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ABSTRACT

Developing computational methods for drug design has become one of the most

widely studied areas of life sciences in the past two decades. The main objective is to

discover new drugs using the information regarding topology and interaction energies

of known drugs, that minimizes binding energy and docking energy. Designing new

drugs from the fragments of known drugs rather than libraries of larger molecules

provides more combinations in products. From these many possible combinations it

is possible to find new drugs that have lower energy values than existing molecular

structures.

Experimental methods were applied to screen thousands of low-molecular-weight com-

pounds for testing their binding to the target protein in using fragment based drug

design effectively. Successful results in fragment based drug design were only obtained

with the strong integration of computational techniques, innovative NMR experi-

ments and X-Ray crystallography. Many existing computational algorithms cannot

accurately predict the affinity with which fragments might or might not bind to the

protein surface alone. A computational approach comprised of learning and design

phases is proposed in this thesis. First, we apply a learning algorithm on known

results of docking and binding energies to determine weights for the each fragment

reliably. Then, in the design part, the multi-objective optimization model is formed

based on the results obtained in the first step, to predict the contribution of each

group and individual fragment in docking energy and binding energy and finally de-

signs novel molecules from available fragments.
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Özet

İlaç tasarımı için bilgisayar metotlarının geliştirilmesi, son yirmi yıldır en çok çalışılan

alanlardan biri olmuştur. Bu çalışmalardaki asıl amaç, bilinen ilaçlardaki topoloji ve

etkileşim enerji değerleri göz önünde bulundurularak bağlanma ve kenetlenme enerji-

leri en düşük olacak şekilde yeni ilaçlar keşfetmektir. Büyük moleküllerce oluşturulan

kütüphaneleri kullanmak yerine bilinen ilaçların parçalarını kullanarak yeni ilaçlar

dizayn etmek, daha çok kombinasyon oluşumu sağlamaktadır. Bilinen ilaçların parçaları

kullanılarak oluşturulan bu kombinasyonlar ile, var olan moleküllerden daha düşük

enerjili ilaçların tasarlanılması mümkündür.

Deneysel metotlar, parça bazlı ilaç tasarımını etkili bir şekilde uygulamak adına

düşük moleküler ağırlıklı moleküllerin hedef proteine bağlanmalarını test etmek için

binlerce ürün taramaktadırlar. Parça bazlı ilaç tasarımında başarılı sonuçlar ise sadece

bilgisayar metotlarının yenilikçi NMR deneyleri ve X-Ray kristalografisi ile etkileşimi

durumunda elde edilmektedir.Varolan birçok bilgisayar tekniği, hangi parçanın pro-

tein yüzeyine etkili bir şekilde bağlanacağını düzgün olarak tahmin edememektedir.

Bu çalı şmada, ilaç tasarımında öğrenme ve dizayn basamaklarından oluşan bilgisa-

yarl bir yöntem geliştirilmiştir. İlk olarak, yapısı bilinen moleküllerin kenetlenme ve

bağlanma enerjileri kullanılarak, yapılardaki parçalara enerji değerlerine katkılarına

göre ayrı ayrı ağırlık katsayıları belirleyen bir öğrenme algoritması uygulanır. Daha

sonra dizayn kısmına geçilir ve ilk adımda elde edilen ağırlık katsayıları kullanılarak

en düşük kenetlenme ve bağlanma enerjilerini veren parçalar kullanılarak tamamen

yeni ilaç tasarımları yapılır.
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Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

Drugs are substances used for the inhibition of the protein (most cases enzymes)

activation that causes diseases. The drug discovery process is aimed at bringing to

market new therapeutic agents with desirable pharmacodynamic profile, favorable

ADME (Absorption, Distribution, Metabolism, Elimination) and toxicological prop-

erties [2] considering the cost and the time of production. According to the annual

report of PhRMA the amount of time that was needed to commercialize a single

drug was in the order of 5 years and the amount of money invested was in the order

of $2,000,000,000 per drug approved before the investigation of computational tec-

niques [2]. The huge cost and time consumption on drug design process has yielded

the drug industry to investigate some computational methodologies to reduce cost

and time.

In the rational drug design methods, drug discovery was a trial and error process

of substances on animals or cultured cells and analyzing the effects, which is costly

and time consuming. However, there is a growing realization that given the enormous

size of organic chemical space (possibly >1018 compounds), the drug discovery cannot

be reduced to a simple empirical method. To this end, a battery of in vitro ADME

screens has been implemented in most pharmaceutical companies with the aim of

discarding compounds in the discovery phase that are likely to fail further down the

line [3]. In these experimental filters, there are also some limitations such as requiring

physical samples for testing, being resource-intensive and remaining time consuming

as well.

For this reason, researchers choose to give the compounds making the best possible
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chance of becoming drugs computationally and create a subset of ’drug-like’ molecules

from the vast expanse of what could possibly be synthesized [4]. So, creating such a

subset by computational drug design can significantly simplify the job with decreasing

the cost and time. Although, the perfect computational drug design process has not

been developed yet, the structure and fragment based drug design are widely used by

researchers in academia and industry.

In this thesis, computational fragment based drug design has been used for the

treatment of prostate cancer. In order to achieve this, a systematic and detailed

two-stage methodology is followed. The first stage is the learning phase that begins

with the selection of the main scaffold, fragments and the positions of the fragments

for the given scaffold for the deactivation of the target protein (CYP17 in our case).

Then, all possible combinations were determined by trying each fragments for all

given positions and binding and docking energies of all possible combinations were

calculated by a computational tool AutoDock. The weights for each fragment were

determined by linear regression in the final step of the first stage.

The second stage is the design phase that determines the best fragments for each

position with minimum docking and binding energies for the given scaffold using

weight coefficients determined in the learning phase. Then, a priority order is provided

in the given dataset by a multi objective optimization algorithm. Finaly, a subset

including compounds that have the smallest docking and binding energies from the

dataset with possible drug formations have been formed.

Chapter 2 provides necessary background and literature review on the methods in

computational drug design. The importance of the prostate cancer and the treatment

process, the principles of the drug design and computational fragment based drug

design algorithms in the literature are given in this chapter.

Chapter 3 is dedicated to the methodology and algorithm designed for the compu-

tational fragment based drug design in this study. Following the aim and importance

of the selection of the CYP17 protein as a target, the chapter continues with the

learning phase section. Autodock tool in detail, the selection of the scaffolds and the

fragments and the algorithm are also given in this section. Finally, the design phase



Chapter 1: Introduction 3

methodology and the application of the algorithm that gives a priority order in the

given dataset is provided.

Results and the discussion of the proposed algorithm is given in the Chapter

4. First, the optimal solutions for the scaffolds are provided and the training set

formations are explained. Then, training set results and providing the priority order

in the datasets are given. Finally, the docking and the binding energy values of the

calculated by AutoDock and estimated by the algorithm are compared and discussed.

Finally, this thesis is concluded with a summary of the performed study and future

work in Chapter 5.
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Chapter 2

LITERATURE REVIEW

2.1 The Drug Design Process

2.1.1 Principles

ADME requirements are the milestones of the drug design process which are the

adsorption, distribution, metabolism and excretion. The drug candidate must be

membrane permeable, as small as possible and soluble. In addition, the drug can-

didate should only bind to the target, not to other molecules that have important

metabolic duties. Also, the toxicity levels of the drug candidate should be mini-

mized [5].

Since 1997, the ’rule of five’ by Lipinski et al. [6] is used to characterize the drug

candidates as first filtering step. According to Lipinski et al. [6], a drug-like molecule

should satisfy the given five parameters below.

i Not more than 5 hydrogen bond donors

ii Not more than 10 hydrogen bond acceptors

iii A molecular weight under 500g/mol

iv A partition coefficient log P less than 5

These are the threshold values for parameters of adsorption, distribution, metabolism

and excretion. Lipinski’s ’rule of five’ provides finding drug candidates but is not

enough to discover a successful novel drug completely. After the pioneering work by
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Lipinski, many other properties that affect oral bioavailability are discussed such as

molecular flexibility, or polarity of the surface area [7].

Binding affinity is another important characteristic for computational drug design.

This feature is related with the tendency to the binding process energetically. In

binding process, the temperature that the process takes place in (T), the enthalpy

change (4H) and the entropy change (4S) plays important role. Therefore, binding

affinity is directly related to the Gibbs free energy of binding (4G) where;

4G = 4H − T (2.1)

To maximize the binding affinity that means a successful binding process, 4G

must be as small as possible. Minimizing 4G supplies stability to the molecule.

Therefore, in many cases, instead of maximizing the entropy, it is more preferable

to minimize the enthalpy. Maximizing entropy provides the molecule flexibility and

spontaneity, however, if this value is too high than the stability of the drug would be

disturbed.

