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Abstract

FitzHugh-Nagumo system is generally used to model some biological phenomena
and electrical circuits. This system is obtained by reduction of the Hodgkin-Huxley

system which is also widely used but harder to analyze.

In this work, our aim is to study the existence and uniqueness of solutions to
reaction-diffusion equations and some stability properties of FitzHugh-Nagumo equa-
tions.

We firstly consider the problem of local and global existence and uniqueness of
the solution to the reaction-diffusion equation.

Then, we study the problem of stabilization of solutions of FitzHugh-Nagumo
system on a bounded domain. We show that by applying a feedback controller on a
subdomain, the system can be exponentially stabilized.

Finally, considering again a FitzHugh-Nagumo system, we study the continuous

dependence of solutions to this system on the diffusivity coefficient.



(")zet

FitzHugh-Nagumo diferensiyal denklem sistemi, baz1 biyolojik olaylar1 ve elektrik
devrelerini modellemek i¢in kullanilir. Bu sistem, yine baz biyolojik olaylar1 mod-
ellemek i¢in ¢okca kullanilan fakat daha karmagik olan Hodgkin-Huxley sisteminden
iki degiskenin indirgenmesiyle elde edilir.

Bu ¢aligmadaki amacimiz, reaksiyon-yayilma denklemlerinin ¢oztimlerinin varligini-
tekligini ve FitzHugh-Nagumo denklemlerinin bazi kararlilik 6zelliklerini incelemektir.

Oncelikle, reaksiyon-yayilma denklemlerinin coziimlerinin yerel ve kiiresel varlik-
teklik problemini inceleyecegiz.

Sonrasinda, sinirh tanim kiimesinde tanimli olan FitzHugh-Nagumo sisteminin
¢oziimlerinin kararhlastirilmasi problemini inceleyecegiz.

Son olarak, FitzHugh-Nagumo sisteminin ¢oziimlerinin yayilma katsayisina siirekli

bagimliligini inceleyecegiz.
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Notation

D(f) The domain of f

R(f) The range of f

X’ The dual space of X

— continuous embedding

CcC compact embedding

— weak convergence

c(Q) continuous functions on (2

Ck () k times continuously differentiable functions on (2

B Banach space of all bounded, continuous functons u(z,t) on R (t fixed)

u(. )]l SUDeRju(z,p) (b fixed)
C([0,T]; B) The space of all continuous functions defined on [0, 7] that have values in B

Il supsefo,ry [ul D)l 5

Au > i g%?

Vu (O Uy ooey Op, 1)

9] The Lebesgue measure of

X



Introduction

We will basically consider some stability properties of FitzHugh-Nagumo type of
differential equations.

The problem of the existence and uniqueness of solutions to FitzHugh-Nagumo
model and the stability analysis of this model have been studied by various ap-
proaches. The existence-uniqueness of solutions to nonlinear reaction-diffusion equa-
tions and stability properties (such as asymptotic stability or global asymptotic sta-
bility) of solutions are studied in [10], [7], [11]. Jackson proved the existence and
uniqueness of solution to the initial boundary value problem for FitzHugh-Nagumo
system by using the energy method in [3]. Some researchers focused on the long-
time behaviour of the system. The asymptotic behaviour of the system defined on a
bounded domain is studied in [9]. On the other hand, some researchers focused on
the travelling wave solutions and the stability of these solutions in [4], [18]. There
is also some work on the structural stability of the solution to the problem. This
kind of stability is defined as the continuous dependence of solutions on the diffusiv-
ity coefficient. The problem of continuous dependence of solutions to the semi-linear
reaction-diffusion system is studied, in [2].

FitzHugh-Nagumo equation is a system of reaction-diffusion equations which has

the form



u — Dug, = f(u)

where D is called the diffusivity coefficient, f(u) is called the reaction term and u(z, t)
is the unknown function.

In physiology, an action potential is a short-lasting event in which the electrical
membrane potential of a cell rapidly rises and falls, following a consistent trajectory.
Action potentials occur in several types of animal cells, called excitable cells, which
include neurons, muscle cells, and endocrine cells, as well as in some plant cells.

Consider the following system of differential equaitons

oV a 0°V

o 2Riw+gw4(v}<—V)+9Nam3h<VNa—V>+gz(Vz—V)+I<x,t>,
%_T = an(V)(1 = m) = Bu(V)m,
T = a0 =) = V),
% — (V)1 = h) = Ba(V)h,

This system was proposed to describe the evolution in time ¢ > 0 and space
0 < z < L of the depolarization V (z,t) = V,,(z,t) — Vg, where V,,(z,t) is the actual
membrane potential and Vi is (assumed to be constant) the resting potantial. The
quantities Cy,, Gr, gna, i, and I(z,t) are respectively the membrane capacitance,
maximal potassium conductance, maximal sodium conductance and applied current
density for unit area. R; is the intracellular resistivity and « is the fiber radius, n(z, t),
m(z,t), and h(z,t) are the dimensionless potasium activation, sodium activation and

sodium inactivation variables.



This model is called Hodgkin-Huxley model and it describes how action poten-
tials in neurons are initiated and propagated. Although it is difficult to analyze
the Hodgkin-Huxley model, it provides a clear, biological and mechanistic model for
cardiac action potentials. This model was investigated by Alan Lloyd Hodgkin and
Andrew Fielding Huxley. They carried out an elegant series of electrophysiological
experiments on the squid giant axon in the late 1940s and early 1950s. The squid
giant axon is notable for its extraordinarily large diameter which allowed Hodgkin
and Huxley to insert the electrodes of the voltage clamp apparatus into the lumen
of the axon. This ability combined with the system’s simplicity was crucial for the
success of their study of action potentials.

In a series of five articles published in 1952, these investigators (together with
Bernard Katz) unveiled the key properties of the ionic conductances underlying the
nerve action potential. For this achievement, Hodgkin and Huxley were awarded the
1963 Nobel Prize in Physiology and Medicine (shared with John Eccles, for his work
on potentials and conductances at motoneuron synapses).

The following system of partial differential equation

ou 9
% d;Au+ f(u) — ou,
v 9

Ta = dUAU +u—wv,

where f(u) = Au — u® — k, describes how an action potential travels through a
nerve. Here d,,, d,, 7, 0 and \ are positive constants.

This model is called FitzHugh-Nagumo model and was obtained by reduction
of the Hodgkin-Huxley model. This reduction is from four variables to two vari-

bles. Basically, the FitzHugh-Nagumo model extracts the essential behaviour of the



Hodgkin-Huxley fast-slow phase plane and presents it in a simplified form.

The motivation for the FitzHugh-Nagumo model was to isolate the mathemati-
cal properties of excitation and propagation from the electrochemical properties of
sodium and potasium ion flow. There are two variables in the model. One of them is a
voltage-like variable having cubic nonlinearity that allows regenerative self-excitation
via positive feedback. The other variable is a recovery variable having a linear dy-
namics that provides a slower negative feedback.

FitzHugh modified van der Pol model to explain the basic properties of excitability
as exhibited by the more complex Hodgkin-Huxley equations. In the original papers of
FitzHugh, the FitzHugh-Nagumo model was called Bonhoeffer-van der Pol oscillator
(named after Karl Friedrich Bonhoeffer and Balthasar van der Pol), since it contains
the van der Pol oscillator as a special case.

The FitzHugh-Nagumo model can be derived from a simplified model of the cell
membrane. Here the cell (or membrane patch) consists of three components, a capac-
itor representing the membrane capacitance, a nonlinear current-voltage device for
the fast current. In 1962, an equivalent circuit model suggested by Jin-Ichi Nagumo,
Suguru Arimoto and Shuji Yoshizawa.

The FitzHugh-Nagumo equations are used to model electrical waves of the heart
or cortisol secretion, which is controlled by the hypothalamic pituitary adrenal axis.

In this thesis, our aim is to study the problem of stabilization of solutions and
continuous dependence of solutions of FitzHugh-Nagumo equations on the diffusivity
coefficient. The thesis consists of four chapters. First chapter is the preliminaries. In
the second chapter, following [8], we study local and global existence and uniqueness

of the solution to the reaction-diffusion equation. Then in the third chapter, following



[19], we study the problem of stabilization of solutions to FitzHugh-Nagumo system
on a bounded domain. Finally, in the last chapter, following [17], we study the
problem of structural stability of solutions to initial boundary value problem for the

FitzHugh-Nagumo system.



