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ABSTRACT

In this thesis, we analyze adaptive mixture methods that combine outputs of several
adaptive filters running in parallel to model an unknown system. We first study three dif-
ferent convex combination methods that combine outputs of two adaptive algorithms and
provide their steady-state and transient performances. We next investigate affine and linear
combination methods based on Bregman divergences that combine outputs of several adap-
tive filters and present the mean and the mean-square transient analysis of these adaptive
algorithms.

In the first part, we investigate convexly constrained mixture methods to adaptively
combine outputs of two adaptive filters running in parallel to model a desired unknown
system. We compare several algorithms with respect to their mean square error in the
steady-state, when the underlying unknown system is nonstationary with a random walk
model. We demonstrate that these algorithms are universal such that they achieve the per-
formance of the best constituent filter in the steady-state if certain algorithmic parameters
are chosen properly. We also demonstrate that certain mixtures converge to the optimal
convex combination filter such that their steady-state performances can be better than the
best constituent filter. We also perform the transient analysis of these updates in the mean
and mean-square error senses.

In the second part, we investigate adaptive mixture methods that linearly combine out-
puts of m constituent filters running in parallel to model a desired signal. We use Bregman
divergences and obtain certain multiplicative updates to train the linear combination weights
under an affine constraint or without any constraints. We use unnormalized relative entropy
and relative entropy to define two different Bregman divergences that produce an unnormal-
ized exponentiated gradient update and a normalized exponentiated gradient update on the
mixture weights, respectively. We then carry out the mean and the mean-square transient
analysis of these adaptive algorithms when they are used to combine outputs of m con-

stituent filters. We illustrate the accuracy of our results and demonstrate the effectiveness
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of these updates for sparse mixture systems.



OZETCE

Bu tez calisgmasinda, bilinmeyen bir sistemi modellemek icin paralel olarak caligsan bir-
den fazla uyarlanir siizgecin giktilarini birlestiren uyarlanir birlesim metotlar: incelenmek-
tedir. Oncelikle iki farkll uyarlamr algoritmanmn ciktilarimi birlestiren iic¢ farkli digbiikey
birlesim metodu etiit edilmekte ve bunlarin kalici zaman ve gegici zaman performanslar: ver-
ilmektedir. Daha sonra Bregman iraksakliklar1 temelli olup birden fazla uyarlanir stizgecin
giktilarimi birlegtiren ilgin ve dogrusal birlesim metodlar1 aragtirilmakta ve bunlarin orta-
lama ve ortalama-karesel gecici zaman analizleri sunulmuktadir.

Ik kisimda, istenilen ve bilinmeyen bir sistemi modellemek icin paralel olarak caligan
iki uyarlanir stizgecin ¢iktilarini uyarlanir bigcimde birlegtiren digbiikey kisitlanmig birlesim
metotlar1 aragtirilmaktadir. Bircok algoritma, bilinmeyen sistem dogrusal degilken ve rast-
gele ylriiylis modeline gore hareket ederken, kalici zamanda ortalama-karesel hatalarina
gore kiyaslanmaktadir. Eger belirli algoritma parametreleri uygun bicimde segilirse, bu
algoritmalarin “evrensel” olacagi; yani kalici zamanda en iyi birlegsen algoritmasinin per-
formansina ulagsacag gosterilmektedir. Ayrica bazi birlesimlerin optimal birlegim slizgecine
yakinsayacagi ve bunlarin kalici zaman performanslarinin en iyi birlegen algoritmasinin per-
formansindan daha iyi olabilecegi gosterilmektedir. Bu algoritmalarin gecici zamanda orta-
lama ve ortalama-karesel analizleri de yapilmaktadir.

Ikinci kisimda, istenilen isareti modellemek icin paralel olarak ¢alisan m adet birlesen
stizgecin ¢iktilarini dogrusal olarak birlestiren uyarlanir birlesim metodlar: aragtirilmaktadir.
Dogrusal birlesim agirliklarini ilgin kisit altinda veya kisitsiz olarak egitmek icin Breg-
man 1raklakliklar: kullanilmakta ve baz carpimsal algoritmalar elde edilmektedir. Birlesim
agirliklar tizerine bir diizgelenmemis tistellenmiy gradient algoritmasi ve bir diizgelenmig
istellenmis gradient algoritmasi tireten iki farkli Bregman raksakligi tanimlamak icin sirasiyla
diizgelenmis goreli entropi ve goreli entropi kullamilmaktadir. Daha sonra bu algoritmalarin
m birlegsen algoritmay1 birlegtirdikleri durumdaki gegici zamanda ortalama ve ortalama-

karesel analizleri yapilaktadir. Sonuclarin dogrulugu ve bu algoritmalarin etkinligi seyrek
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birlesim sistemleri i¢in gosterilmektedir.
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Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

The problem of estimating or learning an unknown desired signal is heavily investigated
in adaptive signal processing literature [1,10,15,20]. However, in various applications, cer-
tain difficulties arise in the estimation process due to the lack of structural and statistical
information about the data model. To resolve this lack of information, mixture approaches
are proposed that adaptively combine outputs of multiple constituent algorithms performing
the same task in the adaptive signal processing under the adaptive mixture methods frame-
work [1,22,29]. These parallel running algorithms can be seen as alternative hypotheses for
modeling, which can be exploited for both performance improvement and robustness. In
this thesis, we investigate convex, affine and linear combination methods and provide their
steady-state and transient performances.

Adaptive mixture approaches are shown to improve the steady-state and transient per-
formance over the constituent filters under certain scenarios [1,9,22,30]. The steady-state
analysis of convexly constrained, affinely constrained and unconstrained mixtures are car-
ried out in [1,9,22], respectively. Specifically, the adaptive convex mixture of [1] is shown
to be universal with respect to the constituent filters such that this algorithm achieves the
excess mean-square error (EMSE) performance of the best constituent filter and, in certain
cases, even outperforms both [1]. The transient analysis of this adaptive convex combina-~
tion is studied in [25], where the time evolution of the mean and variance of the mixture
weights is provided. Along these lines, an affinely constrained mixture of adaptive filters
using a stochastic gradient update is introduced in [9]. The steady-state mean square error
(MSE) of this affinely constrained mixture is shown to outperform the steady-state MSE
of the best constituent filter in the mixture under certain conditions [9]. The transient
analysis of this affinely constrained mixture for m constituent filters is carried out in [24].

The general linear mixture framework as well as the steady-state performances of different
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mixture configurations are studied in [22].

In the first chapter, we study four convex combination methods to combine outputs of
two adaptive filters to model a desired unknown system [1,20,27,30]. We first provide their
MSE performances in the steady-state. We next perform the transient analysis of these
convexly constrained updates in the mean and the mean square senses. In this framework,
we have two adaptive filters that work in parallel in order to model an unknown system
[1]. The outputs of these algorithms are then combined using another adaptive method
in order to improve the overall performance [1]. The first adaptive algorithm [1] uses a
stochastic gradient update on the convexly constrained mixture weights to minimize the
final estimation error. The second algorithm minimizes an approximate final estimation
error while penalizing the distance between the new and the old mixture weights [6, 20].
The third [30] and the fourth algorithms [27] employ specific performance-based updates on
the combination weights.

In the second chapter, we investigate affine and linear combination methods based on
Bregman divergences [10,15] that combine outputs of m constituent filters running in paral-
lel to model an unknown system. This mixture framework consists of two stages [2-5,8,23].
In the first stage, there are several adaptive filters that work in parallel to model an un-
known desired signal. In the second stage, we linearly combine the outputs of these adaptive
filters to produce the final output. To train the linear mixture weights, we employ Breg-
man divergences and propose certain multiplicative updates under an affine constraint [9]
or without any constraints [22]. We employ two different Bregman divergences based on
unnormalized [15] and normalized relative entropy [21] producing the unnormalized ex-
ponentiated gradient update (EGU) and the exponentiated gradient update (EG) on the
mixture weights, respectively. We then perform the mean and the mean-square transient
analysis of these adaptive mixtures when they are used to combine outputs of m constituent

filters.

1.1 Contributions

The contributions of the first part of this thesis are as follows:

e We present the steady-state and transient analysis of three convex combination meth-

ods that adaptively combines outputs of two adaptive filters.
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e We show that if we use the EG algorithm [20] to update the mixing parameter, the
combination filter performs, at least, as well as the best constituent filter in the steady-

state.

e We analyze the steady-state behavior of [30] and show that with a proper selection of
the forgetting factor, the combination filter performs as well as the best constituent

filter in the steady-state.

e We demonstrate that if the mixture parameter in [27] is selected using a sufficiently
large time window, then the combination filter can achieve the performance of the

best constituent filter in the steady-state.
The contributions of the second part of this thesis are as follows:

e We use Bregman divergences to derive multiplicative updates on affinely constrained
and unconstrained mixture weights that adaptively combine outputs of m constituent

filters.

e We use the unnormalized relative entropy and the relative entropy to define two dif-
ferent Bregman divergences that produce the EGU algorithm and the EG algorithm

to update the affinely constrained and unconstrained mixture weights.

e We perform the mean and the mean-square transient analysis of the affinely con-

strained and unconstrained mixtures using the EGU algorithm and the EG algorithm.

1.2 Content

Chapter 2 begins with a brief description of the convex mixture framework for the combi-
nation of two adaptive filters running in parallel with the error quantities and performance
measures. In Section 2.2, we present four convex mixture methods in detail. In Section 2.3,
we present the steady-state MSE analysis of these methods with the converged mixture
weights in the steady-state. In Section 2.4, we provide a transient analysis of the corre-
sponding algorithms. We illustrate the introduced results through simulations under the

setup of [1] in Section 2.5. We demonstrate that our results accurately describe the behavior
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of these algorithms both in the steady-state and during convergence in the studied setup.
The chapter concludes with certain remarks.

In Chapter 3, we first present the general linear mixture framework that combines out-
puts of m adaptive filters. In Section 3.2, we study the affinely constrained and uncon-
strained mixture methods updated with the EGU algorithm and the EG algorithm. In
Section 3.3, we first perform the transient analysis of the affinely constrained mixtures
and then continue with the transient analysis of the unconstrained mixtures. Finally, in
Section 3.4, we perform simulations to show the accuracy of our results and to compare
performances of the different adaptive mixture methods. We conclude this chapter with

remarks in Section 3.5.
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Chapter 2

STEADY STATE AND TRANSIENT MSE ANALYSIS OF
CONVEXLY CONSTRAINED MIXTURE METHODS

In this chapter, we first investigate and compare four well-known convexly constrained
adaptive mixture methods to combine outputs of two adaptive filters [1, 20, 27, 30] with
respect to their MSE in the steady-state. We then perform the transient analysis of these
convexly constrained updates in the mean and the MSE senses. In this widely studied
framework, we have two adaptive filters that work in parallel in order to model an unknown
system [1]. The outputs of these algorithms are then combined using another adaptive
method in order to improve the overall performance [1]. The first adaptive algorithm [1] uses
a stochastic gradient update on the convexly constrained mixture parameter to minimize the
final estimation error. The second algorithm is based on the exponentiated gradient (EG)
algorithm [6,20]. The EG algorithm has extensive roots in sequential learning theory [13,31]
and minimizes an approximate final estimation error while penalizing the distance between
the new and the old mixture parameters. The third [30] and the fourth algorithms [27]
use specific performance-based updates on the mixture parameters as further detailed in
Section 2.2. Although we specifically concentrate on the combination of two filters for
presentation clarity, our results can be readily extended to mixtures having more than two
filters [2].