The attention is generally focused on specific activity of the receptor-like interac-

tions or small organic ligand molecules with a well defined biological target during the

search for effective drugs and other bioactive compounds [8]. Atoms and bonds prop-

erties are the local physicochemical features to control the nature and the strength of

such interactions. Proper comparison of activity and local molecular properties within

a single structure and between various congeneric structures are the key elements to

analyze the structure-activity relationships. These properties can also be used to

provide predictive statistical modeling with bioactivity parameters. In addition, such

statistical modeling lead to further optimization of activity for drug mechanisms.

It is easy to relate the mentality of organic and medicinal chemist with topological

approaches including synthesis planning and the design of novel promising structures.

One of the most commonly used analysis method for local molecular properties

is 3D-based approach. This approach starts with 3D model of atom positions. To

compare different molecules, some uniform representations for structural features are

proposed. Instead of individual atoms, this representation is linked to the molecular
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axes of inertia or to an abstract spatial grid, thus avoiding the problem of match-

ing the atoms of different structures [8]. 3D-based approaches reflect the actual 3D

nature of the biological target and ligand better. However, generally the relation be-

tween the uniform representation and the molecular structure is not well defined and

the construction of the model and the application to the virtual screening become

complicated. In addition, 3D approaches are kind of info-noise and includes a lot of

data on the particular details of conformational behavior, molecular structures and

physicochemical parameters of the compounds.

The classical method of 3D analysis is the Comparative Molecular Field Analysis

(CoMFA) technique introduced by R.Cramer et al. in 1988 (top book ref 2). This

is the most commonly used method for almost 20 years for the creation of several

approaches. The main aim of the method is to identify the spatial regions around the

molecule where certain local properties have a positive or negative effect on activity

[8]. The non-covalent interactions like van der Waals and Coulomb forces that are

controlled by the shape of molecules between the organic ligand and the biotarget is

the key point on the foundation o CoMFA approach.

The key feature of this approach is the assumption of considering the biological

action of compounds as the electrostatic field of their molecules as a quantitative

measure. A descriptor matrix is defined by calculated energies of van der Waals

and Coulombic interaction of a molecule in a rectangular 3D grid. In contrast to

the multiple linear regression, Partial Least Square Regression method is used which

allows the predictive statistical relationship to be detected even if the number of

descriptors is much greater than the number of the experimental data points.

2.1.2 Molecular Interactions

A successful drug molecules should have a strong binding affinity. Addition of

the noncovalent bonds between the drug and the target protein increases the binding

affinity. This more stable condition can be satisfied with addition of the atoms to

the drug molecule which causes the enlargement in the molecule structure. However,

Lipinski rules should be considered as well during the drug design while increasing
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the binding affinity. Therefore, the balance between the increments of binding affinity

without disturbing the Lipinski’s constraints is important for a successful drug design.

There are different types of interactions between the drug and the target protein.

Ionic bonds occur among the oppositely charged atoms. Hydrogen bonds are formed

by polarization between a hydrogen acceptor and a hydrogen donor (or a hydrogen

atom bonded to a N, F or I atom). Hydrogen acceptors create an electronegative

nature. The final interaction is Van der Waals interaction which occurs between

every atom couple that is close enough.

If the bond is strong then the energy released is more while breaking the bond.

The strongest interaction is the formation of ionic bond, second is the hydrogen bond

and the weakest one is the van der Waals interaction. Hydrogen bonds bear about

one third of this energy, and van der Waals interactions are quite weak, having energy

approximately one tenth of ionic bonds have [9].

In this thesis, considering these different types of interactions, with increasing

binding affinity, minimizing the binding energy was one of the aims to create a novel

drug from known molecules.

2.2 Fragment Based Drug Design

The drug discovery becomes widespread in industry and academia since these methods

have been successfully generating new drug leads with high potency and improved

pharmacokinetic properties. Most of the medicinal chemistry leads were developed

from hits that are obtained from screening collections of compounds against functional

assays with large molecules. However, it was discovered that as the molecular size

decreases, the number of possible molecules decreases exponentially so it would be

more efficient to screen collections of fragments and subsequently expand, merge

or link them. Once fragment is identified, the most conceptually straightforward

approach of advancing fragments, optimizing through chemical elaboration, generally

requires highly specific or energetically favorable neighboring contacts to succeed [10].

This situation occurs if the nucleating fragment supplies much of the total necessary
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binging energy. Metal coordination, mechanism based transition state analogues or

very deep and well-defined pockets are the example of binding energy supplier groups.

Anchoring sites are also in this class providing the necessary binding energy to enable

high affinity association with a small molecule. In terms of recognizing small-molecule

substrates, the enzyme molecules behave like anchoring sites. These molecules were

recognized by high-throughput screen but it is suggested that they could be discovered

by fragment optimization strategy as well.

Fragment optimization strategies can be facilitated by methods that guarantee

the fragments bind noncompetitively with one another. Structural methods like SAR

by NMR and SAR by X-ray are used to observe whether two fragments can bind

simultaneously and in some cases even facilitate linking by providing the orientation

of the fragments. However, structural information is not always essential because

the technology like SAR by MS are used to determine two molecules that could bind

simultaneously. To date, most successful applications of fragment based methods, par-

ticularly those involving fragment linking, have taken advantage of existing knowledge

of the system, such as known cofactors, ligands and mechanistic consideration [10].

Structural information is used to guide the process and design the fragments.

The fragment-based drug design methods are still new and their development and

validation have generally relied on using targets that often have known structures

and that have already been subjected to other methods of lead discovery [10]. The

identification of the hits that are worth pursuing is another hurdle for the fragment-

based methods because not all inhibitors can become leads. It has been observed

that some chemotypes could yield false positive results by reacting irreversibly with

the target protein or interfering with colorimetic or fluorescent assays for highly col-

ored compounds. In addition, many small molecules could form aggregates that

non-specifically inhibits the protein function. Even the determination of such defects

are possible, it is unclear that which molecular properties lead to this properties.

Therefore, it is crucial to preserve the integrity of the fragments during new fragment

based discovery process. The fragment based drug design method is open to evolve

as the complement of other discovery approaches. Fragment-based methods will be
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absorbed into a holistic approach to drug discovery, where fragments will be expanded

and combined into libraries for functional screening, HTS hits will be dissected into

component fragments for individual optimization, and the modelling techniques un-

derpinning structure-based drug design will be called upon routinely [10].

2.2.1 Strategic Advances

Since the early 1990, there have been many scientific and technological develop-

ments in sequencing of the human genome and combinatorial chemistry fields. Frag-

ment based drug design is a tool in combinatorial chemistry field that is developed

recently.

In drug discovery field, there are two main issues for the target-based approach.

First is to determine the activity of the biological target that causes the human

disease must be identified. Second is to develop a therapeutic agent that will block

the activity of this target without causing any toxic or hazardous effect. Competing

with these problems depend on the quality and the efficiency of the drug design

and discovery process. To improve the chances of finding agents that are active

against these targets, technologies such as combinatorial chemistry and ultra-high-

throughput screening (HTS) approaches have considerably expanded the numbers

of compounds that can be evaluated for their biological activity [2].To decrease the

number of combinations, virtual ligand screening and structure-based drug design can

be used. Novel drugs have been obtained by these methods but the investment to the

new medicines are still the same.

Fragment based drug design is a new approach that has the advantage of increasing

productivity in drug design. It is first demonstrated a decade ago [2]. The fragmen-

tation of drug leads into smaller pieces, or even into discrete functional groups (for

example, carboxylate, amine, aryl group and so on), has been used for some time

to simplify the computational analysis of ligand binding and to map out different

pharmacophoric elements required for high-affinity binding [2, 11]. In this approach,

instead of considering whole molecule, the optimization of binding affinity is calcu-

lated as the sum of the individual fragment interactions. However, there is no such
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a computational technique that exactly predicts the binding affinity of a fragment to

protein surface. Therefore, experimental methods and spectral editing are used to

determine the interaction of fragments with recent technology.

Nevertheless, there was a significant amount of internal resistance to resourcing the

experimental pursuit of fragment leads at Abbott, as it was commonly believed that

such low-molecular-mass, low-affinity ligands, even if they could be detected, would

not form a unique and stable complex with the protein that could be productively

used in drug design [2]. However, in P. Hajduk and J. Greer’s work, if the fragments

were soluble at the test concentrations, it has been proved that stable binding modes

could be observed even with millimolar ligands for the protein.

P. Hajduk and J. Greer used NMR technique to determine this structure-activity

relationships (SAR). They first designed a high-affinity inhibitors of the MMPs, which

is a family of zinc-depended endopeptidases that are implicates diseases like arthritis

and tumor metastasis. After fragment screening performances, they discovered that

acetohydroxamate (a zinc-chelating moiety with a Kd value of 11 µM for the protein)

could bind to the protein simultaneously with a number of biaryl compounds (with Kd

values in the 20100 µM range) [2]. Then they started lead optimization to increase the

oral bioavilability of the series and to redirect potency against MMP2 and MMP9. In

ABT-518, perfect oral antitumor efficacy in animal trials was obtained. They conclude

that a single molecule could be designed and medicinal chemistry optimization is

ultimately yielded.

