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Abstract

This thesis is a workout of the lecture notes of M. Hutchings on Morse Homology.

Our main goal is to study Morse Theory on finite dimensional manifolds by adapting

the ideas of Floer Theory on infinite dimensional manifolds. In the first part of the

thesis, we give all necessary definitions from Morse Theory such as Morse functions,

moduli spaces and Morse homology. We prove that Morse homology is isomorphic to

singular homology. We also study some applications of Morse homology to algebraic

topology. Throughout the second part, we investigate Morse-Bott functions, moduli

spaces and Morse-Bott homology by giving several examples. Finally, we make use

of spectral sequences to simplify the computations of Morse-Bott homology.
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ÖZET

Bu tezde M. Hutchings’ in Morse homoloji ders notlarının detaylı çalışması yapılmıştır.

Sonlu boyutlu manifoldlar üzerindeki Morse teorisi sonsuz boyutlu manifoldlar üzerinde

çalışılan Floer teorisinin fikirleri adapte edilerek çalışılmıştır. Tezin ilk kısmında Morse

fonksiyonları, moduli uzaylar ve Morse homoloji gibi Morse teorinin gerekli tüm tanımları

yapılmıştır. Morse homolojinin singuler homolojiye izomorfik olduğunu söyleyen Morse

Homoloji Teoremi ispatlanmıştır. Ayrıca Morse homolojinin cebirsel topolojiye bazı uygu-

lamaları gösterilmiştir. Tezin ikinci kısmında ise Morse-Bott fonksiyonları, moduli uzaylar

ve Morse-Bott homolojisine geçilmiş ve örnekleri verilmiştir. Son olarak, spektral diziler

kullanılarak Morse-Bott homolojinin hesapları kolaylaştırılmıştır.
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INTRODUCTION

Morse Theory originated at the beginning of the 20th century, via the work of Marston

Morse. The goal is to understand the topology of a manifold by studying a critical point

of a suitable real-valued function on it. After then, theory was developed by Thom, Smale,

Bott and Milnor and others.

In the classical Morse theory, given a finite dimensional manifold, we are interested in

the critical points of Morse functions which are real valued functions whose critical points

are nondegenerate and use them to understand the manifold. Currently, Morse theory

is studied on the infinite dimensional manifolds. In this thesis, we focus on the finite

dimensional manifolds, yet the ideas and techniques can be easily generalized to infinite

dimensional manifolds.

In the first chapter, we introduce the basic definitions concerning manifold theory. In

the second chapter, for a Morse function f and a generic metric g on a closed manifold

M , we define a moduli space M (p, q) as the space of flow lines from a critical point p to

another critical point q. A flow line γ : R→M is a solution of the differential equation

dγ

ds
= −gradf(γ(s)).

where gradf denote the gradient. (f, g) is called a Morse-Smale pair if the descending

manifold of p and the ascending manifold of q intersect transversely. Here, the descending

manifold of p and the ascending manifold of q are the set of all points in M that flow to p

and q in backward and forward time, respectively. We mention that given any Ck Morse

function f and a generic metric g, (f, g) is Morse-Smale. In the case that (f, g) is Morse-

Smale, M (p, q) is a smooth manifold of dimension i− j − 1 where i and j are the indices

of p and q respectively and i > j. Moreover, when the indices of p and q differ by one, zero

dimensional manifold M (p, q) is compact, hence finite. A generalization of compactness

results provides a necessary tool Morse complex who is denoted by CMorse
∗ (f, g). So, we

can construct the Morse homology denoted by HMorse
∗ (f, g).

In the third chapter, we prove that the Morse homology is independent of the choice

of a Morse function and a metric, i.e given two different Morse-Smale pairs (f1, g1) and

(f2, g2) we show that

HMorse
∗ (f1, g1) ∼= HMorse

∗ (f2, g2).

This proof is an adaptation of the analogous result in the infinite dimensional case which

is studied extensively in [2].
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In the fourth chapter, we prove the isomorphism between Morse homology and singular

homology which is an alternative way to conclude that the Morse homology depends only

on the smooth structure of the manifold M . This isomorphism can not be generalized in

an obvious way to infinite dimensional manifolds.

In the fifth chapter, we study the proofs of some well-known theorems from algebraic

topology such as Morse inequalities, Poincare duality and Kunneth formula by using Morse

homology.

The last chapter is on the Morse-Bott Theory which studies functions whose critical

points are not necessarily isolated, but form critical submanifolds. Such functions are

called Morse-Bott functions. To define the chain complex in the Morse-Bott case we use

moduli spaces of flow lines between critical submanifolds with simplicial complex of the

critical submanifolds. This complicated process produces many chain complexes associated

with a single Morse-Bott function f . There are also alternative ways of defining a Morse-

Bott complex. For example, [6] and [7] include three different approaches together with

the proof of the equivalence of these definitions. The fact that Morse-Bott homology is

independent of the choice of a Morse-Bott function and a generic metric implies that it

is isomorphic to singular homology of the manifold as the constant function is obviously

Morse-Bott. We give an alternative definition of the Morse-Bott homology using spectral

sequences and present some examples to clearify the definition.

We hope that it will be useful for those want to learn Morse theory with some basic

knowledge on differentiable manifolds. There is no original result in this thesis. It is based

on [15].
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LIST OF SYMBOLS/ABBREVIATIONS

M m dimensional smooth manifold

TM tangent bundle of M

T ∗M cotangent bundle of M

gradf the gradient vector field of f

dfp differential of f at p

H(f, p) Hessian of f at p

∇X(Y ) the covariant derivative of Y in the direction of X

Crit(f) the set of all critical points of f

Criti(f) the set of all critical points of f of index i

ind(p) the index of a critical point, the number of negative eigenvalues of the Hessian

W (p, q) the set of flow lines of the negative gradient vector field, −gradf
which converge to p and q

M (p, q) the quotient space of W (p, q) under the action of R
T (M) the set of all sections of TM

Lpk(U) the completion of C∞(U) with respect to the norm ‖.‖k,p
Lpk,loc locally Lpk maps

∇ψ the vertical differential of ψ

#M (p, q) the total sum of the elements in M (p, q)

CMorse
i (f, g) the free Z2-module generated by the elements of Criti(f)

Z2 the quotient ring of the ring of integers modulo the ideal of even numbers

HMorse
∗ (f, g) the Morse homology of the chain complex CMorse

∗ (f, g)

Ωm
c (M) the space of compactly supported smooth m-forms on M

i−(S) the dimension of the negative normal bundle NpS
−

i+(S) i−(S) + dim(S)

[i−(S), i+(S)] the index of the critical submanifold S

M (Sj, Sk) the set of unparametrised flow lines between the critical submanifolds Sj and Sk

e+ the endpoint map from M (Sj, Sk) to Sj sending γ 7→ lims→∞γ(s)

e− the endpoint map from M (Sj, Sk) to Sk sending γ 7→ lims→−∞γ(s)

A×C B the fiber product of A and B

O the orientation sheaf

C∗(S,O) the space of singular chains with coefficients in O
CBott
∗ the chain complex of a Morse-Bott function defined as

⊕
S Ck−i−(S)(S,O)

HBott
∗ (f, g) the Morse-Bott homology of the chain complex CBott

∗
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1 Preliminaries

In this chapter, we will present some basic definitions to understand the text. One can find

so many books and lecture notes concerning manifolds. We will follow only the reference

[18] through the text.

Definition 1.0.1. A manifold M of dimension n is a second countable, Hausdorff topolog-

ical space for which every point has a neighborhood U that is homeomorphic to an open

subset Ũ ⊂ Rn. In particular, it is a topological space locally homeomorphic to Rn. The

pair (U,ϕ) where ϕ : U → Ũ is a homeomorphism is called a chart or a local coordinate

system.

A manifold is called smooth if for any two distinct charts (U,ϕ) and (V, ψ) with U∩V 6=
∅, whenever ϕ ◦ ψ−1 : ψ(U ∩ V )→ ϕ(U ∩ V ) is a C∞ function.

Definition 1.0.2. A function f : M → R is called smooth if for all p ∈ M , there exists

a smooth chart (U,ϕ) such that p ∈ U and f ◦ ϕ−1 : ϕ(U) → R is smooth. C∞(M) is

defined to be the set of all smooth functions f : M → R. A function F : M → N is said

to be smooth if for all p ∈ M , there exist some smooth charts (U,ϕ) and (V, ψ) such that

p ∈ U , q ∈ V , F (U) ⊂ V and ψ ◦ F ◦ ϕ−1 is smooth from ϕ(U) to ψ(V ).

Definition 1.0.3. A map Xp : C∞(M)→ R is said to be a tangent vector at p if for every

f, g ∈ C∞(M) and a, b ∈ R, it satisfies

i. Xp(af + bg) = aXp(f) + bXp(g)

ii. Xp(fg) = f(p)Xp(g) + g(p)Xp(f)

Tangent vectors at a point p ∈M form a vector space and it is called the tangent space

at p denoted by TpM . As a vector space, its basis is { ∂

∂x1

∣∣∣∣
p

, .......,
∂

∂xn

∣∣∣∣
p

} where x1, ....., xn

are any local coordinate functions xi : U → R such that xi(p) = πi ◦ ϕ(p). Here,
∂

∂x1

∣∣∣∣
p

is

defined by
∂

∂xi

∣∣∣∣
p

f =
∂

∂xi

∣∣∣∣
ϕ(p)

(f ◦ ϕ−1)

for any chart (U,ϕ) and a smooth function f : U → R. The disjoint union of tangent

spaces at every point of the manifold is called the tangent bundle of M and denoted by

TM . We write an element of this disjoint union as an ordered pair (p,X) with p ∈M and

X ∈ TpM . We define a projection map π : TM →M , π(p,X) = p.
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Lemma 1.0.4. ([18]) For any smooth n-manifold M , the tangent bundle TM has a natural

topology and smooth structure that makes it into a 2n-dimensional smooth manifold. With

this structure π is smooth.

Indeed, since M is second countable, we can choose a countable collection of smooth

charts (Ui, φi) for M such that
⋃
i Ui = M . Given (Ui, φi), let (x1, ..., xn) denote the

coordinate functions of φi and define φ̃i : π−1(Ui)→ R2n by

φ̃i(p,
n∑
i=1

vi
∂

∂xi

∣∣∣∣
p

) = (x1(p), ..., xn(p), v1, ..., vn).

Then, we define the topology on TM by taking all sets of the form (φ̃i)
−1(V ) where V ⊂ R2n

is open, as a basis. In other words, we take the topology on TM which makes all φ̃i’ s

continouos.

The dual of the tangent space TpM is denoted by T ∗pM and called the cotangent space

at p. Then, the covectors (λ1|p, ..., λn|p), defined by

λi(
∂

∂xj

∣∣∣∣
p

) =

1, if i = j

0, if i 6= j

are the dual basis for T ∗pM and any covector w ∈ T ∗pM can be represented as
∑n

i=1 wiλ
i|p,

where wi = w(
∂

∂xi

∣∣∣∣
p

). Given (Ui, φi), let (x1, ..., xn) denote the coordinate functions of φi

and define φ̃i : π−1(Ui)→ R2n by

φ̃i(p,
n∑
i=1

wiλ
i|p) = (x1(p), ..., xn(p), w1, ..., wn).

The disjoint union of cotangent spaces at every point of the manifold is called the

cotangent bundle of M and denoted by T ∗M . The topology on T ∗M can be defined

similarly depicted as above.

Definition 1.0.5. A vector field X : M → TM is a map that assigns to each point p ∈M
a tangent vector at that point. In fact, it is a section of TM such that π ◦ X(p) = p for

all p ∈ M . X is called smooth if X : M → TM is a smooth map. The set of all sections

of TM is denoted by T (M).

Using the previous definition, we can define Xp =
∑n

i=1Xi(p)
∂

∂xi

∣∣∣∣
p

, where Xi : U → R,

p ∈ U , called the compenent functions of X in the given chart.
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Lemma 1.0.6. Let M be a manifold and X : M → TM be a vector field. If (U, (xi)) is

a smooth coordinate chart on M , then X is smooth if and only if its component functions

are smooth with respect to these local coordinates.

Let f be a smooth real-valued function on a smooth manifold M , f : M → R, We

define a covector field df , the differential of f , by

dfp(Xp) = Xpf

for Xp ∈ TpM . With local expression

dfp =
∂f

∂x1

(p) dx1|p + ....+
∂f

∂xn
(p) dxn|p

where (x1, ....., xn) are local coordinates around p.

Definition 1.0.7. A Riemannian metric on a smooth manifold M is a smooth 2-tensor

field g that satisfies the following conditions at each point of M :

gp : TpM × TpM → R

i. Symmetry:

∀Xp, Yp ∈ TpM , g(Xp, Yp) = g(Yp, Xp)

ii. Linearity:

∀a, b ∈ R, Xp, Yp, Zp ∈ TpM , g(aXp + bYp, Zp) = ag(Xp, Zp) + bg(Yp, Zp)

iii. Positive definiteness:

∀Xp ∈ TpM , g(Xp, Xp) ≥ 0

iv. Nondegeneracy:

g(Xp, Yp) = 0 ∀Yp ∈ TpM if and only if Xp = 0

which defines an inner product on TpM . By setting

g̃(Xp)(Yp) = g(Xp, Yp)

we get an isomorphism

g̃ : TpM → T ∗pM

12



such that Xp 7→ g̃(Xp) = g(Xp, ·).

With this isomorphism, we define a vector field called the gradient of f and denoted

by gradf such that

gradf = g̃−1( dfp).

We see that for any vector field X, it satisfies

g(gradf,X) = df(X) = Xf

or equivalently,

g(gradf, ·) = df.

With the Euclidean metric on Rn

gradf =
n∑
i=1

∂f

∂xi

∂

∂xi

otherwise

gradf =
n∑
i=1

n∑
j=1

(
gij

∂f

∂xj

)
∂

∂xi
.

Definition 1.0.8. Let X be a smooth vector field on M . An integral curve is a smooth

curve ψ : R→M such that

ψ̇(t) = Xψ(t)

for all t ∈ R.

Example: Consider the following vector field on R2: X = y
∂

∂x
+ y2 ∂

∂y
. We will find the

integral curve ψ(t) with ψ(0) = (a, b) for b = 0 and b 6= 0 seperately and find the values of t

where ψ(t) is defined. Let us write ψ : R→ R2 where ψ(t) = (x(t), y(t)) and ψ
′
(t) = Xψ(t).

So,

x
′ ∂

∂x

∣∣∣∣
ψ(t)

+ y
′ ∂

∂y

∣∣∣∣
ψ(t)

= y
∂

∂x

∣∣∣∣
ψ(t)

+ y2 ∂

∂y

∣∣∣∣
ψ(t)

.

We obtain two first order differential equations x
′

=
dx

dt
= y and y

′
=

dy

dt
= y2. If y 6= 0,

we can solve the second seperable equation by integrating both sides, y−2 dy = dt. So,

y(t) =
−1

t+ c
. Again, if y 6= 0, we can solve the first seperable equation

dx

dt
=
−1

t+ c
. So,

x(t) = ln

∣∣∣∣ d

t+ c

∣∣∣∣. Note that if y = 0,
dy

dt
= y2 is also satisfied and in this case, x(t) = c.
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So, when (a, b) = (a, 0), ψ(t) = (a, 0) so that ψ(0) = (a, 0). If b 6= 0,

ψ(t) =

(
ln

∣∣∣∣ ea

bt − 1

∣∣∣∣ , −bbt − 1

)
so that ψ(0) = (a, b). Moreover, if ψ(0) = (a, b) with b = 0, ψ(t) = (a, 0) so that ψ is

defined for all t ∈ R. If ψ(0) = (a, b) with b 6= 0, ψ(t) =

(
ln

∣∣∣∣ ea

bt − 1

∣∣∣∣ , −bbt − 1

)
so that ψ is

defined for all t ∈ R−
{

1

b

}
.

14



2 Morse Homology

2.1 Morse Functions

Let M be a smooth manifold and f : M → R be a smooth function.

Definition 2.1.1. A point p ∈M is called a critical point for f if dfp = 0. A point which

is not critical is called a regular point. Critical values are points in the image of critical

points and regular values are points in R with no critical point in the pre-image under f .

Definition 2.1.2. The Hessian of f at a critical point p, H(f, p) : TpM → T ∗pM is defined

by H(f, p)(v) = ∇v( df) where ∇ is any connection on TM , v ∈ TpM .

A connection, [19], in TM is a map

∇ : T (M)×T (M)→ T (M)

defined by ∇(X, Y ) = ∇XY which satisfies the following conditions for any function f, g ∈
C∞(M) and a, b ∈ R:

i. ∇XY is linear over C∞(M), i.e. ∇fX1+gX2Y = f∇X1Y + g∇X2Y

ii. ∇XY is linear over R, i.e. ∇X(aY1 + bY2) = a∇XY1 + b∇XY2

iii. ∇ satisfies the Leibniz rule, i.e. ∇X(fY ) = f∇XY + (Xf)Y

Observe that the definition of the Hessian does not depend on the choice of the con-

nection: The fact that ∇ is a connection means that for any function f ∈ C∞(M)

∇fv( df) = f∇v( df)

and

∇v(f df) = f∇v( df) + v(f) · df

Note that ∇ is linear over C∞(M) in v, but not in df . Also, v(f) does not depend

on ∇. Indeed, if ∇1 and ∇2 are two different connections on TM , the difference of these

connections is linear in both v and df . Hence, the tensor T (v, df) = ∇1
v( df) − ∇2

v( df)

satisfies T (v, 0) = 0 because T is a linear operator in df for every fixed v. Since df

vanishes at a critical point p, we get (∇1 −∇2)v( df) = 0 at p. Consequently, ∇1 = ∇2.
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By using the Riemannian metric, the Hessian can be defined as a symmetric bilinear

map [5], H(f, p) : TpM × TpM → R given by H(f, p)(v, w) = ṽ(w̃(f))p = ṽp(w̃(f)), where

ṽ and w̃ are smooth vector fields such that ṽp = v and w̃p = w. Hessian is bilinear; it is

also symmetric:

H(f, p)(v, w)−H(f, p)(w, v) = ṽp(w̃(f))− w̃p(ṽ(f)) = [ṽ, w̃]p(f) = dfp([ṽ, w̃]) = 0

Hence, Hessian is symmetric bilinear map on TpM because dfp = 0 for critical point p.

