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Koç University

June, 2013
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ABSTRACT

In this thesis, we analyze adaptive mixture methods that combine outputs of several

adaptive filters running in parallel to model an unknown system. We first study three dif-

ferent convex combination methods that combine outputs of two adaptive algorithms and

provide their steady-state and transient performances. We next investigate affine and linear

combination methods based on Bregman divergences that combine outputs of several adap-

tive filters and present the mean and the mean-square transient analysis of these adaptive

algorithms.

In the first part, we investigate convexly constrained mixture methods to adaptively

combine outputs of two adaptive filters running in parallel to model a desired unknown

system. We compare several algorithms with respect to their mean square error in the

steady-state, when the underlying unknown system is nonstationary with a random walk

model. We demonstrate that these algorithms are universal such that they achieve the per-

formance of the best constituent filter in the steady-state if certain algorithmic parameters

are chosen properly. We also demonstrate that certain mixtures converge to the optimal

convex combination filter such that their steady-state performances can be better than the

best constituent filter. We also perform the transient analysis of these updates in the mean

and mean-square error senses.

In the second part, we investigate adaptive mixture methods that linearly combine out-

puts of m constituent filters running in parallel to model a desired signal. We use Bregman

divergences and obtain certain multiplicative updates to train the linear combination weights

under an affine constraint or without any constraints. We use unnormalized relative entropy

and relative entropy to define two different Bregman divergences that produce an unnormal-

ized exponentiated gradient update and a normalized exponentiated gradient update on the

mixture weights, respectively. We then carry out the mean and the mean-square transient

analysis of these adaptive algorithms when they are used to combine outputs of m con-

stituent filters. We illustrate the accuracy of our results and demonstrate the effectiveness
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of these updates for sparse mixture systems.



ÖZETÇE

Bu tez çalışmasında, bilinmeyen bir sistemi modellemek için paralel olarak çalışan bir-

den fazla uyarlanır süzgecin çıktılarını birleştiren uyarlanır birleşim metotları incelenmek-

tedir. Öncelikle iki farklı uyarlanır algoritmanın çıktılarını birleştiren üç farklı dışbükey

birleşim metodu etüt edilmekte ve bunların kalıcı zaman ve geçici zaman performansları ver-

ilmektedir. Daha sonra Bregman ıraksaklıkları temelli olup birden fazla uyarlanır süzgecin

çıktılarını birleştiren ilgin ve doğrusal birleşim metodları araştırılmakta ve bunların orta-

lama ve ortalama-karesel geçici zaman analizleri sunulmuktadır.

İlk kısımda, istenilen ve bilinmeyen bir sistemi modellemek için paralel olarak çalışan

iki uyarlanır süzgecin çıktılarını uyarlanır biçimde birleştiren dışbükey kısıtlanmış birleşim

metotları araştırılmaktadır. Birçok algoritma, bilinmeyen sistem doğrusal değilken ve rast-

gele yürüyüş modeline göre hareket ederken, kalıcı zamanda ortalama-karesel hatalarına

göre kıyaslanmaktadır. Eğer belirli algoritma parametreleri uygun biçimde seçilirse, bu

algoritmaların “evrensel” olacağı; yani kalıcı zamanda en iyi birleşen algoritmasının per-

formansına ulaşacağı gösterilmektedir. Ayrıca bazı birleşimlerin optimal birleşim süzgecine

yakınsayacağı ve bunların kalıcı zaman performanslarının en iyi birleşen algoritmasının per-

formansından daha iyi olabileceği gösterilmektedir. Bu algoritmaların geçici zamanda orta-

lama ve ortalama-karesel analizleri de yapılmaktadır.

İkinci kısımda, istenilen işareti modellemek için paralel olarak çalışan m adet birleşen

süzgecin çıktılarını doğrusal olarak birleştiren uyarlanır birleşim metodları araştırılmaktadır.

Doğrusal birleşim ağırlıklarını ilgin kısıt altında veya kısıtsız olarak eğitmek için Breg-

man ıraklaklıkları kullanılmakta ve bazı çarpımsal algoritmalar elde edilmektedir. Birleşim

ağırlıkları üzerine bir düzgelenmemiş üstellenmiş gradient algoritması ve bir düzgelenmiş

üstellenmiş gradient algoritması üreten iki farklı Bregman ıraksaklığı tanımlamak için sırasıyla

düzgelenmiş göreli entropi ve göreli entropi kullanılmaktadır. Daha sonra bu algoritmaların

m birleşen algoritmayı birleştirdikleri durumdaki geçici zamanda ortalama ve ortalama-

karesel analizleri yapılaktadır. Sonuçların doğruluğu ve bu algoritmaların etkinliği seyrek
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birleşim sistemleri için gösterilmektedir.
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Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

The problem of estimating or learning an unknown desired signal is heavily investigated

in adaptive signal processing literature [1, 10,15,20]. However, in various applications, cer-

tain difficulties arise in the estimation process due to the lack of structural and statistical

information about the data model. To resolve this lack of information, mixture approaches

are proposed that adaptively combine outputs of multiple constituent algorithms performing

the same task in the adaptive signal processing under the adaptive mixture methods frame-

work [1,22,29]. These parallel running algorithms can be seen as alternative hypotheses for

modeling, which can be exploited for both performance improvement and robustness. In

this thesis, we investigate convex, affine and linear combination methods and provide their

steady-state and transient performances.

Adaptive mixture approaches are shown to improve the steady-state and transient per-

formance over the constituent filters under certain scenarios [1, 9, 22, 30]. The steady-state

analysis of convexly constrained, affinely constrained and unconstrained mixtures are car-

ried out in [1, 9, 22], respectively. Specifically, the adaptive convex mixture of [1] is shown

to be universal with respect to the constituent filters such that this algorithm achieves the

excess mean-square error (EMSE) performance of the best constituent filter and, in certain

cases, even outperforms both [1]. The transient analysis of this adaptive convex combina-

tion is studied in [25], where the time evolution of the mean and variance of the mixture

weights is provided. Along these lines, an affinely constrained mixture of adaptive filters

using a stochastic gradient update is introduced in [9]. The steady-state mean square error

(MSE) of this affinely constrained mixture is shown to outperform the steady-state MSE

of the best constituent filter in the mixture under certain conditions [9]. The transient

analysis of this affinely constrained mixture for m constituent filters is carried out in [24].

The general linear mixture framework as well as the steady-state performances of different



Chapter 1: Introduction 2

mixture configurations are studied in [22].

In the first chapter, we study four convex combination methods to combine outputs of

two adaptive filters to model a desired unknown system [1,20,27,30]. We first provide their

MSE performances in the steady-state. We next perform the transient analysis of these

convexly constrained updates in the mean and the mean square senses. In this framework,

we have two adaptive filters that work in parallel in order to model an unknown system

[1]. The outputs of these algorithms are then combined using another adaptive method

in order to improve the overall performance [1]. The first adaptive algorithm [1] uses a

stochastic gradient update on the convexly constrained mixture weights to minimize the

final estimation error. The second algorithm minimizes an approximate final estimation

error while penalizing the distance between the new and the old mixture weights [6, 20].

The third [30] and the fourth algorithms [27] employ specific performance-based updates on

the combination weights.

In the second chapter, we investigate affine and linear combination methods based on

Bregman divergences [10,15] that combine outputs of m constituent filters running in paral-

lel to model an unknown system. This mixture framework consists of two stages [2–5,8,23].

In the first stage, there are several adaptive filters that work in parallel to model an un-

known desired signal. In the second stage, we linearly combine the outputs of these adaptive

filters to produce the final output. To train the linear mixture weights, we employ Breg-

man divergences and propose certain multiplicative updates under an affine constraint [9]

or without any constraints [22]. We employ two different Bregman divergences based on

unnormalized [15] and normalized relative entropy [21] producing the unnormalized ex-

ponentiated gradient update (EGU) and the exponentiated gradient update (EG) on the

mixture weights, respectively. We then perform the mean and the mean-square transient

analysis of these adaptive mixtures when they are used to combine outputs of m constituent

filters.

1.1 Contributions

The contributions of the first part of this thesis are as follows:

• We present the steady-state and transient analysis of three convex combination meth-

ods that adaptively combines outputs of two adaptive filters.
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• We show that if we use the EG algorithm [20] to update the mixing parameter, the

combination filter performs, at least, as well as the best constituent filter in the steady-

state.

• We analyze the steady-state behavior of [30] and show that with a proper selection of

the forgetting factor, the combination filter performs as well as the best constituent

filter in the steady-state.

• We demonstrate that if the mixture parameter in [27] is selected using a sufficiently

large time window, then the combination filter can achieve the performance of the

best constituent filter in the steady-state.

The contributions of the second part of this thesis are as follows:

• We use Bregman divergences to derive multiplicative updates on affinely constrained

and unconstrained mixture weights that adaptively combine outputs of m constituent

filters.

• We use the unnormalized relative entropy and the relative entropy to define two dif-

ferent Bregman divergences that produce the EGU algorithm and the EG algorithm

to update the affinely constrained and unconstrained mixture weights.

• We perform the mean and the mean-square transient analysis of the affinely con-

strained and unconstrained mixtures using the EGU algorithm and the EG algorithm.

1.2 Content

Chapter 2 begins with a brief description of the convex mixture framework for the combi-

nation of two adaptive filters running in parallel with the error quantities and performance

measures. In Section 2.2, we present four convex mixture methods in detail. In Section 2.3,

we present the steady-state MSE analysis of these methods with the converged mixture

weights in the steady-state. In Section 2.4, we provide a transient analysis of the corre-

sponding algorithms. We illustrate the introduced results through simulations under the

setup of [1] in Section 2.5. We demonstrate that our results accurately describe the behavior
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of these algorithms both in the steady-state and during convergence in the studied setup.

The chapter concludes with certain remarks.

In Chapter 3, we first present the general linear mixture framework that combines out-

puts of m adaptive filters. In Section 3.2, we study the affinely constrained and uncon-

strained mixture methods updated with the EGU algorithm and the EG algorithm. In

Section 3.3, we first perform the transient analysis of the affinely constrained mixtures

and then continue with the transient analysis of the unconstrained mixtures. Finally, in

Section 3.4, we perform simulations to show the accuracy of our results and to compare

performances of the different adaptive mixture methods. We conclude this chapter with

remarks in Section 3.5.
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Chapter 2

STEADY STATE AND TRANSIENT MSE ANALYSIS OF

CONVEXLY CONSTRAINED MIXTURE METHODS

In this chapter, we first investigate and compare four well-known convexly constrained

adaptive mixture methods to combine outputs of two adaptive filters [1, 20, 27, 30] with

respect to their MSE in the steady-state. We then perform the transient analysis of these

convexly constrained updates in the mean and the MSE senses. In this widely studied

framework, we have two adaptive filters that work in parallel in order to model an unknown

system [1]. The outputs of these algorithms are then combined using another adaptive

method in order to improve the overall performance [1]. The first adaptive algorithm [1] uses

a stochastic gradient update on the convexly constrained mixture parameter to minimize the

final estimation error. The second algorithm is based on the exponentiated gradient (EG)

algorithm [6,20]. The EG algorithm has extensive roots in sequential learning theory [13,31]

and minimizes an approximate final estimation error while penalizing the distance between

the new and the old mixture parameters. The third [30] and the fourth algorithms [27]

use specific performance-based updates on the mixture parameters as further detailed in

Section 2.2. Although we specifically concentrate on the combination of two filters for

presentation clarity, our results can be readily extended to mixtures having more than two

filters [2].

We first show that if we use the EG algorithm to update the mixing parameter, the

resulting combination filter is universal with respect to the constituent filters such that the

combination filter performs, at least, as well as the best constituent filter in the steady-state.

Specifically, we show that the EMSE of the combination filter is as small as the best of the

constituent filters and, in some cases, smaller than EMSEs of the component filters in the

steady-state. We also show that the mixture parameter under the EG update converges

to the optimal convex combination parameter that minimizes the EMSE. Note that the

EG algorithm is shown to converge faster and has better tracking performance than the
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stochastic gradient algorithms for sparse impulse responses in certain situations [6, 17, 20].

Hence, the EG algorithm can be preferred over the stochastic gradient based algorithms

for mixtures having more than two filters and when the combination favors only a few

of the constituent filters. We point out that although the MSE of the EG algorithm is

studied using Euler discretization in [17] under certain assumptions for uncorrelated input

regressors, our framework and the analysis are significantly different since we use the EG

algorithm to combine outputs of adaptive filters, which are nonlinearly coupled, such that

the assumptions of [17] do not hold. The third algorithm we investigate is based on a

certain performance-based mixture of the constituent filters [30]. We analyze the steady-

state behavior of [30] and show that with a proper selection of the forgetting factor, the

combination filter is universal such that it performs as well as the best constituent filter in

the steady-state. Although the algorithm of [30] is also shown to be universal in a strong

deterministic sense [30], we show that the mixture parameter does not converge to the

optimal convex combination parameter under our assumptions (which is also supported by

our experiments). The fourth algorithm we investigate was studied in [27] and combines

filters based on their performances within a time window. We demonstrate that if the

mixture parameter in [27] is selected using a sufficiently large time window, the combination

filter can achieve the performance of the best constituent filter in the steady-state. For all

algorithms, we also perform the transient analysis in the mean and the MSE senses.

2.1 Problem Description

In this framework, we have two adaptive algorithms that run in parallel to model a desired

signal d(t). The desired signal d(t) is given by d(t) = wT
o (t)u(t) + n(t), where wo(t) ∈ Rp

is the desired system vector that varies according to a random walk model [28], i.e.,

wo(t+ 1) = wo(t) + q(t),

where q(t) is a zero mean, i.i.d. random vector with covariance matrix Q = E[q(t)qT (t)],

u(t) ∈ Rp is the input regressor with zero mean and correlation matrix R = E[u(t)uT (t)]

and the observation noise n(t) is i.i.d. with zero mean and variance E[n2(t)] = σ2
n. The cross

correlation vector between the desired signal and the input regressor is p(t) = E[d(t)u(t)].
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To model the desired signal d(t), we have two parallel running constituent filters each

producing estimates d̂1(t) = wT
1 (t)u(t) and d̂2(t) = wT

2 (t)u(t) using the weight vectors

w1(t), w2(t) respectively. For each constituent filter, we define the estimation error, the a

priori error and the a posteriori error as

ei(t)
4
= d(t)− d̂i(t) = d(t)−wT

i (t)u(t),

ea,i(t)
4
= [wo(t)−wi(t)]

Tu(t),

ep,i(t)
4
= [wo(t)−wi(t+ 1)]Tu(t),

respectively. For each filter, we also define MSE as Ji(t)
4
= E[e2i (t)] and excess MSE as

Jex,i(t)
4
= E[e2a,i(t)], with limiting values Ji

4
= limt→∞ Ji(t), Jex,i

4
= limt→∞ Jex,i(t) (if the

limits exist). We also define the cross correlation between the a priori errors as Jex,12(t)
4
=

E[ea,1(t)ea,2(t)] with limiting value Jex,12
4
= limt→∞ Jex,12(t). We also define ∆Ji(t) =

Jex,i(t)− Jex,12(t) for i = 1, 2 with the limiting values ∆Ji = Jex,i − Jex,12 [1].

