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Abstract

FitzHugh-Nagumo system is generally used to model some biological phenomena

and electrical circuits. This system is obtained by reduction of the Hodgkin-Huxley

system which is also widely used but harder to analyze.

In this work, our aim is to study the existence and uniqueness of solutions to

reaction-diffusion equations and some stability properties of FitzHugh-Nagumo equa-

tions.

We firstly consider the problem of local and global existence and uniqueness of

the solution to the reaction-diffusion equation.

Then, we study the problem of stabilization of solutions of FitzHugh-Nagumo

system on a bounded domain. We show that by applying a feedback controller on a

subdomain, the system can be exponentially stabilized.

Finally, considering again a FitzHugh-Nagumo system, we study the continuous

dependence of solutions to this system on the diffusivity coefficient.
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Özet

FitzHugh-Nagumo diferensiyal denklem sistemi, bazı biyolojik olayları ve elektrik

devrelerini modellemek için kullanılır. Bu sistem, yine bazı biyolojik olayları mod-

ellemek için çokça kullanılan fakat daha karmaşık olan Hodgkin-Huxley sisteminden

iki değişkenin indirgenmesiyle elde edilir.

Bu çalışmadaki amacımız, reaksiyon-yayılma denklemlerinin çözümlerinin varlığını-

tekliğini ve FitzHugh-Nagumo denklemlerinin bazı kararlılık özelliklerini incelemektir.

Öncelikle, reaksiyon-yayılma denklemlerinin çözümlerinin yerel ve küresel varlık-

teklik problemini inceleyeceğiz.

Sonrasında, sınırlı tanım kümesinde tanımlı olan FitzHugh-Nagumo sisteminin

çözümlerinin kararlılaştırılması problemini inceleyeceğiz.

Son olarak, FitzHugh-Nagumo sisteminin çözümlerinin yayılma katsayısına sürekli

bağımlılığını inceleyeceğiz.
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Notation

D(f) The domain of f

R(f) The range of f

X ′ The dual space of X

↪→ continuous embedding

⊂⊂ compact embedding

⇀ weak convergence

C(Ω) continuous functions on Ω

Ck(Ω) k times continuously differentiable functions on Ω

B Banach space of all bounded, continuous functons u(x, t) on R (t fixed)

‖u(., t)‖B supx∈R|u(x,t)| (t fixed)

C([0, T ];B) The space of all continuous functions defined on [0, T ] that have values in B

‖u‖ supt∈[0,T ] ‖u(., t)‖B
∆u

∑n
i=1

∂2u
∂x2

i

∇u (∂x1u, ..., ∂xnu)

|Ω| The Lebesgue measure of Ω
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Introduction

We will basically consider some stability properties of FitzHugh-Nagumo type of

differential equations.

The problem of the existence and uniqueness of solutions to FitzHugh-Nagumo

model and the stability analysis of this model have been studied by various ap-

proaches. The existence-uniqueness of solutions to nonlinear reaction-diffusion equa-

tions and stability properties (such as asymptotic stability or global asymptotic sta-

bility) of solutions are studied in [10], [7], [11]. Jackson proved the existence and

uniqueness of solution to the initial boundary value problem for FitzHugh-Nagumo

system by using the energy method in [3]. Some researchers focused on the long-

time behaviour of the system. The asymptotic behaviour of the system defined on a

bounded domain is studied in [9]. On the other hand, some researchers focused on

the travelling wave solutions and the stability of these solutions in [4], [18]. There

is also some work on the structural stability of the solution to the problem. This

kind of stability is defined as the continuous dependence of solutions on the diffusiv-

ity coefficient. The problem of continuous dependence of solutions to the semi-linear

reaction-diffusion system is studied, in [2].

FitzHugh-Nagumo equation is a system of reaction-diffusion equations which has

the form

1
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ut −Duxx = f(u)

where D is called the diffusivity coefficient, f(u) is called the reaction term and u(x, t)

is the unknown function.

In physiology, an action potential is a short-lasting event in which the electrical

membrane potential of a cell rapidly rises and falls, following a consistent trajectory.

Action potentials occur in several types of animal cells, called excitable cells, which

include neurons, muscle cells, and endocrine cells, as well as in some plant cells.

Consider the following system of differential equaitons

Cm
∂V

∂t
=

a

2Ri

∂2V

∂x2
+ ḡKn

4 (VK − V ) + ḡNam
3h (VNa − V ) + gl (Vl − V ) + I(x, t),

∂m

∂t
= αm(V )(1−m)− βm(V )m,

∂n

∂t
= αn(V )(1− n)− βn(V )n,

∂h

∂t
= αh(V )(1− h)− βh(V )h.

This system was proposed to describe the evolution in time t > 0 and space

0 < x < L of the depolarization V (x, t) = Vm(x, t)− VR, where Vm(x, t) is the actual

membrane potential and VR is (assumed to be constant) the resting potantial. The

quantities Cm, ḡK , ḡNa, gl, and I(x, t) are respectively the membrane capacitance,

maximal potassium conductance, maximal sodium conductance and applied current

density for unit area. Ri is the intracellular resistivity and α is the fiber radius, n(x, t),

m(x, t), and h(x, t) are the dimensionless potasium activation, sodium activation and

sodium inactivation variables.
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This model is called Hodgkin-Huxley model and it describes how action poten-

tials in neurons are initiated and propagated. Although it is difficult to analyze

the Hodgkin-Huxley model, it provides a clear, biological and mechanistic model for

cardiac action potentials. This model was investigated by Alan Lloyd Hodgkin and

Andrew Fielding Huxley. They carried out an elegant series of electrophysiological

experiments on the squid giant axon in the late 1940s and early 1950s. The squid

giant axon is notable for its extraordinarily large diameter which allowed Hodgkin

and Huxley to insert the electrodes of the voltage clamp apparatus into the lumen

of the axon. This ability combined with the system’s simplicity was crucial for the

success of their study of action potentials.

In a series of five articles published in 1952, these investigators (together with

Bernard Katz) unveiled the key properties of the ionic conductances underlying the

nerve action potential. For this achievement, Hodgkin and Huxley were awarded the

1963 Nobel Prize in Physiology and Medicine (shared with John Eccles, for his work

on potentials and conductances at motoneuron synapses).

The following system of partial differential equation

∂u

∂t
= d2

u∆u+ f(u)− σu,

τ
∂v

∂t
= d2

v∆v + u− v,

where f(u) = λu − u3 − κ, describes how an action potential travels through a

nerve. Here du, dv, τ , σ and λ are positive constants.

This model is called FitzHugh-Nagumo model and was obtained by reduction

of the Hodgkin-Huxley model. This reduction is from four variables to two vari-

bles. Basically, the FitzHugh-Nagumo model extracts the essential behaviour of the
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Hodgkin-Huxley fast-slow phase plane and presents it in a simplified form.

The motivation for the FitzHugh-Nagumo model was to isolate the mathemati-

cal properties of excitation and propagation from the electrochemical properties of

sodium and potasium ion flow. There are two variables in the model. One of them is a

voltage-like variable having cubic nonlinearity that allows regenerative self-excitation

via positive feedback. The other variable is a recovery variable having a linear dy-

namics that provides a slower negative feedback.

FitzHugh modified van der Pol model to explain the basic properties of excitability

as exhibited by the more complex Hodgkin-Huxley equations. In the original papers of

FitzHugh, the FitzHugh-Nagumo model was called Bonhoeffer-van der Pol oscillator

(named after Karl Friedrich Bonhoeffer and Balthasar van der Pol), since it contains

the van der Pol oscillator as a special case.

The FitzHugh-Nagumo model can be derived from a simplified model of the cell

membrane. Here the cell (or membrane patch) consists of three components, a capac-

itor representing the membrane capacitance, a nonlinear current-voltage device for

the fast current. In 1962, an equivalent circuit model suggested by Jin-Ichi Nagumo,

Suguru Arimoto and Shuji Yoshizawa.

The FitzHugh-Nagumo equations are used to model electrical waves of the heart

or cortisol secretion, which is controlled by the hypothalamic pituitary adrenal axis.

In this thesis, our aim is to study the problem of stabilization of solutions and

continuous dependence of solutions of FitzHugh-Nagumo equations on the diffusivity

coefficient. The thesis consists of four chapters. First chapter is the preliminaries. In

the second chapter, following [8], we study local and global existence and uniqueness

of the solution to the reaction-diffusion equation. Then in the third chapter, following
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[19], we study the problem of stabilization of solutions to FitzHugh-Nagumo system

on a bounded domain. Finally, in the last chapter, following [17], we study the

problem of structural stability of solutions to initial boundary value problem for the

FitzHugh-Nagumo system.



Chapter 1

Preliminaries

In this chapter, we will give some definitions, inequalities, theorems and concepts that

we will use in the following chapters.

Definition 1.1. A metric space is an ordered pair (M,d) where M is a set and d is

a metric on M. That is, a function d : M ×M → R such that for any x, y, z ∈ M ,

the following holds:

(a) d(x,y)≥ 0,

(b) d(x,y)=0 if and only if x=y,

(c) d(x,y)=d(y,x),

(d) d(x,z)≤ d(x, y) + d(y, z).

Definition 1.2. A metric space M is called complete if every Cauchy sequence in M

has a limit that is also in M .

Definition 1.3. A vector space over F is a non-empty set V together with two func-

tions, one from V × V to V and the other from F × V to V, denoted by x+y and

αx respectively, for all x, y ∈ V and α ∈ F, such that, for any α, β ∈ F and any

x, y, z ∈ V,

6
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(a) x+y=y+x, x+(y+z)=(x+y)+z;

(b) there exists a unique 0 ∈ V (independent of x) such that x+0=x;

(c) there exists a unique −x ∈ V such that x+ (−x) = 0;

(d) 1x=x, α(βx)=(αβ)x;

(e) α(x+y)=αx+αy, (α+β)x=αx+βx.

If F = R (respectively, F = C) then V is a real (respectively, complex) vector space.

Elements of F are called scalars, while elements of V are called vectors. The operation

x+y is called vector addition, while the operation αx is called scalar multiplication.

Definition 1.4. Let V be a vector space over F. A norm on V is a function ‖·‖ :

V→ R such that for all x, y ∈ V and α ∈ F ,

(a) ‖x‖ ≥ 0;

(b) ‖x‖ = 0 if and only if x = 0;

(c) ‖αx‖ = |α| ‖x‖;

(d) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Definition 1.5. A vector space V on which there is a norm is called a normed vector

space or just a normed space.