For 10 years, there has been 49 highly potent (IC50 < 100 nM) drug that are

developed by fragment-based drug design method for various protein targets. With

the increasing popularity of fragment-based drug design, drug companies such as

AstraZeneca, ScheringPlough, and Aventis have started to use this method. However,

many companies quickly developed alternative NMR-based approaches that obviated

the need for isotope labeling and facilitated screening on larger numbers of targets

[12,13]. Leaders in these approaches have been Novartis27, Vertex28 and Pharmacia

(now Pfizer) [14, 15].

Fragment-based drug design appeared as a necessity for the small-molecule drug
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discovery by the medicinal chemists whose job is to produce high affinity drugs. Lead-

ers in the pharmaceutical industry have independently realized that chasing after

potency at the expense of other physicochemical properties (such as lipophilicity,

polarity, charge, stability, and so on) carries serious risks of failure owing to inade-

quate pharmacokinetic properties of the resulting compound [16]. This has spawned a

whole new movement (the ’lead-like’ movement) away from the use of large lipophilic

compounds as leads towards smaller compounds that will have reasonable chances

of possessing good pharmacokinetic properties after the optimization process is com-

plete [17, 18]. To achieve the best balanced combinations in terms of potency and

pharmacokinetic properties, fragment-based design provides the biggest support.

The concept of the fragment-based drug design seems simple and elegant when

dealing with single ligand. However, simply identifying multiple ligands will not

guarantee success [19]. In general, it is not likely to find the binding pocket for

multiple fragments. Therefore, in fragment-based design the designer must allow

some unexpected results that can provide new opportunities for further research.

2.2.2 Fragment Based Design Algorithms

Main Characteristics of Fragment Descriptors

A tremendous number of various fragments are used in structure-property studies:

atoms, bonds, topological torsions, chains, cycles, atom-and bond-centered fragments,

maximum common substructures, line notation fragments, atom pairs and topological

multiplets, substituent and molecular frameworks, basic sub graphs, etc. [8]. Frag-

ment descriptors are two types; binary and integer, depending on the application

area. The presence and absence of the given fragment is indicated by the binary

values and they are generally used as element fingerprints for chemical database and

virtual screening. However, for QSAR studies, integer values for the occurrences of

fragments in structures are used.

The simplest types of fragments are the disconnected atoms. Atomic contributions

assess chemical or biological properties as an additive based approach with a chemical
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or biological property P:

P =
N∑
i=1

ni.Ai (2.2)

where ni is the number of atoms of type i,Ai is the corresponding atomic contri-

butions. The atom types generally accounts for the hybridization, attached hydrogen

atom numbers for heavy elements and occurrence in aromatic systems. Another type

of simple fragment is the chemical bonds. Considering the thermodynamic properties

is the only difference between the atom-based works and chemical bonds type work.

Topological torsions are defined as a linear sequence of four consecutively bonded

non-hydrogen atoms [8]. The number of attached non-hydrogen atoms, pi-electron

pairs and type of corresponding chemical element are the parameters to describe the

atoms. Qualitative predictions for the presence or absence of topological torsions are

made by structure-activity studies.

The main aim is to obtain the fast assessment of usefulness of molecules accord-

ing to the given rules and eliminate compounds with unfavorable pharmacodynamic,

pharmacokinetics and toxic properties in terms of drug design. Binding of the drug-

like organic fragments to chosen biological target is considered by pharmacodynamics.

In addition, pharcokinetics is mostly related to absorption, distribution, metabolism

and excretion related properties: octanol-water partition coefficients (log P), solu-

bility in water (log S), blood-brain coefficient (log BB), partition coefficient between

different tissues, skin penetration coefficient etc. [8]. To filter the large database, the

easiest way is to detect the undesirable molecular fragments by structural alerts like

toxicity, mutagenicity and carcinogenicity. However, Lipinski rule of five is the most

popular filter used in the drug design area.

The use of information technology and management has become a critical part o

the drug discovery process.Mixing of those information resources to transform data

into knowledge for the intended purpose of making better decisions faster in the area

of drug lead identification and organization is the key point for the computational

drug design methods. In this thesis, the main aim is to find out the best fragment
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combination to create a novel drug with fragment based drug design method from

the fragments of known drugs by minimizing the binding and docking energies. To

minimize these energies, an optimization model is created and the new structure is

found out computationally. It is crucial to summarize the computational works done

up to now to show that this thesis includes completely a new idea on computational

fragment based drug design.

Computational approaches on ligand design appeared first in the late 80s, as an

alternative to the high throughput screening methods. The main usage was to find

the docking energy of the drug to the target protein. Recently, there are many de

novo design algorithms that use various types of building blocks, search methods

and scoring functions [20]. However, in these approaches, it is difficult to filtrate

the successful products among all. The filtration process again needs to evaluate all

the drugs in terms of combinatorial difficulties and pharmacokinetics which is time

consuming and costly.

Techniques for Finding Fragments

Developing libraries of fragments is the first step of the fragment-based drug discovery.

There are some unique considerations for fragment libraries. For example, fragment

should be smaller than typical HTS compounds because the fragments will ultimately

be elaborated. Scientists at Vertex Pharmaceuticals computationally dissected known

drugs into fragments corresponding to molecular frameworks and side chains, these

analysis demonstrated that most drugs can be represented by a relatively small set

of molecular architectures [10]. After this investigation, a small library including

fewer than 200 fragments, especially designed for NMR screening, called SHAPES

library [21]. The compounds were chosen form known drugs as be soluble at high

concentrations, nonreactive and commercially available. Then, Lewell and collegues

described the use of a retrosynthetic combinatorial analysis procedure RECAP to

identify recurring fragments from known drugs [22].Fesik and colleagues have proposed

enriching fragment libraries with privileged molecules, such as biphenyls, that have

been experimentally shown to bind to proteins frequently [23]. Fragment library
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design has been reviewed more recently [24] with the computational deconstruction

of drugs into fragments remaining an active research focus [25]. In terms of the targets

with fairly rigid sites, the virtual screening methods can be used to augment default

libraries with fragments selected on the basis of their structural complementarity to

the protein.

Here are some methods used for the fragment-based drug design algorithms.

LUDI [26] is a fragment-based design algorithm developed in 1991. As input,

PDB structure, position of active site and possible fragments to bond the active site

are necessary for the program. The working principle is to create hydrogen bonds

between the fragments that are chosen from a fragment library as initial step. This

library includes energetically optimized conformations calculated by available energy

field CVFF [27]. According to bond distance and angle preferences, algorithm creates

all of the conformations of aliphatic, aromatic, hydrogen donors and acceptors in

’influence region’. Then, all of the conformations are tried on active site to find

the best fit. Finally, the successfully fitted fragments are linked with ’bridges’ from

another library. These bridges are used to connect the closest fragments of a closest

hydrogen atoms and the heaviest atom. The most suitable bridge for the situation is

determined by the program.

HOOK [28] is another program that requires the coordinates of the active sites,

’skeleton’ database and functional regions to achieve the fragment-based drug design.

The fragments are called as skeletons in this program and the main aim is to hook the

skeletons to the active site by non-covalent interactions. If there is no attraction above

a certain level on a grid point, that point is called ’vacant’ and if the certain attraction

level is satisfied, then that gird point is called ’donor’ , ’acceptor’ or ’hydrophobic’.

Then, the program calculates an overlap score by comparing the hooks on skeletons

and the geometry of the functional sites using Lennard-Jones potential which gives a

certain interaction threshold to be satisfied.

LigBuilder [29] is another fragment-based design algorithm. In the first step,

POCKET [30] is used to determine the active binding sites as grids. The algorithm

automatically determines a structure from fragments initially. Hydrogen atoms of
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both active site and the fragment are determined and covalent bonds are formed

between the heavy atoms and hydrogen atoms. Then, energetically the most favorable

structure which has the lowest 4G value is searched by turning the bond by 15

increment. However, because of every favorable conformation is kept in memory as a

different molecule, the number of possible structures is too much. Therefore, genetic

algorithm is used which keeps 10% o the best members from old generation in new

generation. The rest in the new generation is selected randomly from the fragment

library. The final generation is the best drug candidate.

As a different methodology than the others, CONCERTS [31] by Pearlman et

al. can be shown. This method uses molecular dynamics on database of fragments

together within the active site. In that algorithm, the first step is to provide interac-

tions between the active site and the fragments preventing the interactions between

the fragments. Then, in each iteration, bonds between fragments are formed. Finally,

the algorithm stops when the energetically favorable conformation is found.