Chapter 1

Preliminaries

In this chapter, we will give some definitions, inequalities, theorems and concepts that

we will use in the following chapters.

Definition 1.1. A metric space is an ordered pair (M,d) where M is a set and d is
a metric on M. That is, a function d : M x M — R such that for any x,y,z € M,
the following holds:

(a) d(z,y)= 0,

(b) d(z,y)=0 if and only if x=y,

(¢c) d(z,y)=d(y,z),

(d) d(z,z)< d(x,y) + d(y, z).

Definition 1.2. A metric space M is called complete if every Cauchy sequence in M

has a limit that is also in M.

Definition 1.3. A vector space over F is a non-empty set V together with two func-
tions, one from V x V to V and the other from F x V to V, denoted by x+y and
ax respectively, for all z,y € V and o € F, such that, for any o, € F and any

x,y,z €V,



(a) s+y=y+z,  z+(y+2)=(x+Yy)+2;

(b) there exists a unique 0 € V (independent of x) such that z+0=z;

(c) there exists a unique —x € V such that v + (—x) = 0;

(d) lz=z,  a(Bz)=(af)x;

(e) a(z+y)=az+ay,  (a+p)r=az+L.

IfF =R (respectively, F' = C) then V is a real (respectively, complex) vector space.
Elements of F are called scalars, while elements of V are called vectors. The operation

x+y 18 called vector addition, while the operation ax is called scalar multiplication.

Definition 1.4. Let V be a vector space over F. A norm on V is a function ||| :
V — R such that for all x,y € V and a € F,

(a) [lx] = 0;

(b) |||l =0 if and only if x = 0;

(¢) llaz]] = |af |lz]l;

(d) lz +yll < llz[l + llyll

Definition 1.5. A vector space V on which there is a norm is called a normed vector

space or just a normed space.
Remark 1.1. Fvery normed space is a metric space.
Definition 1.6. A complete normed vector space is called a Banach space.

Definition 1.7. Let (M,d) be a metric space. Then the map ¢ : M — M is a
contraction mapping of (M, d) if for some real number 0 < k < 1, called the constant

of contraction, we have

d(¢(z), d(y)) < kd(z,y), Va,y € M.



Theorem 1.1. (Banach Fized-Point Theorem) If ¢ : X — X is a contraction map-
ping on a Banach space X, then ¢ has precisely one fixed point. That is, there exists

a unique u € X such that

o(u) = u.

Remark 1.2. In some cases, the map ¢ may not be a contraction mapping on the
entire Banach space, but rather only on a closed ball in the space, and the Fixed-Point

Theorem remains valid on closed balls of a Banach space.

Definition 1.8. Let Hy and Hy be two normed vector spaces, with norms |.||; and
.15, respectively. If
((Z) H,CH,,

(b) there exists C' € R such that

[l gz, < Cllull Vu € My,

then Hy s said to be continuously embedded in Hy and denoted by Hy — H,.

Definition 1.9. If

(a) Hy — Ho,

(b) for any sequence {un},cy bounded in Hy, there is a subsequence {un, }, oy such
that w,, — u in Hy,

then Hy s said to be compactly embedded in Hy and denoted by Hy CC Hs.

Definition 1.10. A linear operator T is an operator such that
(i) the domain D(T) of T is a vector space and the range R(T) lies in a vector

space over the same field,



(i) for all z,y € D(T), and each scalar c,

T(x+y) = T(x)+T(y),

T(ax) = ol(x).

Definition 1.11. Let X and Y be normed spaces and T : D(T) — Y a linear
operator, where D(T') C X. The operator T is said to be bounded if there is a positive

number ¢ such that for all x € D(T),

T[] < el

Definition 1.12. A bounded linear functional f is a bounded linear operator with
range in the scalar field of the normed space X in which the domain D(f) lies. Thus

there exists a positive number ¢ such that for all x € D(f),

[f(2)] < cllz].
Furthermore, the norm of f is

1l = sup )

sen(s) |7l
x#0

or

I/l = sup [f(z)]
il

Definition 1.13. Let X be a normed space. Then the set of all bounded linear

functionals on X constitutes a normed space with the norm defined by
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151 = sup T = sup 170)
0 21

which is called the dual space of X and is denoted by X'.

Definition 1.14. A sequence {x,},.y ™ a normed space X is said to be weakly

convergent if there is an element x € X such that for every f € X',

lim f(x,) = f(x).

n—oo

This is written as x, — x. The element x is called the weak limit of {x,} and we

neN’

say that {x,}, . converges weakly to x.

Lemma 1.2. Let {x,}, .+ be a weakly convergent sequence in a normed space X

with weak limit x. Then we have

liminf ||z,| > ||z|| .
n—oo

Proof. Let f € X’ be an arbitrary but fixed. We know that |f(z)| < || f]| [|z|| for any
f € X"and x € X. We also have by assumption that {f(z,)}, o+ is a convergent

sequence. So, consider that

F(@)] = Y |f(a)] < lminf | £] ] = |1£] Himinf [z,

Take the supremum over all f € X’ with || f|| <1 to get

l|z|| < liminf ||z,|| .
n—oo

Proposition 1.3. If {z,}, .+ is a bounded sequence in a Hilbert space, then it has

a weakly convergent subsequence (see [14], p.155).
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Definition 1.15. The linear space of all functions f integrable over the domain G 1is

denoted by L*(G). That is,

LYG) = {f/ |f(z)]dx < oo}.
el
This space equipped with the norm
sy = [ 1@l da

is a Banach space.

Definition 1.16. The linear space of functions f such that |f|P € LY(G) is denoted
by LP(G). That is,
(G) = {f ; / F ()P de < oo}.
G

This space equipped with the norm

1/p
1l = ( /G ) d:c)

Theorem 1.4. (Weierstrass M-Test) Let f, be defined on a set S and let M, > 0

is a Banach space.

such that Y " M, < oo. If |f,| < M, for alln € Nt and x € S, then Y~ [,

converges absolutely and uniformly on S.

Definition 1.17. Let f be a function. The support of f : R — R s defined as follows

supp(f) ={z e R: f(z) # 0}.

Definition 1.18. Let G be an open set in R™ and f : G — C be a Lebesgue measurable

function. If for all compact domains K of G,

J1r@lds <

then f s called locally integrable.
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Definition 1.19. The space C$°(G) consists of functions f which are defined on G,

infinitely differentiable and have compact support within G.

Definition 1.20. Given R", define a multi-index o as an ordered collection of non-
negative integers a = (au, ..., ay,), such that its length is given by la| = >0, a;.
Remark 1.3. If fis an m-times differentiable function, then for any « with |o] < m,

the derivative can be expressed as

ol £(
D () = 5 o T

o 0. Oxom

Definition 1.21. Let o = (ayq, ..., ay) be a given multi-index, and f and g be locally
integrable functions over G. Assume that for all f € C§(G) the following integral

identity is satisfied

[ s@pse = (-0 [ gwstain
G

G

Then the function g is called the weak a-th derivative of f on the region G.

Definition 1.22. The Sobolev space H*(G) is an inner product space of all functions
f € L*(G) that have all first order weak derivatives f,,, i = 1,...,n belonging to L*(G).

The inner product in H*(G) is defined by
(f,9) @) =/ [f(l’)g(ﬂf) + > foy(2)0a, (55)] da.
G P

Thus, the norm on H'(G) is given by

1l = ( 1@ + 195 da:) "

Remark 1.4. The space H'(G) is complete. That is, this space is a Hilbert space.
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Remark 1.5. The space H}(G) is defined as the completion of C$(G) in the sense

of the norm HY(G). The norm on this space is defined as follows

Hu”Hé(G) = ||VUHL2(G)-
Definition 1.23. The Sobolev space H™(G), m = 1,2,3,... is a separable Hilbert

space of all functions f € L*(G) that have all m™-order weak derivatives belonging to

L*(G) with the inner product

(f, 9)um(e :/G Z D% f(x)D%g(x)dzx.
|| <m

Inequality 1.5. (Cauchy-Schwartz Inequality) Let f and g be square-integrable func-

tions defined on a domain 2. Then we have

jglf(x)g(x)dlfz:é jglf(aﬂ\de-‘/g\g(10|2dl

Inequality 1.6. (Young’s Inequality) Let 1 < p,q < oo with 1/p+1/q=1 and a, b

be nonnegative real numbers and € > 0, then we have

€ 1
c.op q
ab < pa + qel/(P—l)b .