Remark 1.1. Every normed space is a metric space.

Definition 1.6. A complete normed vector space is called a Banach space.

Definition 1.7. Let (M,d) be a metric space. Then the map φ : M → M is a

contraction mapping of (M,d) if for some real number 0 ≤ k < 1, called the constant

of contraction, we have

d(φ(x), φ(y)) ≤ kd(x, y), ∀x, y ∈M.
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Theorem 1.1. (Banach Fixed-Point Theorem) If φ : X → X is a contraction map-

ping on a Banach space X, then φ has precisely one fixed point. That is, there exists

a unique u ∈ X such that

φ(u) = u.

Remark 1.2. In some cases, the map φ may not be a contraction mapping on the

entire Banach space, but rather only on a closed ball in the space, and the Fixed-Point

Theorem remains valid on closed balls of a Banach space.

Definition 1.8. Let H1 and H2 be two normed vector spaces, with norms ‖.‖1 and

‖.‖2, respectively. If

(a) H1⊂H2,

(b) there exists C ∈ R+ such that

‖u‖H2
≤ C ‖u‖H1

∀u ∈ H1,

then H1 is said to be continuously embedded in H2 and denoted by H1 ↪→ H2.

Definition 1.9. If

(a) H1 ↪→ H2,

(b) for any sequence {un}n∈N bounded in H1, there is a subsequence {unk
}k∈N such

that unk
→ u in H2,

then H1 is said to be compactly embedded in H2 and denoted by H1 ⊂⊂ H2.

Definition 1.10. A linear operator T is an operator such that

(i) the domain D(T ) of T is a vector space and the range R(T ) lies in a vector

space over the same field,
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(ii) for all x, y ∈ D(T ), and each scalar α,

T (x+ y) = T (x) + T (y),

T (αx) = αT (x).

Definition 1.11. Let X and Y be normed spaces and T : D(T ) → Y a linear

operator, where D(T ) ⊂ X. The operator T is said to be bounded if there is a positive

number c such that for all x ∈ D(T ),

‖Tx‖ ≤ c ‖x‖ .

Definition 1.12. A bounded linear functional f is a bounded linear operator with

range in the scalar field of the normed space X in which the domain D(f) lies. Thus

there exists a positive number c such that for all x ∈ D(f),

|f(x)| ≤ c ‖x‖ .

Furthermore, the norm of f is

‖f‖ = sup
x∈D(f)
x 6=0

|f(x)|
‖x‖

or

‖f‖ = sup
x∈D(f)
‖x‖=1

|f(x)|.

Definition 1.13. Let X be a normed space. Then the set of all bounded linear

functionals on X constitutes a normed space with the norm defined by
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‖f‖ = sup
x∈X
x 6=0

|f(x)|
‖x‖

= sup
x∈X
‖x‖=1

|f(x)|

which is called the dual space of X and is denoted by X ′.

Definition 1.14. A sequence {xn}n∈N in a normed space X is said to be weakly

convergent if there is an element x ∈ X such that for every f ∈ X ′,

lim
n→∞

f(xn) = f(x).

This is written as xn ⇀ x. The element x is called the weak limit of {xn}n∈N, and we

say that {xn}n∈N converges weakly to x.

Lemma 1.2. Let {xn}n∈N+ be a weakly convergent sequence in a normed space X

with weak limit x. Then we have

lim inf
n→∞

‖xn‖ ≥ ‖x‖ .

Proof. Let f ∈ X ′ be an arbitrary but fixed. We know that |f(x)| ≤ ‖f‖ ‖x‖ for any

f ∈ X ′ and x ∈ X. We also have by assumption that {f(xn)}n∈N+ is a convergent

sequence. So, consider that

|f(x)| = lim
n→∞

|f(xn)| ≤ lim inf
n→∞

‖f‖ ‖xn‖ = ‖f‖ lim inf
n→∞

‖xn‖ .

Take the supremum over all f ∈ X ′ with ‖f‖ ≤ 1 to get

‖x‖ ≤ lim inf
n→∞

‖xn‖ .

Proposition 1.3. If {xn}n∈N+ is a bounded sequence in a Hilbert space, then it has

a weakly convergent subsequence (see [14], p.155).
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Definition 1.15. The linear space of all functions f integrable over the domain G is

denoted by L1(G). That is,

L1(G) =

{
f :

∫
G

|f(x)| dx <∞
}
.

This space equipped with the norm

‖f‖L1(G) :=

∫
G

|f(x)| dx

is a Banach space.

Definition 1.16. The linear space of functions f such that |f |p ∈ L1(G) is denoted

by Lp(G). That is,

Lp(G) =

{
f :

∫
G

|f(x)|p dx <∞
}
.

This space equipped with the norm

‖f‖Lp(G) :=

(∫
G

|f(x)|p dx
)1/p

is a Banach space.

Theorem 1.4. (Weierstrass M-Test) Let fn be defined on a set S and let Mn ≥ 0

such that
∑∞

n=1Mn < ∞. If |fn| ≤ Mn for all n ∈ N+ and x ∈ S, then
∑∞

n=1 fn

converges absolutely and uniformly on S.

Definition 1.17. Let f be a function. The support of f : R→ R is defined as follows

supp(f) = {x ∈ R : f(x) 6= 0}.

Definition 1.18. Let G be an open set in Rn and f : G→ C be a Lebesgue measurable

function. If for all compact domains K of G,∫
K

|f(x)| dx <∞

then f is called locally integrable.
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Definition 1.19. The space C∞0 (G) consists of functions f which are defined on G,

infinitely differentiable and have compact support within G.

Definition 1.20. Given Rn, define a multi-index α as an ordered collection of non-

negative integers α = (α1, ..., αn), such that its length is given by |α| =
∑n

i=1 ai.

Remark 1.3. If f is an m-times differentiable function, then for any α with |α| ≤ m,

the derivative can be expressed as

Dαf(x) =
∂|α|f(x)

∂xα1
1 ...∂x

αn
n

Definition 1.21. Let α = (α1, ..., αn) be a given multi-index, and f and g be locally

integrable functions over G. Assume that for all β ∈ C∞0 (G) the following integral

identity is satisfied ∫
G

f(x)Dαβ(x)dx = (−1)|α|
∫
G

g(x)β(x)dx.

Then the function g is called the weak α-th derivative of f on the region G.

Definition 1.22. The Sobolev space H1(G) is an inner product space of all functions

f ∈ L2(G) that have all first order weak derivatives fxi, i = 1, ..., n belonging to L2(G).

The inner product in H1(G) is defined by

(f, g)H1(G) =

∫
G

[
f(x)g(x) +

n∑
j=1

fxj(x)gxj(x)

]
dx.

Thus, the norm on H1(G) is given by

‖f‖H1(G) =

(∫
G

[
|f(x)|2 + |∇f(x)|2

]
dx

)1/2

.

Remark 1.4. The space H1(G) is complete. That is, this space is a Hilbert space.
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Remark 1.5. The space H1
0 (G) is defined as the completion of C∞0 (G) in the sense

of the norm H1(G). The norm on this space is defined as follows

‖u‖H1
0 (G) = ‖∇u‖L2(G) .

Definition 1.23. The Sobolev space Hm(G), m = 1, 2, 3, ... is a separable Hilbert

space of all functions f ∈ L2(G) that have all mth-order weak derivatives belonging to

L2(G) with the inner product

(f, g)Hm(G) =

∫
G

∑
|α|≤m

Dαf(x)Dαg(x)dx.

Inequality 1.5. (Cauchy-Schwartz Inequality) Let f and g be square-integrable func-

tions defined on a domain Ω. Then we have

∣∣∣∣∫
Ω

f(x)g(x)dx

∣∣∣∣2 ≤ ∫
Ω

|f(x)|2dx ·
∫

Ω

|g(x)|2dx

Inequality 1.6. (Young’s Inequality) Let 1 < p, q <∞ with 1/p+ 1/q = 1 and a, b

be nonnegative real numbers and ε > 0, then we have

ab ≤ ε

p
ap +

1

qε1/(p−1)
bq.

Inequality 1.7. (Jensen’s Inequality) Let ϕ be a convex function on R and f be an

integrable function on [0,1]. Then

ϕ

[∫ 1

0

f(t)dt

]
≤
∫ 1

0

ϕ(f(t))dt.

Inequality 1.8. (Interpolation Inequality) For all u ∈ H2(Ω) ∩H1
0 (Ω), we have

‖∇u‖2 ≤ ‖u‖ ‖∆u‖ .
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Proof. Since C∞0 (Ω) is dense in H2(Ω) ∩H1
0 (Ω), it is enough to prove the inequality

for functions in C∞0 (Ω).

Firstly, note that

∇(u(x)∇u(x)) = |∇u(x)|2 + u(x)∆u(x). (1.1)

Integrating both sides of (1.1), we write

∫
G

∇(u(x)∇u(x))dx =

∫
G

|∇u(x)|2dx+

∫
G

u(x)∆u(x)dx. (1.2)

By Divergence Theorem applied to the left-hand side of (1.2), we get that

∫
G

∇(u(x)∇u(x))dx =

∫
∂G

(u(x)∇u(x)) · −→n dx,

where −→n is the outward unit normal field of ∂G. Since u ∈ H1
0 (G), we see that∫

∂G
(u(x)∇u(x)) · −→n dx = 0. So, we obtain

∫
G

|∇u(x)|2dx = −
∫
G

u(x)∆u(x)dx (1.3)

By Cauchy-Schwartz Inequality, the right-hand side of (1.3) can be estimated as

follows

−
∫
G
u(x)∆u(x)dx ≤

∫
G
|u(x)∆u(x)|dx

≤
(∫

G
|u(x)|2dx

)1/2 (∫
G
|∆u(x)|2dx

)1/2

= ‖u‖ ‖∆u‖ .

Then combining the last inequality with (1.3), we get ‖∇u‖2 ≤ ‖u‖ ‖∆u‖ which

is the desired result.
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Inequality 1.9. (Sobolev Inequality) Let G ⊂ Rn with n ≤ 3 and u ∈ H2(G)∩H1
0 (G)

be a function defined on G. Then we have the following inequality

max
x∈G
|u(x)| ≤ C ‖∆u‖

for some positive constant C depending on G(see [13], p.423,470).