Converting Fragments into Hits and Leads

After identifying the fragments, converting fragments into hits and leads become the

final stage. There are three broad converting strtegies for converting fragments into

hits and leads: fragment optimization, fragment merging or linking and in situ frag-

ment assembly. Fragment optimization is like traditional medicinal chemistry where

different substitutions or expansions are made to the fragment to develop the affinity

and other properties and it is easy to optimize the smaller fragments. Although these

fragments may have low intrinsic affinities, they generally possess binding specificity

sufficient to serve as viable anchors for subsequent derivatization [10]. When found,

the fragment’s potency can be optimized.

Fragment merging or linking includes combining elements from fragments with

elements from a known substrate, inhibitor or another fragment by a hybrid molecule.

The physicochemical and ADME absorption, distribution,metabolismandexcreation

properties can be improved by this approach. Finally, in situ fragment assembly uses

the target as a template for the synthesis of inhibitors from fragments. In practice,
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all of these methods have considerable overlap.For instance, in situ method could

include fragment linking and fragment optimization where fragment linking method

may involve the fragment optimization method as well.

In most successful examples of the fragment optimization, the anchoring frag-

ments bound using discrete,specific contacts and their binding modes were preserved

throughout the optimization process. [10]. Helping to circumvent undesired qualities

is provided by the known inhibitors or substrates by initial fragment for screening and

guided optimization. Deconstructing known leads and reassembling are the most suc-

cessful applications of the fragment based design methods to generate a new chemical

series with improved properties.

Using in situ fragment assembly is an efficient method for techniques such as NMR

or crystallography to identify fragments that can bind to nearby sites in a mutually

compatible manner. Combinations of fragments for binding concurrently as potential

candidates for linking are provided by the competition studies. However, the linking

and merging process of fragments is a technical challenge which is open to development

when the target protein has a flexible binding surface. Selection and combination of

the fragments in situ have now been explored by considering the cross-linking of the

proteins. In addition, there are certain criteria to new lead discovery in this method.

The molecules must be compatible with the chemical functionality in amino acid side

chains. The reactions should be fast enough to enable a reasonable number and the

coupling reaction would ideally be under thermodynamic control to prevent highly

reactive intermediates from dominating the product distribution [10]. After these

criterias are satisfied, then the product would be reasonably compact, soluble and

stable.

2.3 WEKA: Data Mining Software

WEKA is a comprehensive toolbench for machine learning and data mining that

its main strengths lie in the classification area with a clean, object-oriented Java

class hierarchy [32]. Regression, association rules and clustering algorithms are also



Chapter 2: Literature Review 17

included in WEKA software. To start using the software, a set of data items, the

dataset is enough. The given dataset is equivalent to a database table or a two

dimensional spreadsheet. Instances class in Java is used in WEKA and each instance is

equivalent to collection of examples. Each instance consists of a number of attributes,

any of which can be nominal (one of a predefined list of values), numeric (a real or

integer number) or a string (an arbitrary long list of characters, enclosed in double

quotes) [32].

For a basic classifier, a routine that evaluates the generated model on an unseen

test dataset or generates a probability distribution for all classes and a routine gen-

erates a classifier model from training dataset. The usage of this classifier in terms of

mapping or model differs from classifier to classifier. The performance of the classi-

fiers can be determined by various approaches like counting the proportion of correctly

predicted examples in an unseen test dataset. The easiest way is to create a train-

ing set and a test set by randomly reordering and then splitting into these two sets

with collecting all estimates on the test data and calculating average and standard

deviation of accuracy.

Cross validation is more detailed method. In cross validation, n fold is specified

and dataset is split n folds of equal size after reordering randomly. In each iteration,

one fold is used for testing and the other n-1 folds are used for training the classifier

and the test results are collected and averaged over all folds [32]. Same class distri-

butions in each fold should be obtained in the complete dataset. The cross-validation

estimate of accuracy is calculated by this method. On the other hand, it is more use-

ful to deal with small datasets because the small datasets uses the greatest amount

of training data from the dataset.

WEKA uses a filter package that filters the classes that transforms datasets and

provides useful support for data preprocessing by removing examples, removing or

adding attributes and resampling dataset. This package includes both supervised and

unsupervised filtering by subdividing into instance and attribute filtering. Supervised

filtering takes advantage of the class information. However, unsupervised filtering cre-

ates non-stratified subsample of the given dataset and classes should not be assigned
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here. After filtering, WEKA contains clusters for finding groups of similar instances

in a dataset. Clusters can be visualized and compared to true clusters. In addition,

Apriori algorithm for learning association rules and works only discrete data. This

algorithm can identify statistical dependencies between groups of attributes. And

compute all rules that have a given minimum support and exceed a given confidence.

Attribute selection method is used to investigate the attributes as the most pre-

dictive ones. The method includes two parts. The first part is search method that

includes the best-first, forward-selection, random, exhaustive, genetic algorithm and

ranking attributes. The second part is evaluation method including correlation-based,

wrapper, information gain attributes. WEKA is very flexible allowing almost arbi-

trary combinations of these two methods. In addition, visualization is another useful

tool that helps to determine difficulty of the learning problem. Experimenter makes

it easy to compare the performance of different learning schemes for classification and

regression problems. Finally, the results can be written into file or database. The

evaluation options are the cross-validation and drawing learning curve and iterations

can be made over different parameter settings.

2.3.1 Prostate and Prostate Cancer

As a glandular tissue, the prostate is a male productive organ which stores and helps

to produce seminal fluid. In primal phases, prostate cancer spreads to local structures

and nodes in prostate. In the late phases, metastasis mostly occurs to local nodes,

bone, supradiaphragmatic lymph nodes and lung [19].

Recently, prostate cancer has been ranked as the 2nd leading cause of cancer

deaths among males [33]. 1 out of 6 men will be diagnosed with invasive prostate

cancer during their lifetime but it is not likely possible to have before the age 40.

Dietary, cultural mediated and genetic differences cause the variations in incidence

rate of prostate cancer [34]. African- American population has the highest rate and

the lowest rate belongs to Japanese people.

Early diagnosis is very important for prostate cancer treatments [19]. However,

most of the patients do not suffer symptoms in the early stages, and if diagnosis is
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done after symptoms are seen, metastasis is common [35]. PSA test and DRE are two

methods to detect the prostate cancer. PSA means prostate specific antigen which is

a glycoprotein produced by prostate. This method is not completely efficient because

20% of the prostate cancer patients have normal prostate specific antigen levels. To

increase the efficiency, digital rectal examination (DRE) has done after PSA. DRE

shows the irregularities in prostate gland. Although 50% of irregularities are due to

cancer, this combined method is the most effective screening tool up-to-date [19].

In treatment process, chemotherapy, radiation therapy, surgical procedures and

hormonal therapy are the options. Chemotherapy and radiation therapy use radi-

ation or cytotoxic drugs to kill cancer cells. Therefore, these methods have lots of

side effects. Orchiectomy and prostatectomy are the surgical methods for prostate

cancer treatment. Orchiectomy is a method that removes the testicles. In addition,

prostatectomy is the removal of malignant tissue and all or part of prostate gland.

As another method, hormone therapy is the replacement of androgens with anti an-

drogens or antagonists of androgens. Also, controlling androgens by a regulator of

androgen synthesis called gonadorellin is another hormonal therapy method.

2.3.2 Drug Design Studies for the Treatment of Prostate Cancer

CYP17 is a well known target for the treatment of prostate cancer since the inhibition

of this enzyme exerts control over the androgen synthesis. There are many studies

on the computer-generated models on CYP17.Laughton et al. [36] built a model for

CYP17 and Lin et al. had modeled the active site of the protein and defined a bio-

lobed substrate binding pocket based on the crystal structure of a class I P450 [37].The

more recent model by Auchus et al. is based on a class II P450 [38].