Inequality 1.7. (Jensen’s Inequality) Let ¢ be a convex function on R and f be an

integrable function on [0,1]. Then

o|[ s < [ otrna

Inequality 1.8. (Interpolation Inequality) For all u € H*(Q) N H}(Q), we have

IVal® < [l f[Au] -
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Proof. Since C§°(R2) is dense in H*(Q) N HJ (), it is enough to prove the inequality
for functions in C§°(2).

Firstly, note that

V(u(z)Vu(z)) = [Vu(z)] + u(z)Au(z). (1.1)

Integrating both sides of (1.1), we write

/v 2)Vu(w dm—/ Vu(z |dw+/Gu(x)Au(x)dx. (1.2)

By Divergence Theorem applied to the left-hand side of (1.2), we get that

/ Y (u(z)Va())dz — /8 (u(a)Vu(w)) - s,

where 7 is the outward unit normal field of dG. Since u € H}(G), we see that

[oe(u(x)Vu(x)) - 7 dx = 0. So, we obtain

/G|Vu(a;)| dr = —/Gu(x)Au(x)dw (1.3)

By Cauchy-Schwartz Inequality, the right-hand side of (1.3) can be estimated as

follows

— [pul@)Au(z)dr < [, Ju(z)Au(z)|de
< ([ |u(@)] 2dx)l/ (f | Au(z)|2de)
= |lull |Aull.

Then combining the last inequality with (1.3), we get |[Vu||® < ||ul| |[Au|| which

is the desired result. O
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Inequality 1.9. (Sobolev Inequality) Let G C R™ withn < 3 and u € H*(G)NH}(G)

be a function defined on G. Then we have the following inequality
<
max [u(z)| < C'[|Au]

for some positive constant C' depending on G (see [13], p.423,470).

Inequality 1.10. Let uy,v; € R™. Then for any q > 2, there exists a positive constant
dy such that

dy |uy — ug|® < <|U1|q_2u1 — ug]" ?ug, uy — ug)

Proof. Define J(q) := (Jui|92u; — |ua|? *ug, uy — us).

Then, by Fundamental Theorem of Calculus, we can write

J(q) = </01 {% llsus + (1 — s)ug|™2 (sus + (1 — s)uz)] } ds, uy — u2>

Since, for any differentiable function f, d%] f(s)] = %, we get

Iq) = </01 lsun + (1 — 8)ua| ™2 (s — up)ds, w1 — u2>

1
+ (¢-— 2)/ [[sur 4+ (1 — s)ua|"* (sus + (1 — $)us, ug — up)” ds
0

Since (¢ — 2) fol [[sur 4+ (1 — 8)ua|?™ (sus + (1 — $)us, ug — u)? ds > 0, we have
J(a) =l = sl [ sun + (1= s)ua*"2ds.

Now, consider the following cases:



If Jui| > [ur — us|, then

lsug + (1 = s)ua| = Jug — (1 — s)(ug — ug)|
> Jua| = (1 = s)[ur — us|
= |ua] — Jug — ua| + slug — us|

> slup — ug

and by definition of the inner product, we obtain

1
J(q) > |ug — U2|2/ s17 2 uy — ug|?™%ds
0
1

= |u; — u2|‘1/ s972ds
0

1
= - 1\u1 — ugl?.

If |ug| < |ug — ug|, then

|sui + (1 — s)us| = Jug — (1 —s)(ur — ug)|
< Jui[+ (1= 8)|ur — g
< Jur —ug| + (1= s)|uy — ug

= (2 —s)u; — uyl.

Since 0 < s < 1, we get

|sui + (1 — s)upl|? < |sui + (1 — s)upl?
4 - (2 —s)?

So,

1
J(q) > é_l/ (lsur + (1 — s)uz|%ds.
0

Since ¢ > 2, by Jensen’s Inequality, from (1.5) we obtain

< |uy — uy .

16

(1.4)

(1.5)
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1 1 q/2
J(q) 2 Z (/ |5U1 —+ (1 — 5)U2|2ds)
0
- 4.39/2 (’Ul|2 + (ug,ug) + \u2]2)q/2 (1.6)
1
= WM — ug|?.

From (1.4) and (1.6) with d; := min{ 1 : }, we deduce

q—17 4.124/2

difur — ua]? < {Jun | 2wy — Juo| " Pug, uy — us)

]

Definition 1.24. Let X and Y be two non-empty subsets of a metric space (M,d).
We define their Hausdorff distance dg(X,Y") by

dy(X,Y) = max {Sup inf d(z,y),sup in)f( d(zx, y)} :

zeX YEY yeY TE€
Theorem 1.11. (Divergence Theorem) Let R C R™ be a region in space with smooth
boundary OR. Let I be a vector field whose components have first order continouus

partial derivatives and T be the outward unit normal field of the boundary OR. Then,

/R<v-?) dV = /8R<?-W)ds.

Lemma 1.12. (Gronwall’s Lemma) Let I be the interval |a,c0), [a,b] or [a,b) in
R. Let a, B and z be real valued functions defined on I. Assume that B and z
are continuous and the negative part of « is integrable on every closed and bounded
subinterval of I.

(a) If B is nonnegative and z satisfies the integral inequality

2(t) < alt) + /tﬂ(s)z(s)ds, Vtel, (1.7)
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then
z(t) < a(t) +/ a(s)ﬁ(s)eﬁ Pdrgs tel (1.8)

(b) If, in addition the function « is nondecreasing, then
2(t) < a(t)ela B 4 e,

Proof. (a)Let us define the following auxiliary function

—exp( /ﬁ )/B sel. (1.9)

By using the condition (1.7), we obtain

v = (0= [ o) sorea (- [(smar) 1o
< @ (- [s0r). ser (1.11)

Since v(a) = 0, integrating (1.10) from a to ¢, we obtain

w0 < [ apsten (- [owar). (112

It follows from (1.9) that

/5 s)ds = exp (/ﬁ dr) u(t). (1.13)

From (1.12) and (1.13), we obtain

/atﬁ(S)Z(S)ds < /atoz( )B(s)exp (/ dr—/ B(r dr> (1.14)
= [ s ([ sor). L



19

Finally, by using (1.14) and the inequality (1.7), we get the desired inequality.
(b) If the function « is nondecreasing, we have a(s) < «(t), and then using the

Fundamental Theorem of Calculus, we obtain

1) < a<t>+(— es ([ v
= t)exp </ B(r ) tel

N———

]

Theorem 1.13. Let 2 C R" be a bounded domain. All of the eigenvalues of the

following problem are positive.

—Av = v, x €,
v=0, x € 0N
Proof. Assume that v be an eigenfunction corresponding to the eigenvalue A\. Then

by Divergence Theorem, we have

A/QUZ(:U)d:U /(AU( Vo(z)dz

/|Vv |dx—/aQU%dS( )
:/Q|Vv(a;)| dx

where v is the outward unit normal vector.
We claim that [[Vvl|;2q) > 0. If [[V][2q) = 0, then we get Vo = (0,0,---,0)

which means that v is constant on 2. But, by assumption, v = 0 on 02. Therefore,
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if v is constant on 2 and v = 0 on 02, then v = 0. However 0 cannot be an

eigenfunction. So, we obtain

)\/ v (z)dx > 0.
0

This shows A > 0. ]

Note that we can normalize eigenfunctions by the condition

/GuZ(x)dx _1

Remark 1.6. The smallest eigenvalue of the operator A under the homogeneous

Dirichlet boundary condition is given as

2
d
(@) = i de/Vul@ldr
weHl(Q) [ ut(x)dx
u#0

and this infimum is achieved by the corresponding eigenfunction uy (see [15]).



Chapter 2

Existence of Solutions to
Reaction-Diffusion Equation

In this chapter, we consider the problem of existence and uniqueness of a solution to
the nonlinear initial value problem
u — Dug, = f(u), reR, t>0 2.1)
u(z,0) = ug(x), r € R.