Inequality 1.10. Let u1, v1 ∈ Rn. Then for any q ≥ 2, there exists a positive constant

d1 such that

d1 |u1 − u2|q ≤
〈∣∣u1|q−2u1 − |u2|q−2u2, u1 − u2

〉
Proof. Define J(q) := 〈|u1|q−2u1 − |u2|q−2u2, u1 − u2〉.

Then, by Fundamental Theorem of Calculus, we can write

J(q) =

〈∫ 1

0

{
d

ds

[
|su1 + (1− s)u2|q−2 (su1 + (1− s)u2)

]}
ds, u1 − u2

〉
Since, for any differentiable function f , d

ds
|f(s)| = 〈f(s),f ′(s)〉

|f(s)| , we get

J(q) =

〈∫ 1

0

|su1 + (1− s)u2|q−2(u1 − u2)ds, u1 − u2

〉
+ (q − 2)

∫ 1

0

[
|su1 + (1− s)u2|q−4 〈su1 + (1− s)u2, u1 − u2〉2 ds

Since (q − 2)
∫ 1

0

[
|su1 + (1− s)u2|q−4 〈su1 + (1− s)u2, u1 − u2〉2 ds ≥ 0, we have

J(q) ≥ |u1 − u2|2
∫ 1

0
|su1 + (1− s)u2|q−2ds.

Now, consider the following cases:
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If |u1| ≥ |u1 − u2|, then

|su1 + (1− s)u2| = |u1 − (1− s)(u1 − u2)|

≥ ||u1| − (1− s)|u1 − u2||

= ||u1| − |u1 − u2|+ s|u1 − u2||

≥ s|u1 − u2|

and by definition of the inner product, we obtain

J(q) ≥ |u1 − u2|2
∫ 1

0

sq−2|u1 − u2|q−2ds

= |u1 − u2|q
∫ 1

0

sq−2ds

=
1

q − 1
|u1 − u2|q.

(1.4)

If |u1| < |u1 − u2|, then

|su1 + (1− s)u2| = |u1 − (1− s)(u1 − u2)|

≤ |u1|+ (1− s)|u1 − u2|

≤ |u1 − u2|+ (1− s)|u1 − u2|

= (2− s)|u1 − u2|.

Since 0 ≤ s ≤ 1, we get

|su1 + (1− s)u2|2

4
≤ |su1 + (1− s)u2|2

(2− s)2
≤ |u1 − u2|2.

So,

J(q) ≥ 1

4

∫ 1

0

(|su1 + (1− s)u2|qds. (1.5)

Since q ≥ 2, by Jensen’s Inequality, from (1.5) we obtain
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J(q) ≥ 1

4

(∫ 1

0

|su1 + (1− s)u2|2ds
)q/2

=
1

4.3q/2
(
|u1|2 + 〈u1, u2〉+ |u2|2

)q/2
≥ 1

4.12q/2
|u1 − u2|q.

(1.6)

From (1.4) and (1.6) with d1 := min
{

1
q−1

, 1
4.12q/2

}
, we deduce

d1|u1 − u2|q ≤
〈
|u1|q−2u1 − |u2|q−2u2, u1 − u2

〉

Definition 1.24. Let X and Y be two non-empty subsets of a metric space (M,d).

We define their Hausdorff distance dH(X, Y ) by

dH(X, Y ) = max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}
.

Theorem 1.11. (Divergence Theorem) Let R ⊂ Rn be a region in space with smooth

boundary ∂R. Let F be a vector field whose components have first order continouus

partial derivatives and −→n be the outward unit normal field of the boundary ∂R. Then,∫
R

(
∇ ·
−→
F
)
dV =

∫
∂R

(
−→
F · −→n )dS.

Lemma 1.12. (Gronwall’s Lemma) Let I be the interval [a,∞), [a, b] or [a, b) in

R. Let α, β and z be real valued functions defined on I. Assume that β and z

are continuous and the negative part of α is integrable on every closed and bounded

subinterval of I.

(a) If β is nonnegative and z satisfies the integral inequality

z(t) ≤ α(t) +

∫ t

a

β(s)z(s)ds, ∀t ∈ I, (1.7)
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then

z(t) ≤ α(t) +

∫ t

a

α(s)β(s)e
∫ t
s β(r)drds, t ∈ I (1.8)

(b) If, in addition the function α is nondecreasing, then

z(t) ≤ α(t)e
∫ t
a β(s)ds, t ∈ I.

Proof. (a)Let us define the following auxiliary function

v(s) = exp

(
−
∫ s

a

β(r)dr

)∫ s

a

β(r)(r)dr, s ∈ I. (1.9)

By using the condition (1.7), we obtain

v′(s) =

(
z(s)−

∫ s

a

β(r)z(rβ)dr

)
β(s)exp

(
−
∫ s

a

β(r)dr

)
(1.10)

≤ α(s)β(s)exp

(
−
∫ s

a

β(r)dr

)
, s ∈ I. (1.11)

Since v(a) = 0, integrating (1.10) from a to t, we obtain

v(t) ≤
∫ t

a

α(s)β(s)exp

(
−
∫ s

a

β(r)dr

)
. (1.12)

It follows from (1.9) that

∫ t

a

β(s)z(s)ds = exp

(∫ t

a

β(r)dr

)
v(t). (1.13)

From (1.12) and (1.13), we obtain

∫ t

a

β(s)z(s)ds ≤
∫ t

a

α(s)β(s)exp

(∫ t

a

β(r)dr −
∫ s

a

β(r)dr

)
ds (1.14)

=

∫ t

a

α(s)β(s)exp

(∫ t

s

β(r)dr

)
. (1.15)
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Finally, by using (1.14) and the inequality (1.7), we get the desired inequality.

(b) If the function α is nondecreasing, we have α(s) ≤ α(t), and then using the

Fundamental Theorem of Calculus, we obtain

z(t) ≤ α(t) +

(
−α(t)exp

(∫ t

s

β(r)dr

)) ∣∣∣s=t
s=a

= α(t)exp

(∫ t

a

β(r)dr

)
, t ∈ I.

Theorem 1.13. Let Ω ⊂ Rn be a bounded domain. All of the eigenvalues of the

following problem are positive.

−∆v = λv, x ∈ Ω,

v = 0, x ∈ ∂Ω.

Proof. Assume that v be an eigenfunction corresponding to the eigenvalue λ. Then

by Divergence Theorem, we have

λ

∫
Ω

v2(x)dx = −
∫

Ω

(∆v(x))v(x)dx

=

∫
Ω

|∇v(x)|2dx−
∫
∂Ω

v
∂v

∂ν
dS(x)

=

∫
Ω

|∇v(x)|2dx

≥ 0,

where ν is the outward unit normal vector.

We claim that ‖∇v‖L2(Ω) > 0. If ‖∇v‖L2(Ω) = 0, then we get ∇v = (0, 0, · · · , 0)

which means that v is constant on Ω. But, by assumption, v = 0 on ∂Ω. Therefore,
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if v is constant on Ω and v = 0 on ∂Ω, then v ≡ 0. However 0 cannot be an

eigenfunction. So, we obtain

λ

∫
Ω

v2(x)dx > 0.

This shows λ > 0.

Note that we can normalize eigenfunctions by the condition

∫
G

u2(x)dx = 1.

Remark 1.6. The smallest eigenvalue of the operator ∆ under the homogeneous

Dirichlet boundary condition is given as

λ1(Ω) = inf
u∈H1

0 (Ω)
u6=0

∫
Ω
|∇u(x)|2dx∫
Ω
u2(x)dx

,

and this infimum is achieved by the corresponding eigenfunction u1 (see [15]).



Chapter 2

Existence of Solutions to
Reaction-Diffusion Equation

In this chapter, we consider the problem of existence and uniqueness of a solution to

the nonlinear initial value problem

ut −Duxx = f(u), x ∈ R, t > 0

u(x, 0) = u0(x), x ∈ R.
(2.1)

Some problems in the form (2.1) with different f(u) and u0(x), may have a solution

blowing up in a finite time or may not have a unique solution. So, we need to impose

some conditions on f(u).

The best way to exhibit the existence of a solution to a problem is of course writing

down a formula for the solution. This is possible for some certain linear problems.

Consider the following linear, nonhomogeneous diffusion problem

ut −Duxx = g(x, t), x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R,
(2.2)

where g and u0 are continuous bounded functions. By using Fourier transform, we

can derive the solution to this problem by

21
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u(x, t) =

∫
R
K(x− y, t)u0(y) dy +

∫ t

0

∫
R
K(x− y, t− s)g(y, s) dyds, (2.3)

where K(x, t) is the diffusion kernel given by

K(x, t) =

(
1

4πDt

)1/2

exp

(
−x2

4Dt

)
. (2.4)

But, for nonlinear problems, it is usually impossible to proceed in this manner, and

in such kind of situations, alternative methods must be found in order to prove the

existence of solution to a problem rather than describing it by a formula. Fixed point

iteration is one of these kind of methods. The basic idea is to produce a sequence,

through iteration of a certain map, that converges to the solution of the problem,

thus showing the existence.

We now consider the question of existence of a solution to the nonlinear initial

value problem (2.1). We can do this by using the solution (2.3) to the linear, non-

homogeneous problem (2.2). Suppose that f and u0 are continuous and bounded

functions on R. In this case, instead of explicit solution (2.3) for the linear equation,

we reduce the problem to the following nonlinear integral equation for u(x, t).

u(x, t) =

∫
R
K(x− y, t)u0(y)dy +

∫ t

0

∫
R
K(x− y, t− s)f(u(y, s))dyds (2.5)

It is easy to see that u = u(x, t) is a solution of (2.1) if and only if u = u(x, t) is a

solution of (2.5). The equation (2.5) can be written in the form

u = Φ(u),
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where Φ is a nonlinear integral operator defined on the set of bounded continuous

functions by

Φ(u)(x, t) ≡
∫
R
K(x− y, t)u0(y)dy +

∫ t

0

∫
R
K(x− y, t− s)f(u(y, s))dyds.