The outputs of the constituent filters are then combined using another adaptive layer to

produce the final estimate of the desired signal as

d̂(t) = λ(t)d̂1(t) + [1− λ(t)]d̂2(t),

where λ(t) is the mixing parameter constrained to be in [0, 1]. If y(t)
4
= [d̂1(t) d̂2(t)]

T and

w(t)
4
= [λ(t) 1− λ(t)]T , then we have

d̂(t) = wT (t)y(t).

The final estimation error is given as e(t) = d(t)− d̂(t). In this chapter, we investigate four

methods to train the combination weight λ(t). Assuming convergence, the optimal mean

combination weights in terms of minimizing the MSE under convex constraint are given

by [1]

wo,c
4
=























[

1 0
]T

: Jex,1 ≤ Jex,12 ≤ Jex,2
[

0 1
]T

: Jex,2 ≤ Jex,12 ≤ Jex,1
[

∆J2
∆J1+∆J2

∆J1
∆J1+∆J2

]T

: Jex,12 < Jex,i, i = 1, 2

(2.1)

in the steady-state.
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2.2 Four Convexly Constrained Mixture Methods

In this section, we present four methods to train the mixture parameter λ(t). The first

adaptive algorithm [1] uses a stochastic gradient update on the convexly constrained mix-

ture parameter to minimize the final estimation error. The second algorithm is based on the

exponentiated gradient (EG) algorithm [6, 20] and minimizes an approximate final estima-

tion error while penalizing the distance between the new and the old mixture parameters.

The third [30] and the fourth algorithms [27] use specific performance-based updates on the

mixture parameters.

2.2.1 Algorithm 1

For the convexly constrained algorithm from [1], the mixture parameter is given by

λα(t) =
1

1 + exp[−α(t)]
,

where α(t) is trained using a stochastic gradient update to minimize the final prediction

error as

α(t+ 1) = α(t) − µα

2
∇α(t)e

2(t)

= α(t) + µαe(t)[d̂1(t)− d̂2(t)]λα(t)[1 − λα(t)]. (2.2)

For (2.2), we have [1]

Jex =







Jex,1 : Jex,1 ≤ Jex,12 < Jex,2,

Jex,12 +
∆J1∆J2
∆J1+∆J2

: Jex,12 < Jex,1 < Jex,2,

where Jex is the EMSE of the combination filter and Jex,12+
∆J1∆J2
∆J1+∆J2

< Jex,1. Furthermore,

if wα(t)
4
= [λα(t) 1− λα(t)]

T , then we have [1]

lim
t→∞

E[wα(t)] =











[

1 0
]T

: Jex,1 ≤ Jex,12 < Jex,2,
[

∆J2
∆J1+∆J2

∆J1
∆J1+∆J2

]T

: Jex,12 < Jex,1 < Jex,2.

Hence, in the steady-state, the mixture performs as well as the best component filter
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and, in some cases, outperforms both. Moreover, the combination weight vector wα(t)

converges to the optimal weight vector wo,c under the convex constraint.

2.2.2 Algorithm 2

The second convexly constrained update is based on the exponentiated gradient (EG) algo-

rithm [20]. The EG algorithm has extensive roots in competitive online learning theory and

has been used in different signal processing problems such as in echo cancellation [6, 17].

Here, we use the EG algorithm to train the mixture weights, where the combination weight

is updated as [6, 20]

λρ(t+ 1) = arg min
λ∈[0,1]

{

d(w,wρ(t)) +
µρ

2

[

e2(t) +
∂(d(t) −wTy(t))2

∂λ

∣

∣

λ=λρ(t)
(λ− λρ(t))

]}

(2.3)

=
λρ(t) exp[µρe(t)d̂1(t)]

λρ(t) exp[µρe(t)d̂1(t)] + [1− λρ(t)] exp[µρe(t)d̂2(t)]
, (2.4)

where d(w,wρ(t)) = λ ln
(

λ
λρ(t)

)

+ (1 − λ) ln
(

1−λ
1−λρ(t)

)

is the Kullback-Leibler distance

between the old and new weights, the second term on the right hand side of (2.3) is the

first order Taylor’s approximation of (d(t) − wTy(t))2 around λ = λρ(t), measuring the

“fit” of the new weight to the data, w = [λ 1 − λ]T , wρ(t)
4
= [λρ(t) 1 − λρ(t)]

T and

e(t) = d(t) −wT
ρ (t)y(t). We show in Appendix A that the update on λρ(t) in (2.4) can be

written as

λρ(t) =
1

1 + exp[−ρ(t)]
, (2.5)

with

ρ(t+ 1) = ρ(t) + µρe(t)(d̂1(t)− d̂2(t))

= ρ(t) + µρ{λρ(t)ea,1(t) + [1− λρ(t)]ea,2(t) + n(t)}[ea,2(t)− ea,1(t)]. (2.6)

We note that the update in (2.6) is similar to the update in (2.2) without the extra

[λ(t)(1−λ(t))] multiplier in (2.2). In [1], it is pointed out that the update in (2.2) may slow

down when λ(t) is too close to 0 or 1 due to [λ(t)(1 − λ(t))]. As a possible remedy to this

problem, λ(t) is restricted to an interval excluding 0 and 1 [1]. Note that this problem is
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not present in (2.6).

2.2.3 Algorithm 3

The third update uses a performance-based mixture of the component filters and has deep

roots in computational learning theory [13,31]. Here, the combination weights are selected

as certain functions of the accumulated loss of each constituent filter as

λε(t) =
exp{−µε

∑t−1
i=1[a

(t−1−i)e21(i)]}
exp{−µε

∑t−1
i=1[a

(t−1−i)e21(i)]} + exp{−µε

∑t−1
i=1[a

(t−1−i)e22(i)]}
, (2.7)

where 0 < a ≤ 1. As shown in Appendix A, the same update on λε(t) can be written as

λε(t) =
1

1 + exp[−ε(t)]
, (2.8)

with

ε(t+ 1) = aε(t) + µε(ea,2(t)− ea,1(t))(e1(t) + e2(t)). (2.9)

2.2.4 Algorithm 4

The fourth update we investigate is studied in [27]. Here, the combination weight is given

by

λγ(t) =
[
∑M−1

n=0 e21(t− n)]−
M
2

[
∑M−1

n=0 e21(t− n)]−
M
2 + [

∑M−1
n=0 e22(t− n)]−

M
2

, (2.10)

where M is the time window to evaluate the performance-based weighting. We show in

Appendix A that the same update on λγ(t) can be written as

λγ(t) =
1

1 + exp[−γ(t)]
,

where

γ(t)
4
=

M

2
ln

[

∑M−1
n=0 e22(t− n)

∑M−1
n=0 e21(t− n)

]

. (2.11)
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2.3 Steady State Analysis of the Convexly Constrained Mixtures

In this section, we present steady-state analysis of the convexly constrained mixture meth-

ods. The a priori error of the combination filter is ea(t) = λ(t)ea,1(t) + (1− λ(t))ea,2(t). If

Jex(t)
4
= E[e2a(t)], then we get

Jex(t) = E[λ2(t)e2a,1(t) + (1− λ(t))2e2a,2(t) + 2λ(t)(1 − λ(t))ea,1(t)ea,2(t)]

and Jex
4
= limt→∞ Jex(t). Without loss of generality, we assume that Jex,1 < Jex,2 in the

following. Hence, for each algorithm, we have two separate cases depending on the relative

value of Jex,12, i.e., Jex,1 ≤ Jex,12 < Jex,2 or Jex,12 < Jex,1 < Jex,2, to investigate the

steady-state behavior.

2.3.1 Steady State Analysis of Algorithm 2

The derivations follow as in [1]. Here, we first obtain an expression for the adaptation

parameter in the steady-state. If λ̄ρ(t)
4
= E[λρ(t)], then, as t → ∞, we get

E[ρ(t+ 1)] = E[ρ(t)] + µρ(1− λ̄ρ(t))∆J2(t)− µρλ̄ρ(t)∆J1(t), (2.12)

after some algebra, where we assume that λρ(t) and ea,i(t) are independent in the steady-

state for i = 1, 2 [1]. Furthermore, under the assumption of zero variance for λρ(t) as

t → ∞ [1], we get

Jex = λ̄2
ρJex,1 + (1− λ̄ρ)

2Jex,2 + 2λ̄ρ(1− λ̄ρ)Jex,12, (2.13)

where

λ̄ρ
4
= lim

t→∞
E[λρ(t)].

Depending on variances and cross correlation of the a priori errors, we have two cases:

a) Jex,1 ≤ Jex,12 < Jex,2:

Here, we have ∆J1 ≤ 0 and ∆J2 > 0 so that the term

(1− λ̄ρ(t))∆J2(t)− λ̄ρ(t)∆J1(t)
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is positive since 1 > λ̄ρ(t) > 0 for all t. Then, we get E[ρ(t)] → ∞ as t → ∞. This

implies that ρ(t) → ∞ and

ρ(t) → ∞,

λρ(t) → 1

almost surely as t → ∞ so that

Jex = Jex,1.

That is, in this case, the combination performs as well as the best component filter.

In addition, since we have

lim
t→∞

E[wρ(t)] = [1 0]T ,

we conclude that the combination vector wρ(t) converges to the optimal weight vector

wo,c under the convex constraint.

b) Jex,12 < Jex,1 < Jex,2:

We have ∆Ji > 0, i = 1, 2. As t → ∞, a stationary point of (2.12) may be character-

ized by

(1− λ̄ρ(t))∆J2(t) = λ̄ρ(t)∆J1(t),

so that

λ̄ρ =
∆J2

∆J1 +∆J2
.

If we substitute λ̄ρ in (2.13), then we get

Jex = Jex,12 +
∆J1∆J2

∆J1 +∆J2
,

after some algebra. Using

0 <
∆Ji

∆J1 +∆J2
< 1

yields

Jex < min{Jex,1, Jex,2}.

Thus, the combination filter outperforms both of the constituent filters. In addition,
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since we have

lim
t→∞

E[wρ(t)] =
[

∆J2
∆J1+∆J2

∆J1
∆J1+∆J2

]T

,

the combination weight wρ(t) converges to the optimal weight vector wo,c under the

convex constraint.

Hence, the combination filter is universal with respect to the constituent filters and its

weight vector converges to its optimal value.

2.3.2 Steady State Analysis of Algorithm 3

To obtain an expression for the adaptation parameter in the steady-state, we use

E[ε(t+ 1)] = aE[ε(t)] + µεE[(ea,2(t)− ea,1(t))(e1(t) + e2(t))]

= aE[ε(t)] + µε(Jex,2(t)− Jex,1(t)), (2.14)

where we assume that ea,i(t) and n(t) are independent for i = 1, 2 [28]. Along with the

configuration of EMSEs, we need to consider also 0 < a < 1 and a = 1 cases separately.

a) 0 < a < 1:

For convergence of (2.14), if

d(t)
4
=

t
∑

i=0

at−i(Jex,2(i) − Jex,1(i))−
t
∑

i=0

at−i(Jex,2 − Jex,1),

then we recognize that

d(t+ 1) = ad(t) + b(t+ 1)− bi

so

|d(t+ 1)| ≤ a|d(t)| + |(Jex,2(t)− Jex,1(t))− (Jex,2 − Jex,1)|

by the triangular inequality where b(t)
4
= Jex,2(t) − Jex,1(t) and b

4
= Jex,2 − Jex,1. We

show in Appendix A that

d(t) → 0
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as t → ∞ so that

lim
t→∞

E[ε(t)] =
µε(Jex,2 − Jex,1)

1− a
. (2.15)

The final EMSE of the combination filter is

Jex = λ̄2
εJex,1 + (1− λ̄ε)

2Jex,2 + 2(1− λ̄ε)λ̄εJex,12,

under the assumption of zero variance for λε(t) as t → ∞ [1] for any given a where

λ̄ε
4
= lim

t→∞
E[λε(t)].

Note that (2.15) does not depend on Jex,12. Depending on the variances and the

cross-EMSE of the a priori errors, there are two sub-cases:

a.1) Jex,1 ≤ Jex,12 < Jex,2:

Under this configuration, the optimal combination parameter λ in (2.1) is equal

to 1 and the EMSE of the optimal combination filter is Jex,1. Hence, for the

combination filter to achieve the performance of the best constituent filter, we

need to have λε = 1, i.e., E[ε(t)] → ∞ as t → ∞, which is true if and only if

a = 1. For any a, the difference between the EMSEs of the combination filter

and the best constituent filter is

f(λ̄ε)
4
= Jex − Jex,1

= (1− λ̄ε)[(1 + λ̄ε)(Jex,12 − Jex,1) + (1− λ̄ε)(Jex,2 − Jex,12)] ≥ 0 (2.16)

where the equality is reached if and only if a = 1 so that the update (2.9) does

not achieve the performance of the best constituent filter if a 6= 1.

a.2) Jex,12 < Jex,1 < Jex,2:

Here, the difference between the EMSEs of the combination filter and the best

constituent filter is, i.e., f(λ̄ε) in (2.16), a convex function of λ̄ε with roots

∆J2−∆J1
∆J2+∆J1

and 1. Hence, for λ̄ε ∈ (∆J2−∆J1
∆J2+∆J1

, 1), f(·) is negative, i.e., Jex < Jex,1.

We note that

λ̄ε ∈
(

∆J2 −∆J1
∆J2 +∆J1

, 1

)
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if and only if

a ∈



1 + µε

∆J2 −∆J1

ln
(

2∆J1
∆J2−∆J1

) , 1





assuming that

µε

∆J2 −∆J1

ln
(

2∆J1
∆J2−∆J1

) < 0.