Also, H(f, p) is independent of the choice of the extensions of v and w since ṽp(w̃(f)) =

v(w̃(f)) and w̃p(ṽ(f)) = w(ṽ(f)). If x1, ....., xn are local coordinates for M near p and

v =
∑n

i=1 vi(p)
∂

∂xi
|p, w =

∑n
i=1wi(p)

∂

∂xi
|p, we can take w̃ =

∑n
i=1wi

∂

∂xi
. Then

H(f, p)(v, w) = v(w̃(f) = v

(
n∑
i=1

wi
∂f

∂xi

)
=

n∑
i=1

n∑
j=1

ajbi
∂2f

∂xi∂xj

So, H(f, p) is locally represented in terms of the basis

{
∂

∂x1

, ...,
∂

∂xn

}
by the matrix(

∂2f

∂xi∂xj

)
n×n

.

Definition 2.1.3. Let p be a critical point of f : M → R.

i. The critical point p is called non-degenerate if the Hessian does not have zero as an

eigenvalue.

ii. The index of a non-degenerate critical point, ind(p), is defined to be the number of

negative eigenvalues of the Hessian.

Lemma 2.1.4. [5] Non-degenerate critical points are isolated.

Proof. Consider a chart ϕ : U → Rn, with U as an open neighborhood of a non-degenerate

critical point p, and ϕ(p) = 0. Define the map g : ϕ(U)→ Rn given by

g(x) =

(
∂(f ◦ ϕ−1)

∂x1

(x), ...,
∂(f ◦ ϕ−1)

∂xn
(x)

)
Then g(0) = 0 and since p is non-degenerate, dg is nonsingular . By the Inverse Function

Theorem [18], g is a diffeomorphism of some open neighborhood V of p; in particular it is
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injective. This implies that g(x) 6= 0 for 0 6= x ∈ V . So, x can not be a critical point for

f .

Definition 2.1.5. We say that a real valued function f on a manifold M is Morse if all

of its critical points are non-degenerate.

From now on, f denotes a Morse function.

2.2 The gradient flow

Let g be a metric on M , and let −gradf be the negative gradient of f with respect to

g. Since gradient vector field is complete (i.e, its flow curves exist for all time), −gradf
generates a one-parameter group of diffeomorphisms ψs : M → M by sending p ∈ M

to the point obtained by following the integral curve starting at p for time s, i.e ψs is a

diffeomorphism for all s ∈ R such that ψs+t = ψs ◦ ψt, ψ0 = id and for any point p ∈ M
we have

dψs
dt

(p) = −gradf(ψs(p))

The fact that ψs(p) is an integral curve for a fixed point p ∈ M implies that any two

different flows can not cross: if the flows intersect at any point y, then the tangent vectors

at y must be the same, but this means that these two flows coincide.

Definition 2.2.1. Let p be a critical point.

i. The descending manifold of p is defined to be:

D(p) =

{
x ∈M : lim

s→−∞
ψs(x) = p

}

ii. The ascending manifold of p is defined to be:

A (p) =
{
x ∈M : lim

s→∞
ψs(x) = p

}
D(p) and A (p) are the set of all points in M that flow to critical points in backward

and forward time respectively. The descending manifold is sometimes called the unstable

manifold and the ascending manifold is sometimes called the stable manifold. We can

define stable and unstable sets for any dynamical system, however they may not always

form submanifolds.
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Proposition 2.2.2. If p is a non-degenerate critical point, then D(p) and A (p) are em-

bedded discs in M with dimensions ind(p) and dim(M) − ind(p), respectively. Further,

TpD ⊂ TpM is the negative eigenspace of H(f, p) and TpA ⊂ TpM is the positive eigenspace

of H(f, p).

For the proof see [13] or [5].

Definition 2.2.3. A pair (f, g) is said to be Morse-Smale if f : M → R is a Morse

function and for all p, q ∈ Crit(f), the descending manifold D(p) is transverse to the

ascending manifold A (q), where Crit(f) is the set of all critical points of f .

Remark 2.2.4. Let M be a smooth manifold. Two embedded submanifolds S1, S2 ⊂M are

said to be transverse if for each p ∈ S1 ∩ S2, the tangent spaces TpS1 and TpS2 together

span TpM , i.e TpM = TpS1 + TpS2 for all p ∈ S1 ∩ S2.

Proposition 2.2.5. If two submanifolds S1 and S2 of M are transversal, then S1 ∩ S2 is

a submanifold of M and dim(S1 ∩ S2) = dim(S1) + dim(S2)− dim(M).

2.3 The Moduli Spaces

Given a pair of critical points p, q ∈M , we consider the set of flow lines of negative gradient

vector field −gradf which converge to p and q in forward and backward time, respectively.

W (p, q) =

{
γ : R→M :

dγ

ds
= −gradf(γ(s)), lim

s→−∞
γ(s) = p, lim

s→∞
γ(s) = q

}
.

There is a one-to-one correspondence between D(p) ∩ A (q) and W (p, q) as sets because

given any point x in the intersection of descending and ascending manifolds of p and q,

respectively, there is a flow line γs(0) = x. In fact all flow lines passing through that point

are equivalent up to parametrization. Also, R acts on W (p, q), R × W (p, q) −→ W (p, q)

such that

(t, γ)(s) = γ(s+ t).

The quotient

M (p, q) = W (p, q)/R

is the moduli space of flow lines by this action. Under this action, the elements of M (p, q)

are unparametrised flow lines. We now show that M (p, q) admits a unique smooth struc-

ture of dimension ind(p)− ind(q)− 1.
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Definition 2.3.1. A Lie group is a smooth manifold G that is also a group such that

the multiplication map m : G × G → G, (g, h) 7→ gh and the inversion map i : G → G,

g 7→ g−1 are both smooth.

Theorem 2.3.2. (Quotient Manifold Theorem, [18]) Suppose a Lie group G acts

smoothly, freely, and properly on a smooth manifold M . Then the quotient space M/G is

a topological manifold of dimension dimM − dimG, and it has a unique smooth structure

with the property that the quotient map π : M →M/G is a smooth submersion.

Since, there is a natural Lie group structure on R under addition, it is enough to prove

that the action defined above is smooth, free and proper. The action is free: given any

t ∈ R with the property that t · γ = γ, t · γ(s) = γ(s). This implies γ(s + t) = γ(s). So,

t = 0. Moreover, the action is proper:

Proposition 2.3.3. ([18], Proposition 9.13) A smooth action of a Lie group G on M is

proper if and only if the following condition is satisfied: If pi is a convergent sequence

in M and gi is a sequence in G such that {gi · pi} converges, then there is a convergent

subsequence of {gi}.

In the sense of this proposition, we will show that the R-action given by t·γ(s) = γ(s+t)

is proper: Let {γn} and {tn} be sequences of W (p, q) and R, such that γn → γ ∈ W (p, q)

and tn · γn → α ∈ W (p, q). Our aim is to show that {tn} is included in a compact set

K ⊂ R. Suppose for the contrary that {tn} is not contained in a compact subset of R.

Then, it can not be bounded, so there exists a subsequence {tnk
} such that tnk

→∞. Since

γn(.)→ γ(.) ∈ W (p, q) uniformly, given any ε

d(γn, γ) < ε.

On the other hand, tnk
· γ → q and tnk

· γn → α ∈ W (p, q). So, α = q.

Proposition 2.3.4. Let p 6= q be two critical points of a Morse-Smale pair (f, g). If

W (p, q) is non-empty, it is a smooth manifold of dimension ind(p)− ind(q).

Proof. This follows from Proposition (2.2.5), because Morse-Smale property of (f, g) as-

sures the transversality of D(p) and A (q). Also dim(W (p, q)) = ind(p)+ind(M)−ind(q)−
ind(M) = ind(p)− ind(q).

Consequently, theorem 2.3.2 and proposition 2.3.3 guarantees that M (p, q) is a smooth

manifold with dimension ind(p)− ind(q)− 1.
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2.4 Transversality

In Proposition 2.3.3, we have shown that W (p, q) is a manifold of dimension ind(p)−ind(q)

by using Proposition 2.2.5. As a consequence, we observe that M (p, q) is actually a

manifold of dimension ind(p) − ind(q) − 1. Now, we will give a sufficient condition for a

pair (f, g) to be Morse-Smale.

Theorem 2.4.1. Let M be a closed smooth manifold, let k be a positive integer, and let

f : M → R be a Ck+1 Morse function on M . Then for a generic Ck metric on X, the pair

(f, g) is Morse-Smale.

Definition 2.4.2. A property defined for elements of a topological space X is said to be

generic if it is satisfied by a subset of objects in X which contains a countable intersection

of open dense sets.

For the proof of theorem 2.4.1, we are going to state some definitions and results in

functional analysis. More details are described in [1].

Definition 2.4.3. For an open set U ⊂ Rn, Lpk(U) is the completion of C∞(U) with respect

to the norm ‖.‖k,p

‖u‖k,p =
∑
|I|≤k

(∫
U

|∂Iu|p dx

)1/p

where I = (i1, i2, ..., in), ∂I = (∂1)i1 .....(∂n)in , ∂j =
∂

∂xj
and |I| = i1 + i2 + ....+ in.

We can also define Lpk for a compact manifold M . Lpk(M) is the completion of C∞(M)

with respect to the norm defined below. Since M is compact, we pick a finite cover by

charts

ϕi : Ui ⊂M → Vi ⊂ Rn.

For u : M → Rn, define ‖u‖k,p =
∑

i ‖u ◦ ϕ
−1
i ‖Lp

k(Vi). We sometimes use the notation Lpk
instead of Lpk(M).

Note that we construct completions by eliminating the Cauchy sequences which do not

converge to any point. Changing the choice of chart, we get an equivalent norm because

M is compact. For all choice of p, Lpk is a Banach space and it is a Hilbert space if p = 2.

Remark 2.4.4. Lpk,loc means the set of locally Lpk maps, i.e it is the completion of smooth

compactly supported functions C∞c with respect to the topology that un converges to u if

and only if un converges to u on any compact set C ⊂⊂ U means that C is open in U and

C ⊂ C ⊂ U.
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Theorem 2.4.5. (Sobolev embedding theorem, [1]) Let M be an n-dimensional man-

ifold.

If k > k
′

and k − n

p
≥ k

′ − n

p′
, then there is an embedding

Lpk ↪→ Lp
′

k′
.

If k − n

p
> l, then there is a continuous embedding

Lpk(M) ↪→ C l(M).

So, on a 1-manifold, L2
1 ⊂ C0.

Corollary 2.4.6. Theorem holds for Lpk,loc, i.e if k > k
′

and k − n

p
≥ k

′ − n

p′
, then there

is an embedding

Lpk,loc ↪→ Lp
′

k′ ,loc
.

If k − n

p
> l, then there is a continuous embedding

Lpk,loc(M) ↪→ C l(M).

Proof. Let u ∈ Lpk,loc(M). So, the restriction of u on a compact set C, u|C , is in Lpk(M). By

theorem for Lpk, u|C is in Lp
′

k′
(M), and u|C is in C l(M) for k − n

p
> l and k − n

p
≥ k

′ − n

p′
.

So, u ∈ Lp
′

k′ ,loc
and u ∈ C l(M).

If V and W are Banach spaces, then a function f : V → W is differentiable at p ∈ V
if there exists a bounded linear map dfp : V → W such that

lim
v→0

‖f(p+ v)− f(p)− dfp(v)‖
‖v‖

= 0.

If such a dfp exists, then it will be unique. If f is differentiable for all p, then we obtain

df : V → Hom(V,W ), and we can talk about the differentiability of f . So, we can define

infinite dimensional manifold structure for infinite dimensional Banach spaces.

Definition 2.4.7. A (smooth) Banach manifold M is a Hausdorff, second countable topo-

logical space with a cover Uα and a collection of charts ϕα : Uα → ϕα(Uα), where ϕα(Uα)
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is open in some Banach space Xα. Given any two charts (U,ϕ) and (V, φ), we have that

φ ◦ ϕ−1 : ϕ(U ∩ V ) → φ(U ∩ V ) and ϕ ◦ φ−1 : φ(U ∩ V ) → ϕ(U ∩ V ) are C∞ mappings

between open sets. If chart spaces Xα’ s are equal to a fixed Banach space X, then we say

that M is a Banach manifold modelled on X.

Example. Let M and N be closed manifolds. Then Ck(N,M) =
{
f : N →M |f ∈ Ck

}
is a C∞ Banach manifold, [10].

We can also develop many notions of the finite dimensional manifolds to Banach man-

ifolds such as Inverse Function Theorem, Implicit Function Theorem and Transversality

definitions. Sard’s Theorem can not be used directly as in the finite dimensional case, but

it also works under some specific conditions.

Theorem 2.4.8. Let f : M → N be a Ck map between Banach manifolds. If q ∈ N is

a regular value, then f−1(q) is a Ck submanifold of M with Tpf
−1(q) = ker( dfp) for all

p ∈ f−1(q).

Definition 2.4.9. Let V and W be Banach spaces. A continuous linear map F : V → W

is Fredholm if the following conditions are satisfied:

i. the kernel of F is finite dimensional, dimKer(F ) <∞.

ii. the image of F has finite codimension in W , dimCoker(F ) <∞.

iii. image of F is closed in W .

If F is Fredholm, then the index of F is defined to be,

ind(F ) = dimKer(F )− dimCoker(F ).

Example: For 0 < p < ∞, `p is the subspace of the set of all real sequences (xn)n∈N,

satisfying ∑
n

|xn|p <∞.

Consider the right and left shift operators R and L defined respectively by R(x1, x2, ...) =

(0, x1, x2, ...) and L(x1, x2, ...) = (x2, x3, ...). These are Fredholm operators. Note that

kerR = 0, cokerR ∼= R and kerL ∼= R, cokerL = 0.

Remark 2.4.10. Consider the set of Fredholm operators F (V,W ) with the norm topology,

then ind : F (V,W )→ Z is locally constant because of discreteness of Z.
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Definition 2.4.11. A map F : M → N between Banach manifolds is a Fredholm map of

index k if

dFp : TpM → TF (p)N

is a linear Fredholm operator of index k for all p ∈M .

Now, we are ready to state Sard-Smale theorem for Banach manifolds.

Theorem 2.4.12. Let M and N be seperable Banach manifolds. If F : M → N is a Ck

Fredholm map and k > max(0, ind(F )), then a generic q ∈ N is a regular value of F , i.e.

dFp is onto for all p ∈ F−1(q), so by Theorem 2.4.8, F−1(q) is naturally a submanifold of

dimension ind(F ).

Proof. See [25].

Let M and E be Banach manifolds. A smooth surjective map π : E → M is said

to be a Banach bundle, [20], if there is an open cover {Uα} of M and smooth maps

ϕα : π−1(Uα) → Uα ×Wα, where Wα is a Banach space such that for any two maps ϕα,

ϕβ the map Uα ∩ Uβ → Lin(Wα,Wβ), defined by p 7→ (ϕβ ◦ ϕ−1
α )p, is smooth. Here

Lin(X, Y ) denotes the space of all continuous linear maps from a topological vector space

X to a topological vector space Y . Also Ep = π−1(p) is a Banach space. We will write the

elements of E as pairs (p, e) ∈ M × E where π(e) = p. The tangent space of E at (p, 0)

naturally splits into two parts

T(p,0)E = TpM ⊕ Ep.

For p ∈M , let πp : T(p,0)E → Ep be the projection onto the second factor. If s : M → E

is a section, then we define a new function which is a composition of two functions defined

as above, πp ◦ dsp : TpM → Ep. From now on, we will denote the composition as ∇sp, i.e.

∇sp = πp ◦ dsp. Now we state and prove a theorem which is very useful for the proof of

Theorem 2.4.1.

Theorem 2.4.13. Let M and N be seperable Banach manifolds, E → M ×N a Banach

space bundle, and s : M × N → E a smooth section. Suppose that for all (p, q) ∈ s−1(0),

the following hold:

i. The differential ∇s(p,q) : T(p,q)(M ×N)→ E(p,q) is surjective.

ii. The restricted differential ∇s(p,q) : TqN → E(p,q) is Fredholm of index l.
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Then, for a generic q ∈M , the set {q ∈ N |s(p, q) = 0} is an l-dimensional submanifold

of N . Moreover, ∇s(p,q) is surjective on the tangent space to N .

Proof. By the first condition on s, we can say that ∇s(p,q) is not zero, so (p, q) is a regular

point, the image of this point is 0 and the implicit function theorem implies that s−1(0)

is a Banach submanifold of M × N . Let π : s−1(0) → M be the projection onto the first

factor. We claim that for each (p, q) ∈ s−1(0), the projection dπ : T(p,q)s
−1(0) → TpM is

Fredholm. To prove that this claim, we first observe that the kernel of dπ and the kernel

of ∇s(p,q) are isomorphic, i.e.

ker( dπ : T(p,q)s
−1(0)→ TpM) ∼= ker(∇s(p,q) : TqN → E(p,q)).

Since dπ(v, w) = v,

ker( dπ) =
{

(0, w) ∈ T(p,q)(M ×N)|∇s(p,q)(w) = 0
}

∼=
{
w ∈ TqN |∇s(p,q)(w) = 0

}
= ker(∇s(p,q)).

So, the dimension of ker( dπ) is finite. Secondly, we observe that the cokernel of dπ

and the cokernel of ∇s(p,q) are isomorphic, i.e.

coker( dπ : T(p,q)s
−1(0)→ TpM) ∼= coker(∇s(p,q) : TqN → E(p,q))

that is, we will show that

TpM/im( dπ) ∼= E(p,q)/im(∇s(p,q)).

The map ϕ : TpM
i→ T(p,q)(M ×N)

∇s(p,q)→ E(p,q)
π̃→ E(p,q)/im(∇s(p,q)) defined by v 7→ (v, 0)

is a linear map. It is onto because of the first condition on the theorem. Now, it is

enough to show that ker(ϕ) = dπ(T(p,q)s
−1(0)): image of any element in ker(ϕ) is also in

im(∇s(p,q)), on the other hand, we know that

dπ(T(p,q)s
−1(0)) = {v ∈ TpM |∇s(v, 0) ∈ ∇s(TqN)}
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So, the equality desired above is satisfied. Therefore, by the first isomorphism theorem, the

finite dimensional cokernel property follows from the discussion above. Finally, it remains

to be proven that the image of dπ is closed. This follows from the fact that ∇s(TqN) is

closed and the inverse image of a closed set under the continuous function is closed. Note

that im( dπ) is the pre-image of im(∇(p,q)s) under the continuous map v 7→ ∇s(v, 0).

