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Abstract

I study a two-unit uniform-price auction with three participants who have unit de-

mands. Before an auction, each participant receives a discrete signal that can take two

(qualitatively different) values - l or h. After the auction, each winner needs to make

an ex-post investment decision that will affect the value of the object. Hence, the val-

ues are determined jointly by the signal and ex-post investment decision. I characterize

the necessary and sufficient conditions for the existence of monotone and non-monotone

equilibria. I find that for some parameters, only non-monotone equilibria are possible. In

addition, except for one class of monotone and non-monotone equilibria, the equilibrium

behavior supposes that some agents choose to bid the same bid irrespective of the signal

they receive. However, the players with qualitatively different signals cannot pool at the

same bid in any (monotone or not) equilibrium of the model.

Keywords: Common value auctions, Monotonicity.
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1 Introduction

Since one of the earliest reports in the fifth century B.C.E., auctions have been gaining

more and more interest as one of the many alternatives to sell an object. Auctions are

used to sell government land, rights for extracting natural resources and many other cir-

cumstances. Therefore, an analysis describing the existence or lack of auction’s desirable

features like efficiency is important. In particular, it is equally important to find out

whether the price at auctions can effectively aggregate information each participant in

the auction has and whether the price is a sufficient tool to correctly estimate the current

state of the world (as it is in the competitive market structure). Previous research of large

common value auctions (Pesendorfer and Swinkels 1997, Kremer 2002) shows that under

particular assumptions information aggregation in auctions (be it second price private

value auction or common value first price auction) could indeed occur. However, some

researchers (Atakan and Ekmekci in press) demonstrate that with a slight modification of

the setting and with minimal assumptions (which are practically justifiable) information

aggregation fails to occur. The similarity of the settings in Atakan and Ekmekci (in press)

and real life common value auctions draws a suspicion of inefficient resource allocation if

the auction is used as a tool for recourse allocation. The problem bears extra attention

because government resources are often sold using the auction mechanism.

Much of existing literature analyzes the properties of the auctions in large settings.

However, some auctions, especially auctions aiming to allocate government resources, may

have a small number of participants and even smaller number of objects that are available

for sale. Typical examples of small auction settings are the sale of rights for oil extraction

and the sale of spectrum rights. In both cases, economies of scale may require the govern-

ment (or the possessor of resources) to limit the number of rights to a small number. In

addition, some sectors just do not have enough participants to converge to the settings of

a typical large common value auction. This was an issue in the auction of 3G licences in

the UK1. Before the auction, there were four incumbent firms in the market; by the time

of the auction, a total of thirteen firms decided to participate in the auction meaning that

the government could attract only nine new firms despite providing some subsidies and

privileges in establishing new infrastructure. The problem of failing to attract enough

participants can originate in many other circumstances. For example, currently, there

are twenty three different companies that operate in the oil extraction sector in Russian

Federation. If the Russian government decides to sell its oil-drilling rights on the newly

discovered petroleum deposits in Arctic, it is doubtful that the government could lure

much of the new entrants and increase the number of participants to even 50 firms.

Besides the size of the auction, incompleteness of information available to the par-

ticipants bears extra attention as a potential source of inefficiencies in the auctions. By

introducing actions (or ex-post investment decisions), Atakan and Ekmekci (in press)

1For more information on the UK 3G rights auction refer to Binmore and Klemperer (2002)
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demonstrate that an additional uncertainty may worsen information aggregation proper-

ties of large auctions. This result is especially important because many real life auctions

require ex-post investment decisions. For example, the true value of the oil-drilling rights

depends on what type of final good a possessor of the rights would want to produce.

An optimal choice of final good, in turn, depends on future prices of various alternatives

which are unknown by the time of acquisition of the rights.

A difference in equilibrium behavior in the settings presented by Atakan and Ekmekci

(in press) and Pesendorfer and Swinkels (1997) demonstrates that additional uncertainty

coming from the required ex-post decisions may lead to completely different equilibria

of the auction. In particular, such uncertainty may allow participants to bid in a non-

monotone fashion. Multiplicity of equilibria, in turn, may mean that some of the equilibria

possess more favourable features and thus are more preferred than the standard equilibria.

Hence, a full characterization of the optimal bidding in auctions with ex-post investment

decisions possesses a potential to answer these questions.

In this study, I analyze a two-unit uniform-price auction with ex-post investment

decisions. There are three participants who have unit demands. Before the auction,

each participant receives a private discrete signal. Each winner of the object is required

to take an action that will determine the true value of the object. I find that under

mild assumptions that are reasonably justifiable a monotone equilibrium exists for some

model parameters. In addition, I demonstrate that an existence of monotone equilibrium

immediately implies the existence of non-monotone equilibria, but the reverse does not

necessarily hold: only non-monotone equilibria are possible for some model parameters.

Except for one case, pooling behavior is common in all equilibria (monotone or not).

However, I find that the bidders with qualitatively different signals cannot pool at the

same bid.

2 Literature Review

Much of the existing literature on common value auctions analyze conditions for the

equilibrium existence and the equilibrium characterization in large auctions where the

participants have unit demands and non-decreasing value function. Wilson (1977) first

demonstrates that in large common value auctions with one object for sale the ending price

converges in probability to the true value of the object. Milgrom (1979) extends this result

to the auctions with arbitrary number of objects available for sale. Both results rely on

the assumption that some bidders have arbitrarily precise signals about the true state of

the world. While Wilson (1977) and Milgrom (1979) provide the asymptotic properties of

common value auctions, Milgrom and Weber (1982) characterize the equilibrium bidding

strategies in second-price sealed bid and English auctions with n participants and only

one object sold. The main result is that monotone (pure strategy) equilibrium exists.

This result is further extended by Pesendorfer and Swinkels (1997) to the k-unit uniform-
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price and first price auctions. Moreover, Pesendorfer and Swinkels find that the bidding

function in both auctions is unique and monotone. But the most important result is

that, under several assumptions in the k-unit uniform-price auction, the ending price of

the object can fully aggregate the valuable information even if the bidders do not have

arbitrarily precise signals. This result indicates that an auction has the desirable feature

of predicting, or, rather, describing the current state of the world (as is in the case of

perfect competition). Later, Kremer (2002) shows that different types of common value

auctions, such as second-price, first-price, or English auctions can aggregate information

about the current state of the economy. The properties of large common value auctions

is further analyzed in different settings2.

An important question to ask is how the results of the above research respond to slight

modifications of the standard settings that are utilized in almost all the above papers.

Atakan and Ekmekci (in press) demonstrate that a slight modification of the settings

used in Pesendorfer and Swinkels (1997) (addition of ex-post investment decisions) could

lead to a failure of information aggregation even in large sample common value auctions.

Hence, an introduction of an additional uncertainty that modifies the behavior of the value

function implies a violation of the results on information aggregation in large auctions.

Other researchers analyze the validity of the results drawn by Pesendorfer and Swinkels

(1997), Milgrom and Weber (1982) and Kremer (2002) when the standard settings on

signals and auction price formation do not hold. Riley (1988) draws inference on the

efficiency of the sealed bid auctions in the setting where the price is a weighted average

of all the losing bids. He shows that such a price formation improves efficiency of the

auctions. In contrast, Goeree and Offerman (2003) characterize the equilibrium bidding

behavior in the auctions where objects have both private and common component. They

conclude that a greater uncertainty about the common value reduces efficiency of an

auction.

While there exists extensive literature on large common value auctions of various

types, the literature on small auction settings is not so broad3. Several papers on small

auctions include Banerjee (2005) and Wang (1991). Banerjee (2005) analyzes a two-player

first-price auction with asymmetric bidder information. He characterizes the equilibrium

bidding strategies in the case where one player is more informed than the other. The

inference on the efficiency of extra public information is not as straightforward as in

the standard settings that are present in Milgrom and Weber (1982): it is uncertain if

revealing public information would increase efficiency of the auction when the bidders are

2For the results on Double auctions, see Cripps and Swinkels (2006). Hong and Shum (2004) analyze
the changes in the speed of convergence in k-unit uniform-price auctions under various assumptions.
In contrast, Jackson and Kremer (2007) draw an inference on the informational inefficiency of large
discriminatory auctions. De Castro and Karney (2012) provide an extensive summary of the results on
equilibrium existence and its characterization under different auction settings and assumptions.

3I should note, though, that a few papers that analyze the asymptotic properties of large auctions
first summarize the equilibrium behavior in small samples. Pesendorfer and Swinkels (1997) and Atakan
and Ekmekci (in press) are some examples of such papers.

3



asymmetrically informed.

Similar to Banerjee (2005), Wang (1991) analyzes a first-price common value auction.

However, Wang assumes discrete signals and extends the results to the large sample case.

The important results are that the players with different signals use mixed strategies with

non-overlapping support. In addition, as the number of bidders increase, the information

aggregation can happen only partially: the auction price still fails to perfectly inform the

true state of the world.

A yet greater limitation exists on the literature of non-monotone equilibria of the

games that my analysis is closely related to. In most cases, the settings directly im-

ply non-existence of non-monotone equilibria or the authors impose several assumptions

to avoid complexities in characterization of non-monotone equilibria. For example, the

multidimensionality of the values that Goeree and Offerman (2003) impose allows for non-

monotone bidding strategy because of non-monotonicity of the summary statistic order-

ing. To avoid such complication, the authors impose an assumption and thus restrict their

analysis to the monotone equilibria. Yet, such tactic is not employed by all the researchers.

For example, in their analysis on the existence of monotone equilibria in asymmetric first-

price auctions, Reny and Zamir (2004) demonstrate that a non-monotone bidding strategy

may be the unique equilibrium bidding strategy if the players have multidimensional sig-

nals. Similarly, McAdams (2007) analyzes a simple model of small uniform-price auctions

that exhibits only non-monotone equilibria. The author provides two examples of simple

small auctions (where players have multi-unit demands) where the equilibrium bidding

strategy of at least one player is non-monotone.

3 Model

Consider a sealed-bid uniform-price common value auction. There are three agents who

have unit demands and who compete over two objects. There are two states of the

world drawn from a discrete set Ω ≡ {R,L} with a generic element given as ω. A prior

probability that the state is R is π ∈ [0, 1]. Prior to the auction, each agent receives a

signal that is drawn from a set S ≡ [0, 1]. I call the signal “high” if s > 1
2
and “low”

otherwise. The probability of receiving a “high” signal (i.e. s > 1
2
) when the state is

R is p (i.e. Pr(h|R) = p) whereas the probability of receiving the same signal in state

L is q. Hence, in state R the signals are distributed by a function f(s|R) = 2(1 − p) if

s ≤ 1
2
and f(s|R) = 2p otherwise. The density function conditional on state L is defined

symmetrically. Each agent observes only her own signal. In the following assumption, I

impose a condition on the distribution of the signals.