First generation of designed compounds was steroid based molecules like PREG

and PROG with various side chains attached to the 17th carbon. These steroidal

compounds have some disadvantages like poor acid stability, poor bio-availability,

short half life, first pass effects and poor selectivity [39]. Ketoconazole is an anti-

fungal agent known to reduce androgen levels in human, and has inhibitory effect on

CYP17. However, it has been removed from use because of liver toxicity and its ef-
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fects on other cytochrome enzymes [40]. The steroidal compound Abiraterone passed

phase II clinical trials and reported to have no dose limiting toxicity [41]. Nnane

et al. presented novel steroid-based inhibitors of CYP17. The IC50 values for five

steroid-based compounds were determined for CYP17 and 5- reductase. Molecules L-

6 and L-26 showed more potent inhibition than ketoconazole.Despite their problems

in bioavailability, these compounds were found to be promising as potential agents for

reducing levels of testosterone and dehydro- testosterone in patients with androgen

dependent diseases [42]. The effect of cinnamic-acid based derivatives of thiazolidine-

diones on CYP17 was analyzed and have shown inhibition on both reactions catalyzed

by CYP17 [43] as a different study. C-17-Heteroaryl steroidal compounds were ra-

tionally synthesized and tested for inhibitory and antitumor effects by Handratta et

al. Some of these benzoazoles and pyrazines were found to be potent inhibitors of

CYP17 as well as being antagonists of androgen receptors [44]. A novel non-steroidal

substrate mimetics reported to showed good inhibition values with good selectiviy

against CYP3A4 but also showed moderate to high inhibition activity against other

hepatic CYP enzymes [45]. The available non-steroidal compounds like progesterone

and abiraterone were mainly designed based on mimicking known steroids that are

interacting with the CYP 17 active site and creating derivatives of known inhibitors

of cytochrome enzymes like pyridine derivatives, xanthone derivatives and carbazole

derivatives. The non-steroidal compounds reported in the literature did not yet show

promising results in clinical trials.In the work done by Pelin Armutlu, structure-based

drug design approach based on the model protein structure by Auchus et al [38]. was

successfully applied to identify novel CYP 17 inhibitors in silico.Further experimental

tests proved inhibitory activity of two novel lead compounds against CYP 17 in an

HEK 293 T cell line. The leads were also tested on HeLa cell line for toxicity and the

non-steroidal lead compound does not display toxic effects [46].
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2.4 Nonlinear Programming Problems

In many cases, especially real world problems, the objective function may not be

a linear function, or some of the constraints may not be linear constraints. These

kinds of optimization problems involving nonlinearities are called nonlinear program-

ming (NLP) problems. Nonlinear programming models have the same general form

as the linear programming models except the objective function with the nonlinear

constraints. Generally, the solution procedures are much more complex and no guar-

anteed procedure exists for all nonlinear programming models.

Solution is often not on the boundary of the feasible solution space unlike linear

programming. The solution is not simply on the solution space boundary but other

points on the surface of the objective function should be considered as well. These

differences greatly complicate solution approaches and make the solution techniques

very complex.

2.4.1 Nonlinear Programming Solution Techniques

The Substitution Method

The substitution method is the least complex method for solving nonlinear program-

ming problems. The method includes the constraint equation which is solved for

one variable in terms of another and then substituted into the objective function.

The constraints are eliminated by substituting the new expression in the objective

function and an unconstrained model is formed. This method becomes difficult if

the constraint is complex. Therefore, the problems without complex objective func-

tions and with fewer constraints are preferred for this method. Otherwise, Lagrange

multipliers method can be used which is not as restricted as the substitution method.

The Method of Lagrange Multipliers

The Lagrange multipliers method is a mathematical technique for solving a problem

with nonlinear objective function and one or more linear or nonlinear constraint equa-

tions. In this method, constraints as multiples of a multiplier λ are subtracted from



Chapter 2: Literature Review 22

the objective function, which is then differentiated with respect to each variable and

solved [47]. This method can encompass problems with more than two variables and is

more flexible than the substitution method. However, the mathematics becomes very

difficult as the size of the problem increases. The Lagrange multiplier λ in nonlinear

programming problems is analogous to the dual variables in a linear programming

problems and it reflects the approximate change in the objective function resulting

from a unit change in the quantity (right-hand side) value of the constraint equation.

A one-unit increase in the right-hand side of the constraint equation results in a λ

increase in the objective function which is the same interpretation with the dual vari-

able in linear programming. When λis positive, the optimal objective function value

will increase if the quantity (absolute) value in the constraint equation is increased

and will decrease if the quantity (absolute) value is decreased [47]. Otherwise, when

λ is negative, the optimal objective function will decrease if the quantity (absolute)

value is increased.

2.5 Least Square Regression Method

The least square regression method was independently developed in the late 1700s

and the early 1800s by the mathematicians Karl Friedrich Gauss, Adrien Marie Leg-

endre and Robert Adrain working in Germany, France and America respectively. It

is the most widely used modeling method to fit a model to a dataset where each

explanatory variable is multiplied by an unknown parameter; there is at most one

unknown parameter with no corresponding explanatory variable and all of the in-

dividual terms are summed to produce the final function value. In statistics, the

function that meets theses criteria is called linear function. The term linear is used,

even though the function may not be a straight line because f the unknown param-

eters are considered to be variables and the explanatory variables are considered to

be known coefficients corresponding to those variables, then the problem becomes a

system (usually overdetermined) of linear equations that can be solved for the values

of the unknown parameters.
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Regression methods are for the estimation of the values for the given parameters.

A regression model is required to show how a variable varies in a systematic manner

with another variable(s). There are a number of advancements for the linear regression

model. The regression model of straight line relationship is

yi = β0 + β1.xi + ei (2.3)

where xi is the independent variable,c is the dependent variable values in the ith

trail,β0andβ1 are the parameters (i.e.intercept and slope) and ei is the random error

term. To find the good estimates for the parameters β0, β1, the least square regression

method is used. In another words, least square method is able to minimize quantity

with minimum error rates.

The least square regression method is a primary tool because of its effectiveness

and completeness. Many processed in science and engineering are well-described by

linear models. The estimates of the unknown parameters obtained from linear least

square regression are the optimal estimates from a broad class of possible parameter

estimates under the usual assumptions used for process modeling [?]. Therefore,

successful results can be obtained by small data and using least square regression is

very efficient. In addition, the theory behind the method is very well-understood and

it is easy to construct different types of statistical intervals for predictions with clear

answers.

The main disadvantages of the least square regression method are the poor ex-

trapolating properties and limitations in the shapes that linear models. Therefore,

the linear models may not be effective for extrapolating the results of a process for

which data cannot be collected in the region of interest, so extrapolation is poten-

tially dangerous regardless of the model type and it is very sensitive to the presence

of unusual data points in the data used to fit the model [?].
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Chapter 3

MATERIALS AND METHODS

Computational methods have increasingly been used for drug design in the past

two decades due to advances in understanding the molecular behavior of proteins.

The main objective of these computational methods is to discover new drugs using

the information on the interaction energies of known drugs that minimizes docking

and binding energy. Designing new drugs from fragments reduces the combinatorial

search for effective drug candidates. Successful results in fragment based drug design

have only been obtained with the employment of computational techniques.

In this thesis, this novel method is applied to design drug candidates for the

treatment of prostate cancer. Prostate cancer is the most common cancer type among

men in the world [48]. One out of six men will be diagnosed with invasive prostate

cancer in their lifetime. Suppressing androgen biosynthesis is an important strategy

for prostate cancer treatment because 90% of the prostate cancer patients respond to

androgen deprivation. Androgens are steroid based molecules and they are responsible

for sex-specific organ development and control. They are the major growth factor

prostate cancer cells; especially testosterone and dihydrotestosterone. Also, androgen

levels are directly proportional to the prostate cancer risk. CYP17 is the enzyme that

plays a key role on testosterone and dihydrotestosterone synthesis. Figure 3.1. shows

the role of CYP17 enzyme in the androgen synthesis.

If androgen synthesis can be inhibited using Cytochrome P450 (CYP17, PDB ac-

cess code 2C17) inhibitors or combining the use of these inhibitors with other treat-

ments, it is possible to reduce the side effects of the other treatments (chemotherapy,

surgical removal of testicles or prostate and hormonal therapy) [49]. The molecular

structure of the CYP17 is given in Figure 3.2.
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Figure 3.1: Androgen synthesis pathway

Cytochrome P450 is a very large and diverse superfamily of hemoproteins (heme

containing), and a member of an even wider superfamily of heme-containing monooxy-

genases, besides secondary amino monooxygenase SAMO, and heme chloroperoxidase

CPO [50]. There are three important characteristics of CYP17 protein binding sites.

The first one is the heme region; the catalytic reactions are performed in this region,

orient substrates towards the heme. Therefore, by fixing the inhibitor in the catalytic

region of the enzyme, the heme iron can be used as an anchor point for blocking the

binding site. The second characteristic is the lipophilicity, planarity and rigidity of

the steroidal backbone which is successfully maintained in the developed aromatic

systems, leading to good inhibitory results [50]. Finally, the third characteristic is

the oxygen functionality at the carbon 3 position that provides stronger binding of

electron donor and acceptor groups.

The most important androgens related to prostate cancer are testosterone and

dihydrotestosterone. The biosynthesis of these androgens takes place in the prostate,

testis and adrenal glands. Several enzymes catalyze the reactions starting with choles-
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Figure 3.2: Target CYP17 structure

terol leading to TESTO and DHT. CYP17 catalyzes conversion of progesterone to

androstenedione (4-DIONE); 17-β HSD-3 is responsible for TESTO formation; and, fi-

nally, 5-α reductase converts TESTO to more potent androgen DHT. Ample evidence

indicates that CYP17 catalyze the rate limiting step in androgen biosynthesis. Pre-

cursors of androgenic hormones, 4-DIONE and dehydro-epi-androsterone (DHEA),

can be formed only by CYP17. Use of CYP17 as a drug target can improve blockage

of androgen biosynthesis and inhibitors can be used as effective PC treatments [49].