By theorem 2.4.13, Sard-Smale theorem, and claim, a generic p ∈M is a regular value

of π : s−1(0) → M . This implies that for such a p, the set π−1(p) = {q ∈ N |s(p, q) = 0}
is a submanifold of N by the implicit function theorem. Again by Sadr-Smale theo-

rem, we have that dimension of π−1(p) is the index of ind( dπ) and dimCoker( dπ) =

0. Since dimCoker( dπ) = dimCoker(∇s(p,q)) and ker( dπ) = ker(∇s(p,q)), dimension

of {q ∈ N |s(p, q) = 0} is equal to index of ∇s(p,q) which equals to l. Moreover, since

dimCoker(∇s(p,q)) = 0, for each (p, q) is in this submanifold, the restricted differential

∇s(p,q) : TqN → E(p,q) is surjective.

Proof of Theorem 2.4.1: We start proving theorem 2.4.1 by fixing distinct critical points

p 6= q ∈ Crit(f). Let Y be the space of all Ck-metrics on M . Note that Y is smooth Banach

manifold: see, [11]. Let Z be the space of locally L2
1 maps γ : R→M , i.e. γ ∈ L2

1,loc(R,M)

such that:

• lims→−∞ γ(s) = p and for any sufficiently negative R such that γ(−∞, R] is contained

in a coordinate chart around p, we have γ|(−∞,R] ∈ L2
1((−∞, R], TpM).

• lims→∞ γ(s) = q and for any sufficiently positive R such that γ[R,∞) is contained in

a coordinate chart around q, we have γ|[R,∞) ∈ L2
1([R,∞), TpM).

By Theorem 2.4.5 and its corollory, L2
1,loc(R,M) ⊂ C0

loc(R,M), so γ ∈ Z is continuous,

and requiring convergence to p, q while s is going to ∓∞ makes sense. Note that Z is a

smooth Banach manifold modelled on L2
1(R,Rn) with TγZ = L2

1(γ∗TM).

Recall that the pullback bundle of Ck bundle E over M with projection π : E →M is

a new Ck bundle f ∗E over N with projection map π̂ : f ∗E → N , where f : N → M is a

Ck map between smooth manifolds N and M . If α : π−1(U)→ U ×Ef(x) is a trivialization

of E, then

α̂ : π̂−1(f−1(U))→ f−1(U)× Ex

is a trivialization of f ∗E. The fibre of f ∗E over a point x ∈ N is the fiber of E over

f(x) ∈M .

Let E → Z be the Banach space bundle whose fiber bundle over γ ∈ Z is Eγ :=
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L2(γ∗TM), the space of L2-sections of γ∗TM , whose fibre is (γ∗TM)s = Tγ(s)M over

s ∈ R. We can then define the section ψg : Z → E by γ 7→ γ
′
(s) + gradf(γ(s)). We now

extend the section ψg to a section ψ : Y × Z → E∗, E∗ is the pullback of the bundle E to

Y × Z via projection to Z, as follows

ψ(g, γ)(s) = γ
′
(s) + gradf(γ(s)).

First, we will show that ψ is a well-defined section: the derivative
d

ds
: L2

1 → L2 is

well-defined, so the issue comes from gradf . Since gradf is Ck, it is L2 on compact sets, so

we just need to check that gradf(γ) is L2 near the ends. Locally, near the critical point p,

we have an estimate |gradf(x)| ≤ c|x| (This inequality comes from the Taylor expansion

because of the equality gradf(p) = 0). Hence, |gradf(γ)| ≤ c|γ|, so gradf(γ) is in L2 near

ends since γ ∈ L2.

If ψ(g, γ) = 0, then γ is a Ck+1 negative gradient flow line of f from p to q with respect

to g:
dγ

ds
= γ

′
= −gradf(γ)

is continuous since γ is continuous. So, γ is in C1. This implies that gradf(γ) is C1. So,

γ is C2. From this way we conclude that γ is Ck+1.

We claim now that the hypothesis of Theorem 2.4.13 are satisfied: If ψ(g, γ) = 0, then

∇ψ(ġ, γ̇) = ∇γ′ γ̇ −∇γ̇(gradf)− (gradf)
′
.

For the computation of this formula, see [15].

We start to verify the statements of Theorem 2.4.13. First, we will show that ∇ψ is

surjective. Assume ∇ψ is not onto. If we can show that the image of ∇ψ is closed then

there is a nonzero w ∈ L2(γ∗TM) such that∫
〈∇ψ(ġ, γ̇), w〉 ds = 0

for all (ġ, γ̇) ∈ T(g,γ)(Y × Z). By choosing γ̇ is zero, we get∫ 〈
(gradf)

′
, w
〉

ds = 0

for all ġ ∈ TgY .
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We now assume that the restricted map ∇ψg is Fredholm (we will show it later). We

use this assumption to show that ∇ψ is closed: since im(∇ψg) ⊂ im(∇ψ), im(∇ψ) =

im(∇ψg)⊕ (C ∩ im(∇ψ)) where C is the complement of im(∇ψg) in E(g,γ) and it is finite

dimensional. Then, C ∩ im(∇ψ) is also finite dimensional. So, im(∇ψ) is closed because

of closedness of im(∇ψg)).
Fix s0 ∈ R. For any vector w in the fibre of γ∗TM over s0, we claim that there is a

ġ ∈ TgY such that (gradf)
′
= w: since df = g(gradf, .), locally gradf = g−1( dfp). So

(gradf)
′
ġ = (

d

dt

∣∣∣∣
t=0

(g + tġ)−1) dfp

= (
d

dt

∣∣∣∣
t=0

[g · (1 + tg−1ġ)]−1) dfp

= (
d

dt

∣∣∣∣
t=0

(1 + tg−1ġ)−1 · g−1) dfp

= (
d

dt

∣∣∣∣
t=0

(1− tg−1ġ + t2(g−1ġ)2 − · · · )) · g−1 dfp

= −g−1ġg−1 dfp

By taking ġ = gSg, where S is the symmetric matrix, (gradf)
′
ġ will be symmetric and

since it is arbitrary at s0, we pick ġ so that (gradf)
′
= w.

By our assumption, w is nonzero so we can fix an s0 such that w(s0) 6= 0. So, we can

choose ġ such that (gradf)
′
(s0) = w(s0). So,

〈
(gradf)

′
, w
〉

is greater than 0. By multiplying

ġ by a bump function β : R→ R, 0 away from γ(s0) and 1 at γ(s0), ˜̇g(s) = β(s)ġ(s). Using

the Ck-smoothness of w, ∫ 〈
(gradf)

′
, w
〉

ds > 0

a contradiction, so ∇ψg must be onto.

Secondly, we now show that the restricted differential ∇ψ(g,γ) : TγZ → E(g,γ) defined

by γ̇ 7→ ∇γ′ γ̇ + ∇γ̇(gradf) is Fredholm. If we travialize γ∗TM using parallel translation

with respect to ∇ on TM in the following way, see [19] : Let e1, e2, ..., em be the basis of

γ∗TM with ∇γ′ei = 0 and γ̇ = (V 1, V 2, ..., V m)T =
∑
V iei. Then ∇γ′ γ̇ =

∑
∂sV

iei and
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∇γ̇(gradf) =
∑
AsV

jei, so in this trivialization, we have

∇ψ(g,γ) : L2
1(R,Rn)→ L2(R,Rn)

defined by γ̇ 7→ (∂s −As)γ̇ where As : Rn → Rn is defined by As(w) = ∇w(gradf(γ(s)), in

fact As is the covariant derivative from Tγ(s)M to Tγ(s)M . From the definition of Hessian,

we observe that lims→−∞As = −H(f, p) and lims→∞As = −H(f, q). Since these are

self-adjoint and invertible, theorem stated below applies to prove the Fredholm property.

Theorem 2.4.14. Let H be Hilbert space and let {As|s ∈ R} be a continuous family of

operators on H . We assume that As converges in the norm topology to invertible self-

adjoint operators A± as s→ ±∞. Then the operator

∂s − As : L2
1(R,H )→ L2(R,H )

is Fredholm, and ind(∂s − As) = −SF {As}.

The term SF {As} is called the spectral flow of the family of operators As. It equals

the number of eigenvalues of As which pass from negative to positive as s goes from −∞
to∞ minus the number of eigenvalues of As which pass from positive to negative as s goes

from −∞ to ∞. So,

SF {As} = ind(H(f, p))− ind(H(f, q))

= ind(p)− ind(q)

We prove the theorem for a finite dimensional Hilbert space H . Since the finite di-

mensional Hilbert spaces are isomorphic to Rn, we use Rn instead of H . Before proving

this theorem we state a powerful lemma, [28].

Lemma 2.4.15. Suppose that A, B and C are Banach spaces, L : A → B is a bounded

linear operator, and K : A → C is a compact linear operator. If ||a||A ≤ c.(||La||B +

||Ka||Z) for all a ∈ A and c is a constant, then L has a closed range and a finite dimensional

kernel.

In our case, A = L2
1(R,Rn), B = L2(R,Rn), C = L2([−S, S],Rn), and the maps

L = ∂s−As and K is the restriction. K is a compact and bounded linear operator because
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of Sobolev embedding theorem. For the inequality in lemma, see [2]. So, L = ∂s − As has

closed range and finite dimensional kernel. Now, our aim is to show that the cokernel of

L = ∂s − As is also finite dimensional, so ∂s − As will be Fredholm. Before showing this

we will identify kernel of ∂s−As and determine its dimension to compute the index of the

operator ∂s − As.

For each h ∈ Rn, by the fundamental theorem of ODE’s, there exists a unique differ-

entiable function fh : R→ Rn solving the equation

(∂s − As)fh(s) = 0

fh(0) = h

In fact, since Rn is not compact, the existence theorem for ODE’s gives us the short-time

solution defined for s ∈ (−δ, δ) for some δ > 0. But in our case the short-time solution

can be continued for all time because we have a uniform upper bound for the eigenvalues

of A. This function fh may or may not be in L2
1. Accordingly, we define

H + =
{
h ∈ Rn : lim

s→∞
fh(s) = 0

}
and

H − =

{
h ∈ Rn : lim

s→−∞
fh(s) = 0

}
Lemma 2.4.16. The map

Ψ : H + ∩H − → Ker(∂s − As)

defined by h 7→ fh is an isomoprhism.

Proof. First, we need to show that fh ∈ L2
1: (∂s − As)fh = 0 implies that fh is in C1. So,

either fh(s)→∞ as s→∞ or fh(s)→ 0 exponentially fast as s→∞. When fh(s)→∞,

fh /∈ L2, so not in L2
1. When fh(s)→ 0 exponentially fast, fh ∈ L2. So, ∂sfh = Asfh ∈ L2.

This implies that fh ∈ L2
1.

Ψ is one to one: Suppose fh = 0. This implies that fh(s) = 0 for all s ∈ R. So,

fh(0) = 0 as well, and it is equal to h by the initial condition. So, h = 0 and Ker = {0}.
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Ψ is onto: Let f ∈ ker(∂s−As) ⊂ L2
1. This implies that f goes to 0 as s→∞. Hence,

f = fh for h = f(0).

Moreover, if E−(A+) denotes the negative eigenspace of A+ and E+(A−) denotes the

positive eigenspace of A−, then we have isomorphisms

H + → E−(A+)

defined by h 7→ |h| lims→∞
fh(s)

|fh(s)|
.

Similary,

H − → E+(A−)

Thus, we get the equality dim(H +)= dim(E−(A+)) and dim(H −)= dim(E+(A−)).

Now we examine the cokernel of ∂s − As. To do this, we first study some details in

functional analysis.

Let L : A → B be a bounded linear operator, where A is a Banach space and B is a

Hilbert space.

Fact 1: If im(L) is closed, then cokerL ∼= (imL)⊥ = {b ∈ B| 〈La, b〉 = 0} for all a ∈ A: In

general, if V ⊂ B is a closed subspace, then B = V ⊕ V ⊥, so V ⊥ ∼= B/V .

Definition 2.4.17. The formal adjoint L∗ : A∗ → B∗ of L : A → B, where A and B are

Hilbert space, is defined by ∫
M

〈La, b〉B =

∫
M

〈a, L∗b〉A

for all a ∈ A and b ∈ B.

Fact 2: (imL)⊥ ∼= kerL∗: b⊥imL⇔ 〈La, b〉 = 0 = 〈a, L∗b〉 ∀a ∈ A⇔ L∗b = 0

Given the fact that the image of ∂s−As is closed and the Fact 1, we have the following

isomorphism

coker(∂s − As) ∼= im(∂s − As)⊥

The formal adjoint of ∂s − As exists [2] and equals to −∂s − A∗s: since (L2
1)∗ = L2

1 and
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(L2)∗ = L2, the formal adjoint is defined from L2
1 to L2. So, we have

∫
M

〈(∂s − As)f, g〉 ds =

∫
M

〈f, (∂s − As)∗g〉 ds

=

∫
M

〈f, ∂∗sg〉 ds−
∫
M

〈f, A∗sg〉 ds

=

∫
M

〈f, (−∂s − A∗sg〉 ds

Then, the cokernel of ∂s−As is just the kernel of its adjoint; coker(∂s−As) = ker(∂s+

A∗s)

Lemma 2.4.18. The map

ker(∂s + A∗s)→ (H +)⊥ ∩ (H −)⊥

defined by f̃ 7→ f̃(0) is an isomorphism.

Proof. The map is well-defined: Suppose f̃ ∈ ker(∂s + A∗s) and let h ∈H ±. So, we have

∂s

〈
f̃ , fh

〉
=
〈
∂sf̃ , fh

〉
+
〈
f̃ , ∂sfh

〉
=
〈
−A∗sf̃ , fh

〉
+
〈
f̃ , Asfh

〉
= −

〈
f̃ , Asfh

〉
+
〈
f̃ , Asfh

〉
= 0

Since f̃ is in ker(∂s+A
∗), lims→±∞ f̃(s) = 0. Also, since h ∈H ±, we have lims→±∞ fh(s) =

0, so lims→±∞

〈
f̃(s), fh(s)

〉
= 0. That is

〈
f̃ , fh

〉
= 0 for all s ∈ R. By setting s = 0, we

get
〈
f̃(0), fh(0)

〉
=
〈
f̃(0), h

〉
= 0. Hence, f̃(0) ∈ (H ±)⊥. Since the differential equation

(∂s+A∗s)(f̃) = 0 has a unique solution, f̃(0) = g̃(0), f̃ = g̃. Let h
′ ∈ (H +)⊥∩ (H −)⊥. So,〈

h
′
, h
〉

= 0 for a given h ∈H ±. And,
〈
h
′
, fh(0)

〉
= 0 =

〈
f̃(0), fh(0)

〉
. Hence, h

′
= f̃(0).
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Therefore,

ind(∂s − As) = dim(H + ∩H −)− dim((H +)⊥ ∩ (H −)⊥)

= dim(H + ∩H −)− (n− dim(H + ∪H −))

= dim(H +) + dim(H −)− n

= dim(E−(A+)) + dim(E+(A−))− n

= n− dim(E+(A+)) + dim(E+(A−))− n

= −SFAs

By the theorem 2.4.14, we conclude that for a generic g, the restricted map ∇ψ(g, γ)

is surjective for all flow line γ. Now, we will show that this onto map implies the Morse-

Smale transversality condition. We observe that if γ is a flow line from p to q, then for the

trivialization of γ∗TM above,

H + = Tγ(0)D(p)

and

H − = Tγ(0)A (p)

Because∇ψ(g,γ) is surjective, ∂s−As is surjective, as well. This implies coker(∂s−As) =

0. Hence, by Lemma 2.4.18, (H +)⊥ ∩ (H −)⊥ = 0. From this, we get H + ⊕H − = R.

By the above observation, Tγ(0)D(p) ⊕ Tγ(0)A (q) = Tγ(0)M . So, D(p) and A (q) intersect

transversely at γ(0).

2.5 Compactness and Gluing Theorems

When ind(p)− ind(q) = 1, the moduli space M (p, q) has dimension zero. We would like to

count the points in M (p, q). For this, it is enough to know M (p, q) is compact. In many

cases, M (p, q) may not be compact. So, we now review a compactification process and a

theorem that is more powerful than we want. To follow the details of theorems presented

in this section , [13],[27],[2] are excellent references.

To compactify a topological space X, we identify which sequences in X can fail to

converge, then we add the ”limit points”, ∂X, to our space and declare the new open sets

to ensure those new points are indeed limit points in X ∪ ∂X. Note that the induced

topology on X inherited from X ∪ ∂X coincides with the original topology for X.
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Topology of moduli space M (p, q) = W (p, q)/R: Recall that

W (p, q) ⊂ U ⊂ L2
1,loc(R,M)

and W (p, q) is a submanifold of U , so the topology of W (p, q) is induced topology from U .

Recall the quotient map π : W (p, q)→ W (p, q)/R = M (p, q) by u 7→ [u]. The R-action is

given by shifting the s by a constant

v = [u] = [u(.+ constant)]

We call such u = ṽ ∈ W (p, q) a lift of v ∈ M (p, q). The quotient topology is: V ⊂
M (p, q) is an open subset iff π−1(V ) ⊂ W (p, q) is open.

Definition 2.5.1. A sequence (vn) in M (p, q) converges to v ∈M (p, q) if for any lifts ṽn

of vn and ṽ of v, there are shifts tn ∈ R such that tn · ṽn → ṽ. More precisely, [un] → [u]

in M (p, q) if and only if un(.+ tn)→ u(.) in W (p, q).

Useful Lemmas of negative gradient flows:

Let γ : R→M be a solution of the equation
dγ

ds
= −gradf(γ(s)).

Lemma 2.5.2. If γ is nonconstant and s2 > s1, then f(γ(s1)) > f(γ(s2)), this means that

f decreasess along γ.

Proof. The fundamental theorem of calculus applied to the composition f ◦ γ : R → R
yields

f(γ(s1))− f(γ(s2)) = −
∫ s2

s1

d

ds
f(γ(s)) = −

∫ s2

s1

dfγ(s)(
dγ

ds
) ds

= −
∫ s2

s1

dfγ(s)(−gradf(γ(s))) ds

= −
∫ s2

s1

g(gradf(γ(s)),−gradf(γ(s))) ds

=

∫ s2

s1

‖ dγ

ds
‖2 ds = ‖ dγ

ds
‖2(s2 − s1) > 0
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The behavior at the ends of a flow line is described by the following:

Lemma 2.5.3. If lims→−∞ γ(s) = p or lims→∞ γ(s) = p, then p ∈ Crit(f).