Assumption 1 (MLRP). The distribution of signals satisfies MLRP:

p

q
>

1− p

1− q
⇒ p > q
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Suppose that an agent i believes that the state is R with some probability z. Then,

I say that the likelihood ratio of state R relative to state L is defined as ρ ≡ z
1−z

. In a

similar fashion, I define the likelihood ratio of an agent receiving a signal s, denoted as

ρ(s), as:

ρ(s) =
Pr(R)f(s|R)

Pr(L)f(s|L)

In the remaining of the paper, I will make all the calculations of expected profits and

payoffs using likelihood ratios instead of directly using probabilities because this approach

simplifies the calculations.

After receiving a signal, each agent submits a bid bi ∈ [0,∞). The agent wins an

object if she submits at least the second highest bid. In case a tie occurs, a tie-breaking

rule assigns an object to tied agents with equal probability. Each winner pays a price

that is equal to the highest losing bid.

Conditional on winning an object, each winner chooses an action a from a discrete

set A. For simplicity purposes, I assume that the set A consists of two alternatives - l

and r. I construct the model such that the valuation of the object is both state- and

action-dependent; i.e. the valuation of the object is given as v(a, ω). Action r is better

in state R whereas action l gives greater payoff when the state is L. Without loss of

generality, I assume that v(r, R) ≥ v(l, L) and make the following assumption on the

shape of valuation function:

Assumption 2 (VAL). The valuation of the object satisfies the following relation:

v(l, L) > v(r, L) = v(l, R) = 0

As the agent chooses her action after seeing her own signal, own bid and the price of

the auction, the action strategy is a map a : S × [0,∞)× [0,∞) → A.

Using the beliefs of an agent denoted as ρ, I define the value of an object for this agent

as a function u : [0,∞) → R that is given as:

u(ρ) = max
a∈{l,r}

{

1

ρ+ 1
v(a, L) +

ρ

ρ+ 1
v(a, R)

}

A map a that gives the optimal choice of action for the individual will maximize the

expected payoff of the agent conditional on her beliefs ρ. Note that u(0) = v(l, L) while

limρ→+∞ u(ρ) = v(r, R). The assumption that v(l, L) ≤ v(r, R) and the fact that u(·) is

continuous in ρ implies that exists a unique ρ∗ ∈ [0,∞) such that it solves the following

equation:
1

ρ+ 1
v(l, L) =

ρ

ρ+ 1
v(r, R)

5



0 ρ

Valuation

u(ρ)

v(l, L)

ρ∗

u(ρ∗)

Figure 1: This figure depicts the behaviour of the value function across different beliefs. The
value function is not monotone in signals and is strictly decreasing on the [0, ρ∗] region; it is
strictly increasing otherwise.

It is easy to see that ρ∗ = v(l,L)
v(r,R)

. The cutoff ρ∗ is the belief that makes an agent indifferent

between action r and l and thus determines the conditions for the optimal choice of action.

Throughout my analysis, I will utilize the fact that the function u(·) is strictly decreasing

on the interval [0, ρ∗] and strictly increasing on [ρ∗,∞). Figure 1 depicts the shape of the

value function.

An equilibrium of the model consists of the bidding strategy Hi and an action strategy

ai. A bidding strategy Hi is a measure on S × [0,∞). An equilibrium bidding strategy is

pure if there exists a function b : S → R+ such that H({s, b(s)}s∈[0,1]) = 1. Description of

the bidding strategy with the action strategy for each player will comprise the equilibrium

of the described model.

4 Results

4.1 Monotone Equilibria

4.1.1 Behavior of Monotone Equilibria

This section summarizes the main results on the equilibrium existence and the charac-

terization of the bidding function in different equilibria. My focus on the symmetric

equilibria allows me to consider the strategy of one person. Without loss of generality,

consider player 1 who receives a signal s ∈ [0, 1]. Let Y2 denote the second highest signal

of the remaining two players.

Before presenting the main results, I define one class of bidding strategies and equilibria

that will be extensively used in the remaining of the paper.

Definition 1. A bidding strategy, denoted by bPS(s), is said to be Pesendorfer-Swinkels
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(PS) bidding strategy if it is given as:

b(s) = E(v|s1 = s, Y2 = s)

Definition 2. An equilibrium is said to be monotone if the equilibrium bidding strategy

b(s) is non-decreasing in signals. It is strictly monotone equilibrium if b(s) is strictly

increasing in s.

With these two definitions, I can now present the first result on the general shape of

any monotone equilibrium of the model.

Proposition 1. Suppose that assumptions MLRP and VAL hold. Then, in any monotone

equilibrium, there is a cutoff signal 0 ≤ sc ≤ 1
2
such that the equilibrium bidding strategy

is

b(s) =

{

bp < bPS(sc) ∀s ∈ [0, sc]

bPS(s) ∀s ∈ [sc, 1]

Proof. See Appendix

The following corollary characterizes the equilibrium behavior of the players with

“high” signal.

Corollary 1. In any monotone equilibrium, bPS(s) = πp3

πp3+(1−π)q3
v(r, R) ∀s ∈ (1

2
, 1]

Proof. See Appendix

Notice that corollary 1 implies that a strictly monotone equilibrium is not possible

under our settings. Even if the pooling does not occur around any signal s ≤ 1
2
, the

bidding strategy is constant in the above portion of the bidding strategy. That is, in

any monotone equilibrium, the players with high signal bid the same bid. However, this

kind of bidding is not a “proper” pooling behavior because the high signal players still

behave based on the information coming from their private signal. This phenomenon is

not general and is a result of the model’s setting: the fact that the price is equal to the

highest losing bid implies that whenever a player with high signal wins at his own bid,

he is certain that the other two players received high signal. Though not general for

any object-to-bidder ratio k
n
, it is nevertheless holding for any k and n combination that

satisfies n = k + 1.

An important result that proposition 1 demonstrates is that the pooling region cannot

contain qualitatively different signals; that is, in any monotone equilibrium, the players

with high signals will never want to pool if the players with low signals pool. In fact, the

result is more general: the players with (qualitatively) different signals will never pool to

7



the same bid in any equilibrium, be it monotone or not. The reason for such a result is that

we can never find the pooling bid that is consistent with the individual rationality of the

bidders with qualitatively different signals at the same time. An intuitive explanation for

the incompatibility of the pooling behavior is as follows: if the players with qualitatively

different signals pool to the same bid, then winning at the pooling price does not reveal

much information because it may contain information favouring state R or state L or

both. This information is not strong enough to offset the information that comes from

players’ private signals. In contrast, if only bidders with qualitatively same signals decide

to pool, winning at the pooling bid reveals a strong signal towards only one state of the

world thus making the pooling behavior optimal. The formal proof of generalization of

this result to any non-monotone equilibrium will be presented as the proof of Corollary

3.

4.1.2 Characterization of Monotone Equilibria

Once I know the general behavior of the monotone bidding equilibrium, I can characterize

the conditions under which such a monotone equilibrium exists. To do so, suppose that

there exists a cutoff signal 0 ≤ sc ≤ 1
2
such that the players with signal s ≤ sc choose the

pooling bid bp and player with signals s > sc bid according to the PS bidding strategy

bPS(s).

The three critical cases that affects the existence of monotone equilibria are: winning

at the own bid, winning at the pooling bid (after bidding something higher), and winning

after bidding the pooling bid. The beliefs conditional on these three cases will determine

if the pooling behavior is compatible with the players’ individual rationality. Hence, to

characterize the conditions for the equilibrium existence, I need to define the players’

beliefs on the state of the world when these three cases occur.

Consider player 1 who received signal s. Suppose that the player wins and the ending

price is equal to his own bid. This can happen only if the second highest bid of the

remaining two bids was equal to his bid. That is, the player with third highest signal

received the same signal as player 1. Since we have a total of three players, this, in turn,

implies that the other player receive a signal higher than s. Hence the underlying beliefs

of the first player are:

ρ(s) =
π(f(s|R))2(1− F (s|R))

(1− π)(f(s|L))2(1− F (s|L))

Utilizing the definition of the c.d.f. F (·), I can rewrite the beliefs as:

ρ(s) =

{

π(1−p)2(1−2(1−p)s)
(1−π)(1−q)2(1−2(1−q)s)

if s ≤ 1
2

πp3

(1−π)q3
if s > 1

2

Since the beliefs do not depend on signal when s > 1
2
each player with high signal will

8



choose to bid the same bid. This result was already demonstrated in corollary 1.

I can similarly define the beliefs of a person conditional on winning an object by

bidding the pooling bid. Let sc ≤ 1
2
be the cutoff signal such that the bidders with signals

s ≤ sc pool at bp. Then, conditional on bidding bp and winning the object, beliefs of the

bidder with signal s are:

ρpool(s, sc) =
πf(s|R)(2

3
(F (sc|R))2 + F (sc|R)(1− F (sc|R))

(1− π)f(s|L)(2
3
(F (sc|L))2 + F (sc|L)(1− F (sc|L))

=
πf(s|R)F (sc|R)(3− F (sc|R))

(1− π)f(s|L)F (sc|L)(3− F (sc|L))

Bidding anything above the pooling bid and winning at the pooling price yields the

beliefs of:

ρ(s, sc) =
πf(s|R)((F (sc|R))2 + 2F (sc|R)(1− F (sc|R))

(1− π)f(s|L)((F (sc|L))2 + 2F (sc|L)(1− F (sc|L))

=
πf(s|R)F (sc|R)(2− F (sc|R))

(1− π)f(s|L)F (sc|L)(2− F (sc|L))

By proposition 1, the cutoff signal must satisfy sc ≤ 1
2
. Hence, F (sc|R) = 2(1− p)sc.

I can thus write the two beliefs as:

ρpool(s, sc) =
πf(s|R)(1− p)(3− 2(1− p)sc)

(1− π)f(s|L)(1− q)(3− 2(1− q)sc)

ρ(s, sc) =
πf(s|R)(1− p)(2− 2(1− p)sc)

(1− π)f(s|L)(1− q)(2− 2(1− q)sc)

Several features of the belief functions should be noted. First, the beliefs ρpool(s ≤
1
2
, 0) and ρ(s ≤ 1

2
, 0) coincide with the beliefs of a person with signal 0 conditional on

winning the object at his own bid (i.e. ρpool(s ≤ 1
2
, 0) = ρ(s ≤ 1

2
, 0) = ρ(0)). Second,

ρpool(s, sc) < ρ(s, sc) for any sc > 0. Last, both belief functions are increasing in sc. These

three observations will be helpful in characterizing the conditions for the existence of the

monotone equilibrium of the model.

The following proposition characterizes the conditions under which a unique monotone

equilibrium is possible.