So, we can define the fixed point iteration by

un+1 = Φ(un),

or

un+1(x, t) =

∫
R
K(x− y, t)u0(y)dy

+

∫ t

0

∫
R
K(x− y, t− s)f(un(y, s))dyds, n = 0, 1, 2, ...

(2.6)

with

u0(x, t) =

∫
R
K(x− y, t)u0(y)dy (2.7)

Now, we will prove the existence theorem for the initial value problem (2.1) under

suitable assumptions on the nonlinear term f(·). In the proof of the following theorem,

we use the fact that the diffusion kernel K is strictly positive and that

∫
R
K(x− y, t− s) dx = 1, for all y and all s < t. (2.8)

Theorem 2.1. Consider the initial value problem (2.1) where u0(x) is a bounded

continuous function on R and where f is a bounded continuous function on R that

satisfies the global Lipschitz condition
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|f(u)− f(v)|≤ k|u− v|, for all u, v ∈ R (2.9)

where k is a positive constant independent of u and v. Then for any T > 0, there

exists a unique, bounded solution u(x, t) of (2.1) for x ∈ R and 0 ≤ t ≤ T .

Proof. We will show that the sequence defined by (2.6) and (2.7) converges uniformly

on R× [0, T ] to a function that is a solution of (2.1).

Firstly, note that by Lipschitz condition (2.9) we have

|f(u0(x, t))− f(0)|≤ k|u0(x, t)|. (2.10)

From (2.10), we deduce

|f(u0(x, t))|≤ |f(0)|+k|u0(x, t)|≤ (1 + k)m (2.11)

m = max

{
f(0), sup

0≤t≤T
|u0(x, t)|

}
. (2.12)

Here, let us use the notation

Mn(t) = sup {|un(x, s)− un−1(x, s)| : x ∈ R, s ≤ t} , t ≤ T.

Now, by (2.6), (2.11) and (2.12) we get
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|u1(x, t)− u0(x, t)| ≤
∫ t

0

∫
R

K(x− y, t− s)|f(u0(y, s))| dyds

≤
∫ t

0

(1 + k)m

∫
R

K(x− y, t− s) dyds

=

∫ t

0

(1 + k)m ds

= (1 + k)mt.

Denote M := (1 + k)m and take the supremum over R× [0, t] to get

M1(t) ≤Mt, 0 ≤ t ≤ T. (2.13)

Now, let us obtain a bound for |un+1−un|. Again by using (2.6) and (2.8), we obtain

|un+1(x, t)− un(x, t)| ≤
∫ t

0

∫
R

K(x− y, t− s)|f(un(y, s))− f(un−1(y, s))| dyds

≤
∫ t

0

∫
R

K(x− y, t− s)k|un(y, s)− un−1(y, s)| dyds

≤
∫ t

0

kMn(s)

∫
R

K(x− y, t− s) dyds

= k

∫ t

0

Mn(s) ds.

Then taking the supremum,

Mn+1(t) ≤ k

∫ t

0

Mn(s) ds, 0 ≤ t ≤ T, n = 1, 2, 3, ... (2.14)

On the other hand, consider that

M2(t) ≤ k

∫ t

0

M1(s) ds ≤ k

∫ t

0

Ms ds =
kMt2

2.1
=
M

k

(kt)2

2!
,
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M3(t) ≤ k

∫ t

0

M2(s) ds ≤ k

∫ t

0

kMs2

2
ds =

k2Mt3

3.2.1
=
M

k

(kt)3

3!

and continuing this procedure, we get

Mn(t) ≤ M

k

(kt)n

n!
, 0 ≤ t ≤ T. (2.15)

Now, let us consider the series

u0(x) +
∞∑
n=1

(un(x, t)− un−1(x, t)) , (2.16)

where u0(x, t) ≡ u0(x).

Since the mth partial sum of the series (2.16) is

Sm(x, t) = u0(x) +
m∑
n=1

(un(x, t)− un−1(x, t)) = um(x, t),

the series (2.16) is convergent if and only if the sequence {um(x, t)}n∈N+ is convergent

and the sum of the series is the limit of the sequence {um(x, t)}m∈N+ . Let us show

that the series (2.16) is uniformly convergent. In fact, we have

|un(x, t)− un−1(x, t)| ≤Mn(t) ≤ M

k

(kT )n

n!

and since

∞∑
n=1

(kT )n

n!
= ekT <∞,

by using Weierstrass M-Test (1.4), we deduce that un(x, t) converges uniformly on

R× [0, T ] to some continuous, bounded function u(x, t). Now, we can take the limit

of both sides of (2.6) and using the uniform convergence we can pass the limit inside
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of the integral. This shows that the limiting function u(x, t) satisfies the integral

equation which means that u(x,t) is a solution to the initial value problem (2.1).

In order to show the uniqueness of solution, suppose that the problem has two

different solutions u and v which are bounded, continuous functions satisfying the

integral equation. Then we get

|u(x, t)− v(x, t)| ≤
∫ t

0

∫
R
K(x− y, t− s)|f(u(y, s))− f(v(y, s))|dyds

≤
∫ t

0

∫
R
K(x− y, t− s)k|u(y, s)− v(y, s)|dyds.

(2.17)

Let M(t) = sup {|u(x, s)− v(x, s)|, x ∈ R, s ≤ t}. Then from the inequality (2.17) we

obtain

M(t) ≤ k

∫ t

0

∫
R
K(x− y, t− s)M(s)dyds = k

∫ t

0

M(s)ds.

By Gronwall’s Lemma, M(t) ≡ 0. Therefore, u = v and the solution to the problem

is unique.

In the preceding theorem we assumed that the nonlinear term f(u) satisfies the

uniform Lipschitz condition (2.9). But in many models described by reaction-diffusion

equations the nonlinear reaction terms are not satisfying the uniform Lipschitz condi-

tion. For example, reaction term for the Fisher equation has the form f(u) = u(1−u).

Since

|f(u)− f(v)|= |u(1− u)− v(1− v)|= |u− u2 − v + v2|= |1− u− v||u− v|

and the right hand side cannot be bounded by k|u− v| with some constant k > 0 for

all u and v. However, this nonlinearity satisfies the local Lipschitz condition. The
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nonlinear terms of the well-known Kolmogorov-Petrovsky-Piskunov equation and the

FitzHugh-Nagumo equations are cubic polynomials, and they also satisfy just local

Lipschitz condition. Thus, we seek to formulate an existence-uniqueness theorem by

weakening the hypothesis in (2.1) to a local Lipschitz condition.

Now, we will formulate and prove the existence theorem for the initial value prob-

lem (2.1), where only a local Lipschitz condition is required. But, firstly let us intro-

duce some notations. Consider a function u = u(x, t). For each fixed t, we consider u

as a function of x, defined on R. For the following formulation, we denote by B the

space CB(R) of all bounded, continuous functions v(x) on R, and let ‖v‖B denote the

norm of a function v(x) in B, i.e.,

‖u(t)‖B = sup
x∈R
|u(x, t)| for t fixed. (2.18)

Now, let T > 0 and let C([0, T ];B) be the set of all continuous functions defined on

0 ≤ t ≤ T with values in the Banach space B. That is, to each t ∈ [0, T ] we associate

a bounded, continuous function u(x, t) of x ∈ R (t fixed) which is an element of the

Banach space B. The set C([0, T ];B) whose elements will be denoted by u, is a

Banach space with the norm

‖u‖ = sup
t∈[0,T ]

‖u(t)‖B . (2.19)

We also introduce the convolution operation

(K ∗ u)(x, t) =

∫
R
K(x− y, t)u(y, t)dy,

where K(x, t) is the diffusion kernel. We call K ∗ u the convolution of K with u, and

(K ∗ u)(x, t) also belongs to B.
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Theorem 2.2. (Local Existence) Consider the initial value problem (2.1) where u0 ∈

B and f satisfies the conditions

(i) f ∈ C1(R).

(ii) f(0) = 0, and for each fixed t in [0, T ], f(u(x, t)) ∈ B, where u(x, t) ∈ B.

(iii) For any M > 0 there exists a constant k, depending only on M , such that

‖f(u(t))− f(v(t))‖B ≤ k ‖u(t)− v(t)‖B

for all t ∈ [0, T ] and all u(x, t) and v(x, t) in B with ‖u(t)‖B ≤M and ‖v(t)‖B ≤M .

Then there exists t0 > 0, where t0 depends only on f and ‖u0‖B, such that the

initial value problem (2.1) has a unique solution u = u(x, t) in C([0, t0];B) and

‖u‖ ≤ 2 ‖u0‖B.

Proof. We will define a closed subspace P of the Banach space C([0, t0];B) and show

that the mapping

Φ(u)(x, t) =

∫
R

K(x− y, t− s)u0(y) dy +

∫ t

0

∫
R

K(x− y, t− s)f(u(y, s)) dyds

is a contraction mapping on P . Then we will apply the remark (1.2) to produce a

solution to u = Φ(u), which is the solution of the initial value problem. Define

P = {u ∈ C([0, t0];B) : ‖u(t)− (K ∗ u0)(t)‖B ≤ ‖u0‖B , for 0 ≤ t ≤ t0} ,

where t0 = 1/2k. The set P is closed and nonempty. Also, from the defining property

of P , by using triangle inequality we obtain

‖u(t)‖B − ‖(K ∗ u0)(t)‖B ≤ ‖u(t)− (K ∗ u0)(t)‖B ≤ ‖u0‖B . (2.20)
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Then the fact

‖(K ∗ u)(t)‖B ≤ ‖u(t)‖B

with (2.20) imply that

‖u(t)‖B ≤ 2 ‖u0‖B

and then taking the supremum over [0, t0], we get

‖u‖ ≤ 2 ‖u0‖B . (2.21)

This proves the last statement of the theorem. Now, we have from (iii), for any

0 ≤ t ≤ t0,

‖f(u(t))− f(v(t))‖B ≤ k ‖u(t)− v(t)‖B ≤ k ‖u− v‖ .

We know that k depends only on the supremum norm of u and v, and on f . So,

clearly we can say that t0 depends only on f and the supremum norm of u0, by the

inequality (2.21).