Then, the combination filter outperforms the constituent filters for any a ∈


1 + µε
∆J2 −∆J1

ln
(

2∆J1
∆J2−∆J1

) , 1



.

b) a = 1:

We have

E[ε(t+ 1)] = E[ε(t)] +K(t),

where

K(t)
4
= µε(Jex,2(t)− Jex,1(t))

converges to a positive constant since Jex,1 < Jex,2 so that E[ε(t)] → ∞ as t → ∞.

This implies that

ε(t) → ∞,

λε(t) → 1

almost surely as t → ∞ so that

Jex = Jex,1.

Thus, the combination filter performs as well as the best component filter. The final

combination weight vector is

lim
t→∞

E[wε(t)] = [1 0]T .

Hence, a = 1 is a necessary condition for the combination filter to achieve the performance

of the best constituent filter. Note that when a 6= 1, the combination filter may outperform

the constituent filters in specific configurations of EMSEs. However, if the cross EMSE is



Chapter 2: Steady State and Transient MSE Analysis of Convexly Constrained Mixture Methods 16

Jex,12 > Jex,1 and a 6= 1, then the combination performs worse than the best constituent

filter. Hence, unlike [1], the algorithm of [30] achieves (but not outperforms) the best

constituent filter when a = 1 and if a 6= 1, then the algorithm may outperform or perform

worse than the best constituent filter depending on the configuration of EMSEs. Moreover,

the weight vector convergence does not appear.

2.3.3 Steady State Analysis of Algorithm 4

To get the steady-state behavior, we use

E[λγ(t)] ≈
1

1 + E
[∑M−1

n=0 e22(t−n)
∑M−1

n=0 e21(t−n)

]−M
2

≈ 1

1 +
[∑M−1

n=0 E[e22(t−n)]
∑M−1

n=0 E[e21(t−n)]

]−M
2

. (2.17)

We emphasize that although the approximations in (2.17) are strong especially for small

M , we observe a close agreement with our simulations for relatively large M , e.g., M > 30.

Since as t → ∞, E[e2i (t)] → Jex,i + σ2
n for i = 1, 2, we get

λ̄γ
4
= lim

t→∞
E[λγ(t)] =

1

1 +
[

Jex,2+σ2
n

Jex,1+σ2
n

]−M
2

, (2.18)

and the final EMSE of the combination filter is Jex = λ̄2
γJex,1 + (1 − λ̄γ)

2Jex,2 + 2(1 −
λ̄γ)λ̄γJex,12 for any given M under the assumption of zero variance for λγ(t) in the steady-

state [1]. Depending on M , we have two cases:

a) M → ∞: Since we have (Jex,2 + σ2
n)/(Jex,1 + σ2

n) > 1, we get limt→∞E[λγ(t)] = 1.

Hence,

Jex = Jex,1. (2.19)

Thus, the combination filter performs as well as the best constituent filter. The final

combination weight vector is limt→∞E[wγ(t)] = [1 0]T .

b) M < ∞: Depending on the a priori errors and the cross-EMSE between the compo-

nent filters, there are two subcases:

b.1) Jex,1 ≤ Jex,12 < Jex,2: In this case, the optimal combination parameter λ in (2.1)

is 1 and the EMSE of the optimal combination filter is Jex,1. The combination
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filter achieves the performance of the best constituent filter if E[γ(t)] → ∞ as

t → ∞ if and only if M → ∞. The difference between the EMSEs of the

combination filter and the best constituent filter is

Jex − Jex,1 = (1− λ̄γ)[(1 + λ̄γ)(Jex,12 − Jex,1) + (1− λ̄γ)(Jex,2 − Jex,12)] ≥ 0,

where the equality is reached if and only if M → ∞ so that the algorithm does

not achieve the performance of the best constituent filter if M < ∞.

b.2) Jex,12 < Jex,1 < Jex,2: In this case, the difference between the EMSEs of the com-

bination filter and the best constituent filter, i.e., f(λ̄γ) in (2.16), is negative for

M ∈ (2 log(2∆J1)−log(∆J2−∆J1)
log(Jex,1+σ2

n)−log(Jex,2+σ2
n)
,∞) so that the combination filter outperforms

the constituent filters, i.e., Jex < Jex,1.

Hence, M → ∞ is a necessary condition for the combination filter to perform as well

as the best constituent filter. The combination filter using the update rule (2.10) with

M < ∞may outperform the constituent filters in certain configurations of the EMSEs.

However, if the cross EMSE is sufficiently large, then the combination filter performs

worse than the best component filter when M < ∞. Hence, unlike [1], update (2.10)

achieves (but not outperforms) the best constituent filter whenM → ∞ and ifM < ∞,

then the algorithm may outperform or perform worse than the best constituent filter

depending on the configuration of EMSEs. Moreover, it does not offer the desirable

weight vector convergence.

2.4 Transient Analysis of the Convexly Constrained Mixtures

In this section, we perform mean and mean-square convergence analysis of the studied

algorithms. The derivations follow [11]. We use the following assumptions [11]:

• A1) n(t) is independent of u(t).

• A2) ρ(t), ε(t), γ(t) vary slowly enough so that

E[eka,i(t)e
l
a,j(t)h(t)|h(t)] = E[eka,i(t)e

l
a,j(t)]h(t),
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where h(t) ∈ {ρ(t), ε(t), γ(t)}, i, j = 1, 2 and k, l = 0, .., 4, k + l ≤ 4.

• A3) ea,1(t) and ea,2(t) are jointly Gaussian and zero mean, implying [11]

E[e4a,i(t)] = 3J2
ex,i(t), i = 1, 2,

E[eka,1(t)e
l
a,2(t)] = 0, k + l = 3,

E[eka,1(t)e
l
a,2(t)] = 3Jex,1(t)Jex,12(t), k = 3, l = 1,

E[eka,1(t)e
l
a,2(t)] = 3Jex,12(t)Jex,2(t), k = 1, l = 3,

E[eka,1(t)e
l
a,2(t)] = 2J2

ex,12(t) + Jex,1(t)Jex,2(t), k = l = 2.

2.4.1 Transient Analysis of Algorithm 2

The update (2.6) can be written as

ρ(t+ 1) = ρ(t) + µρ

[

−λρ(t)e
2
a,1(t) + (1− λρ(t))e

2
a,2(t)

+ (2λρ(t)− 1)ea,1(t)ea,2(t) + n(t)(ea,2(t)− ea,1(t))] . (2.20)

The first order Taylor’s approximation of

λρ(ρ(t))
4
= 1/(1 + exp(−ρ(t)))

around ρ̄(t)
4
= E[ρ(t)] is given by

λρ(ρ(t)) ≈ λρ(ρ̄(t)) +
dλρ

dρ(t)
(ρ̄(t))(ρ(t) − ρ̄(t))

= λ̄ρ(t) + λ̄ρ(t)(1 − λ̄ρ(t))(ρ(t) − ρ̄(t)), (2.21)

where λ̄ρ(t)
4
= λρ(ρ̄(t)). Using (2.21) in (2.20) yields

ρ(t+ 1) = ρ(t) + µρ

[

−(λ̄ρ(t) + λ̄ρ(t)(1− λ̄ρ(t))(ρ(t) − ρ̄(t)))e2a,1(t)

+ (1− λ̄ρ(t)− λ̄ρ(t)(1− λ̄ρ(t))(ρ(t) − ρ̄(t)))e2a,2(t)

+ (2λ̄ρ(t) + 2λ̄ρ(t)(1 − λ̄ρ(t))(ρ(t) − ρ̄(t))− 1)ea,1(t)ea,2(t)

+ n(t)(ea,2(t)− ea,1(t))] . (2.22)
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Taking the expectation of (2.22) and using A1, A2 yields

ρ̄(t+ 1) = ρ̄(t) + µρ

[

−λ̄ρ(t)Jex,1(t) + (1− λ̄ρ(t))Jex,2(t) + (2λ̄ρ(t)− 1)Jex,12(t)
]

. (2.23)

Moreover, by using (2.21) in

ea(t) = λρ(t)ea,1(t) + (1− λρ(t))ea,2(t),

we get

ea(t) = (λ̄ρ(t) + λ̄ρ(t)(1 − λ̄ρ(t))(ρ(t) − ρ̄(t)))(ea,1(t)− ea,2(t)) + ea,2(t), (2.24)

which yields E[ea(t)] = 0 using A1 and A2. We next find the EMSE of the combination

filter by squaring (2.24) and taking the expectation, yielding

E[e2a(t)] =
[

λ̄2
ρ(t) + σ2

ρ(t)λ̄
2
ρ(t)(1− λ̄ρ(t))

2
]

[Jex,1(t) + Jex,2(t)− 2Jex,12(t)]

+ 2λ̄ρ(t)(Jex,12(t)− Jex,2(t)) + Jex,2(t), (2.25)

where σ2
ρ(t)

4
= E[(ρ(t) − ρ̄(t))2] with A1 and A2. To evaluate (2.25), we need have σ2

ρ(t).

To obtain a recursion for σ2
ρ(t), we square (2.22), take the expected value and subtract the

square of (2.23), yielding, using A1, A2 and A3, after straightforward algebra,

σ2
ρ(t+ 1) = (1 + 2µρG1(t) + µ2

ρG2(t))σ
2
ρ(t) + µρ

2F (t), (2.26)

where, omitting t,

F = 2(1 − λ̄ρ)
2J2

ex,2 + (2λ̄ρ − 1)2[J2
ex,12 + Jex,1Jex,2] + 2λ̄2

ρJ
2
ex,1

+ 4(2λ̄ρ − 1)(1 − λ̄ρ)Jex,12Jex,2 − 4λ̄ρ(1− λ̄ρ)J
2
ex,12

− 4λ̄ρ(2λ̄ρ − 1)Jex,1Jex,12 + (Jex,1 + Jex,2 − 2Jex,12)σ
2
n, (2.27)

G1 = −λ̄ρ(1− λ̄ρ)[Jex,1 + Jex,2 − 2Jex,12], (2.28)

G2 = 3λ̄2
ρ(1− λ̄ρ)

2
[

J2
ex,1 + 2(Jex,1Jex,2 + 2J2

ex,12)− 4Jex,1Jex,12 − 4Jex,12Jex,2 + J2
ex,2

]

.

(2.29)
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Here, we analyze the bias/variance relation of Algorithm 2. From (2.23), when the step

size is large, the combination filter could better track the constituent filters. However, a

larger step size may cause σ2
ρ(t) to be large so that the EMSE of the combination filter

(2.25) may become unstable during the initial iterations. Note that from (2.26) when

λ̄ρ
4
= limt→∞ λ̄ρ(t) = 0 or 1, σ2

ρ(t) is unbounded as t → ∞ since G1
4
= limt→∞G1(t) = 0,

G2
4
= limt→∞G2(t) = 0 and F

4
= limt→∞ F (t) > 0. However, in our simulations, we observe

that λ̄2
ρ(t)(1− λ̄ρ(t))

2 converges to 0 faster than σ2
ρ(t) goes to infinity so that the term

lim
t→∞

σ2
ρ(t)λ̄

2
ρ(t)(1 − λ̄ρ(t))

2 = 0

in (2.25). Hence, the effect of the variance of the combination parameter on the EMSE of

the combination filter diminishes in the steady-state when λ̄ρ = 0 or 1 so that the EMSE of

the combination filter converges to the EMSE of the best constituent filter in the mean and

the MSE senses. When λ̄ρ = ∆J2
∆J1+∆J2

, we observe from (2.26) that σ2
ρ(t) converges when

|1 + 2µρG1(t) + µ2
ρG2(t)| < 1 for all t, i.e., −2 < 2µρG1(t) + µ2

ρG2(t) < 0 and under this

condition

σ2
ρ

4
= lim

t→∞
σ2
ρ(t) = − µρF

2G1 + µρG2
.

We observe from (2.27) that F > 0 and from (2.28), (2.29) that 2G1 + µρG2 < 0 when

−2 < 2µρG1(t) + µ2
ρG2(t) < 0 for all t so that σ2

ρ > 0 and the term σ2
ρ(t)λ̄

2
ρ(t)(1 − λ̄ρ(t))

2

in (2.25) converges. Hence, from (2.25), there is a bias term

σ2
ρλ̄

2
ρ(1− λ̄ρ)

2(∆J1 +∆J2)

in the EMSE of the combination filter in the steady-state which introduces a bias/variance

trade-off as in the stochastic gradient algorithms [28], e.g., the trade-off between the bias

and the step size of LMS algorithm. Since all the terms in (2.27), (2.28) and (2.29) can be

calculated (recursively), this concludes the transient analysis of Algorithm 2.

2.4.2 Transient Analysis of Algorithm 3

The update rule for ε(t) can be written as

ε(t+ 1) = aε(t) + µε

[

e2a,2(t)− e2a,1(t) + 2n(t)(ea,2(t)− ea,1(t))
]

, (2.30)
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yielding

ε̄(t+ 1) = aε̄(t) + µε [Jex,2(t)− Jex,1(t)] , (2.31)

with A1. We next use the first order Taylor’s approximation of λε(t) around the expected

value ε̄(t)
4
= E[ε(t)] as λε(t) ≈ λ̄ε(t) + λ̄ε(t)(1 − λ̄ε(t))(ε(t) − ε̄(t)), where λ̄ε(t)

4
= λ(ε̄(t)).

Applying this to ea(t) = λε(t)ea,1(t) + (1− λε(t))ea,2(t) yields

ea(t) = [λ̄ε(t) + λ̄ε(t)(1− λ̄ε(t)(ε(t)− ε̄(t)))][ea,1(t)− ea,2(t)] + ea,2(t), (2.32)

and E[ea(t)] = 0 with A1 and A2. We obtain EMSE of the combination filter by squaring

(2.32) and taking the expectation as

E[e2a(t)] =
[

λ̄2
ε(t) + σ2

ε (t)λ̄
2
ε (t)(1− λ̄ε(t))

2
]

[Jex,1(t) + Jex,2(t)− 2Jex,12(t)]

+ 2λ̄ε(t)(Jex,12(t)− Jex,2(t)) + Jex,2(t), (2.33)

where σ2
ε (t)

4
= E[(ε(t)− ε̄(t))2] is the variance of ε(t) using A1 and A2. To obtain a recursion

for σ2
ε (t), we square (2.30), take expectation and then subtract the square of (2.31). This

yields, using A1, A2 and A3,

σ2
ε (t+1) = a2σ2

ε (t)+2µε
2
[

J2
ex,1(t) + J2

ex,2(t)− 2J2
ex,12(t) + 2σ2

n(Jex,1(t) + Jex,2(t)− 2Jex,12(t))
]

.