Proposition 2. Suppose that assumptions MLRP and VAL hold. If ρ(0) = π(1−p)2

(1−π)(1−q)2
≥

ρ∗ also holds, then there exists a unique monotone equilibrium where the players with

signals s ∈ [0, 1] use the PS bidding strategy.

Proof. See Appendix

Condition ρ(0) = π(1−p)2

(1−π)(1−q)2
≥ ρ∗ implies that every player, irrespective of his signal,

believes that R is more likely. Hence, the model is reduced to the model without actions.

Therefore, all the results presented by Pesendorfer and Swinkels (1997) come though in my

case, as well. In particular, none of the players will want to bid anything lower than their
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expected value conditional on their bid being pivotal. The bidding strategy is therefore

strictly increasing in the region [0, 1
2
] because the beliefs ρ(s) are increasing there. Note,

however, that the bidding strategy is still only weakly monotone: the players with high

signals still bid the same value (as was proposed in corollary 1). Yet, this phenomenon

occurs only because of the fact that the price of the auction is equal to the lowest bid in

the auction.

When ρ(0) ≥ ρ∗ is not satisfied, the equilibrium bidding strategy cannot be strictly

increasing around 0. To see this, notice that ρ(0) < ρ∗ implies that the value function is

decreasing in signal in the neighbourhood of zero. Individual rationality of players implies

that the bid cannot exceed the expected value conditional on being pivotal (as otherwise

the profits would be negative). A strictly increasing bidding function would then imply

that b(0) < u(ρ(0)). Hence, the player with signal 0 always wants to deviate to avoid

losing at his own bid. Thus, some players with (quantitatively) different signals must pool

in any monotone equilibrium.

Pooling in the bidding function requires extra conditions on the parameters of the

model so that this bidding function is the equilibrium bidding function. Hence, to find

the necessary and sufficient conditions, I need to determine the lowest value of the pooling

bid bp that is compatible with the pooling behavior. Note that, unless u(ρpool(s ≤ 1
2
, sc)) ≥

u(ρ(s ≤ 1
2
, sc)) for some sc ≤ 1

2
, the pooling behavior is not sustainable. This is so because

violation of the above inequality implies that expected payoff is higher if the player decides

to bid above bp in addition to higher chances of winning the object at the pooling price.

Our condition that ρ(0) < ρ∗, however, implies that there exists such cutoff signal sc. This

result stems from two facts that ρpool(s ≤ 1
2
, 0) = ρ(s ≤ 1

2
, 0) = ρ(0) < ρ∗ and ρpool(s ≤

1
2
, sc) < ρ(s ≤ 1

2
, sc) for any sc ∈ Bǫ(0). Hence, u(ρpool(s ≤ 1

2
, sc)) ≥ u(ρ(s ≤ 1

2
, sc)) is

satisfied for any cutoff signal sc in the neighbourhood of 0.

The fact that u(ρpool(s ≤ 1
2
, sc)) ≥ u(ρ(s ≤ 1

2
, sc)) is satisfied is not, however, sufficient

for the existence of the equilibrium. The bidding function can fail in equilibrium if the

pooling bid bp that is compatible with the pooling behavior of the players with low signal

is not low enough to satisfy bp ≤ bPS(s). This can only occur when ρ(s ≤ 1
2
, sc) < ρ∗ for

all cutoff signals sc ≤ 1
2
.

If ρ(s ≤ 1
2
, 1
2
) < ρ∗, then u(ρpool(s ≤ 1

2
, sc)) ≥ u(ρ(s ≤ 1

2
, sc)) is automatically satisfied

for all cutoff signals that are less than 1
2
. Therefore, given any cutoff signal sc, I can

calculate a corresponding lower bound for the pooling bid that is compatible with the

pooling behavior of the players with low signals. Let bp(sc) be such bid. It can be written

as:

bp(sc) =
1

ρ̃(sc) + 1
v(l, L) where ρ̃(sc) =

π(1− p)2(3− 4(1− p)sc)

(1− π)(1− q)2(3− 4(1− q)sc)

A method of calculation of this lower bound is described in the proof of proposition

1 that is given in appendix. For the cutoff signals sc that satisfy ρ(s ≤ 1
2
, sc) < ρ∗, this

10
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Figure 2: A typical (weakly) monotone equilibrium bidding function where pooling occurs.
Bidders with signals below a cutoff sc bid a pooling bid bp, and those with signals above sc use
the PS bidding strategy.

lower bound is the pooling bid that makes the bidders with low signal indifferent between

pooling and bidding anything above bp and below bPS(s). The following proposition

characterizes conditions for the existence of monotone equilibria.

Proposition 3. Let assumptions MLRP and VAL hold.

(a) If u(ρ(s > 1
2
, 1
2
)) < bp(1

2
), then there is no monotone equilibrium of the model.

(b) If u(ρ(s > 1
2
, 1
2
)) ≥ bp(1

2
) ≥ u(ρ(s = 1

2
)), then there exists a class of monotone

equilibria where all players with signal s ≤ 1
2
choose the pooling bid bp whereas

players with signal s > 1
2
bid bPS(s) > bp.

(c) If u(ρ(1
2
)) > bp(1

2
) and ρ(0) < ρ∗, then there exists a class of monotone equilibria

where players bid according to the following strategy:

b(s) =

{

bp < b(sc) ∀s ≤ sc < 1
2

bPS(s) ∀s > sc

Figure 2 depicts the shape of a typical bidding strategy with the pooling behavior.

The shape of the bidding strategy determines the optimal choice of action conditional on

winning at various prices. The players who bid anything higher than bp and win the object

at any price p > bp choose action r. Similarly, the bidders who pool and win the object

choose action l conditional on winning the object. This kind of choice of action is quite

intuitive because winning after pooling reveals an informative signal towards state L. The

optimal choice of action after bidding any bid b > bp and winning at the pooling price is

not so straightforward and depends on the parameters of the model. The multiplicity of

optimal choice of action in such a case stems from the fact that winning at the pooling

price reveals information in favour of state L, but the information may be so small that
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it fails to offset the information coming from the player’s own signal. Hence a possibility

of both actions to be optimal.

Another peculiar point is, if the cutoff signal sc is strictly less than 1
2
, all bidders with

low signal must be indifferent between pooling and bidding something above. This result

stems from the fact that, though being quantitatively different, all signals that are lower

than 1
2
reveal exactly the same information about the true state of the world. Thus, if

pooling is more profitable for the bidders with signal s ≤ sc, discreteness of the signals

implies that pooling is more profitable for the bidders with signal s ∈ (sc, 1
2
], as well.

4.2 Non-monotone Equilibria

I now characterize all purely non-monotone equilibria - equilibria where the bidding strat-

egy cannot be converted to a monotone bidding strategy by re-ordering of the signals. I

first check if the monotone equilibrium with pooling can be converted to non-monotone

by shifting the pooling region away from zero signal. I then move to characterizing the

equilibrium where high signal bidders pool.

4.2.1 Non-monotone Equilibria with Pooling: Pooling by Low Signal Players

Suppose that players with signal s ∈ [0, s∗) use a bidding strategy b(s) that decreases as

s increases. In addition, suppose players with signal [s∗, 1
2
] bid the pooling bid bp such

that bp < b(s) for all s < s and that players with signal s > 1
2
choose bPS(s) > b(0).

Like in the monotone equilibrium case, the bidders’ beliefs conditional on winning at

certain prices will affect the bidding behavior in equilibrium. The three critical beliefs are

the beliefs conditional on winning at own bid, and the the beliefs conditional on winning

at the pooling price.

Consider a bidder who bid above the pooling bid bp. He wins the object at his own

bid if one of the remaining bidders bid the same bid and the other bids something above.

Hence, the beliefs can be written as:

ρN (s) =

{

π(1−p)2(p+2(1−p)s)
(1−π)(1−q)2(q+2(1−q)s)

s ∈ [0, s̄)
πp3

(1−π)q3
s > 1

2

Similarly, if the bidder with signal s decides to pool, his beliefs conditional on winning

become:

ρpoolN (s, s∗) =
πf(s|R)(1− p)(2 + p+ 2(1− p)s∗)

(1− π)f(s|L)(1− q)(2 + q + 2(1− q)s∗)

Last, winning at the pooling bid after bidding any bid b > bp yields the beliefs of:

ρN (s, s
∗) =

πf(s|R)(1− p)(1 + p+ 2(1− p)s∗)

(1− π)f(s|L)(1− q)(1 + q + 2(1− q)s∗)

12



Observe that ρN (s) decreases in s under MLRP assumption. Hence, a (non-monotone)

bidding strategy that is decreasing on [0, s∗) is not possible unless ρN(s) > ρ∗. Also, note

that the beliefs ρN(s, s
∗) and ρpoolN (s, s∗) decrease as the cutoff signal s∗ increases (i.e.

as the pooling region widens), and that ρN (s, s
∗) ≥ ρpoolN (s, s∗) for all s∗ ≤ 1

2
with the

inequality holding strictly if s∗ < 1
2
.

Like in monotone equilibrium case, a player with low signal is willing to pool only if

u(ρpoolN (s ≤ 1
2
, s∗)) ≥ u(ρN(s ≤ 1

2
, s∗)) holds for some s∗ ∈ [0, 1

2
]. This inequality, in turn,

holds only if ρpoolN (s ≤ 1
2
, 1
2
) < ρ∗.

Suppose that ρpoolN (s ≤ 1
2
, 1
2
) < ρ∗ holds. Then, the behavior of the likelihood ratios

ρpoolN (·) and ρN (·) implies that I can always find the cutoff signal s∗ and a corresponding

pooling bid bpN(s
∗) such that any player with signal s ∈ [s∗, 1

2
] is indifferent between

pooling and deviating slightly above the pooling bid. Such pooling bid takes the form

bpN (s
∗) =

1

ρ̂(s∗) + 1
v(l, L) where ρ̂(s∗) =

π(1− p)2(1 + 2p+ 4(1− p)s∗)

(1− π)(1− q)2(1 + 2q + 4(1− q)s∗)

The method of calculation the lower bound is exactly same as the method used in the

monotone bidding strategy case.

Even though some players with low signal prefer to pool, the non-monotone bidding

strategy of interest may still fail to be an equilibrium bidding strategy. This can happen

when the pooling bid is too high to be less than the bid by a person with signal s∗.

Since the lower bound bp(s∗) is increasing in s∗ and the value u(ρN(·)) takes its highest

value around zero, the relation between these two functions around 0 will determine the

conditions that are necessary for the equilibrium existence. That is, to have a purely non-

monotone equilibrium, at least the bidders with signals around zero should bid something

higher than the pooling bid. The next proposition summarizes the results.