Some problems in the form (2.1) with different f(u) and ug(x), may have a solution
blowing up in a finite time or may not have a unique solution. So, we need to impose
some conditions on f(u).

The best way to exhibit the existence of a solution to a problem is of course writing
down a formula for the solution. This is possible for some certain linear problems.
Consider the following linear, nonhomogeneous diffusion problem

u — Dug, = g(x,t), reR, t>0, (2.9)
u(z,0) = up(x), z € R,
where ¢ and ug are continuous bounded functions. By using Fourier transform, we

can derive the solution to this problem by

21
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u(z, t) I/R K(z —y,t)uo(y) dy + /Ot/R K(z—y,t —s)g(y,s) dyds,  (2.3)

where K (z,t) is the diffusion kernel given by

koo (i) o (52). »

But, for nonlinear problems, it is usually impossible to proceed in this manner, and

in such kind of situations, alternative methods must be found in order to prove the
existence of solution to a problem rather than describing it by a formula. Fixed point
iteration is one of these kind of methods. The basic idea is to produce a sequence,
through iteration of a certain map, that converges to the solution of the problem,
thus showing the existence.

We now consider the question of existence of a solution to the nonlinear initial
value problem (2.1). We can do this by using the solution (2.3) to the linear, non-
homogeneous problem (2.2). Suppose that f and ug are continuous and bounded
functions on R. In this case, instead of explicit solution (2.3) for the linear equation,

we reduce the problem to the following nonlinear integral equation for u(z,t).

te.t) = [ Ko =ty + [ t [ KG=yi= s s @9

It is easy to see that u = wu(z,t) is a solution of (2.1) if and only if u = u(x,t) is a

solution of (2.5). The equation (2.5) can be written in the form

u = d(u),
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where ® is a nonlinear integral operator defined on the set of bounded continuous

functions by

O(u)(z,t) = /RK<£L' — 1y, t)uo(y)dy + /Ot/RK(a: —y,t—s)f(u(y,s))dyds.

So, we can define the fixed point iteration by

Unp+1 = cb(”“)u

wns(e.t) = [ Ko =y t)uolo)dy
R (2.6)
—i—/o /RK(x—y,t—s)f(un(y, s))dyds, n=0,1,2,...
with
wlat) = [ Ko =y u(s)dy 2.7

Now, we will prove the existence theorem for the initial value problem (2.1) under
suitable assumptions on the nonlinear term f(-). In the proof of the following theorem,

we use the fact that the diffusion kernel K is strictly positive and that

/K(x —y,t—8)der=1, for all y and all s < t. (2.8)
R

Theorem 2.1. Consider the initial value problem (2.1) where ug(x) is a bounded
continuous function on R and where f is a bounded continuous function on R that

satisfies the global Lipschitz condition



|f(uw) = f(v)|< klu— v, for all u,v € R
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(2.9)

where k is a positive constant independent of u and v. Then for any T > 0, there

exists a unique, bounded solution u(x,t) of (2.1) forx € R and 0 <t <T.

Proof. We will show that the sequence defined by (2.6) and (2.7) converges uniformly

on R x [0,77] to a function that is a solution of (2.1).

Firstly, note that by Lipschitz condition (2.9) we have

|/ (uo(, t)) — f(O)|< Kfuo(x, 1)].

From (2.10), we deduce

[f (uo (e, )< [F(O)[+Kluo(z, t)|< (1 + K)m

m = max {f(O), sup |u0(x,t)|} .

0<t<T

Here, let us use the notation

Mn<t) = sup{|un(x,s) - un—l(‘r78)| xE Rv s < t}a

Now, by (2.6), (2.11) and (2.12) we get

(2.10)

(2.11)

(2.12)
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ur(z,8) — ol )] < / / Kz —y,t - 3)|f (uoly, 5))| dyds
< /(1+km/Kx—y,t—s)dyds

= /t (1+k)m ds
= (I1+k)mt

Denote M := (1 + k)m and take the supremum over R x [0, ] to get

Mi(t) < Mt, 0<t<T. (2.13)

Now, let us obtain a bound for |u, 41 —u,|. Again by using (2.6) and (2.8), we obtain

1 (1) — (2, )] / / K(x— gyt — )| f (un(y9)) — F(tn_1(y. )] dyds
/ / K (5 =yt — )kltn(y, 5) — tn_1(y, 5)| dyds
< / kM, ( /Ka:—y,t—s)dyds

/ M, (s) ds.

Then taking the supremum,
t
My (t) < k/ My(s)ds, 0<t<T, n=1,23..  (214)
0
On the other hand, consider that

' ! kMt> M (kt)?
Mg(t)gk/ M;(s) dsgk/ Ms ds = = (k)
0 0

21 k20’



! "M s? M2 M (kt)?
Mg(t)gk/ Mg(s)dsgk/k 5 g = BEME M (k)
0 .2 521 k3

and continuing this procedure, we get

M,(t) <
Now, let us consider the series

o

ug(@) + > (un(z,) =ty (2,1))

where ug(x,t) = ug(x).

Since the m" partial sum of the series (2.16) is

m

Sn(,t) = ug(@) + Y (un(,) — 1 (2,8)) =t (2, 1),

26

(2.15)

(2.16)

the series (2.16) is convergent if and only if the sequence {u,,(x, 1)}, cy+ is convergent

and the sum of the series is the limit of the sequence {u,,(z,t)}, .+ Let us show

that the series (2.16) is uniformly convergent. In fact, we have

Jun (1) = wn (2, 1) < My (1) <

M (kT)"
k n!

and since

= (kT)™

Z< ):ekT<OO,
n!

n=1

by using Weierstrass M-Test (1.4), we deduce that u,(x,t) converges uniformly on

R X [0,T] to some continuous, bounded function u(z,t). Now, we can take the limit

of both sides of (2.6) and using the uniform convergence we can pass the limit inside
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of the integral. This shows that the limiting function u(x,t) satisfies the integral
equation which means that u(x,t) is a solution to the initial value problem (2.1).

In order to show the uniqueness of solution, suppose that the problem has two
different solutions u and v which are bounded, continuous functions satisfying the

integral equation. Then we get

rwmw—vuxﬂs/ /K@—y¢—$uw@ﬁ»—ﬂw%@wmw
0 R (2.17)

t
< [ [ K@= vt = bluty.) - oly.s)lduds
0o Jr
Let M(t) = sup {|u(z,s) —v(z,s)|,z € R,s <t}. Then from the inequality (2.17) we

obtain

) < k/ /K x—y,t—s)M(s)dyds:k/tM(s)ds

By Gronwall’'s Lemma, M (t) = 0. Therefore, u = v and the solution to the problem

is unique. O

In the preceding theorem we assumed that the nonlinear term f(u) satisfies the
uniform Lipschitz condition (2.9). But in many models described by reaction-diffusion
equations the nonlinear reaction terms are not satisfying the uniform Lipschitz condi-
tion. For example, reaction term for the Fisher equation has the form f(u) = u(1—u).

Since

[f(w) = fv)l=u(l —u) —v(1 —v)|=|u— v’ —v+v*|= 1 —u—v[fu—v|

and the right hand side cannot be bounded by k|u — v| with some constant k& > 0 for

all v and v. However, this nonlinearity satisfies the local Lipschitz condition. The
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nonlinear terms of the well-known Kolmogorov-Petrovsky-Piskunov equation and the
FitzHugh-Nagumo equations are cubic polynomials, and they also satisfy just local
Lipschitz condition. Thus, we seek to formulate an existence-uniqueness theorem by
weakening the hypothesis in (2.1) to a local Lipschitz condition.