We first show that if we use the EG algorithm to update the mixing parameter, the
resulting combination filter is universal with respect to the constituent filters such that the
combination filter performs, at least, as well as the best constituent filter in the steady-state.
Specifically, we show that the EMSE of the combination filter is as small as the best of the
constituent filters and, in some cases, smaller than EMSEs of the component filters in the
steady-state. We also show that the mixture parameter under the EG update converges
to the optimal convex combination parameter that minimizes the EMSE. Note that the

EG algorithm is shown to converge faster and has better tracking performance than the
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stochastic gradient algorithms for sparse impulse responses in certain situations [6,17,20].
Hence, the EG algorithm can be preferred over the stochastic gradient based algorithms
for mixtures having more than two filters and when the combination favors only a few
of the constituent filters. We point out that although the MSE of the EG algorithm is
studied using Euler discretization in [17] under certain assumptions for uncorrelated input
regressors, our framework and the analysis are significantly different since we use the EG
algorithm to combine outputs of adaptive filters, which are nonlinearly coupled, such that
the assumptions of [17] do not hold. The third algorithm we investigate is based on a
certain performance-based mixture of the constituent filters [30]. We analyze the steady-
state behavior of [30] and show that with a proper selection of the forgetting factor, the
combination filter is universal such that it performs as well as the best constituent filter in
the steady-state. Although the algorithm of [30] is also shown to be universal in a strong
deterministic sense [30], we show that the mixture parameter does not converge to the
optimal convex combination parameter under our assumptions (which is also supported by
our experiments). The fourth algorithm we investigate was studied in [27] and combines
filters based on their performances within a time window. We demonstrate that if the
mixture parameter in [27] is selected using a sufficiently large time window, the combination
filter can achieve the performance of the best constituent filter in the steady-state. For all

algorithms, we also perform the transient analysis in the mean and the MSE senses.

2.1 Problem Description

In this framework, we have two adaptive algorithms that run in parallel to model a desired
signal d(t). The desired signal d(t) is given by d(t) = w! (t)u(t) + n(t), where w,(t) € RP

is the desired system vector that varies according to a random walk model [28], i.e.,

wo(t+1) = w,(t) + q(t),

where g(t) is a zero mean, i.i.d. random vector with covariance matrix Q = E[q(t)q” (t)],
u(t) € RP is the input regressor with zero mean and correlation matrix R = E[u(t)u’ ()]
and the observation noise n(t) is i.i.d. with zero mean and variance E[n?(t)] = o2. The cross

correlation vector between the desired signal and the input regressor is p(t) = E[d(t)u(t)].



Chapter 2: Steady State and Transient MSE Analysis of Convexly Constrained Mizture Methods 7

To model the desired signal d(t), we have two parallel running constituent filters each
producing estimates dy(t) = w! (t)u(t) and dy(t) = w¥ (t)u(t) using the weight vectors
wi (t), wa(t) respectively. For each constituent filter, we define the estimation error, the a

priori error and the a posteriori error as

1>

d(t) — di(t) = d(t) —w] (t)u(t),
[wo(t) — wi(t) ult),

[wo(t) — wit + 1) u(t),

€; (t)
ea,i (t)

ep,i(t)

1>

1>

respectively. For each filter, we also define MSE as J;(t ) Ele?(t)] and excess MSE as

Jex,i(t) = Ele? ()], with limiting values J; = limy o0 Ji(t), Jexi = limy 00 Jox,i(t) (if the

a,i
limits exist). We also define the cross correlation between the a priori errors as Jox,12(t) 2
Eleq,1(t)eq2(t)] with limiting value Jex 12 = limy o0 Jex,12(t). We also define AJ;(t) =
Jex,i(t) — Jex12(t) for i = 1,2 with the limiting values AJ; = Jex i — Jex,12 [1]-

The outputs of the constituent filters are then combined using another adaptive layer to

produce the final estimate of the desired signal as

~

d(t) = Mt)di () + [1 = A(B)]da(t),

A~ ~

where A(t) is the mixing parameter constrained to be in [0, 1]. If y(t) 2 [dy(t) da(t)]T and
w(t) 2 [A(t) 1 — X(1)]T, then we have

d(t) = w” (D)y(t).

The final estimation error is given as e(t) = d(t) — d(t). In this chapter, we investigate four
methods to train the combination weight A(f). Assuming convergence, the optimal mean

combination weights in terms of minimizing the MSE under convex constraint are given

by [1]

T
|: 1 0 } : Jex,l < Jex,12 < Jex,2
A T
Wo,c = [ 0 1 :| : Jex,2 < Jex,12 < Jex,l (21)
T
AJ: AJ . -
[ AJ1+2AJ2 AJl—i—lAJg . Jox,12 < Jox,uZ - 17 2

in the steady-state.
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2.2 Four Convexly Constrained Mixture Methods

In this section, we present four methods to train the mixture parameter A(¢). The first
adaptive algorithm [1] uses a stochastic gradient update on the convexly constrained mix-
ture parameter to minimize the final estimation error. The second algorithm is based on the
exponentiated gradient (EG) algorithm [6,20] and minimizes an approximate final estima-
tion error while penalizing the distance between the new and the old mixture parameters.
The third [30] and the fourth algorithms [27] use specific performance-based updates on the

mixture parameters.

2.2.1 Algorithm 1

For the convexly constrained algorithm from [1], the mixture parameter is given by

1

Aalt) = 1+ exp[—a(t)]’

where a(t) is trained using a stochastic gradient update to minimize the final prediction

error as

2
= a(t) + pae(t)[di (t) = da (D) Aa(D)[1 = Aa(1)]. (2:2)
For (2.2), we have [1]
T — Jex,l : Jex,l < Jex,12 < Jex,27
& AJ1AJs

Jex,12 + N TEY N Jex,12 < Jex,l < Jex,27

where Joy is the EMSE of the combination filter and Jex 12+ % < Jex,1. Furthermore,

if wa(t) 2 Pa(t) 1 — Aa(t)]T, then we have [1]

T
. [ 10 } P dex,1 < Jex12 < Jex 2,
thm Elw,(t)] = T
—
> [ AJlA';‘]zAJQ AJlA;r]lAh D dex,12 < Jex,1 < Jex,2-

Hence, in the steady-state, the mixture performs as well as the best component filter
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and, in some cases, outperforms both. Moreover, the combination weight vector w(t)

converges to the optimal weight vector w, . under the convex constraint.

2.2.2  Algorithm 2

The second convexly constrained update is based on the exponentiated gradient (EG) algo-
rithm [20]. The EG algorithm has extensive roots in competitive online learning theory and
has been used in different signal processing problems such as in echo cancellation [6,17].
Here, we use the EG algorithm to train the mixture weights, where the combination weight

is updated as [6,20]

—wT 2
Ap(t+1) =arg )\1;1[2)17(11} {d(w, w,(t)) + % [ez(t) + od(t) B\ y(t) |/\:/\p(t)()\ - )\p(t))} }
(2.3)
— )\P(t) exp[ﬂpe(t)dl (t)] _ , (24)

Ap(t) explupe(t)di ()] + [1 = Ap(t)] explipe(t)da(t)]

where d(w,w,(t)) = Aln (%) +(1—-A)n (#:Et)) is the Kullback-Leibler distance
between the old and new weights, the second term on the right hand side of (2.3) is the
first order Taylor’s approximation of (d(t) — w”y(t))? around A = A,(t), measuring the
“fit” of the new weight to the data, w = [\ 1 — AT, w,(t) 2 Mot 1= A®)]T and

e(t) = d(t) — wl(t)y(t). We show in Appendix A that the update on A,(t) in (2.4) can be

p
written as
1
Ap(t) = T+ oxp[—p(0)] (2.5)
with
plt+1) = p(t) + ppe(t) (di (1) — da (1))
= p(t) + pp{Ao(D)ean (t) + [1 = Ap(t)]ea2(t) + n(t)}Hea2(t) — eqn(t)].  (2.6)

We note that the update in (2.6) is similar to the update in (2.2) without the extra
[A(t)(1 = A(t))] multiplier in (2.2). In [1], it is pointed out that the update in (2.2) may slow
down when \(t) is too close to 0 or 1 due to [A(¢)(1 — A(t))]. As a possible remedy to this

problem, A(t) is restricted to an interval excluding 0 and 1 [1]. Note that this problem is
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not present in (2.6).

2.2.3 Algorithm 3

The third update uses a performance-based mixture of the component filters and has deep
roots in computational learning theory [13,31]. Here, the combination weights are selected

as certain functions of the accumulated loss of each constituent filter as

t) = exp{—pe Zizi " e} ()]}
exp{—pe it [at=1=0ed ()]} + exp{—pe Yi_i[at=1=0e3 ()]}

(2.7)

where 0 < a < 1. As shown in Appendix A, the same update on A¢(¢) can be written as

1

Aclt) = 1+ exp[—e(t)]’

(2.8)

with
€(t +1) = ae(t) + pe(eqa(t) —eq1(t))(e1(t) + ea(t)). (2.9)
2.2.4 Algorithm /4

The fourth update we investigate is studied in [27]. Here, the combination weight is given

by

M
2

M- _
A (t) = [Cnso €i(t —n)] o0
LANA M—1 _M M—1 A .
[ tet—n) "2 + [ 3t —n))
where M is the time window to evaluate the performance-based weighting. We show in

Appendix A that the same update on A\, (t) can be written as

1

e T

9

where

s M lzﬁi‘& e3(t —n)] | 2.11)

M—-1
Zn:O 6%(t - n)
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2.3 Steady State Analysis of the Convexly Constrained Mixtures

In this section, we present steady-state analysis of the convexly constrained mixture meth-
ods. The a priori error of the combination filter is e,(t) = A(t)eq,1(t) + (1 — A(t))eq2(t). If
Jex (1) 2 E[e2(t)], then we get

a

Jex(t) = EN(t)eq 1 (1) + (1 = A(t)%eZ 5(8) + 2X(8)(1 = A(t))ea,1 (t)ea2(t)]

A . . . .
and Jox = limy,o0 Jex(t). Without loss of generality, we assume that Jox1 < Jex2 in the
following. Hence, for each algorithm, we have two separate cases depending on the relative
value of Jex 12, i€, Jox1 < Jex12 < Jex2 OF Jex 12 < Jex,1 < Jex,2, to investigate the

steady-state behavior.

2.3.1 Steady State Analysis of Algorithm 2

The derivations follow as in [1]. Here, we first obtain an expression for the adaptation

S AN
parameter in the steady-state. If A,(t) = E[)\,(t)], then, as t — oo, we get

Elp(t +1)] = Elp(t)] + p1o(1 = M) AT2(t) = p1p Ao () AJ1 (), (2.12)

after some algebra, where we assume that \,(t) and e, ;(t) are independent in the steady-
state for ¢ = 1,2 [1]. Furthermore, under the assumption of zero variance for \,(t) as

t — oo [1], we get
Jox = Modex 1 4 (1= Ap) 2 Jex2 + 225 (1 — Xp) Jox, 12, (2.13)

where

X, 2 lim B[ (1),

t—o0

Depending on variances and cross correlation of the a priori errors, we have two cases:

a) Jex,l < Jex,12 < Jex,2:

Here, we have AJ; <0 and AJy > 0 so that the term

(1 =X ()AJ2(t) — Ap(t) AT (2)
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is positive since 1 > A,(t) > 0 for all £. Then, we get E[p(t)] — oo as t — co. This

implies that p(t) — oo and

p(t) = oo,

Ap(t) =1

almost surely as ¢ — oo so that

Jex = Jex,1-

That is, in this case, the combination performs as well as the best component filter.

In addition, since we have
lim Eluw, ()] = [1 0"

t—o0

we conclude that the combination vector w,(t) converges to the optimal weight vector

w, . under the convex constraint.

Jex,12 < Jex,l < JeX,Z:

We have AJ; > 0,i =1,2. Ast — oo, a stationary point of (2.12) may be character-

ized by
(1= X)) ATa(t) = A ()AL (L),

so that

5 - AJy

r AJy + AJy '

If we substitute A, in (2.13), then we get

B AWSPAW )

Jox = Jex,12 + INEYNA

after some algebra. Using
AJ;

0< ——«<1
< AJ1 + Ay <

yields

Jex < min{Jex,la Jex,2}'

Thus, the combination filter outperforms both of the constituent filters. In addition,
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since we have

T
. _ AJ. AJ
Jim Bl = | s xRl ]

the combination weight w,(t) converges to the optimal weight vector w, . under the

convex constraint.

