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ABSTRACT

We propose a technique to improve detection of concurrency errors of multi-

threaded C/C++ applications and recovery of these applications from the errors

using transactional memory (TM) technology. Transactional memory is an emerging

parallel programming model which simplifies parallel program design and implemen-

tation, improves performance and protects applications from most concurrency bugs.

Our approach uses TM to improve performance of detection of concurrency errors

and provides a framework by which legacy C/C++ applications can benefit from

concurrency error-freedom.

The current concurrent error detection approaches are either too slow or need extra

modification to current processor architecture. The slowdown of these techniques

stems from a number of reasons: instrumentation used to add them into application,

necessary computations needed to detect errors, and cost of proper protection of

error-detection-related data used by these techniques.

We propose a way to divide the instruction stream of each thread in a multi-

threaded application into small transactions. We then use conflict detection to get

fine-grain protection of concurrency error detection data to improve performance. We

use transaction write buffers and rollback mechanism to recover from concurrency

errors, data races in particular, and impose extra protection on erroneous data or

portions of concurrent program.

Our approach works well on a number of multi-core benchmark applications and

shows a significant performance improvement of concurrent error detection over con-

ventional means. These improvements are encouraging initial results for the industrial

usage of the proposed approach.
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ÖZETÇE

Bu çalışmada, çok izlekli C/C++ uygulamalarındaki eş zamanlı programlama

hatalarının tespitini geliştirmek ve bu uygulamaların hareket belleǧi (TM) teknolojisi

kullanılarak kurtarılmasını saǧlamak için bir yöntem öne sürüyoruz. Hareket Belleǧi,

koşut program tasarımını ve uygulamasını basitleştiren, başarımı arttıran ve uygu-

lamaları çoǧu eş zamanlı programlama hatalarından koruyan bir koşut programlama

modelidir. Bizim yaklaşımımız, eş zamanlı programlama hatalarının tespit edilme

başarımını arttırmak için TM kullanmakta ve kalıt C/C++ uygulamalarının eş za-

manlı programlama hatasızlıktan faydalanabileceǧi bir çerçeve saǧlamaktadır.

Mevcut eş zamanlı hatası tespit eden yaklaşımlar ya çok yavaş ya da mevcut

işlemci mimarisinde fazladan deǧişikliklere ihtiyaç duymaktadırlar. Bu yöntemlerin

uygulamayı yavaşlatması birkaç sebepten kaynaklanabilir: bunları uygulamaya ekle-

mek için kullanılan araçlar, hataların tespiti için gerekli hesaplamalar ve bu teknikler

tarafından kullanılan hata tespitiyle alakalı verinin uygun biçimde korunması.

Çok izlekli bir uygulamadaki her izleǧin komut akışını küçük hareketlere bölmek

için bir yol sunmaktayız. Daha sonra, eş zamanlı hata tespit verisinin iyi taneli korun-

masını elde etmek için çakışma tespitini kullanmaktayız. Eş zamanlı hatalarından,

özel olarak veri yarışlarından, kurtulmak için hareket yazma arabelleklerini ve geri

dönüş mekanizmalarını kullanmaktayız ve hatalı veriye veya eş zamanlı programın

parçalarına fazladan koruma dayatmaktayız.

Yaklaşımımız birçok çok çekirdekli denektaşı uygulamada iyi çalışmakta ve uzlaşılmış

yollara nazaran eşzamanlı hata tespitinde belirgin bir başarım artışı göstermektedir.

Bu gelişmeler önerilen yaklaşımın endüstride kullanımı için cesaret verici öncül sonuçlardır.
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I acknowledge anyone who contributed to the preparation of this thesis. Especially
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Chapter 1

INTRODUCTION

1.1 Motivation

Multi-core CPUs are everywhere; from supercomputers to servers, from desktops to

smart phones. This has naturally forced software developers to write parallel and

concurrent programs to benefit from parallel performance offered by the multi-cores.

As is the case for any software it is almost impossible to write entirely correct software

which meets specifications and adheres safely to the programming model of the ma-

chines in which that software is intended to run at first place. Therefore, there is every

need for means to ensure the software behaves as expected and delivers the required

and intended actions. There has been a number of techniques to ensure correctness of

software developed. Some of them involve testing, model checking, and verification.

As parallel programs involve execution of multiple threads simultaneously it is very

hard to eliminate most of the program errors using classical testing approaches.

Appropriate ways of debugging parallel program are model checking and verifica-

tion. This is because they put program reasoning into mathematical form which takes

into account the general behavior of execution of the concurrent program. Verification

reasons about program correctness from program input and output specifications and

expected behaviors of the program and ensures that these properties are attained by

the program when executed in a multi-threaded fashion. There are two types of ver-

ification approaches; static and dynamic. Static verification analyses program source

code to determine if it conforms to certain specifications and parallel programming

semantics. Dynamic verification monitors the software running on multi-threaded en-
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vironment in multi-core machines. Therefore, it checks the program correctness from

the program execution.

Static verification is complicated and very slow and may be infeasible to perform

on large code base. Moreover, it has tendency to emit a lot of false alarms. Dynamic

specification is in most of the time a preferred way of debugging multi-core software.

Even though dynamic verification techniques may be a preferred way for correctness

checking of concurrency errors, their current technology is still too slow to be used as

debuggers running all the time during software development phase. There has been

a number of researches working towards improving dynamic race detection. Some of

them propose use of dedicated hardware component [31], introduction of new hard-

ware instructions [5] special for dynamic software checking and use of heterogeneous

multicores [1]. Others improve on existing approaches and form new algorithms [6].

While others are trying to improve performance of verification techniques, some

have proposed parallel programming models that promise concurrent error-freedom

and less hassle for design and implementation of parallel software. One of the notable

models is transactional memory [10]; an idea which originated from database transac-

tion semantics. This approach abstracts away all complexities of multi-core software

and it provides a nice and simple way of writing software for multi-cores. Program-

mers specify regions they want them to execute in a transactional way. Transactions

ensure atomicity; all operations in a transaction seem to execute instantaneously and

their effects are seen by other threads when they are all successful. It also provides

a simple reasoning of parallel programs by ensuring serializability. Serializability is

a property where transactions executed by different program threads in concurrent

fashion appear to produce results that are same to when they were executed one after

another in some sequence. There are two types of transactional memory; software

transactional memory and hardware transactional memory. Software transactional

memory model is software implemented as a library or runtime and this software

ensures transactional semantics are realized when software runs atop it. The library

or runtime provides interfaces by which developers use to implement transactional
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memory-based concurrent software. On the other hand, hardware transactional mem-

ory is the one supported by or implemented in hardware. It involves modification to

processors, caches and bus protocols [11]. Hardware transaction memory guarantees

more improved performance than software transactional memory.

Transactional memory is not the best alternative for concurrency programming

in all cases. Moreover, there are a lot of non-transactional memory software already

running on various systems and it may be near to impossible to re-implement all

them with transactional memory semantics. Some software developers are skeptical

about programming using transactional memory. Therefore, there is still a need to

improve dynamic verification techniques for current software development and running

software that may need correctness checking. This thesis concentrates on runtime race

detection, a common type of dynamic software verification.

1.2 Approach

This thesis proposes solutions for legacy software, and for non-transactional-software

development. For legacy software we provide a way to ensure that it executes in

a correct way as intended by developers and the system specification it is running

on. Moreover, for both legacy software and for development concurrent software we

provide a technique to improve dynamic verification.

For legacy C/C++ programs we propose [16] a way to divide program trace into

transactional regions to execute as transactions. We present the PaRV tool for runtime

detection of and recovery from data races in multi-threaded C and C++ programs.

PaRV uses transactional memory technology [14] for parallelizing runtime verification

and for buffering write accesses during race checking. Application threads are slowed

down only due to instrumentation, but not due to the computation performed by run-

time verification algorithms since the latter are run concurrently on different threads.

Buffering writes allows us to recover from races and to safeguard against later ones.

For reducing slowdown of dynamic detection, we propose use of Intel(r) Transac-

tional Synchronization Extensions (TSX). By dividing program traces for each thread
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and adding transaction instructions and calling race detection Performance is achieved

due to reduce slowdown of the synchronization operations necessary to protect race

detection meta-data.

1.3 Contribution

This thesis has an number of contributions.

We propose a way to reduce runtime race detection using helper thread per ap-

plication thread adapted from STM2 [14]. Moreover, using software transactional

memory techniques recovery from the races can be achieved and prevented further by

imposing extra protection on the racy data.

We propose an algorithm to instrument a program into small transactions for race

detection. Splitting a program into small transactions does not change semantics of

the program and it does not affect precision of race detection.

We propose use of TSXs to aid race detection and show that it improves perfor-

mance. We don’t simply protect the race-detection metadata using transactions. We

break down a binary into proper-sized chunks in order to minimize overhead. We

present a proper use of of TSXs to achieve precise race detection with much reduced

slowdown while maintaining soundness and precision of race detection algorithm used.

1.4 Organization

Chaper 2 and 3 discuss necessary background. While chapter 2 presents technical

details necessary to understand race detection, chapter 3 introduces transactional

memory. Data race detection and recovery using software transactional memory is

discussed in chapter 4. Improvement of race detection using hardware transactional

memory is presented on chapter 5. Conclusions and related works are in chapter 6

and chapter ??, respectively.