Now, we will formulate and prove the existence theorem for the initial value prob-
lem (2.1), where only a local Lipschitz condition is required. But, firstly let us intro-
duce some notations. Consider a function u = u(x,t). For each fixed ¢, we consider u
as a function of x, defined on R. For the following formulation, we denote by B the
space Cp(R) of all bounded, continuous functions v(x) on R, and let ||v|| ; denote the

norm of a function v(z) in B, i.e.,

lu(t)|| 5 = sup|u(z, t)] for t fizved. (2.18)

z€R

Now, let 7" > 0 and let C([0,7T]; B) be the set of all continuous functions defined on
0 <t < T with values in the Banach space B. That is, to each ¢t € [0, T] we associate
a bounded, continuous function u(z,t) of z € R (¢ fixed) which is an element of the
Banach space B. The set C([0,7T]; B) whose elements will be denoted by u, is a

Banach space with the norm

[ull = sup [lu(®)]5- (2.19)

te[0,T

We also introduce the convolution operation

(I ) (2, 1) = / Kz — y. tyuly, t)dy,

where K (z,t) is the diffusion kernel. We call K % u the convolution of K with u, and

(K % u)(z,t) also belongs to B.
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Theorem 2.2. (Local Ezxistence) Consider the initial value problem (2.1) where ug €

B and f satisfies the conditions

(i) f € C*R).
(i) f(0) =0, and for each fixred t in [0,T], f(u(x,t)) € B, where u(z,t) € B.

(iii) For any M > 0 there exists a constant k, depending only on M, such that

1/ (@) = Fe@)lp < Ellu) —v@)
for allt € [0,T] and all u(x,t) and v(x,t) in B with ||u(t)| z < M and |[v(t)|z < M.
Then there exists ty > 0, where ty depends only on f and |ugll 5, such that the
initial value problem (2.1) has a unique solution v = u(z,t) in C([0,to]; B) and

[ull < 2 luoll 5-

Proof. We will define a closed subspace P of the Banach space C([0, to]; B) and show

that the mapping

t
b)(e.t) = [ K=yt spunly) dy + [ [ K= pt-9)fuly.s) dyds
R 0o JR
is a contraction mapping on P. Then we will apply the remark (1.2) to produce a

solution to u = ®(u), which is the solution of the initial value problem. Define

P ={uc C([0,4]; B) : [lu(t) = (K *uo)(t)l[ 5 < lluollp, for 0 <t <to},

where ty = 1/2k. The set P is closed and nonempty. Also, from the defining property

of P, by using triangle inequality we obtain

[l p = 1K * uo) (@) 5 < llu(t) = (K * uo) (D)l 5 < lluoll - (2.20)
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Then the fact

I+ uw)(®)]l 5 < lu(®)ll 5

with (2.20) imply that

[l < 2 [uoll

and then taking the supremum over [0, ty], we get

Jull < 2Juoll 5 - (2.21)

This proves the last statement of the theorem. Now, we have from (iii), for any

0 <1<t

1/ (u(®)) = Flw@)llp < klult) =v®)]p < Ellu = o]l

We know that k& depends only on the supremum norm of v and v, and on f. So,
clearly we can say that ¢y depends only on f and the supremum norm of wug, by the
inequality (2.21).

Now, consider that
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[ (u)(t) — (K xuo)(t)ll5 =

) \/]RK(QT —y,t— S)f(u(y7 S))dyds

/t/Kx—y,t—s F(uly, s))dyds

sup//m—y,t—su uly, 5))|dyds

zeR

< /||f |de5</ kllu(s)|| 5 ds

< / 2k |||, ds = 2kt |[uo,,, for all t € [0,4)]

0
< 2kt ||uoll g = lluoll g,

= sup
z€eR

IA

since tg = 1/2k. That is, ® maps P into P.

Now, we will prove that ® is a contraction mapping.

[@(u)(t) = @()(A)lp = sup|®(u)(z,t) — D(v)(z,1)|

z€eR

< sup//m—y,t—su u(y,5)) — F(u(y, 5))|dyds

z€R

= / K(x—y,t = s)[|f(uls)) = f(v(s))l g dyds

0 JR

0

Taking the supremum over ¢ € [0, T], we get

1
12(u) = 2()]| < 5 llu—].
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This shows that ® is a contraction mapping on the closed subset P of the Banach
space C'([0,T]; B). By the remark (1.2), we deduce that there is a unique fixed point
of the operator ® in the ball P. This proves that there is a unique solution to the
initial value problem (2.1) in P.

Finally, it remains to show that there are no solutions outside of the set P. This
fact results from the following argument. If u,v € C([0,7]; B) are two solutions of

the initial value problem (2.1), then we obtain

uliz, £) — v, 1)< / / K(x—y,t— )|f (uly,5)) — F(o(y, 5))| dyds.

Taking supremum on x gives

212 [[uft) — v(t)]; < / / Kz — gt — ) || £ (uly, 8) — Fo(y. )] duis22)
< k/o llu(s) —v(s)|lz ds. (2.23)

k

Then, multiplying (??) by e ** we get

% [e_kt /Ot |lu(s) —v(s)||g ds| <0

which implies by Gronwall’s Lemma ||u(t) — v(t)|| 3 = 0 and we get u = v. O

This theorem is only a local existence result, guaranteeing a solution for 0 <t < t,
for some ty. Under certain conditions we may extend the solution to any finite time.

We have the following result.

Theorem 2.3. (Global Existence) Suppose that all conditions of the theorem (2.2)

are satisfied. If in addition there exists a constant C' depending on sup,cg |uo(x)| such
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that

sup |u(z, t)| < C, Vt € [0,T.

zeR

Then the solution of the problem (2.1) exists on [0,T], and u(x,t) € B. Here T may

be infinity, giving global existence.

Proof. The local theorem guarentees a solution u on [0,%y]. Then we can apply
the local theorem again with initial condition u(x,ty) to get a solution on [tg, 2t¢].
Continuing in this manner we can obtain, after a finite number of steps, a solution

on [0, 7. O

Remark 2.1. The proof of the existence and uniqueness of solution to the system of

reaction diffusion equations is similar.



Chapter 3

The Stabilization of
FitzHugh-Nagumo System with
One Feedback Controller

In this chapter, we will investigate the internal feedback stabilization of a FitzHugh-
Nagumo system on a bounded domain. We will show that the system, given below,
can be stabilized exponentially by one feedback controller acting on a subdomain.
Let 2 C R™ be a bounded domain with smooth boundary 09, w C Q be an open
nonempty subdomain of ) with smooth boundary dw such that w C Q. We will

consider the following system,

u — Au —u(l —u)(u—a) +v=mw; (z,t) € QxR
vy —ou+ pfv=0; (r,t) € QxR",
t (,1) o)
u(z,t) =0; (x,t) € 02 x R,
u<$70) = U()(I),U(I', 0) = UO(ZE); S Qa
where u, v are unknown functions, w is the control input, a, o, § are positive con-

stants, and m is the characteristic function of the domain @.

In order to investigate the stabilization of the system (3.1), we apply the feedback

34
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controller

w = —ku, (3.2)

where k£ > 0. Then the system (3.1) becomes

u— Au—u(l —u)(u—a)+v=—kmu; (z,t) € QxR

v —ou+ fv=0; (x,t) € QxR

(3.3)
u(z,t) =0; (x,t) € 90 x R,
u(x,O) = uo(ﬂf),U(Z’,O) = Uo($); r € Q.
Definition 3.1. If there exists a feedback controller w = —ku for some k > 0 such

that the corresponding solution [u,v] of (3.3) satisfies the inequality

/Q (u?(z,t) +v*(z,t))dz < Meat/ (ug(z) + vi(z))dx

Q

for any t > 0 and some constants o > 0, M > 0, then we say that the FitzHugh-

Nagumo system (3.1) can be stabilized via the feedback controller w = —ku.

Now, let Ag,, be the Laplace operator with Dirichlet boundary condition defined
on Q, =0\ w. ie.,

Ag,u=—Au; ue D (Aq,),
D (Aq,) = H* ()N Hj ().

Let us denote the first eigenvalue of Ag_ by A (Aq,), and by remark (1.6), we write

M (Aq,) = inf {/ \Vu(z)]*de : uwe HE (), ull 20y = 1} .
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Remark 3.1. Note that
M (Aqg)) = 0o as dg (09,0w) — 0

where dy is the ”Hausdorff distance”.