Proposition 4. Suppose that assumptions MLRP and VAL hold. If ρpoolN (s ≤ 1
2
, 1
2
) < ρ∗

and u(ρN(0)) > bpN (0) also hold, then there exists a cutoff signals 0 < s∗ < 1
2
such that

the equilibrium bidding strategy is:

b(s) =

{

bp ∀s ∈ [s∗, 1
2
]

u(ρN(s)) otherwise

Notice that the condition that ρpoolN (s ≤ 1
2
, 1
2
) < ρ∗ corresponds to the condition

ρ(0) < ρ∗ and that u(ρN(0)) > bpN (0) correspond to the monotone equilibrium condition

u(ρ(1
2
)) > bp(1

2
). In fact, there is a linear relation between the cutoff signals sc and s∗ that

can be represented as sc = 1
2
− s∗. This implies that without changing our conditions, we

can shift the pooling region from 0 to 1
2
. Since the conditions for the existence did not

change, the optimal choice of action also stays unchanged.

The following corollary demonstrates that such a non-monotone equilibrium is not

unique: if we preserve the width of the pooling region, then the pooling region can be
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shifted to any place provided that the upper bound of the pooling region does not exceed
1
2
.

Corollary 2. Let assumptions MLRP and VAL hold. Assume also that u(ρN(0)) > bpN (0).

Then, there exists an interval [s, s̄] with s > 0 and s̄ ≤ 1
2
such that, in equilibrium, players

with signal s ∈ [s, s̄] choose bp, and others use a non-monotone bidding strategy b(s) such

that b(s) > bp for all s /∈ [s, s̄]

Proof. See Appendix.

In a typical equilibrium where the bidders with low signal pool, winning at the pooling

bid must bear a strong signals towards state L. This is indeed the case as all the bidders

who win after bidding bp choose action l. In addition, winning at any other price is

an informative signal towards state R. Hence, the optimality of action r conditional on

winning at any price p > bp. Winning at the pooling price after bidding any bid above

bp still reveals information favouring state L, but the information hidden in price may be

too weak to offset the information that is coming from the private signal. The high signal

is too informative of the state R and hence the bidders with high signal choose action r

conditional on winning at the pooling price. In contrast, the bidders with low signal may

find both action r or l to be optimal conditional on bidding b > bp and winning at the

pooling price.

Like in the case of monotone equilibria, the pooling region can be shifted only in such

a way that it does not contain qualitatively different signals. That is, I still cannot make

the bidder with signal s > 1
2
pool at bp if some bidder with signal s ≤ 1

2
chooses to bid it.

The next corollary summarizes the results.

Corollary 3. In any non-monotone equilibrium with the pooling interval [s, s̄], if s < 1
2
,

then s̄ cannot exceed 1
2
.

Proof. See Appendix.

Figure 3 depicts the shape of a typical non-monotone equilibrium bidding function

when low signal players decide to pool.

The result of Corollary 3 is quite intuitive. Notice that a bidder who bids bp (say,

bidder 1) can win the object only when at least one more bidder chose bp. If the pooling

region contains only low signals, then bidder 1 is certain that the other bidder who bid bp

received low signal. Knowing the quality of the other bidder’s signal reveals strong enough

information to offset (or reinforce) the information that is coming from the private signal.

In contrast, when the pooling region contains qualitatively different signals, the bidder

who bid bp is not totally certain about the quality of the other pooler’s signal: bidder 1

only knows that the signal of other pooler is high with some probability that is strictly

less than 1. Hence, the information that is coming from winning after bidding bp is not

strong enough for the bidders with qualitatively different signals to disregard their own

private signals and pool at some bid bp.

14
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Figure 3: A typical non-monotone equilibrium bidding function with low signal players pooling.

4.2.2 Non-monotone Equilibria with Pooling: Pooling by High Signal Players

Since qualitatively different signals cannot be in the pooling region at the same time, the

only type of the non-monotone bidding strategy left to analyze is the bidding strategy

where only players with high signals pool.

Consider a non-monotone bidding strategy that takes the following form: the players

with signals s ∈ (1
2
, s̄] bid bp whereas the others bid b(s) > bp; b(s) is increasing on (s̄, 1]

and is non-increasing on [0, 1
2
] and satisfies b(1

2
) ≥ b(1). Figure 4 depicts the bidding

strategy.

Let ρNh (s) denote the beliefs of a player with signal s conditional on winning at his

own price b(s) > bp. These beliefs can be written as:

ρNh (s) =







π(f(s|R))2F (s|R)
(1−π)(f(s|L))2F (s|L)

if s ≤ 1
2

π(f(s|R))2(1−F (s|R)+F ( 1
2
|R))

(1−π)(f(s|L))2(1−F (s|L)+F ( 1
2
|L))

if s > s̄

Using the definition of F (·), I can re-write the beliefs as:

ρNh (s) =

{

π(1−p)3

(1−π)(1−q)3
if s ≤ 1

2
πp2(1−p(2s−1))

(1−π)q2(1−q(2s−1))
if s > s̄

Similarly, let ρpoolh (s, s̄) denote the beliefs of winning the object after bidding the

pooling bid and ρh(s, s̄) denote the beliefs of winning at the pooling price after deviating

slightly above the pooling bid. I can write these beliefs as:

ρpoolh (s, s̄) =
πf(s|R)p(3− p(2s̄− 1))

(1− π)f(s|L)q(3− q(2s̄− 1))

ρh(s, s̄) =
πf(s|R)p(2− p(2s̄− 1))

(1− π)f(s|L)q(2− q(2s̄− 1))
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Figure 4: A typical non-monotone equilibrium bidding function with high signal players pooling.

MLRP assumption implies that ρh(s, s̄) < ρpoolh (s, s̄) for any cutoff signal s̄ > 1
2
and

that both beliefs decrease as the cutoff signal s̄ increases. This implies that an equilibrium

is not possible unless ρpoolh (s > 1
2
, s̄) > ρ∗. MLRP also implies that ρNh (s̄) < ρh(s > 1

2
, s̄).

Note also that ρNh (s) decreases in s and hence, ρNh (s̄) < ρ∗ must hold in equilibrium to

preserve non-monotonicity of the bidding strategy.

Since ρpoolh (s > 1
2
, s̄) is decreasing in the cutoff signal s̄, the belief’s value in the neigh-

bourhood of 1
2
will determine if the pooling behavior in the non-monotone equilibrium is

possible. Since the function is continuous in s̄, its limit as s̄ converges to 1
2
is well defined.

Let ρ+(1
2
) denote the function’s limit point. It is easy to demonstrate that this limit point

is

ρ+(
1

2
) =

πp2

(1− π)q2

The pooling behavior is not sustainable in equilibrium unless ρ+(1
2
) > ρ∗. If ρ+(1

2
) > ρ∗,

then ρpoolh (s > 1
2
, s̄) > ρ∗ for any s̄ ∈ Bǫ(

1
2
). The same holds for ρh(s > 1

2
, s̄) because

these beliefs converge to the same limit point as s̄ approaches 1
2
. Hence, MLRP implies

that u(ρh(s > 1
2
, s̄)) < u(ρpoolh (s > 1

2
, s̄)) for any s̄ ∈ Bǫ(

1
2
). This, in turn, implies that,

given any cutoff signal s̄ in the neighbourhood of 1
2
, there exist a corresponding pooling

bid bp(s̄) that makes the players with signal s ∈ (1
2
, s̄] indifferent between pooling and

deviating slightly above. This pooling bid can be written as:

bph(s̄) =
ρ̄(s̄)

ρ̄(s̄) + 1
v(r, R) where ρ̄(s̄) =

πp2(3− 2p(2s̄− 1))

(1− π)q2(3− 2q(2s̄− 1))

This pooling bid is a lower bound for the pooling bid for any s̄ such that ρh(s >
1
2
, s̄) >

ρ∗. To preserve pure non-monotonicity of the bidding strategy, the cutoff signal s̄ must

be strictly less than 1 (as otherwise we could re-order the signals and end up with the

bidding strategy defined in part (b) of Proposition 3). The cutoff signal is less than one

only if the bidders with signals 1 find it optimal to bid some bid b(1) > bp. Hence the
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behavior of the bidder with signal 1 will determine if purely non-monotone equilibrium is

possible. The following proposition summarizes the results.

Proposition 5. Let assumptions MLRP and VAL hold. Assume also that u(ρNh (1)) >

bph(1) and ρ+(1
2
) > ρ∗. Then, there exists a cutoff signal s̄ ∈ (1

2
, 1) such that the equilibrium

bidding strategy is:

b(s) =

{

bp s ∈ (1
2
, s̄]

u(ρNh (s)) ≥ bp otherwise

Proof. See Appendix.

Condition ρ+(1
2
) > ρ∗ guarantees that the pooling behavior occurs in equilibrium

whereas condition u(ρNh (1)) > bph(1) guarantees that not all bidders with high signal

pool: some bidders with high signal choose to bid above bp in equilibrium. Intuitively, the

winning after pooling reveals a strong signal in favour of state R (because only bidders with

high signals pool and high signal is more probable in R); our condition u(ρNh (1)) > bph(1)

thus puts a limit on how informative pooling can be. If the pooling reveals a very strong

information in favour of state R, then all the bidders with high signal will want to pool.

Our condition u(ρNh (1)) > bph(1) thus guarantees that some bidders with high signal find

their signal more informative than the pooling bid.

Since the beliefs of the non-poolers must be less than ρ∗ in equilibrium, each player

who wins the object at any price other than the pooling bid must choose action l after

winning the object. The players who pool choose action r conditional on winning the

object. The optimal choice of action after bidding some bid b > bp and winning at the

pooling price depends on the values of the cutoff signal s̄. If the equilibrium cutoff signal

is such that ρh(s, s̄) < ρ∗, then the player chooses action l; otherwise, she chooses action

r. Note that both cases are possible for different model parameters (i.e. π,p, q, and ρ∗

combination) that satisfy the necessary conditions described in proposition 5.

The two types of the non-monotone equilibria are purely non-monotone in the sense

that the equilibrium bidding strategies cannot be converted to the monotone strategies

by re-ordering the players’ signals. Also, the non-monotone equilibrium that is described

in proposition 5 is an image of the bidding strategy given in proposition 4. To be more

precise, if I flip the bidding strategy described in proposition 4 with respect to the s =
1
2
point, I will get a function that behaves symmetrically as the bidding strategy in

proposition 5. This implies that the results similar to those in corollary 2 are also present

in the case when high signal players pool. The following corollary summarizes the results.

Corollary 4. Let assumptions MLRP and VAL hold. Assume also that u(ρNh (1)) > bph(1)

and ρ+(1
2
) > ρ∗. Then, there exists an interval [s, s̄] with s > 1

2
such that, in equilibrium,

players with signal s ∈ [s, s̄] choose bp, and others use a non-monotone bidding strategy

b(s) such that b(s) > bp for all s /∈ [s, s̄].
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The proof of this corollary is similar to the proof of corollary 2 and stems from the

fact that all beliefs stay the same if the width of the pooling region is preserved.