(2.34)

Here, we analyze the bias/variance relation of Algorithm 3. From (2.31), the combination

filter could better track the constituent filters when the step size is large. However, a

larger step size may cause σ2
ε (t) to be large so that the EMSE of the combination filter

(2.33) may become unstable during the initial iterations. When 0 < a < 1, we have

ε̄
4
= limt→∞ ε̄(t) =

µε(Jex,2 − Jex,1)

1− a
and λ̄ε

4
= limt→∞ λ̄ε(t). From (2.34), σ2

ε (t) converges

and

σ2
ε

4
= lim

t→∞
σ2
ε (t) =

2µε
2
[

J2
ex,1 + J2

ex,2 − 2J2
ex,12 + 2σ2

n(Jex,1 + Jex,2 − 2Jex,12)
]

1− a2
.

Hence, the term σ2
ε (t)λ̄

2
ε (t)(1− λ̄ε(t))

2 in (2.33) converges. Note that from (2.33) this term

introduces a bias in the EMSE of the combination filter in the steady-state. When a = 1, it

follows from (2.31) that λ̄ε = 0 or 1. From (2.34), σ2
ε (t) is unbounded as t → ∞. However,
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in our simulations, we observe that λ̄2
ε(t)(1 − λ̄ε(t))

2 converges to 0 faster than σ2
ε (t) goes

to infinity so that the term

lim
t→∞

σ2
ε (t)λ̄

2
ε (t)(1− λ̄ε(t))

2 = 0

in (2.33). Hence, the effect of the variance of the combination parameter on the EMSE of

the combination filter diminishes in the steady-state when a = 1 so that the EMSE of the

combination filter converges to the EMSE of the best constituent filter in the mean and the

MSE senses. This concludes the transient analysis of Algorithm 3.

2.4.3 Transient Analysis of Algorithm 4

Taking expectation of (2.11) yields

γ̄(t) =
M

2
E

[

ln

(

∑M−1
n=0 e22(t− n)

∑M−1
n=0 e21(t− n)

)]

≈ M

2
ln

(

∑M−1
n=0 Jex,2(t− n)

∑M−1
n=0 J2

ex,1(t− n)

)

.

If we use the first order Taylor’s approximation of λγ(t) around the expected value γ̄(t)
4
=

E[γ(t)], then we get

λγ(t) ≈ λ̄γ(t) + λ̄γ(t)(1 − λ̄γ(t))(γ(t) − γ̄(t)), (2.35)

where λ̄γ(t)
4
= λ(γ̄(t)). Using (2.35) in ea(t) yields

ea(t) =
[

λ̄γ(t) + λ̄γ(t)(1 − λ̄γ(t)(γ(t) − γ̄(t)))
]

[ea,1(t)− ea,2(t)] + ea,2(t) (2.36)

and E[ea(t)] = 0 under A1 and A2. To get the EMSE of the combination filter, we first use

the first order Taylor’s approximation of λ2
γ(t) around the expected value γ̄(t)

4
= E[γ(t)] to

get

λ2
γ(t)

4
= λ̄2

γ(t) + 2λ̄2
γ(t)(1− λ̄γ(t))(γ(t) − γ̄(t)). (2.37)

Using (2.35) and (2.37) in e2a(t) and taking expectation yields

E[e2a(t)] = λ̄2
γ(t)Jex,1(t) + (1− λ̄2

γ(t))
2Jex,2(t) + 2λ̄2

γ(t)(1− λ̄2
γ(t))Jex,12(t). (2.38)
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This concludes the transient analysis of Algorithm 4.

2.5 Simulations

In this section, we present performance of the combination algorithms through simulations

using the setup of [1]. Here, we have two LMS filters with the same input regressor and

different step sizes running in parallel as the constituent filters with updates wi(t + 1) =

wi(t) + µiei(t)u(t), for i = 1, 2, where µ1 = 0.1 and µ2 = 0.001. The input regressor

u(t) ∈ R7 is zero mean and i.i.d. Gaussian with variance selected to yield Tr(R)=1, where

Tr(·) is the trace. The underlying signal is generated as d(t) = wT
o (t)u(t)+n(t), where n(t)

is the additive i.i.d Gaussian noise with variance σ2
n = 0.01 and wo(t + 1) = wo(t) + q(t).

The initial value of wo(t) is selected as [1]

wo(0) = [0.90,−0.53, 0.21,−0.028, 0.78, 0.52,−0.08]T .

Theoretical EMSEs of the combination filters and the cross-EMSE between them are given

by

Jex,i =
µiσ

2
nTr(R) + µ−1

i Tr(Q)

2− µiTr(R)
,

Jex,12 =
µ12σ

2
nTr(R) + 2Tr(Q)

µ1+µ2

2− µ12Tr(R)

under the separation assumption [1], where µ12 = 2µ1µ2

µ1+µ2
and theoretical Jex,i attains the

minimum at

µopt =

√

Tr(Q)

σ2
nTr(R)

+
[Tr(Q)]2

4σ4
n

− Tr(Q)

2σ2
n

.

We measure the performance using the same figure of merit as in [1]. The normalized square

deviation (NSD) of the component filters and the combination filters are defined as

NSDi
4
= Jex,i/Jex,opt,

NSDalg2
4
= Jex,alg2/Jex,opt,

NSDalg3
4
= Jex,alg3/Jex,opt,

NSDalg4
4
= Jex,alg4/Jex,opt,
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Figure 2.1: Theoretical and simulated NSDs as a function of Tr(Q). (a) 2nd and 3rd
combination filters, µρ = 30, M = 2000. (b) 4rd combination filter, µε = 30, a = 1,
a = 0.95.

where Jex,algi is the EMSE of the ith combination filter and Jex,opt is the EMSE calculated

using µopt.

In Fig. 2.1, we plot the NSDs for all algorithms as a function of Tr(Q), Q = E[q(t)qT (t)].

For these simulations, the step size in (2.6) is set to µρ = 30 and the step size in (2.9) is

set to µε = 30 to guarantee convergence. To test our theoretical analysis on the forgetting

factor in (2.9), we simulate (2.9) using a = 1 and a = 0.95. We test the update in (2.10)

using a time window M = 2000. The simulations are done over 6x105 samples, averaged

over 20 independent trials. The final EMSEs are calculated by averaging the last 1000

samples of each iteration.
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We observe in Fig. 2.1a that the combination filter using the EG update (2.6) is universal

with respect to the combination filters and even performs better than both when Jex,12 <

min{Jex,1, Jex,2} (as shown in Section 2.2.2). The update (2.10) with M = 2000 achieves

the performance of the best constituent filter since M = 2000 is sufficiently large to yield

(2.19). Similarly, the update (2.9) is also universal when a = 1 such that it achieves the

performance of the best constituent filter for all Tr(Q) in Fig. 2.1b. For the update (2.9)

with a = 0.95, we observe that for certain Tr(Q), the update performs better than both

constituent filters. However, since a 6= 1, the update (2.9) performs worse than the best

constituent filter as predicted in (2.16) and Section III.C.a.2 for certain Tr(Q). For all

algorithms, we observe that our steady-state analysis accurately describes the simulations.

For the simulations related to the transient analysis, the underlying signal is generated

from a stationary model as d(t) = wT
o u(t) + n(t) [1], where n(t) is the additive i.i.d noise

with variance σ2
n = 0.01 and wo = [0.24,−0.45,−0.35, 0.04,−0.17, 0.74, 0.14]T . Moreover,

to test the switching performance, we abruptly change wo to

wo = [0.34, 0.45,−0.41, 0.46, 0.14,−0.44,−0.24]T in the middle of the simulations [1]. Here,

the input regressor u(t) ∈ R7 is zero mean i.i.d. Gaussian, where the variance of each entry

is set to 1. As the constituent filters, we have two LMS filters with the same input regressor

and different step sizes running in parallel with updates

wi(t+ 1) = wi(t) + µiei(t)u(t),

for i = 1, 2, µ1 = 0.15, µ2 = 0.002. For the combination algorithms, we set µρ = 1

for Algorithm 2, µε = 1 and a = 0.98 for Algorithm 3, M = 200 for the Algorithm 4.

Results are averaged over 1000 independent trials. In Fig. 2.2a, we plot the MSE curve

for Algorithm 2, labeled as “Alg.2simul”, the theoretical derived MSE curve using (2.25),

labelled as “Alg.2theory”. In Fig. 2.2a, we also plot the theoretical derived MSE curve,

where we set σρ(t) = 0, labeled as “Alg.2theory(σρ=0)”, as suggested in [11]. We observe

that our analysis closely describes the transient behavior of Algorithm 2 in these simulations.

We repeat the same experiment for Algorithm 3 and display the results in Fig. 2.2b. We

use the same labeling as in Fig. 2.2a, however, use (2.33) to calculate the theoretical curves.

We point out that since a = 0.98, as predicted from the steady-state analysis, the mixture

does not converge to the best constituent filter as seen in Fig. 2.2b (unlike Algorithm 2
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µα µρ Alg. 3 Alg. 4 n (iteration index)

µα = 0.5 µρ = 0.5 a=0.999, µε = 0.5 M=2000 n1 = 1864, n2 = 1092, n3 = 3055, n4 = 2595

µα = 5 µρ = 5 a=0.999, µε = 5 M=1700 n1 = 1063, n2 = 1009, n3 = 3181, n4 = 2336

µα = 100 µρ = 100 a=0.999, µε = 100 M=1400 n1 = 1063 ,n2 = 1011, n3 = 3193, n4 = 2088

Table 2.1: Performance of Algorithm 3 and Algorithm 4 for different parameters

in Fig. 2.2a). The same simulations are performed for Algorithm 4 as shown in Fig. 2.2c,

however, we used (2.38) to calculate the theoretical curve. We again observe that our

transient analysis closely describes the behavior of Algorithm 3 and 4. We observe that

M = 200 is sufficiently large for these simulations that the mixture converges to the best

constituent filter.

Here, we investigate the trade-off between the transient and steady-state behaviors for

the combination algorithms as follows. In this setup, the desired signal is generated as

d(t) = wT
o u(t) + n(t), where n(t) is the additive i.i.d noise with variance σ2

n = 0.01, wo =

[0.25,−0.47,−0.37, 0.04,−0.18, 0.78, 0.14]T and the input regressor u(t) ∈ R7 is zero mean

i.i.d. Gaussian, where the variance of each entry is set to 1. As the input filters, there are

two LMS filters running in parallel to model d(t) with the same input regressor and the

step sizes µ1 = 0.15, µ2 = 0.002, respectively. We first fix the step size of Algorithm 1,

i.e., µα = 0.5, and generate the theoretical MSE(n) curve versus iteration index n. Then,

we determine the value of n where MSE(n) is 3 dB above the minimum MSE and label it

n1. We adjust the step size of Algorithm 2 µρ, the step size µε and the forgetting factor

a of Algorithm 3 and the time window M of Algorithm 4 such that the final MSE of each

algorithm is equal to the final MSE of Algorithm 1. Then, the theoretical MSE(n) curve

versus iteration index n for each algorithm is generated and the values of n where MSE(n) is

3 dB above the minimum MSE are determined and labeled by n2, n3, n4, respectively. The

performance of the combination algorithm with the smallest ni is the best for this example.

We repeat this process for different selections of µα including µα = 5 and µα = 100 and

summarize the results in Table 2.1. We observe that in these simulations Algorithm 2

provide a better converge trade-off.
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2.6 Conclusion

We investigated and compared four convexly constrained adaptive mixture methods to

adaptively combine outputs of constituent filters that work in parallel on system modeling.

We derived the corresponding MSEs and the converged mixture weights in the steady-state

under nonstationary random walk model. We also performed the transient analysis in the

mean and MSE sense for all algorithms. We observe that these convex mixture methods

are universal such that they achieve the performance of the best constituent filter in the

steady-state. Our main contributions in this chapter can be listed as follows:

1. We show that the algorithm from [20] is universal and its combined weight vector

converges to the optimal convex mixture;

2. We demonstrate that the algorithm from [30] is only universal if the memory constant

is unitary (no decay is allowed if universality is required), but the weight vector does

not convergence to the optimal convex mixture;

3. We show that the algorithm from [27] is always universal (but not better than the

best filter) only for very long windows, however, does not offer the desirable weight

vector convergence.
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Figure 2.2: MSE curves for all algorithms. Labels are described in the text. (a) Algorithm
2, µρ = 1. (b) Algorithm 3, µε = 1 and a = 0.98. (c) Algorithm 4, M = 200.
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Chapter 3

ADAPTIVE MIXTURE METHODS BASED ON BREGMAN

DIVERGENCES

In this chapter, we study adaptive mixture methods based on Bregman divergences

[10, 15] that combine outputs of m constituent filters running in parallel on the same task.

The overall system has two stages [2–5,8,23]. The first stage contains adaptive filters running

in parallel to model a desired signal. The outputs of these adaptive filters are then linearly

combined to produce the final output of the overall system in the second stage. We use

Bregman divergences and obtain certain multiplicative updates [21], [15], [16] to train these

linear combination weights under an affine constraint [9] or without any constraints [22]. We

use unnormalized [15] and normalized relative entropy [21] to define two different Bregman

divergences that produce the unnormalized exponentiated gradient update (EGU) and the

exponentiated gradient update (EG) on the mixture weights [21], respectively. We then

perform the mean and the mean-square transient analysis of these adaptive mixtures when

they are used to combine outputs of m constituent filters. We emphasize that to the best

of our knowledge, this is the first mean and mean-square transient analysis of the EGU

algorithm and the EG algorithm in the mixture framework (which naturally covers the

classical framework also [7,28]). We illustrate the accuracy of our results through simulations

in different configurations and demonstrate advantages of the introduced algorithms for

sparse mixture systems.

We use Bregman divergences to derive multiplicative updates on the mixture weights.