Hence, the combination filter is universal with respect to the constituent filters and its
weight vector converges to its optimal value.
2.3.2  Steady State Analysis of Algorithm 3

To obtain an expression for the adaptation parameter in the steady-state, we use

Ele(t +1)] = aE[e(t)] + peEl(ea2(t) — €an(t))(e1(t) + e2(?))]

= aEle(t)] + pe(Jex2(t) = Jex,1 (1)), (2.14)

where we assume that e, ;(t) and n(t) are independent for i = 1,2 [28]. Along with the

configuration of EMSEs, we need to consider also 0 < @ < 1 and a = 1 cases separately.

a) 0<a<l:

For convergence of (2.14), if

then we recognize that
dit+1)=ad(t) +bt+1)—bi

d(t + 1) < ald®)] + | (Jex2(t) = Jex1 () = (Jex,2 — Jex,1)|

by the triangular inequality where b(t) 2 Jex,2(t) — Jex,1(t) and b 2 Jex,2 — Jex,1. We
show in Appendix A that

d(t) =0
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as t — oo so that
lim E[E(t)] _ Ne(Jer - Jex,l) )

t—o0 1—a

(2.15)

The final EMSE of the combination filter is
Jex - j\gjex,l + (1 - 5\6)2Jex,2 + 2(1 - S\E)S\GJGX,127

under the assumption of zero variance for \(t) as ¢ — oo [1] for any given a where

A £ lim ED\(2)].

t—o00

Note that (2.15) does not depend on Jex12. Depending on the variances and the

cross-EMSE of the a priori errors, there are two sub-cases:

a.1l) Jox,1 < Jex,12 < Jex2:
Under this configuration, the optimal combination parameter A in (2.1) is equal
to 1 and the EMSE of the optimal combination filter is Jex 1. Hence, for the
combination filter to achieve the performance of the best constituent filter, we
need to have A\, = 1, i.e., FEle(t)] — oo as t — oo, which is true if and only if
a = 1. For any a, the difference between the EMSEs of the combination filter

and the best constituent filter is

- A
f()\e) = Jox - Jox,l

= (1 =21+ X)(Jex12 — Jex 1) + (1 = Ae)(Jex2 — Jex12)] >0 (2.16)

where the equality is reached if and only if @ = 1 so that the update (2.9) does

not achieve the performance of the best constituent filter if a # 1.
a.2) Jex12 < Jox,1 < Jex2:

Here, the difference between the EMSEs of the combination filter and the best

constituent filter is, i.e., f(\) in (2.16), a convex function of \. with roots

AJo—AJ 3 AJo—AJ : : :
XFETAT and 1. Hence, for A\, € (m, 1), f(-) is negative, i.e., Jox < Jox1-

. (AR-A
&GCEL_£1>

We note that

AJy+AJq ’



Chapter 2: Steady State and Transient MSE Analysis of Convexly Constrained Mizture Methods 15

if and only if
AJy — AJy

ac 1+MET,
In <AJ2—AJ1)

assuming that
AJy— AJq

He In 2AJ1
AJo—AJq

Then, the combination filter outperforms the constituent filters for any a €

< 0.

AJs — AJq
1 + e ln < AT, ) 9
AJo—AJq
b) a=1:
We have
Ele(t+1)] = Ele(t)] + K(t),
where

K(8) 2 pe(Jexa(t) — Jexa (1))

converges to a positive constant since Jox 1 < Jox2 so that Efe(t)] — oo as t — oo.

This implies that

e(t) — oo,

Ac(t) = 1

almost surely as t — oo so that

Jex = Jex,1-

Thus, the combination filter performs as well as the best component filter. The final
combination weight vector is
lim E =[10]".
Jim Elw(t)] = [1 0]
Hence, a = 1 is a necessary condition for the combination filter to achieve the performance

of the best constituent filter. Note that when a # 1, the combination filter may outperform

the constituent filters in specific configurations of EMSEs. However, if the cross EMSE is
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Jex,12 > Jex,1 and a # 1, then the combination performs worse than the best constituent
filter. Hence, unlike [1], the algorithm of [30] achieves (but not outperforms) the best
constituent filter when ¢ = 1 and if a # 1, then the algorithm may outperform or perform
worse than the best constituent filter depending on the configuration of EMSEs. Moreover,

the weight vector convergence does not appear.

2.3.3 Steady State Analysis of Algorithm

To get the steady-state behavior, we use

B (1)] ~ — o~ - . @17)
1 + E |:Zn:7() e%(t—n):| 2 1 + |: n:B E[e%(t—n)} 2

M-—1 M—1
ne0 e%(t—n) 0 E[e%(t—n)}

We emphasize that although the approximations in (2.17) are strong especially for small
M, we observe a close agreement with our simulations for relatively large M, e.g., M > 30.

Since as t — oo, E[e?(t)] = Joxi + 02 for i = 1,2, we get

AN 1
%, £ Jim Bl (0] = . (218)
ch 2+U% 2
1+ |:Jex:1+0%]

and the final EMSE of the combination filter is Joy = /_\%Jex,l + (1 - 5\«,)2,]0)(72 +2(1 —
X,)X,JOXJQ for any given M under the assumption of zero variance for A,(t) in the steady-

state [1]. Depending on M, we have two cases:

a) M — oo: Since we have (Jex2 + 02)/(Jex,1 + 02) > 1, we get limy_,oo E[A, ()] = 1.
Hence,

Jox = Jex 1. (2.19)

Thus, the combination filter performs as well as the best constituent filter. The final

combination weight vector is lim; oo Elw, ()] = [1 0]7.

b) M < oo: Depending on the a priori errors and the cross-EMSE between the compo-

nent filters, there are two subcases:

b.1) Jex1 < Jex,12 < Jex,2: In this case, the optimal combination parameter A in (2.1)

is 1 and the EMSE of the optimal combination filter is Jex 1. The combination
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filter achieves the performance of the best constituent filter if E[y(t)] — oo as
t — oo if and only if M — oo. The difference between the EMSEs of the

combination filter and the best constituent filter is
Jex - Jox,l = (1 - 5\4{)[(1 + j\y)(Jox,m - Jex,l) + (1 - /_\'y)(Jex,2 - Jex,12)] > 07

where the equality is reached if and only if M — oo so that the algorithm does

not achieve the performance of the best constituent filter if M < oc.

b.2) Jex12 < Jex,1 < Jex,2: In this case, the difference between the EMSEs of the com-

bination filter and the best constituent filter, i.e., f(\,) in (2.16), is negative for

log(2AJ1)—log(AJa—AJ1)
M = (21Og(‘]cx,1+0',21)_10g(=]cx,2+0'%)7

o0) so that the combination filter outperforms

the constituent filters, i.e., Jox < Jox,1-

Hence, M — oo is a necessary condition for the combination filter to perform as well
as the best constituent filter. The combination filter using the update rule (2.10) with
M < oo may outperform the constituent filters in certain configurations of the EMSEs.
However, if the cross EMSE is sufficiently large, then the combination filter performs
worse than the best component filter when M < co. Hence, unlike [1], update (2.10)
achieves (but not outperforms) the best constituent filter when M — oo and if M < oo,
then the algorithm may outperform or perform worse than the best constituent filter
depending on the configuration of EMSEs. Moreover, it does not offer the desirable

weight vector convergence.

2.4 Transient Analysis of the Convexly Constrained Mixtures

In this section, we perform mean and mean-square convergence analysis of the studied

algorithms. The derivations follow [11]. We use the following assumptions [11]:
e A1) n(t) is independent of wu(t).

o A2) p(t),e(t),(t) vary slowly enough so that

Eleq i(t)en,; (DR(t)|(t)] = Eleg ;(t)eq, ; (1)]h(t),

a,? a,j]
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where h(t) € {p(t),e(t),y(t)}, 1,7 =1,2 and k,1 =0,..,4, k +1 < 4.

e A3) e,1(t) and ey 2(t) are jointly Gaussian and zero mean, implying [11]

E[ei,i(t)] = 3J02x,i(t) 1=1,2,

E[eﬁ,l(t)egg(t)] =0, k+1l=

E[e'j,l(t)egg(t)] = 3Jex,1(t) Jex,12(t), k=3,1=1,
E[e'j,l(t)egg(t)] = 3Jex,12(t) Jex2(t), k=1,1=3,
Blef1(t)ela(t)] = 2% 12(t) + Jox1 () Jex2(t), k=1=2

2.4.1 Transient Analysis of Algorithm 2

The update (2.6) can be written as

pt+1) = p(t) + 1 [~ Ap(t)ez 1 (1) + (1= Ap(t))eg 5(1)

+ (2X,(t) — 1Deq,1(t)eq2(t) + n(t)(eqa2(t) — eq,1(t))] - (2.20)

The first order Taylor’s approximation of

Ao (p(1)) £ 1/(1 + exp(—p(t)))

2

around p(t) = E[p(t)] is given by

= Ap(t) + Ap()(1 = Ap(1))(p(t) — A(1)), (2.21)

4

where A, (t) = A\ (p(t)). Using (2.21) in (2.20) yields

pt+1) = p(t) + pp [ (M (1) + Ap(B)(1 = X, (1) (p(t) — p(1)))e 1 (1)
+ (1= (1) = X1 = X, (1) (p(t) = p(1)))eq o (1)
+ (20 (1) + 22, () (1 = Ao (1)) (p(t) — p(t)) — Dea,1 (t)ea(t)

+n(t)(eq2(t) — eq1(t))] - (2.22)
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Taking the expectation of (2.22) and using A1, A2 yields

Pt + 1) = pt) + o [~ Ap(D) e 1 (1) + (1= Mp(t) e 2(8) + (22(1) — D 12(8)] - (2:23)

Moreover, by using (2.21) in

ea(t) = Ap(t)ea1(t) + (1 = Ap(t))ea2 (),

we get

ea(t) = (Ap(t) + Mo(t)(1 = Ap () (p(t) — £(1)))(€a,1 (t) — €a2(t)) + €a2(t), (2.24)

which yields Ele,(t)] = 0 using Al and A2. We next find the EMSE of the combination

filter by squaring (2.24) and taking the expectation, yielding

Elez(t)] = [M3(t) + o (t)AZ() (1 = Ap(£))?] [Jex,1 (8) + Jex 2(t) — 2Jex12(2)]

+ 20, (1) (Jex,12(t) — Jex,2(t)) + Jex2(2), (2.25)

1>

where o E[(p(t) — p(t))?] with Al and A2. To evaluate (2.25), we need have o2(t).

o(0) /

To obtain a recursion for ag(t), we square (2.22), take the expected value and subtract the

square of (2.23), yielding, using A1, A2 and A3, after straightforward algebra,
oa(t+1) = (L+ 2p,G1(t) + p2Ga(t)) o (t) + p," F (1), (2.26)
where, omitting ¢,

F=2(1-X,)J%0+ 2N, — 1)*[J2 12+ Jex,1Jex,2] + 2X2JT5 1

+ 42X, — 1)(1 = Xp)ex,12dex,2 — 4N (1 — Ap) 3 1

— 42, (27, — DJexnJexa2 + (Jox1 + Jex2 — 2Jex12) 07, (2.27)

G1=—Xp(1 = Ap)[Jex1 + Jex2 — 2Jex 12), (2.28)

Ga = 3N(1 = X)) [J21 + 2(Jex1Jex,2 + 203 12) — Aex1Jex 12 — Aex12dex2 + T o] -
(2.29)
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Here, we analyze the bias/variance relation of Algorithm 2. From (2.23), when the step
size is large, the combination filter could better track the constituent filters. However, a
larger step size may cause O'g(t) to be large so that the EMSE of the combination filter
(2.25) may become unstable during the initial iterations. Note that from (2.26) when
5\p = lim;_yeo j\p(t) =0 or 1, af,(t) is unbounded as t — oo since Gy = limy o G1(t) = 0,
Go = limy_, oo G2(t) = 0 and F = limy_, o F'(t) > 0. However, in our simulations, we observe
that A2(¢)(1 — A,(t))* converges to 0 faster than o2 (t) goes to infinity so that the term

lim o2(X2(E)(1 — A, (£)% =0

t—oo P

in (2.25). Hence, the effect of the variance of the combination parameter on the EMSE of
the combination filter diminishes in the steady-state when 5\,) = 0 or 1 so that the EMSE of
the combination filter converges to the EMSE of the best constituent filter in the mean and
the MSE senses. When A, = %, we observe from (2.26) that Jg(t) converges when
11+ 2u,G1(t) + ,ugGg(t)| < 1 for all t, ie., =2 < 2u,G1(t) + M%Gg(t) < 0 and under this

condition
Pt

o ——
2G1 + ,qug

24 . 204\ _
P _tllgloap(t) N

We observe from (2.27) that F' > 0 and from (2.28), (2.29) that 2G; + p,G2 < 0 when
—2 < 2p,G1(t) + M%Gg(t) < 0 for all ¢ so that 0’% > 0 and the term az(t)/_\%(t)(l — A(1))?

in (2.25) converges. Hence, from (2.25), there is a bias term
TINA(L = X)X (A1 + Ay)

in the EMSE of the combination filter in the steady-state which introduces a bias/variance
trade-off as in the stochastic gradient algorithms [28], e.g., the trade-off between the bias
and the step size of LMS algorithm. Since all the terms in (2.27), (2.28) and (2.29) can be
calculated (recursively), this concludes the transient analysis of Algorithm 2.