4.3 Comparison of Equilibria

The existence of different classes of monotone and non-monotone equilibria raises ques-

tions about their possibility to co-exist under various model parameters. That is, which

equilibria can survive at the same time (for the same parameters) is an important ques-

tion to ask. Such an inference is the most straightforward if I compare the beliefs that

come from the conditions of the existence of various equilibria. A comparison of ρ(0),

ρ(s > 1
2
, sc = 1

2
), ρ̃(sc = 1

2
) (coming from low signal player pooling case), ρ+(1

2
), ρNh (1) and

ρ̄(s̄ = 1) (coming from conditions of high signal player pooling equilibria) will demonstrate

the relation between different classes of equilibria. The relation between these beliefs can

be summarized as follows:

ρ+(
1

2
) > ρ̄(s̄ = 1) > ρNh (1) > ρ(s >

1

2
, sc =

1

2
) > ρ̃(sc =

1

2
) > ρ(0)

The sustainability of a particular equilibrium bidding strategy depends on where ρ∗ enters

this sequence of inequalities.

Suppose that ρ(0) > ρ∗. Then, there exists a monotone equilibrium with bidding

function that is strictly increasing around 0. Note that ρ(0) > ρ∗ immediately implies

that ρNh (1) > ρ∗ and hence u(ρNh (1)) > bph(1) is never satisfied. That is the pooling bid is

too high to make the person with signal 1 be willing to bid anything above the pooling

bid.

Now, suppose that there exists a monotone equilibrium where the players with low

signal pool. Since ρ(s > 1
2
, sc = 1

2
) > ρ̃(sc = 1

2
), a necessary condition for such an

equilibrium is that ρ(s > 1
2
, sc = 1

2
) > ρ∗ (as otherwise we cannot make the high signal

players bid anything above the pooling bid). But then, ρNh (1) > ρ∗ also holds implying

that u(ρNh (1)) < bph(1) for any parameters that are compatible with monotone equilibrium.

Therefore, the non-monotone equilibrium with high signal players pooling cannot exist

if a monotone equilibrium exists. Similarly, the two classes of non-monotone equilibria

(with high signal and low signal players pooling) cannot exist at the same time. This

implies that for some (π, p, q, ρ∗) combination that satisfies MLRP and VAL assumptions

the only equilibrium of the model is the non-monotone equilibrium.

5 Conclusion

In this thesis, I analyze a small common value auction where there are three participants

and two objects to be sold. I analyze a discrete signal two-unit uniform-price auction

where each participant receives either high or low signal. I find all the monotone and

non-monotone equilibria of the model. In particular, I derive the necessary and sufficient
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conditions for an existence of a monotone equilibrium. In addition, I demonstrate that if

a monotone equilibrium exists, then a non-monotone equilibrium should also exist. The

non-monotone equilibria that I derive are of two types: the one where the players with

low signal players pool and the other with high signal players pooling. I demonstrate

that the two types of non-monotone equilibria cannot co-exist at the same time leading

to the conclusion that the model can have only non-monotone equilibria. In addition,

I demonstrate that bidders with qualitatively different signals cannot pool at the same

bid in any monotone or non-monotone equilibrium. Such a result occurs because, once

the bidders with different signals pool, the information that is coming from the pooling

bid is diluted and hence is not precise enough to offset the information that is coming

from the bidder’s private signal. Another peculiar result is that an existence of any

equilibrium of the model implies that there are infinitely many equilibria. However, many

equilibria require exactly same conditions for their existence and therefore cannot lead to

qualitatively different results in terms of features of the auction.

A Appendix

Proof of Proposition 1.

Existence of the cutoff signal for any pooling equilibrium

Fix a monotone equilibrium. Suppose that the equilibrium bidding strategy b(s) is

strictly increasing around s = 0. Then conditional on winning (or losing) at his own bid,

the player with signal s ∈ Bǫ(0) has the beliefs of the form:

ρ(s) =
π(f(s|R))2(1− F (s|R))

(1− π)(f(s|L))2(1− F (s|L))

Since we consider signals s ∈ Bǫ(0), the beliefs can be written as:

ρ(s) =
π(1− p)2(1− 2(1− p)s)

(1− π)(1− q)2(1− 2(1− q)s)

Note that ρ(s) is increasing in s and that ρ(0) = π(1−p)2

(1−π)(1−q)2
. If ρ(0) > ρ∗, the value

function u(ρ(s)) increases in s and all players choose the same action. Hence, the setting

are exactly same as in Pesendorfer and Swinkels (1997). There exists a unique monotone

equilibrium where types bid using the PS type bidding function. But then, there is a

cutoff signal sc = 0 that satisfies our strategy description.

If ρ(0) < ρ∗, then the equilibrium bidding strategy cannot be strictly increasing around

0. To see that, assume for a contradiction that a monotone bidding strategy b(s) is

increasing around 0. We know that the beliefs of a player with signal s conditional on

winning at his own bid increase in s; the fact that ρ(0) < ρ∗ implies that the value

function u(ρ(s)) is decreasing in signal around s = 0. That is u(ρ(0)) > u(ρ(s)) for any

s ∈ Bǫ(0). Also, individual rationality implies that u(ρ(s|s ∈ Bǫ(0))) ≥ b(s) must hold (as
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otherwise the player receives negative profit and has an incentive to deviate to 0). Hence,

conditional on losing at his own bid, the player with signal 0 has an expected value of

u(ρ(0)) > b(0). So, the player with signal 0 has a profitable deviation. This implies that

if ρ(0) < ρ∗ holds, the players with signals around 0 must submit the same bid in any

monotone equilibrium. This, in turn, implies that there is a cutoff signal sc such that

players with signal s ∈ [0, sc] choose the same bid bp.

The cutoff signal sc must be bounded away from 1. To see this, assume for a contra-

diction that sc = 1 in a monotone equilibrium. But then, winning the auction does not

reveal any information and hence posterior beliefs stay unchanged. MLRP assumption

then implies that u(ρ(s > 1
2
)) 6= u(ρ(s ≤ 1

2
)) and so, no matter what the bid is, at least

one player would have a profitable deviation from that bid. A contradiction. Thus, sc < 1

in any monotone equilibrium.

A condition that sc implies that there are players with signal s > sc who choose a

bid that is different from bp. Consider this player with signal s > sc. If he chooses

any bid b < bPS(s), then conditional on winning at his own bid, his expected profit is

positive. Hence, this player has a profitable deviation to avoid a tie. This contradicts

to our assumption of equilibrium behavior. Similarly, if b > bPS(s), then the player has

a negative profit if he wins when his bid is pivotal and hence has a profitable deviation.

Therefore, the only bid that a player with signal s > sc can submit in any monotone

equilibrium is bPS(s).

Cutoff signal cannot exceed 1
2

We now show that sc cannot exceed 1
2
. Assume for a contradiction that there exists

sc > 1
2
such that in a monotone equilibrium the players with signals in [0, sc] pool at bp

and the players with signals in (sc, 1] use the PS bidding strategy.

Consider a person with signal s ≤ sc. Conditional on winning after bidding bp, his

beliefs are:

ρpool(s, sc) =
πf(s|R)(2

3
(F (sc|R))2 + F (sc|R)(1− F (sc|R))

(1− π)f(s|L)(2
3
(F (sc|L))2 + F (sc|L)(1− F (sc|L))

=
πf(s|R)F (sc|R)(3− F (sc|R))

(1− π)f(s|L)F (sc|L)(3− F (sc|L))

If he bids slightly above the pooling bid, his beliefs are:

ρ(s, sc) =
πf(s|R)((F (sc|R))2 + 2F (sc|R)(1− F (sc|R))

(1− π)f(s|L)((F (sc|L))2 + 2F (sc|L)(1− F (sc|L))

=
πf(s|R)F (sc|R)(2− F (sc|R))

(1− π)f(s|L)F (sc|L)(2− F (sc|L))

Our assumption that sc > 1
2
implies that F (sc|R) = 1 − 2p(1 − sc). We can thus
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re-write the beliefs as:

ρpool(s, sc) =
πf(s|R)(1− 2p(1− sc))(2 + 2p(1− sc))

(1− π)f(s|L)(1− 2q(1− sc))(2 + 2q(1− sc))

ρ(s, sc) =
πf(s|R)(1− 2p(1− sc))(1 + 2p(1− sc))

(1− π)f(s|L)(1− 2q(1− sc))(1 + 2q(1− sc))

If ρpool(s, sc) > ρ∗, then u(ρpool(s, sc)) < u(ρ(s, sc)) which violates our assumption

of equilibrium existence. So, ρpool(s, sc) < ρ∗ must hold in an equilibrium where sc >
1
2
. Individual rationality of a player with signal sc implies that in equilibrium, bp ≤

u(ρpool(s, sc)) must be satisfied.

In addition, a player with signal s ≤ 1
2
must have no incentive to deviate from bp. To

derive the conditions for which a player with low signal has no incentive to deviate, define

the profit from bidding bp as

Π(bp, s) = Pr(L|s) Pr(win, bid bp, p = bp|L)(v(l, L)− bp)

+ Pr(R|s) Pr(win, bid bp, p = bp|R)(v(l, R)− bp)

=
1

3

(

(1− π)(1− q)(1− 2q(1− sc))(2 + 2q(1− sc))(v(l, L)− bp)

− π(1− p)(1− 2p(1− sc))(2 + 2p(1− sc))bp
)

1

π(1− p) + (1− π)(1− q)

Because ρpool(s > 1
2
, sc) < ρ∗ in equilibrium and because ρ(s ≤ 1

2
, sc) < ρpool(s > 1

2
, sc)

under MLRP assumption, any player with signal s ≤ 1
2
chooses action l conditional on

winning at the pooling bid even if he bids anything above bp. Hence, we can write the

profit from deviating slightly above bp as

Π(bp + ǫ, s) = Pr(L|s) Pr(win, bid bp + ǫ, p = bp|L)(v(l, L)− bp)

+ Pr(R|s) Pr(win, bid bp + ǫ, p = bp|R)(v(l, R)− bp)

=

(

(1− π)(1− q)(1− 2q(1− sc))(1 + 2q(1− sc))(v(l, L)− bp)

− π(1− p)(1− 2p(1− sc))(1 + 2p(1− sc))bp
)

1

π(1− p) + (1− π)(1− q)

A condition that Π(bp, l) ≥ Π(bp + ǫ, l) gives the lower bound for bp that makes a

person with signal s ≤ 1
2
not willing to deviate from bp. The pooling bid must be at least

as low as bp(sc) which is set such that Π(bp + ǫ, s) = Π(bp, s) is satisfied and is given as:

bp(sc) =
1

ρ̃(sc) + 1
v(l, L) where ρ̃(sc) =

π(1− p)(1− 2p(1− sc))(1 + 4p(1− sc))

(1− π)(1− q)(1− 2q(1− sc))(1 + 4q(1− sc))

But then MLRP implies that bp(sc) > u(ρpool(sc, sc)) which violates individual ra-

tionality of the player with signal sc and hence violates our assumption of equilibrium

behavior. So, sc ≤ 1
2
.
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Proof of Corollary 1.