In this work, a computational method that is composed of training and design

phases is proposed. The flowchart of the proposed approach is given in Figure 3.3.

First, we use known results which include the discovery of the topological proper-

ties that predict the IC50 value, binding energy and docking energy reliably. All the

energy values of the combinations are calculated with Autodock tool. From known

molecule and known results, a common structure is formed and common fragment
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Figure 3.3: Flowchart of the model

were determined. The dataset that includes energy and IC50 values were tested on a

computational program called WEKA which gives the best algorithm for data analy-

sis. In our case, least square regression method was chosen. According to least square

regression method, weight coefficients for common fragments were determined.

Then, in the design phase, the least square regression model is formed based on

the weight coefficients obtained in the first step, to predict the contribution of each

group and individual fragment in IC50 value, docking energy and binding energy and
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finally the model designs entirely new molecules based on the fragments available by

fragment-based drug design. Then a priority order among drug candidates dataset is

formed by help of an algorithm with MATLAB.

3.1 Learning Phase

3.1.1 AutoDock

AutoDock is a computational program that provides a method to observe the

interaction of a biomolecular target with ligands. Difficulties in the design and devel-

opment of bioactive compounds for computer aided drug design motivated scientists

to create computational tools to analyze the interaction of ligands with the target pro-

tein. AutoDock first analyzes the interactions of molecules, like proteins and nucleic

acids. Then, this analysis may lead to identification of the promising candidates.

The need for an accurate procedure to evaluate the interaction between two

molecules is important. The optimum result is to find the interaction energy between

the target protein and the substrate at the minimum with all available degrees of

freedom for the system(1). AutoDock uses two techniques: manually-assisted and au-

tomated docking. The most used technique in AutoDock is manually-assisted docking

where the internal and orientational degrees of freedom can be controlled successfully.

The protein is included in a three-dimensional grid in the program. For each type of

atom in the substrate, like carbon, oxygen, nitrogen and hydrogen, the affinity grid is

calculated. The energy interaction of a single probe atom and protein is assigned to

each grid point. For this calculation, the Poisson-Boltzmann finite difference method

or using point charge of +1 as the probe procedures are used.

Calculating the energy by a gridding approach is proportional to the number of

atoms in the substrate and is independent of the number of atoms in the protein.

The energy of a particular substrate is calculated by interpolating the electrostatic

potential.

Using the advantage of large search space, the Monte Carlo (MC) simulated an-

nealing technique is used with a grid-based molecular affinity potential approach. In
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this simulation, the substrate molecule walks around the protein molecule randomly

at each step. Changes in the translation of the substrate center of gravity, orientation

and rotation around each flexible internal dihedral angles of substrate position happen

for all degrees of freedom stepwise. Each step determines a new configuration with

new energy. If the new energy is smaller than the energy calculated before, the new

configuration is accepted [1]. If not, the new configuration is accepted or cancelled

depending on the probability of acceptance given below.

P (4E) = exp− 4E
kET (3.1)

Here T is the user defined temperature, 4E is the energy difference between the

previous step and the current step and kB is the Boltzmann constant. As temperature

increases, the probability of a conformation being accepted increases.

In each cycle for all individual steps, each specified temperature is used. The

accepting or rejecting decision of the conformation is based on the current temperature

of that specific step. Then, the next cycle starts with a temperature lowered by a

specified schedule as [1]:

Ti = gTi−1 (3.2)

where Ti is the temperature at cycle i and g is a constant between 0 and 1.

Theory

In each binding step, there is a thermodynamic cycle for the binding of an enzyme

E and inhibitor I. Taking the hydrophobic effect as a basis, there is an entropic

effect for each cycle. Hydrogen bonds between E and I determines the enthalpic

stabilization and estimates the energy function. According to Hess’s law of heat, the

free energy of binding can be calculated by the equation below;

4Gbinding,solution = 4Gbinding,vocuo +4Gsolvation( EI )−4Gsolvation( E+I ) (3.3)



Chapter 3: Materials and Methods 30

From docking simulation by AutoDock4Gbinding,vacuo can be calculated. 4G solvation(EI)

and 4G solvation(E+I) can be estimated for both separated and complex forms. Also,

calculation of the 4Gbinding,solvation ,the binding of the inhibitor to the enzyme is

possible. Thus, the inhibitor constant K i can be estimated for the inhibitor I.

Linear regression analysis is used for inhibition constant data with this method.

The best fit to the observed inhibition constant data is found and there is no need to

modify these coefficients in each step. Docking can be extremely fast by using pre-

calculated grid maps in AutoGrid. A grid map is formed by the three dimensional

lattice of regularly spaced points. Each point stores the potential energy of a probe

from all of the atoms in the macromolecule.

Docking can be extremely fast by using pre-calculated grid maps in AutoGrid. A

grid map is formed by the three dimensional lattice of regularly spaced points. Each

point stores the potential energy of a probe from all of the atoms in the macromolecule.

Figure 3.4: The main features of the grid map [1]

Figure 3.4. displays the main features of the grid map. The ligand is buried
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inside the active side of the protein in the center of the grid map. The parameters

for this grid map are stored in the grid parameter file (GPF). The Van der Waals

potential energy is also calculated with the parameters. Van der Waals potential

energy is calculated by the pairwise potential energy between two non-bonded atoms

as a function of internuclear separation, r. The potential energy equation is

V (r) ≈ cn
rn
− cm
rm

= Cnr
−n − Cmr−m (3.4)

where m and n are integers, and Cn and Cm are constants whose values depend on

the depth of the energy well and the equilibrium separation of the two atoms’ nuclei.

The hydrogen bonds are also important in ligand binding. The hydrogens that are

bonded to carbon atoms are called polar hydrogens whereas the hydrogens that are

bonded to heteroatoms like nitrogen and oxygen are called polar hydrogens. Generally,

polar hydrogens of the ligands are used to conserve the disk space. The interactions

by hydrogen bonds are calculated by AutoDock.

With these polar hydrogens, AutoDock also needs the electrostatic potential grid

map. The electrostatic potential is calculated by;

ε(r) = A+
B

1 + ke−λBr
(3.5)

where: B = ε - A; ε= the dielectric constant of bulk water at 25◦C = 78.4; A =

-8.5525, λ=0.003627 and k = 7.7839 are parameters.

AutoDock Setup

To start running AutoDock, four input files need to be prepared: PDBQ file for ligand

molecule, PDBQS file for macromolecule, GPF file for grid parameters and DPF file

for docking parameters.

Docking starts with preparing the macromolecule by adding polar hydrogen atoms.

Then, the Kollman charges are added to the macromolecule and the final structure is

stored in the PDBQS file format.
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After preparing the PDBQS file for the molecule, the second step is to prepare

the file for the ligand molecule with same steps. The non polar hydrogens are merged

where the polar hydrogens are added. If the ligand is a peptide, the Kollman charges

are added, otherwise Gasteiger charges are added. In addition, by calculating the

angle between consecutive C atoms, planar and non planar C atoms are marked as

well as the torsional freedom of the bonds. The information for the ligand given above

are then saved in the PDBQS format as well.

The grid maps that are created to define the active site for the docking are included

in the GPF file. Active sites of the protein are defined in a box in AutoDock. In the

GPF file, the grid size as number of points, the spacing between two grid points and

the grid center coordinates of this box and the numbers of the grid maps are included.

The number of the required grid maps depends on the type o atoms that are present

in the ligand molecule. Because of that, this study involves the large scale virtual

screening of a compound set including hundreds of atoms; grid maps are prepared for

each type of atom that may be present in drug like molecules similarly.

The GPF file for virtual screening provides saving from the computational time

but lower resolution maps compared to detailed docking. The grid box, including the

entire active site, is defined with 0.375 Å spacing in these low resolution maps.

The DPF file contains the population size, number o generations, number of runs,

crossover rate, mutation rate and number of evaluations which are the setup for run

parameters of the Lamarckian- Genetic Algorithm. In the DPF file the run parameters

for virtual screening are defined as follows: the population size is 50, the number of

generations is 2.7 x 104, the crossover rate is 0.8, the mutation rate is 0.02, the number

of runs is 10, and the number o evaluations is 1 x 106.

3.1.2 Decision of Scaffold for Fragment Based Drug Design

According to the work done for deactivating the CYP17, the lead structure is

determined as given in Figure 3.5. This scaffold was designed after analyzing the

docking position of the lead compound from previous work (LDD). In the work done

by Pelin Armutlu, first the molecular dynamics of CYP17 protein was made and the
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active sites of the protein were determined. Then, by many docking processes, many

lead compound structures were determined that deactivated the active sites of the

CYP17 protein. After measuring the inhibitory effect of the drug candidate and MTT

toxicity assays of drugs, the numbers of possible structures were eliminated. Finally,

with detailed docking processes the lead compound scaffold given in the Figure 3.5.

was obtained.

