomly. Once each word context has

a cluster identity we end up with a token based part-of-speech induction. We

refer this part-of-speech induction as the YV clustering. Similar to obtaining

XY vectors from the X and Y vectors, we can also extend YV induction by

concatenating appropriate � and  vectors, clustering them and determining

most common cluster identity for each word context. We refer this part-of-

speech induction as the XYV clustering. Table 3.2 is a short summary of all

the induction methods we describe.
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3.6 Evaluation Measures

In the part-of-speech induction problem, each word token in the test corpus

is associate with a gold-standard part-of-speech tag and an induced cluster.

We try to evaluate whether induced clusters have similar structures as the

gold-standard labels. We use two of the popular methods in the part-of-

speech induction literature to conduct the evaluation. These are Many-To-

One mapping accuracy and V-Measure and they are detailed in the following

sections.

3.6.1 Many-To-One Mapping Accuracy

Many-To-One (MTO) mapping accuracy (Christodoulopoulos et al., 2010)

(also known as cluster purity) first finds a mapping from clusters to gold

standard classes. Each cluster is mapped to the most common class within

that cluster. As the name suggests it is possible for more than one cluster to

be mapped to the same class. Once the clusters are mapped to the classes, the

cluster sequence is transformed to class sequence simply by replacement and

accuracy to the gold standard class sequence is computed in straightforward

manner.

MTO accuracy yields higher scores as the number of clusters increases.

The extreme case of this behavior can be observed when a unique cluster

is assigned to each instance in the data set. MTO accuracy rewards this

intuitively bad clustering with a perfect score, since each cluster is mapped

to the right class. In this thesis, we kept our number of clusters same as the

number of classes to prevent confusing increases in the MTO accuracy score.

3.6.2 V-Measure

V-Measure (VM) (Rosenberg and Hirschberg, 2007) is an entropy based clus-

ter evaluation measure that is defined as the weighted harmonic mean of two

criteria called homogeneity and completeness. Homogeneity is defined as:

h = 1� H(C|K)

H(C)
(3.9)
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Where C = {ci|i = 1, . . . , n} is the set of gold standard classes, K = {kj|j =
1, . . . ,m} is the set of clusters, H(C) is the entropy of the classes andH(C|K)

is the conditional entropy of the classes conditioned on the clusters. Let N

be the number of instances in the data set and Anm be the matrix whose

element aij equals the number of instances that belong to the class ci and in

the cluster kj such that
Pn

i=1

Pm
j=1 aij = N . Then probability distributions

needed to compute H(C) and H(C|K) are defined as following:

P (ci) =

Pm
j=1 aij

N
(3.10)

P (kj) =

Pn
i=1 aij
N

(3.11)

P (ci, kj) =
aij
N

(3.12)

Homogeneity is related to pureness of the clusters. A cluster gets purer as

the classes it contains lessen in numbers and majority of the cluster members

belong to a single class. In other words, homogeneity wants to have clusters

that have few classes.

Completeness is also defined similarly:

c = 1� H(K|C)

H(K)
(3.13)

Completeness can be interpreted as the distribution of the classes to the clus-

ters. As members of a class appears in more clusters it gets more distributed

and completeness su↵ers. Completeness wants to keep members of a class

together in the same cluster.

Finally VM is defined in terms of homogeneity and completeness:

VM =
(1 + �)hc

(�h) + c
(3.14)

Where � is weighting factor and usually set to 1, as in this thesis, making the

VM measure harmonic mean of homogeneity and completeness. By combin-

ing these criteria, VM does not su↵er the problem of large cluster numbers

that troubles MTO accuracy.



Chapter 4

Experiments

The aim of this chapter is to detail the data used, explain some algorithm and

parameter choices made and compare our system’s performance in the part-

of-speech induction problem to the other vector representations and part-of-

speech induction systems mentioned in Chapter 2. We also analyze system’s

sensitivity to parameter changes. Additionally, we introduce morphological

and orthographic features to our system which a↵ect our overall performance.