From proposition 1, we know that sc ≤ 1
2
in any monotone equilibrium. Hence, a player

with signal s > 1
2
must bid bPS > bp. The definition of the PS bidding strategy implies

that bPS(s) = u(ρ(s)) where ρ(s) are the player’s beliefs conditional on winning at his

own bid. We can write the beliefs as:

ρ(s) =
π(f(s|R))2(1− F (s|R))

(1− π)(f(s|L))2(1− F (s|L))

Since we focus on s > 1
2
, we know that F (s|R) = 1 − 2p(1 − s) and f(s|R) = 2p for

any s > 1
2
. Hence, the beliefs can be re-written as:

ρ(s) =
πp3(1− s)

(1− π)q3(1− s)
=

πp3

(1− π)q3

These beliefs are independent of the signal s. Thus, the bid bPS(s) is same for any

signal s > 1
2
. Last, the fact that u(ρ(s)) must be non-decreasing in signals and that

ρ(s > 1
2
) > ρ(sc) implies that ρ(s > 1

2
) > ρ∗. Thus bPS(s) = πp3

πp3+(1−π)q3
v(r, R).

Proof of Proposition 2.

Suppose that ρ(0) ≥ ρ∗ is satisfied. Since ρpool(s ≤ 1
2
, 0) = ρ(0), we conclude that

ρ(s, sc) > ρpool(s, sc) > ρ∗ for any sc > 0. This, in turn, implies that u(ρ(s, sc)) >

u(ρpool(s, sc)) for any sc > 0. If condition u(ρ(s, sc)) > u(ρpool(s, sc)) holds, then by

deviating from the pooling bid, a player increases his payoff (value minus price) and his

chances of winning the object. That is, he increases his expected profit if bids slightly

above the pooling bid. Hence, a player with signal s < sc will never want to pool. So,

sc = 0.

We now need to show that none of the players has a profitable deviation from the

Pesendorfer-Swinkels bidding strategy. Consider a person with signal s ≤ 1
2
. If he bids

bPS(s), conditional on winning at his own bid, the beliefs of the player are:

ρ(s) =
π(1− p)2(1− 2(1− p)s)

(1− π)(1− q)2(1− 2(1− q)s)

He receives a zero profit if wins when the price is equal his own bid. Similarly, winning

at any price p < bPS(s) yields a profit of zero because of the signals being discrete (that

is, because the signals s ≤ 1
2
reveal exactly same information). So, there is no incentive

to deviate below bPS(s). If the player mimics any person with signal 1
2
≥ s′ > s, he again

has an expected profit of zero conditional on winning at his bid. This is so because the

beliefs conditional on winning when the price is bPS(s′) is:

ρ(s, p = bPS(s′)) =
π(f(s′|R))2(1− F (s′|R))

(1− π)(f(s′|L))2(1− F (s′|L))
=

π(1− p)2(1− 2(1− p)s′)

(1− π)(1− q)2(1− 2(1− q)s′)

Note that ρ(s, p = bPS(s′)) = ρ(s′) and hence u(ρ(s, p = bPS(s′))) = u(ρ(s′)) = bPS(s′).
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Hence, deviation to any low signal player’s bid does not increase profit.

If the player deviates to bPS(s > 1
2
) (i.e. if mimics the player with high signal), then

his beliefs conditional on winning at the price bPS(s > 1
2
) are:

ρ(s, p = bPS(s >
1

2
)) =

πp2(1− p)

(1− π)q2(1− q)

From corollary 1, we know that bPS(s > 1
2
) = u(ρ(s > 1

2
)) where ρ(s > 1

2
) = πp3

(1−π)q3
.

But then, MLRP and assumption that ρ(0) ≥ ρ∗ implies that u(ρ(s, p = bPS(s > 1
2
))) <

bPS(s > 1
2
). Hence, a player with signal s ≤ 1

2
has no incentive to mimic a player with

high signal.

Consider the player with signal s > 1
2
. He has no incentive to deviate above his

bid because, by doing so, he only increases his chances to win an object at the price

p = bPS(s > 1
2
). Winning at the price p = bPS(s > 1

2
) yields the profit of 0 and hence this

deviation does not affect the expected profit of the player with signal s > 1
2
.

If he deviates to b = bPS(s′) where s′ ≤ 1
2
(i.e. if mimics any player with low signal),

then conditional on losing (as well as winning) at this bid, his beliefs are

ρdev(s >
1

2
) =

πp(1− p)(1− 2(1− p)s′)

(1− π)q(1− q)(1− 2(1− q)s′)

MLRP and the fact that ρ(0) ≥ ρ∗ implies that u(ρdev(s > 1
2
)) > u(ρ(s′)) = bPS(s′). So,

the player with high signal has a profitable deviation from any b 6= bPS(s > 1
2
).

Hence, if ρ(0) ≥ ρ∗, there indeed is a unique monotone equilibrium.

Proof of Proposition 3.

Proof of part (a)

Part (a) follows immediately: the pooling bid that makes the players with low signal to

pool is too high to satisfy individual rationality of a person with high signal. Conditional

on winning at the pooling price, the player with high signal has a value of u(ρ(s > 1
2
, sc)).

If u(ρ(s > 1
2
, 1
2
)) < bp(1

2
) holds, then u(ρ(s > 1

2
, sc)) < bp(sc) holds for any sc < 1

2
. The

condition If u(ρ(s > 1
2
, 1
2
)) < bp(1

2
) also implies that all the players with low signal choose

the pooling bid. Therefore, the auction price is either bPS(s > 1
2
) or bp. Winning at

the price p = bPS(s > 1
2
) yields a payoff of zero. Since the player with high signal loses

money at the pooling price, his expected profit is negative. So, the high signal bidder has

a profitable deviation to zero.

Proof of part (b)

If u(ρ(s > 1
2
, 1
2
)) ≥ bp(1

2
) ≥ u(ρ(s = 1

2
)) holds, then ρ(0) < ρ∗ must also hold.

In addition, the only class of equilibria possible is the one where all players with low

signal pool. This result stems from the fact that bp(1
2
) ≥ u(ρ(s = 1

2
)) implies that

the player with signal s ≤ 1
2
cannot bid anything greater than the pooling bid and get

a non-negative profit conditional on winning at his own bid. Therefore, sc = 1
2
must
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hold in equilibrium. Also, bp(1
2
) ≥ u(ρ(s = 1

2
)) can hold only if ρ(s ≤ 1

2
, 1
2
) < ρ∗.

But then, since ρpool(s, sc) < ρ(s, sc) for any cutoff signal sc > 0, we conclude that

u(ρpool(s ≤ 1
2
, 1
2
)) > u(ρ(s ≤ 1

2
, 1
2
)). Therefore, we can find a pooling bid bp such that

pooling is more profitable than deviating slightly above bp. Since we are in ρ(s ≤ 1
2
, 1
2
) < ρ∗

case, the lower bound that is compatible with the pooling behavior by all low signal players

is by construction equal to bp(1
2
). Hence, for any pooling bid bp ∈ [bp(1

2
), u(ρpool(s ≤ 1

2
, 1
2
))],

the optimal strategy for the low signal players is to choose bp.

Consider the bidder with signal s > 1
2
. Since ρ(s > 1

2
, 1
2
) > ρ̃(1

2
), the condition

u(ρ(s > 1
2
, 1
2
)) ≥ bp(1

2
) holds only if ρ(s > 1

2
, 1
2
) > ρ∗. Since ρ(s > 1

2
, 1
2
) < ρ(s > 1

2
) by

MLRP assumption, we conclude that bPS(s > 1
2
) = u(ρ(s > 1

2
)) > bp(1

2
). Therefore, there

are values for the pooling bid that are compatible with the PS bidding strategy that high

signal players use in equilibrium. Also, u(ρ(s > 1
2
, 1
2
)) ≥ bp(1

2
) implies that we can find bp

such that the high signal players receive non-negative profits if they use the PS bidding

strategy. In fact, for any bp that satisfies bp ≤ u(ρ(s > 1
2
, 1
2
)), bidders with high signals

do not want to deviate to zero.

We now demonstrate that the high signal bidder have no incentive to deviate to any

bid outside bPS(·). If the bidder deviates slightly above, then he only increases the odds

of winning the object at the price p = bPS(s > 1
2
). Since winning at this price yields a

payoff of zero, such a deviation is not profitable. Similarly deviating to any bid b > bp

does not increase the expected profit.

Suppose that the bidder with signal s > 1
2
pools. Then, conditional on winning the

object, his beliefs are ρpool(s > 1
2
, 1
2
). MLRP implies that ρpool(s > 1

2
, 1
2
) > ρ̃(1

2
). This, in

turn, implies that u(ρpool(s > 1
2
, 1
2
)) < u(ρ(s > 1

2
, 1
2
)). Hence, the bidder with high signal

always has an incentive to deviate from the pooling bid.

Therefore, if we choose the pooling bid bp such that bp(1
2
) ≤ bp ≤ min{u(ρ(s >

1
2
, 1
2
)), u(ρpool(s ≤ 1

2
, 1
2
))}, then none of the players has an incentive to deviate from his

bid. The fact that such bp may take different values implies that the model may have

infinitely many equilibria.

Proof of part (c)

Suppose that u(ρ(s = 1
2
)) > bp(1

2
) holds. Since ρ(s) > ρ̃(sc) for any 1

2
≥ s > sc, and

since ρ(0) = ρ̃(0) < ρ∗, we can conclude that u(ρ(s)) < bp(sc) for any s = sc ∈ Bǫ(0).

This implies that there exists ŝ < 1
2
such that u(ρ(ŝ)) = bp(ŝ). Notice that ρ(ŝ) > ρ∗

must hold for such equality to happen.

Set sc = ŝ. Then, if we choose the pooling bid such that bp = bp(ŝ), the players with

signals s ≤ sc will be indifferent between bidding bp and deviating slightly above.

Consider a person with signal s ≤ 1
2
. If he wins at any price b(s′) such that bp < b(s′) <

b(s > 1
2
), his beliefs, denoted as ρ(s, p = b(s′)), coincide with ρ(s′). This happens because

of the discreteness of our signals. Therefore, u(ρ(s, p = b(s′))) = b(s′) = u(ρ(s′)) meaning

that the low signal player gets a profit of 0 if he wins at any price that is higher than the

pooling price. This immediately implies the bidder with signal s > sc has no incentive
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to deviate to the other low signal player’s bid. Also, notice that if any player with signal

s > sc wins at the pooling price, his beliefs are equal to ρ(s, sc). Discreteness of the

signals imply that ρ(s, sc) = ρ(s′, sc) for any s, s′ ≤ 1
2
. Thus, our method of calculation of

the pooling bid bp(ŝ) immediately implies that none of the players with signal 1
2
≥ s > sc

have an incentive to pool. None of the bidders with low signal has an incentive to mimic

his own type.