By remark (3.1), for any positive constant a, we can choose €, ”sufficiently thin”

so that
(a —1)
4

M (Ag,) — > 0. (3.4)

Lemma 3.1. For any € > 0, there exists K(€) > 0 such that for all k > K(e), the

following inequality holds

(N (o) =) |

u?(z) do < / (|Vu(x)|2 + kmu®(z)) de, uw€ Hy(Q).  (3.5)
Q Q

Proof. Firstly, let us define the operator A; as follows

Agu = —Au+ kmu; u € D(Ag),
D(Ae) = HX(Q) N HY(S)

and let A! (A;) be the first eigenvalue of the operator Ay. That is,

A (Ay) = inf {/Q (|Vu(x)|2 + kmu(z)?) dz - u € Hy(9Q), [ull p2(q) = 1} . (3.6)

Then we obtain that

A(Ag) < inf {/ (\Vu(x)|2 + kmuz(x)) dr :u € Hy(Q), HuHLQ(Qw) = 1}

= inf{ \Vu(z)]* de v e H(Q), lull 12,y = 1} (3.7)
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Here, note that {\'(Ag)},cn+ 1S an increasing sequence of real numbers.
On the other hand, let ¢} be the eigenfunction corresponding to A'(Ay) for each
k € NT. Without loss of generality, we may assume that ||¢}]| 12(q) = 1 for each

k € N*. Using remark (1.6) again, we write

V) = [ (Il + km(ol@)) da
_ /Q‘V¢,1€(x)‘2dx—|—k/w(aﬁ,lg(x))zda:

= IVl e + Flloil,)

where m = x5

Then using (3.6) and (3.7), for any k € NT we get,

IVokl o + F l6k] o) < A (Aay)- (3.8)

We know that

1 _ 1
19kl 3 0) = V9l 20
and considering (3.8), we deduce that {¢,}, .+ is a bounded sequence in Hg(Q).

Hence, by proposition (1.3), {#;},cy+ has a weakly convergent subsequence (also

denoted by {¢; },cn+) Which is also bounded and converging to ¢'. That is,

op — ¢ as k— oo in Hy ()

Now, since Hj(2) is compactly embedded in L?(2), by definition (1.9), this subse-

quence has a subsequence (also denoted by {@; },y+) such that
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¢ — &' as k— oo in L*(Q)

and in particular,

¢p — &' as k— oo in L*(w). (3.9)

Note that by lemma (1.2), we obtain that

i inf | 93| 3 ) 2 [10*] 7y ) -

or equivalently, we write

lim inf ||Vl 1ag) = [V | 2 ) - (3.10)

On the other hand, since ]|V¢}€Hig(9) +k Hqﬁ}cHig(W) > 0, for all K € N*, considering
(3.8), we see that limg_,q ||¢,1€\|L2(w) = 0, and also considering (3.9) above, we deduce
¢! = 0 almost everywhere on @. Since ||¢1||L2(Q) = 1, we obtain that ||¢1||L2(Qw) = 1.

Then by Divergence Theorem, consider that

IV [y = [ V6@ e [ 962 as
- /Qw|V¢1(x)’2dx—/wgbl(x)Agbl(x)dx
= /Qw|V¢1(a:)]2d:1:
= V' e,

Moreover, since we have \'(A4;) > ||V¢,1€||iz(9), for all k£ € NT, considering (3.10), we

obtain that
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lim A (Ag) > Timinf [|VoL[7

k—o0
> [|Ve' e
= [IVé'|[}aq.
> Al (AQW)~

From (3.7) we have limy o, A'(Az) < A (Ag,,). Thus, we obtain that limy_,., A(A) =
A (Ag,,). By definition, given € > 0 there exists K € N* such that Vk > K we have

IAL(Ar) — A (Aq,)| < €. Then, we get

ul\xr 2 m’u2 x X
M (Ag,) —€e< Jo(IV (I)L;:)dm (@)d . forallue HY(Q) with u#0,
Q

M (Ag,) —¢€) z)dr < Vu(x 24 kmu2(z)) dz,  for all u € HY(R).
ol Q 0

Theorem 3.2. There exists K > 0 such that if k > K, the FitzHugh-Nagumo system
(3.1) can be stabilized via the feedback controller w = —ku. That is, for ug € L*(Q),

vo € L*(Q), the solution (u,v) of (3.3) satisfies

/ (u?(z,t) + v*(2,t)) do < Me_o‘t/ (ug(z) + vj(2)) dx
Q Q

for any t > 0 and some constants o > 0, M > 0.

Proof. Multiplying the first equation of (3.3) by cu and integrating over  x (0, ),



g/ (xtdx+a//|Vuxs]dxds+a// (x,s)dxds
—0a+1// a:sduls—l—aa// (x,s)dxds
—I—U//u(x,s)v(x,s)dmds:—/ug(x)dx—ak//mu2(x,s)dxds.

0 Ja 2 Jo 0 Jo
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(3.11)

Now, multipliying the second equation of (3.3) by v and integrating over Q x (0, ),

%/Qqﬂ(q:,t)dx—a/ot/ﬂu(az, s)v(z, s)dxds
+5/0t/91)2(:v,s)d:vds: %/Qvg(x)dx.

Summing (3.11) and (3.12), we get

%/Q (xt)dx+/ xtdm—i—a// (z, s)dxds
:—a/ /|Vux 5)? dxds—ak;/ /mu v, 8)dads
+aa+1// xsda:ds—aa// (x, s)dwds
_5// (z,s)dxds + — / ()dx+2/ﬂg()dx.

Now, by using Young’s Inequality (1.6) with e = 2 and p = ¢ = 2, we obtain

ola+1) /Ot/ﬂu?’(x,s)dxds:/Ot/Q\/EuQ(x,s)\/E(a—i-1)u(:c,s)d:cds
< a/ot/gu‘l(a:,s)dazds
+O(GT_I_1)2/Ot/Qu2(m,s)dxds.

By using (3.13) and (3.14), we get

(3.12)

(3.13)

(3.14)
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1
z/1L2(x,t)clx—|——/2}2(x,15)dx
2 Ja 2 Ja

t
< —a/ / \Vu(z,s)|” + kmu®(z, s))dzds

“_1 // xsdxds—ﬂ// (z, 5)dzds

+%/Q 2(z )d:c+2/ﬂvo(:c)dx.

By using (3.4), we can choose a small € > 0 such that A (Ag ) — @=1° 1) > €. Let

(3.15)

5::0(/\1(14%)—%—5) > 0.

Combining (3.5) and (3.15), we have for any k > K,

%/Qﬁ(x,t)dx—l—%/ﬂ V(z, t)dr < —o (A (A // (, s)dzds
_,_ﬂ//ﬁ(a:,s)dzds
—@// (z,s)drds + — / ()dx+;/§(x)dx
:—5// xsdxds—ﬁ// (z,s)dwds

+§/Q 2(x )d:v+;/9v8(x)d .

Let ¢ =min {4, 3}, o =max{%,5}, a = émin{d,ﬁ}, then we obtain

cl/Q(uz(x,t)w?(m,t))dx < —ac /Ot/Q(UQ(x,S)+UQ(x,s))d:vds+02/Q(u%(x)+v§(x))dx.

Dividing both sides by ¢, we get
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/Q (W2(z,1) + 02z, 1))dz < —a /0 /Q (2(2, 8) + 0 (2, 5))dads + 2 [ (W2(x) + 02(2))dB.16)

1 Ja
Now, denoting [, (u?(z,t) +v*(x,t))dx by Y(t) and 2 by v we can write (3.16) as

follows

Y(t) < —a / "Y(s)ds + Y (0) (3.17)

Then multiplying both sides of (3.17) by e* and arranging we obtain

t
/ Y (s)ds < intyyY (0)e”**ds.
0

Since Y (s) > 0 and 7Y (0)e=** > 0 on [0, ], we deduce Y (¢) < 7Y (0)e~** which

is equivalent to

/Q (u® (2, t) + v*(2,))dx < {0—2 /Q (u2(x) +vg(g;))dx] et

&1

Letting M := 2—?, we obtain the desired stability result

/Q(u2(x, t) +v¥(z,t))dx < Me_"‘t/(ug(x) + g (z))dz.

Q



Chapter 4

Structural Stability for
FitzHugh-Nagumo Equation

In this chapter, we will consider an initial boundary value problem for a system
of nonlinear parabolic equations that can be considered as a regularization of the
FitzHugh-Nagumo model. For the system, given below, we will study the problem of
continuous dependence of solutions to the probem on the diffusivity coefficient. Note
that, this type of stability is called ”structural stability”.