The structure of the chapter is as follows: Section 4.1 states the corpora

and algorithms used to conduct the experiments in this thesis. Section 4.2 be-

gins by reporting the results of our experiments for the procedure in Chapter

3. It goes on to detail the incorporation of morphological and orthographic

features to the system and reports the results for additional experiments with

these features. Section 4.3 demonstrates the S-CODE algorithm’s sensitivity

to the parameters. Section 4.4 presents a measure of ambiguity of word types

and analyze the ability of the word context and word token representations

to reflect ambiguity in the test corpus. Finally, Section 4.5 compares part-

of-speech induction performance of other word representations we were able

to obtain to our word representations.

34
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4.1 Experimental Settings

The test corpus we used is the Wall Street Journal (WSJ) Section of Penn

Treebank (Marcus et al., 1999) (PTB). It has 1,173,766 tokens and 49,206

types, which are tagged with a total of 45 di↵erent part-of-speech tags. We

used these as the gold-standard tags to evaluate our induced tags.

The training corpus we used to generate the language model for com-

puting the paradigmatic relations of the word tokens in the test corpus as

substitute word distributions is the Wall Street Journal data (1987-1994)

extracted from CSR-III Text (Gra↵ et al., 1995) (excluding the sections of

the PTB) which has about 126 millions of tokens. We used SRILM (Stolcke,

2002) to build a 4-gram language model with Kneser-Ney discounting. Types

that are observed less than 20 times in the training corpus were replace by

‘<unk>’, which limits the vocabulary size to 78,498. The perplexity of the

4-gram language model on the test corpus is 96.

Both test corpus and training corpus tokens kept with original capital-

ization.

For computational e�ciency, instead of computing probability of sub-

stitutability for word types in each context as proposed in Section 3.1, we

used the FASTSUBS algorithm (Yuret, 2012) to compute the unnormalized

probabilities of the 100 most probable substitute words in each context and

later normalized them to obtain well-formed distributions. While the nor-

malization is not necessary to sample from them since there are algorithms

to sample from unnormalized distributions (Section 3.2.1), it is necessary to

compute distances between the distributions (Section 3.2.2).

Sampling from the distributions is straightforward as explained in Sec-

tion 3.2.1. We generated co-occurrence data of 37,560,512 pairs by sampling

32 substitute words for each word token. In the case of nearest neighbor

discretization, we generated co-occurrence data of 18,780,256 pairs by com-

puting 16 nearest neighbors of each context. To compute nearest neighbors

of each distribution we used Jensen-Shannon divergence (also known as total

divergence to the average (Dagan et al., 1997)) which is a symmetrized and

smoothed version of Kullback-Leibler divergence.
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The learning rate parameters '0 and ⌘0 of the S-CODE algorithm were

set to 50 and 0.2, respectively. The approximation Z̃ to the normalization

term Z was chosen to be 0.166. The number of dimensions of the embedding

space was set to 25. The S-CODE iterations over the input continues until

the log-likelihood di↵erence between consecutive iterations are smaller 0.001,

which means ratio of likelihoods is approximately 1.002 or less.

To obtain the word type and word token representations as proposed in

the Sections 3.4.1 and 3.4.3, respectively, we used a computationally e�cient

k-means algorithm (Elkan, 2003) that is modified to use smart initialization

(Arthur and Vassilvitskii, 2007), handle duplicate vectors e�ciently, opti-

mize the root mean square (rms) of cluster members and randomly restart

a number of times to find an initialization configuration that yields a lower

rms. The number of restarts we used to cluster �(x) vectors of sampling and

nearest neighbors and cluster  (y) of sampling methods are 128. For the rest

we used 8 restarts, because the number of vectors to cluster are much larger.

In order to account for the fluctuations inherent in the algorithms using

random number generators, each experiment is repeated 10 times with dif-

ferent random number generator seeds. We report the results in terms of

average scores with their respective standard deviations indicated in paren-

theses next to them.

4.2 Results

In this section we report the performance of our system for the task of part-of-

speech induction in terms of MTO accuracy and VM scores for the methods

detailed in Section 3.5 under two subsections. First, we report our results

of the experiments that follow the exact procedure detailed in Chapter 3

and compare them to the other part-of-speech induction systems that do

not incorporate morphological and orthographic features. Following that, we

introduce morphological and orthographic features to S-CODE, re-run the

experiments and report the results with comparisons to the part-of-speech

induction systems with feature components.
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4.2.1 Results for Co-occurrence of Word Tokens and

Their Contexts

Table 4.1 lists all the average MTO accuracy and VM scores for our experi-

ments and models in the literature which do not incorporate features (such as

morphological and orthographic features). Our X and XY based clusters for

both sampling and nearest neighbors discretizations outperform the models

in the literature. Our Y based clusters are on par with the lower end of the

literature.