Chapter 2

CONCURRENCY ERRORS AND RUN-TIME RACE

DETECTION

2.1 Concurrency Errors

Concurrent errors are run-time errors introduced due to presence of multiple processes,

or preferably threads, executing in concurrent fashion and accessing shared resources

like data structures and synchronization primitives such as locks. The commonly

known concurrency errors are deadlocks, data races, atomicity violations, and ordering

violations. A deadlock is a situation wherein two or more concurrent threads fail to

proceed their executions because each waits for the other(s) to do something. A

common example of a deadlock can be explained with with two threads A and B and

two locks X and Y acquired by the threads, respectively. While holding these locks,

the deadlock happens when A waits for lock Y to be released by B and B waits the

lock X to be released by A.

Data races or race conditions occur when two different threads access the same

memory location, at least one access is a write, and the accesses are not ordered by

proper synchronization. There are many scenarios for data races. A typical example is

when a shared memory is not protected by a common lock all the times it is accessed

by any thread. Figure 2.1 shows a race condition due to use of different locks for

different accesses on two threads for the same address.

In Atomicity violations the desired serializability among multiple memory accesses

is violated. This happens when a program region intended to execute indivisibly in

atomic way is not enforced during execution. This results from a lack of constraints

on the interleaving of operations in a multithreaded program.
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Figure 2.1: Example of race condition.

Ordering violation occurs when the desired order between two or more memory

accesses is flipped. This involves two or more memory accesses from multiple threads

that happen in an unexpected order, due to absent or incorrect synchronization.

For example given an order that access X should always be executed before Y. The

violation happens when the order is not enforced during execution in such a way that

Y executes before X. This happens on sequential consistency memory models due

to optimization purposes. On concurrent execution environment this could lead to

non-determinism.

The analysis [19] of real-world concurrency bugs presents statistics about these

errors on concurrent software. These bugs are very common in multithreaded pro-

grams. They are a major stumbling block to writing multithreaded programs as they

generate complicated behaviors resulting from unexpected interaction of operations

in different threads. Therefore, they are particularly difficult to diagnose and fix.

This is due two main reasons. First, developers must reason about the interactions of

many pieces of code executing in multiple threads. Observing one threads erroneous

behavior is often insufficient for understanding the cause of that error, which may lie

in another thread. Second, non-determinism in multithreaded execution complicates
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the process of interpreting executions that contain concurrency errors. The exact be-

havior of the application may differ, even from one erroneous program run to another,

making it hard to spot the main source of the error. Therefore, it is important to

study these errors and devise techniques to automatically detect them.

Our thesis concentrates on the study of data race condition detection for two

reasons;

(a) Data race conditions are low level errors which violate program sequential con-

sistency,

(b) They are symptoms of higher-level errors like atomicity and order violations.

2.2 Program Executions

To understand runtime race detection it is important to grasp knowledge of multi-

threaded program executions [26]. Rather than a completely general formalization

that models all features of a multithreaded program, we opt for one that is simple

and allows us to illustrate the key ideas for each runtime verification approach. We

do not provide a formal syntax and semantics for multithreaded programs. Instead,

only reason in terms of their executions is presented.

A multithreaded program consists of a number of concurrently executing threads,

each identified with unique thread identifier T ∈ TID.

The set of possible actions that a thread T can perform include:

� rd(T, x, v) and wr(T, x, v), which read a value v from variable x and write a

value v to x, respectively. The possible effects of the read and write actions on

the local and global stores are given by the language specification and memory

model and are left unspecified in this paper.

� acq(T, k) and rel(T, k), which acquire and release a lock k.

� begin(T, l, s, i ) and end(T, l, s, i ), which mark the beginning and end

of one particular execution instance of a designated code block consisting of the
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program statement s. It might be the programmers intention to have this block

be atomic, serializable, etc. The block label l uniquely identifies a designated

code block, and the instance label i uniquely identifies the execution instance

of the designated code block within the entire execution trace.

� fork(T, T’) and join(T, T’), which create a new thread T’ and wait until a

thread T’ terminates, respectively.

� call(T,m, i ) and ret(T,m, i ), which represent the call and return actions

of a particular execution of operation m. These actions are thread-local, i.e.,

they do not modify the global store. The instance label i uniquely identifies a

particular execution of the operation m within the entire execution trace.

In code examples, we often omit the thread ids, block and instance labels when they

are clear from the context or irrelevant, and we use more familiar syntax, such as x

= v, for reads and writes. We use the function TID(a) to extract the thread identifier

from an action.

A trace is a finite sequence of actions α = a1, a2,..., an. A particular occurrence

of an action (i, ai) in a trace is called an event. The behavior of a trace α = a1,

a2,..., an is defined by the relation
∑

0→α ∑
n, which holds if there exist intermediate

states
∑

1,...,
∑
n−1 such that

∑
0 →a1

∑
1 →a2...→an

∑
n .

Event ei = (i, ai ) is referred to using the type of action ai is, e.g., a write or

read event. The write predecessor of a read event ej where aj = rd(T, x, v) in a

trace is the largest k such that ek is a write event that writes to x.

An intended-atomic block in a trace α is the sequence of actions starting with a

begin(T, l, s, i ) action and containing all T-actions up to and including a match-

ing end(T, l, s, i ) action. If an action a by thread T does not occur within

an intended-atomic block for T, then the action a by itself is considered a (unary)

intended-atomic block. This terminology was chosen to emphasize that atomicity is

a specification (an annotation) and not a guarantee provided by the platform.
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Similarly, an operation execution in a trace α is the sequence of actions executed

by a thread t starting with call(T,m, i ) and ending with the matching ret(T,m, i

) action. For simplicity, we restrict our attention to executions where for all begin(T,

l, s, i ) actions (resp. for all call(T,m, i ) actions), a matching end(T, l, s, i

) action (resp. a ret(T,m, i ) action) exists.

Two actions (or events) in a trace conflict if:

1. read or write the same variable and at least one of the accesses is a write;

2. they acquire or release the same lock; or

3. they are performed by the same thread.

If two actions (or events) do not conflict, they commute. A trace α is said to be an

f-permutation of a trace β iff α and β both consist of n actions, and f is a permutation

of {1,..., n} such that, if α = a1, a2, ..., an, then β = af(1),af(2),...,af(n). For

each i, ai and a f(i) are said to be corresponding actions and (i, ai ) and ( f (i

), a f(i)) are said to be corresponding events. α is said to be a permutation of β if

there exists such an f .

2.3 Run-time Race Detection

Reviews [27] infer that data race detection is the most well-studied problem in the

area of verification of concurrent software Informally, a data race occurs in an exe-

cution whenever there are conflicting accesses to the same variable without proper

synchronization. Absence of data races is highly desirable in concurrent programs

when they are executed on multiprocessors, a situation that is increasingly common

with the advent of commodity multi-cores. Detecting and eliminating data races is

important for two reasons:

1. Read accesses may yield non-deterministic results in racy executions, which

often result in unintended, surprising behavior, program crash and data corruption.
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2. Data races are often symptoms of logical or programming errors. As an example

of 1, consider the following program, where a programmer naturally expects at least

one of tmp1 or tmp2 to be 42 at the end.

This expectation is based on the intuition that in each thread, an instruction that

appears before another instruction in the program order is also executed before it;

the operational semantics implied by this expectation is known as sequential consis-

tency [18]. On a modern multiprocessor, due to the reordering of instructions by the

compiler or the hardware, if this program starts from a state in which X = Y = 0,

it is possible for it to end in a state with both tmp1 = tmp2 = 0. For performance

reasons, typical runtime systems for concurrent programs do not provide sequential

consistency for all executions. But consensus has emerged that sequential consistency

should be ensured at least for data-race free programs [3, 22]. In most programming

languages, data-race freedom cannot be checked precisely using static methods, and

dynamic data-race detection remains the only alternative for eliminating surprising

behaviors such as those described above. For these reasons, researchers have also sug-

gested that data races be treated as a runtime exception similar to null dereference

or array-out-of-bounds exceptions [6]. In this view, data-race freedom is used as a

sufficient condition for sequential consistency. Later work has made a finer distinc-

tion between data races and sequential consistency. There is indication that it may

be feasible also performance-wise to ensure sequential consistency and to avoid the

nondeterminism due to races [2, 9, 20, 23]. If, in the future, platforms that ensure se-

quential consistency become widespread, this indirect use of data races and data-race

detection may no longer be needed. However, the fact remains that unintended data

races are often symptomatic of higher-level design errors in concurrent programs.

With the exception of carefully crafted nonblocking data structures, where benign

races are deliberately allowed for performance reasons, detection of races can serve

as a debugging tool, determining executions which may have surprising behavior due

to concurrency. This use of data races as a proxy for higher-level design and pro-

gramming errors, and errors in proper use of synchronization policies in concurrent
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programs will continue even if race detection is no longer needed to ensure sequential

consistency. We anticipate that formalizing race conditions for execution platforms,

detecting and eliminating them will continue to be an active area of research and tool

development

Defining a data race formally has been contentious with many competing defini-

tions in the literature. The first popular algorithm for data-race detection was the

Eraser algorithm [29]. This algorithm is based on the insight that programmers use

locks to ensure exclusive access to shared variables; hence, it equates a data race

with the absence of a consistent locking protocol. The following execution obeys the

consistent locking protocol of always accessing X while holding the lock Lck.