Mimicking any bidder with high signal is not profitable either. To see this, suppose

that the bidder with signal s ≤ 1
2
bids bPS(s > 1

2
). Conditional on winning at this bid,

the player’s beliefs become ρ(s, p = bPS(s > 1
2
)) = πp2(1−p)

(1−π)q2(1−q)
> ρ(ŝ) > ρ∗. But then,

u(ρ(s, p = bPS(s > 1
2
))) < bPS(s > 1

2
) meaning that the player loses money if deviates to

bPS(s > 1
2
). Hence, none of the players with low signal has an incentive to mimic the high

signal player. Thus, the low signal players do not want to deviate from their bids.

Last, the players with signal s > 1
2
have no incentive to deviate from their bids,

either. Deviating slightly above bPS(s) leaves the expected profit unchanged; deviating

to the pooling bid, on the other hand, makes the player worse off. This is so because

ρ(s > 1
2
, sc) > ρ(s ≤ 1

2
) > ρ∗ for any (s, sc) pair and because ρpool(s > 1

2
, sc) > ρ̃(sc) for

any sc < 1
2
that is consistent with monotonicity of the bidding function (i.e. for any sc

such that u(ρ(sc)) > bp(sc) is satisfied). So, no matter what the position of ρpool(s > 1
2
, sc)

relative to ρ∗ is, it is always the case that u(ρpool(s > 1
2
, sc)) < u(ρ(s > 1

2
, sc)). So, bidding

above the pooling bid is profitable for any player with high signal.

Similarly, if the high signal player mimics the player with signal 1
2
≥ s′ > sc (i.e. if

bids b(s′)), then his beliefs conditional on losing at his own bid are ρ(s, p = b(s′)). It

is easy to show that MLRP implies that ρ(s, p = b(s′)) > ρ(s′). Since ρ(s) > ρ∗ for all

s > sc, we conclude that u(ρ(s, p = b(s′))) > u(ρ(s′)) = p. So, the player is better of if he

bids above b(s′) and avoids losing at this price. Since this holds for an arbitrary s′, this

result holds for any s′ ≤ 1
2
. Hence, the high signal player has no incentive to deviate form

his bid.

Proof of Proposition 4.

Let assumptions MLRP and VAL and condition u(ρN(0)) > bpN (0) hold. Note that

ρN(s
∗) > ρN(s, s

∗) > ρpoolN (s, s∗) for any s ≤ 1
2
and s∗ < 1

2
. Since ρN(

1
2
) = ρN (s,

1
2
) =

ρpoolN (s, 1
2
) < ρ∗, we can conclude that u(ρN(s)) < bpN (s) for any s ∈ Bǫ(

1
2
). Continuity of

the value function u(·) and the lower bound bp(·) implies that the exists a signal ŝ < 1
2

such that u(ρN(ŝ)) = bpN (ŝ). This equality is possible only if ρN (ŝ) > ρ∗ > ρ̂(ŝ).

Let s∗ = ŝ. If we set bp = bpN(ŝ), then none of the players with signal s ≤ s∗ has an

incentive to deviate slightly above the pooling bid. Similarly, they have no incentive to

mimic any player with low signal. The discreteness of the signals implies that if the bidder

mimics any player with signal 1
2
≥ s′ > ŝ and wins at the price p = b(s′), his beliefs are

same as the beliefs of the bidder with signal s′. That is ρ(s, p = b(s′)) = ρN(s
′). Hence,

u(ρ(s, p = b(s′))) = b(s′). Similarly, since ρN (s, ŝ) = ρN (s
′, ŝ) for any s, s′ ≤ 1

2
, we

conclude that the choice of bp such that bp = bp(ŝ) implies that any player who pools has
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no incentive to deviate from the pooling bid. By the same logic, none of the bidders with

signal 1
2
≥ s > ŝ has an incentive to pool.

If the low signal bidder deviates to b(s > 1
2
) and wins at this bid, his beliefs are:

ρ(s, p = b(s >
1

2
)) =

πp2(1− p)

(1− π)q2(1− p)

MLRP assumption implies that ρN (ŝ) < ρ(s, p = b(s > 1
2
)) < ρN(s > 1

2
). Since

ρN(ŝ) > ρ∗, we conclude that u(ρ(s, p = b(s > 1
2
))) < u(ρN(s > 1

2
)) = b(s > 1

2
).

Therefore, the low signal bidder loses money if mimics any player with high signal. Hence

none of the players with low signal has a profitable deviation form his bid.

The players with high signals have no incentive to deviate, either. To see this, note

that deviating slightly above increases the chances of winning the object at the own

price. Since winning at the own bid yields the payoff of zero, such deviation is not

profitable. Also, the high signal players receive a positive payoff if the price is equal to

the low signal player’s bid. Hence, the high signal player will always want to bid above

b(s ≤ 1
2
) to avoid losing at such price. Similarly, winning at the pooling price yields a

positive payoff. To see this, note that ρN(s
∗) < ρpoolN (s > 1

2
, s∗) < ρN (s > 1

2
, s∗) for any

s∗ ∈ (0, 1
2
]. We know that ρN(ŝ) > ρ∗ must hold in equilibrium. Hence, we get that

u(ρN(ŝ)) < u(ρpoolN (s > 1
2
, ŝ)) < u(ρN(s > 1

2
, ŝ)) and non-monotonicity of the bidding

strategy implies u(ρN(s
∗)) ≥ bp. Hence, the player with signal s > 1

2
always receives

strictly positive profit conditional on winning at the pooling bid. Hence, no incentive to

deviate to zero. The fact that u(ρpoolN (s > 1
2
, ŝ)) < u(ρN(s > 1

2
, ŝ)), in turn, implies that

pooling is not profitable when the cutoff signal is ŝ. Hence, the player with high signal

has no incentive to deviate from his bid.

Proof of Corollary 2.

The result follows from proposition 4. To see this, note that assumptions MLRP and VAL

together with the condition u(ρN(0)) > bpN(0) implies that there exists a non-monotone

equilibrium where the pooling occurs in the [s∗, 1
2
] interval.

Now suppose that there is pooling in the [s, s̄] interval. In addition, suppose that the

bidders with signals s ∈ [0, s) use a decreasing bidding strategy whereas the bidders with

signals s ∈ (s̄, 1
2
] use an increasing bidding function. Suppose also that b(1

2
≥ s > s̄) ≤

b(0). The high signal bidders again use the PS bidding strategy. The critical cases that

affects the optimality of such bidding strategy are when: a) bidders win when the price

is equal to their own bid; b) when they bid b > bp and win at the pooling price; and c)

when the bidders pool and win. Let ρ̃N(s) denote the beliefs of a player with signal s < 1
2

conditional on winning at own bid, ρ̃poolN (s) denote the beliefs conditional on winning the

auction after bidding bp, and ρ̃devN (s) denote the beliefs conditional bidding any b > bp and
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winning the object at the pooling price. We can write these beliefs as:

ρ̃N (s) =

{

π(1−p)2(p+2(1−p)s)
(1−π)(1−q)2(p+2(1−q)s)

if s < s
π(1−p)2(1−2(1−p)(s−s))

(1−π)(1−q)2(1−2(1−q)(s−s))
if s ∈ (s̄, 1

2
]

ρ̃poolN (s) =
π(1− p)2(3− 2(1− p)(s̄− s))

(1− π)(1− q)2(3− 2(1− q)(s̄− s))

ρ̃devN (s) =
π(1− p)2(2− 2(1− p)(s̄− s))

(1− π)(1− q)2(2− 2(1− q)(s̄− s))

Notice that ρ̃N (s) is decreasing is s on the [0, s] region and is increasing on [s̄, 1
2
].

Also, ρ̃N (s) is minimized when s = s̄. Hence, the condition for such an equilibrium is

that ρ̃N(s̄) > ρ∗.

We require that the pooling bid that is compatible with the pooling behavior is also

compatible with the behavior of the players who bid above bp. In particular, we require

that b(s̄) ≥ bp. But this condition always holds under the assumptions that we impose.

This is so because ρ̃poolN (s) = ρpoolN (s, s∗), ρ̃devN (s) = ρN(s, s
∗), and ρ̃N(s|s > s̄) = ρN(s)

if 1
2
− s∗ = s̄ − s. That is, the beliefs coincide if the pooling interval stays the same.

Hence, an existence of a non-monotone equilibrium with the pooling in the [s∗, 1
2
] interval

implies that there exists an equilibrium where the pooling occurs on the interval [s, s̄]

where s 6= s∗ and s̄ < 1
2
.

Proof of Corollary 3.

Suppose for a contradiction that there exists a non-monotone equilibrium where the play-

ers receiving both high and low signals pool to some bid b∗. In particular, suppose that

the players with signals s ∈ [s, s̄], where s < 1
2
< s̄, choose b∗. None of the players with

signals from this region must have an incentive to deviate from b∗. To find the conditions

for existence of the equilibrium, we define the beliefs of winning at the price b∗. Let

ρpool(s) denote the beliefs of a player with signal s conditional on winning an object after

bidding b∗. These can be written as

ρpool(s) =
πf(s|R)(1− 2p(1− s̄)− 2(1− p)s)(2 + 2p(1− s̄) + 2(1− p)s)

(1− π)f(s|L)(1− 2q(1− s̄)− 2(1− p)s)(2 + 2q(1− s̄) + 2(1− q)s)

Similarly, the beliefs of winning an object at the pooling price after bidding any b > b∗

can be written as:

ρdev(s) =
πf(s|R)(1− 2p(1− s̄)− 2(1− p)s)(1 + 2p(1− s̄) + 2(1− p)s)

(1− π)f(s|L)(1− 2q(1− s̄)− 2(1− p)s)(1 + 2q(1− s̄) + 2(1− q)s)

The relation between these two beliefs depends on the value of s̄ and s. If s < 1 − s̄,

then ρdev(s) > ρpool(s). If s > 1 − s̄, then ρdev(s) < ρpool(s). The beliefs are equal if

s = 1− s̄. We now consider all the three cases separately.

Suppose that s = 1− s̄ hold. Then, ρpool(s) = ρdev(s) = πf(s|R)
(1−π)f(s|L)

and hence pooling

reveals no new and valuable information. Hence, the pooling behavior is sustainable only
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if bp = u(ρpool(s ≤ 1
2
)) = u(ρpool(s > 1

2
)). The condition u(ρpool(s ≤ 1

2
)) = u(ρpool(s > 1

2
)),

in turn, is satisfied when ρpool(s ≤ 1
2
) < ρ∗ < ρpool(s > 1

2
). So, suppose that this is the

case. Whether such a pooling region is sustainable in a non-monotone equilibrium will

depend on what the players with the signals outside the pooling region bid.