We observe that type based part-of-speech induction slightly outper-

form token based ambiguous part-of-speech inductions. Sampling X clus-

ters results in average 0.7665 (0.0079) MTO accuracy and 0.6817 (0.0043)

VM scores. Similarly, nearest neighbors X clusters result in average 0.7637

(0.0076) MTO accuracy and 0.6791 (0.0061) VM scores. No Y based cluster

manages to exceed the average MTO accuracy score of 0.66 and VM score of

0.51. XY based clusters perform somewhere between X and Y based clusters

and are closer to the performance of X.

4.2.2 Results for Co-occurrence of Word Tokens, Their

Contexts and Their Morphological and Ortho-

graphic Properties

Clark (2003) demonstrates that using morphological features, which have

information about the morphemes that form a word type, and orthographic

features, which have information about the characters (including the numeri-

cal and punctuation characters) that form a word type, significantly improves

part-of-speech induction with an HMM based model. To obtain word repre-

sentations that improve part-of-speech induction, we extract and use these

types of features as co-occurrence data that is the input of S-CODE algo-

rithm, similar to Yatbaz et al. (2012).

We use morphological features generated with the unsupervised morphol-

ogy induction software Morfessor (Creutz and Lagus, 2005). Morfessor was

trained on the test corpus using the default settings, except for the perplex-
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Model MTO VM
Brown et al. (1992)? 0.6776 0.6299
Goldwater and Gri�ths (2007)? 0.6646 0.5821
Johnson (2007)? 0.5024 0.4919
Graça et al. (2009)? 0.6247 0.5479
Maron et al. (2010) 0.688 (0.0016) -
Lamar et al. (2010a) 0.708 -
Lamar et al. (2010b) 0.660 -
Substitute Sampling X† 0.7665 (0.0079) 0.6817 (0.0043)
Substitute Sampling Y 0.6448 (0.0039) 0.4999 (0.0021)
Substitute Sampling XY 0.7346 (0.0102) 0.6468 (0.0081)
Substitute Sampling YV 0.6346 (0.0032) 0.4855 (0.0027)
Substitute Sampling XYV 0.7009 (0.0109) 0.6004 (0.0113)
Nearest Neighbors X 0.7637 (0.0076) 0.6791 (0.0061)
Nearest Neighbors Y 0.6551 (0.0080) 0.5142 (0.0030)
Nearest Neighbors XY 0.7496 (0.0099) 0.6627 (0.0070)
Nearest Neighbors Y 0.6441 (0.0052) 0.5042 (0.0029)
Nearest Neighbors XY 0.7395 (0.0065) 0.6476 (0.0051)
Nearest Neighbors YV 0.6419 (0.0067) 0.4991 (0.0025)
Nearest Neighbors XYV 0.7428 (0.0068) 0.6483 (0.0047)

Table 4.1: Summary of the results in Section 4.2.1 compared to the previous
works on WSJ section of PTB in terms of MTO mapping accuracy and VM
scores. Entries with ? are reported in Christodoulopoulos et al. (2010). Entry
with † is replication of an experiment in Yatbaz et al. (2012).
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ity threshold which was chosen to be 300. The software induced 5 unique

su�xes and they are observed in 10,484 word types out of the 49,026 in the

test corpus. The su�xes are added to the system as co-occurrence data by

being paired with word types. For every occurrence of a word type w at left

column of the co-occurrence data that has su�xes si for i = 1, . . . , k, we add

one w si pair for each i to the co-occurrence data. We don’t utilize the  

embeddings of the su�xes formed by S-CODE for obtaining the word token

representations or inducing the part-of-speech categories as described in the

Section 3.4 and Section 3.5, respectively.

The orthographic features we use are similar to the ones in Berg-Kirkpatrick

et al. (2010) with minor di↵erences:

Contains Hyphen This feature is active for the lowercase word types with

internal hyphen.