Let G C R™ (n < 4) be a bounded domain with sufficiently smooth boundary 0G,

and ug, vy be given functions. Consider the system,

w—Au+tglufutcu®+au—v=0 G, t>0
nw—kAv+ fo+bu=0, x€G, t>0
(4.1)
u(z,0) = up(x), v(z,0) =v9(z), x€G
u(z,t) =0, v(z,t) =0, x€0dG, t>0
where a > 0,06 >0, f >0,9 >0, p> 2, and ¢ € R are given numbers.

Here, we assume that [u,v] is the classical solution of the system (4.1).

Firstly, we derive a priori estimates for solutions of the problem (4.1) which are

43
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uniform with respect to t € R*.

Theorem 4.1. Suppose that ug,vy € Hi(G). Then the following estimates hold true

ImeHWVMMM/HVM@Wd&@/HVM$W%, -
0 0 4.2

t t
/ | Au(s)|| ds, k/ |Av(s)||*ds < D, VteRT.
0 0
for some constant D.

Proof. Let us multiply the first equation in (4.1) by bu and then integrate the result

over (G,

9/ 2(uz(a:,t))dx—b/ u(x,t)Au(x,t)dx+bg/ lu(z, )" dx

+ab/GUQ(x,t)da:—b/Gu(x,t)v(x,t)d:c = —bc/ u?(z,t)dx.

G

From this, we get

d |b 2 2 P2 e + ab||u ?
it (31O |+ 0190 b [ e 0 e b )] 13)

—b/Gu(x,t)v(:L',t)d:c: —bc/Gu?’(x,t)dx.

Multiply the second equation in (4.1) by v and then integrate over G,

%/G%ﬁ(m,t}dw—k/Gv(x,t)Av(x,t)dx—i—f/GUQ(ac,t)dx—i—b/Gu(x,t)v(x,t)dx:0

Then, we obtain that

& |31+ EIToOIF + £ 1@ +0 [ wwoptei =0, @
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Summing (4.3) and (4.4), we obtain

& e+ ||v<t>||ﬂ abllu®)? + £ o(0)]> +b]| Vu(®)]|

kY@ + by / (e, " do (4.5)
G

= —bc/ u’(z,t)dw
e

By using Young'’s Inequality (1.6) for the right-hand side of (4.5) with € = %6”), we

obtain

b —1 /b 9 3/(1-p) N
—bc/ W, 1)z < —g/ u(a, )72 dz + 9t +2) bl ).
G 2 Ja p+2 6

3/(1-p)
Letting Cy = ]% (W) (b |c|)£%? |G|, we write the above inequality in the

form

—bc/ u?(z,t)dr < b_g/ lu(z, t)|PT* dz 4 Cp. (4.6)
G 2 Ja

Combining (4.5) and (4.6), we get

d
T [ lu()]* + [lo() 1] + 2ab [[u(®)|* + 2f [o(®)]* + 26| Vu(t)]*
+ 2k || Vu(t)|]” + bg/ u(z, t)|PT* doe < 20,.
G

Then, from (4.7), we obtain that

% [bl[a() I + [lo(@)II"] + 2ab [[u(®)]” +2f [o()]]* < 2Co.

Here, letting vy = min {2a,2f}, we get
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% [ a1 + o17] + v (0 lu(®)]* + o)) < 2Co.

This implies that

2C 2C
bllu(®)[” + [lo(®)]* < e (buuouz + [looll” - 70) o

Since for v; > 0 and t > 0, et < 1, we get the inequality

bllu)|” + [lo@®)|* < C1, VE e R, (4.8)

where Cy = b |Juo||* + ||vo |-
Here, it is important that Cy and C; do not depend on k. Now, integrating (4.7)

with respect to t, we get

t
bllu(®)]® + lo)))* = blluoll® — llvoll® + 2ab/0 [u(s)|)? ds
t t t
+2f/ |]v(s)\|2ds+2b/ |yvu(s)|y2ds+2k/ IVo(s)|? ds
0 0 0

t
+bg/ / lu(z, s)[PT* deds < 2C,t.
0o Ja

Then since

t t
bllu(t)2 + [lo(t)2 + 2ab / lu(s)|2 ds + 2d / lo(s)|I? ds > 0,

by using (4.8) we obtain that
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t t
zb/ ||Vu(s)||2ds—|—2k:/ Vo (s)|? ds
0 0
t
+bg/ /\u(m,s)|p+2dxds
0 G
< 2Cht + C) < 2C,T + 4,

for all t € [0,T]. So, we deduce that there exists Cy(T") depending on b, ¢, g, p, |G|,

initial data and T such that

thU(S)HQdS, k t||Vv(s)||2ds,
/0 t /0 (4.9)
//|u(x,s)|p+2dxdsgo2(T), vt € [0,T).
0 JG

Now, multiplying the first equation in (4.1) by —bAwu and then integrating over G,

we get

—b/Gut(x,t)Au(x,t)dx—l—b/G|Au(x,t)| dm—bg/G\u(x,t)|pu(x,t)Au(a:,t)dx
—bc/Guz(a:,t)Au(x,t)dx—&b/Gu(x,t)Au(x,t)dx
+ b/ v(z, t)Au(z, t)dx = 0.
G

From this equality, we obtain that

bd
37 VU 1 8uO +bglp+1) [ fute.OF (Va0 do

+ bc/Gu(x,t) Ve, ) dz + ab||Vu(®)|? (4.10)

+ b/ u(z, t)Av(x,t)dx =0
G
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Then multiplying the second equation in (4.1) by —Aw and integrating over G, we
get that

_/th(;,;’t)Av(x,t)dx—i—k/G\Av(a:,t)\Qd:c—f/Gv(x,t)Av(:C,t)dx

— b/Gu(a:,t)Av(a:,t)dx = 0.

By using Divergence Theorem (1.11), we get that

1
331 IVoOI + R 180 + £ IV = b [ ule, Aol tjde =0, (211
G
Then, summing (4.10) and (4.11), we obtain that
d b 2 1 2 b 2 2 b A 2
= [ IVu@I” + 5 VoI | + ab[[Vu@)|” + fIVo@)" + b [ Au()]
—l—k||Av(t)H2+bg(p+l)/ u(a, ) [Vu(z, 8)2 da (4.12)
G

= —bc/ u(z, t) | Vu(z, t)]? de.
G

Now, let us use Young’s Inequality (1.6) and Interpolation Inequality (1.8) for the
right-hand side of (4.12) with € = w,
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_bc/u(x,t)\Vu(x,t)Fd;c < b\c\/ |u(x,t)HVU(:C,t)|2dx
¢ G
= blel / (e, )] [Vuz, )17 [Vu(z, 1) 27 da
G
G

B 1/(1-p)
b (bgp(p+1)) (b]c])?/D / Vu(e, 6) do

b +1
- Wetl /| DI [V, 6) de + Cs [ Vu(t)|?

IA

WTH / fule, ) [V, O de + Cy [u(®)]| | Au(b)]

IN

WD [ e, (Vate 0P e + Sl
2 Jo 2
03 2
= WD a0 (a0 e+ 5 [Auo)?
G

+ Cullu(t)]?

1/(1=p)
where C3 = 1% (%) ’ (b]e)?/® " and €y = S2. Note that here we also

used the inequality

lu [ Au(®)]| < € lu@)* + 4% 1Au()]*,

with e = 1/2b.

By using the above inequality in (4.12), we obtain that
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d 2 2 2 2 2
C 1T + [VoOI] + 205 [Vu(t) [ + 27 [ Vo) + 25 Au)]
+2k|\Av(t)H2+2bg(p+1)/ lu(z, t)|? |Vu(z, t)]* dz
G
< bglp+ 1) / fue, O [Vule, )2 de + b Au(t) |
G
+ 20y ||lu(®)|]* .

From this inequality, we get

4 LIV + Vo) ] + 2ab [[Vu®)]* + 2f Vo)

dt
+b[|Au(t)|* + 2k | Av(®)|
+bg(p+1) /G lu(z, )P |Vu(zx, t)]? de (4.13)
< 204 [|u(t)||”
< Cs,
where C5 = % Now, integrating (4.13) with respect to t, we obtain that

bIVu(t)? + [Vo(t) |2 — b [Vu(O)]? — [u(0)]? + 2ab / IVu(s)|? ds
2 tv 2d btA 2d thA 2d
T f/o [Vo(s)|2ds + /0” u(s)|2ds + /0” o(s)|2ds

¢

+bg(p+1)/ /|u(x,s)]p]Vu(:L‘,s)|2dxds
0o Ja

< Cst.