However, the following execution has a data race because there is no common lock

held by the two threads while accessing the variable X. To detect an inconsistency in

the locking protocol, Eraser maintains for each variable x, a lockset LS initialized to

the set of all locks in the program. It also maintains for each thread t, a variable LH

containing the current set of locks held by thread t. At each access of x by thread

t, LS is updated with the intersection of the LS and LH and a data race is reported

if LS becomes empty. The emptiness of LS indicates that accesses to x have not

been consistently protected by a single unique lock. The simplicity of Eraser and its

intuitive appeal made it very popular. However, Eraser suffered from the problem of

false alarms, i.e., it occasionally reported races that the programmer did not consider

errors. There were two main reasons for it. 1. Some natural programming idioms

change the locking discipline over time. For example, a variable may be allocated

and initialized by one thread without holding any lock and then made available via

a global pointer, which is protected by a lock. Another example is the common

producerconsumer pattern in which the producer thread creates and initializes an

object representing a work item without holding any locks and then puts it into a

queue. The consumer then takes the object out of the queue and again accesses

it without holding any locks. 2. Programmers often use custom synchronization

primitives instead of locks to synchronize access to data.
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Examples of such custom primitives are hand-crafted spin locks and double-checked

locking. Researchers have tried to address the false alarms described above by adding

embellishments to the basic Eraser algorithm. These embellishments usually take the

form of a state machine attached to each shared variable [3,51,60]. A data race is

reported only if the lockset becomes empty and the state machine enters a particular

state. The state-machine approach has been unsatisfactory because, although the

specification being checked becomes more complicated, the problem of false alarms is

still not eliminated fully.

2.4 Happens-Before Relation

Recently, consensus has emerged around a precise definition of a data race based

on the happens-before relation [17]. A large factor in the forming of this consensus

was the use of this definition by the Java memory model [22]. The happens- before

relation of an execution is a partial order on the events in the execution. Intuitively,

the happens-before relation captures the causal relationships between the events in

an execution; there is an edge from an event e1 to another event e2 if the execution

of e1 enables e2 to happen. Formally, the happens-before relation is the transitive

closure of the following set of edges:

1. the set of edges from one instruction to the next one executed by a thread.

2. the set of edges from a lock release to the subsequent acquiring of that lock.

3. the set of edges from the fork in one thread to the first operation of the forked

thread.

4. the set of edges to the join operation in a thread from the last operation of the

thread being joined with.

Recall that two accesses to a variable x are conflicting if at least one of them

writes to x. Two conflicting accesses to a variable x in an execution form a data
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race if they are not ordered by the happens-before relation of the execution. The

most well-known algorithm to check for the presence of data races defined using the

happens-before relation is the vector-clock algorithm [24]. A vector clock maintains

a clock, a non-negative integer, for each thread in the program. A vector clock VC1

precedes a vector clock VC2, if for each thread t, VC1(t) ≤ VC2(t).

The algorithm maintains the following collection of vector clocks:

1. VCt for each thread t. The value of VCt is the vector clock for the last event

executed by thread t. It is updated whenever thread t executes an event.

2. VCm for each lock m. If the last thread to release lock m was t, then the value of

VCm is the vector clock of t when it released m.

3. VCWx for each variable x. If the last thread to write variable x was t, then the

value of VCWx is the vector clock of t when the write happened.

4. VCRx for each variable x. If the last thread to read variable x was t, then the

value of VCRx is the vector clock of t when the read happened.

The vector clocks are updated as events occur in an execution.

The vector-clock algorithm dynamically assigns to each event in the execution a

particular vector clock preserving the following invariant:

For any pair of distinct events e and f , the vector clock assigned to e precedes

the vector clock assigned to f iff the event e is ordered before the event f according

to the happens-before relation.

Race detection is performed using vector clocks as follows:

1. When a thread t reads variable x, a race onx is declared unless VCWx precedes

VCt.

2. When a thread t writes variable x, a race on x is declared unless VCWx precedes

VCt and VCRx precedes VCt.

Together, these rules serve to compute the happens-before relation indirectly.
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2.4.1 Fasttrack Algorithm

Fasttrack [7] algorithm improves the happens-before discussed on section 2.4 to re-

duce slowdown while maintaining algorithm precision. FastTrack identifies some un-

necessary large computations performed by vector-clocks algorithm by adapting a

lightweight representation of vector clocks. This requires constant space and exper-

imental results show that most of the operations do not the whole of a vector clock

to maintain the happens-before relation.

To avoid unnecessary computations, FastTrack classifies a race condition as read-

write race condition where the program trace contains a read that is concurrent

with a later write to the same variable; a write-read race condition where a write

is concurrent with a later read); or a write-write race condition which involves two

concurrent writes).

Detection of Write-Write Data Races . For consecutive writes to a variable by

various threads, it is revealed the the operations are totally ordered on that variable

assuming that no races have happened so far on that variable. Therefore, in order

to detect race on this situation it suffices to store the clock and thread id of the

thread just wrote to the memory at the last time. The clock and id are stored on a

small data structure call epoch. It takes constant time to check for write-write race

conditions using the clock and the thread id from the epoch. This reduces slowdown

of the algorithm largely.

To summarize, epochs reduce the space overhead for detecting write-write conflicts

from O(n) to O(1) per allocated memory location, and replaces the O(n)-time vector

clock comparison with the O(1)-time comparison operation.

Detection of Write-Read Data Races . Detecting write-read races under the

new representation is also straightforward. On each read from variable v with current

thread vector clock VCt (refer to section 2.4 ), FastTrack checks that the read happens

after the last write via the same O(1)-time comparison of the epoch’s clock and the
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clock from VCt.

Detection of Read-Write Data Races . Detecting read-write race conditions is

complicated. Unlike write operations, which are totally ordered in the case that no

race conditions detected so far for a variable, reads are not totally ordered even in

race-free programs. Thus, a write to a variable v could potentially conflict with the

last read of v performed by any other thread, not just the last read in the entire trace

completed so far. Hence, FastTrack may need to record an entire vector clock VCRv,

in which VCRv(t) records the clock of the last read from v by thread t.

FastTrack is precise and reports data races if and only if the observed trace contains

concurrent conflicting accesses.

2.5 Dynamic Instrumentation

Dynamic Instrumentation is technique for observing the target application’s execution

trace. It is used to gather the necessary data on the execution of a program for race

detection. There exist several industry strength frameworks for dynamic instrumen-

tation of executable program. Some of them are Intel(r) Pin [21], Valgrind [25], Dy-

namoRIO [4] and RoadRunner [8]. Intel(r) PIN instruments C/C++ binary programs

buy running tools called Pintools on PIN runtime with the the binary as parameter.

Pintools can be used to perform program analysis on user space applications in Linux

and Windows operating systems. Thus, it requires no recompiling of source code and

can support instrumenting programs that dynamically generate code. Pin provides

a rich API that abstracts away the underlying instruction set idiosyncrasies and al-

lows context information such as register contents to be passed to the injected code

responsible for race detection as parameters. Pin automatically saves and restores

the registers that are overwritten by the injected code so the application continues

execution from previous snapshot.
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TRANSACTIONAL MEMORY

Chip Multithreading (CMT) processors promise to deliver higher performance by

running more than one stream of instructions in parallel rather than by increasing the

processors frequency. CMT processors may come with different architectures: Chip

Multi-Processor (CMP), Simultaneous Multi- Threading (SMT), or a combination

of them. To exploit CMTs capabilities, users have to parallelize their applications.

Unfortunately, efficiently parallelizing applications is not trivial. Several proposals

focus on how to reduce the effort of parallelizing applications on CMT machines.

Fine-grained locking techniques provide good performance but pose challenges to

programmers. Consequently, automatic parallelization techniques and innovative pro-

gramming models have been proposed to reduce programmers effort. Transactional

Memory [11] (TM) is one of such novel programming models. The main goal of TM is

to simplify synchronization by raising the level of abstraction and composition, break-

ing the connection between semantic atomicity and the means by which that atomicity

is achieved. Programmers indicate atomic section in the source code by using lan-

guage constructs such as atomic blocks, or using macros such as TM BEGIN and

TM END without explicitly locking individual shared memory locations. An under-

lying TM system executes such transactions concurrently whenever possible, generally

speculatively or optimistically, rollbacking when conflicts encountered. Transactions

commit or abort atomically, i.e., either all memory locations modified during the

transaction are updated (committed) or nothing is modified (abortted). Transactions

are allowed to commit only if they have no conflicts or all their conflicts are resolved

positively. There are commonly three types of transactional memory. These are Soft-

ware Transactional Memory, Hardware Transactional Memory, and, a combination of
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these two.

3.1 Software Transactional Memory

TM semantics are implemented on software as libraries or run-times for Software

Transactional Memory. Appropriate data structures for read- and write-sets per

transaction are implemented on software. Software Transactional Memory is typi-

cally slower.

3.1.1 STM2 [14]

STM2 is the first parallel STM system that uses secondary hardware threads to lever-

age STM overhead.