Initial Apostrophe This feature is active for the word types that start

with an apostrophe.

Initial Capital This feature is active for the word types with their initial

letter is a capital letter, unless the word type is observed as the first

token of the sentence it belongs.

Number This feature is active for the word types that start with a digit.

The orthographic features are introduced to the system in the same way as

the morphological features. For every occurrence of a word type w at left

column of the co-occurrence data that has the orthographic features oi for

i = 1, . . . , k, we add one w oi pair for each i to the co-occurrence data.

As with the morphological features, we don’t utilize the  embeddings of

the orthographic features. Figure 4.1 demonstrates the incorporation of the

morphological and orthographic features to the system for the sentence “By

1997, almost all remaining uses of cancer-causing asbestos will be outlawed.”.

Addition of the morphological and orthographic features to the co-occurrence

data, without modifying the original experimental settings, improve every ex-

periment reported in the Section 4.2 between 0.01 and 0.06 in terms of both
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By April
1997 mid-1991
1997 /N/
, ,
almost almost
all all
remaining remaining
remaining /SUF:ing/
uses uses
uses /SUF:s/
of of
cancer-causing the
cancer-causing /CH/
asbestos pesticides
will should
be be
outlawed lost
outlawed /SUF:ed/
. .

Figure 4.1: The co-occurrence data for the sentence “By 1997, almost all
remaining uses of cancer-causing asbestos will be outlawed.”. The contexts
are discretized with sampling (Section 3.2.1). The morphological features
added to the right column in the form /SUF:s/ where s is a morpheme. The
orthographic features added to the right column in the form /o/ where o is
an identifier for the features. The features /N/ and /CH/, in this example,
stands for ‘Number’ and ‘Contains Hyphen’ features, respectively.
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average MTO and average VM score. We observe that the least improved are

the word context (Y ) based induction, while the most improved induction

are the word token (XY ) based induction and the word type (X) induction

are somewhere in between. Feature introduced sampling and nearest neigh-

bor methods with X clusters result in 0.8009 (0.0077) and 0.8025 (0.0048)

MTO accuracy, respectively, and improve the state-of-the-art in the word

type part-of-speech induction. Feature introduced nearest neighbor method

with XY clusters result in 0.8039 (0.0036) MTO accuracy and improve the

state-of-the-art in the token based part-of-speech induction.

Table 4.2 lists all the average MTO accuracy and VM scores for our

experiments with features and other feature incorporating models in the lit-

erature. Once again our X and XY based clusters for both sampling and

nearest neighbors discretizations outperform the models in the literature.

Our Y based clusters, on the other hand, are not comparable to the feature

incorporating systems of the literature because they only are influenced by

the contexts not the target words.

4.3 Analysis of Parameters

In this section we analyze the performance of our algorithm with respect to

parameter choices. The parameters we investigate are the number of dis-

cretizations, the number of embedding dimensions and the constant approx-

imation of Z. We keep all other experimental settings fixed and only modify

the parameter of interest. For the sake of clarity and preventing appear-

ance of redundant graphs over and over again, we perform all the parameter

experiments only on the X clustering of sampling discretization without fea-

tures, with the exception of number of nearest neighbor experiments. Other

configurations result in similar behavior and are not reported.