2.4.2  Transient Analysis of Algorithm 3

The update rule for €(¢) can be written as

e(t+1) = ae(t) + pe [e2(t) — €2 1 (1) + 2n(t)(ea2(t) — ear(t))] (2.30)
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yielding
(t+1) = ae(t) + pe [Jea(t) — Joxa (1], (2.31)

with Al. We next use the first order Taylor’s approximation of A.(¢) around the expected
value €(t) 2 Ele(t)] as Ae(t) = Ae(t) + Ae(t)(1 — Xe(t))(e(t) — &(t)), where A(t) 2 A(E(t)).
Applying this to eq(t) = Ac(t)eq1(t) + (1 — Ac(t))eq2(t) yields

ca(t) = Ae(t) + Ac(t)(1 = Ac(t)(e(t) — &(1))][ear (t) — €a2(t)] + eap(t), (2.32)

and Eleq(t)] = 0 with A1 and A2. We obtain EMSE of the combination filter by squaring

(2.32) and taking the expectation as

Ele; ()] = [A(t) + a2(OAZ(1)(1 = Ae(1)?] [Jex,1 (1) + Jex2(t) — 2Jex12(t)]

+ 2 () (Jex,12(8) = Jex2()) + Jex2(t), (2.33)

where o2(t) 2 E|(e(t) —€(t))?] is the variance of €(t) using A1 and A2. To obtain a recursion

for o2(t), we square (2.30), take expectation and then subtract the square of (2.31). This
yields, using A1, A2 and A3,

ol (t+1) = a®ol(t)+2uc” [ng,l(t) + J()2X,2(t) - 2Jo2x,12(t) + 207 (Jex,1 (1) + Jex2(t) — 2Jex12(t))] -
(2.34)
Here, we analyze the bias/variance relation of Algorithm 3. From (2.31), the combination
filter could better track the constituent filters when the step size is large. However, a
larger step size may cause o2(t) to be large so that the EMSE of the combination filter
(2.33) may become unstable during the initial iterations. When 0 < a < 1, we have
A  pe(Jex,2 — Jex1)

€ = limy_, €(t) = 1. and A 2 lim; o0 Ac(t). From (2.34), 02(t) converges

and

2 A L. 2 2M52 [J62X71 + Je2x,2 - 2Je2x,12 + 20%(J6X71 + Jex,2 - 2Jex,12)]
of = lim oZ(t) = .
t—ro0 1 — a2

Hence, the term o2 (t)A2(t)(1 — A(t))? in (2.33) converges. Note that from (2.33) this term
introduces a bias in the EMSE of the combination filter in the steady-state. When a = 1, it

follows from (2.31) that A = 0 or 1. From (2.34), 02(¢) is unbounded as t — co. However,
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2

in our simulations, we observe that A\2(¢)(1 — A\.(t))? converges to 0 faster than o2(t) goes

to infinity so that the term

lim o?(H)R2(6)(1 — Ac(t))? = 0

t—o00

in (2.33). Hence, the effect of the variance of the combination parameter on the EMSE of
the combination filter diminishes in the steady-state when a = 1 so that the EMSE of the
combination filter converges to the EMSE of the best constituent filter in the mean and the

MSE senses. This concludes the transient analysis of Algorithm 3.

2.4.3 Transient Analysis of Algorithm /

Taking expectation of (2.11) yields

I (Zﬁi_ol e3(t — n))] LM <Zi‘i51 Jox,2(t — n)> |
2

Yonlo €i(t —n) Yonio Jea(t—n)

M

A(t) = ?E

1>

If we use the first order Taylor’s approximation of \,(t) around the expected value %(t)

E[y(t)], then we get

M (1) = A1) + A (D)1 = Ay (D) ((8) — 5(2)), (2.35)

1>

where A\, (t) = A(5(t)). Using (2.35) in eq(t) yields

ca(t) = [M(t) + Ay (1)1 = MO (v(t) = 7(1)))] [ear (t) — €a2(t)] + €a2(t) (2.36)

and Ele,(t)] = 0 under Al and A2. To get the EMSE of the combination filter, we first use
the first order Taylor’s approximation of )\%(t) around the expected value 7(t) 2Eg [v(t)] to
get

N2(t) = 22(8) + 222 (H)(1 = Ay (D) (4(1) = 7(1)). (2.37)

Using (2.35) and (2.37) in e2(¢) and taking expectation yields

Ele2(t)] = X2(t) Jex1 () + (1 = X2 (£))* Jex,2(£) + 222 (£) (1 = A2(t)) Jex,12(t). (2.38)
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This concludes the transient analysis of Algorithm 4.

2.5 Simulations

In this section, we present performance of the combination algorithms through simulations
using the setup of [1]. Here, we have two LMS filters with the same input regressor and
different step sizes running in parallel as the constituent filters with updates w;(t + 1) =
w;(t) + pie;(H)u(t), for i = 1,2, where p; = 0.1 and py = 0.001. The input regressor
u(t) € R7 is zero mean and i.i.d. Gaussian with variance selected to yield Tr(R)=1, where
Tr(-) is the trace. The underlying signal is generated as d(t) = w! (t)u(t) +n(t), where n(t)

is the additive i.i.d Gaussian noise with variance o2 = 0.01 and w,(t + 1) = w,(t) + q(t).

The initial value of w,(t) is selected as [1]
w,(0) = [0.90, —0.53,0.21, —0.028,0.78,0.52, —0.08]7 .

Theoretical EMSEs of the combination filters and the cross-EMSE between them are given
by

_ o T(R) + 4 T (Q)

Jox.i )
o 2 — u;Tr(R)
T
J - /ngO'%Tr(R) + 2};3_%2
ex,12 — 9 _ ,ulgTI'(R)
under the separation assumption [1], where 9 = % and theoretical Jo; attains the

minimum at

_ [ Q) | [Tr(@Q)  Tr(Q)
'qut_\/a%Tr(R)—’_ 408 202

We measure the performance using the same figure of merit as in [1]. The normalized square

deviation (NSD) of the component filters and the combination filters are defined as

NSDZ é Jex7’i/JeX7Opt7
VAN
NSDalgz = Jex,alg2/JeX70Pt7
VAN
NSDalgg = Jex,alg3/JeX70Pt7

AN
NSDalg4 = Jex,alg4/<]ox,opt7
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Figure 2.1: Theoretical and simulated NSDs as a function of Tr(Q). (a) 2nd and 3rd
combination filters, p, = 30, M = 2000. (b) 4rd combination filter, p. = 30, a = 1,
a =0.95.

where Jex a1g; is the EMSE of the ith combination filter and Jex opt is the EMSE calculated
using flopt-

In Fig. 2.1, we plot the NSDs for all algorithms as a function of Tr(Q), Q = E[q(t)q” (t)].
For these simulations, the step size in (2.6) is set to p, = 30 and the step size in (2.9) is
set to pe = 30 to guarantee convergence. To test our theoretical analysis on the forgetting
factor in (2.9), we simulate (2.9) using a = 1 and a = 0.95. We test the update in (2.10)
using a time window M = 2000. The simulations are done over 6x10° samples, averaged
over 20 independent trials. The final EMSEs are calculated by averaging the last 1000

samples of each iteration.
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We observe in Fig. 2.1a that the combination filter using the EG update (2.6) is universal
with respect to the combination filters and even performs better than both when Joy 12 <
min{Jex 1, Jex,2} (as shown in Section 2.2.2). The update (2.10) with M = 2000 achieves
the performance of the best constituent filter since M = 2000 is sufficiently large to yield
(2.19). Similarly, the update (2.9) is also universal when a = 1 such that it achieves the
performance of the best constituent filter for all Tr(Q) in Fig. 2.1b. For the update (2.9)
with @ = 0.95, we observe that for certain Tr(Q), the update performs better than both
constituent filters. However, since a # 1, the update (2.9) performs worse than the best
constituent filter as predicted in (2.16) and Section III.C.a.2 for certain Tr(Q). For all
algorithms, we observe that our steady-state analysis accurately describes the simulations.

For the simulations related to the transient analysis, the underlying signal is generated
from a stationary model as d(t) = wXwu(t) + n(t) [1], where n(t) is the additive i.i.d noise
with variance o2 = 0.01 and w, = [0.24, —0.45, —0.35,0.04, —0.17,0.74,0.14]". Moreover,
to test the switching performance, we abruptly change w, to
w, = [0.34,0.45, —0.41,0.46, 0.14, —0.44, —0.24]" in the middle of the simulations [1]. Here,
the input regressor u(t) € R is zero mean i.i.d. Gaussian, where the variance of each entry
is set to 1. As the constituent filters, we have two LMS filters with the same input regressor

and different step sizes running in parallel with updates
w;(t+1) = wi(t) + piei(H)ult),

for i = 1,2, py = 0.15, po = 0.002. For the combination algorithms, we set p, = 1
for Algorithm 2, p. = 1 and a = 0.98 for Algorithm 3, M = 200 for the Algorithm 4.
Results are averaged over 1000 independent trials. In Fig. 2.2a, we plot the MSE curve
for Algorithm 2, labeled as “Alg.2 "7 the theoretical derived MSE curve using (2.25),

simul >
labelled as “Alg. In Fig. 2.2a, we also plot the theoretical derived MSE curve,

2theory”'
where we set 0,(t) = 0, labeled as “Alg'2the0ry(op=0)”> as suggested in [11]. We observe
that our analysis closely describes the transient behavior of Algorithm 2 in these simulations.
We repeat the same experiment for Algorithm 3 and display the results in Fig. 2.2b. We
use the same labeling as in Fig. 2.2a, however, use (2.33) to calculate the theoretical curves.

We point out that since a = 0.98, as predicted from the steady-state analysis, the mixture

does not converge to the best constituent filter as seen in Fig. 2.2b (unlike Algorithm 2
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Lo L Alg. 3 Alg. 4 n (iteration index)
po =0.5 | u,=0.5 | a=0.999, p. = 0.5 | M=2000 | ny = 1864, ny = 1092, n3 = 3055, ny = 2595
fo =D Hp =5 a=0.999, pue =5 M=1700 | n; = 1063, ny = 1009, ns = 3181, ny = 2336
to = 100 | p, =100 | a=0.999, p. = 100 | M=1400 | n; = 1063 ,ny = 1011, n3 = 3193, ny = 2088

Table 2.1: Performance of Algorithm 3 and Algorithm 4 for different parameters

in Fig. 2.2a). The same simulations are performed for Algorithm 4 as shown in Fig. 2.2c,
however, we used (2.38) to calculate the theoretical curve. We again observe that our
transient analysis closely describes the behavior of Algorithm 3 and 4. We observe that
M = 200 is sufficiently large for these simulations that the mixture converges to the best
constituent filter.