Proof. We suppose that lims→∞ γ(s) = p, the other case is similar. By the previous lemma,

we have

lim
s→∞

∫ s

0

‖ dγ

ds
‖2 ds = lim

s→∞
(f(γ(0))− f(γ(s))) = f(γ(0))− f(p) <∞

This implies that ‖ dγ

ds
‖ → 0 as s→∞. Hence,

‖gradf(p)‖ = ‖gradf( lim
s→∞

γ(s))‖ = lim
s→∞
‖gradf(γ(s))‖ = lim

s→∞
‖ dγ

ds
‖ = 0

So, p is a critical point.

Definition 2.5.4. (C0
loc-convergence) Let M be a closed manifold, f : M → R a Morse

function. γn → γ in C0
loc means γn|K → γ|K in C0, where K is any compact set in M .

Lemma 2.5.5. Let (γn) be a sequence of maps from R to X satisfying the equation
dγn
ds

=

−gradf(γn(s)). Then there exists a subsequence (γnj
) such that γnj

→ γ in C0
loc, where γ

is also satisfies
dγ

ds
= −gradf(γ(s)).

Remark 2.5.6. Suppose
dγn
ds

= −gradf(γn(s)) and
dγ

ds
= −gradf(γ). Then γn → γ in C0

loc

if and only if γn → γ in Ck
loc for all k: If γn → γ in C0

loc, then −gradf(γn) → −gradf(γ)

in C0
loc, this implies γn → γ in C1

loc, and by continuing in this way, we conclude γn → γ in

Ck
loc for all k.

Now, we state an important theorem which says that Ck
loc-convergence in W (p, q) implies

convergence in usual sense. The details of the proof are so technical and can be found in

[27].

Theorem 2.5.7. If a sequence (γn) in W (p, q) converges to γ in W (p, q) in the Ck
loc sense,

then γn → γ with respect to the usual topology of W (p, q).

Now we will talk about the compactness in the following theorem, [13].

Theorem 2.5.8. Let p and q be critical points of f . Then for any sequence (un(t))n∈N in

W (p, q), after selection of a subsequence, there exist critical points p = r0, r1, r2, ..., rk+1 =

q, flow lines vi ∈ W (pi, pi+1) and tn,i ∈ R where i = 0, ..., k and n ∈ N such that the flow

lines un(t+ tn,i) converge to vi as n tends to ∞
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Let (ûn) ⊂M (p, q). Consider a lifting of this sequence (un) ⊂ W (p, q). With the above

theorem, we define the ”limit” of the sequence ûn to be the broken flow lines :

(v̂0, v̂1, ..., v̂k) ∈M (p, r1)×M (r1, r2)× ...×M (rk, q)

To compactify M (p, q), we will add the all broken flow lines, ∂M (p, q), to the space

M (p, q). Hence,

M (p, q) = M (p, q) ∪ ∂M (p, q).

Proof. By lemma 2.5.5, there exists a convergent subsequence (unk
) such that

unk

Ck
loc→ v

v does not have to be in W (p, q), but the limit points lims→∞ v(s) = q
′
and lims→−∞ v(s) =

p
′

satisfy the following inequality:

f(q) ≤ f( lim
s→∞

v(s)) ≤ f( lim
s→−∞

v(s)) ≤ f(p).

If p = p
′

and q = q
′
, then by theorem 2.5.7, unk

converges to v on topology on W (p, q)

So, we are done.

If without loss of generality p 6= p
′
, then we can assume that f(p

′
) < f(p), we choose

a regular value a ∈ R such that f(p
′
) < a < f(p) and tn,i with f(un(tn,i)) = a. Again, we

apply the lemma 2.5.5 to get

un(t+ tn,i)
Ck

loc→ w

where w : R→ M . w need not be in W (p, p
′
), but the limit points lims→∞w(s) = q

′′
and

lims→−∞w(s) = p
′′

satisfy the following inequality:

f(q) ≤ f(q
′′
) ≤ f(p

′′
) ≤ f(p).

Also, we have f(p
′
) ≤ f(q

′′
): we first show that as n→∞, the shifts tn,i are not bounded

from below. Assume for the contrary that there exists M ∈ R such that tn,i > M for all

n ∈ N. Since f decreases along u, we get

f(un(tn,i)) < f(un(M)).

35



But f(un(tn,i)) = a and limn→∞ f(un(M)) = f(v(M)) < f(p
′
). But we have choosen that

a > f(p
′
). This gives a contradiction.

Now suppose f(q
′′
) < f(p

′
). Then there exist an ε > 0, and s0 ∈ R such that

f(w(s0)) = f(p
′
)− 4ε

and we can also choose an s1 ∈ R such that

f(v(s1)) = f(p
′
)− ε.

Since limn→∞ f(un(s0 + tn,i)) = f(w(s0)) and limn→∞ f(un(s1)) = f(v(s1)), there is an

N ∈ N such that for all n > N ,

f(un(s0 + tn,i))− f(w(s0)) < ε.

This gives us the following inequality, f(un(s0 + tn,i)) < f(p
′
)− 3ε. Also,

f(un(s1))− f(v(s1)) < ε

gives us the inequality f(un(s1)) > f(p
′
)− 2ε. Hence we get

f(un(s0 + tn,i)) < f(un(s1))

By lemma 2.5.2, we have s0 + tn,i > s1 and tn,i > s1− s0. This means that tn,i are bounded

from below and this gives a contradiction.

If f(q
′′
) = f(p

′
), then w ∈ W (p, p

′
). So, if f(q

′′
) < f(p

′
), then we can proceed this

process at finitely many step, because the critical points are finite on M .

2.6 Gluing

The second part of the compactification process is the gluing theorem. An important ques-

tion for compactification process is that every broken flow line arises as a limit point. The

following theorem says that the broken flow lines (v̂0, v̂1, ..., v̂k) glued together with a gluing

parameter ρ mapped into M (p, q) and conversely any sequence of flow lines converging to

broken flow line lies in the range of gluing map #̂ which is precisely defined in the theorem

2.6.1. For simlicity, we will state the theorem for broken flow lines with only one break.

After this theorem, compactification process will finish theorem 2.6.3.
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Theorem 2.6.1. Given a compact set of simply broken flow lines K ⊂ W (p, r)×W (r, q),

there is a lower bound ρK ≥ 0 and a smooth map

# : K × [ρK ,∞)→ W (p, q)

where (u, v, ρ) 7→ u#ρv satisfying: The map #ρ : K ↪→ W (p, q) is an embedding for each

gluing parameter ρ ≥ ρK. Moreover, given a compact set K̂ ⊂ M (p, r) ×M (r, q) of

unparametrized flow lines, # induces a smooth embedding

#̂ : K̂ × [ρK̂ ,∞) ↪→M (p, q)

such that we obtain C∞loc convergence toward the simply broken flow line

û#̂ρv̂
C∞loc→ (û, v̂)

as ρ tends to infinity. Conversely, if ŵn
C∞loc→ (û, v̂), then ŵn ∈M (p, q) for sufficiently large

n.

The proof of this theorem is so technical and really we do not need it to construct Morse

homology. We can give an excellent reference for details of the proof of this theorem, [27].

We conclude that all broken flow lines appear as limit points, so if ind(p) = ind(q) + 2,

then M (p, q) becomes one dimensional compact manifold with boundary.

Definition 2.6.2. ([18]) A manifold with corners M of dimension n is a second countable,

Hausdorff topological space such that every point x ∈ M has an open neighborhood Uα

and homeomorphism φα : Uα → Rn−k× [0,∞)k for some 0 ≤ k ≤ n such that the transition

functions φβ ◦ φ−1
α are smooth. For 0 ≤ k ≤ n, we define the codimension k-stratum of M

to be the set Mk of points x ∈ M with a chart φ : U → Rn−k × [0,∞)k such that at least

one the last k coordinates of φ(x) is zero. Note that M0 is just the interior of M , and if

M2 = M3 = ...... = Mn = ∅, then M is just a manifold with boundary and M1 = ∂M .

Now we are ready to finish the compactification process by the help of the compactness

and gluing theorems. By the three facts which states that 1) every broken flow line ap-

pears as a boundary (COMPACTNESS), 2) we can glue them and 3) embed those broken

flow lines smoothly into the unparametrized moduli spaces (GLUING), we can generate a

manifold with corner. More precisely,
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Theorem 2.6.3. If M is closed (compact without boundary) and (f, g) is Morse- Smale,

then for any two critical points p, q the moduli space M (p, q) has a natural compactification

to a smooth manifold with corners M (p, q) whose codimension k stratum is

M (p, q)k =
⋃

r1,....,rk∈Crit(f)

M (p, r1)×M (r1, r2)× ...×M (rk−1, rk)×M (rk, q)

with p, r1, ...., rk, q are all different. In particular, for the case k = 1, as oriented manifolds,

the boundary of M (p, q)

∂M (p, q) =
⋃

r∈Crit(f)

(−1)ind(p)+ind(r)+1M (p, r)×M (r, q).

Results of the Theorem:

• If ind(p) ≤ ind(q), then M (p, q) = ∅.
• If ind(p) = i and ind(q) = i−1, then M (p, q) is a compact zero dimensional manifold.

Hence, we can count its elements because compact discrete sets have to be finite. The total

sum of the elements will be denoted by #M (p, q).

• If ind(q) = i− 2, then M (p, q) is compact one-dimensional manifold with boundary

∂M (p, q) =
⋃

r∈Crit(f)

M (p, r)×M (r, q).

We now define the Morse complex (CMorse
∗ (f, g), ∂Morse) as follows.

2.7 The Morse chain complex

Let f : M → R be a Morse function and Criti(f) denote the set of critical points of f with

index i. The chain group CMorse
k (f, g) is the free Z2-module generated by the elements in

Critk(f). We can also define this complex with Z-coeffcients if we define orientations on

the moduli spaces M (p, q). It is more easy to work with Z2 for now.

The differential ∂Morse : CMorse
k (f, g)→ CMorse

k−1 (f, g) counts the negative gradient flow

lines between critical points. If p ∈ Critk(f), then

∂Morse(p) =
∑

q∈Critk−1(f)

#M (p, q) · q

Remark 2.7.1. The sum is well-defined because of the second result of theorem 2.6.3.
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Lemma 2.7.2. (∂Morse)2 = 0.

Proof. If p ∈ Critk(f), then

(∂Morse)2(p) = ∂Morse(
∑

r∈Critk−1(f)

#M (p, r) · r)

=
∑

r∈Critk−1(f)

#M (p, r)(
∑

q∈Critk−2(f)

#M (r, q) · q)

=
∑

r∈Critk−1(f)

∑
q∈Critk−2(f)

#M (p, r)#M (r, q) · q

=
∑

r∈Critk−1(f),q∈Critk−2(f)

#(M (p, r)×M (r, q)) · q

= #∂M (p, q).

Observe that M (p, q) is a compact one dimensional manifold with boundary. So, M (p, q)

is the disjoint union of finitely many circles and closed intervals. Hence, #M (p, q) is even,

so 0 modulo 2.

The homology of the complex (CMorse
∗ (f, g), ∂Morse) is called the Morse homology,

HMorse
∗ (f, g) =

ker(∂Morse : CMorse
∗ (f, g)→ CMorse

∗−1 (f, g))

im(∂Morse : CMorse
∗+1 (f, g)→ CMorse

∗ (f, g))
.

It is defined for a generic pair (f, g). Later, we will prove that the Morse homology is

independent of the choice of a generic pair (f, g).

Example (Sphere): Let S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} be the 2-sphere, and

define f : S2 → R as f(x, y, z) = z. Then f is the Morse function; in fact f has two critical

points: the north pole (0, 0, 1) and the south pole (0, 0,−1), each of index 2, 0 respectively.

So the chain complex is as follows

0→ 〈N〉 ∂2→ 0
∂1→ 〈S〉 0→ 0

We observe that all boundary operators are 0 because there are no critical points of index

1, so no gradient flow lines between successive critical points. Hence the homology of 2-

sphere with coefficient in Z is HMorse
n (f, g)=

Z2, if n = 0,2

0, otherwise
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Example (A deformed sphere): Consider S2 and the Morse function f : S2 → R with

two critical points r, s of index 2, one critical point q of index 1 and one critical point p of

index 0. Then for any metric g, the pair (f, g) is Morse-Smale. We thus get the following

Morse complex

0→ 〈r, s〉 ∂2→ 〈q〉 ∂1→ 〈p〉 0→ 0

and all we need to calculate the homology groups is to find ∂ and for that we have to

study the flow lines joining the critical points of the succesive index. Let us begin with the

critical points of index 2 and 1. For suitable orientation choices, the sign associated with

a gradient flow line is +1 or −1. So, ∂2(r) = ∓q and ∂2(s) = ±q. Hence, ∂2(r + s) = 0 or

∂2(r− s) = 0 since the gradient flow is downward and in both cases ker∂2 = Z and the ho-

mology group HMorse
2 (f, g) = Z. Since ∂2(r) = q, we see that HMorse

1 (f, g) = 0 because the

generator of 〈q〉 is in the image of ∂2. Since ∂1(q) = ∂2
1(r) = 0, we see that p is not in the im-

age of ∂1, and hence HMorse
0 (f, g) is generated by p. Thus, HMorse

n (f, g) =

Z, if n= 0,2

0, otherwise

Example (Real Projective Plane): Consider the set of all lines through the origin in

Euclidean space R3. This is the projective space RP 2 and has a two dimensional smooth

manifold structure. There are three charts that cover projective plane. RP 2 is in fact

homemorphic to the quotient space S2/ ∼, where the equivalence relation is x ∼ −x. Let

(λ1, ......, λn) be an increasing sequence of positive real numbers and consider the function

f(x1, ...., xn+1) =
n+1∑
i=1

λix
2
i

For the first chart on RP 2 is ϕ1(x1, x2, x3) = (
x2

x1

,
x3

x1

) and its inverse is ϕ−1
1 (u, v) =

(
√

1− u2 − v2, u, v). So the function is f ◦ ϕ−1
1 (u, v) = u2 + 2v2 + 1.

For the second chart on RP 2 is ϕ2(x1, x2, x3) = (
x1

x2

,
x3

x2

) and its inverse is ϕ−1
2 (u, v) =

(u,
√

1− u2 − v2, v). So the function is f ◦ ϕ−1
2 (u, v) = −u2 + v2 + 2.

For the third chart on RP 2 is ϕ3(x1, x2, x3) = (
x1

x3

,
x2

x3

) and its inverse is ϕ−1
3 (u, v) =

(u, v,
√

1− u2 − v2). So the function is f ◦ ϕ−1
3 (u, v) = −2u2 − v2 + 3.

Hence the derivative of each function f ◦ϕ−1
i is 2u du+4v dv, −2u du+2v dv and −4u du−

2v dv,respectively. So the critical points are (1, 0, 0), (0, 1, 0) and (0, 0, 1) each of index

0, 1, 2 respectively.
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The vectors that span the tangent space to S2 at point (u, v) are (1, 0,
−u√

1− u2 − v2
) and

(0, 1,
−v√

1− u2 − v2
). So, the inner product of them in R3 is〈

(1, 0,
−u√

1− u2 − v2
), (1, 0,

−u√
1− u2 − v2

)

〉
=

1− v2

1− u2 − v2〈
(1, 0,

−u√
1− u2 − v2

), (0, 1,
−v√

1− u2 − v2
)

〉
=

uv

1− u2 − v2〈
(0, 1,

−v√
1− u2 − v2

), (0, 1,
−v√

1− u2 − v2
)

〉
=

1− u2

1− u2 − v2

and the induced metric on S2 is the matrix

g =

 1− v2

1− u2 − v2

uv

1− u2 − v2

uv

1− u2 − v2

1− u2

1− u2 − v2


and its inverse matrix is

g−1 =

[
1− u2 −uv
−uv 1− v2

]
So, the gradient vector field is

−grad(f ◦ ϕ−1
1 ) = −g−1( d(f ◦ ϕ−1

1 )) =

[
u2 − 1 uv

uv v2 − 1

][
2u

4v

]

−grad(f ◦ ϕ−1
2 ) = −g−1( d(f ◦ ϕ−1

2 )) =

[
u2 − 1 uv

uv v2 − 1

][
−2u

2v

]

−grad(f ◦ ϕ−1
3 ) = −g−1( d(f ◦ ϕ−1

3 )) =

[
u2 − 1 uv

uv v2 − 1

][
−4u

−2v

]
The gradient flow lines can be found by solving following differential equation systems

for each chart ϕi. Using ϕ1;

dγ1(t)

dt
= 2γ1(t)(γ2

1(t)− 1) + 4γ1(t)γ2
2(t),

dγ2(t)

dt
= 2γ2

1(t)γ2(t) + 4γ2(t)(γ2
2(t)− 1)
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Using ϕ2,

dγ1(t)

dt
= −2γ1(t)(γ2

1(t)− 1) + 2γ1(t)γ2
2(t),

dγ2(t)

dt
= −2γ2

1(t)γ2(t) + 2γ2(t)(γ2
2(t)− 1)

Using ϕ3,

dγ1(t)

dt
= −4γ1(t)(γ2

1(t)− 1)− 2γ1(t)γ2
2(t),

dγ2(t)

dt
= −4γ2

1(t)γ2(t)− 2γ2(t)(γ2
2(t)− 1)

Hence, we can conclude that there are two gradient flow lines between the critical points

of index 2 and 1, and between the critical points of index 1 and 0. Since 2 ≡ 0(mod2),

the differential operator ∂Morse
2 and ∂Morse

1 are 0. Therefore, the homology groups with

coefficients in Z2,

0→ Z2
0→ Z2

0→ Z2 → 0

which gives us the following homology groups, HMorse
n (f, g) =

Z2, if n= 0,1,2

0, otherwise
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3 Invariance of Morse Homology

We will show that HMorse
∗ (f, g) does not depend on f and g directly. This means that

given another Morse function f1 and metric g1 satisfying Morse-Smale condition,

HMorse
∗ (f, g) ∼= HMorse

∗ (f1, g1)

There are lots of different techniques to show invariance of Morse homology for finite

dimensional manifolds, for example we will prove that Morse homology is isomorphic to

singular homology in the next chapter. This implies that Morse homology depends only

the structure of given manifold. But, the point that we explain now will provide a very

useful method to get an invariant for Morse homology of infinite dimensional manifolds.

There might not be another homology to compare with the Floer homology.

3.1 Continuation Maps

Let (f0, g0) and (f1, g1) be two Morse-Smale pairs associated with Morse complexes (C0
∗ , ∂

0)

and (C1
∗ , ∂

1). Let

Γ = {(ft, gt) : t ∈ [0, 1]}

be a path of pairs from (f0, g0) to (f1, g1).