Now, consider that
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‖Φ(u)(t)− (K ∗ u0)(t)‖B =

∥∥∥∥∫ t

0

∫
R
K(x− y, t− s)f(u(y, s))dyds

∥∥∥∥
B

= sup
x∈R

∣∣∣∣∫ t

0

∫
R
K(x− y, t− s)f(u(y, s))dyds

∣∣∣∣
≤ sup

x∈R

∫ t

0

∫
R
K(x− y, t− s)|f(u(y, s))|dyds

≤
∫ t

0

‖f(u(s))‖B ds ≤
∫ t

0

k ‖u(s)‖B ds

≤
∫ t

0

2k ‖u0‖B ds = 2kt ‖u0‖B , for all t ∈ [0, t0]

≤ 2kt0 ‖u0‖B = ‖u0‖B ,

since t0 = 1/2k. That is, Φ maps P into P .

Now, we will prove that Φ is a contraction mapping.

‖Φ(u)(t)− Φ(v)(t)‖B = sup
x∈R
|Φ(u)(x, t)− Φ(v)(x, t)|

≤ sup
x∈R

∫ t

0

∫
R
K(x− y, t− s)|f(u(y, s))− f(v(y, s))|dyds

=

∫ t

0

∫
R
K(x− y, t− s) ‖f(u(s))− f(v(s))‖B dyds

=

∫ t

0

‖f(u(s))− f(v(s))‖B ds

≤
∫ t

0

k ‖u− v‖ ds

≤ kt0 ‖u− v‖

=
1

2
‖u− v‖ .

Taking the supremum over t ∈ [0, T ], we get

‖Φ(u)− Φ(v)‖ ≤ 1

2
‖u− v‖ .
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This shows that Φ is a contraction mapping on the closed subset P of the Banach

space C([0, T ];B). By the remark (1.2), we deduce that there is a unique fixed point

of the operator Φ in the ball P . This proves that there is a unique solution to the

initial value problem (2.1) in P .

Finally, it remains to show that there are no solutions outside of the set P . This

fact results from the following argument. If u, v ∈ C([0, T ];B) are two solutions of

the initial value problem (2.1), then we obtain

|u(x, t)− v(x, t)|≤
∫ t

0

∫
R
K(x− y, t− s)|f(u(y, s))− f(v(y, s))| dyds.

Taking supremum on x gives

212 ‖u(t)− v(t)‖B ≤
∫ t

0

∫
R
K(x− y, t− s) ‖f(u(y, s))− f(v(y, s))‖B dyds(2.22)

≤ k

∫ t

0

‖u(s)− v(s)‖B ds. (2.23)

Then, multiplying (??) by e−kt, we get

d

dt

[
e−kt

∫ t

0

‖u(s)− v(s)‖B ds

]
≤ 0

which implies by Gronwall’s Lemma ‖u(t)− v(t)‖B = 0 and we get u ≡ v.

This theorem is only a local existence result, guaranteeing a solution for 0 ≤ t ≤ t0,

for some t0. Under certain conditions we may extend the solution to any finite time.

We have the following result.

Theorem 2.3. (Global Existence) Suppose that all conditions of the theorem (2.2)

are satisfied. If in addition there exists a constant C depending on supx∈R |u0(x)| such
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that

sup
x∈R
|u(x, t)| ≤ C, ∀t ∈ [0, T ].

Then the solution of the problem (2.1) exists on [0, T ], and u(x, t) ∈ B. Here T may

be infinity, giving global existence.

Proof. The local theorem guarentees a solution u on [0, t0]. Then we can apply

the local theorem again with initial condition u(x, t0) to get a solution on [t0, 2t0].

Continuing in this manner we can obtain, after a finite number of steps, a solution

on [0, T ].

Remark 2.1. The proof of the existence and uniqueness of solution to the system of

reaction diffusion equations is similar.



Chapter 3

The Stabilization of
FitzHugh-Nagumo System with
One Feedback Controller

In this chapter, we will investigate the internal feedback stabilization of a FitzHugh-

Nagumo system on a bounded domain. We will show that the system, given below,

can be stabilized exponentially by one feedback controller acting on a subdomain.

Let Ω ⊂ Rn be a bounded domain with smooth boundary ∂Ω, ω ⊂ Ω be an open

nonempty subdomain of Ω with smooth boundary ∂ω such that ω̄ ⊂ Ω. We will

consider the following system,

ut −∆u− u(1− u)(u− a) + v = mw; (x, t) ∈ Ω× R+,

vt − σu+ βv = 0; (x, t) ∈ Ω× R+,

u(x, t) = 0; (x, t) ∈ ∂Ω× R+,

u(x, 0) = u0(x), v(x, 0) = v0(x); x ∈ Ω,

(3.1)

where u, v are unknown functions, w is the control input, a, σ, β are positive con-

stants, and m is the characteristic function of the domain ω̄.

In order to investigate the stabilization of the system (3.1), we apply the feedback

34
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controller

w = −ku, (3.2)

where k > 0. Then the system (3.1) becomes

ut −∆u− u(1− u)(u− a) + v = −kmu; (x, t) ∈ Ω× R+,

vt − σu+ βv = 0; (x, t) ∈ Ω× R+,

u(x, t) = 0; (x, t) ∈ ∂Ω× R+,

u(x, 0) = u0(x), v(x, 0) = v0(x); x ∈ Ω.

(3.3)

Definition 3.1. If there exists a feedback controller w = −ku for some k > 0 such

that the corresponding solution [u, v] of (3.3) satisfies the inequality∫
Ω

(u2(x, t) + v2(x, t))dx ≤Me−αt
∫

Ω

(u2
0(x) + v2

0(x))dx

for any t > 0 and some constants α > 0, M > 0, then we say that the FitzHugh-

Nagumo system (3.1) can be stabilized via the feedback controller w = −ku.

Now, let AΩω be the Laplace operator with Dirichlet boundary condition defined

on Ωω = Ω \ ω̄. i.e.,

AΩωu = −∆u; u ∈ D (AΩω) ,

D (AΩω) = H2 (Ωω) ∩ H1
0 (Ωω) .

Let us denote the first eigenvalue of AΩω by λ1 (AΩω), and by remark (1.6), we write

λ1 (AΩω) = inf

{∫
Ωω

|∇u(x)|2 dx : u ∈ H1
0 (Ωω) , ‖u‖L2(Ωω) = 1

}
.
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Remark 3.1. Note that

λ1 (AΩω)→∞ as dH (∂Ω, ∂ω)→ 0

where dH is the ”Hausdorff distance”.

By remark (3.1), for any positive constant a, we can choose Ωω ”sufficiently thin”

so that

λ1 (AΩω)− (a− 1)2

4
> 0. (3.4)

Lemma 3.1. For any ε > 0, there exists K(ε) > 0 such that for all k > K(ε), the

following inequality holds

(
λ1 (AΩω)− ε

) ∫
Ω

u2(x) dx ≤
∫

Ω

(
|∇u(x)|2 + kmu2(x)

)
dx, u ∈ H1

0 (Ω). (3.5)

Proof. Firstly, let us define the operator Ak as follows

Aku = −∆u+ kmu; u ∈ D(Ak),

D(Ak) = H2(Ω) ∩ H1
0 (Ω)

and let λ1 (Ak) be the first eigenvalue of the operator Ak. That is,

λ1 (Ak) = inf

{∫
Ω

(
|∇u(x)|2 + kmu(x)2

)
dx : u ∈ H1

0 (Ω), ‖u‖L2(Ω) = 1

}
. (3.6)

Then we obtain that

λ1(Ak) ≤ inf

{∫
Ωω

(
|∇u(x)|2 + kmu2(x)

)
dx : u ∈ H1

0 (Ωω), ‖u‖L2(Ωω) = 1

}
= inf

{∫
Ωω

|∇u(x)|2 dx : u ∈ H1
0 (Ωω), ‖u‖L2(Ωω) = 1

}
= λ1 (AΩω) .

(3.7)
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Here, note that {λ1(Ak)}k∈N+ is an increasing sequence of real numbers.

On the other hand, let φ1
k be the eigenfunction corresponding to λ1(Ak) for each

k ∈ N+. Without loss of generality, we may assume that ‖φ1
k‖L2(Ω) = 1 for each

k ∈ N+. Using remark (1.6) again, we write

λ1(Ak) =

∫
Ω

(∣∣∇φ1
k(x)

∣∣2 + km(φ1
k(x))2

)
dx

=

∫
Ω

∣∣∇φ1
k(x)

∣∣2 dx+ k

∫
ω

(φ1
k(x))2dx

=
∥∥∇φ1

k

∥∥2

L2(Ω)
+ k

∥∥φ1
k

∥∥2

L2(ω)
,

where m = χω̄

Then using (3.6) and (3.7), for any k ∈ N+ we get,

∥∥∇φ1
k

∥∥2

L2(Ω)
+ k

∥∥φ1
k

∥∥2

L2(ω)
≤ λ1 (AΩω) . (3.8)

We know that

∥∥φ1
k

∥∥
H1

0 (Ω)
=
∥∥∇φ1

k

∥∥
L2(Ω)

and considering (3.8), we deduce that {φ1
k}k∈N+ is a bounded sequence in H1

0 (Ω).

Hence, by proposition (1.3), {φ1
k}k∈N+ has a weakly convergent subsequence (also

denoted by {φ1
k}k∈N+) which is also bounded and converging to φ1. That is,

φ1
k ⇀ φ1 as k →∞ in H1

0 (Ω)

Now, since H1
0 (Ω) is compactly embedded in L2(Ω), by definition (1.9), this subse-

quence has a subsequence (also denoted by {φ1
k}k∈N+) such that
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φ1
k → φ1 as k →∞ in L2(Ω)

and in particular,

φ1
k → φ1 as k →∞ in L2(ω̄). (3.9)

Note that by lemma (1.2), we obtain that

lim inf
n→∞

∥∥φ1
k

∥∥
H1

0 (Ω)
≥
∥∥φ1
∥∥
H1

0 (Ω)
,

or equivalently, we write

lim inf
n→∞

∥∥∇φ1
k

∥∥
L2(Ω)

≥
∥∥∇φ1

∥∥
L2(Ω)

. (3.10)

On the other hand, since ‖∇φ1
k‖

2
L2(Ω) +k ‖φ1

k‖
2
L2(ω) ≥ 0, for all k ∈ N+, considering

(3.8), we see that limk→∞ ‖φ1
k‖L2(ω) = 0, and also considering (3.9) above, we deduce

φ1 = 0 almost everywhere on ω̄. Since ‖φ1‖L2(Ω) = 1, we obtain that ‖φ1‖L2(Ωω) = 1.