Figure 4.2 and Figure 4.3 plot the number of discretizations versus the

evaluation measures for sampling and nearest neighbors discretizations for X

clustering, respectively. In Figure 4.2, we observe that sampling discretiza-

tion of this test corpus is quite robust to the number of samples, with small

performance loss in low sample scenarios. In Figure 4.3, we see that very



CHAPTER 4. EXPERIMENTS 42

Model MTO VM
Clark (2003)? 0.7119 0.6555
Berg-Kirkpatrick et al. (2010) 0.755 -
Christodoulopoulos et al. (2010) 0.761 0.688
Christodoulopoulos et al. (2011) 0.728 0.661
Blunsom and Cohn (2011) 0.775 0.697
Substitute Sampling + Features X† 0.8009 (0.0077) 0.7217 (0.0041)
Substitute Sampling + Features Y 0.6586 (0.0047) 0.5123 (0.0023)
Substitute Sampling + Features XY 0.7872 (0.0068) 0.6945 (0.0052)
Substitute Sampling + Features YV 0.6505 (0.0035) 0.4984 (0.0023)
Substitute Sampling + Features XYV 0.7533 (0.0083) 0.6551 (0.0082)
Nearest Neighbors + Features X 0.8025 (0.0048) 0.7209 (0.0046)
Nearest Neighbors + Features Y 0.6840 (0.0043) 0.5323 (0.0027)
Nearest Neighbors + Features XY 0.8039 (0.0036) 0.7113 (0.0025)
Nearest Neighbors + Features Y 0.6688 (0.0060) 0.5245 (0.0046)
Nearest Neighbors + Features XY 0.7906 (0.0077) 0.6963 (0.0056)
Nearest Neighbors + Features YV 0.6677 (0.0033) 0.5169 (0.0025)
Nearest Neighbors + Features XYV 0.7923 (0.0087) 0.6996 (0.0071)

Table 4.2: Summary of the results in Section 4.2.2 compared to the previous
works incorporating features on WSJ section of PTB in terms of MTO map-
ping accuracy and VM scores. Entry with ? is reported in Christodoulopoulos
et al. (2010). Entry with † is replication of an experiment in Yatbaz et al.
(2012).
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Figure 4.2: Number of samples from substitute word distributions vs. MTO
and VM scores. The system is fairly robust to the change in number of
samples.

small number of nearest neighbors perform poorly. As the number of nearest

neighbors increase, performance quickly picks up and reaches to stability.

Figure 4.4 shows that once the number of embedding dimensions is around

10, performance of the system, for both discretizations, fluctuates within

0.01 MTO accuracy and there is no apparent gain of using more than 25

dimensions.

Figure 4.5 shows that the constant approximation of Z, Z̃, can vary al-

most an order of magnitude in both directions of the value we choose without

significant loss in the MTO accuracy. Maron et al. (2010) shows that uni-

formly distributed vectors on a 25 dimensional sphere result in the expected

Z ⇡ 0.146. In the experiments, the real Z value is always observed between

0.14 and 0.17. When the approximation of Z is too small, the attraction

forces in Equations 3.7 and 3.8 dominate the system and vectors tend to

converge to a single point. On the other hand, if Z̃ is too large attraction

forces become very weak and vectors are not able form into clusters.
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Figure 4.3: Number of nearest substitute word distribution neighbors vs.
MTO and VM scores. Small number of neighbors a↵ects the system nega-
tively.











  

































Figure 4.4: Number of embedding dimensions vs. MTO and VM scores.
Small number of embedding dimensions a↵ects the system negatively.
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Figure 4.5: Constant approximation of Z vs. MTO and VM scores. Approx-
imations varying almost one order of magnitude around our approximation
of 0.166 do not significantly alter the performance.

4.4 Analysis of Word Token Representations

As performance of the word context representations for both sampling and

nearest neighbor discretization is inferior in the part-of-speech induction task

compared to the word type representations, it is a sensible concern whether

the strong performance of the word token representations is a result of be-

ing too similar to the word type representations, meaning that word token

representations are not able to deal with the ambiguity in the word types

as we claim. To appropriately address this concern, we first define a mea-

sure called Gold-standard-tag Perplexity (GP ) of a word type w, which we

use to determine how ambiguous the word type in the test corpus is, as the

following:

GP (w) = 2H(P
w

) = 2�
P

t2T

P
w

(t)log2Pw

(t) (4.1)

where T is gold-standard part-of-speech tag set that word type w is observed

with, Pw is the probability distribution of tags t 2 T with the word type

w and H(Pw) is the entropy of the probability distribution Pw. The gold-

standard-tag perplexity relates how often a word type is associated with

di↵erent part-of-speech categories in the test corpus. A word type wi that is
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Figure 4.6: Regression lines forX, Y andXY clusters of the nearest neighbor
(NN) discretization on the MTO accuracy vs. GP plot for the training corpus.

only observed with the part-of-speech category ti throughout the test corpus

is clearly unambiguous in terms its syntactic category and will have a GP of

1. On the other hand, a word type wj that co-occurs with the tag tk in the

half of the observations and with the tag tl in the other half is ambiguous and

will have a GP of 2. As the ambiguity of a word type increases GP measure

of the word type increases as well.