Here, we investigate the trade-off between the transient and steady-state behaviors for
the combination algorithms as follows. In this setup, the desired signal is generated as
d(t) = wlu(t) + n(t), where n(t) is the additive i.i.d noise with variance o2 = 0.01, w, =
[0.25, —0.47, —0.37,0.04, —0.18,0.78,0.14]" and the input regressor u(t) € R” is zero mean
i.i.d. Gaussian, where the variance of each entry is set to 1. As the input filters, there are
two LMS filters running in parallel to model d(¢) with the same input regressor and the
step sizes u1; = 0.15, us = 0.002, respectively. We first fix the step size of Algorithm 1,
i.e., po = 0.5, and generate the theoretical MSE(n) curve versus iteration index n. Then,
we determine the value of n where MSE(n) is 3 dB above the minimum MSE and label it
ni. We adjust the step size of Algorithm 2 j,, the step size u. and the forgetting factor
a of Algorithm 3 and the time window M of Algorithm 4 such that the final MSE of each
algorithm is equal to the final MSE of Algorithm 1. Then, the theoretical MSE(n) curve
versus iteration index n for each algorithm is generated and the values of n where MSE(n) is
3 dB above the minimum MSE are determined and labeled by ns, ns, n4, respectively. The
performance of the combination algorithm with the smallest n; is the best for this example.
We repeat this process for different selections of p, including g, = 5 and p, = 100 and
We observe that in these simulations Algorithm 2

summarize the results in Table 2.1.

provide a better converge trade-off.
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2.6 Conclusion

We investigated and compared four convexly constrained adaptive mixture methods to
adaptively combine outputs of constituent filters that work in parallel on system modeling.
We derived the corresponding MSEs and the converged mixture weights in the steady-state
under nonstationary random walk model. We also performed the transient analysis in the
mean and MSE sense for all algorithms. We observe that these convex mixture methods
are universal such that they achieve the performance of the best constituent filter in the

steady-state. Our main contributions in this chapter can be listed as follows:

1. We show that the algorithm from [20] is universal and its combined weight vector

converges to the optimal convex mixture;

2. We demonstrate that the algorithm from [30] is only universal if the memory constant
is unitary (no decay is allowed if universality is required), but the weight vector does

not convergence to the optimal convex mixture;

3. We show that the algorithm from [27] is always universal (but not better than the
best filter) only for very long windows, however, does not offer the desirable weight

vector convergence.
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Figure 2.2: MSE curves for all algorithms. Labels are described in the text. (a) Algorithm
2, pup, =1. (b) Algorithm 3, pze = 1 and a = 0.98. (c) Algorithm 4, M = 200.
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Chapter 3

ADAPTIVE MIXTURE METHODS BASED ON BREGMAN
DIVERGENCES

In this chapter, we study adaptive mixture methods based on Bregman divergences
[10,15] that combine outputs of m constituent filters running in parallel on the same task.
The overall system has two stages [2-5,8,23]. The first stage contains adaptive filters running
in parallel to model a desired signal. The outputs of these adaptive filters are then linearly
combined to produce the final output of the overall system in the second stage. We use
Bregman divergences and obtain certain multiplicative updates [21], [15], [16] to train these
linear combination weights under an affine constraint [9] or without any constraints [22]. We
use unnormalized [15] and normalized relative entropy [21] to define two different Bregman
divergences that produce the unnormalized exponentiated gradient update (EGU) and the
exponentiated gradient update (EG) on the mixture weights [21], respectively. We then
perform the mean and the mean-square transient analysis of these adaptive mixtures when
they are used to combine outputs of m constituent filters. We emphasize that to the best
of our knowledge, this is the first mean and mean-square transient analysis of the EGU
algorithm and the EG algorithm in the mixture framework (which naturally covers the
classical framework also [7,28]). We illustrate the accuracy of our results through simulations
in different configurations and demonstrate advantages of the introduced algorithms for
sparse mixture systems.

We use Bregman divergences to derive multiplicative updates on the mixture weights.
Specifically, we use the unnormalized relative entropy and the relative entropy as distance
measures and obtain the EGU algorithm and the EG algorithm to update the combination
weights under an affine constraint or without any constraints. We then carry out the
mean and the mean-square transient analysis of these adaptive mixtures when they are
used to combine m constituent filters. We point out that the EG algorithm is widely

used in sequential learning theory [31] and minimizes an approximate final estimation error
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while penalizing the distance between the new and the old filter weights. In network and
acoustic echo cancellation applications, the EG algorithm is shown to converge faster than
the LMS algorithm [26,28] when the system impulse response is sparse [7]. Similarly, in our
simulations, we observe that using the EG algorithm to train the mixture weights yields
increased convergence speed compared to using the LMS algorithm to train the mixture
weights [9,22] when the combination favors only a few of the constituent filters in the
steady state, i.e., when the final steady-state combination vector is sparse. We also observe
that the EGU algorithm and the LMS algorithm show similar performance when they are
used to train the mixture weights even if the final steady-state mixture is sparse. In this
sense, we emphasize that we do not force the system to be sparse in order to make sure
that the EG algorithm performs better than the LMS algorithm. However, if the final
steady-state vector is sparse, than the EG could increase the convergence speed.

To summarize, the main contributions of this chapter are as follows:

e We use Bregman divergences to derive multiplicative updates on affinely constrained
and unconstrained mixture weights adaptively combining outputs of m constituent

filters.

e We use the unnormalized relative entropy and the relative entropy to define two dif-
ferent Bregman divergences that produce the EGU algorithm and the EG algorithm

to update the affinely constrained and unconstrained mixture weights.

e We perform the mean and the mean-square transient analysis of the affinely con-

strained and unconstrained mixtures using the EGU algorithm and the EG algorithm.

3.1 Problem Description

3.1.1 Notation

In this chapter, all vectors are column vectors and represented by boldface lowercase letters.
Matrices are represented by boldface capital letters. For presentation purposes, we work
only with real data. Given a vector w, w(® denotes the ith individual entry of w, w” is
the transpose of w, |lw|; 2 S [w@] is the 1; norm; |jw| 2 VwTw is the lo norm. For

a matrix W, t,,,(W) is the trace. For a vector w, diag(w) represents a diagonal matrix
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e,(t)

W(m}

alt)— m

¢

eml(t)

Figure 3.1: A linear mixture of outputs of m adaptive filters.

formed using the entries of w. For a matrix W, diag(W') represents a column vector that
contains the diagonal entries of W. For two vectors v and vo, we define the concatenation

A . _ .
[v1;v2] = [vT vT]T. For a random variable v, ¥ is the expected value. For a random vector

v (or a random matrix V'), © (or V) represents the expected value of each entry. Vectors
(or matrices) 1 and 0, with an abuse of notation, denote vectors (or matrices) of all ones
or zeros, respectively, where the size of the vector (or the matrix) is understood from the

context.

3.1.2  System Description

The framework that we study has two stages. In the first stage, we have m adaptive filters
producing outputs g;(t), ¢ = 1,...,m, running in parallel to model a desired signal y(t)
as seen in Fig. 1. Here, a(t) is generated from a zero mean stochastic process and y(t) is
generated from a zero-mean stationary stochastic process. The second stage is the mixture
stage, where the outputs of the first stage filters are combined to improve the steady-state

and/or the transient performance over the constituent filters. We linearly combine the
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outputs of the first stage filters to produce the final output as §(t) = w” (t)z(t), where
x(t) 2 [91(t), ..., 9m(t)]" and train the mixture weights using multiplicative updates (or
exponentiated gradient updates) [15]. We point out that in order to satisfy the constraints
and derive the multiplicative updates [21], [12], we use reparametrization of the mixture

weights as w(t) = f(A(t)) and perform the update on A(t) as

Alt+1) = argm)i\n {d()\, @)+ pl(y(), FE(N)z(t)) }, (3.1)

where p is the learning rate of the update, d(-,-) is an appropriate distance measure and
I(-,-) is the instantaneous loss. We emphasize that in (3.1), the updated vector A is forced
to be close to the present vector A(t) by d(A(t+ 1), A(t)), while trying to accurately model
the current data by [(y(t), fT()\)ac(t)). However, instead of directly minimizing (3.1), a

linearized version of (3.1)

At +1) = arg m}'in {d()\, @) + 1 (y@®), FTA@)z(t))

U0 £ N20) [y =20} (52)

is minimized to get the desired update. As an example, if we use the ls-norm as the distance
measure, i.e., d(X, A(t)) = ||A — A(#)||?, and the square error as the instantaneous loss, i.e.,
Ly(), FE Nz () = [y(t) — FH (N)z()]? with f(A) = X, then we get the stochastic gradient
update on w(t), i.e.,

w(t+1) =w(t) + pe(t)x(t),

in (3.2).

In the next section, we use the unnormalized relative entropy

di( A A1) = {i [A@ In <%> + 2O () — A@] } (3.3)

i=1

for positively constrained A and A(t), A € R, A(t) € R, and the relative entropy

m . (4)
da (A, A(1)) = {Z [W In (A?Tt))] } (3.4)
i=1
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where X is constrained to be in an extended simplex such that A > 0, pya A0 =y for
some u > 1 as the distance measures, with appropriately selected f(-) to derive updates
on mixture weights under different constraints. We first investigate affinely constrained
mixture of m adaptive filters, and then continue with the unconstrained mixture using (3.3)

and (3.4) as the distance measures.

3.2 Adaptive Mixture Algorithms

In this section, we investigate affinely constrained and unconstrained mixtures updated with
the EGU algorithm and the EG algorithm.
3.2.1 Affinely Constrained Mixture

When an affine constraint is imposed on the mixture such that w” (¢)1 = 1, we get

§(t) = w(t) z(t),
e(t) = y(t) — 4(t),
)y =A0@), i=1,...,m—1,

w? (¢ .
m—1
Wt =1 - 3 A0 ),
i=1
where the m — 1 dimensional vector A(t) 2 D), ..., \m=D()]T is the unconstrained

weight vector, i.e., A(t) € R™ 1. Using A(t) as the unconstrained weight vector, the error
can be written as e(t) = [y(t) — i (t)] = AT (t)d(t), where &(t) 2 [01(8) =G (t)y .oy Gm—1(t)—

im(t)]T. To be able to derive a multiplicative update on A(t), we use
At) = As(t) — Aa(t),

where A (¢) and Az (t) are constrained to be nonnegative, i.e., A;(t) € R, i = 1,2. After

we collect nonnegative weights in A, (¢) = [A1(¢); A2(t)], we define a function of loss e(t) as

and update positively constrained A,(t) as follows.
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Unnormalized Relative Entropy

Using the unconstrained relative entropy as the distance measure, we get

_l’_

sl I A0 (0 (0
Ao(t+1) :argmin{ AW 1n . + A7 () — A
A 2 A9 (1)

i=1

i [t )+ Txla ) 3, A= 2a(0)]

After some algebra this yields

D (¢ +1) = XD (8) exp {ue(t) G (8) = (D)} i = 1. m — 1,

AP+ 1) = AP () exp {—pe(t) (Gi-m1 (1) = (1))} i =m, ..., 2(m — 1),
providing the multiplicative updates on Ay (t) and Az (t).