Then by Divergence Theorem, consider that

∥∥∇φ1
∥∥2

L2(Ω)
=

∫
Ωω

∣∣∇φ1(x)
∣∣2 dx+

∫
ω

∣∣∇φ1(x)
∣∣2 dx

=

∫
Ωω

∣∣∇φ1(x)
∣∣2 dx− ∫

ω

φ1(x)∆φ1(x)dx

=

∫
Ωω

∣∣∇φ1(x)
∣∣2 dx

=
∥∥∇φ1

∥∥2

L2(Ωω )
.

Moreover, since we have λ1(Ak) ≥ ‖∇φ1
k‖

2
L2(Ω), for all k ∈ N+, considering (3.10), we

obtain that
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lim
k→∞

λ1(Ak) ≥ lim inf
n→∞

∥∥∇φ1
k

∥∥2

L2(Ω)

≥
∥∥∇φ1

∥∥2

L2(Ω)

=
∥∥∇φ1

∥∥2

L2(Ωω)

≥ λ1 (AΩω) .

From (3.7) we have limk→∞ λ
1(Ak) ≤ λ1 (AΩω). Thus, we obtain that limk→∞ λ

1(Ak) =

λ1 (AΩω). By definition, given ε > 0 there exists K ∈ N+ such that ∀k ≥ K we have

|λ1(Ak)− λ1 (AΩω)| < ε. Then, we get

λ1 (AΩω)− ε ≤
∫
Ω(|∇u(x)|2+kmu2(x))dx∫

Ω u
2(x)dx

, for all u ∈ H1
0 (Ω) with u 6= 0,

(λ1 (AΩω)− ε)
∫

Ω
u2(x)dx ≤

∫
Ω

(
|∇u(x)|2 + kmu2(x)

)
dx, for all u ∈ H1

0 (Ω).

Theorem 3.2. There exists K > 0 such that if k > K, the FitzHugh-Nagumo system

(3.1) can be stabilized via the feedback controller w = −ku. That is, for u0 ∈ L2(Ω),

v0 ∈ L2(Ω), the solution (u, v) of (3.3) satisfies

∫
Ω

(
u2(x, t) + v2(x, t)

)
dx ≤Me−αt

∫
Ω

(
u2

0(x) + v2
0(x)

)
dx

for any t > 0 and some constants α > 0, M > 0.

Proof. Multiplying the first equation of (3.3) by σu and integrating over Ω× (0, t),
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σ

2

∫
Ω

u2(x, t)dx+ σ

∫ t

0

∫
Ω

|∇u(x, s)|2 dxds+ σ

∫ t

0

∫
Ω

u4(x, s)dxds

− σ(a+ 1)

∫ t

0

∫
Ω

u3(x, s)dxds+ σa

∫ t

0

∫
Ω

u2(x, s)dxds

+ σ

∫ t

0

∫
Ω

u(x, s)v(x, s)dxds =
σ

2

∫ t

0

u2
0(x)dx− σk

∫ t

0

∫
Ω

mu2(x, s)dxds.

(3.11)

Now, multipliying the second equation of (3.3) by v and integrating over Ω× (0, t),

1

2

∫
Ω

v2(x, t)dx− σ
∫ t

0

∫
Ω

u(x, s)v(x, s)dxds

+ β

∫ t

0

∫
Ω

v2(x, s)dxds =
1

2

∫
Ω

v2
0(x)dx.

(3.12)

Summing (3.11) and (3.12), we get

σ

2

∫
Ω

u2(x, t)dx+
1

2

∫
Ω

v2(x, t)dx+ σ

∫ t

0

∫
Ω

u4(x, s)dxds

= −σ
∫ t

0

∫
Ω

|∇u(x, s)|2 dxds− σk
∫ t

0

∫
Ω

mu2(x, s)dxds

+ σ(a+ 1)

∫ t

0

∫
Ω

u3(x, s)dxds− σa
∫ t

0

∫
Ω

u2(x, s)dxds

− β
∫ t

0

∫
Ω

v2(x, s)dxds+
σ

2

∫
Ω

u2
0(x)dx+

1

2

∫
Ω

v2
0(x)dx.

(3.13)

Now, by using Young’s Inequality (1.6) with ε = 2 and p = q = 2, we obtain

σ(a+ 1)

∫ t

0

∫
Ω

u3(x, s)dxds =

∫ t

0

∫
Ω

√
σu2(x, s)

√
σ(a+ 1)u(x, s)dxds

≤ σ

∫ t

0

∫
Ω

u4(x, s)dxds

+
σ(a+ 1)2

4

∫ t

0

∫
Ω

u2(x, s)dxds.

(3.14)

By using (3.13) and (3.14), we get
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σ

2

∫
Ω

u2(x, t)dx+
1

2

∫
Ω

v2(x, t)dx

≤ −σ
∫ t

0

∫
Ω

(
|∇u(x, s)|2 + kmu2(x, s))dxds

+
σ(a− 1)2

4

∫ t

0

∫
Ω

u2(x, s)dxds− β
∫ t

0

∫
Ω

v2(x, s)dxds

+
σ

2

∫
Ω

u2
0(x)dx+

1

2

∫
Ω

v2
0(x)dx.

(3.15)

By using (3.4), we can choose a small ε > 0 such that λ1 (AΩω)− (a−1)2

4
> ε. Let

δ := σ

(
λ1 (AΩω)− (a− 1)2

4
− ε
)
> 0.

Combining (3.5) and (3.15), we have for any k > K,

σ

2

∫
Ω

u2(x, t)dx+
1

2

∫
Ω

v2(x, t)dx ≤ −σ
(
λ1 (AΩω)− ε

) ∫ t

0

∫
Ω

u2(x, s)dxds

+
σ(a− 1)2

4

∫ t

0

∫
Ω

u2(x, s)dxds

− β
∫ t

0

∫
Ω

v2(x, s)dxds+
σ

2

∫
Ω

u2
0(x)dx+

1

2

∫
Ω

v2
0(x)dx

= −δ
∫ t

0

∫
Ω

u2(x, s)dxds− β
∫ t

0

∫
Ω

v2(x, s)dxds

+
σ

2

∫
Ω

u2
0(x)dx+

1

2

∫
Ω

v2
0(x)dx.

Let c1 = min
{
σ
2
, 1

2

}
, c2 = max

{
σ
2
, 1

2

}
, α = 1

c1
min {δ, β}, then we obtain

c1

∫
Ω

(u2(x, t)+v2(x, t))dx ≤ −αc1

∫ t

0

∫
Ω

(u2(x, s)+v2(x, s))dxds+c2

∫
Ω

(u2
0(x)+v2

0(x))dx.

Dividing both sides by c1, we get
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∫
Ω

(u2(x, t) + v2(x, t))dx ≤ −α
∫ t

0

∫
Ω

(u2(x, s) + v2(x, s))dxds+
c2

c1

∫
Ω

(u2
0(x) + v2

0(x))dx(3.16)

Now, denoting
∫

Ω
(u2(x, t) + v2(x, t))dx by Y (t) and c2

c1
by γ we can write (3.16) as

follows

Y (t) ≤ −α
∫ t

0

Y (s)ds+ γY (0). (3.17)

Then multiplying both sides of (3.17) by eαt and arranging we obtain

∫ t

0

Y (s)ds ≤ intt0γY (0)e−αsds.

Since Y (s) ≥ 0 and γY (0)e−αs ≥ 0 on [0, t], we deduce Y (t) ≤ γY (0)e−αt which

is equivalent to

∫
Ω

(u2(x, t) + v2(x, t))dx ≤
[
c2

c1

∫
Ω

(u2
0(x) + v2

0(x))dx

]
e−αt.

Letting M := c2
c1

, we obtain the desired stability result

∫
Ω

(u2(x, t) + v2(x, t))dx ≤Me−αt
∫

Ω

(u2
0(x) + v2

0(x))dx.



Chapter 4

Structural Stability for
FitzHugh-Nagumo Equation

In this chapter, we will consider an initial boundary value problem for a system

of nonlinear parabolic equations that can be considered as a regularization of the

FitzHugh-Nagumo model. For the system, given below, we will study the problem of

continuous dependence of solutions to the probem on the diffusivity coefficient. Note

that, this type of stability is called ”structural stability”.

Let G ⊂ Rn (n ≤ 4) be a bounded domain with sufficiently smooth boundary ∂G,

and u0, v0 be given functions. Consider the system,

ut −∆u+ g |u|p u+ cu2 + au− v = 0, x ∈ G, t > 0

vt − k∆v + fv + bu = 0, x ∈ G, t > 0

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ G

u(x, t) = 0, v(x, t) = 0, x ∈ ∂G, t > 0

(4.1)

where a > 0, b > 0, f > 0, g > 0, p ≥ 2, and c ∈ R are given numbers.

Here, we assume that [u, v] is the classical solution of the system (4.1).

Firstly, we derive a priori estimates for solutions of the problem (4.1) which are
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uniform with respect to t ∈ R+.

Theorem 4.1. Suppose that u0, v0 ∈ H1
0 (G). Then the following estimates hold true

‖∇u(t)‖ , ‖∇v(t)‖ ,
∫ t

0

‖∇u(s)‖2 ds, k

∫ t

0

‖∇v(s)‖2 ds,∫ t

0

‖∆u(s)‖2 ds, k

∫ t

0

‖∆v(s)‖2 ds ≤ D, ∀t ∈ R+.

(4.2)

for some constant D.

Proof. Let us multiply the first equation in (4.1) by bu and then integrate the result

over G,

b

2

∫
G

∂

∂t
(u2(x, t))dx− b

∫
G

u(x, t)∆u(x, t)dx+ bg

∫
G

|u(x, t)|p+2 dx

+ ab

∫
G

u2(x, t)dx− b
∫
G

u(x, t)v(x, t)dx = −bc
∫
G

u3(x, t)dx.

From this, we get

d

dt

[
b

2
‖u(t)‖2

]
+ b ‖∇u(t)‖2 + bg

∫
G

|u(x, t)|p+2 dx+ ab ‖u(t)‖2

− b
∫
G

u(x, t)v(x, t)dx = −bc
∫
G

u3(x, t)dx.