Suppose first that at least two bidders with qualitatively different signals bid the same

bid; i.e. suppose that b(s) = b(s′) > bp for some s ≤ 1
2
and s′ > 1

2
. Consider such a player

with signal s. Conditional on winning at his own bid, the player’s beliefs become:

ρ(s) =
πf(s|R)

(1− π)f(s|L)

Pr(win, p = b(s)|R)

Pr(win, p = b(s)|L)

Note that Pr(win,p=b(s)|R)
Pr(win,p=b(s)|L)

6= 1 must hold as otherwise, the beliefs are identical to ρpool(s)

and hence bp = b(s) violating our assumption that the players bid above bp. Thus, the ratio

can either be greater than 1 or less than 1. Suppose first that Pr(win,p=b(s)|R)
Pr(win,p=b(s)|L)

> 1. Then,

since winning at the player’s own bid reveals limited information because both high signal

player and low signal player bid this bid, Pr(win,p=b(s)|R)
Pr(win,p=b(s)|L)

cannot exceed p

q
(corresponding to

the case when winning reveals information that favours state R the most). Hence, we have

ρpool(s > 1
2
) > ρ(s) > ρpool(s ≤ 1

2
) for any signal s < s implying that u(ρ(s)) < bp. Hence,

the player with low signal loses money if bids above the pooling bid. Hence, an incentive

to deviate. Similarly, if Pr(win,p=b(s)|R)
Pr(win,p=b(s)|L)

< 1, the players with high signals have profitable

deviation. Therefore, the bidding functions cannot be overlapping for the players with

qualitatively different signals.

Now, suppose that the players with qualitatively different signals do not bid the same

bids. Suppose first that the high signal players always bid above any player with low

signal. This implies that the high signal players use the PS bidding strategy. Since we are

looking for non-monotone bidding strategy, all the players with s < s must bid strictly

above the pooling bid bp. Suppose that such players utilize a strictly decreasing function.

Then, conditional on winning at the own bid, a player with signal s has the beliefs

ρ(s) =
π(f(s|R))2(F (s|R) + 1− F (1

2
|R))

(1− π)(f(s|L))2(F (s|L) + 1− F (1
2
|L))

=
π(1− p)2(p+ 2(1− p)s)

(1− π)(1− q)2(q + 2(1− q)s)

These beliefs are decreasing in s. Hence ρ(s) > ρ∗ in equilibrium. But this violates

our assumption that ρpool(s ≤ 1
2
) < ρ∗ < ρpool(s > 1

2
). So, no such equilibrium. Suppose

then that the low signal players use an increasing bidding strategy. Then, the beliefs are

of the following form:

ρ(s) =
π(f(s|R))2(1− F (s̄|R) + F (s|R))

(1− π)(f(s|L))2(1− F (s̄|L) + F (s|L))
=

π(1− p)2(p+ 2(1− p)(s̄− s)

(1− π)(1− q)2(q + 2(1− q)(s̄− s)

The beliefs are again increasing in s implying that ρ(s) > ρ∗ for any s < s. This again

violates our assumption that ρpool(s ≤ 1
2
) < ρ∗ < ρpool(s > 1

2
). The similar calculations

yield the result that no equilibrium is possible when the low signal players bid above the
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players with high signals. We thus conclude that no equilibrium is possible when s = 1−s̄.

Suppose that s < 1 − s̄ holds. Then, we know that ρdev(s) > ρpool(s) also holds. For

the players with signal s > 1
2
to be willing to pool, u(ρpool(s > 1

2
)) ≥ u(ρdev(s > 1

2
)) must

hold (as otherwise, deviating slightly above b∗ is always profitable). This, in turn can old

only if ρpool(s > 1
2
) < ρ∗.

MLRP assumption implies that ρpool(s > 1
2
) > ρdev(s ≤ 1

2
) > ρpool(s ≤ 1

2
) irrespective

of s̄ and s. This implies that a player with low signal chooses action l after winning the

object at the pooling price (irrespective of his own bid). So, for the pooling behavior to

be optimal for the players with low signal, the pooling bid must satisfy

b∗ ≥
1

ρ̃+ 1
v(l, L) where

ρ̃ =
π(1− p)(1− 2p(1− s̄)− 2(1− p)s)(1 + 4p(1− s̄) + 4(1− p)s)

(1− π)(1− q)(1− 2q(1− s̄)− 2(1− p)s)(1 + 4q(1− s̄) + 4(1− q)s)

Using simple math, we can demonstrate that MLRP assumption implies ρ̃ < ρpool(s >
1
2
). Since ρpool(s > 1

2
) < ρ∗ must hold in equilibrium, we get that u(ρpool(s > 1

2
)) < b∗.

So, if we choose the pooling bid that makes the player with “low” signal want to bid b∗,

the player with “high” signal has a profitable deviation (and vice versa). So, there cannot

be a non-monotone equilibrium where s < 1− s̄ and s̄ > 1
2
.

Now, suppose that s > 1− s̄ holds. Then, ρdev(s) < ρpool(s). An equilibrium may exist

only if ρpool(s ≤ 1
2
) > ρ∗. This is so because otherwise u(ρdev(s ≤ 1

2
)) > u(ρpool(s ≤ 1

2
)).

Assume that ρpool(s ≤ 1
2
) > ρ∗. MLRP implies that ρpool(s > 1

2
) > ρdev(s > 1

2
) > ρ∗.

The position of the beliefs relative to ρ∗ implies that the player with high signal always

chooses action r conditional on winning at the pooling price. Hence the lower bound of

the pooling bid bp that is consistent with the pooling behavior of the players with high

signal takes the form:

b̂ =
ρ̂

ρ̂+ 1
v(r, R) where

ρ̂ =
πp(1− 2p(1− s̄)− 2(1− p)s)(1 + 4p(1− s̄) + 4(1− p)s)

(1− π)q(1− 2q(1− s̄)− 2(1− p)s)(1 + 4q(1− s̄) + 4(1− q)s)

MLRP again implies that ρ̂ > ρpool(s ≤ 1
2
) and such a lower bound does not satisfy

individual rationality of the players who received low signal and chose the pooling bid.

That is, no matter what the pooling bid b∗ is, at least one of the players has a profitable

deviation from the pooling bid.

Hence, the players with (qualitatively) different signals cannot pool to the same bid.

Proof of Proposition 5.

Notice that the functions ρNh (·) and ρ̄(·) converge to ρ+(1
2
) as the cutoff signal s̄

approaches 1
2
. The fact that ρ+(1

2
) > ρ∗ then implies that ρNh (s̄) > ρ∗ for any s̄ ∈ Bǫ(

1
2
).
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We know that MLRP implies ρNh (s̄) < ρ̄(s̄) for any s̄ > 1
2
. Hence, u(ρNh (s̄)) < bph(s̄) when

s̄ ∈ Bǫ(
1
2
). Continuity of both functions and our assumption that u(ρNh (1)) > bph(1) then

implies that there exists a signal ŝ ∈ (1
2
, 1) such that u(ρNh (ŝ)) = bph(ŝ).

Let s̄ = ŝ. Since the condition that u(ρNh (ŝ)) = bph(ŝ) can hold only when ρNh (ŝ) < ρ∗

and ρ̄(ŝ) > ρ∗, the lower bound bph(s̄) is by construction the true value of the pooling

bid that makes the player with signal s ∈ (1
2
, s̄] indifferent between pooling and deviating

slightly above. Also, note that ρh(s, s̄) is same across any signal s > 1
2
. So, if we

demonstrate that winning at any price greater than bp yields a payoff of zero, we would

prove that none of the players with high signal has a profitable deviation from their bid.

The shape of the bidding strategy implies that a player with high signal can only win

if the price is equal to some bid of a player with high signal. So, conditional on winning

at any price p = b(s′) > bp, the beliefs of the player are:

ρh(s, p = b(s′)) =
πp2(1− p(2s′ − 1))

(1− π)q2(1− q(2s′ − 1))

These beliefs are identical to ρNh (s
′) and hence u(ρh(s, p = b(s′))) = u(ρNh (s

′)) = b(s′).

Since this holds for an arbitrary signal s′ > 1
2
, winning at any price that equals to the

bid of the player with high signal yields a payoff of 0 for all high signal players. Hence,

the players with signals s > s̄ have no incentive to pool and the players with signals (1
2
, s̄]

have no incentive to bid above.

None of the high signal players has an incentive to mimic a player with low signal,

either. To see this, suppose that a player with signal s > s̄ bids b(s′ < 1
2
). Conditional

on winning at this bid, his beliefs are:

ρh(s, p = b(s′)) =
πp(1− p)2

(1− π)q(1− q)2

MLRP implies that ρNh (s) > ρh(s, p = b(s′)) > ρNh (s
′). We also know that ρNh (s) < ρ∗

holds in equilibrium. Hence, u(ρh(s, p = b(s′))) < b(s′) = u(ρNh (s
′)). The player with high

signal loses money if he mimics any player with low signal. Same holds for those who

pool. Hence, none of the players with high signal wants to deviate from their bid.

We are left to demonstrate that the low signal player have no incentive to deviate,

either. First, note that ρh(s, p = b(s′)) < ρNh (s
′) for any s ≤ 1

2
and s′ > s̄. Hence

u(ρh(s, p = b(s′))) > u(ρNh (s
′)) implying that the low signal player would always want to

bid above b(s′) to avoid losing at this bid. So, low signal player does not want to mimic

non-pooling player with high signal.

The last step is to show that none of the players with low signal (i.e. with s ≤ 1
2
)

has an incentive to pool. To show this, it would suffice to demonstrate that u(ρh(s ≤
1
2
)) > u(ρpoolh (s ≤ 1

2
)). Notice that MLRP implies that ρpoolh (s ≤ 1

2
, s̄) < ρNh (1) for any

cutoff signal s̄ > 1
2
. But then, since ρNh (ŝ) must hold in any equilibrium with the bidding

strategy of interest, ρNh (1) < ρ∗ must also hold. We conclude that ρpoolh (s ≤ 1
2
, ŝ) < ρ∗ also
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holds. Since MLRP implies that ρpoolh (s, s̄) > ρh(s, s̄) for any s̄ > 1
2
and any s ∈ [0, 1], we

conclude that u(ρpoolh (s ≤ 1
2
, ŝ)) < u(ρh(s ≤ 1

2
, ŝ)). Therefore, it is always profitable for

the player with low signal to deviate from the pooling bid. Hence, the low signal player

has no incentive to bid anything outside his bid. Thus, the bidding strategy characterized

above is indeed an equilibrium bidding strategy of the model.
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