In order to demonstrate that word context and word token representa-

tions’ part-of-speech induction outperforms word type representations’ part-

of-speech induction for the ambiguous word types, we plot the gold-standard-

tag perplexity versus the smoothed MTO accuracy. To compose the plot,

first, we find the mapping from induced clusters to gold-standard tags, just as

we do for the MTO accuracy. Then, we compute the GP and the MTO accu-

racy for each word type using the mapping. Finally, we utilize the Nadaraya-

Watson kernel regression estimate with normal kernel of bandwidth 1.0 to

obtain smooth regression lines for each induction method. We create the

plots only for X, Y and XY clusters of the nearest neighbor discretization,

but other methods also follow similar trends. Figure 4.6 presents the said

plot and Figure 4.7 presents the plot for the nearest neighbor discretization

with addition of morphological and orthographic features.
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Figure 4.7: Regression lines forX, Y andXY clusters of the nearest neighbor
(NN) discretization with features on the MTO accuracy vs. GP plot for the
training corpus.

The plot in the Figure 4.6 shows that as the ambiguity of the word types

increase, using word context and word token representations yields better

performance, however, they compromise the performance on the unambigu-

ous types. Since only 14.94% of the tokens in our test corpus consists of

word types with GP greater than 1.5 (a word type observed with one T0 tag

for every six observation with T1 tag has a GP of 1.507) and 45.71% con-

sists of word types with GP exactly 1, improvement on the ambiguous word

types does not recover the loss in the unambiguous word types. The second

plot in the Figure 4.7 shows that addition of morphological and orthographic

features makes the regression lines steeper, meaning that the MTO accuracy

jumps for the unambiguous types and it slightly dips for the ambiguous types

for all word representations. This makes sense, because if a feature is active

for a word type, it is active regardless of the context the word type is in,

with the exception of the ‘Initial Capital’ feature.
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4.5 Comparison to Other Word Representa-

tions

In this section, we compare the performance of our word representations to

the other word representations in the literature. Representations we were

able to obtain are conceived by Collobert and Weston (2008), Mnih and

Hinton (2009), Mikolov et al. (2010) and Huang et al. (2012) and they are

outcomes of neural network language models. All of the representations are

word type representations. Huang et al. (2012) are also able to generate

word context representations by taking the weighted sum of the word type

representations in the context window of target words1. For each set of

representations, we determine the intersection of the word types in the studies

with the word types of our test corpus2 and apply the k-means algorithm of

the previous sections to the word type representations in the intersection.

We set the number of clusters same as the number gold-standard tags left in

the intersection. After the clustering we compute MTO mapping accuracy

and VM scores. We used nearest neighbor based word type (X) and word

token (XY ) representations of our work for comparisons, with and without

morphological and orthographic features. We repeat each experiment 10

times to account for fluctuations in the k-means algorithm and report the

standard deviation of scores in parentheses.

Table 4.3 presents all the results for other word representations with

statistics concerning the intersection of corpora. Without exception, our

word representations outperform every other word representation on the part-

of-speech induction task. 1600 dimensional word representations of Mikolov

et al. (2010) comes closest to our featureless representations and but does

not manage to outperform them. It shows that our word representations are

more suitable for inducing syntactic categories of words.

1However, we could not use word context representations of Huang et al. (2012) because
their word types do not completely match the word types in our test corpus, preventing
us from generating the word context representations.

2Intersections only contain the word types that are present in both the corpus used by
the study and WSJ corpus. If the word types are only available in uppercase or lowercase,
we conduct a case insensitive match for the word types.
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Previous Work & Stats Model MTO VM

Collobert et al. (2008)?

Word Types 37,639
Word Tokens 1,148,468
POS Tags 43

25 0.7332 (0.0076) 0.6594 (0.0040)
50 0.7275 (0.0070) 0.6645 (0.0064)
100 0.7180 (0.0090) 0.6652 (0.0058)
200 0.6840 (0.0215) 0.6493 (0.0095)
NN X 0.7650 (0.0098) 0.6832 (0.0052)
NN XY 0.7540 (0.0096) 0.6702 (0.0063)
NN+F X 0.7996 (0.0076) 0.7259 (0.0047)
NN+F XY 0.7972 (0.0054) 0.7115 (0.0055)

Mnih et al. (2009)?