Remark 3.1.1. Note that the pairs (ft, gt) do not have to be Morse-Smale for all t. For

example, take a path on R with the usual metric, ft : R→ R such that ft(x) = x3 − 3(t−
1

2
)x, t ∈ [0, 1]. f1 has two critical points at x = ∓

√
1

2
and it is a Morse function, f0 has

no critical point so it is also a Morse function. But, f1/2 is not a Morse function because

it has only one critical point at x = 0 and it is degenerate.

We define the continuation map ΦΓ : C0
∗ → C1

∗ as follows: Define a vector field V on

[0, 1]×X by

V := (1− t)t(1 + t)
∂

∂t
+ Vt

where Vt denote the negative gradient vector field of ft : X → R with respect to the metric

gt. Now, we can define the critical points, flow lines, ascending and descending manifolds.

In particular, the first coordinate of V is the gradient of the function R → R defined by

t 7→ 1

4
(t + 1)2(t− 1)2. This function has a critical point of index 1 at t = 0 and a critical

point of index 0 at t = 1 with no critical point between them. Thus, the critical points of
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index i of V are precisely

criti(V ) = {0} × criti−1(f0) ∪ {1} × criti(f1)

We say that the family Γ is admissible if the ascending and descending manifolds of the

critical points of V intersect transversely. If (f0, g0) and (f1, g1) are Morse-Smale, then the

generic homotopy Γ between them is admissible, but the converse is not true in general,

i.e, for an admissible Γ, there might be some t such that (ft, gt) is not Morse- Smale. As

an example, ft : R → R such that ft(x) = x3 − 3(t − 1

2
)x, t ∈ [0, 1] can be given. So, for

the rest section we assume that Γ is admissible.

For critical points P and Q of V , we define W (P,Q) to be the moduli space of flow lines

from P to Q and M (P,Q) the moduli space from P to Q, modulo the R action as usual.

Since Γ is admisible, M (P,Q) is a (ind(P ) − ind(Q) − 1)-dimensional manifold without

boundary. If ind(p) = i = ind(q) + 1, then ind((0, p)) = i + 1 and ind((1, q)) = i − 1,

then M ((0, p), (1, q)) is a one dimesional manifold and has a compactification to a compact

oriented 1-manifold M ((0, p), (1, q)) by adding broken flow lines passing through critical

points of index i. So we have,

∂M ((0, p), (1, q)) =
⋃

r′∈Criti(f1)

M ((0, p), (1, r
′
))×M ((1, r

′
), (1, q))

∪
⋃

r∈Criti−1(f0)

M ((0, p), (0, r))×M ((0, r), (1, q))

If M0 and M1 denote the moduli spaces for (f0, g0) and (f1, g1), then we have

M ((0, p), (0, r)) = M0(p, r)

M ((1, r
′
), (1, q)) = M1(r

′
, q)

For p ∈ criti(f0) and q ∈ criti(f1) we have, ind((0, p)) = i + 1 and ind((1, q)) = i, hence

M ((0, p), (1, q)) is a compact 0-dimensional manifold. We now define ΦΓ : C0
i → C1

i on

p ∈ criti(f0) by

ΦΓ(p) =
∑

q∈criti(f1)

#M ((0, p), (1, q)) · q
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The sum is well-defined because M ((0, p), (1, q)) is 0-dimensional and compact.

Proposition 3.1.2. Every compact 1-dimensional manifold is homeomorphic to a disjoint

union of circles and closed intervals.

Proof. See, [24]

Corollary 3.1.3. The number of boundary components of any compact 1-dimensional

manifold is even.

Lemma 3.1.4. ΦΓ is chain map, i.e, ΦΓ ◦ ∂0 = ∂1 ◦ ΦΓ.

Proof. We will show that (ΦΓ ◦ ∂0 − ∂1 ◦ ΦΓ)(p) is zero for all p ∈ C0
i . For p ∈ criti(f0),

we have

ΦΓ ◦ ∂0(p) = ΦΓ(
∑

r∈criti−1(f0)

#M0(p, r) · r)

=
∑

r∈criti−1(f0)

∑
q∈criti−1(f1)

#M ((0, r), (1, q))#M0(p, r) · q

=
∑

r∈criti−1(f0)

∑
q∈criti−1(f1)

#M ((0, r), (1, q))#M ((0, p), (0, r)) · q

On the other hand,

∂1 ◦ ΦΓ(p) = ∂1(
∑

r∈criti(f1)

#M ((0, p), (1, r)) · r)

=
∑

r∈criti(f1)

∑
q∈criti−1(f1)

#M ((0, p), (1, r))#M1(r, q) · q

=
∑

r∈criti(f1)

∑
q∈criti−1(f1)

#M ((0, p), (1, r))#M ((1, r), (1, q)) · q

Therefore, the coefficient of q in (ΦΓ ◦ ∂0 − ∂1 ◦ ΦΓ)(p) is

#∂M (0, p), (1, q))

This is the number of boundary components in the compact 1-manifold M ((0, p), (1, q)),

hence is zero modulo 2 by Corollory 3.1.3.
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Thus ΦΓ induces a map on Morse homology

(ΦΓ)∗ : HMorse(f0, g0)→ HMorse(f1, g1)

3.2 Chain homotopies

Now, we consider two paths between pairs (f0, g0) and (f1, g1) and corresponding the

continuation maps ΦΓ1 and ΦΓ2 , respectively. We regard the homotopy as a family of

pairs Ψ = {(fd, gd) : d ∈ D}, where D is a digon (a 2-dimensional manifold with corners

such that D has two edges e and e
′
, and two vertices v and w), such that Ψ|e = Γ1 and

Ψ|e′ = Γ2. This means that (fv, gv) = (f0, g0) and (fw, gw) = (f1, g1). Put a metric ĝ on D

such that the length of the edges are 1, and let f̂ : D → R be a smooth function with an

index 2 critical point at v and an index 0 critical point at w and no other critical points.

Further assume the negative gradient vector field V̂ of f̂ with respect to ĝ is tangent to

the edges and is equal to (t+ 1)t(t− 1) there. So we define a vector field V on D ×X by

V := V̂ +Vd, where Vd is the negative gradient vector field of fd with respect to gd. We see

that V restricted to the slice e×X and e
′ ×X coincide with the vector field on [0, 1]×X

for Γ1 and the vector field [0, 1] × X for Γ2, respectively. So we can again define critical

points, flow lines, ascending and descending manifolds of V . We still say Ψ is admissible

if the ascending and descending manifolds of all critical points intersect transversely. The

critical points of index i of V are

criti(V ) = {v} × criti−2(f0) ∪ {w} × criti(f1)

For critical points P and Q of V , we define W (P,Q) to be the moduli space of flow

lines from P to Q and M (P,Q) the moduli space from P to Q, modulo the R action

as usual. For any admissible family Ψ, M (P,Q) is a (ind(P ) − ind(Q) − 1)-dimensional

manifold without boundary. If P = (v, p) and Q = (w, q) with ind(p) = i = ind(q),

then ind((v, p)) = i + 2 and ind((w, q)) = i, then M ((v, p), (w, q)) is a one dimesional

manifold and has a compactification to a 1-manifold M ((v, p), (w, q)) with boundary by

adding broken flow lines. The broken flow lines that pass through critical point of index

i+1 are included in the boundary. But, M ((v, p), (w, q)) also has boundary points coming

from those flow lines which stay in the slice e × X and e
′ × X. These flow lines are in

correspondence with moduli spaces M Γ1((v, p), (w, q)) for Γ1 and M Γ2((v, p), (w, q)) for
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Γ2 which are defined previous section. Hence,

∂M ((v, p), (w, q)) = M Γ1((v, p), (w, q)) ∪M Γ2((v, p), (w, q))

∪
⋃

r∈Criti−1(f0)

M ((v, p), (v, r))×M ((v, r), (w, q))

∪
⋃

s∈Criti+1(f1)

M ((v, p), (w, s))×M ((w, s), (w, q))

Note that the flow lines in D ×X that stay in the v ×X slice correspond to the flows in

X with respect to (f0, g0) and similarly flow lines for the w ×X slice. So,

M ((v, p), (v, r)) = M0(p, r)

M ((w, s), (w, q)) = M1(s, q)

We now define K : C0
i → C1

i+1 on p ∈ criti(f0) by

K(p) =
∑

q∈criti+1(f1)

#M ((v, p), (w, q)) · q

Lemma 3.2.1. A generic homotopy between the admissible paths Γ1 and Γ2 induces a

chain homotopy

K : C0
i → C1

i+1

such that ∂1 ◦K +K ◦ ∂0 = ΦΓ1 − ΦΓ2.

Proof. Let p ∈ criti(f0)

∂1 ◦K(p) = ∂1(
∑

r∈criti+1(f1)

#M ((v, p), (w, r)) · r)

=
∑

r∈criti+1(f1)

∑
q∈criti(f1)

#M ((v, p), (w, r))#M1(r, q) · q

=
∑

r∈criti+1(f1)

∑
q∈criti(f1)

#M ((v, p), (w, r))#M ((w, r), (w, q)) · q
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On the other hand,

K ◦ ∂0(p) = K(
∑

r∈criti−1(f0)

#M0(p, r) · r)

=
∑

r∈criti−1(f0)

∑
q∈criti(f1)

#M ((v, r), (w, q))#M0(p, r) · q

=
∑

r∈criti−1(f0)

∑
q∈criti(f1)

#M ((v, r), (w, q))#M ((v, p), (v, r)) · q

By definition of ΦΓ, we observe that ΦΓ1(p) =
∑

q∈criti(f1) #M Γ1((0, p), (1, q)) · q and

ΦΓ2(p) =
∑

q∈criti(f1) #M Γ2((0, p), (1, q)) · q. Also, we know when Ψ|e, it coincides with Γ1

and when Ψ|e′ , coincides with Γ2. Therefore, the coefficient of q in (∂1 ◦ K + K ◦ ∂0 +

ΦΓ2 − ΦΓ1)(p) is

#∂M ((v, p), (w, q))

But it is zero modulo 2, so is (∂1 ◦K +K ◦ ∂0 + ΦΓ2 − ΦΓ1)(p) = 0.

This Lemma shows that (ΦΓ)∗ depends only on the homotopy class of Γ. However, the

space of metrics, the subspace of the space of all functions from M×M to R, is contractible

because for any two metrics g1, g2 and arbitrary t ∈ [0, 1], (1− t)g1 + tg2 is also a metric.

So, all paths between any pairs are homotopic. This implies that (ΦΓ)∗ does not depend

on Γ. We want to prove that (ΦΓ)∗ is an isomorphism. It is enough to show bijectivity

of (ΦΓ)∗. To do this we will show that the induced map of composition of paths Γ2 ∗ Γ1,

where the end point of Γ1 is the starting point of Γ2, is chain homotopic to the composition

of induced maps (ΦΓ2)∗ ◦ (ΦΓ1)∗.

Lemma 3.2.2. ΦΓ2∗Γ1 is chain homotopic to ΦΓ2 ◦ ΦΓ1.

Proof. We will use the same arguments as defined in Lemma 2.2.1. In this case we use a

triangle instead of a digon, let T be a triangle, that is a 2-manifold with three vertices,

u, v, w and three edges, euv, evw, euw. Let Ω = {(fd, gd) : d ∈ T} be a family of pairs

such that (fu, gu) = Γ1(0), (fv, gv) = Γ1(1) = Γ2(0) and (fw, gw) = Γ2(1), also Ω|euv = Γ1,

Ω|evw = Γ2 and Ω|euw = Γ2 ∗ Γ1. Put a metric on T such that the length of all edges are

one, and take a smooth function f : T → R where its only critical points are u, v and w

with ind(u) = 2, ind(v) = 1 and ind(w) = 0. So we define a vector field VΩ on T ×X by

VΩ := V̂ + Vd, where Vd is the negative gradient vector field of fd with respect to gd. The
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critical points of index i of VΩ are

criti(VΩ) = {u} × criti−2(fu) ∪ {v} × criti−1(fv) ∪ {w} × criti(fw).

If ind(p) = i = ind(q), then ind((u, p)) = i+2 and ind(w, q) = i, hence M ((u, p), (w, q)) is

a one dimensional manifold and has a natural compactification to a one dimensional man-

ifold with boundary M ((u, p), (w, q)). The boundary of this compact manifold has more

complicated broken flow lines. The broken flow lines passing through one critical point of

index i+1 are contained in the boundary. We also have boundary points coming from those

flow lines stay in the euw ×X slice. These flow lines correspond to M Γ2∗Γ1((u, p), (w, q)).

Hence,

∂M ((u, p), (w, q)) = M Γ2∗Γ1((u, p), (w, q))

∪
⋃

r∈Criti−1(fu)

M ((u, p), (u, r))×M ((u, r), (w, q))

∪
⋃

r′∈Criti+1(fw)

M ((u, p), (w, r
′
))×M ((w, r

′
), (w, q))

∪
⋃

s∈criti(fv)

M ((u, p), (v, s))×M ((v, s), (w, q)).

Note that the flow lines that stay in the u × X slice correspond to M fu(p, r), and

similarly the flow lines that stay in the w ×X slice correspond to M fw(r
′
, q). Therefore,

M ((u, p), (u, r)) = M fu(p, r)

M ((w, r
′
), (w, q)) = M fw(r

′
, q).

The flow lines from (u, p) to (v, s) stay in the e|uv ×X slice and the flows from (v, s) to

(w, q) stay in the slice e|vw ×X. So,

M ((u, p), (v, s)) = M Γ1((u, p), (v, s))

M ((v, s), (w, q)) = M Γ2((v, s), (w, q)).
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Now, we define H : Cu
i → Cw

i+1 by

H(p) =
∑

q∈criti+1(fw)

#M ((u, p), (w, q)).q

By using the same technique in the proof of Lemma 3.2.1, we want to prove that

(∂w ◦H +H ◦ ∂u − ΦΓ2∗Γ1 + ΦΓ2 ◦ ΦΓ1)(p) = 0

for all p ∈ criti(fu). We can compute

∂w ◦H(p) = ∂w(
∑

r′∈criti+1(fw)

#M ((u, p), (w, r
′
)) · r′)

=
∑

r′∈criti+1(fw)

∑
q∈criti(fw)

#M ((u, p), (w, r
′
))#M fw(r

′
, q) · q

=
∑

r′∈criti+1(fw)

∑
q∈criti(fw)

#M ((u, p), (w, r
′
))#M ((w, r

′
), (w, q)) · q

On the other hand,

H ◦ ∂u(p) = H(
∑

r∈criti−1(fu)

#M fu(p, r) · r)

=
∑

r∈criti−1(fu)

∑
q∈criti(fw)

#M fu(p, r)#M ((u, r), (w, q)) · q

=
∑

r∈criti−1(fu)

∑
q∈criti(fw)

#M ((u, p), (u, r))#M ((u, r), (w, q)) · q

ΦΓ2 ◦ ΦΓ1(p) = ΦΓ2(
∑

s∈criti(fv)

#M Γ1((u, p), (v, s)) · s)

=
∑

s∈criti(fv)

∑
q∈criti(fw)

#M Γ1((u, p), (v, s))#M Γ2((v, s), (w, q)) · q

=
∑

s∈criti(fv)

∑
q∈criti(fw)

#M ((u, p), (v, s))#M ((v, s), (w, q)) · q
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Since Ω|euw = Γ2 ∗Γ1, and ΦΓ2∗Γ1(p) =
∑

q∈criti(fw) #M Γ2∗Γ1((u, p), (w, q)) · q, we conclude

that the coefficient of q in (∂w ◦H +H ◦ ∂u − ΦΓ2∗Γ1 + ΦΓ2 ◦ ΦΓ1)(p) is

#∂M ((u, p), (w, q))

which is zero modulo 2.

Proposition 3.2.3. If Γ = {ft, gt} is a constant family with (ft, gt) Morse-Smale, then Γ

is admissible and ΦΓ = id.

Proof. Let V be the vector field on [0, 1] ×X induced by the constant path Γ. Since the

vector field (1− t)t(1 + t)
∂

∂t
on [0, 1] is directly from 0 to 1, we have that the descending

manifold of a critical point (0, p) of V is D(0, p) = [0, 1)×D(p) and the ascending manifold

of a critical point (1, q) is A (1, q) = (0, 1]×A (q). These manifolds intersect transversely.

Also, the descending manifold of (1, q) is {1}×D(q) and the ascending manifold of (0, p) is

{0} ×A (p). These manifolds which do not intersect at any point automatically intersect

transversely. Therefore Γ is admissible.

For p, q ∈ criti(f), a flow from (0, p) to (1, q) in [0, 1]×X projects to a flow from p to q in

the {0} ×X slice. This implies that p = q because there is no flow between critical points

of equal index, unless it is the constant flow. Therefore, ΦΓ(p) = p.

In conclusion, we get the following results:

• Lemma 3.2.1 and lemma 3.2.2 implies that (ΦΓ2)∗ ◦ (ΦΓ1)∗ = (ΦΓ2∗Γ1)∗.

• Prop. 3.2.3 and lemma 3.2.1 implies that (ΦΓ)∗ = id for constant family of pairs Γ.

• If Γ1 is an admissible path from (f0, g0) to (f1, g1), and Γ2 is a path from (f1, g1) to

(f0, g0), then Γ2∗Γ1 is a constant family of pairs, where ft = f0 and gt = g0 for all t ∈ [0, 1].

So, (ΦΓ2)∗ ◦ (ΦΓ1)∗ = id and (ΦΓ1)∗ is injective. Also, Γ1 ∗ Γ2 is a constant family of pairs,

where ft = f1 and gt = g1 for all t ∈ [0, 1]. So, (ΦΓ1)∗ ◦ (ΦΓ2)∗ = id and (ΦΓ1)∗ is surjective.

Hence, (ΦΓ1)∗ : HMorse(f0, g0)→ HMorse(f1, g1) is an isomorphism.
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4 Isomorphism to Singular Homology

The goal of this section is to establish the connection between Morse homology and singular

homology. As described at the previous section, our main aim is to show that Morse

homology is independent of the choice of a Morse function f and a Riemannian metric g.

By proving the isomorphism between Morse homology and singular homology, we observe

that the homology depends only on the manifold structure.

Theorem 4.0.4. Given a closed manifold M and a Morse-Smale pair (f, g) on M , the

homology of the Morse-Smale complex (CMorse
∗ (f, g), ∂Morse) is isomorphic to the homology

of the singular chain complex (C∗, ∂). That is;

HMorse
∗ (f, g) ∼= H∗(M).