STM2 is essentially a parallel STM system where transactional operations are di-

vided between application threads (computation) and auxiliary threads (STM man-

agement). With STM2, application threads optimistically perform their computation

with minimal support from the underlying STM system. All synchronization and

STM management operations are performed by the paired auxiliary threads. This

means that application threads experience minimal overhead. Auxiliary threads, in-

stead, validate read-sets, maintain transaction states and detect conflicts in parallel

with the application threads computation. STM2 detects conflicts as soon as they oc-

cur (eager conflict detection). If a conflict is detected, the auxiliary thread interrupts

its corresponding application thread and aborts the transaction. If no conflicts arise

during a specific transaction, the auxiliary thread commits the transaction and up-

dates the modified shared memory location (lazy update). Communication between

application threads and their corresponding auxiliary threads is performed through a

lock-free circular buffer and simple atomic state variables.
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3.2 Hardware Transactional Memory (HTM)

HTM involves modification to processor architecture, caches and bus protocols in

order to handle buffering, conflict detection, validation and other mechanisms of TM.

HTMs are generally faster than STM.

3.2.1 Transactional Synchronization Extensions (TSXs)

Intel TSXs provide an interface of instruction set extensions which allow program-

mers to specify regions of code for transactional synchronization. Programmers can

use these extensions to gain the performance of fine-grain locking while actually pro-

gramming using coarse-grain locks [12,13].

With transactional synchronization, the hardware can determine dynamically whether

threads need to serialize through lock-protected critical sections, and perform serial-

ization only when required. This lets the processor expose and exploit concurrency

that would otherwise be hidden due to dynamically unnecessary synchronization.

At the lowest level with Intel TSX, programmer-specified code regions (also re-

ferred to as transactional regions) are executed transactionally. If the transactional

execution completes successfully, then all memory operations performed within the

transactional region will appear to have occurred instantaneously when viewed from

other logical processors. A processor makes architectural updates performed within

the region visible to other logical processors only on a successful commit, a process

referred to as an atomic commit.

These extensions can help achieve the performance of fine-grain locking while using

coarser grain locks. These extensions can also allow locks around critical sections

while avoiding unnecessary serializations. If multiple threads execute critical sections

protected by the same lock but they do not perform any conflicting operations on each

others data, then the threads can execute concurrently and without serialization.

Even though the software uses lock acquisition operations on a common lock, the

hardware is allowed to recognize this, elide the lock, and execute the critical sections

on the two threads without requiring any communication through the lock if such
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communication was dynamically unnecessary.

Intel TSX provides two software interfaces [12, 13]. The first, called Hardware

Lock Elision (HLE) is a legacy compatible instruction set extension (comprised of

the XACQUIRE and XRELEASE prefixes) that are used to specify transactional

regions. HLE is compatible with the conventional lock-based programming model.

Software written using the HLE hints can run on both legacy hardware without TSX

and new hardware with TSX. The second, called Restricted Transactional Memory

(RTM) is a new instruction set interface (comprised of the XBEGIN, XEND, and

XABORT instructions) that allows programmers to define transactional regions in

a more flexible manner than is possible with HLE. Unlike the HLE extensions, but

just like most new instruction set extensions, the RTM instructions will generate an

undefined instruction exception (#UD) on older processors that do not support RTM.

RTM also requires the programmer to provide an alternate code path for when the

transactional execution is not successful.
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PARALLEL RUNTIME VERIFICATION TOOL (PARV)

We present the PaRV tool for runtime detection of and recovery from data races

in multi-threaded C and C++ programs. PaRV uses transactional memory technol-

ogy for parallelizing runtime verification and for buffering write accesses during race

checking. Application threads are slowed down only due to instrumentation, but not

due to the computation performed by runtime verification algorithms since the latter

are run concurrently on different threads. Buffering writes allows us to recover from

races and to safeguard against later ones.

4.1 Introduction

We present PaRV, a tool for runtime detection of and recovery from data races in

multi-threaded C and C++ programs. We use components from transactional mem-

ory (TM) implementations in order to parallelize runtime verification and to buffer

write accesses until they are determined to be free of races.

Concurrently with each application thread, a sibling thread in the style of [14] per-

forms race detection using the Fasttrack algorithm [7]. This approach to parallelized

runtime verification minimizes application slowdown. The application thread only ex-

periences slowdown due to instrumentation. Once the sibling thread determines that

the accesses within a block are free of races, the accesses in the buffer are committed

to memory. If a race is detected, the block is rolled back, and extra synchronization

is performed on variables experiencing races, which allows the execution to continue

without race conditions. In its current form, our approach allows race-free execution

of application binaries at a modest overhead even for legacy applications. With the

availability of TM hardware in upcoming microprocessors and with a large number
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of cores expected to be available on processor chips, we expect our approach to have

further reduced performance overhead and wide applicability for legacy applications.

4.2 Transactional Memory and Runtime Verification

Runtime verification slows down applications. For instance, race detection slows down

C/C++ programs by 100 times or more. High overheads make post-deployment

use of such runtime monitoring techniques infeasible. Even during pre-deployment

testing and runtime verification, such high overheads make it unlikely that runtime

verification techniques will be used continuously during all runs.

Transactional memory implementations contain highly optimized mechanisms for

logging and buffering events, and, in the case of parallelized implementations of trans-

actions, for efficient inter-thread communication between threads working on the same

transaction. Hardware vendors have started providing hardware support for trans-

actional memory, which will make approaches using TM more efficient in the near

future.

A related approach is that of log-based architectures (e.g., [5], [28] ) which provide

on-chip hardware resources for reducing the runtime overhead that comes from mon-

itoring executions. Differently from log-based approaches, our tool does not need any

additional hardware support but can benefit from it. Differently from how [28] makes

use of hardware TM, we do not make use of conflict detection and version number

management – parts of a TM implementation that incur significant computational

overhead. We use the high-performance FastTrack algorithm instead.

One important way our approach will benefit from hardware support for TM

announced or provided by processor vendors is by obviating the need for software-

based synchronization to protect race checking metadata, such as vector clocks. With

compiler support available for TM hardware, our approach will immediately enjoy the

benefit of improved performance due to TM hardware.

STM2 [14] is a novel, multi-threaded STM design, where each application thread

has a dedicated auxiliary (“sibling”) thread performing STM operations such as val-
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idation of read-sets, bookkeeping and conflict detection. The communication be-

tween application and auxiliary thread is provided by a communication channel and

atomic status variables. The communication channel is implemented with a single-

producer/single-consumer, circular, lock-free queue where the application thread (pro-

ducer) posts read and write messages that the auxiliary thread (consumer) retrieves

and processes them. We use STM2’s queue to communicate read, write and synchro-

nization operations from the application thread to the sibling thread carrying out race

detection. We also use STM2’s write buffering and transaction commit mechanisms

to delay writing to memory of writes until they are shown to be bug-free. Specifics

of these are explained in the next section.

4.3 Tool Architecture and Implementation

Figure 1 shows position of PaRV relative to DynamoRIO-Dynamic instrumentation

tool. The high level organization of the tool is as follows. Instructions performed

by each application thread are instrumented using the dynamic DynamoRIO binary

instrumentation framework [4]. Between every application thread and its correspond-

ing sibling thread, there is a FIFO queue (figure 2) in the style of the STM2 circular

buffer that the application thread writes to and the sibling thread reads from. On

the application thread, read and write accesses and synchronization operations are

instrumented such that for each of these instructions executed, an event is placed on

the FIFO queue. The sibling thread removes events from the queue and is able to

carry out race detection for the sequence of instructions carried out by the application

thread in this way.

The sequence of instructions performed by each thread are divided into non-

overlapping portions called consistency blocks using DynamoRIO binary instrumenta-

tion. Every synchronization event is in a consistency block by itself. The sequence of

instructions performed by an application thread between two synchronization events

constitute a block otherwise. The application thread and the sibling thread synchro-

nize at consistency block boundaries. The application thread buffers all write accesses
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Figure 4.1: Architecture of PaRV.
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Figure 4.2: Application-auxiliary thread interaction

it performs. For consistency blocks that do not contain synchronization operations,

when the sibling thread signals to the application thread that the processing of the

block is complete, and detects no concurrency errors, the application thread commits

the writes in the buffer to memory. For consistency blocks consisting of synchroniza-

tion operations, the application waits for the sibling thread to complete processing

the consistency block before it actually performs the synchronization operation. This

is necessary for the runtime verification carried out by the sibling threads to have the

same happens before relation as the execution produced by the application threads.

Before using DynamoRIO to realize the implementation we tried our approach with

PIN. However,with PIN we could not do some of the approaches discussed.



Chapter 4: Parallel Runtime Verification Tool (PaRV) 25

4.3.1 Runtime instrumentation with DynamoRIO

Using DynamoRIO, the write and read accesses and synchronization operations per-

formed by application threads are modified.

A write access (store instruction ins) is instrumented to implement the following

steps. First, the address and the value to be written are extracted from ins. Then,

an entry is written into the write buffer of the application thread, and an event

corresponding to the write access is placed on the FIFO queue. The write instruction

is then skipped. This is necessary, since we only want to commit to main memory

writes determined to be free of concurrency errors. The write buffer implementation

is borrowed from STM2

addr = get destination ( ins );

val = get value ( ins );

write to buffer( addr, val);

enqueue write event( addr);

skip instruction ( ins );

A read access (load instruction ins) is instrumented so that a variable that was

written to earlier by the current consistency block gets its value from the write buffer.