Specifically, we use the unnormalized relative entropy and the relative entropy as distance

measures and obtain the EGU algorithm and the EG algorithm to update the combination

weights under an affine constraint or without any constraints. We then carry out the

mean and the mean-square transient analysis of these adaptive mixtures when they are

used to combine m constituent filters. We point out that the EG algorithm is widely

used in sequential learning theory [31] and minimizes an approximate final estimation error
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while penalizing the distance between the new and the old filter weights. In network and

acoustic echo cancellation applications, the EG algorithm is shown to converge faster than

the LMS algorithm [26,28] when the system impulse response is sparse [7]. Similarly, in our

simulations, we observe that using the EG algorithm to train the mixture weights yields

increased convergence speed compared to using the LMS algorithm to train the mixture

weights [9, 22] when the combination favors only a few of the constituent filters in the

steady state, i.e., when the final steady-state combination vector is sparse. We also observe

that the EGU algorithm and the LMS algorithm show similar performance when they are

used to train the mixture weights even if the final steady-state mixture is sparse. In this

sense, we emphasize that we do not force the system to be sparse in order to make sure

that the EG algorithm performs better than the LMS algorithm. However, if the final

steady-state vector is sparse, than the EG could increase the convergence speed.

To summarize, the main contributions of this chapter are as follows:

• We use Bregman divergences to derive multiplicative updates on affinely constrained

and unconstrained mixture weights adaptively combining outputs of m constituent

filters.

• We use the unnormalized relative entropy and the relative entropy to define two dif-

ferent Bregman divergences that produce the EGU algorithm and the EG algorithm

to update the affinely constrained and unconstrained mixture weights.

• We perform the mean and the mean-square transient analysis of the affinely con-

strained and unconstrained mixtures using the EGU algorithm and the EG algorithm.

3.1 Problem Description

3.1.1 Notation

In this chapter, all vectors are column vectors and represented by boldface lowercase letters.

Matrices are represented by boldface capital letters. For presentation purposes, we work

only with real data. Given a vector w, w(i) denotes the ith individual entry of w, wT is

the transpose of w, ‖w‖1
4
=
∑

i |w(i)| is the l1 norm; ‖w‖ 4
=

√
wTw is the l2 norm. For

a matrix W , tr,n(W ) is the trace. For a vector w, diag(w) represents a diagonal matrix



Chapter 3: Adaptive Mixture Methods Based on Bregman Divergences 31

Figure 3.1: A linear mixture of outputs of m adaptive filters.

formed using the entries of w. For a matrix W , diag(W ) represents a column vector that

contains the diagonal entries of W . For two vectors v1 and v2, we define the concatenation

[v1;v2]
4
= [vT

1 vT
2 ]

T . For a random variable v, v̄ is the expected value. For a random vector

v (or a random matrix V ), v̄ (or V̄ ) represents the expected value of each entry. Vectors

(or matrices) 1 and 0, with an abuse of notation, denote vectors (or matrices) of all ones

or zeros, respectively, where the size of the vector (or the matrix) is understood from the

context.

3.1.2 System Description

The framework that we study has two stages. In the first stage, we have m adaptive filters

producing outputs ŷi(t), i = 1, . . . ,m, running in parallel to model a desired signal y(t)

as seen in Fig. 1. Here, a(t) is generated from a zero mean stochastic process and y(t) is

generated from a zero-mean stationary stochastic process. The second stage is the mixture

stage, where the outputs of the first stage filters are combined to improve the steady-state

and/or the transient performance over the constituent filters. We linearly combine the
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outputs of the first stage filters to produce the final output as ŷ(t) = wT (t)x(t), where

x(t)
4
= [ŷ1(t), . . . , ŷm(t)]T and train the mixture weights using multiplicative updates (or

exponentiated gradient updates) [15]. We point out that in order to satisfy the constraints

and derive the multiplicative updates [21], [12], we use reparametrization of the mixture

weights as w(t) = f(λ(t)) and perform the update on λ(t) as

λ(t+ 1) = argmin
λ

{

d(λ,λ(t)) + µ l
(

y(t),fT (λ)x(t)
)

}

, (3.1)

where µ is the learning rate of the update, d(·, ·) is an appropriate distance measure and

l(·, ·) is the instantaneous loss. We emphasize that in (3.1), the updated vector λ is forced

to be close to the present vector λ(t) by d(λ(t+1),λ(t)), while trying to accurately model

the current data by l
(

y(t),fT (λ)x(t)
)

. However, instead of directly minimizing (3.1), a

linearized version of (3.1)

λ(t+ 1) = argmin
λ

{

d(λ,λ(t)) + l
(

y(t),fT (λ(t))x(t)
)

+ µ∇λl
(

y(t),fT (λ)x(t)
)T
∣

∣

∣

λ=λ(t)
(λ− λ(t))

}

(3.2)

is minimized to get the desired update. As an example, if we use the l2-norm as the distance

measure, i.e., d(λ,λ(t)) = ‖λ− λ(t)‖2, and the square error as the instantaneous loss, i.e.,

l
(

y(t),fT (λ)x(t)
)

= [y(t)−fT (λ)x(t)]2 with f(λ) = λ, then we get the stochastic gradient

update on w(t), i.e.,

w(t+ 1) = w(t) + µe(t)x(t),

in (3.2).

In the next section, we use the unnormalized relative entropy

d1(λ,λ(t)) =

{ m
∑

i=1

[

λ(i) ln

(

λ(i)

λ(i)(t)

)

+ λ(i)(t)− λ(i)

]

}

(3.3)

for positively constrained λ and λ(t), λ ∈ Rm
+ , λ(t) ∈ Rm

+ , and the relative entropy

d2(λ,λ(t)) =

{ m
∑

i=1

[

λ(i) ln

(

λ(i)

λ(i)(t)

)]

}

, (3.4)
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where λ is constrained to be in an extended simplex such that λ(i) ≥ 0,
∑m

k=1 λ
(i) = u for

some u ≥ 1 as the distance measures, with appropriately selected f(·) to derive updates

on mixture weights under different constraints. We first investigate affinely constrained

mixture of m adaptive filters, and then continue with the unconstrained mixture using (3.3)

and (3.4) as the distance measures.

3.2 Adaptive Mixture Algorithms

In this section, we investigate affinely constrained and unconstrained mixtures updated with

the EGU algorithm and the EG algorithm.

3.2.1 Affinely Constrained Mixture

When an affine constraint is imposed on the mixture such that wT (t)1 = 1, we get

ŷ(t) = w(t)Tx(t),

e(t) = y(t)− ŷ(t),

w(i)(t) = λ(i)(t), i = 1, . . . ,m− 1,

w(m)(t) = 1−
m−1
∑

i=1

λ(i)(t),

where the m − 1 dimensional vector λ(t)
4
= [λ(1)(t), . . . , λ(m−1)(t)]T is the unconstrained

weight vector, i.e., λ(t) ∈ Rm−1. Using λ(t) as the unconstrained weight vector, the error

can be written as e(t) =
[

y(t)−ŷm(t)
]

−λT (t)δ(t), where δ(t)
4
= [ŷ1(t)−ŷm(t), . . . , ŷm−1(t)−

ŷm(t)]T . To be able to derive a multiplicative update on λ(t), we use

λ(t) = λ1(t)− λ2(t),

where λ1(t) and λ2(t) are constrained to be nonnegative, i.e., λi(t) ∈ Rm−1
+ , i = 1, 2. After

we collect nonnegative weights in λa(t) = [λ1(t);λ2(t)], we define a function of loss e(t) as

la (λa(t))
4
= e2(t)

and update positively constrained λa(t) as follows.
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Unnormalized Relative Entropy

Using the unconstrained relative entropy as the distance measure, we get

λa(t+ 1) =argmin
λ

{ 2(m−1)
∑

i=1

[

λ(i) ln

(

λ(i)

λ
(i)
a (t)

)

+ λ(i)
a (t)− λ(i)

]

+

µ
[

la (λa(t)) +∇λla (λ)
T
∣

∣

λ=λa(t)
(λ− λa(t))

]

}

.

After some algebra this yields

λ(i)
a (t+ 1) = λ(i)

a (t) exp {µe(t)(ŷi(t)− ŷm(t))} , i = 1, . . . ,m− 1,

λ(i)
a (t+ 1) = λ(i)

a (t) exp {−µe(t)(ŷi−m+1(t)− ŷm(t))} , i = m, . . . , 2(m − 1),

providing the multiplicative updates on λ1(t) and λ2(t).

Relative Entropy

Using the relative entropy as the distance measure, we get

λa(t+ 1) =argmin
λ

{ 2(m−1)
∑

i=1

[

λ(i) ln

(

λ(i)

λ
(i)
a (t)

)

+ γ(u− 1Tλ)

]

+

µ
[

la (λa(t)) +∇λla (λ)
T
∣

∣

λ=λa(t)
(λ− λa(t))

]

}

,

where γ is the Lagrange multiplier. This yields

λ
(i)
a (t + 1) = u

λ
(i)
a (t) exp {µe(t)(ŷi(t) − ŷm(t))}

∑m−1
k=1

[

λ
(k)
a (t) exp {µe(t)(ŷk(t) − ŷm(t))} + λ

(k+m−1)
a (t) exp {−µe(t)(ŷk(t) − ŷm(t))}

] ,

i = 1, . . . ,m− 1,

λ
(i)
a (t + 1) = u

λ
(i)
a (t) exp {−µe(t)(ŷi−m+1(t) − ŷm(t))}

∑m−1
k=1

[

λ
(k)
a (t) exp {µe(t)(ŷk(t) − ŷm(t))} + λ

(k+m−1)
a (t) exp {−µe(t)(ŷk(t) − ŷm(t))}

] ,

i = m, . . . , 2(m − 1),

providing the multiplicative updates on λa(t).
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3.2.2 Unconstrained Mixture

Without any constraints on the combination weights, the mixture stage can be written as

ŷ(t) = wT (t)x(t),

e(t) = y(t)− ŷ(t),

wherew(t) ∈ Rm. To be able to derive a multiplicative update, we use a change of variables,

w(t) = w1(t)−w2(t),

where w1(t) and w2(t) are constrained to be nonnegative, i.e., wi(t) ∈ Rm
+ , i = 1, 2. We

then collect the nonnegative weights wa(t) = [w1(t);w2(t)] and define a function of the loss

e(t) as

lu (wa(t))
4
= e2(t).

Unnormalized Relative Entropy

Defining cost function similar to (4) and minimizing it with respect to w yields

w(i)
a (t+ 1) = w(i)

a (t) exp {µe(t)ŷi(t)} , i = 1, . . . ,m,

w(i)
a (t+ 1) = w(i)

a (t) exp {−µe(t)ŷi−m(t)} , i = m+ 1, . . . , 2m,

providing the multiplicative update on wa(t).

Relative Entropy

Using the relative entropy under the simplex constraint on w, we get the updates
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w(i)
a (t+ 1) = u

w
(i)
a (t) exp {µe(t)ŷi(t)}

m
∑

k=1

[

w(k)
a (t) exp {µe(t)ŷk(t)}+ w(k+m)

a (t) exp {−µe(t)ŷk(t)}
]

,

i = 1, . . . ,m,

w(i)
a (t+ 1) = u

w
(i)
a (t) exp {−µe(t)ŷi−m(t)}

m
∑

k=1

[

w(k)
a (t) exp {µe(t)ŷk(t)}+ w(k+m)

a (t) exp {−µe(t)ŷk(t)}
]

,

i = m+ 1 . . . , 2m.

In the next section, we study the transient analysis of these four adaptive mixture

algorithms.

3.3 Transient Analysis

In this section, we study the mean and the mean-square transient analysis of the adaptive

mixture methods. We start with the affinely constrained combination.

3.3.1 Affinely Constrained Mixture

We first perform the transient analysis of the mixture weights updated with the EGU

algorithm. Then, we continue with the transient analysis of the mixture weights updated

with the EG algorithm.

Unconstrained Relative Entropy

For the affinely constrained mixture updated with the EGU algorithm, using Taylor Series,

we have the multiplicative update as
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λ
(i)
1 (t+ 1) = λ

(i)
1 (t) exp {µe(t)(ŷi(t)− ŷm(t))} ,

= λ
(i)
1 (t)

∞
∑

k=0

(

µe(t)(ŷi(t)− ŷm(t))
)k

k!
, (3.5)

λ
(i)
2 (t+ 1) = λ

(i)
2 (t) exp {−µe(t)(ŷi(t)− ŷm(t))} ,

= λ
(i)
2 (t)

∞
∑

k=0

(

− µe(t)(ŷi(t)− ŷm(t))
)k

k!
, (3.6)

for i = 1, . . . ,m − 1. If e(t) and ŷi(t) − ŷm(t) for each i = 1, . . . ,m − 1 are bounded, then

we can write (3.5) and (3.6) as

λ
(i)
1 (t+ 1) ≈ λ

(i)
1 (t)

(

1 + µe(t)(ŷi(t)− ŷm(t)) +O(µ2)
)

, (3.7)

λ
(i)
2 (t+ 1) ≈ λ

(i)
2 (t)

(

1− µe(t)(ŷi(t)− ŷm(t)) +O(µ2)
)

, (3.8)

for i = 1, . . . ,m− 1. Since µ is usually relatively small [15], we approximate (3.7) and (3.8)

as

λ
(i)
1 (t+ 1) ≈ λ

(i)
1 (t)

(

1 + µe(t)(ŷi(t)− ŷm(t))
)

, (3.9)

λ
(i)
2 (t+ 1) ≈ λ

(i)
2 (t)

(

1− µe(t)(ŷi(t)− ŷm(t))
)

. (3.10)

In our simulations, we illustrate the accuracy of the approximations (3.9) and (3.10) under

the mixture framework. Using (3.9) and (3.10), we can obtain updates on λ1(t) and λ2(t)

as

λ1(t+ 1) =
(

I + µe(t)diag
(

δ(t)
))

λ1(t), (3.11)

λ2(t+ 1) =
(

I − µe(t)diag
(

δ(t)
))

λ2(t). (3.12)
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Collecting the weights in λa(t) = [λ1(t);λ2(t)], using the updates (3.11) and (3.12), we can

write update on λa(t) as

λa(t+ 1) =
(

I + µe(t)diag
(

u(t)
))

λa(t), (3.13)

where u(t) is defined as u(t)
4
= [δ(t);−δ(t)].

For the desired signal y(t), we can write y(t)− ŷm(t) = λT
0 (t)δ(t) + e0(t), where λ0(t) is

the optimum MSE solution at time t such that λ0(t)
4
= R−1(t)p(t), R(t)

4
= E

[

δ(t)δT (t)
]

,

p(t)
4
= E

{

δ(t)
[

y(t)− ŷm(t)
]}

and e0(t) is zero-mean and uncorrelated with δ(t). We next

show that the mixture weights converge to the optimum solution in the steady-state such

that limt→∞E
[

λ(t)
]

= limt→∞ λ0(t) for properly selected µ.