Before proving this theorem, we give some backgrounds related to singular homology.

Definition 4.0.5. Let Ωm
c (M) be the space of compactly supported, smooth m-forms on

M . An m-current T on M is a functional on Ωm
c (M), T : Ωm

c (M)→ R.

Integration determines an m-current [M ] for a compact, oriented m dimensional man-

ifold M with boundary in the following way:

[M ](w) =

∫
M

w.

This can be checked by the definition of integral that [M ] is a linear functional. Note that

the topology of the space of m-currents comes from the weak convergence of currents, i.e

a sequence Tk of currents converges to a current T if Tk(w)→ T (w) for all w ∈ Ωm
c (M).

By Stokes’ Theorem, we automatically obtain the following equality:

[M ]dw =

∫
M

dw =

∫
∂M

w = [∂M ](w).

Now, we observe that the singular i-simplex σ : ∆i →M defines an i-current [σ] by

[σ](w) =

∫
∆i

σ∗w.

We define the chain groups Ci(M) to be the free abelian groups generated by [σ], where

σ : ∆i → M is generic, i.e it is smooth and each face of σ is transverse to the ascending
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manifolds of all critical points of f . The differential ∂ : Ci(M) → Ci−1(M) is defined as

above

∂[σ](w) =

∫
∆i

σ∗dw

where w ∈ Ωi−1
c (M). Note that ∂2 = 0 because d2 = 0. Considering the chain complex

(C∗(M), ∂∗), we have the homology of currents H∗(C∗(M)). This homology is canonically

isomorphic to the singular homology groups H∗(M) of M . This can be proved by showing

the Eilenberg-Steenrod axioms for H∗(C∗(M)). We will skip this observation because the

details do not help us to prove the isomorphism between Morse homology and singular

homology.

To continue the isomorphism process, we now compactify the descending manifold D(p)

for p ∈ Crit(f). It has a natural compactification as the moduli space M (p, q) prensented

above [section 2.6]. So, we have the following theorem.

Theorem 4.0.6. There is a natural compactification of D(p) of a critical point p to a

smooth manifold with corners D(p), whose codimension k stratum is

D(p)k =
⋃

q1,....,qk∈Crit(f)

M (p, q1)×M (q1, q2)× ...×M (qk−1, qk)×D(qk)

with p, q1, ...., qk are all different. In particular, for the case k = 1, as oriented manifolds,

we have

∂D(p) =
⋃

q∈Crit(f)

(−1)ind(p)+ind(q)+1M (p, q)×D(q).

Furthermore, we define an extended inclusion map e : D(p) → M from the inclusion

i : D(p) → M by setting e := πk : D(p)k → M with πk is the projection to the last factor

D(qk) ⊂M.

Because D(p) is homeomorphic to a closed ball of dimension ind(p), the compact ori-

ented manifold with corners D(p) has a fundamental current [D(p)] : Ωm
c (M) → R. To-

gether with the map e : D(p) → M , we define the pushforward of [D(p)] by the equation

e∗[D(p)](w) = [D(p)](e∗w). So the pushforward of [D(p)] is also a linear functional from

Ω∗c(M) to R defined by

w 7→
∫

D(p)

e∗w.

Hence, e∗[D(p)] ∈ C∗(M).

Remark 4.0.7. Let M and N be smooth manifolds, and F : M → N be the smooth map.

53



Then for a suitable current T , we have the following equality: ∂(F∗T ) = F∗∂T . This can

be shown by applying a suitable form w both sides. That is, ∂(F∗T )(w) = ∂T (F ∗w) =

F∗∂T (w).

We now define a chain map D : CMorse
∗ (f, g)→ C∗(M) by

p ∈ Crit(f) 7→ D(p) = e∗[D(p)].

Lemma 4.0.8. D is a chain map: ∂D = D∂Morse.

Proof. Let p ∈ Criti(f). By Thm. 4.0.6, we have

∂D(p) =
⋃

q∈Crit(f)

(−1)ind(p)+ind(q)+1M (p, q)×D(q).

Therefore,

∂D(p)(w) = ∂e∗[D(p)](w)

= e∗∂[D(p)](w)

= e∗[∂D(p)](w)

= e∗[
⋃

q∈Crit(f)

(−1)ind(p)+ind(q)+1M (p, q)×D(q)](w)

=

∫
⋃

q∈Crit(f)(−1)ind(p)+ind(q)+1M (p,q)×D(q)

e∗w

=
∑

q∈Crit(f)

(−1)ind(p)+ind(q)+1

∫
M (p,q)×D(q)

e∗w

=
∑

q∈Crit(f)

(−1)ind(p)+ind(q)+1e∗[M (p, q)×D(q)](w).

Hence,

∂D(p) =
∑

q∈Crit(f)

(−1)ind(p)+ind(q)+1e∗[M (p, q)×D(q)] ∈ Ci−1(M).

If ind(q) > i−1, then M (p, q) is empty because dim(M (p, q)) = ind(p)− ind(q)−1 < 0 in

that case. So, the right hand side becomes the current of dimension greater than i− 1. If

ind(q) < i−1, then the right hand side becomes the current of dimension less than or equal

to i− 2 because e maps M (p, q)×D(q) to the last factor e∗[D(q)]. Then, ind(q) = i− 1.
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So, M (p, q) is the finite set of points because M (p, q) is 0-dimensional and compact.

Therefore,

∂D(p) =
∑

q∈Criti−1(f)

#M (p, q) · e∗[D(q)]

= D(∂Morse(p)).

So, the chain map D between chain complexes CMorse
∗ (f, g) and C∗(M) induces homo-

morphism between the homology groups of the two complexes:

D∗ : HMorse
∗ (f, g)→ H∗(M)

4.1 The left inverse chain map

For the inverse map,let σ be a generic i-simplex and q be a critical point. Consider the

moduli space M (σ, q) of gradient flow lines from σ to q, i.e

M (σ, q) =
{
γ : [0,∞)→M |γ(0) ∈ σ, γ′(s) = −gradf(γ(s)), lim

s→∞
γ(s) = q

}
.

We again omit the orientation on the moduli space and use the Z/(2) coefficient to count

the number of boundary components. We state a compactification theorem for the moduli

space M (σ, q).

Theorem 4.1.1. There is a natural compactification of M (σ, q) to a smooth manifold with

corners M (σ, q) whose codimension k stratum is

M (σ, q)k =
k⋃
j=0

⋃
p1,...,pj∈Crit(f)

M (σk−j, p1)×M (p1, p2)× ....×M (pj−1, pj)×M (pj, q)

where p1, ...., pj, q are all distinct and σj denotes the codimension j stratum of σ. When

k = 1, as oriented manifolds, we have

∂M (σ, q) = M (∂σ, q) ∪
⋃

p∈Crit(f)

(−1)i+ind(q)M (σ, p)×M (p, q)
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We now define the map A : C∗(M)→ CMorse
∗ (f, g) by

A(σ) =
∑

p∈Criti(f)

#M (σ, p) · p

This map is well-defined because dim(M (σ, p)) = i− ind(p) = 0 and M (σ, p) is compact.

We will show that A is a chain map and it is inverse of D.

Lemma 4.1.2. A is a chain map: A∂ = ∂MorseA.

Proof. We show that (A∂ − ∂MorseA)(σ) = 0 for all σ ∈ Ci(M). For σ ∈ Ci(M) and

q ∈ Criti−1(f),

A∂(σ) = A(∂σ) =
∑

q∈Criti−1(f)

#M (∂σ, q) · q.

On the other hand,

∂MorseA(σ) = ∂Morse(
∑

p∈Criti(f)

#M (σ, p) · p)

=
∑

p∈Criti(f)

#M (σ, p) · ∂Morse(p)

=
∑

p∈Criti(f)

∑
q∈Criti−1(f)

#M (σ, p) ·#M (p, q) · q

So, the coefficient of q is∑
q∈Criti−1(f)

#M (∂σ, q)−
∑

p∈Criti(f)

∑
q∈Criti−1(f)

#M (σ, p) ·#M (p, q) = #∂M (σ, q)

Since M (σ, q) is a 1-dimensional compact manifold, #∂M (σ, q) is zero modulo 2.

Lemma 4.1.3. A ◦D = id : CMorse
i → CMorse

i .

Proof. Let p be an index i critical point. Then

A ◦D(p) = A(D(p)) =
∑

q∈Criti(f)

#M (D(p), q) · q.
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While q = p, M (D(p), p) contains only one point which is constant gradient flow line. If

q is another critical point of index i, then M (D(p), q) is empty set because there is no

gradient flow line from D(p) to q except p. But M (p, q) is empty as well because of the

Morse-Smale condition. Hence, A ◦D(p) = p.

Since A is also a chain map and the composition of D and A is identity, the induced

map from D on the previous section becomes one-to-one and onto. Now, it is enough to

show that the composition D ◦A and id are homotopic. From this way, it will follow that

D ◦ A and id give rise to the same function on the homology level.

4.2 The chain homotopy

Let σ be a generic simplex. The forward orbit F (σ) of σ is a set defined as follows:

F (σ) = {(s, x) : s ≥ 0, x ∈ σ}

together with a map e : F (σ)→M , (s, x) 7→ ϕs(σ(x)).

Remark 4.2.1. Every dynamical system has an orbit at a point x, that is the sequence of

states that starts given initial state {ϕs(x) : s ∈ R}. The forward orbit is the subsequence

{ϕs(x) : s ≥ 0}. For each fixed x, ϕs(x) defines a curve on M as s varies over R, this is

the orbit of x.

Theorem 4.2.2. There is a natural compactification of F (σ) to a smooth manifold with

corners F (σ) whose codimension k stratum is

F (σ)k = F (σk) ∪
k⋃
j=1

⋃
p1,...,pj∈Crit(f)

M (σk−j, p1)×M (p1, p2)× ....×M (pj−1, pj)×D(pj)

where p1, ...., pj are all distinct and σj denotes the codimension j stratum of σ. When

k = 1, as oriented manifolds, we have

∂F (σ) = −σ ∪ −F (∂σ) ∪
⋃

p∈Crit(f)

M (σ, p)×D(p).

We define a map F : Ci(M)→ Ci+1(M) by

F (σ) = e∗[F (σ)].
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Lemma 4.2.3. F is a chain homotopy between D ◦ A and identity on Ci(M), that is

∂F + F∂ = D ◦ A− idCi(M).

Proof. Our aim is to show (∂F + F∂ −D ◦ A + idCi(M))(σ) = 0 for all σ ∈ Ci(M). Let σ

be an i-simplex and w be an i-form.

∂F (σ)(w) = ∂e∗[F (σ)](w)

= e∗∂[F (σ)](w)

= e∗[∂F (σ)](w)

= e∗[−σ ∪ −F (∂σ) ∪
⋃

p∈Crit(f)

M (σ, p)×D(p)](w)

=

∫
−σ∪−F (∂σ)∪

⋃
p∈Crit(f) M (σ,p)×D(p)

e∗w

= e∗[−σ]− e∗[F (∂σ)] +
∑

p∈Crit(f)

e∗[M (σ, p)×D(p)]

= e∗[−σ]− e∗[F (∂σ)] +
∑

p∈Crit(f)

#M (σ, p) · e∗[D(p)]

The last equality comes from the fact that dim(M (σ, p)) = i− ind(p) = 0. Now, apply σ

to the following function

F∂(σ) = F (∂σ)

= e∗[F (∂σ)]

D ◦ A(σ) = D(
∑

p∈Criti(f)

#M (σ, p) · p)

=
∑

p∈Criti(f)

#M (σ, p) · e∗[D(p)]

Hence, we have shown the equality (∂F + F∂ −D ◦ A+ idCi(M))(σ) = 0.
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5 Applications of Morse Homology

We will use the isomorphism between Morse homology and singular homology to prove some

theorems coming from algebraic topology such as Morse inequalities, Poincare duality and

Kunneth formula for homology groups. For original proofs without using Morse Homology

Theorem, one can check the reference [17].

5.1 Morse inequalities

Let bk be the k-th Betti number of M , that is bk = dimHk(M) = rankHk(M) and ck be

the number of elements in the set of critical points of a Morse function f of index k, that

is ck = dimCMorse
k (f, g). We first observe that ck ≥ bk for all k = 0, 1, ..., n: we have a

short exact sequence at each k = 0, 1, ..., n

0→ ker∂Morse
k → CMorse

k (f, g)→ im∂Morse
k → 0.

Hence, we get the following equality

dimCMorse
k (f, g) = dim(im(∂Morse

k ) + dim(ker(∂Morse
k ))).

We also have a short exact sequence

0→ im∂Morse
k+1 → ker∂Morse

k → HMorse
k (f, g)→ 0.

Hence, we get another equality

dimHMorse
k (f, g) = dim(ker(∂Morse

k )/im(∂Morse
k+1 )) = dim(ker(∂Morse

k ))− dim(im(∂Morse
k+1 )).

By substituting the second equality into the first one and using the theorem 4.0.4, we get

ck = dimCMorse
k (f, g) = dim(im(∂Morse

k )) + dim(im(∂Morse
k+1 )) + bk.

Hence, ck ≥ bk for all k = 0, 1, ..., n. We now state a very strong theorem which is called

the Euler-Poincare theorem.

Theorem 5.1.1. ([2]) Given any chain complex described as below

0→ Cn
∂n→ Cn−1

∂n−1→ ....
∂1→ C0 → 0
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we have
n∑
i=0

(−1)idimCi =
n∑
i=0

(−1)idimHi(C∗).

Proof. The equalities obtained from the exact sequences as above implies the equality

dim(ker(∂k)) = dimCk − dim(im(∂k)) = dim(im(∂k+1)) + dimHk(C∗).

Therefore,

n∑
i=0

(−1)i(dimCi − dim(im(∂i))) =
n∑
i=0

(−1)i(dim(im(∂i+1))) + dimHi(C∗).

Hence, we conclude the desired result

n∑
i=0

(−1)idimCi =
n∑
i=0

(−1)idimHi(C∗).

Now we pass to Morse inequalities.

Theorem 5.1.2. Let f : M → R be a Morse function. Let ci be the number of critical

points of f of index i, and let bi = dimHi(M) be the i-th Betti number of M . Then

ck − ck−1 + ....+ (−1)kc0 ≥ bk − bk−1 + ....+ (−1)kb0

and for k = m, m is the dimension of M , we get the equality:

m∑
i=0

ci =
m∑
i=0

bi.

Proof. By Theorem 4.0.4, we know that dimHMorse
i (f, g) = dimHi(M) = bi. Let 0 ≤ k ≤

m, and the new chain complex (C∗, ∂∗) by defining Ck = CMorse
k (f, g) if k ≤ m and Ck = 0

if k > m:

0→ Ck → Ck−1 → .....→ C1 → C0 → 0.

So by Euler-Poincare theorem we have

k∑
i=0

(−1)idimCi =
k∑
i=0

(−1)idimHi(C∗).
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Now we multiply both sides with (−1)k to get

(−1)k
n∑
i=0

(−1)idimCi = (−1)k
n∑
i=0

(−1)idimHi(C∗).

For the last term, we have Hk(C∗) = ker∂k. And we have HMorse
k (f, g) = ker∂k/im(∂k+1)

as well. Hence, we observe thatHMorse
k (f, g) is the quotient ofHk(C∗) and bk ≤ dimHk(C∗).

So together with the equality above, we obtain the desired result. Also, if k = m, then

dim(im(∂k)) = 0. Hence, inequality becomes equality.

5.2 Poincare duality

In this section, we will focus on the Z2 coefficients. We define the Morse cochain complex

with Ck
Morse(f, g) as cochain groups and the differential ∂kMorse by

∂kMorse : Ck
Morse(f, g) // Ck+1

Morse(f, g)

φ � // ∂kMorse(φ) : CMorse
k+1 (f, g) // Z2

p � //
∑

q∈Critk(f) #M (p, q) · φ(q)

We observe that ∂k+1
Morse ◦ ∂kMorse = 0. This can be proved in the similar way to lemma

1.7.2. So (C∗Morse(f, g), ∂∗Morse) becomes the complex called the Morse cochain complex.

Therefore, we can define the Morse cohomology:

Hk
Morse(f, g) = ker∂kMorse/im∂

k−1
Morse.

There is a very useful isomorphism between the cohomology induced from Morse ho-

mology and de Rham cohomology [26], H∗Morse(f, g) ∼= H∗dR(M,R) for any coefficient ring.

Moreover, H∗(M) ∼= H∗dR(M,R), the singular cohomology of a manifold and de Rham

cohomology are isomorphic, [18]. So, H∗Morse(f, g) ∼= H∗(M,R).

Theorem 5.2.1. If M is oriented, then Hn−∗(M) ∼= H∗(M,Z2).

Proof. Let f be any Morse function on M . Then −f is also a Morse function. The critical

points of f and −f are the same but the indexes are different for a critical point p. If the

index of p with respect to f is k, then the index of p with respect to −f is n− k. This is

because the change of signs on the Hessians. Since M is closed, we know that there exist

finitely many critical points of f . Noting that we use finitely many critical points, we get a
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canonical isomorphism CMorse
k (f, g) ∼= Ck

Morse(f, g) defined by p 7→ φp such that φp(q) = 1

if q = p, φp(q) = 0 if otherwise. Also we have CMorse
k (f, g) = CMorse

n−k (−f, g). Therefore we

get

Ck
Morse(f, g) ∼= CMorse

n−k (−f).

Now we will show that the isomorphism Ψ : CMorse
n−k (−f) → Ck

Morse(f, g) is a chain map,

i.e Ψ ◦ ∂Morse(p) = ∂Morse ◦Ψ(p), for all p ∈ Critn−k(−f). First, let p ∈ Critn−k(−f). So,

Ψ ◦ ∂Morse(p) = Ψ(
∑

q∈Critn−(k+1)(−f)

#M (q, p) · q)

=
∑

q∈Critn−(k+1)(−f)

#M (q, p) ·Ψ(q)

On the other hand, let q ∈ Critk+1(f). So,

∂Morse ◦Ψ(p)(q) =
∑

r∈Critk(f)

#M (q, r) ·Ψ(p)(r)

Observe that M (p, q) with respect to f is isomorphic to M (q, p) with −f by the map

[γ(s)] 7→ [γ(−s)]. We obtained the desired equality Ψ ◦ ∂Morse = ∂Morse ◦ Ψ. Hence, we

canonically obtain the isomorphism

Ψ∗ : HMorse
n−∗ (−f, g)→ H∗Morse(f, g)

Since the Morse homology and the Morse cohomology are independent of the choice of a

Morse function, we proved the Poincare duality.