Other reads get their value from the main memory.

read from local write buffer or mem ( ins );

addr = get memory operand ( ins );

enqueue read event ( addr );

When a consistency block ends, the application thread waits for the sibling thread

to set an atomic signal to indicate completion of runtime verification for the curent

consistency block. At that time, the write buffer is committed to main memory.

Unlike the commit phase of an STM implementation, we do not need to acquire locks

for the variables in the write buffer, since we are not carrying out conflict detection
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between consistency blocks in the sense of TMs. If no race has been detected by the

sibling thread, then write buffers can safely be written to memory, since there are no

concurrent racy writes. This is a significant factor in reducing the instrumentation

overhead below what an STM would experience.

Before every synchronization operation, we end the ongoing consistency block if

there is one, and then start a new one. We put on the FIFO queue an event repre-

senting the synchronization operation. When the sibling thread is done processing

this event and notifies the application thread by setting an atomic variable, the appli-

cation thread continues, performs the synchronization operation, and starts the new

consistency block.

4.3.2 Detecting and Recovering from Races

Each sibling thread applies to the stream of events it receives from the event FIFO

queue the FastTrack race detection algorithm [7]. FastTrack is an efficient, precise race

detection algorithm. The algorithm is described by providing the updates and checks

performed by each thread for each memory access or synchronization operation. In

our tool, differently from the original FastTrack, the application thread only records

the events in the FIFO queue. The race detection computation is performed on the

sibling thread for each event as it is removed from the FIFO queue. We implemented

FastTrack in C based on the original implementation. The shared variables (e.g.

vector clocks and epochs) used by FastTrack are protected by mutual exclusion locks.

The sibling thread notifies the application thread of races or race-free completion of

consistency blocks by setting atomic variables.

By buffering write accesses until the end of a consistency block, we are able to

prevent racy writes from being written to memory, and racy reads from affecting

later code. At the end of a consistency block, if the sibling thread signals a detected

race condition, the consistency block is aborted (the write buffer discarded) and re-

tried. The sibling thread notifies the application thread of the set of variables that

experienced a race condition during the last execution of the consistency block. The
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application thread, when retrying the block, wraps each access to a racy variable x

by an acquire and release of the lock that protects vc x, the vector clock of x. Since

the last access by another consistency block to x was followed by the sibling thread’s

access to vc x, this ensures a happens-before relationship between the accesses and

prevents a race condition. After a race is detected on x, all later accesses to x by appli-

cation threads are protected by vc x. By doing this for only variables that experience

a race, we keep the performance overhead of our approach low.

4.4 Related Work

PaRV builds on research in the areas of transactional memory and dynamic race

detection. It also bears similarities to approaches in the architecture literature for in-

strumenting and logging program executions, parallelizing dynamic monitoring, con-

taining and recovering from errors encountered. In the following, we contrast PaRV

with these approaches.

ParaLog [32] extends work on log-based architectures [5] provide hardware sup-

port for instrumenting, logging and monitoring executions of multithreaded programs.

Techniques in ParaLog not only reduce the application slowdown due to instrumenta-

tion and logging, but also allow, similarly to PaRV, parallelized monitoring algorithms

to be run on separate resources from the application, thus further reducing slowdown.

ParaLog involves significant changes to processor and memory architecture. It accom-

plishes efficient tracking of ordering of events from different threads by monitoring

cache coherence traffic. PaRV works on currently available, stock microprocessors,

but If a platform provides LBA support, PaRV would incur much less slowdown as

well.

Race-detection depends critically on, and almost entirely consists of tracking inter-

thread dependencies precisely, and the multiple threads in the monitor accessing the

per-address and per-thread metadata atomically. The hardware support in ParaLog

directly targets efficient implementations of these operations. Taking an alternative

approach, PaRV aims to reduce race-detection slowdown as much as possible in the
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absence of hardware support for monitoring. Differently from ParaLog, PaRV uses

TM technology to prevent races, and explicitly inserts extra synchronization into the

program for avoiding later races.

The authors in [1] present the KUDA tool, which, similarly to PaRV, separates

race detection from application execution threads using kernel threads in the GPU

as helper threads. Differently from KUDA, PaRV synchronizes the application and

helper threads so that race detection does not lag behind. This is essential for pre-

vention of and recovery from races, two more features that distinguish PaRV from

KUDA. KUDA also parallelizes race detection further than one helper thread per

application thread in order to make use of the high degree of parallelism provided by

the hundreds of cores on a GPU.

Veeraraghavan, et al in [30] present the Frost tool that addresses detection and

prevention of data races by running multiple replicas of an application using com-

plementary schedules. Races are detected by comparing states reached by different

replicas, instead of processing event sequences. While providing significant reduction

in slowdown, this approach suffers from two key weaknesses. First, for an application

with faulty synchronization, it is quite possible that no schedule leads to race free

execution. PaRV addresses this problem by adding synchronization to the program

as needed. Second, race detection in Frost is imprecise. PaRV uses the FastTrack

algorithm for precise detection of races.
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IMPROVING RUNTIME ERROR DETECTION USING

TSXS

Due to increase in necessity to program in multicore environment, it has become

prominent to design tools to simplify complexities of parallel programming. Concur-

rent software for multicore environment can be prone to concurrent errors like dead-

locks, atomicity violations and data races. Detecting these errors in such software can

be challenging. We present a way to improve checking of data races using Hardware

architectural assisted transactional memory to improve race detection. We show that

using Intel’s TSXs we can achieve up to 4X speedup over legacy race detection using

FastTrack [7]; a fast and precise race detection algorithm.

5.1 Introduction

There are two race detection techniques; static and dynamic. Static race detection

produces false alarms and very slow. Dynamic race detection performs better in

terms of precision but it is still slow and it can not be turned on all the time during

software development. Between these two approaches there is trade-off between pre-

cision and performance. Along these works there are proposals on use of a special,

extra hardware to accelerate race detection. Our approach relies on improvements of

michroachitecture without need of extra hardware. Moreover precision of data race

detection maintained. Our approach improves over FastTrack algorithm; the fast and

precise race detection algorithm. Performance results from Splash-2 [33] benchmark

indicate that up to 4x speedup is achieved.

Data races are a symptoms of high level concurrency errors which can lead to

various consequences from program crash to loss of millions of dollars, to lives. Elim-
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ination of races from multicore-software is crucial along software development. A

problem of performance slowdown of dynamic race detection is that it imposes a

slowdown of about 100X. Basically, if it was fast enough, people would turn on race

detection full time while running all of their tests.

The components of the slowdown dynamic race detection introduces;

� slowdown due to instrumentation of instructions,

� slowdown due to the computation that the race detection algorithm performs,

� slowdown due to the fact that there needs to be synchronization to protect the

meta-data that the race detection algorithm uses.

We propose a solution that improves performance of race detection up to 34X speedup

over the fastest race detection algorithm using HARDWARE transactional memory

technology [12].

Our solution involves using architectural supported transactional memory to ben-

efit from fine-grain concurrency of race detection meta-data. Our contributions are:

� We propose use of TSXs to aid race detection and show that it improves per-

formance

� We not only simply protect the race-detection metadata using transactions, but

also we break down a binary into proper-sized chunks in order to minimize

overhead.

� We present a proper use of of TSXs to achieve precise race detection with much

reduced slowdown

� We propose an algorithm to instrument a program into small transactions for

race detection

� We show that splitting a program into small transactions does not change se-

mantics of the program and it does not affect precision of race detection.
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The following sections discuss the design and implementation details and evalua-

tions of our approach.

5.2 Design and Implementation

5.2.1 Division of Program into Transactional Blocks

A transactional block – sometimes called transactional region – is a group of program

actions/operations preceded by a “transaction begin” instruction and succeeded by

“transaction end” instruction. These instructions form a transaction block which

execute in a transactional manner.

The instrumentation in section 5.2.3 wraps a bunch of actions(sometimes refereed

to as operations) and race detection function calls(from now on we will call them

callbacks) in transactional blocks. A typical block starts with XBEGIN, contains a

mixture of one or more actions and race detection callbacks, and ends with XEND.

XBEGIN wraps xbegin hardware instruction with multiple tries in case it fails or

aborts. XEND wraps xend hardware instruction which commits the transaction if the

transactions executes successfully.

The intention of existent transactional block is to execute the block speculatively

in order to gain fine-grain concurrency performance. Ideally no lock should be used

to protect any shared data inside the transactional block since transactional memory

ensures safety through conflict detection and safe commits. Nevertheless, TSXs [12]

do not guarantee that a block commits due to a number of reasons including but

not limited buffer overflows and presence of un-friendly instructions. Therefore, it is

important to provide an alternative path in case transaction fails to execute/commit.

In our case of race detection the alternative fall-back is re-execution of the block

non-transactional way. In this case the FastTrack meta-data are protected by locks

as described in section 5.2.2.

The first part of our approach is to divide a given program into small transac-

tional blocks. The aim of this is to achieve fine-grain locking performance of the race

detection algorithm inside the transactional block. In order to maintain the original
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semantics and structure of the program, we design a way to consistently divide the

program into blocks using program actions presented in section 5.2 and other new

actions we introduce in the following paragraphs. For simplicity, we group these ac-

tions into sets of actions and refer to these sets while we describe our algorithm for

formation of the transactional blocks.