Relative Entropy

Using the relative entropy as the distance measure, we get

2m—1) " 2@
Ao(t+1) =ar min{ AW In +y(u—1TN)| +
(t+1) =argmi > [ ( ) 2 )

AL (t)

p [t )+ Tala 7 [5x4 Aal0)]

where v is the Lagrange multiplier. This yields

NOITET A6 (£) exp {pe(t) (@i () — 9m (1))}

2 (1) xp {=pe(t)Gimm 1 (5) = G (1)}

=1 T30 (1) exp {pe(t) (G1(5) — G ()} + AET 7D (0) exp {—pret) (G0(8) — Gm (1))} |

providing the multiplicative updates on A, (t).

st A0 (1) exp {p1et) (G1) — G ()} + AEF™7D () exp {—ue(B) (G (8) — Gm (£))}
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3.2.2 Unconstrained Mizture

Without any constraints on the combination weights, the mixture stage can be written as

where w(t) € R™. To be able to derive a multiplicative update, we use a change of variables,
w(t) = wi(t) — wa(t),

where w; (t) and wa(t) are constrained to be nonnegative, i.e., w;(t) € R, i = 1,2. We
then collect the nonnegative weights w,(t) = [w1(t); wa(t)] and define a function of the loss

e(t) as

Unnormalized Relative Entropy

Defining cost function similar to (4) and minimizing it with respect to w yields

w6+ 1) = wl (1) exp {pe(t)di(t)} i = 1,....m,

Wi (¢ + 1) = 0l (t) exp {—pe(Ofs—m(D)} i = m +1,...,2m,
providing the multiplicative update on w,/(t).

Relative Entropy

Using the relative entropy under the simplex constraint on w, we get the updates
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wi (t) exp {ue(t)di()}

w® (t+1) = u—
> [wék) (t) exp {ue()gi(t)} +wi™™ (t) exp {—Me(t)@k(t)}}

)

w (1) exp {—pe(t)gi—m(t)}

3 [wg“ (1) exp {ue(t)di(£)} + ™ (1) exp {—pe(t)ie(t)} }

)

t=m+1...,2m.

In the next section, we study the transient analysis of these four adaptive mixture

algorithms.

3.3 Transient Analysis

In this section, we study the mean and the mean-square transient analysis of the adaptive

mixture methods. We start with the affinely constrained combination.

3.3.1 Affinely Constrained Mixture

We first perform the transient analysis of the mixture weights updated with the EGU
algorithm. Then, we continue with the transient analysis of the mixture weights updated

with the EG algorithm.

Unconstrained Relative Entropy

For the affinely constrained mixture updated with the EGU algorithm, using Taylor Series,

we have the multiplicative update as
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_ A(i)(t)i (Me(t)@i(t;'— im(t))) 7 (3.5)
k=0
AP (4 1) = AP (1) exp {—pe(®) (§i(t) — G (1))},
%) ~ ~ k
:A9®§:«wmw@g—%am)7 56
k=0 ’

fori=1,...,m—1. If e(t) and §;(t) — Jm(t) for each i = 1,...,m — 1 are bounded, then

we can write (3.5) and (3.6) as

A+ 1) 2 A @) (14 pe(®) (@(t) = G (1)) + O12)), (37)
AP+ 1) m AP (1) (1 = pe(®) (§:(t) — G (1)) + O(12), (3.8)

fori=1,...,m— 1. Since p is usually relatively small [15], we approximate (3.7) and (3.8)

as

At 4+ 1)~ A () (1 + pe(t) (@ (1) — Gn(1)), (39)
MVt +1) 2 A () (1 = pe() (@) — Gm(®). (3.10)

In our simulations, we illustrate the accuracy of the approximations (3.9) and (3.10) under

the mixture framework. Using (3.9) and (3.10), we can obtain updates on A;(¢) and X (t)
as

Ai(t+1) = (I + pe(t)diag(d(t))) A (t), (3.11)
Xo(t+1) = (I — pe(t)diag(8(t))) Az (t). (3.12)
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Collecting the weights in A (t) = [A1(f); A2(t)], using the updates (3.11) and (3.12), we can

write update on A4 (t) as
Aot +1) = (I + pe(t)diag(u(t)))Aa(t), (3.13)

where u(t) is defined as wu(t) 2 [6(t); —d(t)].

For the desired signal y(t), we can write y(t) — §m(t) = AL (£)d(t) + eo(t), where Ag(t) is
the optimum MSE solution at time ¢ such that Ag() 2 R7(t)p(t), R(t) 2 E[d(t)dT(t)],
p(t) =N {6(t)[y(t) — Jm(t)] } and eo(t) is zero-mean and uncorrelated with &(t). We next
show that the mixture weights converge to the optimum solution in the steady-state such
that lim_,oo [)\(t)] = limy_, 00 Ao(t) for properly selected p.

Subtracting (3.12) from (3.11), we obtain

A(t+ 1) = A(t) + pe(t)diag(6(2)) (A () + Xa(t)),
= A(t) — pe(t)diag(6(t)) A(t) + 2pe(t)diag (8(t)) A1 (t). (3.14)
Defining e(t) 2 Ag(t) — A(£) and using e(t) = 67 (t)e(t) + eo(t) in (3.14) yield

At +1) = A(t) — pdiag(8(6)) A(1)S7 (t)e(t) — udiag(8()) A(t)eo(t)

+ 2udiag (8(t)) A1 (£)87 (t)e(t) + 2udiag(8()) A1 ()eo (t). (3.15)
In (3.15), subtracting both sides from Ag(¢ + 1), we have

e(t +1) = e(t) + pdiag(6(t)) A1) (t)e(t) + pdiag(8(t)) A(t)eo(t)
— 2pdiag (8(£)) A1 (t)87 (t)e(t) — 2udiag (8(2)) A1 (t)eo(t)
+ [Ao(t + 1) — Ao(t)] . (3.16)

Taking expectation of both sides of (3.16) and using

E[pdiag(8(t)) A(t)eo(t)] = E[pdiag(8(t))A(t)] Eleo(t)] = 0,

E[2,udiag(5(t))/\1(t)eo(t)] = E[2udiag(6(t)))\1(t)]E[eo(t)] =0,
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and assuming that the correlation between e(t) and A1 (t), A2(¢) is small enough to be safely

omitted [24] yields

Ele(t+1)] = E[I — pdiag(A1(t) + A2(t))d(t)867 (1) E[e(t)]
+ E[Xo(t+1) — Xo(t)]. (3.17)

Assuming convergence of R(t) and p(t) (which is true for a wide range of adaptive methods
in the first stage [25], [18,28]), we obtain limy_oc E[Ao(t 4+ 1) — Xo(t)] = 0. If u is chosen
such that the eigenvalues of E[I — pdiag(A(t) + )\g(t))d(t)dT(t)] have strictly less than

unit magnitude for every ¢, then
limyy o0 E[A(t)] = im0 Ao ().

For the transient analysis of the MSE, we have

B[] = E{ [y(t) = gm(®)]*} = 220 () { [y(t) — m (D] [8(2); —6 (1))}
+ B {T(0)[8(8); —8(1)][6(); - <>]TA<>}
= B{[y(t) ~ 50} = 22 OB {[y(t) ~ n(D)] (1)}
+tm<E[A<>AT )] B {u(t)u >T}>,

= E{[y®) = m()]*} = 22 OY(1) + Lo (E Aa(t)AT ()] r<t>), (3.18)

where we define (¢ S E {u()[y(t) — gm(t)]} and T(t) 2 Elu(t)u’(1)].
For the recursion of A, (t) = E[X(t)], using (3.13), we get

Malt +1) = Ag(t) + pding(v(1) Aa(t) — pding(ED(OA] (D). (3.19)

Using (3.13) and e(t) = [y(t) — gm(t)] — AT (1)8(t), assuming Ay (t) is Gaussian and assuming
A (t) and AY )(t) are uncorrelated when i # j (as in Chapter 9.4.2) [28], [24], defining the
diagonal matrix

D(t) = EA ()AL ()] — ;\a(t);\f(t) and since p is small, ignoring the terms that are pro-
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portional to u?, we get a recursion for E[/\a(t))\z(t)] as

E[X(t+ DAL+ 1)] = B[O (1)] + pdiag(v(1)) E[Aa(t) AL (1)]
— pdiag(T(H)Aa(1) E[Aa ()AL (1)] — uE[dlag( ()] D)1, (1)
— pdiag (X (1)L () D(t) + pE[Xa (DAL ()] diag (v(2))

— pE[Aa(H)A (t)]diag (T(£)Aa(t)) — ()1TD() [diag® (u(t))]

— uD ()T (t)diag(Aa(t)). (3.20)

4

Defining g, (t) 2 Aa(t) and Q,(t) = E[X.(HAL(1)], we express (3.19) and (3.20) as a

coupled recursions in Table 3.1.

Table 3.1: Time evolution of the mean and the variance of the affinely constrained mixture
weights updated with the EGU algorithm

4, (t+1) = q,(t) + pdiag((1)) g, (t) — pdiag (Q, ()T (1)),
Quit+1) = (1 + uding(4(1)) — udiag(ru)qa(t)))cza(t) E[ding? (u(t))] (Qa(t) - qaa)qm) 147 (1)

— pdiag (a, (1) T(2) (Qa(t) - qa(t>q§<t>) Q. (udiag (v(®) - udiag(m)qa(t)))
g (D17 (Qa(t) - qa@)qz(t)) B [diag? (u(t))] - M(Qa(t) - qa(t>q£(t>) T(t)ding (g, (1))-

In Table 3.1, we provide the mean and the variance recursions for Q,(¢) and g,(t). To
implement these recursions, one needs to only provide I'(t) and ~(t). Note that I'(¢) and
~(t) are derived for a wide range of adaptive filters [25], [28]. If we use the mean and the
variance recursions in (3.18), then we obtain the time evolution of the final MSE. This
completes the transient analysis of the affinely constrained mixture weights updated with

the EGU algorithm.

Relative Entropy

For the affinely constrained combination updated with the EG algorithm, we have the
multiplicative updates as

AD( 1) = _ AL (8) exp {pe(t) (9 (1) — Gm (1))} -

S IAB (6) exp {ue() (Gr (1) — Gm (£)} + AT (8) exp {—pe(t) (@5 () — Gm (1))}
)\gi) (t + 1) —u _ )‘gi) (t) exp {_Ue(t) (gl (t) - g77l(t))} -
mo LI (1) exp {pe () (@5 (8) — Gm ()} + A5 (1) exp {—pe(t) (Gx (£) — Gm (1)}
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for i =1,...,m — 1. Using the same approximations as in (3.7), (3.8), (3.9) and (3.10), we
obtain

A0 (1 4+ pe®) @i (1) = Gm (1))

A+ ~u _ , (3.21)
S I @) (14 ) (@i () — G () + AT (@) (1 — pe(®) (G5 () — gmm))]

A1) ~u _ A5 (0) (1 pe(t) (G () = G (1)) ' 3.22)
St I @) (14 pe®) (@1 () — G (1)) + A (0 (1 = pe(®) (Gx (1) — gmu))}

In our simulations, we illustrate the accuracy of the approximations (3.21) and (3.22) under

the mixture framework. Using (3.21) and (3.22), we obtain updates on A;(t) and Aq(t) as

(T et )dlag( () A (t)
A(t+1) = T pel A (3.23)
(et )chag( ()Mt
Xo(t+1) = T e O (3.24)
Using updates (3.23) and (3.24), we can write update on A, (%)
[+ pe(t)diag (u(t)) | Aa(t)
Aot +1) = T e O (3.25)
For the recursion of A,(t), using (3.25), we get
B I+ pe(t dlag(u(t))})\a (t)
Bl +1)] _E{u [17 + pe(t)uT ()] Aa(t) }
E{[I—Hw dlag(u t))]/\a (t) }
{7 + pel®u (] Aal®)] (8.26)
B0 +udlag(‘y(t )E(ult)] ~ pine(EDLOMOFO) o

(17 + T ()] E[Aa(t)] = itrn(BAG(HAT (D)IT(1))

where in (3.26) we approximate expectation of the quotient with the quotient of the ex-
pectations. In our simulations, we also illustrate the accuracy of this approximation in the
mixture framework. From (3.25), using the same approximation in (3.27), assuming A, (t)
is Gaussian, assuming AY (t) and AY )(t) are uncorrelated when i # j, and since p is small,

ignoring the terms that are proportional to u?, we get a recursion for F [)\a(t))\:;r(t)] as

EX(+DAIt+1)] = u2$, (3.28)
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where A(t) is equal to the right hand side of (3.20) and

b(t) = 1TE[N (AL (1)1 + pp” () E[Aa(t)AL ()] 1

— 1A (R E[Aa ()AL (H)]1 = p2" D) R(H)Aa(t)

—p1"D()E [dlag (u(t)] 17 Aa ()1

+ 1T E A (OA ()] p(t) — p1TE[Aa (AT ()] R(£)Aa(t)

— AL (O R(E)D()1 — p1TAL (1)1E[diag? (u(t))] D(t). (3.29)

If we use the mean (3.27) and the variance (3.28), (3.29) recursions in (3.18), then we obtain
the time evolution of the final MSE. This completes the transient analysis of the affinely
constrained mixture weights updated with the EG algorithm.