Word Types 37,943
Word Tokens 1,130,733
POS Tags 42

50 0.6851 (0.0183) 0.6259 (0.0093)
100 0.6875 (0.0236) 0.6343 (0.0134)
NN X 0.7676 (0.0070) 0.6811 (0.0045)
NN XY 0.7592 (0.0091) 0.6663 (0.0047)
NN+F X 0.8024 (0.0102) 0.7205 (0.0072)
NN+F XY 0.8023 (0.0101) 0.7084 (0.0058)

Mikolov et al. (2010)†

Word Types 31,273
Word Tokens 924,159
POS Tags 36

80 0.6475 (0.0146) 0.5823 (0.0108)
640 0.5899 (0.0260) 0.5741 (0.0130)
1600 0.7306 (0.0088) 0.6284 (0.0092)
NN X 0.7386 (0.0077) 0.6249 (0.0036)
NN XY 0.7334 (0.0091) 0.6172 (0.0032)
NN+F X 0.7788 (0.0075) 0.6744 (0.0054)
NN+F XY 0.7829 (0.0108) 0.6649 (0.0053)

Huang et al. (2012)†

Word Types 34,618
Word Tokens 1,115,190
POS Tags 43

50 0.6948 (0.0073) 0.6479 (0.0060)
NN X 0.7631 (0.0094) 0.6790 (0.0041)
NN XY 0.7518 (0.0092) 0.6637 (0.0045)
NN+F X 0.7970 (0.0071) 0.7185 (0.0050)
NN+F XY 0.8032 (0.0086) 0.7089 (0.0046)

Table 4.3: Statistics of the subsets of WSJ section of PTB corpus that has
the word types in the works reported are specified in the first column under
the work’s citation. Numbers in the second column specifies the number
of dimensions of the referred word representations. NN X (and XY ) and
NN+F X (and XY ) in the second column are part-of-speech inductions
for nearest neighbor discretization and nearest neighbor discretization with
features, respectively, for the subsets of WSJ. Representations for entries with
? are generated by Turian et al. (2010). Entries with † contain only uppercase
or lowercase words type representations. For that reason, we conduct a case
insensitive match to determine the subsets.
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Conclusion

In this thesis, we presented new methods to form representations for word

context and word tokens, in addition to the word types. While we generate

these representations we utilized paradigmatic relations instead syntagmatic

relations of words. We were also able to incorporate morphological and or-

thographic features to our generation process.

We applied these word representations with and without features to the

part-of-speech induction problem. Our MTO mapping accuracy and VM

scores proved to be the state-of-the-art results for both type based and token

based part-of-speech induction.

We also compared our word representations to other word representa-

tions from the previous studies and show that indeed our representations

outperform them in the task of part-of-speech induction.

Our work here shows that the word type and word token representations

generated with nearest neighbors discretization and S-CODE framework are

good descriptors for syntactic categories of word types and word tokens. We

believe exploration of the semantic relations captured by the word repre-

sentations would be a potentially rewarding future work, considering their

success in the induction of syntactic categories.

Another future work would be the incorporation of our word representa-

tions to the supervised natural language processing algorithms as features.

Studies like Turian et al. (2010) already demonstrated the value of inclusion

50
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of word type representations to the supervised learning algorithms. We be-

lieve these kind of algorithms would also benefit from our word type, word

context and word token representations.

As the final future work, we would like to determine the performance of

our part-of-speech induction with some extrinsic method. Measuring the per-

formance with MTO accuracy and VM scores result in simple performance

figures we can compare, but both of them compute these figures by looking

at the gold-standard tags. We think that trying to increase our score by imi-

tating the gold-standard may not be the best approach in learning syntactic

categories. There may be much finer grained grouping of the syntactic roles,

however we can not evaluate them by comparing to the gold-standard with-

out bias. For that reason, we believe that a task such as end-to-end machine

translation, parsing or textual entailment may be more suitable to measure

performance of part-of-speech induction.
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