Figure 3.5: The lead compound for prostate cancer treatment

In the lead compound, three different parts that have roles to deactivate the

CYP17 protein are present. The first part is the aromatic group that interacts with

the heme group of the protein. The X position of the aromatic group is suitable for

the fragment base drug design. The second part is the position of the electron donor

that is shown by W in Figure 3.5. This group is for the coordination with heme iron

in the CYP17 protein. The final part is shown with R in Figure 3.5. which is the

alkyl group for the hydrophobic tail of the target.

According to the lead structure determined by previous work, we proposed two

different scaffolds. The first scaffold is given in Figure 3.6. and the fragments for

positions in the first scaffold are given in Table 3.1.

For the first scaffold, 5 different positions have been selected: R1, R2, G1, G2 and

G3. For each position, a specific fragment is determined.
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Figure 3.6: First scaffold

R1 R2 G1 G2 G3

-CH3 -CH3 -CH3

-OCH2 -OCH2 -OCH2

-CH2OH -CH2OH -CH2OH

Table 3.1: Possible fragments for the each position on the scaffold for the first dataset

The second scaffold is given in Figure 3.7. and the fragments for positions in the

second scaffold are given in Table 3.2.

Figure 3.7: Second scaffold

For the second scaffold, 2 different positions have been selected; R1, R2. For each

position, a specific fragment is determined.
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R1:Heme Binding Carboxylic Acids R2:Alkyl Anilines

Table 3.2: Possible fragments for the each position on the scaffold for the second
dataset

To analyze these molecules for docking by AutoDock, all of the compounds were

drawn by scientific computational software called MarvinSketch. This program allows

saving the structures in PDB format which can be read by AutoDock for docking.

Docking and binding energies of all 688 combinations were calculated by AutoDock

for both datasets.
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3.1.3 The Proposed Design Methodology

We proposed a 2-stage method to design novel chemical compounds to maximize

the interaction energy (minimize the docking and binding energy) between the specific

target protein CYP17 and the ligand.

Learning Algorithm: Characterization of Data

Mathematical programming is a branch of optimization theory in which a single-

valued objective function of n real variable x1..xn is minimized(or maximized),possibly

subject to a finite number of constraints, which are written as inequalities or equa-

tions [51]. When one or more of the functions that appear in mathematical program-

ming are non-linear, the programming becomes non-linear programming. In the com-

plex situations that include decisions in broad sense like in engineering, economics,

mathematics, physical sciences have nonlinear programming problems. Nonlinear

curve fitting approach is used for the learning part of the model. Optimal values of

the parameters in the least square sense are calculated which are the sum of squares

of the experimental deviations from the theoretical curve. The least square regression

method is a mathematical model that gives the best-fit curve and has the minimal

sum of the least square error from a given set of data. To learn the characteristics

of our data with known docking and binding energy values, least square regression

method was used.

In addition,the least square regression method results the highest R2 value among

all regression methods being searched by the WEKA software. WEKA is software that

gives the best characterization, data analysis and algorithm method for the present

data set. The model for our data set is given below:
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Min z =
√
r12 + r22

s. t.

DEi =
∑
j

xjt(i, j) + r1i∀i (3.6)

BEi =
∑
j

xjt(i, j) + r2i∀i (3.7)

xj, yj ∈ Rn (3.8)

r1i, r2i ∈ Rn (3.9)

t(i, j) ∈ {0, 1} (3.10)

(3.11)

where DE is docking energy value, BE is the binding energy value, r1i, r2i are

the estimation errors, xj, yj are weights and t(i,j) are binary variables. The binary

variable table t(i,j) has been designed with the idea of whether the given fragment is

bound to the given position or not. If the fragment is bound to the given state, the

corresponding value is 1, if not, the corresponding value is zero. The model is created

and calculated by GAMS software. According to the r1i, r2i values calculated, the

R2 values are determined. If the dataset has an R2 value that closes to 1, then the

algorithm continues with the design phase. The same algorithm is applied to both

first and second datasets.

Design Phase

The logic of the modeling phase for both the first dataset and the second dataset

are the same. With the weight coefficients xj, yj that are calculated in the learning

phase for each dataset, the prediction of the contribution of each group and individual

fragment was estimated separately. The main aim in the design phase is to find out

the best combination for determined positions for the scaffold determined above with

the objective of minimizing energy. Multiobjective optimization approach is used to

find the best solution.
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Let J be the set of fragments and there are two subsets Region1 ⊂ J and

Region2 ⊂ J .

Region1

⋂
Region2 = � (3.12)

Region1

⋃
Region2 = J (3.13)

Let i be a combination i = {(j, k)|j ∈ Region1, k ∈ Region2} and I = {i|i =

(j, k), i ∈ Region1, j ∈ Region2}.

DE is the set of docking energies calculated for each combination using the weight

coefficients r1 and r2 from the learning part and similarly BE is the set of binding

energies.

MinBEi = mBE

MinDEi = mDE

i∗ = argmin{DEi‖BEi = mBE}

m = DEi∗

Results = {i∗}

while m ≥ mDE do

Find tempBE = min{BEi|DEi < m}

and k = argmin{DEi|BEi ≤ tempBE}

if k 6∈ Results then

Results = Results ∪K

end if

m = m− ε

end while

For the first dataset, region1 represents the region that includes G1,G2 and G3

positions and region2 represents the region that includes R1 and R2 positions on
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the scaffold.The algorithm was also designed to choose at most two positions for the

region1 and one position for the region2.

For the second dataset, region1 represents the R1, position and region2 represents

the R2 position on the scaffold.The algorithm was also designed to choose at most

one fragment for each R1 and R2 positions.
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Chapter 4

RESULTS AND DISCUSSION

4.1 First Dataset

All positions on the common scaffold and all the fragments were determined from the

work done by Pelin Armutlu et al. Aromatic group, electron donor for coordination

with heme iron and alkyl group for hydrophobic tail were selected according to main

structure determined by their work for learning phase. On the aromatic group, three

different positions were selected: G1, G2 and G3. Three different groups were chosen

to provide interactions between the aromatic group of drug candidate and the heme

group of CYP17 active site as well. NH group was determined as electron donor for

the coordination with heme iron. For hydrophobic tail of the active site; carbon chains

with 3, 4 and 5 carbons were used on R1 and R2 positions. After determination of the

fragment and positions, docking and binding energies of all possible 288 combinations

were calculated by AutoDock tool.

The analysis of dataset with energy values was done by WEKA which is a collection

of visualization tools and algorithms for predictive modeling. According to WEKA,

the best method for learning phase was least square regression method. In our learning

phase, the objective function is designed to minimize the summation of estimation

errors for both docking and binding energies of all molecules. This idea worked for

a better regression model with smaller estimation errors. The constraints includes

weight for each fragment, their existence parameter and estimation errors. The weight

coefficients were multiplied by existence parameter, which is 1 if fragment exists on

the given position and 0 otherwise, added with estimation errors and equated with
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both docking and binding energies in different equations.

The algorithm was non-linear programming. After calculation of weight coeffi-

cients and estimation errors, next step was to calculate the R2 values of estimation

errors. R2 value was the key point for the accuracy of estimation error calculation.

All the estimation error values of docking energies and binding energies were plotted.

For docking energy constraint, the R2 value of estimation error r1 was 94.53%, which

shows enough accuracy.

Figure 4.1: . The R2 value of the estimation error r1 for the docking energy of the
first dataset

For the binding energy constraint of learning phase, the accuracy was 92.92%.

After R2 value calculation, the design phase was started. In the design phase, the

weight coefficients were taken from the learning phase and applied to the new algo-

rithm. In the design phase, the objective was calculated by minimizing the weighted

sums of the energy values. In the constraint part, the main idea was to force the

algorithm to choose the correct fragment satisfying the objective. Algorithm auto-

matically gives 1 to zj if the fragment j is chosen for the given position, 0 otherwise.

In this phase, the algorithm is the multi-objective integer programming problem.



Chapter 4: Results and Discussion 42

Figure 4.2: The R2 value of the estimation error r2 for the binding energy of the first
dataset

For the first dataset, the optimal solution after the design phase in given in Figure

4.3.

Figure 4.3: Optimal solution for the first dataset

In the algorithm, the constraints were limited by selection of at most two binding

groups for G1, G2, G3 positions and only one binding group for R1 and R2 positions.