3.3.2  Unconstrained Mixture

We use the unconstrained relative entropy and the relative entropy as distance measures to
update unconstrained mixture weights. We first perform transient analysis of the mixture
weights updated using the EGU algorithm. Then, we continue with the transient analysis
of the mixture weights updated using the EG algorithm. Note that since the unconstrained
case is close to the affinely constrained case, we only provide the necessary modifications to

get the mean and the variance recursions for the transient analysis.

Unconstrained Relative Entropy

For the unconstrained combination updated with EGU, we have the multiplicative updates

as

wi (4 1) = i () exp {pe(t)i(t)}
wi (¢ +1) = wl (¢) exp {—pe()7i(t)},
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for i =1,...,m. Using the same approximations as in (3.7), (3.8), (3.9) and (3.10), we can

obtain updates on w;(t) and ws(t) as

wi(t+ 1) & (I + pe(t)diag(x(t)))wi (t), (3.30)

wy(t+1) = (I — pe(t)diag(z(t)) )wa(t). (3.31)

Collecting the weights in w,(t) = [w(t); wa(t)], using the updates (3.30) and (3.31), we

can write update on wg(t) as

wo(t+ 1) = (I + pe(t)diag(u(t)))wq(t), (3.32)

where u(t) is defined as w(t) 2

(@ (t); — ().

For the desired signal y(t), we can write y(t) = wl (t)x(t) + eo(t), where w(t) is the
optimum MSE solution at time ¢ such that wg(t) 2 R 1(t)p(t), R(t) 2 Elz(t)z”(t)],
p(t) 2 E{x(t)y(t)} and eg(t) is zero-mean disturbance uncorrelated to x(t). To show
that the mixture weights converge to the optimum solution in the steady-state such that
limy_yoo [w(t)] = limy_, 00 wo(t), we follow similar lines as in the Section 4.1.1. We modify

(3.14), (3.15), (3.16) and (3.17) such that A will be replaced by w, §(t) will be replaced by

x(t) and e(t) = wo(t) — w(t). After these replacements, we obtain

Ele(t +1)] = E[I — pdiag(w1(t) + wa(t))z )z’ (1) E[e(t)]

+ Ewo(t +1) — wo(t)]. (3.33)

Since, we have limy_,oo E[wo(t+1)—wo(t)] = 0 for most adaptive filters in the first stage [28]
and if p is chosen so that all the eigenvalues of E[I — pdiag(w1(t) +w2(t))z(t)x” (t)] have
strictly less than unit magnitude for every ¢, then lim; o E[w(t)] = limy_y00 wo(2).

For the transient analysis of MSE, defining ~y(t) g {u(t)y(t)} and I'(¢) g [u(®)u” (1)],
(3.18) is modified as

E[e*(t)] = E{y*(t)} — 2w, ()v(1) + tr <E [wa(t)wg (t)] F(t)>- (3.34)

Accordingly, we modify the mean recursion (3.19) and the variance recursion (3.20) such
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that instead of A, (t) we use wq(t). We also modify the Table 3.1 using q, () 2 w,(t) and
Q1) 2 E|w,(t)wl(t)]. If we use this modified mean and variance recursions in (3.34),
then we obtain the time evolution of the final MSE. This completes the transient analysis

of the unconstrained mixture weights updated with the EGU algorithm.

Relative Entropy

For the unconstrained combination updated with the EG algorithm, we have the multiplica-

tive updates as

wi (t) exp {ue(t)di(t)}

wid (t+1) = up
> [wﬁf“) (t) exp {pe()gr(t)} + wi™ (t) exp {—ue(t)z)k(t)}}

9

wi (t) exp {—pe(t)ji(t)}

3 [wg“ (1) exp {ue(t)di(8)} + ™ (1) exp {—pe(t)ie(t)} }

)

t=m+1...,2m.

Following similar lines, we modify (3.23), (3.24), (3.25), (3.27), (3.28) and (3.29) such that
we replace 8(t) with (t), A with w and u(t) = [@(t); —x(t)]. Finally, we use the modified
mean and variance recursions in (3.34) and obtain the time evolution of the final MSE. This
completes the transient analysis of the unconstrained mixture weights updated with the EG

algorithm.

3.4 Simulations

In this section, we illustrate the accuracy of our results and compare performances of dif-
ferent adaptive mixture methods through simulations. In our simulations, we observe that
using the EG algorithm to train the mixture weights yields better performance compared
to using the LMS algorithm or the EGU algorithm to train the mixture weights for com-
binations having more than two filters and when the combination favors only a few of the
constituent filters. The LMS algorithm and the EGU algorithm perform similarly in our

simulations when they are used to train the mixture weights. We also observe in our simula-
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tions that the mixture weights under the EG update converge to the optimum combination
vector faster than the mixture weights under the LMS algorithm.

To compare performances of the EG and LMS algorithms and illustrate the accuracy of
our results in (3.27), (3.28) and (3.29) under different algorithmic parameters, the desired
signal as well as the system parameters are selected as follows. First, a seventh-order linear
filter,

w, = [0.25,-0.47, —0.37,0.045, —0.18,0.78,0.147]", is chosen as in [24]. The underlying
signal is generated using the data model y(t) = 7 wla(t) + n(t), where a(t) is an i.i.d.
Gaussian vector process with zero mean and unit variance entries, i.e., Ela(t)a’ (t)] = I,
n(t) is an i.i.d. Gaussian noise process with zero mean and variance E[n?(t)] = 0.3, and

T is a positive scalar to control SNR. Hence, the SNR of the desired signal is given by
SNR 2 10log (2 W W]y _ 10 10g(ZUWol?),

For the first experiment, we have SNR = 10dB. To model the unknown system we
use four linear filters using the RLS algorithm, LMS algorithm, Sign-error LMS algorithm
and Sign-sign LMS algorithm. We emphasize that depending on the underlying signal
and/or application, one of these algorithms is preferable to the others, however, such a
selection is only possible in hindsight. Hence, an adaptive combination could resolve such
uncertainty [22]. In this experiment, there is a sudden change in the desired signal such
that the target wg changes in the middle of the simulations as seen in Fig. 3.2. In
the start of the simulations, the desired signal is generated from a seventh-order linear
filter wo = [0.25,—0.47,—0.37,0.045, —0.18,0.78,0.147]7 [24], which is then replaced by
wo = [0.62,0.81, —0.74,0.82,0.26, —0.80, —0.44]7 at the 4000th sample. The constituent
RLS algorithm is initialized after wq is updated. The learning rates of these constituent fil-
ters are set to upms = 0.12, psign—errorbms = 0.11 and pisign—sign.ms = 0.1. The parameters
for the RLS algorithm are set to A = 1 and € = 20. Therefore, in the steady-state, we obtain
the optimum combination vector approximately as A, = [1,0, 0, O]T, i.e., the final combina-
tion vector is sparse. In the second stage, we train the combination weights with the EG and
LMS algorithms and compare performances of these algorithms. The EG algorithm has two
parameters to adjust while the LMS algorithm has only one parameter to adjust. For the
second stage, the learning rates for the EG and LMS algorithms are selected as ugg = 0.001
and prvs = 0.01 such that the EMSEs of both mixtures converge to the same final EMSE
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to provide a fair comparison. However, there exist a wide range of values for the step sizes
so that the algorithms converge to very similar EMSEs. We select u = 50 for the EG algo-
rithm. In Fig. 3.2a, we plot the weight of the RLS filter, i.e. E[]AM(¢)], updated with the
EG and LMS algorithms. In Fig. 3.2b, we plot the EMSE curves for the adaptive mixture
updated with the EG algorithm, the adaptive mixture updated with the LMS algorithm,
the RLS filter with A = 1 and e = 20, the Sign-error LMS filter with pgign—errorLmvs = 0.11
and the LMS filter with purys = 0.12. From Fig. 3.2a and Fig. 3.2b, we see that the EG
algorithm performs better than the LMS algorithm such that the combination weight under
the update of the EG algorithm converges to 1 faster than the combination weight under
the update of the LMS algorithm. We also observe from these simulations that even after
the sudden change in the statistics, the EG algorithm quickly recovers and performs better
than the LMS algorithm. Furthermore the EMSE of the adaptive mixture updated with the
EG algorithm converges faster than the EMSE of the adaptive mixture updated with the
LMS algorithm. In Fig. 3.2c, we plot the theoretical values for 5\,(11)(15) and AV (t) along with
simulations. Note that in Fig. 3.2c we observe that () (¢) = /_\[(11)(75) AW (t) converges to
1 as predicted in our derivations. In Fig. 3.2d, we plot the theoretical values of F [/\[(11)(75)2]
and E[)\((f) (t))\,(f) (t)] along with simulations. As we observe from Fig. 3.2c and Fig. 3.2d,
there is a close agreement between our results and simulations in these experiments. We
observe similar results for the other cross terms.

We next model the unknown system using ten linear filters with the LMS update as the
constituent filters. For this experiment, we have SNR = -10dB. The learning rates of two
constituent filters are set to 3 = 0.002 and pg = 0.002 while the learning rates for the rest of
the constituent filters are selected randomly in [0.1,0.11]. Therefore, in the steady-state, we
obtain the optimum combination vector approximately as A, = [0.5,0,0,0,0,0.5,0,0,0, O]T,
i.e., the final combination vector is sparse. In the second stage, we train the combination
weights with the EG and LMS algorithms and compare performances of these algorithms.
For the second stage, the learning rates for the EG and LMS algorithms are selected as
prc = 0.0005 and prvs = 0.005 such that the EMSEs of both mixtures converge to the
same final EMSE to provide a fair comparison. However, there exist a wide range of values
for the step sizes so that the algorithms converge to very similar EMSEs. We select u = 500
for the EG algorithm. In Fig. 3.3a, we plot the weight of the first constituent filter with
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11 = 0.002, i.e. E[)\(l)(t)], updated with the EG and LMS algorithms. In Fig. 3.3b, we plot
the EMSE curves for the adaptive mixture updated with the EG algorithm, the adaptive
mixture updated with the LMS algorithm, the first constituent filter with p; = 0.002 and
the second constituent filter with pe € [0.1,0.11]. From Fig. 3.3a and Fig. 3.3b, we see
that the EG algorithm performs better than the LMS algorithm such that the combination
weight under the update of the EG algorithm converges to 0.5 faster than the combination
weight under the update of the LMS algorithm. Furthermore the EMSE of the adaptive
mixture updated with the EG algorithm converges faster than the EMSE of the adaptive
mixture updated with the LMS algorithm. In Fig. 3.3c, to test the accuracy of (3.27), we
plot the theoretical values for 7\2”(1:) and A (t) along with simulations. Note in Fig. 3.3c
we observe that A1) (¢) = Xgl)(t) A (t) converges to 0.5 as predicted in our derivations.
In Fig. 3.3d, to test the accuracy of (3.28) and (3.29), as an example, we plot the theoretical
values of E [/\,(11)(75)2] and F [/\,(11)(75)/\,(13) (t)] along with simulations. As we observe from Fig.
3.3c and Fig. 3.3d, there is a close agreement between our results and simulations in these
experiments. We observe similar results for the other cross terms.