TRANSACTION BARRIER This set includes operations performed by a thread

but serve as a means to divide program into transactional regions. They are used for

this purpose because some for program split because they can not be inside a transac-

tional region as they mail fail it or a source of transactional size controll. The actions

or operations that constitute this set can be detailed in the following paragraphs

function call, function return, system call A function call creates a new

execution stack and hence a new block. It involves completely moving the stack

pointer to a new index. System calls include illegal instructions that can cause all-time

transaction aborts. In order to control the transaction sizes, the previous transaction

is ended before the call is commenced. The call precedes a begin of a new transaction.

Function return follows similar trend; execution claims previous stack pointer at

function return. This way the return succeeds an end of transaction block.

input and output operations Transactions do not support input/output ac-

tions as they are irrevocable operations. Therefore each of these operations succeeds

a transaction block and precedes a new block, staying outside transaction blocks.

conditional or unconditional jump A conditional / unconditional jump tran-

sitions execution sequence to a new stack pointer state. To limit transactional size

from program loops these operations mark end of transaction and resume of a new

block.

GLOBAL OPERATION In this context load and store operations represent shared

data retrieved from and stored to memory shared among concurrent threads, respec-
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tively. These operations account for data race detection. These operations constitute

part of a transaction region.

SYNCHRONIZATION Synchronization operations include thread creation, thread

join, lock acquire, unlock release, and barriers. These are high level operations as they

may include (encapsulate) other operations like system calls, and synchronization op-

erations. They might also contain load and store operations and experience benign

race conditions. These operations are either kept in their separate transaction blocks

or completely outside of the transactional block.

thread creation, thread join and barriers There actions involve system

calls or loops. They mark the end of the currently executing transaction if there is

any. Moreover, due to vulnerability to transactional memory as they may contain

illegal instructions, they are executed outside of the transactional memory. As we

will discuss, they have their corresponding race detection callbacks. In order for them

to benefit from transactional memory concurrency, they are kept in new separate

transactional regions.

lock acquire, unlock release operations We have experimented with these

operations inside the transactions and they work friendly. We keep them on separate

transactions together with their race detection callbacks. This has two implications.

First, we make sure that execution semantic is maintained and it ensures a thread

clears execution of the lock operation before moving to next transactional region.

Some pthread libraries [15] implement lock operations which do not really acquire or

release the lock when executed in transactional memory. This serves more perfor-

mance improvement.

Arithmetic operations perform on the data loaded into operating registers.

Formally a transaction block can be defined as follows

block := local+ | global+ | synchronization-operation
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synchronization-operation := lock | unlock

lock := arithmetic | reg-reg transfer

global := load | store := load, store+

5.2.2 Addition of Race Detection Callbacks

race check callback This is a function call to execute some part of FastTrack algo-

rithm depending on the action succeeding it. For instance, the callbacks for lock action

and unlock actions are race check lock and race check unlock respectively. While the

callback for thread forking action is race check thread create, the callback for thread

joining action is race check thread join. Moreover, callbacks for shared memory load

is race check read and callback for shared memory store is race check write. These

callbacks are summarized as follows.

� race check thread create, this involves initialization of the vector clocks of the

newly created thread.

� race check thread join, updates the callers vector clocks according to the vector

clocks of the terminated thread.

� race check lock, immediately called before the lock is actually acquired to copy

the lock vector clocks into the thread vector clock.

� race check unlock, in this function vector clocks of a releasing thread are copied

to the vector clocks of the lock.
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� race check read, race detection is performed to see if the memory read is prone

to race. Race checking involves the comparison of read and write vector clocks

of the memory and that of the thread accessing it.

� race check write, race detection is performed to see if the memory read is prone

to race. Race checking involves comparison of read and write vector clocks of

the memory and that of the thread accessing it.

� race check barrier. executed by each thread at the barrier, it ensures that each

vector clock of a thread contains maximum of clocks ever achieved by any thread

at the barrier.

Any race detection callback resides inside the transactional memory block. It

checks if the transactional block did not fail at trial. In case the transaction fails to

initiate, the block is executed as an alternative path. Therefore, the callback acquires

necessary FastTrack meta-data locks in order to protect them from data races within

the FastTrack algorithm. Therefore any race detection callback extends to a general

structure as in the figure 5.1. When FastTrack callbacks executed for race detection or

updating FastTrack meta-data they test if called within an executing transaction they

don’t acquire any locks to protect FastTrack data. Otherwise, they acquire necessary

locks to protect FastTrack data.

For comparison, all FastTrack synchronizations are fine-grain. That is, every

vector clock/epoch for each of a thread, a lock, and and memory location is protected

by its unique lock.

FastTrack implementation

Implementation of FastTrack mimics algorithms from [7]. For a fair comparison of

FastTrack running under transactional support against normal FastTrack, we imple-

mented FastTrack meta-data with fine-grain locking. Every vector clock or epoch for

variables, locks and threads there is a single unique lock.
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function r a c e c h e c k c a l l b a c k * {

i f t r a n s a c t i o n f a i l e d to s t a r t

then

Acquire a l l nece s sa ry l o c k s to p ro t e c t FastTrack

Do nece s sa ry race check and computations

Re lease a l l nece s sa ry l o c k s to p ro t e c t FastTrack

end

otherwise

Do nece s sa ry race check and computations

end

}

Figure 5.1: Common structure of FastTrack functions

.
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During race checking a thread acquires the lock of the vector clock or epoch it

wants to access first.

5.2.3 “Instrumentation” Algorithm

Dynamic race detection requires instrumentation of the binary program to be checked.

The instrumentation recognizes important program actions and adds necessary race

detection function callbacks. In the case of our approach of using TSXs, instrumen-

tation wraps small groups of actions into smaller chucks called transactional regions.

This is achieved by adding TSX instructions to the executable using necessary in-

strumentation algorithm running on an instrumentation tool like PIN. We devise an

algorithm 5.2.1 to instrument and add necessary operations to the executable. Details

of the algorithm are on section 5.2.4.

The instrumentation algorithm is an adaptation of program instrumentation which

recognizes all program actions discussed in part 5.2 in sequential ordered form of the

executable before execution.

The provided algorithm produces a shadow executable from original executable

by wrapping global actions and some synchronization operations into transactional

blocks. It ensures that number of actions in each transactional block formed does not

exceed the maximum size specified by MAX CAPACITY. For example, if MAX CAPACITY is

2 and there are 3 consecutive global operations. Then they comprise two transaction

blocks; one with two actions and the rest with one action.

It should be noted that the algorithm forms transactional blocks depending on the

program characteristic actions discussed on section 5.2. Regardless of the number of

actions added to the currently formed transaction if the current action from instru-

mented executable is an element of SYNCHRONIZATION or TRANSACTION BARRIER

sets then the transaction ends immediately by the enclosure of XEND and new trans-

action initiates when necessary depending on the current action. Element actions

of TRANSACTION BARRIER set terminate the previous transaction and do not

initiate new transaction a new one, while, actions from SYNCHRONIZATION class
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initiate new transaction immediately before that action or after.

Actions other than those discussed one section 5.2 just get appended to the shadow

executable with any additional modification.

5.2.4 Important Parts of the Algorithm

Input and output The input of the algorithm is an executable program to be in-

strumented. This executable comprises various actions which are discussed on section

[3.1]. For simplicity we have abstracted output is output as new shadow executable

which contains all actions from input some of which encapsulated into transactional

blocks and with an addition of race detection function calls. Figure 5.2 shows how

input and output look like before and after instrumentation, respectively.

Initialization Algorithm initializes a new shadow executable output at line 1 as

an empty list of ordered actions. Line 2 initializes openTransaction variable to false.

This variable keeps track, along instrumentation, of an open transaction initiated

with XBEGIN previously so that its corresponding XEND can be added when need at

current or upcoming action during instrumentation.

currentTransactionSize is initiated at line 3. This is mostly used to keep number

of actions in a currently open transaction. It helps to determine when a current

transaction should be succeeded with XEND once its size becomes MAX CAPACITY at

line 21-25.

Loop This is between line 4 - 39. Algorithm loops through all actions present in

the executable input. The executable input is modeled as an ordered list of actions,

therefore, the algorithm checks one action before the other until they finish. In the

algorithm loop it checks type of current action and performs insertions depending the

type. The loop has three sub parts which execute depending on type of the current

action.

� Current action is element of TRANSACTON BARRIER
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In the case that the current action being instrumented is belongs to TRANS-

ACTON BARRIER group of actions then if the formation of transaction block

has stated that block finishes by insertion of XEND [lines 6 -12].

� Current action is GLOBAL OPERATION

Lines 13 -25. This initiates an new transactional block in case there is no open

block. Otherwise, the action gets appended to current block. In case that the

current block size has reached maximum block capacity the block is closed with

XEND.

� Current action is SYNCHRONIZATION operation

This ends previous open transaction in case there was any. It then creates a

separate transactional block and wraps appropriate race detection callback in

it. The action resides inside that block if and only if it is a lock acquire or

release operation.