5.3 Kunneth Formula

Again, in this section we will use the Z2 coefficients. We follow the way of [1].

Theorem 5.3.1. ([17])

Let M and N be two closed manifolds. For any k > 0 and the coefficient ring Z2,

Hk(M ×N ;Z2) ∼=
⊕
i+j=k

Hi(M ;Z2)⊗Hj(N ;Z2).
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It can be proved by using the CW-complex structure on M × N as presented in [17].

Yet, we will prove this by using the isomorphism between singular homology and Morse

homology. Let f1 : M → R and f2 : N → R be two Morse functions on M and N ,

respectively. Let −gradf1 and −gradf2 be the negative gradients of f1 and f2 with respect

to the metrics g1 and g2, respectively. In the sense of section 1.2, we can say that −gradf1

generates a one-parameter group of diffeomorphism ψs : M → M and −gradf2 generates

a one-parameter group of diffeomorphism ϕs : N → N . We now define the function

f1 ⊕ f2 : M ×N → R, f1 ⊕ f2(m,n) = f1(m) + f2(n). Because f1 and f2 are Morse, so is

f1 + f2: Let p and q be nondegenerate critical points of f1 and f2, respectively. Our aim

is to show that the Hessian of f1 ⊕ f2 does not have zero as an eigenvalue at p × q. For

X × Y ∈ Tp×q(M ×N) = TpM × TqN ,

H(f1 ⊕ f2, p× q)(X × Y ) = ∇X×Y ( d(f1 ⊕ f2)) = ∇X( df1)⊕∇Y ( df2).

Since p and q are nondegenerate, we have conclude that p× q is nondegenerate, too.

The critical points of f1⊕f2 are the points (p, q) such that p ∈ Crit(f1) and q ∈ Crit(f2).

And also, the index of (p, q) is the sum of the index of p and the index of q. Suppose (p1, q1)

be the critical point of index k, it will flow the critical point (p2, q2) of index k − 1 in the

following flow:

(ϕ× ψ)s(p, q) = (ϕs(p), ψs(q)).

It is generated by the negative gradient (−gradf1,−gradf2). Given a pair of critical

points (p1, q1) and (p2, q2) in M ×N , we consider the set of flow lines of negative gradient

vector field (−gradf1,−gradf2), in particular,

M (p1 × q1, p2 × q2) ∼= M (p1, p2)×M (q1, q2).

Here, p1 6= p2 and q1 6= q2 so that M (p1, p2) ×M (q1, q2) is not empty. The indices

have to satisfy the following inequalities; ind(p1) ≥ ind(p2) + 1 and ind(q1) ≥ ind(q2) + 1

or ind(p1, q1) ≥ ind(p2, q2) + 2. So, for the critical points with consecutive indices,

M (p1 × q1, p2 × q2) =

{p1} ×M (q1, q2), if p1 = p2

M (p1, p2)× {q1} , if q1 = q2

and
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#M (p1 × q1, p2 × q2) =


#M (q1, q2), if p1 = p2

#M (p1, p2), if q1 = q2

0, otherwise

Note that the map

Φ :
⊕
i+j=k

Ci(f1)⊗ Cj(f2)→ Ck(f1 ⊕ f2)

where Φ(a1⊗ a2) = (a1, a2) is an isomorphism. And we will show that it is a chain map so

that it induces an isomorphism on homology groups.

Proposition 5.3.2. Φ is a chain map, i.e Φ ◦ (∂Morse
M ⊗ 1 + 1⊗ ∂Morse

N ) = ∂Morse
M,N ◦ Φ.

Proof. Let p1 be a critical point of f1 of index i and q1 be a critical point of f2 of index j

and p2 be a critical point of f1 of index i− 1 and q2 be a critical point of f2 of index j− 1.

Φ ◦ (∂Morse
M ⊗ 1 + 1⊗ ∂Morse

N )(p1 ⊗ q1) = Φ(∂Morse
M (p1)⊗ q1 + p1 ⊗ ∂Morse

N )(q1))

= Φ(
∑

#M (p1, p2) · p2 ⊗ q1 +
∑

#M (q1, q2) · p1 ⊗ q2)

=
∑

#M (p1, p2) · Φ(p2 ⊗ q1) +
∑

#M (q1, q2) · Φ(p1 ⊗ q2)

=
∑

#M (p1, p2) · (p2, q1) +
∑

#M (q1, q2) · (p1, q2)

On the other hand,

∂Morse
(M,N) ◦ Φ(p1 ⊗ q1) = ∂Morse

(M,N)(p1, q1)

=
∑

(p2,q2)∈Criti+j−1(f⊕g)

#M ((p1, q1), (p2, q2)) · (p2, q2)

=
∑

p2∈Criti−1(f1)

#M (p1, p2) · (p2, q1) +
∑

q2∈Critj−1(f2)

#M (q1, q2) · (p1, q2)

So, we have shown that Φ is a chain map.
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Hence, Φ∗ induces an isomorphism on Morse homology

Φ∗ : HMorse(
⊕
i+j=k

Ci(f1)⊗Cj(f2), ∂Morse
M ⊗ 1 + 1⊗ ∂Morse

N )→ HMorse(Ck(f1 ⊕ f2), ∂Morse
(M,N)).
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6 Morse-Bott Theory

Definition 6.0.3. Let f : M → R be a smooth function on m-dimensional manifold M .

An n dimensional submanifold S ⊂M is said to be critical if all points in S are critical.

Definition 6.0.4. Let M be a finite dimensional closed manifold. A function f : M → R
is said to be Morse-Bott if the followings are satisfied:

i. Crit(f), the set of all critical points of f , is the disjoint union of submanifolds

Si ⊂M .

ii. If S is a critical submanifold, for all p ∈ S the kernel of Hessian of f at p consists

only TpS.

We now explain how to extend the idea of Morse Theory to Morse-Bott Theory. Al-

though the set of all Morse functions is dense in the space of continuous functions, being a

Morse function is difficult because of nondegeneracy condition for all critical points. Since

any Morse-Bott function can be perturbed to a Morse function and Morse-Bott functions

enable us to study on critical points which are degenerate, we are interested in Morse-Bott

theory. For more detailed reading, [3] is an excellent reference.

Definition 6.0.5. (Normal Bundle,[19]) Let M be a Riemannian manifold with Rieman-

nian metric g and S be a submanifold of M . For a given p ∈ S, we say that n ∈ TpM is

normal to S if g(n, v) = 0 for all v ∈ TpS. The set of all such n, NpS, is said to be the

normal space to S at p. The set

NS :=
∐
p∈S

NpS

is called the normal bundle.

Remark 6.0.6. ([6]) Equivalent to the second condition, given any metric on M , the Hessian

H(f, p) induces an invertible self adjoint map on the normal bundle

H(f, p) : NpS → NpS.

Examples

• Every Morse function on M is also a Morse-Bott function; the critical submanifolds

are critical points.
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• Let f : R3 → R be defined by f(x, y, z) = −x2 + y2. By taking partial derivatives

with respect to x, y and z, we get
df

dx
= −2x,

df

dy
= 2y and

df

dz
= 0 respectively. So, the

critical points are (0, 0, z) for all z. Therefore, the critical submanifold is z-axis. Note that

the kernel of the Hessian of f at any point z is the set of solutions of the matrix equation−2 0 0

0 2 0

0 0 0


ab
c

 =

0

0

0

 .
So, kerH(f, (0, 0, z)) = {(0, 0, z) : z ∈ R}. Also, since z-axis is R and the tangent space

of R is again R, kerH(f, (0, 0, z)) = T(0,0,z)R. Hence, f is a Morse-Bott function.

• Let f : S2 → R be defined by (x, y, z) 7→ z2. We parametrize S2 with six charts:

(x, y,∓
√

1− x2 − y2) 7→ 1− x2 − y2

(x,∓
√

1− y2 − z2 7→ z2

(∓
√

1− y2 − z2, y, z) 7→ z2

The first one gives two critical points (0, 0,∓1) and other ones give the critical sub-

manifold, equator. So, the critical submanifolds of f are S0 = S1, S1 = ∅ and S2 = {N,S}.

We now define the index for critical submanifolds. By using metric on M , we decompose

the normal bundle as

NpS = NpS
− ⊕NpS

+

The index is regarded as an interval [i−(S), i+(S)], where i−(S) is the dimension of the

negative normal bundle NpS
− and i+(S) = i−(S) + dim(S). In the second example, the

index of the critical submanifold z-axis is [1, 2] because NpR = R ⊕ R and the dimension

of R is 1.

Remark 6.0.7. Every Morse-Bott function can be perturbed to a Morse function: let

f : M → R be a Morse-Bott function and fi : Si → R be Morse functions on criti-

cal submanifolds of M . First, extend fi to the manifold M by multiplying with bump

functions on the tubular neighborhoods, then define the function

hε(x) = f(x) + ε(
∑
i

f̃i(x))
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for all x ∈M and ε > 0. Here, f̃i : M → R is the extension of fi. The set of critical points

of fε, Crit(fε), is the union of the set of critical points of fi’ s. So, fε becomes a Morse

function. Let p ∈ Crit(fi), then the index of p of fε is

ind(p) + i−(Si).

As an example of the perturbation of a Morse-Bott function, consider f : R3 → R
defined by f(x, y, z) = −x2 + y2. It is shown above that f is a Morse-Bott function. It has

only one critical submanifold which is R. Now, let g : R→ R defined by g(z) = −z2. This

is a Morse function and it has one critical point 0 of index 1. First we extend it to R3 and

define a new function hε(x, y, z) = −x2 + y2 − εz2. The critical point of hε is just (0, 0, 0)

of index 2. Also, the Hessian does not have 0 as an eigenvalue. So, hε is a Morse function.

6.1 Morse-Bott Homology

Fix a Morse-Bott function f on M . Let g be a metric and −gradf be a negative gradient

vector field of f . If Sj, Sk are two critical submanifolds, we define the set of flow lines as

follows:

W (Sj, Sk) =

{
γ : R→M |γ′(s) = −gradf(γ(s)), lim

s→−∞
γ(s) ∈ Sj, lim

s→∞
γ(s) ∈ Sk

}
.

As R acts on W (Sj, Sk) by precomposition with translation, we get the set of un-

parametrized flow lines beginning in Sj and ending in Sk

M (Sj, Sk) = W (Sj, Sk)/R.

Remark 6.1.1. The descending and ascending manifolds of a critical submanifold Sj can

be defined analogous to the case of nondegenerate critical points.

i. The descending manifold of Sj is defined to be:

D(Sj) =

{
x ∈M : lim

s→−∞
ψs(x) ∈ Sj

}

ii. The ascending manifold of Sj is defined to be:

A (Sj) =
{
x ∈M : lim

s→∞
ψs(x) ∈ Sj

}
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For any generic metric g, the descending manifold of Sj and the ascending manifold of

Sk will intersect transversely so that W (Sj, Sk) is a manifold.

Remark 6.1.2. The dimension of the descending manifold of Sj is nj + i−(Sj) and the

dimension of the ascending manifold is m− (nk + i−(Sk)), where nj and nk are dimensions

of Sj and Sk, respectively. Then,

dimW (Sj, Sk) = nj + i−(Sj) + (nk + (m− (nk + i−(Sk))))−m

= nj + i−(Sj)− i−(Sk)

= i+(Sj)− i−(Sk)

So, dimM (Sj, Sk) = i+(Sj)− i−(Sk)− 1.

We now focus on the case of Morse-Bott complex. There are natural endpoint maps

e+ : M (Sj, Sk)→ Sj

and

e− : M (Sj, Sk)→ Sk

sending γ 7→ lims→−∞ γ(s) and γ 7→ lims→−∞ γ(s), respectively.

Proposition 6.1.3. If A,B and C are smooth manifolds and the maps f : A → C and

g : B → C are transverse to each other, then

A×C B = {(a, b) ∈ A×B : f(a) = g(b)}

is a smooth manifold of dimension dim(A) + dim(B)− dim(C).

Proof. Consider the map f × g : A×B → C ×C defined by (a, b) 7→ (f(a), g(b)). Observe

that (f × g)−1(∆C) = A×C B, where ∆C = {(c, c) : c ∈ C}. Since f and g are transverse

to each other, f × g and ∆C intersect transversally, as well. By [14], we conclude that

(f × g)−1(∆C) is a smooth submanifold of A×B.

Lemma 6.1.4. ([12]) For a generic metric, the maps e+ : M (Sj, Sk) → Sj and e− :

M (Sj, Sk)→ Sk are transverse to each other.
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Lemma 6.1.5. For a generic metric, the space of gradient lines M (Sj, Sk) can be com-

pactified to a manifold with corner M (Sj, Sk) and the codimension l stratum is

M (Sj, Sk)l =
⋃

Si1
,...,Sil

M (Sj, Si1)×Si1
M (Si1 , Si2)×Si2

...×Sil
M (Sil , Sk)

where Si1 , ..., Sin are different critical submanifolds. In particular, for l = 1, the boundary

of M (Sj, Sk)

∂M (Sj, Sk) =
⋃
Si1

M (Sj, Si1)×Si1
M (Si1 , Sk)

Like in Lemma 6.1.4, for a generic metric, the maps are transverse to each other

ei1,...,im− : M (Sj, Si1)×Si1
...×Sim−1

M (Sim−1 , Sim)→ Sim

eim,...,in+ : M (Sim , Sim+1)×Sim+1
...×Sin

M (Sin , Sk)→ Sim .

Note that the moduli space does not have to be orientable even if S1 and S2 are

orientable. As an example, let S1 and S2 are circles and the moduli space is a Klein bottle.

However, we can orient M (S1, S2) locally. Let σ be a generic simplex in S1, and define

M (σ, S2) := σ ×S1 M (S1, S2).

We observe that σ and e− are transversal, so M (σ, S2) is a manifold, see [7].

We give a local orientation to M (σ, S2). If γ ∈ M (σ, S2) is a gradient flow line from

p1 to p2, then orintations of σ, D(p1) and D(p2) determine a local orientation of M (σ, S2)

in such a way that

Tp1σ ⊕ Tp1D(p1) ∼= TγM (σ, S2)⊕ Tγ ⊕ Tp2D(p2)

where p1 ∈ σ.

Let us introduce the orientation sheaf O to define the chain groups of Morse-Bott

complex. Before doing this, we recall the definitions of presheaf and sheaf which provide

informations from local data to global data. For more detail, see [9].

Definition 6.1.6. (Presheaf) Let X be a topological space. We say that F is a presheaf

of groups over X if the following conditions are satisfied

i. For each open set U ⊂ X, there is a group denoted by F(U)
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ii. For every inclusion V ⊂ U , there is a map ρUV : F(U) → F(V ) with the properties

that F(∅) = 0, ρUU = id for any open set U ⊂ X and for open sets W ⊂ V ⊂ U the

composition ρVW ◦ ρUV = ρUW .

The elements of a presheaf F(U) are sections on U and ρUV (f) denoted by f |U .

Definition 6.1.7. (Sheaf) Let X be a topological space. A presheaf F is called a sheaf

if for any open set U ⊂ X and for any open cover {Ui}i∈I of U , the followings are satisfied

i. Locality:

If f ∈ F(U) such that f |Ui
= 0 for all i, then f = 0.

ii. Gluing:

Given a collection of sections {fi}i∈I such that ρUi
Ui∩Uj

(fi) = ρ
Uj

Ui∩Uj
(fj), then there

exists a section f ∈ F(U) such that ρUUi
(f) = fi for all i ∈ I. This means that if

fi|Ui∩Uj
= fj|Ui∩Uj

for all i, j, then there is an f ∈ F(U) with f |Ui
= fi for all i.

Note that this definition can be generalized to all algebraic objects such as sets, rings,

modules, etc.

Remark 6.1.8. A presheaf does not have to be a sheaf: Let A be an Abelian group. We

can define a presheaf Ã by Ã(U) = A for all U . The restriction maps ρ are the identity

maps on A. This is called the constant presheaf on X. It is obviously a presheaf. But it

may not be a sheaf. For example, let X = U1∪U2 such that U1∩U2 = ∅, then if a ∈ Ã(U1)

and b ∈ Ã(U2), a and b are distinct in A, then a and b do not glue an element in Ã(X).

Definition 6.1.9. (Constant sheaf) Let X be a topological space and A be an Abelian

group with a topological structure, discrete topology. We define the constant sheaf by

F(U) = C(U,A), the group of continuous functions from U to A. The restriction maps

are the function restriction.

Definition 6.1.10. (Stalk) Let F be a presheaf on a topological space X. Let p ∈ X.

We define the stalk of F at p

Fp = lim
→
p∈U
F(U)

where U is the neighborhood of p. The direct limit is over for each neighborhood of p.

We have seen that not all presheafs are sheafs. But we can obtain a sheaf by applying

a process which is called the sheafification. More precisely, let F be a presheaf. We define
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a new sheaf F̃ in the following way: Let F̃(U) be the set of all functions f from U to

disjoint union on stalks Fp
f : U →

⋃
p∈U

Fp

that satisfy the following properties

i. f(p) ∈ Fp

ii. For al p ∈ U , there is an open neighborhood V ⊂ U of p and a section s ∈ F(V )

such that for all q ∈ V we have f(q) = sq.

Lemma 6.1.11. Let F be a presheaf and F̃ its sheafification. The stalks of F and F̃ are

the same.

Let M be an n-dimensional smooth manifold. Then the orientation sheaf O is the

sheafification of the presheaf U 7→ Hn(M,M − U,Z). It is always a locally constant sheaf

[9].

Remark 6.1.12. Because of the above lemma 6.1.11, the stalk of O is the stalk of the

presheaf U 7→ Hn(M,M − U,Z). Since Hn(M,M − U,Z) ∼= Z, the stalk of O is Z, [15]:

Note that for all p ∈ M , Hq(M,M − {p}) = Z if q = n, and 0 if q 6= n, let U be an open

neighborhood of p, then M − U = M − U ⊂ M − {p} = Int(M − {p}. So, by excision

theorem

Hq(M,M − {p}) ∼= Hq(U,U − {p})
∼= Hq(Rn,Rn − {p}
∼= H̃q−1(Rn − {p})
∼= H̃q−1(Sn−1)

the last isomorphism comes from the long exact sequence theorem and H̃q−1(Sn−1) ∼= Z if

q = n, and 0 if q 6= n. Also, given an open neighborhood W of p, there exists an open

neighborhood U of p such that U ⊂ W and H∗(M,M − U) ∼= H∗(M,M − {p}) for all

p ∈ U .