We next simulate the unconstrained mixtures updated with the EGU and EG algorithms.
Here, we have two linear filters and both using the LMS update to train their weight vectors
as the constituent filters. The learning rates for two constituent filters are set to pu; = 0.002
and pe = 0.1 respectively. Therefore, in the steady-state, we obtain the optimum vector
approximately as w, = [1,0]. We have SNR = 1 for these simulations. The unconstrained
mixture weights are first updated with the EGU algorithm. For the second stage, the
learning rate for the EGU algorithm is selected as pggu = 0.01. The theoretical curves
in the figures are produced using I'(¢) and ~(t) that are calculated from the simulations,
since our goal is to illustrate the validity of derived equations. In Fig. 3.4a, we plot
the theoretical values of 'fvgl)(t), w? (1), w) (t) and wS (t) along with simulations. In
Fig. 3.4b, as an example, we plot the theoretical values of E[w((ll)(t)z], E['w,(ll)(t)w,(f) )],
E['w,(f) (t)w,(lg) (t)] and E[w((f’) (t)w((;l) (t)] along with simulations. We continue to update
the mixture weights with the EG algorithm. For the second stage, the learning rate for
the EG algorithm is selected as ugg = 0.01. We select © = 3 for the EG algorithm. In
Fig. 3.4c, we plot the theoretical values of ﬂ),(ll)(t), w) (1), w (t) and wS (t) along with

simulations. In Fig. 3.4d, as an example, we plot the theoretical values of E['wgf) (t)2],
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E[w,(ll)(t)'w,(f)(t)], E[w,(lz)(t)w,(f’)(t)] and E[w,(lz)(t)w,(f)(t)] along with simulations. We
observe a close agreement between our results and simulations.
To test the accuracy of the assumptions in (3.9) and (3.10), we plot in Fig. 3.5a, the

difference

[[exp {pe(t)(Gi(t) — Gm (1)} — {1 + pe(®)(@:(t) — ( I}I?
Vlexp {re(®)(Gi(8) — gm ()} IP1{1 + pe®)(@i(t) — g (1))} |2
for ¢ = 1 with the same algorithmic parameters as in Fig. 3.3 and Fig. 3.4. To test the
accuracy of the separation assumption in (3.27), we plot in Fig. 3.5b, the first parameter

of the difference

2

{ [ 14 pe(t)diag (u (t))])\a(t)} _uE{[IJr;Le(t)diag(’u,(t))])\a(t)}
(17 4 pe(yu” (1) | Aa (1) B{ [17 4 pe(nyu? (1) ] )\a(t)}

I+u6(t)dldg( ®)] A
(17 4 pe(ut (1) | Aa(0)

with the same algorithmic parameters as in Fig. 3.3 and Fig. 3.4. We observe that

uE{ [IJr,ue(t)dlag )]
B{ []_TJr,ue(t)uT(t)] )\a(t)}

assumptions are fairly accurate for these algorithms in our simulations.

To illustrate the assumption that A,(t) have Gaussian distribution, we calculate the
kurtosis of the “empirical” distribution of A,(¢) under the setup of the chapter. Note that
although not rigorous, the kurtosis is often used to measure the closeness of an empirical
distribution to a Gaussian distribution [14,19]. For this experiment, we collect 2000 samples
of Ay(t) under the same algorithmic framework as in Fig. 3.4 and report the kurtosis values
for randomly chosen t’s. The corresponding kurtosis values are provided as a table in
Fig. 3.6. As we observe from Table 3.6, the kurtosis values are close to 3 supporting the
assumption that A, (t) follows Gaussian distribution.

To illustrate the assumption of A (t) and AY )(t) are uncorrelated for j # ¢, we perform

1000 iterations and plot the ensemble averaged curves that correspond to the difference
1EDS 02 1= B @IEDE @l
VIERS AP @)21ERS ] ERS (0)]12
the same algorithmic parameters as in Fig. 3.3 both for the EG and EGU algorithms. In
Fig. 3.7, we plot this difference for )\gl)(t) — )\gl)(t) and )\§2) (t) — )\52) (t) pairs. We also plot

the difference for /\gs) (t) — /\§8) (t) and )\§4) (t) — Ag6) (t) pairs. As we observe from the plots

for different randomly chosen ¢ and j parameters with

that it is reasonable to use this assumption to approximate the expectation of the product

as the product of the expectations.
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In the last simulations, we compare performances of the EGU, EG and LMS algorithms
updating the affinely mixture weights under different algorithmic parameters. Algorithmic
parameters and constituent filters are selected as in Fig. 3.3 under SNR = -5 and 5. For
the second stage, under SNR = -5, learning rates for the EG, EGU and LMS algorithms are
selected as upg = 0.0005, prpgu = 0.005 and uras = 0.005 such that the EMSEs converge
to the same final EMSE to provide a fair comparison. However, there exist a wide range of
values for the step sizes so that the algorithms converge to very similar EMSEs. We choose
u = 500 for the EG algorithm. In Fig. 3.8a, we plot the EMSE curves for the adaptive
mixture updated with the EG algorithm, the adaptive mixture updated with the EGU
algorithm, the adaptive mixture updated with the LMS algorithm, first constituent filter
with p; = 0.002 and second constituent filter with pg € [0.1,0.11] under SNR = -5. Under
SNR = 5, learning rates for the EG, EGU and LMS algorithms are selected as ugpg = 0.002,
prcu = 0.005 and prvs = 0.005. We choose u = 100 for the EG algorithm. In Fig. 3.8b,
we plot same EMSE curves as in Fig. 3.8a. We observe that the EG algorithm performs
better than the EGU and LMS algorithms such that EMSE of the adaptive mixture updated
with the EG algorithm converges faster than the EMSE of adaptive mixtures updated with
the EGU and LMS algorithms. We also observe that the EGU and LMS algorithms show

similar performances when they are used to train the mixture weights.

3.5 Conclusion

In this chapter, we investigated adaptive mixture methods based on Bregman divergences
combining outputs of m adaptive filters to model a desired signal. We used the unnormalized
relative entropy and relative entropy as distance measures that produce the exponentiated
gradient update with unnormalized weights (EGU) and the exponentiated gradient update
with positive and negative weights (EG) to train the mixture weights under the affine
constraints or without any constraints. We provided the transient analysis of these methods
updated with the EGU and EG algorithms. In our simulations, we compared performances
of the EG, EGU and LMS algorithms and observe that the EG algorithm performs better
than the EGU and LMS algorithms when the combination vector in steady-state is sparse.
We observe that the EGU and LMS algorithms show similar performance when they are used

to train the mixture weights. We also observe a close agreement between the simulations
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and our theoretical results.
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Figure 3.2: Using RLS, LMS, Sign-error LMS, Sign-sign LMS filters as constituent filters,
where learning rates are ppms = 0.12, psign—errorms = 0.11 and psign—signvs = 0.1. For
the RLS filter, A = 1 and € = 20. SNR = 10dB. For the mixture stage, the EG algorithm
has ppg = 0.001 and the LMS algorithm has upms = 0.01. For the EG algorithm, u = 50.

(a) The weight of the RLS filter in the mixture, i.e., E[AM(2)].

(b) The EMSE curves

for adaptive mixture updated with the EG algorithm, the adaptive mixture updated with

the LMS algorithm, the RLS filter, the Sign-error LMS filter and the LMS filter.
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Figure 3.4: Two LMS filters as constituent filters with learning rates p; = 0.002 and po =
0.1, respectively. SNR = 1dB. For the second stage, the EGU algorithm has pugpcuy = 0.01
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purvs = 0.005. For the EG algorithm, u = 100. (b) the EMSE curves for the adaptive
mixture updated with the EG algorithm, the adaptive mixture updated with the EGU
algorithm, the adaptive mixture updated with the LMS algorithm (approximately same as
the EGU algorithm), the first constituent filter and the second constituent filter.
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Chapter 4

CONCLUSIONS

In this thesis, we study convex, affine and linear combination methods that adaptively
combine outputs of several adaptive filters working in parallel on the same task. Chapter
2 deals with four different convex mixture methods and presents their steady-state and
transient MSE performances. Chapter 3 is dedicated to affine and linear mixture methods
based on Bregman divergences and provides their mean and mean-square transient analyses.

In the first chapter, we investigate four convex combination methods to adaptively com-
bine outputs of two adaptive filters running in parallel to model an unknown system. We
first perform the steady-state MSE analysis and provide the corresponding MSEs and the
mixture weights of the combination algorithms in the steady-state under nonstationary ran-
dom walk model. We next present the mean and the mean-square transient analysis for the
studied algorithms. We observe that these convexly constrained combination methods are
universal such that they achieve the performance of the best constituent filter in the steady-
state. We observe that the EG update (2.6) under the mixture of experts framework can
also outperform the best constituent filter under certain configuration of the EMSEs of the
constituent filters (similar to the algorithm from [1]). We also demonstrate that the MSE in
the steady-state of the algorithms from [30] and [27] heavily depends on the corresponding
algorithmic parameters, i.e., the forgetting factor in [30] and the window length in [27]. We
observe that our derivations accurately describe the behavior of all algorithms under the
setup of [1].

In the second chapter, we analyze affine and linear mixture methods based on Bregman
divergences combining outputs of several parallel running adaptive filters to model an un-
known desired system. We use the unnormalized relative entropy and relative entropy and
propose the exponentiated gradient update with unnormalized weights (EGU) and the ex-
ponentiated gradient update with positive and negative weights (EG) to update the convex

weights under the affine constraint or without any constraints. We present the mean and
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mean-square transient analyses of the studied algorithms. In our simulations, we observe

that our derivations accurately describe the behavior of the EGU and EG algorithms.
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Chapter 5

APPENDIX A

1) For the update (2.4), we have

Ap(t) exp [Mpe(t)dl ()]

A 1) = £ ~
ey Ap(t) explupe(t)di(t)] + (1 — Ap(t)) explupe(t)da(t)]
1
1+ 52 expl el (1) — do ()]
1 1

— ~

1+ exp[—p(t)) exp[—pupe(D)di (1) — da(t)]] 1+ exp[—p(t + 1)

. — A
with exp[—p(t)] = 506 and p(t +1) = p(t) + poe(t) di (1) — da(t)]]. O
2) For the update (2.7), we have

_ t (t—i) .27
Aclt+1) = xPl—te iy A Vef(0)]

exp[—fie Yi_y alt=De2(i)] + exp[—pe >oi_y al=De3(i)]
1
1t expl—pe 30y a0 (e3(i) — €3(i))]
1 1

1+ exp[—ae(t) — pe(e3(t) — e2(t))] T 1+ exp|—e(t + 1)]

with exp[—e(t)] = %&()t) and €(t + 1) 2 ae(t) + pe(e3(t) —ei(t)). O

3) Let s(t) = Sty a'~'b(i) where 0 < a < 1 and b(t) — b as t — oo. If d(t) 2 s(t) — c(t)
where ¢(t) 2 bY_,a’, then we get d(t + 1) = ad(t) + b(t + 1) — b. Hence, we have

|d(t + )| < alld(®)] + [b( + 1) — b]

by the triangular inequality. If [ 2 lim sup, d(t), then |I| < |a||l] where we use lim sup, |b(t +
1) —b| = 0. Since a < 1, we get [ = 0. Moreover, if k 2 lim sup,(—d(t)), then we have |k| <
la||k| by the same reasoning. This yields k = 0. However, limsup,(—d(t)) = — liminf; d(¢)
implies limsup, d(t) = liminf, d(t) = 0. Since a sequence is convergent if and only if limit

superior and limit inferior of the sequence are equal, s(t) is convergent. Furthermore, we
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can write s(t) = as(t — 1) + b(t). By the uniqueness of the limit, we have

lim s(t) = b

t—00 1—a

If we let b(t) = Jex,2(t) — Jex,1(t) and s(t) = E[e(t)], then we get b = Jex 2 — Jex,1. By using

the above result, we conclude that

lim Ele(r)] = Helen2 = Jex1)

t—yo0 1—a

O
4) For the update (2.10), we have

M-1 9.,  _\1-M
/\'y(t) _ TS [Zn:O Afl(t 7’5\2[]712 _ _
[Zn:O el(t - n)]_T + [ano 62(t - n)]_T
1
Sag e3(t=n)]" %
e =

v
1 4 exp[—(t)]

3

A My, [zﬁf;ol e%(t—ml 0
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