(4.3)

Multiply the second equation in (4.1) by v and then integrate over G,

1

2

∫
G

∂

∂t
v2(x, t)dx− k

∫
G

v(x, t)∆v(x, t)dx+ f

∫
G

v2(x, t)dx+ b

∫
G

u(x, t)v(x, t)dx = 0

Then, we obtain that

d

dt

[
1

2
‖v(t)‖2

]
+ k ‖∇v(t)‖2 + f ‖v(t)‖2 + b

∫
G

u(x, t)v(x, t)dx = 0. (4.4)
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Summing (4.3) and (4.4), we obtain

d

dt

[
b

2
‖u(t)‖2 +

1

2
‖v(t)‖2

]
+ ab ‖u(t)‖2 + f ‖v(t)‖2 + b ‖∇u(t)‖2

+ k ‖∇v(t)‖2 + bg

∫
G

|u(x, t)|p+2 dx

= −bc
∫
G

u3(x, t)dx

(4.5)

By using Young’s Inequality (1.6) for the right-hand side of (4.5) with ε = bg(p+2)
6

, we

obtain

−bc
∫
G

u3(x, t)dx ≤ bg

2

∫
G

|u(x, t)|p+2 dx+
p− 1

p+ 2

(
bg(p+ 2)

6

)3/(1−p)

(b |c|)
p+2
p−1 |G| .

Letting C0 = p−1
p+2

(
bg(p+2)

6

)3/(1−p)
(b |c|)

p+2
p−1 |G|, we write the above inequality in the

form

−bc
∫
G

u3(x, t)dx ≤ bg

2

∫
G

|u(x, t)|p+2 dx+ C0. (4.6)

Combining (4.5) and (4.6), we get

d

dt

[
b ‖u(t)‖2 + ‖v(t)‖2]+ 2ab ‖u(t)‖2 + 2f ‖v(t)‖2 + 2b ‖∇u(t)‖2

+ 2k ‖∇v(t)‖2 + bg

∫
G

|u(x, t)|p+2 dx ≤ 2C0.
(4.7)

Then, from (4.7), we obtain that

d

dt

[
b ‖u(t)‖2 + ‖v(t)‖2]+ 2ab ‖u(t)‖2 + 2f ‖v(t)‖2 ≤ 2C0.

Here, letting ν1 = min {2a, 2f}, we get
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d

dt

[
b ‖u(t)‖2 + ‖v(t)‖2]+ ν1

(
b ‖u(t)‖2 + ‖v(t)‖2) ≤ 2C0.

This implies that

b ‖u(t)‖2 + ‖v(t)‖2 ≤ e−ν1t

(
b ‖u0‖2 + ‖v0‖2 − 2C0

ν1

)
+

2C0

ν1

.

Since for ν1 > 0 and t > 0, e−ν1t < 1, we get the inequality

b ‖u(t)‖2 + ‖v(t)‖2 ≤ C1, ∀t ∈ R+, (4.8)

where C1 = b ‖u0‖2 + ‖v0‖2.

Here, it is important that C0 and C1 do not depend on k. Now, integrating (4.7)

with respect to t, we get

b ‖u(t)‖2 + ‖v(t)‖2 − b ‖u0‖2 − ‖v0‖2 + 2ab

∫ t

0

‖u(s)‖2 ds

+ 2f

∫ t

0

‖v(s)‖2 ds+ 2b

∫ t

0

‖∇u(s)‖2 ds+ 2k

∫ t

0

‖∇v(s)‖2 ds

+ bg

∫ t

0

∫
G

|u(x, s)|p+2 dxds ≤ 2C0t.

Then since

b ‖u(t)‖2 + ‖v(t)‖2 + 2ab

∫ t

0

‖u(s)‖2 ds+ 2d

∫ t

0

‖v(s)‖2 ds ≥ 0,

by using (4.8) we obtain that
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2b

∫ t

0

‖∇u(s)‖2 ds+ 2k

∫ t

0

‖∇v(s)‖2 ds

+ bg

∫ t

0

∫
G

|u(x, s)|p+2 dxds

≤ 2C0t+ C1 ≤ 2C0T + C1,

for all t ∈ [0, T ]. So, we deduce that there exists C2(T ) depending on b, c, g, p, |G|,

initial data and T such that

∫ t

0

‖∇u(s)‖2 ds, k

∫ t

0

‖∇v(s)‖2 ds,∫ t

0

∫
G

|u(x, s)|p+2 dxds ≤ C2(T ), ∀t ∈ [0, T ].

(4.9)

Now, multiplying the first equation in (4.1) by −b∆u and then integrating over G,

we get

−b
∫
G

ut(x, t)∆u(x, t)dx+ b

∫
G

|∆u(x, t)|2 dx− bg
∫
G

|u(x, t)|p u(x, t)∆u(x, t)dx

− bc
∫
G

u2(x, t)∆u(x, t)dx− ab
∫
G

u(x, t)∆u(x, t)dx

+ b

∫
G

v(x, t)∆u(x, t)dx = 0.

From this equality, we obtain that

b

2

d

dt
‖∇u(t)‖2 + b ‖∆u(t)‖2 + bg(p+ 1)

∫
G

|u(x, t)|p |∇u(x, t)|2 dx

+ bc

∫
G

u(x, t) |∇u(x, t)|2 dx+ ab ‖∇u(t)‖2

+ b

∫
G

u(x, t)∆v(x, t)dx = 0

(4.10)
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Then multiplying the second equation in (4.1) by −∆v and integrating over G, we

get that

−
∫
G

vt(x, t)∆v(x, t)dx+ k

∫
G

|∆v(x, t)|2 dx− f
∫
G

v(x, t)∆v(x, t)dx

− b
∫
G

u(x, t)∆v(x, t)dx = 0.

By using Divergence Theorem (1.11), we get that

1

2

d

dt
‖∇v(t)‖2 + k ‖∆v(t)‖2 + f ‖∇v(t)‖2 − b

∫
G

u(x, t)∆v(x, t)dx = 0. (4.11)

Then, summing (4.10) and (4.11), we obtain that

d

dt

[
b

2
‖∇u(t)‖2 +

1

2
‖∇v(t)‖2

]
+ ab ‖∇u(t)‖2 + f ‖∇v(t)‖2 + b ‖∆u(t)‖2

+ k ‖∆v(t)‖2 + bg(p+ 1)

∫
G

|u(x, t)|p |∇u(x, t)|2 dx

= −bc
∫
G

u(x, t) |∇u(x, t)|2 dx.

(4.12)

Now, let us use Young’s Inequality (1.6) and Interpolation Inequality (1.8) for the

right-hand side of (4.12) with ε = bgp(p+1)
2

,
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−bc
∫
G

u(x, t) |∇u(x, t)|2 dx ≤ b |c|
∫
G

|u(x, t)| |∇u(x, t)|2 dx

= b |c|
∫
G

|u(x, t)| |∇u(x, t)|2/p |∇u(x, t)|(2p−2)/p dx

≤ bg(p+ 1)

2

∫
G

|u(x, t)|p |∇u(x, t)|2 dx

+
p− 1

p

(
bgp(p+ 1)

2

)1/(1−p)

(b |c|)p/(p−1)

∫
G

|∇u(x, t)|2 dx

=
bg(p+ 1)

2

∫
G

|u(x, t)|p |∇u(x, t)|2 dx+ C3 ‖∇u(t)‖2

≤ bg(p+ 1)

2

∫
G

|u(x, t)|p |∇u(x, t)|2 dx+ C3 ‖u(t)‖ ‖∆u(t)‖

≤ bg(p+ 1)

2

∫
G

|u(x, t)|p |∇u(x, t)|2 dx+
b

2
‖∆u(t)‖2

+
C3

2b
‖u(t)‖2

=
bg(p+ 1)

2

∫
G

|u(x, t)|p |∇u(x, t)|2 dx+
b

2
‖∆u(t)‖2

+ C4 ‖u(t)‖2

where C3 = p−1
p

(
bgp(p+1)

2

)1/(1−p)
(b |c|)p/(p−1) and C4 = C3

2b
. Note that here we also

used the inequality

‖u(t)‖ ‖∆u(t)‖ ≤ ε ‖u(t)‖2 +
1

4ε
‖∆u(t)‖2 ,

with ε = 1/2b.

By using the above inequality in (4.12), we obtain that
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d

dt

[
b ‖∇u(t)‖2 + ‖∇v(t)‖2]+ 2ab ‖∇u(t)‖2 + 2f ‖∇v(t)‖2 + 2b ‖∆u(t)‖2

+ 2k ‖∆v(t)‖2 + 2bg(p+ 1)

∫
G

|u(x, t)|p |∇u(x, t)|2 dx

≤ bg(p+ 1)

∫
G

|u(x, t)|p |∇u(x, t)|2 dx+ b ‖∆u(t)‖2

+ 2C4 ‖u(t)‖2 .

From this inequality, we get

d

dt

[
b ‖∇u(t)‖2 + ‖∇v(t)‖2]+ 2ab ‖∇u(t)‖2 + 2f ‖∇v(t)‖2

+ b ‖∆u(t)‖2 + 2k ‖∆v(t)‖2

+ bg(p+ 1)

∫
G

|u(x, t)|p |∇u(x, t)|2 dx

≤ 2C4 ‖u(t)‖2

≤ C5,

(4.13)

where C5 = 2C1C4

b
. Now, integrating (4.13) with respect to t, we obtain that

b ‖∇u(t)|2 + ‖∇v(t)‖2 − b ‖∇u(0)‖2 − ‖∇v(0)‖2 + 2ab

∫ t

0

‖∇u(s)‖2 ds

+ 2f

∫ t

0

‖∇v(s)‖2 ds+ b

∫ t

0

‖∆u(s)‖2 ds+ 2k

∫ t

0

‖∆v(s)‖2 ds

+ bg(p+ 1)

∫ t

0

∫
G

|u(x, s)|p |∇u(x, s)|2 dxds

≤ C5t.

From this inequality we obtain the following inequality
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b ‖∇u(t)|2 + ‖∇v(t)‖2 + b

∫ t

0

‖∆u(s)‖2 ds+ 2k

∫ t

0

‖∆v(s)‖2 ds

≤ C5t+ b ‖∇u(0)‖2 + ‖∇v(0)‖2

≤ C5T + b ‖∇u(0)‖2 + ‖∇v(0)‖2 ,

(4.14)

for all t ∈ [0, T ]. So, we deduce that there exists a constant C6(T ) depending on

a, b, c, d, g, |G|, initial data and T such that

‖∇u(t)‖2 , ‖∇v(t)‖2 ,

∫ t

0

‖∆u(s)‖2 ds,

k

∫ t

0

‖∆v(s)‖2 ds ≤ C6(T ), ∀t ∈ [0, T ].