Algorithm 5.2.1 Algorithm to instrument a multithreaded program

Input: Executable exec executable to be instrumented.

Output: Instrumented executable: newExec

1: newExec := {}

2: openTransaction := FALSE

3: currentTransactionSize := 0

4: while exec has next action do

5: action := getNextAction(exec)

6: if action is element of TRANSACTION BARRIER then

7: if there is open transaction then

8: appendAction(newExec,XEND)

9: openTransaction := FALSE

10: end if

11: appendAction(newExec, action)

12: currentSize := 0
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13: else if action is element of GLOBAL OPERATION then

14: if there is NO open transaction then

15: appendAction(newExec,XBEGIN)

16: openTransaction = TRUE

17: end if

18: appendAction(newExec, race detection callback)

19: appendAction(newExec, action)

20: increment(currentTransactionSize)

21: if current transaction size equals MAX CAPACITY then

22: appendAction(newExec,XEND)

23: openTransaction := FALSE

24: currentTransactionSize := 0

25: end if

26: else if action is element of SY NCHRONIZATION then

27: if there is open transaction then

28: appendAction(newExec,XEND)

29: openTransaction := FALSE

30: end if

31: if action is NOT lock or unlock operation then

32: appendAction(newExec, action)

33: end if

34: appendAction(newExec,XBEGIN)

35: appendAction(newExec, race check callback)

36: if action is lock or unlock operation then

37: appendAction(newExec, action)

38: end if

39: appendAction(newExec,XEND)

40: currentTransactionSize := 0

41: else
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42: appendAction(newExec, action)

43: end if

44: end while

45: return newExec

5.2.5 Instrumentation Example

We provide an example to show how the instrumentation algorithm divides program

into transactional regions and adds race detection callbacks.

Consider a simple program which interprets to sequence of actions on figure 5.2.

The executable is a theoretical example of a program which lets two threads add 1000

to shared account balance G balance each. Assume that the first thread forks the

second thread at line 1. Then both threads execute the critical section between lines

2 - 7. The thread which updates G balance last prints the final balance at line 9 .

With the provided algorithm the instrumentation can produce an executable of the

form presented in figure 5.2.

The given example has 10 actions. We will describe how the instrumentation

algorithm divides into transactional regions and add race detection callbacks. It does

this by inspecting each action from action 1 to action 10 and producing output as

shown on figure 5.2.

The first action is SYNCHRONIZATION and there is no open transaction already.

Therefore, the algorithm at lines 31- 40 appends the action to output and creates

a complete, independent transaction by wrapping race detection callback for thread

creation. The output is as shown on lines 1-4 of the output on Listing 2.

The second action is also a SYNCHRONIZATION operation. It constitutes a

separate transactional region with this action enclosed together with race detection

callback as as at lines 5 - 8 on Listing 2. The code which produces this portion of

output is at lines 34 - 40. The similar output is experienced with the the lock release

action at line 7 of input executable. Its output is between lines 20 - 23 of Listing 2.

Between lines 3 and 6 of the input executable there are three consecutive
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GLOBAL OPERATION actions. Since MAX CAPACITY is set to 2, the algorithm, at

lines 13 - 25, produces two transactional blocks as shown on lines 9 - 19 of Listing2.

Since action 7 is a synchronization operation it ends the second transactional block

making it contain only one global operation.

Actions 8, 9, and 10 are elements of TRANSACTION BARRIER. Therefore, they

reside outside transactional block. The portion of algorithm which handles this lies

between lines 6 -12.

This can be transformed into the following code using the instrumentation algo-

rithm with MAX TSX CAPACITY set to 2.

Assume that the sequence of actions were identified from a program in which a

main thread forks a child thread at line 1 and both threads execute lines 2-8 at listing

5.1.

5.3 Evaluation

We evaluated our approach on five benchmarks from Splash-2 benchmark suite. The

benchmarks we used are barnes, fft, lu cb, lu ncb, and radix.

As a proof of concept we manually annotated the benchmarks. We then applied

the algorithm we proposed on section 5.2 to split program into consistency blocks and

add TSX instructions and race detection function callbacks accordingly in a manner

the algorithm operates. It should be noted that the same algorithm can be applied

with the help of dynamic instrumentation tools like PIN.

Our instrumentation with annotation can be classified as coarse grain instrumen-

tation as not every tiny piece of shared memory is instrumented in similar manner to

dynamic instrumentation performed by tools like PIN or DynamoRIO. In most cases

of the selected benchmarks input used was test or simsimall input.

For evaluation of approach we describe experimental setup, show the speedup

results it achieves at best, and examine various factors which affect performance of

our approach.
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Listing 5.1: Example program before instrumentation

1 Create thread 2

2 Acquire AccountLock

3 Load G balance to register local reg1

4 Add 1000 to reg1

5 Store reg1 value to G balance

6 Load G total to register local reg2

7 Release AccountLock

8 Compare reg1 and reg2 and jump to 10 if less

9 Call Print func reg1

10 Return

Listing 5.2: Example program after instrumentation

1 Create thread 2

2 XBEGIN

3 race check callback

4 XEND

5 XBEGIN

6 race check callback

7 Acquire AccountLock

8 XEND

9 XBEGIN

10 race check callback

11 Load G balance to local register reg1

12 Add 1000 to reg1

13 race check callback

14 Store reg1 value to G balance

15 XEND

16 XBEGIN

17 race check callback

18 Load G total to local register reg2

19 XEND

20 XBEGIN

21 race check callback

22 Release AccountLock

23 XEND

24 Compare reg1 and reg2 and jump to 29 if less

25 Call Print func reg2

26 Return

Figure 5.2: Example of program actions before instrumentation and after instrumen-
tation.
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5.3.1 Experimental Setup

We performed experiments on an ordinary desktop machine with Haswell microar-

chitecture cores which have TSX instructions. The properties of the machine are as

listed below.

Machine Properties Intel i5 Haswell Microarchitecture, 2 -core with hyperthread-

ing, 4GB RAM, 2.4GHz clockspeed. Running Ubuntu 13.04 - 64bit Operating system.

Splash Benchmarks Used barnes, fft, lu cb, lu ncb, radix

Number of Runs, Input Size, and Program Threads For experimental results

on section 4.2 and 4.3 are average of running hundreds of times setup benchmarks

and their average values. We exercised with 2, 4, 8, 16 threads and transactional sizes

ranging from 1 to 16.

5.3.2 Performance

We present performance with ideal number of threads as 4 on a averagely small pro-

gram input. Graph 5.3 shows program slowdown bar graphs for three settings; first

when the benchmarks execute without both the race detection and transaction in-

structions. Typically this is 1.0X slowdown. The second bar represents slowdown

when it runs with race detection only and FastTrack meta-data are protected by indi-

vidual locks. The third bar of each benchmark represents slowdown when benchmarks

run in transactions and race detection executed simultaneously. Race detection meta-

data in this case are not protected by individual lock, but rather by TSXs. For each

benchmark there is bar for slowdown.

The second bars for each benchmark are tallest of all within any benchmark. This

implies that protecting race detection meta-data imposes more slowdown. Use of

TSXs utilizes necessary fine-grain protection of the data and necessary improvement

is reached. With TSX we can achieve a maximum of 4.0X speedup as achieved at fft

benchmark.
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Benchmark Adresses Locks Shared Shared Lock Barrier

Reads Writes Operations Operations

barnes 681634 68 64768018 24200474 34528 68

fft 1575331 2 20769077 13963385 8 28

lu cb 66849 2 14560103 5681684 8 268

lu ncb 65817 2 13463448 5694781 8 268

radix 2172676 2 13932783 7588112 8 44

Table 5.1: The statistics table showing execution properties of the benchmarks.
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Table 5.1 shows the overview of operations statistics of the benchmarks used with

their specified inputs. Addresses column shows number of unique memory addresses

in a given benchmark. These addresses are accessed by 4 threads in this setting and

total number of read and write operations on these addresses are shown on respective

”shared reads” and ”shared writes” columns respectively.

The locks column shows number of unique locks used by these the threads to

protect some shared data depending on the benchmark. The lock operations column

shows number of times in total these locks locks were acquired and released.

The last column the barrier operations shows number of barriers executed in the

benchmark. Barriers are regarded as synchronization operations and have special

effect on FastTrack algorithm.

5.3.3 Factors Affecting Performance

Transaction size Keeping number of application threads for each benchmark as

four and increasing the number of program actions inside transactional block, the

change in performance speedup is presented in figure 5.4. Ideally speedup slightly in-

creases with increase in transactional size for most of the benchmarks. This is because

as the size of transactions increase, total transactions per application decrease. This

way the total cost of initializing transactions decrease. Initialization includes initial-

ization of write buffers and write and read sets. However, if accessed data within a

transaction is too sparse and from totally unrelated memory. The cache misses and

false cache sharing increases aborts and this degrades performance as is the case for

barnes.

When transactional size is one it means transactions contain single action each.

The transactional size dominates the execution and hence performance comparably

not high. However, increase in block size up to 4 almost there is linear increase in

performance and increase is gentle.

However, transactions with sizes larger than 4 do not persist that linear increase

in speedup because, due to program structure of the benchmarks by blocks contain
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Figure 5.3: The graph showing performance slowdowns for race detection with Fast-
Track protected by fine-grain locking and FastTrack protected by Transactional syn-
chronization extensions.
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maximum number of actions.