From this inequality we obtain the following inequality
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t t
b||Vu(t)|2+||Vv(t)||2+b/ ||Au(s)||2ds+2k/ | Av(s)||* ds
0 0
< Cst+ b || Vu(0)|* + | Vo(0) (4.14)
< 5T +b || Vu(0)||* + [ Vu(0) |,

for all t € [0,7]. So, we deduce that there exists a constant Cg(7") depending on

a,b,c,d,g,|G|, initial data and 7" such that

IVu@®)*, [Vo@l*, / 1Au(s)]* ds,
. 0 (4.15)
k/ |Av(s)||*ds < Cg(T), Vte0,T].

]

So, we are ready to prove the following theorem on continuous dependence of

solution to the problem (4.1) on the diffusivity coefficient k.

Theorem 4.2. Suppose that [u;,v;], i = 1,2 are strong solutions of the problem (4.1),

that is;

Opu; — Ay + |ug|Puy + cu? +au; —v; =0, x € G, t>0,

8tvi—kiAvi+fvi+bui :0, x e G, t > 0,

(4.16)
ui(x,0) = up(x),v;(z,0) = vo(x), z € G,
wi(x,t) = v(z,t) =0, x€dG, t>0.
Then the following a priori estimate with k = ki — ko holds true
() — us(t)|| < Dy(T)VEeP2, Vit e [0,T], (4.17)

for some constants D1(T') and D,.
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Proof. Tt is clear that the pair of functions [w, z] = [u; — ug, v; — vy] is a solution of

the problem

wy — Aw + ug [P uy — |ug|’ ug + c(uy +ug)w +aw —2=0, z€G, t>0,
2 —kiAz+ fz+bw=FkAvy, z€G, t>0,

(4.18)
w(z,0) =0,2(z,0) =0, ze€Qaq,

w(t,z) = 2(t,x) =0, € IG, t>0.

Multiplying the first equation in (4.18) by bw and then integrating over G, we get

the relation

57 @I + 0 [ V()|

+ b/ w(z,t) (Juy(z, t)[Pu(z, t); — |u(z, t)o[Pu(z, t)s) dx
“ (4.19)
+ bc/GwZ(:c, t) (un(x,t) + uz(z, 1)) dz + abw(t)|”

— b/ w(z,t)z(x,t)dx = 0.
a
Now, multiply the second equation in (4.18) by z and integrate over G to get

1d

5 @)1 + ka [[V2ON + £ =) + b/Gw(fM)Z(fE,t)dﬂf

(4.20)
:/%/ z(x, t) Aved(x, t)x.

Summing (4.19) and (4.20), we obtain that
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% |31+ 1O+ £ 11 + IVl + k172001

+ ab||w(t)|]® + b/Gw(x,t) (Juy (2, ) [Py (2, 1)

— |ug(x, t)[Pus(z, t)dx (4.21)

= k:/ z(x,t) Avg(z, t)dx
— bc/G(ul(x, t) + ug(z, t))w?(x, t)dr.

Combining the inequality (1.10) with (4.21), we obtain that

d

% 3100 + 5 101 + 7101 + b wio)?

+h ||Vz(t)||2+ab||w(t)||2+bd1/ w(a, P dx <
G

/%/Gz(x,t)Aw(x,t)dx — bc/(ul(Lt) + uy(, t))w*(x, t)dr.

€]
Then clearly, we get that

& 310+ 10| < [ (080w

— bc/G(ul(a:,t) + ug(z, t))w*(z, t)dx.

For the first term on the right-hand side of (4.22), using Young’s Inequality (1.6) with

(4.22)

e = f, and p = ¢ = 2 we obtain the inequality

%LAUQ(.I,t)Z(.I,t)dI‘ §/|/;;Avg(x,t)z(x,t)|dx

f/\ xt\ d + Q/ymg(x,m?dx (4.23)

=35 Lsm)? + ||AU2()|| :
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For the second term on the right-hand side of (4.22), we have

/G (u1(z,t) + ug(w, 1)) w?(z, t)dw

< [ (o0 + fuste 1)) w1
< rileaéc(\ul(a:,t)]—i—]uz(m,t)|)/cw2(a:,t)dx

< (om0 + ma o, ) ) O

Then, using the Sobolev Inequality (1.9), we obtain

< (r | Aur ()] + 72 [|Aus(@)]]) ()]

/G(u1($, t) +ug(w,t)) w?(z, t)dx

Letting r = max {ry, 2}, we get

<r(Jau O] + |Au®I) [w@]*.  (4.24)

/G (u1(z,t) + ug(w, 1)) w?(z, t)dx

Now, using (4.23) and (4.24) in (4.22) we get that

d [b , 1 ) f ) | K 2
% 31w+ 5 1:01| < L1001+ 3 1aue

+ blefr ([|Aus ()] + [ Auz(®)]]) [lw (D)

IN

el (18 @I + [ O1F) + 5] @)1 + 1:01°)

B anmp
2f (%) .

From this inequality, we get that

% plw®I” +1=@1F] < 2l (IAu @ + 1 Aus@)?) + ] @ lwOI + [20)1)

" ’“72||Av2<t>||2.
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Letting

y(t) = 0w + [l2(1)]°

, B(t) == 2|c|r (HAul(t)H2 + HAug(t)HQ) + f.and a(t) = %2 | Avy(8)||°, we can write

the last inequality as

y'(t) < alt) + B)y(t).

Observe that y(0) = 0. Integrating it over [0, 1], we get

o0 < [ atoyis+ [ slsiulsiis

Due to Gronwall’s Lemma, we have

y(t) < < /0 toz(s)ds) e Ji s

That is,

1232 t t 2 2
y(t) < <7/0 HAUQ(t)H?d5> oo [2lelr (I Aur ()| + | Auz(s)[*) +f]ds (4.25)

Remember that we have from (4.15) that fg | Au(s)||* ds < Cs(T), ¥t € [0,T] and so,

/0 2lelr (|Aur()]” + [ Aus(s)]]* + flds

=2 t A 24 t A 2d)
wv(én wls)Pas+ [ [Busls)|Pas) + g
< A|c|rCs(T) + ft.

Using (4.15) again and employing the above inequalities in (4.25), we get
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Cs(T)k
f
where Cy := 4|c|rCq(T) + ft. Then, we also have b ||Jw(t)||* < Co(Dk o Cr , and since C7

e

blwOI + 2] <

depends on t linearly, we deduce that there exist constatnts D, (T) and Dy such that

lo(®)|| < Dy(T)VEkeP2t, Vit e [0,T).
Hence, the estimate (4.17) is satisfied. O

Corollary 4.3. Since the constant Di(T) in (4.17) does not depend on diffusivity
coefficients ki and ko, it follows that on each finite interval [0,T] a solution [u,v] to
the problem (4.1) tends as k — 0T to the solution [4,v] of the initial boundary value

problem for the system

— A+ glaf i+ ci+ai—9=0, z€G, t>0
G+ fo4bi=0, 2€G, t>0
(4.26)
(z,0) = ug(x), 0(x,0) =vo(z), z€d
u(x,t) =0, z€0G, t>0.

This shows that we can approximate solution to the system (4.26) by solutions of

the system

—Au+glufutcu®+au—-—v=0, z€G, t>0

—kAv+ fo+bu=0, x€dG, t>0.



Conclusion

In this thesis, our main aim is to study some stability properties of Fitzhugh-
Nagumo Equations.

We know that a system of FitzHugh-Nagumo Equations is special type of a system
of reaction-diffusion equations. So, firstly we proved the existence and uniqueness of
solutions of a reaction-diffusion equation and noted that the result for the system of
reacrion-diffusion equations is similar.

After that,we studied some stability properties of FitzHugh-Nagumo model. We
showed that the solutions of a FitzHugh-Nagumo model can be stabilized by apply-
ing a feedback controller on a bounded subdomain. For another FitzHugh-Nagumo
model, we showed that the solutions of this model are continuously dependening on

the diffusivity coefficient.
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