(4.15)

So, we are ready to prove the following theorem on continuous dependence of

solution to the problem (4.1) on the diffusivity coefficient k.

Theorem 4.2. Suppose that [ui, vi], i = 1, 2 are strong solutions of the problem (4.1),

that is;

∂tui −∆ui + |ui|p ui + cu2
i + aui − vi = 0, x ∈ G, t > 0,

∂tvi − ki∆vi + fvi + bui = 0, x ∈ G, t > 0,

ui(x, 0) = u0(x), vi(x, 0) = v0(x), x ∈ G,

ui(x, t) = vi(x, t) = 0, x ∈ ∂G, t > 0.

(4.16)

Then the following a priori estimate with k̃ = k1 − k2 holds true

‖u1(t)− u2(t)‖ ≤ D1(T )
√
k̃eD2t, ∀t ∈ [0, T ], (4.17)

for some constants D1(T ) and D2.
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Proof. It is clear that the pair of functions [w, z] = [u1 − u2, v1 − v2] is a solution of

the problem

wt −∆w + |u1|p u1 − |u2|p u2 + c(u1 + u2)w + aw − z = 0, x ∈ G, t > 0,

zt − k1∆z + fz + bw = k̃∆v2, x ∈ G, t > 0,

w(x, 0) = 0, z(x, 0) = 0, x ∈ G,

w(t, x) = z(t, x) = 0, x ∈ ∂G, t > 0.

(4.18)

Multiplying the first equation in (4.18) by bw and then integrating over G, we get

the relation

b

2

d

dt
‖w(t)‖2 + b ‖∇w(t)‖2

+ b

∫
G

w(x, t) (|u1(x, t)|pu(x, t)1 − |u(x, t)2|pu(x, t)2) dx

+ bc

∫
G

w2(x, t) (u1(x, t) + u2(x, t)) dx+ ab ‖w(t)‖2

− b
∫
G

w(x, t)z(x, t)dx = 0.

(4.19)

Now, multiply the second equation in (4.18) by z and integrate over G to get

1

2

d

dt
‖z(t)‖2 + k1 ‖∇z(t)‖2 + f ‖z(t)‖2 + b

∫
G

w(x, t)z(x, t)dx

= k̃

∫
G

z(x, t)∆v2d(x, t)x.

(4.20)

Summing (4.19) and (4.20), we obtain that
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d

dt

[
b

2
‖w(t)‖2 +

1

2
‖z(t)‖2

]
+ f ‖z(t)‖2 + b ‖∇w(t)‖2 + k1 ‖∇z(t)‖2

+ ab ‖w(t)‖2 + b

∫
G

w(x, t) (|u1(x, t)|pu1(x, t)

− |u2(x, t)|pu2(x, t)dx

= k̃

∫
G

z(x, t)∆v2(x, t)dx

− bc
∫
G

(u1(x, t) + u2(x, t))w2(x, t)dx.

(4.21)

Combining the inequality (1.10) with (4.21), we obtain that

d

dt

[
b

2
‖w(t)‖2 +

1

2
‖z(t)‖2

]
+ f ‖z(t)‖2 + b ‖∇w(t)‖2

+ k1 ‖∇z(t)‖2 + ab ‖w(t)‖2 + bd1

∫
G

|w(x, t)|p+2 dx ≤

k̃

∫
G

z(x, t)∆v2(x, t)dx− bc
∫
G

(u1(x, t) + u2(x, t))w2(x, t)dx.

Then clearly, we get that

d

dt

[
b

2
‖w(t)‖2 +

1

2
‖z(t)‖2

]
≤ k̃

∫
G

z(x, t)∆v2(x, t)dx

− bc
∫
G

(u1(x, t) + u2(x, t))w2(x, t)dx.

(4.22)

For the first term on the right-hand side of (4.22), using Young’s Inequality (1.6) with

ε = f , and p = q = 2 we obtain the inequality

∣∣∣∣k̃ ∫
G

∆v2(x, t)z(x, t)dx

∣∣∣∣ ≤ ∫
G

|k̃∆v2(x, t)z(x, t)|dx

≤ f

2

∫
G

|z(x, t)|2 dx+
k̃2

2f

∫
G

|∆v2(x, t)|2 dx

=
f

2
‖z(t)‖2 +

k̃2

2f
‖∆v2(t)‖2 .

(4.23)
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For the second term on the right-hand side of (4.22), we have

∣∣∣∣∫
G

(u1(x, t) + u2(x, t))w2(x, t)dx

∣∣∣∣ ≤ ∫
(|u1(x, t)|+ |u2(x, t)|)w2(x, t)dx

≤ max
x∈G

(|u1(x, t)|+ |u2(x, t)|)
∫
G

w2(x, t)dx

≤
(

max
x∈G
|u1(x, t)|+ max

x∈G
|u2(x, t)|

)
‖w(t)‖2 .

Then, using the Sobolev Inequality (1.9), we obtain

∣∣∣∣∫
G

(u1(x, t) + u2(x, t))w2(x, t)dx

∣∣∣∣ ≤ (r1 ‖∆u1(t)‖+ r2 ‖∆u2(t)‖) ‖w(t)‖2 .

Letting r = max {r1, r2}, we get

∣∣∣∣∫
G

(u1(x, t) + u2(x, t))w2(x, t)dx

∣∣∣∣ ≤ r (‖∆u1(t)‖+ ‖∆u2(t)‖) ‖w(t)‖2 . (4.24)

Now, using (4.23) and (4.24) in (4.22) we get that

d

dt

[
b

2
‖w(t)‖2 +

1

2
‖z(t)‖2

]
≤ f

2
‖z(t)‖2 +

k̃2

2f
‖∆v2(t)‖2

+ b|c|r (‖∆u1(t)‖+ ‖∆u2(t)‖) ‖w(t)‖2

≤
[
|c|r

(
‖∆u1(t)‖2 + ‖∆u2(t)‖2)+

f

2

] (
b ‖w(t)‖2 + ‖z(t)‖2)

+
k̃2

2f
‖∆v2(t)‖2 .

From this inequality, we get that

d

dt

[
b ‖w(t)‖2 + ‖z(t)‖2] ≤ [

2|c|r
(
‖∆u1(t)‖2 + ‖∆u2(t)‖2)+ f

] (
b ‖w(t)‖2 + ‖z(t)‖2)

+
k̃2

f
‖∆v2(t)‖2 .
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Letting

y(t) := b ‖w(t)‖2 + ‖z(t)‖2

, β(t) := 2|c|r
(
‖∆u1(t)‖2 + ‖∆u2(t)‖2) + f,and α(t) := k̃2

d
‖∆v2(t)‖2, we can write

the last inequality as

y′(t) ≤ α(t) + β(t)y(t).

Observe that y(0) = 0. Integrating it over [0, t], we get

y(t) ≤
∫ t

0

α(s)ds+

∫ t

0

β(s)y(s)ds.

Due to Gronwall’s Lemma, we have

y(t) ≤
(∫ t

0

α(s)ds

)
e
∫ t
0 β(s)ds.

That is,

y(t) ≤

(
k̃2

f

∫ t

0

‖∆v2(t)‖2 ds

)
e
∫ t
0 [2|c|r(‖∆u1(s)‖2+‖∆u2(s)‖2)+f]ds. (4.25)

Remember that we have from (4.15) that
∫ t

0
‖∆u(s)‖2 ds ≤ C6(T ), ∀t ∈ [0, T ] and so,

∫ t

0

[2|c|r
(
‖∆u1(s)‖2 + ‖∆u2(s)‖2 + f ]ds

= 2|c|r
(∫ t

0

‖∆u1(s)‖2 ds+

∫ t

0

‖∆u2(s)‖2 ds

)
+ ft

≤ 4|c|rC6(T ) + ft.

Using (4.15) again and employing the above inequalities in (4.25), we get
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b ‖w(t)‖2 + ‖z(t)‖2 ≤ C6(T )k̃

f
eC7

where C7 := 4|c|rC6(T ) + ft. Then, we also have b ‖w(t)‖2 ≤ C6(T )k̃
f

eC7 , and since C7

depends on t linearly, we deduce that there exist constatnts D1(T ) and D2 such that

‖w(t)‖ ≤ D1(T )
√
k̃eD2t, ∀t ∈ [0, T ].

Hence, the estimate (4.17) is satisfied.

Corollary 4.3. Since the constant D1(T ) in (4.17) does not depend on diffusivity

coefficients k1 and k2, it follows that on each finite interval [0, T ] a solution [u, v] to

the problem (4.1) tends as k → 0+ to the solution [ũ, ṽ] of the initial boundary value

problem for the system

ũt −∆ũ+ g |ũ|p ũ+ cũ2 + aũ− ṽ = 0, x ∈ G, t > 0

ṽt + fṽ + bũ = 0, x ∈ G, t > 0

ũ(x, 0) = u0(x), ṽ(x, 0) = v0(x), x ∈ G

ũ(x, t) = 0, x ∈ ∂G, t > 0.

(4.26)

This shows that we can approximate solution to the system (4.26) by solutions of

the system

ut −∆u+ g |u|p u+ cu2 + au− v = 0, x ∈ G, t > 0

vt − k∆v + fv + bu = 0, x ∈ G, t > 0.



Conclusion

In this thesis, our main aim is to study some stability properties of Fitzhugh-

Nagumo Equations.

We know that a system of FitzHugh-Nagumo Equations is special type of a system

of reaction-diffusion equations. So, firstly we proved the existence and uniqueness of

solutions of a reaction-diffusion equation and noted that the result for the system of

reacrion-diffusion equations is similar.

After that,we studied some stability properties of FitzHugh-Nagumo model. We

showed that the solutions of a FitzHugh-Nagumo model can be stabilized by apply-

ing a feedback controller on a bounded subdomain. For another FitzHugh-Nagumo

model, we showed that the solutions of this model are continuously dependening on

the diffusivity coefficient.
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