Abort Rates Table 5.2 shows percentage of transaction executions that processors

tried and the failed due to a number of reasons. In our implementation when a

transaction fails it can be retried up to a fixed number of times before that block

executes non-atomically. Therefore, the provided percentages show the rate at which

transactions were tried and failed. These failing transaction trials contributed to

slowdown therefore it is worth examining them. The higher the abort rate the lower

speedup once can get when trying to gain performance of race detection using TSXs.

Number of Parallel Threads For a given application increase in number of paral-

lel executing threads affect speedup of race detection. With fixed transactional block

size to 4 we examined hour our algorithm performs on the benchmark when their

number of executing threads increases.

Our results in figure 5.5 are partly influenced with the small number of cores of our

experimentation machine. This means that an application with more than 4 threads

context switches increase and so benchmarks aborts. That is why we experience

increase in speedup up to 4 threads. Then we see a serious drop in speedup when

application threads are greater than 4.

5.3.4 Correctness of our approach

On the algorithm we focus much on performance. We rely on the correctness of the

FastTrack algorithm. Moreover, addition of TSX and fasttrack callbacks does not

change program semantincs. At least this can be provide informally by the program

output when benchmarks are run on three modes; without TSX and FasTrack, with

FatTrack only, and with both TSX and FastTrack. Output from three modes show

same results for all the benchmarks used.
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Figure 5.4: The graph showing effect in performance by changing size of transactional
block
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Benchmark

Transaction Block Size

1 2 4 8 16

barnes 0.484% 1.282% 1.392% 1.848% 2.582%

fft 0.182% 5.579% 20.492% 27.164% 1.334%

lu cb 0.039% 0.133% 0.115% 0.133% 0.140%

lu ncb 0.052% 0.286% 0.242% 0.239% 0.251%

radix 12.107% 66.274% 0.901% 11.430% 9.847%

Table 5.2: The statistics table showing abort rates by transactional block size.



Chapter 5: Improving Runtime Error Detection Using TSXs 51

Figure 5.5: The graph showing performance speedup changes as number of application
threads increase
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CONCLUSIONS

This thesis has has presented an number of contributions our project.

We have shown the approach to reduce runtime race detection using helper thread

per application thread as adapted from STM2 [14].

Moreover, we have showed that using software transactional memory techniques,

recovery from the races can be achieved and prevented further by imposing extra

protection on the racy data.

We have proposed an algorithm in chapter ?? to instrument a program into small

transactions for race detection. Splitting a program into small transactions does not

change semantics of the program and it does not affect precision of race detection.

We have proposed use of TSXs to aid race detection and have showed that it

improves performance. We don’t simply protect the race-detection metadata using

transactions. However, we break down a binary into proper-sized chunks in order

to minimize overhead. We present a proper use of of TSXs to achieve precise race

detection with much reduced slowdown while maintaining soundness and precision of

race detection algorithm used.



BIBLIOGRAPHY

[1] U. C. Bekar, T. Elmas, S. Okur, and S. Tasiran. Kuda: Gpu accelerated split race

checker. In Workshop on Determinism and Correctness in Parallel Programming

(WoDet), London, England, UK, March 2012.

[2] E. Bodden and K. Havelund. Racer: effective race detection using aspectj. In

Proceedings of the 2008 international symposium on Software testing and analy-

sis, ISSTA ’08, pages 155–166, New York, NY, USA, 2008. ACM.

[3] H.-J. Boehm and S. V. Adve. Foundations of the c++ concurrency memory

model. In Proceedings of the 2008 ACM SIGPLAN conference on Programming

language design and implementation, PLDI ’08, pages 68–78, New York, NY,

USA, 2008. ACM.

[4] D. L. Bruening. Efficient, transparent and comprehensive runtime code manip-

ulation. Technical report, 2004.

[5] S. Chen, B. Falsafi, P. B. Gibbons, M. Kozuch, T. C. Mowry, R. Teodorescu,

A. Ailamaki, L. Fix, G. R. Ganger, B. Lin, and S. W. Schlosser. Log-based archi-

tectures for general-purpose monitoring of deployed code. In Proc. 1st Workshop

on Architectural and system support for improving software dependability, ASID

’06, pages 63–65, New York, NY, USA, 2006. ACM.

[6] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: a race and transaction-aware

java runtime. In Proceedings of the 2007 ACM SIGPLAN conference on Pro-

gramming language design and implementation, PLDI ’07, pages 245–255, New

York, NY, USA, 2007. ACM.



Bibliography 54

[7] C. Flanagan and S. N. Freund. Fasttrack: efficient and precise dynamic race

detection. SIGPLAN Not., 44:121–133, June 2009.

[8] C. Flanagan and S. N. Freund. The roadrunner dynamic analysis framework for

concurrent programs. In S. Lerner and A. Rountev, editors, PASTE, pages 1–8.

ACM, 2010.

[9] C. Gniady, B. Falsafi, and T. N. Vijaykumar. Is sc + ilp = rc. In In Proceedings

of the Twenty Sixth Annual International Symposium on Computer Architecture,

pages 162–171. IEEE Computer Society Press, 1999.

[10] T. Harris, J. Larus, and R. Rajwar. Transactional Memory, 2nd Edition. Morgan

and Claypool Publishers, 2nd edition, 2010.

[11] M. Herlihy and J. E. B. Moss. Transactional memory: architectural support

for lock-free data structures. In Proceedings of the 20th annual international

symposium on computer architecture, ISCA ’93, pages 289–300, New York, NY,

USA, 1993. ACM.

[12] Intel. Chapter 8: Intel transactional synchronization extensions.

http://software.intel.com/sites/default/files/m/9/2/3/41604.

[13] Intel. Intel architecture instruction set extensions programming reference with

intel tsx. http://download-software.intel.com/sites/default/files/319433-014.pdf.

[14] G. Kestor, R. Gioiosa, T. Harris, O. S. Unsal, A. Cristal, I. Hur, and M. Valero.

Stm2: A parallel stm for high performance simultaneous multithreading systems.

In Parallel Architectures and Compilation Techniques (PACT), 2011 Interna-

tional Conference on, pages 221 –231, oct. 2011.

[15] A. Kleen. Lock elision in the gnu c library.



Bibliography 55

[16] I. Kuru, H. Matar, A. Cristal, G. Kestor, and O. Unsal. Parv: Parallelizing run-

time detection and prevention of concurrency errors. In S. Qadeer and S. Tasiran,

editors, Runtime Verification, volume 7687 of Lecture Notes in Computer Sci-

ence, pages 42–47. Springer Berlin Heidelberg, 2013.

[17] L. Lamport. Time, clocks, and the ordering of events in a distributed system.

Commun. ACM, 21:558–565, July 1978.

[18] L. Lamport. How to make a multiprocessor computer that correctly executes

multiprocess programs. Computers, IEEE Transactions on, C-28(9):690–691,

1979.

[19] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: a comprehensive

study on real world concurrency bug characteristics. In Proceedings of the 13th

international conference on Architectural support for programming languages and

operating systems, ASPLOS XIII, pages 329–339, New York, NY, USA, 2008.

ACM.

[20] S. Lu, J. Tucek, F. Qin, and Y. Zhou. Avio: detecting atomicity violations via

access interleaving invariants. In Proceedings of the 12th international confer-

ence on Architectural support for programming languages and operating systems,

ASPLOS XII, pages 37–48, New York, NY, USA, 2006. ACM.

[21] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.

Reddi, and K. Hazelwood. Pin: building customized program analysis tools with

dynamic instrumentation. SIGPLAN Not., 40:190–200, June 2005.

[22] J. Manson, W. Pugh, and S. V. Adve. The java memory model. In Proceedings

of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, POPL ’05, pages 378–391, New York, NY, USA, 2005. ACM.



Bibliography 56

[23] D. Marino, A. Singh, T. Millstein, M. Musuvathi, and S. Narayanasamy. A case

for an sc-preserving compiler. In Proceedings of the 32nd ACM SIGPLAN con-

ference on Programming language design and implementation, PLDI ’11, pages

199–210, New York, NY, USA, 2011. ACM.

[24] F. Mattern. Virtual time and global states of distributed systems. In C. M. et al.,

editor, Proc. Workshop on Parallel and Distributed Algorithms, pages 215–226,

North-Holland / Elsevier, 1989. (Reprinted in: Z. Yang, T.A. Marsland (Eds.),

”Global States and Time in Distributed Systems”, IEEE, 1994, pp. 123-133.).

[25] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight dynamic

binary instrumentation. In Proceedings of the 2007 ACM SIGPLAN conference

on Programming language design and implementation, PLDI ’07, pages 89–100,

New York, NY, USA, 2007. ACM.

[26] S. Qadeer and S. Tasiran. Runtime verification of concurrency-specific correct-

ness criteria. International Journal on Software Tools for Technology Transfer,

14(3):291–305, 2012.

[27] A. Raza. A review of race detection mechanisms. In Proceedings of the First

international computer science conference on Theory and Applications, CSR’06,

pages 534–543, Berlin, Heidelberg, 2006. Springer-Verlag.

[28] D. Sánchez, J. L. Aragón, and J. M. Garćıa. A log-based redundant architecture
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