Subtracting (3.12) from (3.11), we obtain

λ(t+ 1) = λ(t) + µe(t)diag
(

δ(t)
)(

λ1(t) + λ2(t)
)

,

= λ(t)− µe(t)diag
(

δ(t)
)

λ(t) + 2µe(t)diag
(

δ(t)
)

λ1(t). (3.14)

Defining ε(t)
4
= λ0(t)− λ(t) and using e(t) = δT (t)ε(t) + e0(t) in (3.14) yield

λ(t+ 1) = λ(t)− µdiag
(

δ(t)
)

λ(t)δT (t)ε(t)− µdiag
(

δ(t)
)

λ(t)e0(t)

+ 2µdiag
(

δ(t)
)

λ1(t)δ
T (t)ε(t) + 2µdiag

(

δ(t)
)

λ1(t)e0(t). (3.15)

In (3.15), subtracting both sides from λ0(t+ 1), we have

ε(t+ 1) = ε(t) + µdiag
(

δ(t)
)

λ(t)δT (t)ε(t) + µdiag
(

δ(t)
)

λ(t)e0(t)

− 2µdiag
(

δ(t)
)

λ1(t)δ
T (t)ε(t)− 2µdiag

(

δ(t)
)

λ1(t)e0(t)

+
[

λ0(t+ 1)− λ0(t)
]

. (3.16)

Taking expectation of both sides of (3.16) and using

E
[

µdiag
(

δ(t)
)

λ(t)e0(t)
]

= E
[

µdiag
(

δ(t)
)

λ(t)
]

E[e0(t)] = 0,

E
[

2µdiag
(

δ(t)
)

λ1(t)e0(t)
]

= E
[

2µdiag
(

δ(t)
)

λ1(t)
]

E[e0(t)] = 0,
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and assuming that the correlation between ε(t) and λ1(t), λ2(t) is small enough to be safely

omitted [24] yields

E
[

ε(t+ 1)
]

= E
[

I − µdiag
(

λ1(t) + λ2(t)
)

δ(t)δT (t)
]

E
[

ε(t)
]

+ E
[

λ0(t+ 1)− λ0(t)
]

. (3.17)

Assuming convergence of R(t) and p(t) (which is true for a wide range of adaptive methods

in the first stage [25], [18, 28]), we obtain limt→∞E
[

λ0(t + 1) − λ0(t)
]

= 0. If µ is chosen

such that the eigenvalues of E
[

I − µdiag
(

λ1(t) + λ2(t)
)

δ(t)δT (t)
]

have strictly less than

unit magnitude for every t, then

limt→∞E
[

λ(t)
]

= limt→∞ λ0(t).

For the transient analysis of the MSE, we have

E[e2(t)] = E
{

[

y(t)− ŷm(t)
]2
}

− 2λ̄
T
a (t)E

{[

y(t)− ŷm(t)
]

[δ(t);−δ(t)]
}

+ E
{

λT
a (t)[δ(t);−δ(t)][δ(t);−δ(t)]Tλa(t)

}

,

= E
{

[

y(t)− ŷm(t)
]2
}

− 2λ̄
T
a (t)E

{[

y(t)− ŷm(t)
]

u(t)
}

+ tr,n

(

E
[

λa(t)λ
T
a (t)

]

E
{

u(t)u(t)T
}

)

,

= E
{

[

y(t)− ŷm(t)
]2
}

− 2λ̄
T
a (t)γ(t) + tr,n

(

E
[

λa(t)λ
T
a (t)

]

Γ(t)

)

, (3.18)

where we define γ(t)
4
= E

{

u(t)
[

y(t)− ŷm(t)
]}

and Γ(t)
4
= E

[

u(t)uT (t)
]

.

For the recursion of λ̄a(t) = E[λa(t)], using (3.13), we get

λ̄a(t+ 1) = λ̄a(t) + µdiag
(

γ(t)
)

λ̄a(t)− µdiag
(

E[λa(t)λ
T
a (t)]Γ(t)

)

. (3.19)

Using (3.13) and e(t) =
[

y(t)− ŷm(t)
]

−λT (t)δ(t), assuming λa(t) is Gaussian and assuming

λ
(i)
a (t) and λ

(j)
a (t) are uncorrelated when i 6= j (as in Chapter 9.4.2) [28], [24], defining the

diagonal matrix

D(t) = E[λa(t)λ
T
a (t)] − λ̄a(t)λ̄

T
a (t) and since µ is small, ignoring the terms that are pro-
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portional to µ2, we get a recursion for E
[

λa(t)λ
T
a (t)

]

as

E
[

λa(t+ 1)λT
a (t+ 1)

]

= E
[

λa(t)λ
T
a (t)

]

+ µdiag
(

γ(t)
)

E
[

λa(t)λ
T
a (t)

]

− µdiag
(

Γ(t)λ̄a(t)
)

E
[

λa(t)λ
T
a (t)

]

− µE
[

diag2(u(t))
]

D(t)1λ̄
T
a (t)

− µdiag
(

λ̄a(t)
)

Γ(t)D(t) + µE
[

λa(t)λ
T
a (t)

]

diag
(

γ(t)
)

− µE
[

λa(t)λ
T
a (t)

]

diag
(

Γ(t)λ̄a(t)
)

− µλ̄a(t)1
TD(t)E

[

diag2(u(t))
]

− µD(t)Γ(t)diag
(

λ̄a(t)
)

. (3.20)

Defining qa(t)
4
= λ̄a(t) and Qa(t)

4
= E

[

λa(t)λ
T
a (t)

]

, we express (3.19) and (3.20) as a

coupled recursions in Table 3.1.

Table 3.1: Time evolution of the mean and the variance of the affinely constrained mixture
weights updated with the EGU algorithm

qa(t+ 1) = qa(t) + µdiag
(

γ(t)
)

qa(t) − µdiag
(

Qa(t)Γ(t)
)

,

Qa(t + 1) =

(

I + µdiag
(

γ(t)
)

− µdiag
(

Γ(t)qa(t)
)

)

Qa(t) − µE
[

diag2(u(t))
]

(

Qa(t) − qa(t)q
T
a (t)

)

1qT
a (t)

−µdiag
(

qa(t)
)

Γ(t)

(

Qa(t) − qa(t)q
T
a (t)

)

+Qa(t)

(

µdiag
(

γ(t)
)

− µdiag
(

Γ(t)qa(t)
)

)

−µqa(t)1
T

(

Qa(t) − qa(t)q
T
a (t)

)

E
[

diag2(u(t))
]

− µ

(

Qa(t) − qa(t)q
T
a (t)

)

Γ(t)diag
(

qa(t)
)

.

In Table 3.1, we provide the mean and the variance recursions for Qa(t) and qa(t). To

implement these recursions, one needs to only provide Γ(t) and γ(t). Note that Γ(t) and

γ(t) are derived for a wide range of adaptive filters [25], [28]. If we use the mean and the

variance recursions in (3.18), then we obtain the time evolution of the final MSE. This

completes the transient analysis of the affinely constrained mixture weights updated with

the EGU algorithm.

Relative Entropy

For the affinely constrained combination updated with the EG algorithm, we have the

multiplicative updates as

λ
(i)
1 (t + 1) = u

λ
(i)
1 (t) exp {µe(t)(ŷi(t) − ŷm(t))}

∑m−1
k=1

[

λ
(k)
1 (t) exp {µe(t)(ŷk(t) − ŷm(t))} + λ

(k)
2 (t) exp {−µe(t)(ŷk(t) − ŷm(t))}

] ,

λ
(i)
2 (t + 1) = u

λ
(i)
2 (t) exp {−µe(t)(ŷi(t) − ŷm(t))}

∑m−1
k=1

[

λ
(k)
1 (t) exp {µe(t)(ŷk(t) − ŷm(t))} + λ

(k)
2 (t) exp {−µe(t)(ŷk(t) − ŷm(t))}

] ,
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for i = 1, . . . ,m− 1. Using the same approximations as in (3.7), (3.8), (3.9) and (3.10), we

obtain

λ
(i)
1 (t + 1) ≈ u

λ
(i)
1 (t)

(

1 + µe(t)(ŷi(t) − ŷm(t))
)

∑m−1
k=1

[

λ
(k)
1 (t)

(

1 + µe(t)(ŷk(t) − ŷm(t))
)

+ λ
(k)
2 (t)

(

1− µe(t)(ŷk(t) − ŷm(t))
)

] , (3.21)

λ
(i)
2 (t + 1) ≈ u

λ
(i)
2 (t)

(

1− µe(t)(ŷi(t) − ŷm(t))
)

∑m−1
k=1

[

λ
(k)
1 (t)

(

1 + µe(t)(ŷk(t) − ŷm(t))
)

+ λ
(k)
2 (t)

(

1− µe(t)(ŷk(t) − ŷm(t))

] . (3.22)

In our simulations, we illustrate the accuracy of the approximations (3.21) and (3.22) under

the mixture framework. Using (3.21) and (3.22), we obtain updates on λ1(t) and λ2(t) as

λ1(t+ 1) = u

(

I + µe(t)diag
(

δ(t)
))

λ1(t)
[

1T + µe(t)uT (t)
]

λa(t)
, (3.23)

λ2(t+ 1) = u

(

I − µe(t)diag
(

δ(t)
))

λ2(t)
[

1T + µe(t)uT (t)
]

λa(t)
. (3.24)

Using updates (3.23) and (3.24), we can write update on λa(t)

λa(t+ 1) = u

[

I + µe(t)diag
(

u(t)
)]

λa(t)
[

1T + µe(t)uT (t)
]

λa(t)
. (3.25)

For the recursion of λ̄a(t), using (3.25), we get

E
[

λa(t+ 1)
]

= E

{

u

[

I + µe(t)diag
(

u(t)
)]

λa(t)
[

1T + µe(t)uT (t)
]

λa(t)

}

,

≈ u
E
{[

I + µe(t)diag
(

u(t)
)]

λa(t)
}

E
{[

1T + µe(t)uT (t)
]

λa(t)
} , (3.26)

= u
E
[

λa(t)
]

+ µdiag
(

γ(t)
)

E
[

λa(t)
]

− µdiag
(

E[λa(t)λ
T
a (t)]Γ(t)

)

[

1T + µγT (t)
]

E
[

λa(t)
]

− µtr,n
(

E[λa(t)λ
T
a (t)]Γ(t)

) , (3.27)

where in (3.26) we approximate expectation of the quotient with the quotient of the ex-

pectations. In our simulations, we also illustrate the accuracy of this approximation in the

mixture framework. From (3.25), using the same approximation in (3.27), assuming λa(t)

is Gaussian, assuming λ
(i)
a (t) and λ

(j)
a (t) are uncorrelated when i 6= j, and since µ is small,

ignoring the terms that are proportional to µ2, we get a recursion for E
[

λa(t)λ
T
a (t)

]

as

E
[

λa(t+ 1)λT
a (t+ 1)

]

= u2
A(t)

b(t)
, (3.28)
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where A(t) is equal to the right hand side of (3.20) and

b(t) = 1TE
[

λa(t)λ
T
a (t)

]

1+ µpT (t)E
[

λa(t)λ
T
a (t)

]

1

− µλ̄
T
a (t)R(t)E

[

λa(t)λ
T
a (t)

]

1− µ1TD(t)R(t)λ̄a(t)

− µ1TD(t)E
[

diag2(u(t))
]

1T λ̄a(t)1

+ µ1TE
[

λa(t)λ
T
a (t)

]

p(t)− µ1TE
[

λa(t)λ
T
a (t)

]

R(t)λ̄a(t)

− µλ̄
T
a (t)R(t)D(t)1− µ1T λ̄

T
a (t)1E

[

diag2(u(t))
]

D(t). (3.29)

If we use the mean (3.27) and the variance (3.28), (3.29) recursions in (3.18), then we obtain

the time evolution of the final MSE. This completes the transient analysis of the affinely

constrained mixture weights updated with the EG algorithm.

3.3.2 Unconstrained Mixture

We use the unconstrained relative entropy and the relative entropy as distance measures to

update unconstrained mixture weights. We first perform transient analysis of the mixture

weights updated using the EGU algorithm. Then, we continue with the transient analysis

of the mixture weights updated using the EG algorithm. Note that since the unconstrained

case is close to the affinely constrained case, we only provide the necessary modifications to

get the mean and the variance recursions for the transient analysis.

Unconstrained Relative Entropy

For the unconstrained combination updated with EGU, we have the multiplicative updates

as

w
(i)
1 (t+ 1) = w

(i)
1 (t) exp {µe(t)ŷi(t)} ,

w
(i)
2 (t+ 1) = w

(i)
2 (t) exp {−µe(t)ŷi(t)} ,
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for i = 1, . . . ,m. Using the same approximations as in (3.7), (3.8), (3.9) and (3.10), we can

obtain updates on w1(t) and w2(t) as

w1(t+ 1) ≈
(

I + µe(t)diag
(

x(t)
))

w1(t), (3.30)

w2(t+ 1) ≈
(

I − µe(t)diag
(

x(t)
))

w2(t). (3.31)

Collecting the weights in wa(t) = [w1(t);w2(t)], using the updates (3.30) and (3.31), we

can write update on wa(t) as

wa(t+ 1) =
(

I + µe(t)diag
(

u(t)
))

wa(t), (3.32)

where u(t) is defined as u(t)
4
= [x(t);−x(t)].

For the desired signal y(t), we can write y(t) = wT
0 (t)x(t) + e0(t), where w0(t) is the

optimum MSE solution at time t such that w0(t)
4
= R−1(t)p(t), R(t)

4
= E

[

x(t)xT (t)
]

,

p(t)
4
= E {x(t)y(t)} and e0(t) is zero-mean disturbance uncorrelated to x(t). To show

that the mixture weights converge to the optimum solution in the steady-state such that

limt→∞E
[

w(t)
]

= limt→∞w0(t), we follow similar lines as in the Section 4.1.1. We modify

(3.14), (3.15), (3.16) and (3.17) such that λ will be replaced by w, δ(t) will be replaced by

x(t) and ε(t) = w0(t)−w(t). After these replacements, we obtain

E
[

ε(t+ 1)
]

= E
[

I − µdiag
(

w1(t) +w2(t)
)

x(t)xT (t)
]

E
[

ε(t)
]

+ E
[

w0(t+ 1)−w0(t)
]

. (3.33)

Since, we have limt→∞E
[

w0(t+1)−w0(t)
]

= 0 for most adaptive filters in the first stage [28]

and if µ is chosen so that all the eigenvalues of E
[

I −µdiag
(

w1(t) +w2(t)
)

x(t)xT (t)
]

have

strictly less than unit magnitude for every t, then limt→∞E
[

w(t)
]

= limt→∞w0(t).