Remark 6.1.13. The orientation sheaf O is trivial iff M is orientable, [9]. Trivial orientation

sheaf means that O is constant sheaf.
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Now, we can use all these informations to the critical submanifold S. There is an

orientation sheaf O on S whose stalk is defined by

Op := Hi−(S)−1(D(p)/p) ∼= Z.

The orientation on D(p) determines such an isomorphism and the orientation on A (p)

determines the opposite orientation. Let Csing
∗ (S,O) be the space of singular chains with

coefficients in O,

Csing
∗ (S,O) := Z[(σ, o) : σ ⊂ S, o ∈ Γ(Im(σ),O)]/ ∼

where σ is simplex in S, Γ(Im(σ),O) is the set of sections and the relation ∼ is defined

by (σ,−o) ∼ −(σ, o). To define the Morse-Bott chain complex, we choose the generic

simplecies which means that σ is smooth and each face of σ is transverse to e+ of all moduli

spaces of flow lines between critical submanifolds and all iterated fiber products thereof. We

define the resulting chain complex as C∗(S,O) ⊂ Csing
∗ (S,O) and the differential defined

in a standard way. Thus, the kth Morse-Bott chain group is defined as follows

CBott
k :=

⊕
S

Ck−i−(S)(S,O).

If σ ∈ C∗(S,O) is a generic simplex and for S
′ 6= S, then we have the following composition

of maps

M (σ, S ′)
i−→M (S, S ′)

e−−→ S
′

gives us the following well defined current

(i ◦ e−)[M (σ, S ′)] ∈ C∗(S
′
,O).

We always think σ with an orientation data o, we will write σ instead of (σ, o) and we use

the notation e− instead of (i ◦ e−) for simplicity. Moreover, if dim(σ) = k − i−(S), then

dim(M (σ, S
′
)) = dim(σ) + dim(M (S, S ′))− dim(S)

= k − i−(S) + i+(S)− i−(S
′
)− 1− dim(S)

= k − 1− i−(S
′
).
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We now define the differential D : CBott
k → CBott

k−1 as follows:

D(σ) := ∂σ +
∑
S′ 6=S

e−[M (σ, S ′)].

Lemma 6.1.14. D2 = 0.

Proof.

D(Dσ) = D(∂σ +
∑
S′ 6=S

e−[M (σ, S ′)])

= D(∂σ) +D(
∑
S′ 6=S

e−[M (σ, S ′)]))

= ∂2σ +
∑
S′ 6=S

e−[M (∂σ, S ′)] + ∂(
∑
S′ 6=S

e−[M (σ, S ′)]) +
∑
S′′ 6=S′

e−[M (
∑
S′ 6=S

e−[M (σ, S ′)], S ′′)]

=
∑
S′ 6=S

e−[∂σ ×S M (S, S ′)] + ∂(
∑
S′ 6=S

e−[σ ×S M (S, S ′)])

+
∑
S′′ 6=S′

e−[
∑
S′ 6=S

e−[M (σ, S ′)]×S′ M (S ′ , S ′′)]

=
∑
S′ 6=S

e−[σ ×S ∂M (S, S ′)] +
∑
S′′ 6=S′

e−[
∑
S′ 6=S

e−[σ ×S M (S, S ′)]×S′ M (S ′ , S ′′)]

The last equality comes from the fact that, see [12]

∂(σ ×S M (S, S ′)) = ∂σ ×S M (S, S ′)
⋃

σ ×S ∂M (S, S ′).

Then, we get the equality from the compactness property of moduli sapace M (S, S
′
):

∑
S′ 6=S

e−[σ ×S ∂M (S, S ′)] =
∑
S′ 6=S

e−[σ ×S
⋃
S′′

M (S, S
′′
)×S′′ M (S

′′
, S
′
)]

=
∑
S′ 6=S

∑
S 6=S′′

e−[σ ×S M (S, S
′′
)×S′′ M (S

′′
, S
′
)]
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Hence,

D2σ = 0.

The homology of the chain complex (CBott
∗ , D) is called the Morse-Bott homology

HBott
∗ (f, g).

Examples

• Let f : M → R be the 0 map. Since all points in M are critical points, Crit(f) = M .

So, f is a Morse-Bott function. The only critical submanifold of M is itself. Then S = M

and CBott
∗ = C∗(M). In this case, the all homology group are the same as all singular

homology groups of M . Hence, HBott
∗ (f, g) = H∗(M).

• Consider the Morse-Bott function f : S2 → R such that f(x, y, z) = z2. We have

shown that the critical submanifolds are equatorial S0 = S1, and the set of critical points

S2 = {N,S} with the corrosponding index 0 and 2, respectively. So the Morse-Bott chain

groups are the followings:

CBott
0 = C0(S0,O)

CBott
1 = C1(S0,O)

CBott
2 = C2(S0,O)⊕ C0(S2,O) = C0(S2,O)

Since S0 is S1 and the orientation sheaf is trivial, CBott
0 = C0(S1). Moreover, the chain

groups for k ≥ 3 are all empty set. Then, the chain complex is as follows

0→ C0(S2,O)
D2→ C1(S1)

D1→ C0(S1)
0→ 0.

In this chain complex, D1(σ) = ∂σ, D2(S) = e−[M (S, S0)] = [S0] and D2(N) =

e−[M (N,S0)] = [S0]. Then, ker(D2) =< S + N >= Z2, im(D2) = Z2 and ker(D1) = Z2.

Therefore, the Morse-Bott homology groups of S2 are

HBott
n (f, g) =

Z2, if n= 0,2

0, otherwise

• Let f : T 2 → R be a Morse-Bott function on the torus with two critical submanifolds,

S0 and S1, circle of minima and circle of maxima, respectively. The circle of minima is of

index 0 and the circle of maxima is of index 1. The chain groups are the followings;
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CBott
0 = C0(S0,O)

CBott
1 = C1(S0,O)⊕ C0(S1,O)

CBott
2 = C1(S1,O)

so, the Morse- Bott chain complex is

0→ C1(S1,O)
D2→ C1(S0,O)⊕ C0(S1,O)

D1→ C0(S0,O)
0→ 0.

Since the circle is orientable, the orientation sheaf is trivial. Also, all simplices in the

critical submanifolds are generic. If we choose a symmetric metric on torus, for each point

in S1 there are two flow lines to the same point in S0. So, the differential D2(σ1) = ∂σ1 and

D1(σ0, .) = ∂σ0. Then ker(D1) =< [S0], . >= Z2 ⊕ Z2, im(D1) = 0, ker(D2) =< [S1] >=

Z2 and im(D2) = 0. Therefore, the Morse-Bott homology of T 2 is

HBott
n (f, g) =


Z2, if n= 0,2

Z2 ⊕ Z2, if n = 1

0, otherwise

• In this example, we will do surgery on a horizontal circle of the previous example:

First, having cut out the tubular neighborhood of the horizontal circle, we are left with a

cylinder S1×D1. We glue D2×∂D1 = D2tD2 back in the cylinder. The resulting manifold

will be homeomorphic to the sphere.

We now put a Morse-Bott function on S2 with a circle S0 of minima, a circle S1 of

maxima, an isolated minimum m0 and an isolated maksimum m2 as critical submanifolds.

The indices are 0, 1, 0 and 2, respectively. The chain groups are

CBott
0 = C0(S0,O)⊕ C0(m0,O)

CBott
1 = C1(S0,O)⊕ C0(S1,O)

CBott
2 = C1(S1,O)⊕ C0(m2,O)

Since the critical submanifolds are orientable, all orientation sheaves are trivial. So the

Morse-Bott chain complex is

0→ C1(S1,O)⊕ C0(m2,O)
D2→ C1(S0,O)⊕ C0(S1,O)

D1→ C0(S0,O)⊕ C0(m0,O)→ 0
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Up to orientation, D1(S0) = 0 and D1(p) = m0 +q where p ∈ S1 and q = φ(p), φ : S1 →
S0 is a diffeomorphism. Furthermore, D2(m2) = [S0] and D2(σ) = ∂σ + e−[M (σ, S0)] =

[S0]. Since there are two flow lines at the same point on S0, D2 = 0. Therefore, the

Morse-Bott homology is depicted below

HBott
n (f, g) =

Z2, if n= 0,2

0, otherwise

As easily seen in the examples, the Morse-Bott homology groups computed from the

complex (CBott
∗ , D) are independent of the choice of a Morse-Bott function and a generic

metric. This is analogous to the case of Morse homology.

Theorem 6.1.15. Given two different Morse-Bott functions f0 and f1 with generic metrics

g0 and g1, there is a canonical isomorphism

HBott
∗ (f0, g0) ∼= HBott

∗ (f1, g1).

We already know from the previous examples that HBott
∗ (f1, g1) ∼= H∗(X) for f1 = 0

and any metric g1. Then the theorem implies that for a Morse-Bott function f0 and a

metric g0, there is a canonical isomorphism

HBott
∗ (f0, g0) ∼= H∗(X).

In conclusion, Morse-Bott homology depends only on the manifold structure. The proof

of the theorem can also be shown by an alternative technique, see [3].

6.2 The Morse-Bott spectral sequences

Let C∗ be a chain complex, and let A∗ ⊂ C∗ be a subcomplex. The short exact sequence

of chain complexes

0→ A∗ ↪→ C∗ → C∗/A∗ → 0

leads to a long exact sequence in homology, [17]:

→ ...→ Hq+1(C∗, A∗)→ Hq(A∗)→ Hq(C∗)→ Hq(C∗, A∗)→ Hq−1(A∗)→ ....

A filtred chain complex is a chain complex with a filtration FpCi of each Ci such that

∂(FpCi) ⊂ FpCi−1. When one has a filtration of a chain complex C∗, there is an increasing

77



sequence of subcomplexes FpC∗ ⊂ Fp+1C∗ such that C∗ = ∪pFpC∗, [22].

Let GpC∗ be the subquotient complex GpC∗ = FpC∗/Fp−1C∗. We get a short exact

sequence

0→ Fp−1C∗ ↪→ FpC∗ → GpC∗ → 0.

Then there is a long exact sequence in the homology for each p,

→ ...→ Hq+1(GpC∗)→ Hq(Fp−1C∗)→ Hq(FpC∗)→ Hq(GpC∗)→ Hq−1(Fp−1C∗)→ ....

Let us denote the graded module by E0
p,q = GpCp+q = FpCp+q/Fp−1Cp+q. The boundary

map on the chain complex C∗ induces the zeroth differential, which we denote by

d0
p,q : E0

p,q → E0
p,q−1.

Since d0
p,q ◦ d0

p,q+1 = 0, we let

E1
p,q = Hp+q(GpC∗).

Now, we define the first differential map d1
p,q : E1

p,q → E1
p−1,q as follows: A homology

class α ∈ E1
p,q can be represented by a chain x ∈ FpCp+q such that ∂x ∈ Fp−1Cp+q−1. We

define d1
p,q(α) = [∂x]. Since ∂2 = 0, then d1

p,q is well defined and d1
p,q ◦ d1

p+1,q = 0, we let

the homology

E2
p,q = ker( d1

p,q : E1
p,q → Ep−1,q)/Im( d1

p+1,q : E1
p+1,q → E1

p,q).

All in all, a spectral sequence is a collection of R-modules Er
p,q and morphisms drp,q :

Er
p,q → Er

p−r,q+r−1 satisfies drp,q ◦ drp+r,q−r+1 = 0, so that Er+1
p,q is the homology of the chain

complex (Er, drp,q)

Er+1
p,q =

ker(Er
p,q → Er

p−r,q+r−1)

Im(Er
p+r,q−r+1 → Er

p−r,q+r−1)
.

A spectral sequence is called convergent if for every p, q there exists rp,q such that for

all r ≥ rp,q, the differentials drp,q and drp+r,q−r+1 are zero. When
{
Er
p,q, drp,q

}
r

is convergent,

its limit is denoted by E∞p,q, [22].

Proposition 6.2.1. ([16], [8]) Let (FpC∗, ∂) be a filtred complex. Then, there is a spectral
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sequence
{
Er
p,q, drp,q

}
, defined for r ≥ 0, with

E1
p,q = Hp+q(GpC∗).

If the filtration of Ci is bounded for each i, then the spectral sequence converges to

E∞p,q = GpHp+q(C∗).

Thus, E∞∗,∗ determines the homology H∗(C∗) up to extensions. In particular,

Hi(C∗) ∼=
⊕
p+q=i

E∞p,q.

The pair (f, g) is weakly self-indexing if M (S, S
′
) = ∅ whenever i−(S) < i−(S

′
). In

this case, i− defines a filtration on the complex (CBott
∗ , D)

FiC
Bott
∗ =

⊕
i−(S)≤i

C∗−i−(S)(S,O).

According to the proposition stated above, we obtain a spectral sequence converging

to the Morse-Bott homology with the E1
p,q term of the spectral sequence as follows:

E1
p,q = Hp+q(Fp(C

Bott
∗ )/Fp−1(CBott

∗ ))

= Hp+q(
⊕

i−(S)≤p

C∗(S,O)[i−(S)]/
⊕

i−(S)≤p−1

C∗(S,O)[i−(S)])

= Hp+q(
⊕

i−(S)=p

C∗(S,O)[i−(S)])

= Hq(
⊕

i−(S)=p

C∗(S,O))

=
⊕

i−(S)=p

Hq(C∗(S,O))

=
⊕

i−(S)=p

Hq(S,O).

Hence, the E1
p,q term of the spectral squence is:
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...⊕
i−(S)=0

H3(S,O)
d1
1,3←−

⊕
i−(S)=1

H3(S,O)
d1
2,3←−

⊕
i−(S)=2

H3(S,O)
d1
3,3←−

⊕
i−(S)=3

H3(S,O) · · ·

⊕
i−(S)=0

H2(S,O)
d1
1,2←−

⊕
i−(S)=1

H2(S,O)
d1
2,2←−

⊕
i−(S)=2

H2(S,O)
d1
3,2←−

⊕
i−(S)=3

H2(S,O) · · ·

⊕
i−(S)=0

H1(S,O)
d1
1,1←−

⊕
i−(S)=1

H1(S,O)
d1
2,1←−

⊕
i−(S)=2

H1(S,O)
d1
3,1←−

⊕
i−(S)=3

H1(S,O) · · ·

⊕
i−(S)=0

H0(S,O)
d1
1,0←−

⊕
i−(S)=1

H0(S,O)
d1
2,0←−

⊕
i−(S)=2

H0(S,O)
d1
3,0←−

⊕
i−(S)=3

H0(S,O) · · ·

where the differential d1
p,q is defined

d1
p,q : E1

p,q → E1
p−1,q

as follows: Let α ∈ Hq(S,O), represent it with a cycle C. For each S
′

with i−(S
′
) = p− 1,

up to orientation we obtain d1
p,q(α) =

∑
i(S
′ )=p−1±[e−(C ×S M (S, S

′
))]. The map is

well-defined because the dimension of the fiber product C ×S M (S, S
′
) is 1. The higher

differentials are similar with d1
p,q when there are no broken flow lines involved. Below, we

present some examples of Morse-Bott functions to calculate their Morse-Bott homology in

the sense of spectral sequences.

Examples

• Take the Morse-Bott function on the torus which has two critical submanifolds, S1

and S0, the indices of submanifolds are 1 and 0, respectively. We calculated the Morse-Bott

homology of torus on previous pages. We realized that the Morse-Bott homology of torus

is the same as its singular homology. Now, by showing all terms of the spectral sequence,

we will calculate the homology by using Prop 5.2.1. The E1
p,q term of the spectral sequence

...

0
d1
1,2←− 0

d1
2,2←− 0

d1
3,2←− · · ·

Z
d1
1,1←− Z

d1
2,1←− 0

d1
3,1←− · · ·

Z
d1
1,0←− Z

d1
2,0←− 0

d1
3,0←− · · ·
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Observe that d1
1,0 and d1

1,1 are not zero. So, we pass to E2
p,q. To do this, we have to find

all terms of E2
p,q. The kernel of the differential d1

1,0 is the set
{
α ∈ H0(S1) : d1

p,q(α) = 0
}

.

So, e−[C ×S0 M (S1, S0)] = 0. Since the moduli space M (S1, S0) is one dimensional man-

ifold, the kernel is the set of points., i.e Z. From the same reason, the kernel of the

differential d1
1,1 is Z. Hence, the E2

p,q term of the spectral sequence looks like

0 0 0

Z Z 0

Z Z 0

Then all differentials d2
p,q : E2

p,q → E2
p−2,q+1 are 0. Also, for every p and q, the differentials

drp,q and drp+r,q−r+1 are zero for r ≥ 2. So, E∞p,q is as above. Hence, we get the homology

groups as follows:

HBott
0 (f, g) = E2

0,0 = Z

HBott
1 (f, g) = E2

1,0 ⊕ E2
0,1 = Z⊕ Z

HBott
2 (f, g) = E2

2,0 ⊕ E2
0,2 ⊕ E2

1,1 = Z

• Let f : S2 → R such that f(x, y, z) = z2. The critical submanifolds are the equatorial

S1, north pole N and south pole S. Their indices are 0, 2 and 2, respectively. The E1
p,q

term of the spectral sequence is
...

0
d1
1,2←− 0

d1
2,2←− 0

d1
3,2←− · · ·

Z
d1
1,1←− 0

d1
2,1←− 0

d1
3,1←− 0 · · ·

Z
d1
1,0←− 0

d1
2,0←− Z⊕ Z

d1
3,0←− 0 · · ·

All differentials on the E1
p,q are zero but not all on E2

p,q. For example, d2
2,0 : Z⊕Z→ Z

is not zero since d2
2,0(N,S) = e−[M (N,S1)] = ±[S1]. So we pass to E3

p,q. The kernel of the

differential d2
2,0 is Z. Hence, the E3

p,q term of the spectral sequence looks like

0 0 0

0 0 0

Z 0 Z
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The differentials drp,q : Er
p,q → Er

p−r,q+r−1 and drp+r,q−r+1 : Er
p+r,q−r+1 → Er

p,q are zero

for r ≥ 3. So, the E∞p,q term of is as above. The Morse- Bott Homology groups is as follows:

HBott
0 (f, g) = E3

0,0 = Z

HBott
1 (f, g) = E3

1,0 ⊕ E3
0,1 = 0

HBott
2 (f, g) = E3

2,0 ⊕ E3
0,2 ⊕ E3

1,1 = Z
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