The reason of this restriction is the difficulties in synthesising the molecule that has

three fragments in close positions. In the first optimal solution, methyl group for G3

position, hydroxyl methyl group for G1 position and butyl group for R1 position were

selected.
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One of the main aims of this proposed algorithm was to provide a priority order

among a drug candidate dataset. The priority order among first dataset with 288

combinations was obtained by applying an algorithm written in MATLAB. The al-

gorithm cuts the current optimal solution from the current dataset, and then it is

possible to get a new optimal solution with same algorithm. Table 4.1 includes the

best six combinations among the first dataset.

no Drug structures Docking

en-

ergy(AD)

Binding

energy

(AD)

Docking

en-

ergy(est.)

Binding

en-

ergy(est.)

1 -9.06 -8.43 -9.72 -8.46

2 -9.06 -8.42 -9.61 -8.45

3 -9.31 -8.38 -9.43 -8.31

4 -9.31 -8.37 -9.31 -8.30

5 -9.42 -8.23 -9.20 -8.29

6 -9.42 -8.22 -9.16 -8.28

Table 4.1: AutoDock and estimated energies of optimal combinations

The algorithm was designed to choose the pareto optimal solutions which there

would a decrease in docking energy without causing a simultaneous increase in binding
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energy or vice versa.Pareto optimal algorithms do not always give a single solution

and in our case the algorithm gives six optimal solutions. The trend for these possible

solutions are given in the Figure 4.4.

Figure 4.4: Optimal solutions for the first dataset

A decreasing trend going from top to bottom was obtained in terms of estimated

docking and binding values. This trend proofs that the algorithm provides a valid

priority order for given dataset. Approximately 10% error between the Autodock and

estimated results was observed for each drug combination.

In the first dataset, the dataset included all of the possible combinations for all

positions and groups. Therefore, the training set was formed by deleting 88 combina-

tions from the original dataset (including the results of original dataset). The optimal

solution of the training set was given in the Figure 4.5.

The same trend is observed for both of the calculated and estimated energies in

the training set. To explain, even the same decreasing trend between the second and

the third data point for both calculated and estimated energies are similar. Although

our algorithm has approximately 10 % error rate in terms of docking and binding
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Figure 4.5: The optimal solution of the training set

energies, the overall decreasing trend is obtained. This observation is the proof of the

accuracy for our algorithm.

4.2 Second Dataset

The second scaffold was determined from previous work done by Pelin Armutlu

et al. as well. Two different positions R1 and R2 were selected. For R1 position,

24 different fragments were determined for the coordination with heme group of the

CYP17 active site. For R2 position, 17 different fragments were used for the second

scaffold to coordinate with the hydrophobic tail of the target protein. Docking and

binding energies of all 446 combinations were calculated by AutoDock tool. According

to the docking and binding energy datasets, R2 values for the estimation errors were

tested for the second scaffold as well.

According to the R2 value, the accuracy for the estimation error r1 was 92.85%.

The accuracy for the estimation error r2 was 92.96%. After determination of the

accurate estimation error values, the design part was started. In the design part of

the second dataset, the same design algorithm for the first dataset was used.

The optimal solution of the second dataset is given in the Figure 4.9.

Figure 4.8: Optimal solution for the second dataset



Chapter 4: Results and Discussion 46

Figure 4.6: The R2 value of the estimation error r1 for the docking energy of the
second dataset

Figure 4.7: The R2 value of the estimation error r2 for the binding energy of the
second dataset

According to the docking and binding energy values, the most negative energy

values belong to the combination with 5-phenyl-1H-1,2,3,4-tetrazole in R1 position

and heptylbenzene group in the R2 position for the second scaffold.

To provide a priority order among 408 combinations, an algorithm written in

MATLAB is applied. The priority order in the given dataset is formed as given in



Chapter 4: Results and Discussion 47

the Table 4.2.

no Drug structures Docking

en-

ergy(AD)

Binding

energy

(AD)

Docking

en-

ergy(est.)

Binding

en-

ergy(est.)

1 -10.72 -7.46 -10.71 -7.56

2 -10.44 -7.50 -10.44 -7.50

3 -10.16 -7.55 -10.40 -7.49

4 -10.15 -7.57 -10.15 -7.47

5 -9.66 -7.82 -10.14 -7.42

Table 4.2: AutoDock and estimated energies of first ten combinations

The algorithm is the same as the first dataset and was designed to choose the

pareto optimal solutions which there would a decrease in docking energy without

causing a simultaneous increase in binding energy or vice versa.Pareto optimal algo-

rithms do not always give a single solution and in our case the algorithm gives five

optimal solutions. The trend for these possible solutions are given in the Figure 4.10.

A decreasing trend was obtained from top to bottom. The error of estimated

values between the calculated values of docking and binding energies are about 10%.

This small error rate is a proof that our algorithm definitely provides a priority order

among given dataset.

A training set is formed for the second dataset as well. The number of combi-

nations was decreased to 350 by deleting 96 combinations randomly. The optimal

solution of the training set was the same with the optimal solution of the original set

for the second scaffold.
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Figure 4.9: AutoDock and estimated energies of optimal combinations

To compare the trend between the docking energy and binding energy, calculated

and estimated docking and binding energies are observed in the Figure 4.11.

Figure 4.10: The trend between calculated and estimated docking and binding ener-
gies for the second dataset
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The same trend is observed for both of the calculated and estimated docking

and binding energies for the second dataset as well. Even the same decreasing trend

between the first and the second data point for both calculated and estimated energies

are similar. Although our algorithm has approximately 10 % error rate in terms of

docking and binding energies, the overall trend is obtained by our method. This

observation is the proof of the accuracy for our algorithm as well.
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Chapter 5

CONCLUSION AND FUTURE WORK

This thesis have the motivation of developing a computational method to be used

for fragment-based drug design based on the idea of choosing the best fragments

on the given scaffold positions and finding out the best combination which has the

minimum docking and binding energies. The idea is built on the prerequisite that the

scaffold must be previously determined with binding positions of the fragments for

the specific target and a fragment library is available.

In this study, the target protein was Cytochrome P450 (CYP17) that is the key

enzyme in androgen synthesis and in the treatment of the prostate cancer. The aim

was to decrease androgen levels in the cells and therefore prevent the progression

of the prostate cancer with deactivating the CYP17 protein by designing drug with

fragment-based drug design method. Two different scaffolds were selected from the

previous work done [46]. In the first scaffold, there were two different positions on

the scaffold and three different fragments for each position. In addition, in the second

scaffold, there were two different positions for the fragments. The available fragment

library was better so the second prerequisite was successfully implemented to the

second scaffold. The number of available fragments was 25 for the first position and

17 for the second position. Docking and binding energies of all possible combinations

were calculated by computational tool AutoDock.

Even docking and binding energies of all possible fragment combinations were

calculated, it should be emphasized that the synthesis of some of that combina-

tions would be impractical. Therefore, the synthesizability of the compounds may

be checked before the dataset formation. If there is any combination that is diffi-

cult to synthesize, this combination may be eliminated from the dataset by adding a
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constraint to the optimization model.

The main part of the project, i.e. the mathematical programming algorithm that

creates energetically minimized structure comprising the energy values of all combi-

nations and weight coefficients of each fragment was attempted. In addition to the

energy values, IC50 values can be experimentally found out and to provide a co-work

between experimental and computational studies, IC50 values may be added to the

objective and constraints. To provide the best fit and have the minimal sum of the

least square error from a given set of data, the least square regression model is formed

in our model. As an alternative and try to find better fit as a future work, polynomial

fit may be used. In our case, there is approximately 10% error rate for the optimal

solution and polynomial fit or other curve fitting methods may help decreasing this

error rate.

In the design phase, the model chooses the fragment that has the minimum weight

coefficient, which means has smaller estimation error for each position for both dock-

ing and binding energies. This is a multi objective optimization problem and in the

objective there is a minimization model for the both docking and the binding ener-

gies and multiple criteria decision making is applied. In the case of experimental IC50

value consideration, a new coefficient should be defined and added to the objective

of the design part as well. An algorithm that automatically calculates the error rates

of estimated data points for both docking and binding energies can be designed as

a future work. Even a visual tool can serve providing an automatic comparison of

estimated and calculated data points.

There were two main contributions of this work. The first one was to provide a

priority order among given dataset that includes all the possible combinations and

make easier the experimental work by decreasing the number of compounds to be

tested. To provide priority order, an algorithm in MATLAB was applied to the final

optimal solution in the design part. The number of most probable drug compounds

in the subset could be determined depending on the size of the original dataset.

The second contribution is to decrease the cost and time that is necessary to ap-

prove a drug among a huge dataset. Our method decreases the number of compounds
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to be tried experimentally which saves cost and time certainly. As a future work, if

the error rate in the optimal values could be decreased, this method would be most

efficient in terms of cost and time considerations.

As a result, as this work is one of the first studies on the computational fragment

based drug design that helps and shortens the experimental procedure; this thesis

could serve as an appropriate base for further studies within this area.
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