For the transient analysis of MSE, defining γ(t)
4
= E {u(t)y(t)} and Γ(t)

4
= E

[

u(t)uT (t)
]

,

(3.18) is modified as

E[e2(t)] = E
{

y2(t)
}

− 2w̄T
a (t)γ(t) + tr,n

(

E
[

wa(t)w
T
a (t)

]

Γ(t)

)

. (3.34)

Accordingly, we modify the mean recursion (3.19) and the variance recursion (3.20) such
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that instead of λa(t) we use wa(t). We also modify the Table 3.1 using qa(t)
4
= w̄a(t) and

Qa(t)
4
= E

[

wa(t)w
T
a (t)

]

. If we use this modified mean and variance recursions in (3.34),

then we obtain the time evolution of the final MSE. This completes the transient analysis

of the unconstrained mixture weights updated with the EGU algorithm.

Relative Entropy

For the unconstrained combination updated with the EG algorithm, we have the multiplica-

tive updates as

w(i)
a (t+ 1) = u

w
(i)
a (t) exp {µe(t)ŷi(t)}

m
∑

k=1

[

w(k)
a (t) exp {µe(t)ŷk(t)}+ w(k+m)

a (t) exp {−µe(t)ŷk(t)}
]

,

i = 1, . . . ,m,

w(i)
a (t+ 1) = u

w
(i)
a (t) exp {−µe(t)ŷi(t)}

m
∑

k=1

[

w(k)
a (t) exp {µe(t)ŷk(t)}+ w(k+m)

a (t) exp {−µe(t)ŷk(t)}
]

,

i = m+ 1 . . . , 2m.

Following similar lines, we modify (3.23), (3.24), (3.25), (3.27), (3.28) and (3.29) such that

we replace δ(t) with x(t), λ with w and u(t) =
[

x(t);−x(t)
]

. Finally, we use the modified

mean and variance recursions in (3.34) and obtain the time evolution of the final MSE. This

completes the transient analysis of the unconstrained mixture weights updated with the EG

algorithm.

3.4 Simulations

In this section, we illustrate the accuracy of our results and compare performances of dif-

ferent adaptive mixture methods through simulations. In our simulations, we observe that

using the EG algorithm to train the mixture weights yields better performance compared

to using the LMS algorithm or the EGU algorithm to train the mixture weights for com-

binations having more than two filters and when the combination favors only a few of the

constituent filters. The LMS algorithm and the EGU algorithm perform similarly in our

simulations when they are used to train the mixture weights. We also observe in our simula-
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tions that the mixture weights under the EG update converge to the optimum combination

vector faster than the mixture weights under the LMS algorithm.

To compare performances of the EG and LMS algorithms and illustrate the accuracy of

our results in (3.27), (3.28) and (3.29) under different algorithmic parameters, the desired

signal as well as the system parameters are selected as follows. First, a seventh-order linear

filter,

wo = [0.25,−0.47,−0.37, 0.045,−0.18, 0.78, 0.147]T , is chosen as in [24]. The underlying

signal is generated using the data model y(t) = τ wT
o a(t) + n(t), where a(t) is an i.i.d.

Gaussian vector process with zero mean and unit variance entries, i.e., E[a(t)aT (t)] = I,

n(t) is an i.i.d. Gaussian noise process with zero mean and variance E[n2(t)] = 0.3, and

τ is a positive scalar to control SNR. Hence, the SNR of the desired signal is given by

SNR
4
= 10 log(E[τ2(wT

o u(t))2]
0.01 ) = 10 log( τ

2‖wo‖2

0.01 ).

For the first experiment, we have SNR = 10dB. To model the unknown system we

use four linear filters using the RLS algorithm, LMS algorithm, Sign-error LMS algorithm

and Sign-sign LMS algorithm. We emphasize that depending on the underlying signal

and/or application, one of these algorithms is preferable to the others, however, such a

selection is only possible in hindsight. Hence, an adaptive combination could resolve such

uncertainty [22]. In this experiment, there is a sudden change in the desired signal such

that the target w0 changes in the middle of the simulations as seen in Fig. 3.2. In

the start of the simulations, the desired signal is generated from a seventh-order linear

filter w0 = [0.25,−0.47,−0.37, 0.045,−0.18, 0.78, 0.147]T [24], which is then replaced by

w0 = [0.62, 0.81,−0.74, 0.82, 0.26,−0.80,−0.44]T at the 4000th sample. The constituent

RLS algorithm is initialized after w0 is updated. The learning rates of these constituent fil-

ters are set to µLMS = 0.12, µSign−errorLMS = 0.11 and µSign−signLMS = 0.1. The parameters

for the RLS algorithm are set to λ = 1 and ε = 20. Therefore, in the steady-state, we obtain

the optimum combination vector approximately as λo = [1, 0, 0, 0]T , i.e., the final combina-

tion vector is sparse. In the second stage, we train the combination weights with the EG and

LMS algorithms and compare performances of these algorithms. The EG algorithm has two

parameters to adjust while the LMS algorithm has only one parameter to adjust. For the

second stage, the learning rates for the EG and LMS algorithms are selected as µEG = 0.001

and µLMS = 0.01 such that the EMSEs of both mixtures converge to the same final EMSE
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to provide a fair comparison. However, there exist a wide range of values for the step sizes

so that the algorithms converge to very similar EMSEs. We select u = 50 for the EG algo-

rithm. In Fig. 3.2a, we plot the weight of the RLS filter, i.e. E[λ(1)(t)], updated with the

EG and LMS algorithms. In Fig. 3.2b, we plot the EMSE curves for the adaptive mixture

updated with the EG algorithm, the adaptive mixture updated with the LMS algorithm,

the RLS filter with λ = 1 and ε = 20, the Sign-error LMS filter with µSign−errorLMS = 0.11

and the LMS filter with µLMS = 0.12. From Fig. 3.2a and Fig. 3.2b, we see that the EG

algorithm performs better than the LMS algorithm such that the combination weight under

the update of the EG algorithm converges to 1 faster than the combination weight under

the update of the LMS algorithm. We also observe from these simulations that even after

the sudden change in the statistics, the EG algorithm quickly recovers and performs better

than the LMS algorithm. Furthermore the EMSE of the adaptive mixture updated with the

EG algorithm converges faster than the EMSE of the adaptive mixture updated with the

LMS algorithm. In Fig. 3.2c, we plot the theoretical values for λ̄
(1)
a (t) and λ̄

(4)
a (t) along with

simulations. Note that in Fig. 3.2c we observe that λ̄(1)(t) = λ̄
(1)
a (t) − λ̄

(4)
a (t) converges to

1 as predicted in our derivations. In Fig. 3.2d, we plot the theoretical values of E
[

λ
(1)
a (t)2

]

and E
[

λ
(2)
a (t)λ

(4)
a (t)

]

along with simulations. As we observe from Fig. 3.2c and Fig. 3.2d,

there is a close agreement between our results and simulations in these experiments. We

observe similar results for the other cross terms.

We next model the unknown system using ten linear filters with the LMS update as the

constituent filters. For this experiment, we have SNR = -10dB. The learning rates of two

constituent filters are set to µ1 = 0.002 and µ6 = 0.002 while the learning rates for the rest of

the constituent filters are selected randomly in [0.1, 0.11]. Therefore, in the steady-state, we

obtain the optimum combination vector approximately as λo = [0.5, 0, 0, 0, 0, 0.5, 0, 0, 0, 0]T ,

i.e., the final combination vector is sparse. In the second stage, we train the combination

weights with the EG and LMS algorithms and compare performances of these algorithms.

For the second stage, the learning rates for the EG and LMS algorithms are selected as

µEG = 0.0005 and µLMS = 0.005 such that the EMSEs of both mixtures converge to the

same final EMSE to provide a fair comparison. However, there exist a wide range of values

for the step sizes so that the algorithms converge to very similar EMSEs. We select u = 500

for the EG algorithm. In Fig. 3.3a, we plot the weight of the first constituent filter with
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µ1 = 0.002, i.e. E[λ(1)(t)], updated with the EG and LMS algorithms. In Fig. 3.3b, we plot

the EMSE curves for the adaptive mixture updated with the EG algorithm, the adaptive

mixture updated with the LMS algorithm, the first constituent filter with µ1 = 0.002 and

the second constituent filter with µ2 ∈ [0.1, 0.11]. From Fig. 3.3a and Fig. 3.3b, we see

that the EG algorithm performs better than the LMS algorithm such that the combination

weight under the update of the EG algorithm converges to 0.5 faster than the combination

weight under the update of the LMS algorithm. Furthermore the EMSE of the adaptive

mixture updated with the EG algorithm converges faster than the EMSE of the adaptive

mixture updated with the LMS algorithm. In Fig. 3.3c, to test the accuracy of (3.27), we

plot the theoretical values for λ̄
(1)
a (t) and λ̄

(10)
a (t) along with simulations. Note in Fig. 3.3c

we observe that λ̄(1)(t) = λ̄
(1)
a (t)− λ̄

(10)
a (t) converges to 0.5 as predicted in our derivations.

In Fig. 3.3d, to test the accuracy of (3.28) and (3.29), as an example, we plot the theoretical

values of E
[

λ
(1)
a (t)2

]

and E
[

λ
(1)
a (t)λ

(3)
a (t)

]

along with simulations. As we observe from Fig.

3.3c and Fig. 3.3d, there is a close agreement between our results and simulations in these

experiments. We observe similar results for the other cross terms.

We next simulate the unconstrained mixtures updated with the EGU and EG algorithms.

Here, we have two linear filters and both using the LMS update to train their weight vectors

as the constituent filters. The learning rates for two constituent filters are set to µ1 = 0.002

and µ2 = 0.1 respectively. Therefore, in the steady-state, we obtain the optimum vector

approximately as wo = [1, 0]. We have SNR = 1 for these simulations. The unconstrained

mixture weights are first updated with the EGU algorithm. For the second stage, the

learning rate for the EGU algorithm is selected as µEGU = 0.01. The theoretical curves

in the figures are produced using Γ(t) and γ(t) that are calculated from the simulations,

since our goal is to illustrate the validity of derived equations. In Fig. 3.4a, we plot

the theoretical values of w̄
(1)
a (t), w̄

(2)
a (t), w̄

(3)
a (t) and w̄

(4)
a (t) along with simulations. In

Fig. 3.4b, as an example, we plot the theoretical values of E
[

w
(1)
a (t)2

]

, E
[

w
(1)
a (t)w

(2)
a (t)

]

,

E
[

w
(2)
a (t)w

(3)
a (t)

]

and E
[

w
(3)
a (t)w

(4)
a (t)

]

along with simulations. We continue to update

the mixture weights with the EG algorithm. For the second stage, the learning rate for

the EG algorithm is selected as µEG = 0.01. We select u = 3 for the EG algorithm. In

Fig. 3.4c, we plot the theoretical values of w̄
(1)
a (t), w̄

(2)
a (t), w̄

(3)
a (t) and w̄

(4)
a (t) along with

simulations. In Fig. 3.4d, as an example, we plot the theoretical values of E
[

w
(2)
a (t)2

]

,
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E
[

w
(1)
a (t)w

(2)
a (t)

]

, E
[

w
(2)
a (t)w

(3)
a (t)

]

and E
[

w
(2)
a (t)w

(4)
a (t)

]

along with simulations. We

observe a close agreement between our results and simulations.

To test the accuracy of the assumptions in (3.9) and (3.10), we plot in Fig. 3.5a, the

difference

‖ exp {µe(t)(ŷi(t)− ŷm(t))} − {1 + µe(t)(ŷi(t)− ŷm(t)))} ‖2
√

‖ exp {µe(t)(ŷi(t)− ŷm(t))} ‖2‖ {1 + µe(t)(ŷi(t)− ŷm(t)))} ‖2

for i = 1 with the same algorithmic parameters as in Fig. 3.3 and Fig. 3.4. To test the

accuracy of the separation assumption in (3.27), we plot in Fig. 3.5b, the first parameter

of the difference

∥

∥

∥

∥

E

{

u

[

I+µe(t)diag
(

u(t)
)]

λa(t)
[

1T
+µe(t)uT (t)

]

λa(t)

}

− u
E
{
[

I+µe(t)diag
(

u(t)
)]

λa(t)
}

E
{
[

1T
+µe(t)uT (t)

]

λa(t)
}

∥

∥

∥

∥

2

√

∥

∥

∥

∥

E

{

u

[

I+µe(t)diag
(

u(t)
)]

λa(t)
[

1T
+µe(t)uT (t)

]

λa(t)

}∥

∥

∥

∥

2∥
∥

∥

∥

u
E
{
[

I+µe(t)diag
(

u(t)
)]

λa(t)
}

E
{
[

1T
+µe(t)uT (t)

]

λa(t)
}

∥

∥

∥

∥

2

with the same algorithmic parameters as in Fig. 3.3 and Fig. 3.4. We observe that

assumptions are fairly accurate for these algorithms in our simulations.

To illustrate the assumption that λa(t) have Gaussian distribution, we calculate the

kurtosis of the “empirical” distribution of λa(t) under the setup of the chapter. Note that

although not rigorous, the kurtosis is often used to measure the closeness of an empirical

distribution to a Gaussian distribution [14,19]. For this experiment, we collect 2000 samples

of λa(t) under the same algorithmic framework as in Fig. 3.4 and report the kurtosis values

for randomly chosen t’s. The corresponding kurtosis values are provided as a table in

Fig. 3.6. As we observe from Table 3.6, the kurtosis values are close to 3 supporting the

assumption that λa(t) follows Gaussian distribution.

To illustrate the assumption of λ
(i)
a (t) and λ

(j)
a (t) are uncorrelated for j 6= i, we perform

1000 iterations and plot the ensemble averaged curves that correspond to the difference

‖E[λ
(i)
a (t)λ

(j)
a (t)]−E[λ

(i)
a (t)]E[λ

(j)
a (t)]‖

√

‖E[λ
(i)
a (t)λ

(j)
a (t)]‖2‖E[λ

(i)
a (t)]E[λ

(j)
a (t)]‖2

for different randomly chosen i and j parameters with

the same algorithmic parameters as in Fig. 3.3 both for the EG and EGU algorithms. In

Fig. 3.7, we plot this difference for λ
(1)
1 (t)− λ

(1)
2 (t) and λ

(2)
1 (t)− λ

(2)
2 (t) pairs. We also plot

the difference for λ
(3)
1 (t) − λ

(8)
1 (t) and λ

(4)
1 (t) − λ

(6)
2 (t) pairs. As we observe from the plots

that it is reasonable to use this assumption to approximate the expectation of the product

as the product of the expectations.
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In the last simulations, we compare performances of the EGU, EG and LMS algorithms

updating the affinely mixture weights under different algorithmic parameters. Algorithmic

parameters and constituent filters are selected as in Fig. 3.3 under SNR = -5 and 5. For

the second stage, under SNR = -5, learning rates for the EG, EGU and LMS algorithms are

selected as µEG = 0.0005, µEGU = 0.005 and µLMS = 0.005 such that the EMSEs converge

to the same final EMSE to provide a fair comparison. However, there exist a wide range of

values for the step sizes so that the algorithms converge to very similar EMSEs. We choose

u = 500 for the EG algorithm. In Fig. 3.8a, we plot the EMSE curves for the adaptive

mixture updated with the EG algorithm, the adaptive mixture updated with the EGU

algorithm, the adaptive mixture updated with the LMS algorithm, first constituent filter

with µ1 = 0.002 and second constituent filter with µ2 ∈ [0.1, 0.11] under SNR = -5. Under

SNR = 5, learning rates for the EG, EGU and LMS algorithms are selected as µEG = 0.002,

µEGU = 0.005 and µLMS = 0.005. We choose u = 100 for the EG algorithm. In Fig. 3.8b,

we plot same EMSE curves as in Fig. 3.8a. We observe that the EG algorithm performs

better than the EGU and LMS algorithms such that EMSE of the adaptive mixture updated

with the EG algorithm converges faster than the EMSE of adaptive mixtures updated with

the EGU and LMS algorithms. We also observe that the EGU and LMS algorithms show

similar performances when they are used to train the mixture weights.

3.5 Conclusion

In this chapter, we investigated adaptive mixture methods based on Bregman divergences

combining outputs ofm adaptive filters to model a desired signal. We used the unnormalized

relative entropy and relative entropy as distance measures that produce the exponentiated

gradient update with unnormalized weights (EGU) and the exponentiated gradient update

with positive and negative weights (EG) to train the mixture weights under the affine

constraints or without any constraints. We provided the transient analysis of these methods

updated with the EGU and EG algorithms. In our simulations, we compared performances

of the EG, EGU and LMS algorithms and observe that the EG algorithm performs better

than the EGU and LMS algorithms when the combination vector in steady-state is sparse.

We observe that the EGU and LMS algorithms show similar performance when they are used

to train the mixture weights. We also observe a close agreement between the simulations
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and our theoretical results.
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Figure 3.2: Using RLS, LMS, Sign-error LMS, Sign-sign LMS filters as constituent filters,
where learning rates are µLMS = 0.12, µSign−errorLMS = 0.11 and µSign−signLMS = 0.1. For
the RLS filter, λ = 1 and ε = 20. SNR = 10dB. For the mixture stage, the EG algorithm
has µEG = 0.001 and the LMS algorithm has µLMS = 0.01. For the EG algorithm, u = 50.
(a) The weight of the RLS filter in the mixture, i.e., E[λ(1)(t)]. (b) The EMSE curves
for adaptive mixture updated with the EG algorithm, the adaptive mixture updated with
the LMS algorithm, the RLS filter, the Sign-error LMS filter and the LMS filter. (c)

Theoretical values λ̄
(1)
a (t) and λ̄

(4)
a (t) and simulations. (d) Theoretical values E

[

λ
(1)
a (t)2

]

and E
[

λ
(2)
a (t)λ

(4)
a (t)

]

and simulations.
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Figure 3.3: Using 10 LMS filters as constituent filters, where learning rates for 2 constituent
filters are µ = 0.002 and for the rest are µ ∈ [0.1, 0.11]. SNR = -10dB. For the mixture
stage, the EG algorithm has µEG = 0.0005 and the LMS algorithm has µLMS = 0.005. For
the EG algorithm, u = 500. (a) The weight of the first constituent filter in the mixture,
i.e., E[λ(1)(t)]. (b) The EMSE curves for adaptive mixture updated with the EG algorithm,
the adaptive mixture updated with the LMS algorithm, the first constituent filter and the

second constituent filter. (c) Theoretical values λ̄
(1)
a (t) and λ̄

(10)
a (t) and simulations. (d)

Theoretical values E
[

λ
(1)
a (t)2

]

and E
[

λ
(1)
a (t)λ

(3)
a (t)

]

and simulations.
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Figure 3.4: Two LMS filters as constituent filters with learning rates µ1 = 0.002 and µ2 =
0.1, respectively. SNR = 1dB. For the second stage, the EGU algorithm has µEGU = 0.01
and the EG algorithm has µEG = 0.01. For the EG algorithm, u = 3. (a) Theoretical
values for the mixture weights updated with the EGU algorithm and simulations. (b)

Theoretical values E
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Figure 3.5: (a) The difference ‖ exp{µe(t)(ŷi(t)−ŷm(t))}−{1+µe(t)(ŷi(t)−ŷm(t)))}‖2√
‖ exp{µe(t)(ŷi(t)−ŷm(t))}‖2‖{1+µe(t)(ŷi(t)−ŷm(t)))}‖2

for i = 1 with

the same algorithmic parameters as in Fig. 3.3 and Fig. 3.4. (b) The first parameter of

the difference
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algorithmic parameters as in Fig. 3.3 and Fig. 3.4.

t = 150 t = 320 t = 560 t = 920 t = 1210 t = 1440 t = 1760
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a (t) 2,94 3,25 3,20 2,93 2,90 3,00 2,97

λ
(2)
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Figure 3.6: Empirical kurtosis values. Experimental setup is from Fig. 3.4.



Chapter 3: Adaptive Mixture Methods Based on Bregman Divergences 55

500 1000 1500 2000 2500 3000
−180

−170

−160

−150

−140

−130

−120

−110

−100

Samples

D
iff

er
en

ce
 (

dB
)

Difference in dB

 

 

 The difference for λ
1
(1)(t) − λ

2
(1)(t) pair

 The difference for λ
1
(2)(t) − λ

2
(2)(t) pair

 The difference for λ
1
(3)(t) − λ

1
(8)(t) pair

 The difference for λ
1
(4)(t) − λ

2
(6)(t) pair

500 1000 1500 2000 2500 3000
−160

−150

−140

−130

−120

−110

−100

−90

−80

−70

Samples

D
iff

er
en

ce
 (

dB
)

Difference in dB

 

 

 The difference for λ
1
(1)(t) − λ

2
(1)(t) pair

 The difference for λ
1
(2)(t) − λ

2
(2)(t) pair

 The difference for λ
1
(3)(t) − λ

1
(8)(t) pair

 The difference for λ
1
(4)(t) − λ

2
(6)(t) pair

(a) (b)
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EGU algorithm.



Chapter 3: Adaptive Mixture Methods Based on Bregman Divergences 56

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−25

−20

−15

−10

−5

0

Samples

E
M

S
E

 (
dB

)

EMSEs of the constituent filters and adaptive mixtures, SNR = −5dB

 

 

EMSE of the first constituent filter
EMSE of the second constituent filter
EMSE of the adaptive mixture updated with the LMS algorithm
EMSE of the adaptive mixture updated with the EG algorithm
EMSE of the adaptive mixture updated with the EGU algorithm

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−25

−20

−15

−10

−5

0

Samples

E
M

S
E

 (
dB

)

EMSEs of the constituent filters and adaptive mixtures, SNR = 5dB

 

 
EMSE of the first constituent filter
EMSE of the second constituent filter
EMSE of the adaptive mixture updated with the LMS algorithm
EMSE of the adaptive mixture updated with the EG algorithm
EMSE of the adaptive mixture updated with the EGU algorithm

(a) (b)

Figure 3.8: Algorithmic parameters and constituent filters are selected as in Fig. 3.3 under
SNR = -5dB. For the second stage, the EG algorithm has µEG = 0.0005, the EGU algorithm
has µEGU = 0.005 and the LMS algorithm has µLMS = 0.005. For the EG algorithm, u =
500. (a) the EMSE curves for the adaptive mixture updated with the EG algorithm, the
adaptive mixture updated with the EGU algorithm, the adaptive mixture updated with the
LMS algorithm (approximately same as the EGU algorithm), the first constituent filter and
the second constituent filter. Next, SNR = 5dB. For the second stage, the EG algorithm
has µEG = 0.002, the EGU algorithm has µEGU = 0.005 and the LMS algorithm has
µLMS = 0.005. For the EG algorithm, u = 100. (b) the EMSE curves for the adaptive
mixture updated with the EG algorithm, the adaptive mixture updated with the EGU
algorithm, the adaptive mixture updated with the LMS algorithm (approximately same as
the EGU algorithm), the first constituent filter and the second constituent filter.
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Chapter 4

CONCLUSIONS

In this thesis, we study convex, affine and linear combination methods that adaptively

combine outputs of several adaptive filters working in parallel on the same task. Chapter

2 deals with four different convex mixture methods and presents their steady-state and

transient MSE performances. Chapter 3 is dedicated to affine and linear mixture methods

based on Bregman divergences and provides their mean and mean-square transient analyses.

In the first chapter, we investigate four convex combination methods to adaptively com-

bine outputs of two adaptive filters running in parallel to model an unknown system. We

first perform the steady-state MSE analysis and provide the corresponding MSEs and the

mixture weights of the combination algorithms in the steady-state under nonstationary ran-

dom walk model. We next present the mean and the mean-square transient analysis for the

studied algorithms. We observe that these convexly constrained combination methods are

universal such that they achieve the performance of the best constituent filter in the steady-

state. We observe that the EG update (2.6) under the mixture of experts framework can

also outperform the best constituent filter under certain configuration of the EMSEs of the

constituent filters (similar to the algorithm from [1]). We also demonstrate that the MSE in

the steady-state of the algorithms from [30] and [27] heavily depends on the corresponding

algorithmic parameters, i.e., the forgetting factor in [30] and the window length in [27]. We

observe that our derivations accurately describe the behavior of all algorithms under the

setup of [1].

In the second chapter, we analyze affine and linear mixture methods based on Bregman

divergences combining outputs of several parallel running adaptive filters to model an un-

known desired system. We use the unnormalized relative entropy and relative entropy and

propose the exponentiated gradient update with unnormalized weights (EGU) and the ex-

ponentiated gradient update with positive and negative weights (EG) to update the convex

weights under the affine constraint or without any constraints. We present the mean and
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mean-square transient analyses of the studied algorithms. In our simulations, we observe

that our derivations accurately describe the behavior of the EGU and EG algorithms.
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Chapter 5

APPENDIX A

1) For the update (2.4), we have

λρ(t+ 1) =
λρ(t) exp[µρe(t)d̂1(t)]

λρ(t) exp[µρe(t)d̂1(t)] + (1− λρ(t)) exp[µρe(t)d̂2(t)]

=
1

1 +
1−λρ(t)
λρ(t)

exp[−µρe(t)[d̂1(t)− d̂2(t)]]

=
1

1 + exp[−ρ(t)] exp[−µρe(t)[d̂1(t)− d̂2(t)]]
=

1

1 + exp[−ρ(t+ 1)]

with exp[−ρ(t)] =
1−λρ(t)
λρ(t)

and ρ(t+ 1)
4
= ρ(t) + µρe(t)[d̂1(t)− d̂2(t)]]. 2

2) For the update (2.7), we have

λε(t+ 1) =
exp[−µε

∑t
i=1 a

(t−i)e21(i)]

exp[−µε

∑t
i=1 a

(t−i)e21(i)] + exp[−µε

∑t
i=1 a

(t−i)e22(i)]

=
1

1 + exp[−µε

∑t
i=1 a

(t−i)(e22(i)− e21(i))]

=
1

1 + exp[−aε(t)− µε(e
2
2(t)− e21(t))]

=
1

1 + exp[−ε(t+ 1)]

with exp[−ε(t)] = 1−λε(t)
λε(t)

and ε(t+ 1)
4
= aε(t) + µε(e

2
2(t)− e21(t)). 2

3) Let s(t) =
∑t

i=0 a
t−ib(i) where 0 < a < 1 and b(t) → b as t → ∞. If d(t)

4
= s(t) − c(t)

where c(t)
4
= b

∑t
i=0 a

i, then we get d(t+ 1) = ad(t) + b(t+ 1)− b. Hence, we have

|d(t+ 1)| ≤ |a||d(t)| + |b(t+ 1)− b|

by the triangular inequality. If l
4
= lim supt d(t), then |l| ≤ |a||l| where we use lim supt |b(t+

1)− b| = 0. Since a < 1, we get l = 0. Moreover, if k
4
= lim supt(−d(t)), then we have |k| ≤

|a||k| by the same reasoning. This yields k = 0. However, lim supt(−d(t)) = − lim inft d(t)

implies lim supt d(t) = lim inft d(t) = 0. Since a sequence is convergent if and only if limit

superior and limit inferior of the sequence are equal, s(t) is convergent. Furthermore, we
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can write s(t) = as(t− 1) + b(t). By the uniqueness of the limit, we have

lim
t→∞

s(t) =
b

1− a
.

If we let b(t) = Jex,2(t)− Jex,1(t) and s(t) = E[ε(t)], then we get b = Jex,2 − Jex,1. By using

the above result, we conclude that

lim
t→∞

E[ε(t)] =
µε(Jex,2 − Jex,1)

1− a
.

2

4) For the update (2.10), we have

λγ(t) =
[
∑M−1

n=0 e21(t− n)]−
M

2

[
∑M−1

n=0 e21(t− n)]−
M

2 + [
∑M−1

n=0 e22(t− n)]−
M

2

=
1

1 +
[
∑

M−1

n=0
e2
2
(t−n)

∑

M−1

n=0
e2
2
(t−n)

]

−

M

2

=
1

1 + exp[−γ(t)]
,

where γ(t)
4
= M

2 ln
[∑M−1

n=0 e22(t−n)
∑M−1

n=0 e21(t−n)

]

. 2
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